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We investigate the electromagnetic transitions of the singly charmed baryons with spin 3=2, based on a
pion mean-field approach, also known as the chiral quark-soliton model, taking into account the rotational
1=Nc corrections and the effects of flavor SU(3) symmetry breaking. We examine the valence- and sea-
quark contributions to the electromagnetic transition form factors and find that the quadrupole form factors
of the sea-quark contributions dominate over those of the valence-quark ones in the smaller Q2 region,
whereas the sea quarks only provide marginal contributions to the magnetic dipole transition form
factors of the baryon sextet with spin 3=2. The effects of the flavor SU(3) symmetry breaking are in
general very small except for the forbidden transition Ξ0

cγ → Ξ�0
c by U-spin symmetry. We also discuss the

widths of the radiative decays for the baryon sextet with spin 3=2, comparing the present results with those
from other works.

DOI: 10.1103/PhysRevD.103.074025

I. INTRODUCTION

It is of great importance to understand the electromag-
netic (EM) structure of a baryon, since it reveals how the
baryon is shaped by its constituents. A baryon with spin
3=2 has a finite value of the electric quadrupole (E2)
moment, which indicates that its charge distribution is
shown to be deformed to be either a cushionlike form
(oblate spheroid) or a rugby-ball-like one (prolate sphe-
roid), depending on the signature of its charge in the body-
fixed frame [1]. This implies that a singly heavy baryon
with spin 3=2 may reveal a similar structure. It is also
known that the effects of the vacuum polarization or those
of the pion clouds are known to contribute significantly to
the E2 moment of the baryon decuplet [2]. This leads to an
interpretation that the E2 moment of a low-lying baryon
with spin 3=2 is governed by long-distance pion clouds [3].
While experimental information on the EM transitions of

the singly heavy baryons is still inconclusive [4–7], there
has been a great deal of theoretical work within many
different approaches such as chiral perturbation theory
[8–12], the quark models [13–15], QCD sum rules
[16–18], and so on (see also a recent review [19]). In
lattice QCD, the EM transition form factors for Ω0

cγ → Ω�0
c

were calculated [20,21]. Thus, anticipating that the exper-
imental data on the EM transitions of the singly heavy
baryons will be available in the near future, it is of great
interest to investigate the structure of the EM transition
form factors in a different theoretical framework.
In the present work, we investigate the EM transition

form factors of the low-lying singly heavy baryons with
spin 3=2 within the framework of the chiral quark-soliton
model (χQSM). The model is based on a pion mean-field
approach. As was proposed first by Witten [22], in the large
Nc limit, the light baryon can be viewed as a state ofNc (the
number of colors) valence quarks bound by the pion mean
fields that have been produced self-consistently by the Nc
valence quarks [23,24]. The model was extended to the
description of the singly heavy baryons [25–27], being
motivated by Ref. [28]. In the limit of the infinitely heavy
quark mass (mQ → ∞), the spin of the heavy quark cannot
be flipped, which makes the heavy-quark spin conserved.
This causes also the total spin of the light quarks inside a
singly heavy baryon conserved. In this limit of mQ → ∞,
the flavor of the heavy quark does not come into play. This
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is known as the heavy-quark spin-flavor symmetry
[29–31]. Thus, the singly heavy baryons can be expressed
within the SU(3) representations. That is, two light valence
quarks (3 ⊗ 3) will allow one to have the baryon antitriplet
(3̄) and sextet (6). The spins of the two light valence quarks
can be aligned either in the spin-singlet state (0) or in the
spin-triplet one (1). Hence, by combining them with the
spin of the heavy quark, one can have two degenerate
baryon sextets. This degeneracy can be removed by the
color hyperfine interaction in order 1=mQ [25]. Note that
the infinitely heavy quark can be regarded as the mere static
color source. This indicates that the light quarks govern the
dynamics inside a singly heavy baryon. Based on this
heavy-quark spin-flavor symmetry, the pion mean-field
approach was developed also for the singly heavy baryons
that can be regarded as the bound state of Nc − 1 valence
quarks. The heavy quark inside a singly heavy baryon is
required only for the construction of a color-singlet state of
the singly heavy baryon.
This pion mean-field approach or the χQSM described

various properties of the singly heavy baryons quantita-
tively well, compared with the experimental data, without
any free parameters [25–27,32–35] (see also a recent
review [36]). The EM form factors of the low-lying singly
heavy baryons have been studied in the χQSM [37,38].
Since the heavy-quark mass is taken to be infinitely heavy,
the heavy quark gives a constant contribution to the electric
monopole form factor constrained by the gauge invariance,
whereas contributions to the magnetic dipole from factor
from the heavy quark is negligible. The numerical results
were in good agreement with the lattice data [39]. In the
present work, wewant to investigate the EM transition form
factors of the baryon sextet with spin 3=2. While theΩ0

cγ →
Ω�0

c radiative decay was computed in lattice QCD, there is
no work on the EM transition form factors for all possible
radiative decays for the baryon sextet with spin 3=2. Thus,
we will consider for the first time the magnetic dipole (M1)
and electric quadrupole and Coulomb quadrupole (C2)
transition form factors for the baryon sextet (6) with spin
3=2. We will compare the results for the Ω0

cγ → Ω�0
c

radiative decay with those from the lattice calculation.
We will compare the present numerical results for the decay
rates of the radiative decays for the singly heavy baryons
with those from other theoretical works.
The present work is organized as follows. In Sec. II, we

