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ABSTRACT

The ion-irradiation tolerance of thermoelectric devices based on the spin Seebeck effect (SSE) was investigated by using 320MeV gold ion
(Au24þ) beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. For this purpose,
prototypical Pt/Y3Fe5O12/Gd3Ga5O12 SSE elements were irradiated with varying the dose level at room temperature and measured the SSE
voltage of them. We confirmed that the thermoelectric and magnetic properties of the SSE elements are not affected by the ion-irradiation
up to 1010 ions/cm2 fluence and that the SSE signal is extinguished around 1012 ions/cm2, in which the ion tracks almost fully cover the
sample surface. We also performed the hard X-ray photoemission spectroscopy (HAXPES) measurements to understand the effects at the
interface of Pt/Y3Fe5O12. The HAXPES measurements suggest that the chemical reaction that diminishes the SSE signals is enhanced with
the increase of the irradiation dose. The present study demonstrates that SSE-based devices are applicable to thermoelectric generation even
in harsh environments for a long time period.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0014229

I. INTRODUCTION

Spintronics uses both the charge and spin of electrons in solids
aiming efficient manipulations and communications in digital data
processing.1–3 On top of that, the spin-conversion capability,4 i.e.,
the interconversion among various types of energies via the spin
degree of freedom, attracts growing attention since it exhibits a
promising pathway to address eager demands for energy harvesting
technologies that would power trillion sensors in the forthcoming
“Internet of Things (IoT)” society. The discovery of the spin Seebeck
effect (SSE)5–7 opened up such a route offering a new thermoelectric
(TE) power generation.8,9 The SSE is the generation of a spin current

as a result of a temperature gradient in a magnetic material. When a
conductor is attached to a magnet and a temperature gradient is
applied across the conductor/magnet interface, a spin current
induced by the SSE is injected into the conductor and converted into
an electrical voltage via the inverse spin Hall effect.

The notable advantage of the spin-driven thermoelectric
(STE) generation stems from the orthogonal separation of conven-
tionally coupled heat and charge conduction paths allowing simple
and flexible device structures, low-cost fabrication processes, and
the unique scaling characteristics of output signals to device dimen-
sions. Large efforts are devoted to enhancing the energy conversion
efficiency, which has been tremendously improved in the past

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 083902 (2020); doi: 10.1063/5.0014229 128, 083902-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0014229
https://doi.org/10.1063/5.0014229
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0014229
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0014229&domain=pdf&date_stamp=2020-08-24
http://orcid.org/0000-0001-9346-5875
http://orcid.org/0000-0002-4832-5862
http://orcid.org/0000-0001-6069-8533
http://orcid.org/0000-0003-2675-0718
mailto:okayasu.satoru@jaea.go.jp
mailto:ieda.junichi@jaea.go.jp
https://doi.org/10.1063/5.0014229
https://aip.scitation.org/journal/jap


decade,11–13 and the trend is further propelled with the aid of mate-
rial informatics using machine learning.14

General applications of TE devices span from sensing temper-
ature and heat flow to a waste heat recovery in addition to the
aforementioned energy harvesting, depending on heat sources and
purposes.15–17 Furthermore, the potential of the STE devices may
be beyond such commoditized uses and is expected workable in
more harsh environments, e.g., in the unit of nuclear batteries
fueled by radioactive elements and in heat recovery from nuclear
wastes. This perspective relies on the fact that, contrary to conven-
tional semiconductor-based electronics, spintronics devices, in
general, preclude irradiation damages that may lead to performance
degradation as proven in the irradiation tests of magnetic tunneling
junctions that consist of metals and oxides18,19 and even in typical
spintronic semiconductors such as n-doped GaAs.20 While a previ-
ous study in fact confirms that a part of the robustness of STE
devices is against gamma-ray irradiations of relatively high doses,21

little knowledge is available for tolerance to other types of
irradiation.

In this paper, we investigate the performance of STE devices
under heavy ion beam irradiation with varying the dose level. The
high energy ions of a heavy element are created as fission products
from nuclear wastes stored in dry casks. We model the situation by
using swift gold ions with 320MeV produced by an ion beam
accelerator and measure transport properties of the as-irradiated
devices with applying temperature gradient. Since the spin-
conversion efficiency is largely influenced by the property of the
metal/oxide interface of STE devices, we jointly perform hard x-ray
photoemission spectroscopy (HAXPES) that clarifies the irradiation
effect on the interfacial property. The purpose of this study is to
pin down the critical dose level at which the thermoelectric perfor-
mance of the STE devices dies out. This basic knowledge is indis-
pensable for determining the device service life and for designing a
new architecture of thermoelectric-type nuclear batteries based on
spintronics technologies.

