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We study strong and radiative decays of excited singly heavy baryons (SHBs) using an effective chiral
Lagrangian based on the diquark picture proposed in Ref. [1]. The effective Lagrangian contains a UAð1Þ
anomaly term, which induces an inverse mass ordering between strange and nonstrange SHBs with spin-
parity 1=2−. We find that the effect of the UAð1Þ anomaly combined with flavor symmetry breaking
modifies the Goldberger-Treiman relation for the mass difference between the ground state ΛQð1=2þÞ
and its chiral partner ΛQð1=2−Þ, and ΛQð1=2−ÞΛQð1=2þÞη coupling, which results in suppression of
the decay width of ΛQð1=2−Þ → ΛQð1=2þÞη. We also investigate the other various decays such as
ΛQð1=2−Þ → ΣQð1=2þ; 3=2þÞππ, ΛQð1=2−Þ → ΣQð1=2þÞπ, ΛQð1=2−Þ → ΣQð1=2þ; 3=2þÞγ, and
ΛQð1=2−Þ → ΛQð1=2þÞπ0 for a wide mass range of ΛQð1=2−Þ.

DOI: 10.1103/PhysRevD.102.114004

I. INTRODUCTION

Spontaneous chiral symmetry breaking and the UAð1Þ
anomaly are the essential properties of quantum chromo-
dynamics (QCD). Since colored quarks and gluons are
not directly observed at the low-energy scale in QCD,
verification of these properties in hadronic phenomena
provides precious clues to understand the symmetry
properties of QCD. Chiral partner structure of hadron
spectra and the heavy η0 mass spectrum are examples of
such phenomena.
It is also important to interpret hadronic phenomena

based on colored constitutions such as diquarks. The
diquark is the simplest colored cluster that is known to
play an important role in structures of baryons and exotic
multiquark hadrons, and a color superconducting phase.

Singly heavy baryons (SHBs) are considered and
studied as the bound states of a diquark and a heavy
quark (c or b quark). Recently, diquarks made of light
quarks were studied from the chiral-symmetry view-
points, and a chiral effective theory for scalar or pseu-
doscalar diquarks was proposed [1]. The proposed
Lagrangian contains a term representing aUAð1Þ anomaly
effect. It is found that the term induces inverse mass
ordering between strange and nonstrange SHBs with
spin-parity 1=2−.
In this paper, we focus on investigation of decay

widths of SHBs with spin-parity 1=2− based on the
model given in Ref. [1], and we find that the effect of a
UAð1Þ anomaly, combined with the flavor symmetry
breaking, modifies the Goldberger-Treiman (GT) relation
for the mass difference between ΛQð1=2−Þ and ΛQð1=2þÞ,
and ΛQð1=2−ÞΛQð1=2þÞη coupling. This modification
induces suppression of the decay width of ΛQð1=2−Þ →
ΛQð1=2þÞη, when the mass of ΛQð1=2−Þ is above the
threshold of ΛQð1=2þÞη. We also study various other
decay modes of ΛQð1=2−Þ for the mass region below
the threshold such as ΛQð1=2−Þ → ΣQð1=2þ; 3=2þÞππ,
ΛQð1=2−Þ→ΣQð1=2þÞπ, ΛQð1=2−Þ → ΣQð1=2þ; 3=2þÞγ,
and ΛQð1=2−Þ → ΛQð1=2þÞπ0. Finally, we mention
decays of ΞQð1=2−Þ based on the model.
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This paper is organized as follows: We show the masses
and GT relations obtained in the model in Sec. II.
Section III is devoted to the study of the effect of the
UAð1Þ anomaly on ΛQð1=2−Þ → ΛQð1=2þÞη decay. We
study the other decays of ΛQð1=2−Þ in Sec. IV. Finally,
we give a summary and discussions in Sec. V.

II. MASSES AND GOLDBERGER-TREIMAN
RELATIONS

In Ref. [1], a chiral effective Lagrangian of scalar and
pseudoscalar diquarks based on chiral SUð3ÞR × SUð3ÞL
symmetry is proposed. Each diquark forms a SHB as a
bound state to a heavy quark Qðc=bÞ which belongs
to the flavor 3̄ representation (Λc=b or Ξc=b). In this paper,
we express those SHBs by linear representations: SR;i
(i ¼ 1, 2, 3) belongs to the ð3̄; 1Þ representation under
SUð3ÞR × SUð3ÞL symmetry, and SL;i to ð1; 3̄Þ. The effec-
tive Lagrangian of the SHBs in the chiral limit is given as

L ¼ S̄R;iðivμ∂μÞSR;i þ S̄L;iðivμ∂μÞSL;i
−MB0ðS̄R;iSR;i þ S̄L;iSL;iÞ

−
MB1

f
ðS̄R;iΣT

ijSL;j þ S̄L;iΣ
T†
ij SR;jÞ

−
MB2

2f2
ϵijkϵlmnðS̄L;kΣT

liΣT
mjSR;n þ S̄R;kΣT†

li Σ
T†
mjSL;nÞ;