II. EXPERIMENTAL

The STE sample consists of metallic and magnetic insulator
films formed on a substrate.7 We used Pt and yttrium iron garnet
(Y3Fe5O12, YIG) as the metallic and magnetic insulator layers, respec-
tively. Samples were made by the metal-organic-decomposition
(MOD) method8 based on spin-coating technique. The MOD solu-
tion containing the constituent elements (Y and Fe carboxylate
dissolved in organic solvents with the chemical composition,
Y:Fe ¼ 3:5) are coated on a (111)-oriented single crystal gadolinium
gallium garnet (Gd3Ga5O12, GGG) substrate (500 μm thickness). The
spin-coating was set at 500 rpm for 5 s and 1000 rpm for 30 s,
followed by a drying step at 150 �C for 3min. Then, after 500 �C pre-
annealing for 5min, it was annealed at 700 �C for 14 h in the air. We
repeat whole the coating and annealing processes again to form a
thick crystallized YIG film. Its thickness was estimated to be 200 nm
from cross-sectional TEM measurements. After annealing the
substrate, the Pt layer was deposited with 5 nm thicknesses on
the surface of YIG. For the thermoelectric voltage measurements, the
sample was cut into small chips. We confirmed that the sample
exhibited the typical SSE output signals.

Next, we performed ion irradiation on the samples with
varying the dose level. One sample was set aside as a reference.
High energy ion beams were produced at the tandem accelerator in
JAEA-Tokai (Japan Atomic Energy Agency, Tokai Research and
Development Center) [Fig. 1(a)] where highly collimated and
monochromatic ion beams of a variety of ion species from hydro-
gen (H) to bismuth (Bi) with high energies (�400MeV by the
tandem accelerator alone and �1000MeV with the aid of a super-
conducting booster) and high currents (�3000 nA for H ions and
�10 nA for Au ions) are available. Based on the calculation,22 we
selected gold ions (Au24þ) accelerated to the energy 320MeV that
were irradiated on the samples at room temperature. As is well
known, when a high energy heavy ion passes through the samples
high-density electric excitations occur in semi-conducting or insu-
lating materials.23,24 For a group of ceramic materials including YIG,
columnar defects are formed along the ion tracks if stopping power,
Se, defined as the transfer energies from incident ion to the electron
system of the target, exceeds a threshold level (�10 keV/nm).25 Since
the YIG films prepared by the MOD method contain many voids it
is hard to visualize the ion-tracks. Instead, typical images of the
columnar defects created by Au ion irradiation from the GGG sub-
strate side are shown in Figs. 1(b) and 1(c). These columnar defects
are amorphous regions along the incident ion paths with �20 nm in
diameter.10,26–33 According to the thermal spike model,34–39 the ion
track diameter for amorphizable materials (e.g., YIG) corresponds to
the maximum diameter of the transiently molten region. Since the
length of the track that depends on the ion energy is calculated as
approximately 15 μm for 320MeV Au ions, ions irradiated from the
Pt side penetrate the Pt/YIG layers and end within the GGG sub-
strate. The coverage of an irradiated surface can be estimated by a
simple linear model without consideration of overlapping the tracks
as a function of ion beam fluence. When irradiation dose exceeds
over �1� 1012 ions/cm2, the entire sample surface is covered by the
columnar defects. Since amorphous YIG is paramagnetic and does
not contribute to the magnon transport at room temperature,40 the
irradiated regions become ineffective for thermoelectric energy con-
version via the SSE.

Thermoelectric measurements of the as-irradiated samples
were performed at the room temperature using a DC nanovolt-
meter and a resistive magnet. The sample properties were evaluated
at room temperature using Physical Property Measurement System
(PPMS). The Pt/YIG interface of the samples was investigated by
HAXPES at the BL22XU in SPring-8.

III. RESULTS

Figure 2(a) shows a change of the output voltage with the Au
ion fluence, Φ, varying from Φ ¼ 0–1:4� 1012 ions/cm2. The
applied temperature difference ΔT between Pt and the substrate
that is monitored by two thermocouples is fixed as ΔT ¼ 8 K and
the gap between electrodes is 3 mm. The SSE voltage VSSE is esti-
mated by subtracting the saturated voltage value at a negative field
from that at a positive field and by dividing the subtracted value by
the factor 2. The voltage decreases with the ion fluence, and
entirely disappears above the dose of Φ ¼ 1� 1012 ions/cm2 corre-
sponding to that the columnar defects are expected to cover the
entire surface of the sample. In Fig. 2(b), the ΔT dependence of the
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SSE voltages with the different as-irradiated samples is shown. The
linearity of the SSE voltages with ΔT is maintained for all
as-irradiated samples suggesting that the decrease of the SSE
voltage is a result of an increase of the damaged (amorphized) area
of the sample. In Fig. 2(c), the fluence dependence of VSSE=ΔT and
the calculated coverage ratio of the sample surface by the ion tracks
assuming that the track radius is 10 nm are shown. They show the
same dependence on the dose.