ð1Þ

where vμ is the velocity of SHBs; MB0, MB1, and MB2 are
model parameters; f ¼ 92.4 MeV is the pion decay con-
stant; the indices i, j, k, l, m, n ¼ 1, 2, 3 are for either
SUð3ÞR or SUð3ÞL; and summations over repeated indices
are understood. Here, Σij denotes the effective field for
light scalar and pseudoscalar mesons belonging to the
chiral ð3̄; 3Þ representation. These fields transform as

Σij → UL;ikΣklU
†
R;lj; ð2Þ

SR;i → U†
R;jiSR;j; SL;i → U†

L;jiSL;j: ð3Þ

The Lagrangian is invariant under these chiral transforma-
tions. In addition, the kinetic,MB0, and MB2 terms are also
invariant under the following UAð1Þ transformations:

Σij → e−2iθΣij; ð4Þ

SR;i → e2iθSR;i; SL;i → e−2iθSL;i: ð5Þ

In contrast, the MB1 term is not invariant under these
transformations, reflecting the UAð1Þ anomaly.
The chiral symmetry is spontaneously broken by the

vacuum expectation values of the Σij field as hΣiji ¼ fδij.
Then, the MB1 and MB2 terms give contributions to the

mass splitting between parity eigenstates of SHBs
defined as

Si ¼
1ffiffiffi
2

p ðSR;i − SL;iÞ ¼
�ΞQð1=2þÞ ði ¼ 1; 2Þ
ΛQð1=2þÞ ði ¼ 3Þ; ð6Þ

Pi ¼
1ffiffiffi
2

p ðSR;i þ SL;iÞ ¼
�ΞQð1=2−Þ ði ¼ 1; 2Þ
ΛQð1=2−Þ ði ¼ 3Þ: ð7Þ

In this paper, we follow the prescription adopted in
Ref. [1], in which the explicit breaking of flavor symmetry
is introduced by the replacement

Σ → Σ̃≡ Σþ diagf0; 0; ðA − 1Þfg; ð8Þ

with A ∼ 5=3 being the parameter of flavor breaking.
The vacuum expectation value of Σ̃ is given by

hΣ̃i ¼ fdiagð1; 1; AÞ: ð9Þ

Then, the masses of the SHBs are expressed as

M�
1;2 ¼ MB0 ∓ ðMB1 þ AMB2Þ; ð10Þ

M�
3 ¼ MB0 ∓ ðAMB1 þMB2Þ; ð11Þ

whereM�
1;2 denote the masses of ΞQð1=2þÞ and ΞQð1=2−Þ,

and M�
3 the masses of ΛQð1=2þÞ and ΛQð1=2−Þ. From

Eqs. (10) and (11), we obtain mass differences between
chiral partners as

ΔM1;2 ¼ 2ðMB1 þ AMB2Þ; ð12Þ

ΔM3 ¼ 2ðAMB1 þMB2Þ: ð13Þ

We require Mþ
1;2 > Mþ

3 consistently with the experimental
values of the masses of the ground-state SHBs. The inverse
mass ordering between strange and nonstrange SHBs
proposed in Ref. [1] indicates M−

1;2 < M−
3 ; then we obtain

a relation ΔM1;2 < ΔM3. For this relation, the effect of
the anomaly plays a crucial role. When we ignore MB1
in Eqs. (10)–(13), the realistic mass ordering of SHBs
(Mþ

1;2 < M−
1;2 and Mþ

3 < M−
3 ) results in MB2 > 0. Then,

MB2 > 0, together with A > 1, leads to ΔM1;2 > ΔM3.
Next, we study the couplings among chiral partners and a

pseudo-Nambu-Goldstone (pNG) boson. For this purpose,
we introduce light scalar mesons σij and pseudoscalar
mesons πij as

Σ̃ij ¼ hΣ̃iji þ σij þ iπij; ð14Þ

with
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πij ¼
ffiffiffi
2

p
0
BBB@

π0ffiffi
2

p þ η8ffiffi
6

p þ η1ffiffi
3

p πþ Kþ

π− − π0ffiffi
2

p þ η8ffiffi
6

p þ η1ffiffi
3

p K0

K− K̄0 − 2η8ffiffi
6

p þ η1ffiffi
3

p

1
CCCA:

ð15Þ

The MB1 and MB2 terms of the Lagrangian (1) provide
interactions of the SHBs with light mesons. In the chiral
limit (A ¼ 1), we obtain the relation between the coupling
constant for the interaction of SHBs with a pNG boson gπSP
and the mass difference of SHBs ΔM as

gπSP ¼ MB1 þMB2

f
¼ ΔM

2f
: ð16Þ

This is often called the extended GT relation. We focus
on studying the coupling of ΛQð1=2−ÞΛQð1=2þÞη in this
section, and we use g for the coupling constant below.
When the flavor symmetry breaking is included using
A > 1, the coupling constant is obtained as

g ¼ MB1 þMB2

f
¼ ΔM1;2 þ ΔM3

2fðAþ 1Þ : ð17Þ

From inverse mass ordering, we obtain ΔM1;2 < ΔM3 as
we showed above. Then, we see that

g ¼ ΔM3

2f

ΔM1;2

ΔM3
þ 1

Aþ 1
<

ΔM3

2f
; ð18Þ

which indicates that the value of the coupling constant is
smaller than the one expected from the GT relation. In order
to see that this is caused by the effect of the anomaly,
we drop MB1 in Eqs. (13) and (17). Then, we obtain the
coupling constant as

ḡ ¼ MB2

f
¼ ΔM3

2f
; ð19Þ

which is the one expected from the GT relation in
Eq. (16). Therefore, we conclude that the UAð1Þ anomaly
suppresses the value of the coupling constant. This sup-
pression is expected to be seen in the decay width of
ΛQð1=2−Þ → ΛQð1=2þÞη.

III. EFFECT OF ANOMALY ON
ΛQð1=2− Þ → ΛQð1=2+ Þη DECAY

In this section, we numerically study how the effect
of the anomaly suppresses the decay of ΛQð1=2−Þ →
ΛQð1=2þÞη. Interaction among ΛQð1=2−Þ, ΛQð1=2þÞ,
and η8 or η1 is obtained from the Lagrangian (1) as

i
2ffiffiffi
3

p
�
MB1

f

�
η8 −

1ffiffiffi
2

p η1

�
þMB2

f
ðη8 þ

ffiffiffi
2

p
η1Þ

�

· Λ̄Qð1=2þÞΛQð1=2−Þ; ð20Þ

where η8 is a member of the octet of SUð3Þ flavor
symmetry, and η1 belongs to the flavor singlet. The realistic
η is known as a mixing state of η8 and η1. As shown in the
previous section, although η8 is a pNG boson associated
with the chiral SUð3ÞR × SUð3ÞL symmetry breaking,
its coupling constant to Λcð1=2−Þ and Λcð1=2þÞ given
in Eq. (17) is smaller than the naive expectation of the GT
relation in Eq. (16). On the other hand, the coupling
constant of η1 is read from Lagrangian (1) as

gη1 ¼
MB1 − 2MB2

f
: ð21Þ

This is also different from the GT relation since η1 is no
longer a pNG boson when the effect of the UAð1Þ anomaly
is included. In the following, we first see that the coupling
constant in Eq. (17) is suppressed compared with the one in
Eq. (19) due to the effect of the anomaly, as shown in
Eq. (18) by regarding η8 as η and neglecting small mixing
between η and η0. The effect of the η-η0 mixing is introduced
for comparison with the realistic decay width afterward.
The values ofMB1 andMB2 in Eq. (17) are determined from
the masses of Λcð1=2−Þ, Λcð1=2þÞ, and Ξcð1=2þÞ. We
use the experimental values of the masses of Λcð1=2þÞ
and Ξcð1=2þÞ as MðΛcð1=2þÞÞ ¼ 2286.46 MeV and
MðΞcð1=2þÞÞ ¼ 2469.42 MeV.1 Since the mass of
Λcð1=2−Þ is not determined in experiment, we calculate
the decay width for a wide range of the mass of Λcð1=2−Þ.
We note that, although Λcð2595Þ carries JP ¼ 1=2−, it is
not Λcð1=2−Þ here since Λcð2595Þ results in a heavy-quark
spin doublet with Λcð2625Þ having 3=2−.
We show the decay width of Λcð1=2−Þ → Λcð1=2þÞη in

Fig. 1. The thin solid green and thin dotted orange curves
are plotted without η-η0 mixing. The thin solid green curve
is drawn by using the coupling constant in Eq. (17) which
includes the effect of the anomaly, while the thin dotted
orange curve is drawn by using the one in Eq. (19) without
the anomaly. One can easily see that the thin solid green
curve is quite suppressed compared with the thin dotted
orange curve.
Next, let us include the effect of η-η0 mixing. Introducing

the η-η0 mixing matrix as [3]

�
η

η0

�
¼

�
cos θP − sin θP
sin θP cos θP

��
η8

η1

�
; ð22Þ

1When we calculate the coupling constant in Eq. (19), we do
not use the mass of Ξcð1=2þÞ as an input.
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the ΛQð1=2−ÞΛQð1=2þÞη interaction is obtained from
Eq. (20) as

i
2ffiffiffi
3

p gphysΛ̄Qð1=2þÞΛQð1=2−Þη; ð23Þ

where

gphys ¼
ξ1MB1 þ ξ2MB2

f
; ð24Þ

with ξ1¼ cosθPþsinθP=
ffiffiffi
2

p
and ξ2 ¼ cos θP −

ffiffiffi
2

p
sin θP.