To understand the origin of the decrease of SSE signals during
the ion irradiation process, we evaluate the samples’ properties.
Resistivity of our Pt/YIG samples does not change by the irradia-
tion, although it is reported that amorphous track overlap increases
the resistivity of YIG.31 Therefore, the metallic Pt layer that governs
the sample resistivity is not affected by the irradiation. In our
experiment, the change of the sample resistance is �0:3% at
Φ ¼ 1:4� 1012 ions/cm2. This is reasonable since the transferred
energy to the electron system of the metallic Pt layer by swift ion
beams diffuses quickly due to the large electron density in the

metal. On the other hand, the magnetization of the YIG layer is
strongly affected by the irradiation. Figure 3(a) shows magnetiza-
tion hysteresis loops of the samples exhibiting a change of the satu-
ration magnetization with the ion fluence. The behavior is very
similar to that of the SSE voltage signals. The fluence dependence
of the saturation magnetization is summarized in Fig. 3(b),
showing a similar decay as the SSE voltages. This strongly suggests
that the decrease of the SSE signal is mainly due to the change of
magnetization.

A slight deviation between the measured magnetization and
calculated coverage is found in the high fluence region as shown in
Fig. 3(b). The SSE voltage in Fig. 2(c) completely disappears above
the dose of Φ ¼ 1� 1012 ions/cm2, while the magnetization in
Fig. 3(b) remains finite. The decrease of the SSE voltage with irradi-
ation is mainly caused by the amorphization of YIG, leading to the
decrease of the bulk magnetization. In addition, a further reason
for the drop for the SSE signal can be attributed to damage to the
Pt/YIG interface. To confirm this, we investigate the HAXPES

FIG. 1. (a) Schematic view of the
tandem accelerator in JAEA-Tokai. The
system consists of two-step accelera-
tions of ions with a high voltage termi-
nal. Between the two accelerations, the
charge state of ions is transformed
from negative to positive ones by
passing through an electron stripper (a
carbon foil) at the voltage terminal. (b)
Bright field image of GGG substrate
irradiated with 320 MeV Au24þ from the
substrate side surface at perpendicular
incidence. The direction of the irradia-
tion is indicated by the arrow. (c)
Magnified view of the ion tracks
created in the irradiated sample.
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analysis.41 Since this method offers large probing depths of photo-
electrons up to several nanometers with the aid of x-ray energies
typically above 5 keV, it has been known as a powerful tool for
non-destructive measurements of true bulk states and buried
interfaces.42–44

The HAXPES measurements were carried out using synchro-
tron radiation at the beamline BL22XU of SPring-8. The incident
x-ray energy was 8 keV. For the HAXPES experiment, we prepared
as-irradiated Pt/YIG/GGG samples using single-crystalline
100-nm-thick YIG films. We also carried out the SSE measure-
ments of the as-irradiated SSE devices with this single-crystalline
YIG films. The result confirmed the ion-irradiation tolerance of the
SSE devices was kept for the single-crystalline YIG. The detailed
comparison will be discussed elsewhere. The various photoelectron
peaks such as Fe 1s, Fe 2p, O 1s, Pt 4f , and Y 3d were measured at
room temperature. The other experimental details have been noted
elsewhere.45 Figure 3(c) shows HAXPES spectra in the O 1s region
for various dose levels. The binding energies become monotonically
larger with the increase of the irradiation dose as shown in
Fig. 3(d). The small peak that appears in the higher energy for
as-irradiated samples grows with the Au ion dose suggesting that it
originates from the oxygen deficiency in YIG. The binding energies
of Fe 2p3=2 show similar behavior, but those of Pt 4f do not
change. This tendency has been demonstrated previously at Pt/YIG
interfaces41 probing an occurrence of the interfacial chemical reac-
tion due to sputtering damages. The same tendency observed in

the present measurements indicates that the interface chemical
reaction might be enhanced by the ion beam irradiation.

IV. DISCUSSION

In this work, we find that the SSE signal maintains against the
high energy heavy ion irradiation up to the dose of
Φ ¼ 1� 1010 ions/cm2, and it vanishes for 1� 1012 ions/cm2 due
to the damages on the YIG layer of the SSE element. The results
show that the STE devices are tolerant of the single event effects as
similar to conventional TE devices. On the other hand, cumulative
damages due to the ion irradiation limit the workable time period
of the STE device if one uses it for nuclear batteries where the SSE
element is directly coupled, without shielding, to the radiative
element that emits high energy fission products.