Here, we use θP ¼ −11.3° listed in Ref. [3]. In Fig. 1, the
thick solid blue curve shows the width of Λcð1=2−Þ →
Λcð1=2þÞη decay calculated by using the coupling constant
in Eq. (24). Comparing with the thin solid green curve, we
see that the effect of η-η0 mixing suppresses the decay width
by about 50%. When the effect of the anomaly is dropped
by taking MB1 ¼ 0, the coupling constant in Eq. (24) is
reduced to

ḡphys ¼
ξ2MB2

f
¼ ξ2ḡ: ð25Þ

Since ξ2 ∼ 1.26, the above relation implies that the width is
enhanced by about 60%, as shown by the thick dotted
purple curve compared with the thin dotted orange curve
in Fig. 1.
At the end of this section, let us apply our analysis to

the bottom sector. The parameters MB1 and MB2 of the
Lagrangian (1) are uniquely determined when the mass of

Λcð1=2−Þ on the horizontal axis in Fig. 1 is fixed. Here, we
apply the Lagrangian (1) to the bottom sector and use the
values of MB1 and MB2 determined above to evaluate the
mass difference between Λbð1=2þÞ and Λbð1=2−Þ, and
the decay width of Λbð1=2−Þ → Λbð1=2þÞη. The mass
difference between Λbð1=2þÞ and Λbð1=2−Þ is equal to that
between Λcð1=2þÞ and Λcð1=2−Þ. We show the resultant
decay width in Fig. 2. In this figure, the vertical thick
dashed red line shows MðΛb; 1=2−Þ ¼ 6223 MeV deter-
mined by usingMðΛc; 1=2−Þ ¼ 2890 MeV [2] as an input,
and the vertical thin dashed cyan line is forMðΛb; 1=2−Þ ¼
6159 MeV by using MðΛc; 1=2−Þ ¼ 2826 MeV [1]. The
vertical thick dash-dotted magenta line shows the threshold
of Λbð1=2þÞη. We can see that the effect of the anomaly
suppresses the decay widths as in the charm sector.
Similarly, the effect of η-η0 mixing enhances the decay
width in the case without the anomaly and suppresses that
with the anomaly. We also observe that all the decay widths
of Λbð1=2−Þ in Fig. 2 are enhanced compared with those
of Λcð1=2−Þ in Fig. 1. This is caused by the kinematical
factor, although the relevant coupling constants are equal to
each other.

IV. OTHER DECAYS OF ΛQð1=2− Þ
The mass of ΛQð1=2−Þ (Q ¼ c, b) has not yet been

experimentally determined. When it is larger than the
threshold of ΛQð1=2−Þη, ΛQð1=2−Þ → ΛQð1=2þÞη decay
is expected to be dominant. On the other hand, if ΛQð1=2−Þ
is located below the threshold as predicted in Refs. [1,4],
other decay modes become relevant. Then, we investigate

the decays of ΛQð1=2−Þ → Σð�Þ
Q ππ, ΛQð1=2−Þ → Σð�Þ

Q γ,
ΛQð1=2−Þ → ΣQπ, and ΛQð1=2−Þ → ΛQð1=2þÞπ0 [ΣQ

and Σ�
Q denote ΣQð1=2þÞ and ΣQð3=2þÞ, respectively].

We expect that ΛQð1=2−Þ → Σð�Þ
Q ππ decay becomes

large when the mass of ΛQð1=2−Þ is far above the threshold

FIG. 2. Dependence of Λbð1=2−Þ → Λbð1=2þÞη width on the
mass of Λbð1=2−Þ. Curves in this figure respectively correspond
to those in Fig. 1. See the main text for the vertical lines.

FIG. 1. Dependence of Λcð1=2−Þ → Λcð1=2þÞη width on the
mass of Λcð1=2−Þ. Predictions without the η-η0 mixing are
shown by the thin solid green (with anomaly) and thin dotted
orange (without anomaly) curves, and those with the η-η0
mixing are shown by the thick solid blue and thick dotted
purple curves. Two predictions of the mass of Λcð1=2−Þ are
shown by the vertical thick dashed red [2] and thin dashed
cyan [1] lines. The thick-dash-dotted magenta line shows the
threshold of Λcð1=2þÞη (∼2834 MeV).
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of ΛQð1=2−Þ → ΣQππ, and that the radiative decay is
suppressed. Although ΛQð1=2−Þ → ΣQπ decay violates
the heavy-quark symmetry, it can be dominant near the
threshold of ΛQð1=2−Þ → ΣQππ, especially in the charm
sector. Note that ΛQð1=2−Þ → ΛQð1=2þÞπ0 will be
strongly suppressed since it breaks isospin symmetry.
Typical forms of interaction Lagrangians are given in

Appendix A. The coupling constant of ΛQð1=2−Þ →
Σð�Þ
Q ππ is estimated as k ¼ 1 by the ρ meson dominance

and the coupling universality [5–7], but so far we cannot
precisely determine its value using the known experimental
data of SHBs. Furthermore, the coupling constants of

ΛQð1=2−Þ → ΣQπ and ΛQð1=2−Þ → Σð�Þ
Q γ are unknown.

We therefore leave k, κ, and r as free parameters.
We show the dependence of estimated widths on the

mass of Λcð1=2−Þ in Fig. 3. We also show the esti-
mated widths of Λbð1=2−Þ in Fig. 4. We note that these

figures show the decay widths of ΛQð1=2−Þ → Σð�Þ
Q ππ,

ΛQð1=2−Þ → ΣQπ, and ΛQð1=2−Þ → Σð�Þ
Q γ divided by the

unknown constants k2, κ2, and r2, respectively. On the other
hand, the ΛQð1=2−Þ → ΛQð1=2þÞπ0 mode is completely
determined by the chiral property in the present analysis, so
the decay width itself is plotted.

We see that decay widths of ΛQð1=2−Þ → Σð�Þ
Q ππ,

ΛQð1=2−Þ → Σð�Þ
Q γ, and ΛQð1=2−Þ → ΛQð1=2þÞπ0 in the

charm sector are almost the same as those in the
bottom sector. On the other hand, the decay width of

Λbð1=2−Þ → Σbπ is very suppressed compared with that of
Λcð1=2−Þ → Σcπ since the heavy-quark symmetry is well
satisfied in the bottom sector.
Figure 3 shows that, below the threshold of Λcð1=2þÞη

indicated by the vertical thick dash-dotted magenta line,
the dominant decay mode is Λcð1=2−Þ → Σcπ, shown by
the thick-dashed gray curve, which violates the heavy-
quark symmetry. Figure 4 shows that, below the threshold,

the dominant decay mode is Λbð1=2−Þ → Σð�Þ
b ππ, indicated

by the thick solid orange curve. When the mass of
Λbð1=2−Þ is a little above the threshold of Λbð1=2−Þ →
Σbππ indicated by the vertical thin dash-dotted olive line,

Λbð1=2−Þ → Σð�Þ
b ππ decay is suppressed, and Λbð1=2−Þ →

Σbπ and Λbð1=2−Þ → Σð�Þ
b γ decays are dominant. Since

Λbð1=2−Þ → Σbπ decay is strongly suppressed by the
heavy-quark symmetry in the bottom sector, the width is
comparable to that of the radiative decay.
Note that ΛQð1=2−Þ → ΛQð1=2þÞπ0 decay originates

from π0 − η mixing generated by the isospin violation.
The coupling constant of ΛQð1=2−Þ → ΛQð1=2þÞπ0 is
written as

gπ0η ¼ Δπ0ηgphys; ð26Þ

where Δπ0η is a parameter of π0 − η mixing estimated as
Δπ0η ∼ −5.32 × 10−3 in Ref. [8] with a scheme given in
Ref. [9]. Similarly, we obtain

ḡπ0η ¼ Δπ0ηḡphys: ð27Þ

Predicted widths from Eq. (26) are shown by thick dotted
blue curves in Figs. 3 and 4, and those from Eq. (27) are

FIG. 3. Dependence of various decay widths of Λcð1=2−Þ on
the mass of Λcð1=2−Þ. The thick solid orange, thick dashed gray,
and thin solid green curves, respectively, show ΓΣð�Þ

c ππ
=k2,

ΓΣcπ=κ
2, and ΓΣð�Þ

c γ
=r2. The thick dotted blue and thin dotted

purple curves show the width of Λcð1=2−Þ → Λcð1=2þÞπ0 with
the coupling constant in Eq. (26) (with anomaly) and in Eq. (27)
(without anomaly). The vertical thick dash-dotted magenta and
thin dashed cyan lines correspond to those in Fig. 1. The vertical
thin dash-dotted olive line shows the threshold of Σcππ.

FIG. 4. Dependence of various decay widths of Λbð1=2−Þ on
the mass of Λbð1=2−Þ. The curves correspond to those in Fig. 3.
The vertical thick dash-dotted magenta and thin dashed cyan lines
correspond to those in Fig. 2. The vertical thin dash-dotted olive
line shows the threshold of Σbππ.
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shown by thin dotted purple curves for comparison. We see
that these decay widths are very small.

V. SUMMARY AND DISCUSSIONS

In this paper, we study strong and radiative decays of
excited SHBs using a chiral effective Lagrangian based on
the diquark picture proposed in Ref. [1]. We show
predictions of widths for typical choices of the mass of
ΛQð1=2−Þ in Tables I and II. Our prediction on the width of
ΛQð1=2−Þ → ΛQð1=2þÞη is strongly suppressed by the
effect of the anomaly compared with the prediction without
an anomaly. In general, the large width of the chiral partner
state is an obstacle to its observation. The suppression of
the width may enable us to observe the state easily. Tables I
and II also show predictions on the other decay modes,
which are useful for experimental observation of chiral
partners when the mass of ΛQð1=2−Þ is located below the
threshold of ΛQð1=2þÞη. For illustrative purposes, in the

last two rows of Tables I and II, we show the numerical
values of the total widths without and with an anomaly,
respectively, under the arbitrary assumptions k ¼ 1, κ ¼ 1,
and r ¼ 1.
In the chiral partner structure using (3, 3) representations

for the diquark with JP ¼ 1�, the chiral partners to
ΣQðJP ¼ 1=2þÞ and Σ�

Qð3=2þÞ are ΛQ1ð1=2−Þ and
Λ�
Q1ð3=2−Þ, respectively, as in Eq. (A1) in Appendix A.

In such a case, ΛQð1=2−Þ → Σð�Þ
Q γ decays share a common

coupling constant with Λð�Þ
Q1 → ΛQð1=2þÞγ decays. Once

the chiral partner Λð�Þ
Q1 is identified with some physical

particles such as in Refs. [10,11], we can check the chiral
partner by looking at the radiative decays of those particles.
In Tables I and II, we see that the decay width of

ΛQð1=2−Þ → ΛQð1=2þÞπ0 is small. Even though it might
be difficult to observe this decay experimentally, it may
give some information about the UAð1Þ anomaly since its
coupling constant is completely determined by the relation

TABLE I. Decay widths of Λcð1=2−Þ without and with the effect of the anomaly. Units of masses and widths are in MeV. The last two
rows show the numerical values of the total widths without and with an anomaly, respectively, under the arbitrary assumptions k ¼ 1,
κ ¼ 1, and r ¼ 1.