We first examine the case that plutonium-238 (238Pu) is used
as the radioisotope heat source. In fact, 238Pu has been commonly
used for TE nuclear batteries based on conventional TE technolo-
gies since it only emits a 5MeV alpha ray in the decay process that
can be easily shielded. Using the SRIM code,22 the damages by the
5MeV alpha particles on the thin layer of a Pt(5 nm)/YIG
(100 nm)/GGG(30 μm) stacking were estimated. The average
damage rate in the YIG layer is 2:4� 10�4 (A

�
ions)�1, and the dis-

placement per atom (dpa) is 5:76� 10�6. On the other hand, the
average damage by 320MeV Au ions is 6:4� 10�2 (A

�
ions)�1, and

the dpa is 1:54� 10�3. If we simply compare the impacts between

FIG. 2. Measured SSE voltage for the
ion-irradiated samples with the fluence,
Φ ¼ 0, 1:0� 1010, 1:0� 1011,
1:0� 1012, and 1:4� 1012 ions/cm2

(from top to bottom). (a) The output
voltage signals as a function of applied
magnetic fields from �100 to 100 mT.
The temperature difference ΔT
between Pt and the substrate is fixed
as ΔT ¼ 8 K. (b) The ΔT dependence
of the SSE voltages with the different
as-irradiated samples. The solid lines
are linear fits to the data (symbols). (c)
The fluence dependence of the SSE
voltages divided by the applied temper-
ature difference, VSSE=ΔT , ( filled
circles), and the calculated coverage
ratio of the sample surface by the ion
tracks (solid curve). The error bars
mean the standard deviation of the
VSSE=ΔT fittings.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 083902 (2020); doi: 10.1063/5.0014229 128, 083902-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


the alpha particle and the heavy ion irradiation by the dpa values,
the device exhibits about 300 times tolerant against the former
than the latter.

Next, we evaluate the high energy ion flux at the surface of a
spent nuclear fuel (SNF). We consider a SNF with high burnup
that contains fissile materials such as uranium-235 (235U) and
239Pu stored in a dry cask (5.5 m in height and 2.4 m in diameter).
Those elements exhibit nuclear fission when they absorb thermal
neutrons (the kinetic energy ,1 eV) producing high energy neu-
trons and fission fragments. According to the measured dose of
neutrons at the surface of the dry cask �5� 109 n/s46 that counts
essentially all the nuclear fission processes, regardless of whether it
originates in a nuclear reaction or a radioactive decay, we may
roughly estimate the upper-bound of the creation rate of fission
products in the SNF to be the same order or less. Since the pro-
jected range for heavy ions with the kinetic energy �100MeV in
materials is about 10 μm that is extremely shorter than that of neu-
trons, only ions created at the vicinity of the surface can be emitted
from the SNF, yielding the maximum flux of the fission fragments
�0:2 ions/cm2/s. This crude estimate in conjunction with our

observation already assures that the STE devices work for more
than several hundred years around SNFs without degradation.
Obviously, if ones attach the substrate side of STE devices to a
radioisotope heat source by sacrificing the efficiency of heat energy
recovery, the YIG layer can be protected from the ion irradiation
effect.

V. CONCLUSIONS

In summary, we have investigated the ion-irradiation tolerance
of spin-driven thermoelectric (STE) devices powered by the spin
Seebeck effect (SSE). Using swift 320MeV gold ion beams with
several dose levels for the irradiation tests of the devices at room
temperature that simulate a harsh environment near dry casks of
nuclear wastes, we have confirmed that the thermoelectric and
magnetic properties of the STE devices are maintained against the
ion-irradiation up to 1010 ions/cm2 fluence and found that the criti-
cal fluence at which the SSE signal completely vanishes is around
1012 ions/cm2 fluence. At that dose level, on the other hand, the
bulk magnetization of the samples remains still finite. We consider

FIG. 3. Measured magnetization and
HAXPES for the ion-irradiated samples
with the fluence, Φ ¼ 0, 1:0� 1010,
1:0� 1011, 1:0� 1012, and
1:4� 1012 ions/cm2 (from top to
bottom). (a) The magnetization vs
applied magnetic fields from �100 to
100 mT. (b) The fluence dependence of
the saturation magnetization (filled
circles) and the calculated coverage
ratio of the sample surface by the ion
tracks (solid curve). The error bars
mean the standard deviation of the
magnetization fittings. (c) HAXPES
spectra in the O 1s region for various
dose levels. (d) The fluence depen-
dence of the peak energies taken from
the HAXPES.
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that the reason for the signal dying out even in the finite magneti-
zation remaining might be the surface chemical reaction facilitated
by the high dose level ion-irradiation based on the hard x-ray
photoemission spectroscopy (HAXPES) measurements. This basic
knowledge is indispensable for determining the device service life
in designing a new architecture of thermoelectric-type nuclear bat-
teries based on spintronics technologies. Our findings encourage
the use of STE devices applicable to thermoelectric generation even
in highly radiative harsh environments for a reasonable time
period.
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