Mass of Λcð1=2−Þ [MeV] 2702 [4] 2759 [4] 2826 [1] 2890 [2]

Λcð1=2−Þ → Λcð1=2þÞη without anomaly � � � � � � � � � 639
Λcð1=2−Þ → Λcð1=2þÞη with anomaly � � � � � � � � � 52.3
Λcð1=2−Þ → Σð�Þ

c ππ � � � 0.0400k2 1.84k2 13.0k2

Λcð1=2−Þ → Σcπ 1.67κ2 2.14κ2 2.62κ2 3.04κ2

Λcð1=2−Þ → Σð�Þ
c γ 0.126r2 0.243r2 0.448r2 0.718r2

Λcð1=2−Þ → Λcð1=2þÞπ0 without anomaly 0.0147 0.0213 0.0309 0.0422
Λcð1=2−Þ → Λcð1=2þÞπ0 with anomaly 2.60 × 10−4 7.87 × 10−4 1.87 × 10−3 3.46 × 10−3

Total without anomaly 1.81 2.44 4.93 656

Total with anomaly 1.80 2.42 4.90 69.0

TABLE II. Decay widths of Λbð1=2−Þ without and with the effect of the anomaly. Units of masses and widths are in MeV. Note that
“6159 MeV” is not listed in Ref. [1], but it is estimated in the same way as the prediction “2826 MeV” in Table I. The last two rows show
the numerical values of the total widths without and with an anomaly, respectively, under the arbitrary assumptions k ¼ 1, κ ¼ 1, and
r ¼ 1.

Mass of Λbð1=2−Þ [MeV] 5999 [4] 6079 [4] 6159 [1] 6174 [4] 6207 [4]

Λbð1=2−Þ → Λbð1=2þÞη without anomaly � � � � � � � � � 223 619

Λbð1=2−Þ → Λbð1=2þÞη with anomaly � � � � � � � � � 16.5 52.9

Λbð1=2−Þ → Σð�Þ
b ππ � � � � � � 1.16k2 2.38k2 7.95k2

Λbð1=2−Þ → Σbπ 0.183κ2 0.329κ2 0.450κ2 0.472κ2 0.518κ2

Λbð1=2−Þ → Σð�Þ
b γ 0.0795r2 0.241r2 0.531r2 0.603r2 0.781r2

Λbð1=2−Þ → Λbð1=2þÞπ0 without anomaly 0.0129 0.0229 0.0369 0.0400 0.0473
Λbð1=2−Þ → Λbð1=2þÞπ0 with anomaly 9.50 × 10−5 7.41 × 10−4 2.23 × 10−3 2.62 × 10−3 3.63 × 10−3

Total without anomaly 0.275 0.593 2.18 226 628

Total with anomaly 0.263 0.571 2.14 20.0 62.2
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reflecting chiral symmetry, as shown in Eq. (26) or (27),
and the width with the anomaly is strongly suppressed.
Then, we may check the effect of the anomaly through this
decay when the mass of ΛQð1=2−Þ is located below the
threshold of ΛQð1=2þÞη.
The suppression of the decay width by the effect of the

anomaly can also be seen at the diquark level, which we
show in Appendix B.
We consider the mass and the decay width of Ξcð1=2−Þ.2

From Eqs. (10) and (11), we obtain

MðΞcð1=2−ÞÞ
¼ MðΛcð1=2þÞÞ þMðΛcð1=2−ÞÞ −MðΞcð1=2þÞÞ;

ð28Þ

which determines the mass of Ξcð1=2−Þ, once the mass
of Λcð1=2−Þ is fixed. The dominant decay of Ξcð1=2−Þ
is Ξcð1=2−Þ → Ξcð1=2þÞπ, and the coupling constant is
obtained from the Lagrangian (1) as

gΞc
¼ MB1 þ AMB2

f
¼ ΔM1;2

2f
: ð29Þ

This is the same as the extended GT relation in Eq. (16). We
plot the resultant relation between the mass of Ξcð1=2−Þ
and the decay width of Ξcð1=2−Þ → Ξcð1=2þÞπ in Fig. 5.
The vertical thick dashed red and thin dashed cyan lines

correspond to those in Fig. 1: The thick dashed red
line shows MðΞcð1=2−ÞÞ ¼ 2707 MeV obtained from
MðΛð1=2−ÞÞ ¼ 2890 MeV through Eq. (28); the thin
dashed cyan line shows MðΞcð1=2−ÞÞ ¼ 2643 MeV from
MðΛð1=2−ÞÞ ¼ 2826 MeV. The mass difference between
Ξð1=2þÞ and Ξð1=2−Þ reflecting the inverse mass hierarchy
makes the phase space and the coupling constant small.
In the present analysis, we included only the leading

order of the flavor symmetry breaking parameter; i.e.,
contributions are linear in A. Furthermore, when the effect
of heavy-quark symmetry violation is included, ΛQð1=2−Þ
can contain other diquark components which have different
chiral properties [12]. We leave the study of higher orders
of flavor symmetry breaking and mixing between different
diquark components for future work.
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APPENDIX A: CHIRAL (3, 3) REPRESENTATION
FOR SHB AND LAGRANGIAN

To discuss various transitions of ΛQð1=2−Þ below the
threshold of ΛQð1=2þÞη, we introduce the heavy-quark

spin doublet Σð�Þ
Q as a member of the chiral (3, 3) field Sμij

(see, e.g., Refs. [10,11] for a detailed discussion), which
transforms as

Sμij ¼ B̂6μ
ij þ B̂3̄μ

ij → UR;ikUL;jlS
μ
kl; ðA1Þ

where B̂6μ
ij is a doublet of ð1=2þ; 3=2þÞ and B̂3̄μ

ij is a
doublet of ð1=2−; 3=2−Þ. They are defined as matrix
representations:

B̂6μ ¼

0
BBBBB@

ΣI3¼1μ
Q

1ffiffi
2

p ΣI3¼0μ
Q

1ffiffi
2

p Ξ0I3¼1
2
μ

Q

1ffiffi
2

p ΣI3¼0μ
Q ΣI3¼−1μ

Q
1ffiffi
2

p Ξ0I3¼−1
2
μ

Q

1ffiffi
2

p Ξ0I3¼1
2
μ

Q
1ffiffi
2

p Ξ0I3¼−1
2
μ

Q Ωμ
Q

1
CCCCCA
; ðA2Þ

B̂3̄μ ¼ 1ffiffiffi
2

p

0
BBBBB@

0 Λμ
Q1 ΞI3¼1

2
μ

Q1

−Λμ
Q1 0 ΞI3¼−1

2
μ

Q1

−ΞI3¼1
2
μ

Q1 −ΞI3¼−1
2
μ

Q1 0

1
CCCCCA
: ðA3Þ

The Lagrangian of the interactions relevant for the present
analysis is written as

FIG. 5. Dependence of the Ξcð1=2−Þ → Ξcð1=2þÞπ width on
the mass of Ξcð1=2−Þ. The vertical thick dashed red line shows a
prediction of the mass of Ξcð1=2−Þ (2707 MeV) calculated from
Eq. (28) using MðΛcð1=2−ÞÞ ¼ 2890 MeV predicted in Ref. [2],
and the vertical thin dashed cyan line shows a prediction
(2643 MeV) using MðΛcð1=2−ÞÞ ¼ 2826 MeV from Ref. [1].

2It should be noted here that the relevant chiral partner
state, Ξcð1=2−Þ, is a singlet state for the heavy quark spin
symmetry. Therefore, the known Ξcð2790Þð1=2−Þ may not be a
candidate as it seems to form a heavy-quark spin doublet with
Ξcð2815Þð3=2−Þ.
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Lint ¼ þ k
8f3

ϵijk½ΣT
ilS̄

μ
lmð∂μΣ†

mnΣnj − Σ†
mn∂μΣnjÞSR;k�

þ k
8f3

ϵijk½ΣT†
il S̄

Tμ
lmð∂μΣmnΣ†

nj − Σmn∂μΣ†
njÞSL;k�

þ κf
2MΛQ

ϵijkϵμνρσðS̄μilΣ†
ljv

νσρσSL;k − S̄Tμil ΣljvνσρσSR;kÞ

þ r
F2

ϵijkðS̄μilQlmΣ
†
mjSL;k þ S̄Tμil QlmΣmjSR;kÞvνFμν

þ H:c:; ðA4Þ

where Fμν is the field strength of the photon and σμν is
defined as σμν ¼ i

2
½γμ; γν�. The ρ meson dominance and

the coupling universality suggest k ¼ 1 [5–7]. Here, MΛQ

denotes the masses of the ground state ΛQð1=2þÞ, and F is
a constant with dimension one. In this analysis, we take
F ¼ 350 MeV following Ref. [13].

APPENDIX B: DECAY WIDTH OF A DIQUARK

In this appendix, we consider the decay width of a
diquark corresponding to ΛQð1=2−Þ → ΛQð1=2þÞη decay.
Let us first work in the chiral limit. The Lagrangian of

the diquark is written as [1]

Lqq ¼ DμdR;iðDμdR;iÞ† þDμdL;iðDμdL;iÞ†
−m2

0ðdR;id†R;i þ dL;id
†
L;iÞ

−
m2

1

f
ðdR;iΣ†

ijd
†
L;j þ dL;iΣijd

†
R;jÞ

−
m2

2

2f2
ϵijkϵlmnðdR;kΣliΣmjd

†
L;n þ dL;kΣ

†
liΣ

†
mjd

†
R;nÞ:

ðB1Þ

From the Lagrangian, we obtain the width of qqð0−Þ →
qqð0þÞη decay as

Γqq ¼
1

6π

�
m2

1 þm2
2

f

�
2 jpj
Mð0−Þ2 ; ðB2Þ

where p is the momentum of η, and Mð0−Þ is the mass of
the diquark with spin-parity 0−. The GT relation of the
diquark in the chiral limit is

m2
1 þm2

2

f
¼ ½Mð0−Þ�2 − ½Mð0þÞ�2

2f
; ðB3Þ

where Mð0þÞ is the mass of the diquark with spin-parity
0þ. Using this relation, Eq. (B2) is rewritten as

Γqq ¼
2

3π

�
Mð0−Þ −Mð0þÞ

2f

�
2
�
Mð0−Þ þMð0þÞ

2Mð0−Þ
�

2

jpj:

ðB4Þ

When hΣiji ¼ fδij is small compared with Mð0þÞ, we can
take jpj→Mð0−Þ−Mð0þÞ≡ΔMqq andMð0−ÞþMð0þÞ→
2Mð0−Þ. Then, the decay width is expressed by the mass
difference ΔMqq as

Γqq ¼
½ΔMqq�3
6πf2

: ðB5Þ

On the other hand, the width of ΛQð1=2−Þ → ΛQð1=2þÞη
decay is obtained from the Lagrangian of SHBs (1) as

ΓqqQ ¼ 2

3π

�
ΔM
2f

�
2 Mð1=2þÞ
Mð1=2−Þ jpj; ðB6Þ

where we used the GT relation in the chiral limit (16).
In the heavy-quark limit, we can replace jpj → ΔM and
Mð1=2þÞ=Mð1=2−Þ → 1, and obtain

ΓqqQ ¼ ½ΔM�3
6πf2

: ðB7Þ

Now, we can easily see a coincidence between Eqs. (B5)
and (B7) with an approximation ΔMqq ≃ ΔM.
Next, let us include the flavor symmetry breaking by

A > 1. The coupling constant of udð0−Þ → udð0þÞη decay
is obtained as

gud ¼
m2

1 þm2
2

f
¼ Δ½M1;2�2 þ Δ½M3�2

2fðAþ 1Þ

¼ Δ½M3�2
2f

Δ½M1;2�2
Δ½M3�2 þ 1

Aþ 1
; ðB8Þ

whereΔ½Mi�2 ¼ ½Mið0−Þ�2 − ½Mið0þÞ�2 (i ¼ 1, 2, 3). From
the inverse mass ordering Δ½M1;2�2 < Δ½M3�2 and A > 1,
this coupling constant is smaller than the one expected from
the GT relation of the diquark:

ḡud ¼
m2

2

f
¼ Δ½M3�2

2f
: ðB9Þ

Therefore, we expect that the effect of the anomaly
suppresses the decay width of udð0−Þ → udð0þÞη, sim-
ilarly to that of ΛQð1=2−Þ → ΛQð1=2þÞη.
Adopting the prescription of η-η0 mixing in Sec. III,

the coupling constant of udð0−Þ → udð0þÞη, including the
effect of mixing, is obtained as

gphysud ¼ ξ1m2
1 þ ξ2m2

2

f
: ðB10Þ

For the inverse mass ordering, jm2
1j > jm2

2j, m2
1 > 0, and

m2
2 < 0 hold [1]. Because ξ1 < 1 and ξ2 > 1 as shown in

Sec. III, the effect of η-η0 mixing also suppresses the decay

KAWAKAMI, HARADA, OKA, and SUZUKI PHYS. REV. D 102, 114004 (2020)

114004-8



width compared with the one calculated from the coupling
constant naively expected from the GT relation as

ḡphysud ¼ ξ2m2
2

f
¼ ξ2ḡud: ðB11Þ

We numerically evaluate the decay width of udð0−Þ →
udð0þÞη by taking M1;2ð0þÞ ¼ 906 MeV and M3ð0þÞ ¼
725 MeV [1,14]. We show the dependence of the
udð0−Þ → udð0þÞηwidth onM3ð0−Þ in Fig. 6. The vertical
thick dashed red line is at M3ð0−Þ ¼ 1329 MeV estimated
from MðΛcð1=2−ÞÞ ¼ 2890 MeV, while the vertical thick
dash-dotted magenta line is at the threshold of the
udð0−Þ → udð0þÞη decay. The thin solid green and thin
dotted orange curves are plotted without η-η0 mixing. The
thin solid green curve is drawn by using the coupling
constant in Eq. (B8), which includes the effect of the
anomaly, while the thin dotted orange curve is drawn by
using the one in Eq. (B9) without anomaly. The thick solid
blue and thick dotted purple curves include the effect of η-η0
mixing. The thick solid blue curve is drawn by using the
coupling constant in Eq. (B10), which includes the effect of
the anomaly, while the thick dotted purple curve is drawn
by using the one in Eq. (B11). From Fig. 6, we see the

suppression from the effects of anomaly and η-η0 mixing,
similarly to the SHBs shown in Figs. 1 and 2. Because
½ðMð0−Þ þMð0þÞÞ=2Mð0−Þ�2 in Eq. (B4) is smaller than
Mð1=2þÞ=Mð1=2−Þ in Eq. (B6), the widths of the diquark
shown by the thin dotted orange and thick dotted purple
curves are smaller than those of the SHBs in Figs. 1 and 2.
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