define the M1, E2, and C2 transition form factors of the
singly heavy baryons. In Sec. III, we explain explicitly how
the singly heavy baryon state can be consistently con-
structed based on the heavy-quark spin-flavor symmetry in
the limit of the infinitely heavy-quark mass. We show that
the heavy-quark field can be decoupled from the singly
heavy baryon and its mass contributes to the classical mass
of the singly heavy baryon in a simplemanner. In Sec. IV,we
show briefly how to compute them within the framework of
the χQSM. In Sec. V, we first compare the numerical results

for Ωc þ γ → Ω�
c with those of the corresponding lattice

data. We also examine the dependence of the EM transition
form factors of Ωc þ γ → Ω�

c on the pion mass. We
then scrutinize the valence- and sea-quark contributions
separately and show that the sea quarks or the Dirac
continuum play a crucial role in describing the E2 and
C2 transition form factors of the baryon sextet with spin 3=2,
which can be interpreted as the pion clouds. We also
study the effects of the explicit breaking of flavor SU(3)
symmetry breaking on the EM transition form factors of the
baryon sextet with spin 3=2. We compare the present results
for the decay rates of the radiative decays for the singly
heavy baryons with spin 3=2 with those from other works.
Finally, we summarize the results from the present work and
draw conclusions.

II. EM TRANSITION FORM FACTORS OF THE
BARYON SEXTET WITH SPIN 3=2

To describe the EM transition from a singly heavy baryon
with spin 1=2 to that with spin 3=2, Bγ� → B�, we assume
that the baryon with spin 3=2 is at rest. In this rest frame, we
define the 4-momenta for the baryon with spin 3=2, the
baryon with spin 1=2, and the photon, respectively, as pB� ,
pB, and q, which are explicitly written as

pB� ¼ ðMB� ;0Þ; p¼ðEB;−qÞ; q¼ðωq;qÞ; ð1Þ

where q and ωq denote the 3-momentum and energy of
the virtual photon. The energy-momentum relation is given
by E2

B ¼ M2
B þ jqj2 and E2

B� ¼ M2
B� . Using this relation, we

can express the momentum and the energy of the virtual
photon as

jqj2 ¼
�
M2

B� þM2
B þQ2

2MB�

�
2

−M2
B;

ωq ¼
�
M2

B� −M2
B −Q2

2MB�

�
; ð2Þ

where Q2 ¼ −q2 > 0.
We start with the EM current defined by

VμðxÞ ¼ ψ̄ðxÞγμQ̂ψðxÞ þ Ψ̄hðxÞγμQhΨhðxÞ; ð3Þ

where ψðxÞ and ΨhðxÞ denote, respectively, the light and
heavy quarks. The first term in Eq. (3) is the EM current for
the light quarks with the charge operator defined by the
charges of the light quarks Q̂ ¼ diagð2=3;−1=3;−1=3Þ.
The second term represents the EM current for the heavy
quark with a heavy-quark charge Qh. If one considers the
charm quark, then Qh ¼ 2=3. In the case of the bottom
baryon, we have Qh ¼ −1=3. In the present work, we will
consider only the charmed baryons. The transition EM
matrix element between B� and B is then parametrized in
terms of the three real EM transition form factors
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hB�ðp0;λ0ÞjVμð0ÞjBðp;λÞi¼ i

ffiffiffi
2

3

r
ūβðp0;λ0ÞΓβμuðp;λÞ: ð4Þ

λ and λ0 denote the helicities of the baryons with spins 1=2
and 3=2, respectively. uβðp; λ0Þ and uðp; λÞ stand for the
Rarita-Schwinger and Dirac spinors, respectively. Γβμ in
Eq. (4) denote the three real EM transition form factors,

Γβμ ¼ G�
M1ðQ2ÞKβμ

M1 þG�
E2ðQ2ÞKβμ

E2 þG�
C2ðQ2ÞKβμ

C2; ð5Þ

where G�
M1, G

�
E2, and G�

C2 are known, respectively, as the
magnetic dipole transition form factor, the electric quadru-
pole one, and the Coulomb quadrupole one. The corre-
sponding Lorentz tensors Kβμ

M1 are written as

Kβμ
M1¼

−3ðMB� þMBÞ
2MB½ðMB� þMBÞ2þQ2�ε

βμστPσqτ;

Kβμ
E2¼−Kβμ

M −
6

4M2
B� jqj2

MB� þMB

MB
εβσνγPνqγεμσαδpB�αqδiγ5;

Kβμ
C2¼−

3

4M2
B� jqj2

MB� þMB

MB
qβ½q2Pμ−q ·Pqμ�iγ5: ð6Þ

The Lorentz tensors are required to satisfy the gauge-
invariant identities qμK

βμ
M1;E2;C2 ¼ 0, which arises from the

conservation of the EM current.
The EM transition form factors can be extracted exper-

imentally by using the helicity amplitudes. The transverse
and Coulomb helicity amplitudes are defined, respectively,
in terms of the spatial and temporal components of the EM
current,

Aλ ¼ −
effiffiffiffiffiffiffiffi
2ωq

p
Z

d3reiq·rϵþ1

· hB�ð3=2; λÞjψ̄ðrÞQ̂γψðrÞjBð1=2; λ − 1Þi;

S1=2 ¼ −
effiffiffiffiffiffiffiffi
2ωq

p 1ffiffiffi
2

p
Z

d3reiq·r

× hB�ð3=2; 1=2Þjψ̄ðrÞQ̂γ0ψðrÞjBð1=2; 1=2Þi; ð7Þ

where λ is the corresponding value of the helicity of the
baryon B� with spin 3=2, i.e., λ ¼ 3=2 or 1=2. Note that
the transverse photon polarization vector is defined as
ϵ̂ ¼ −1=

ffiffiffi
2

p ð1; i; 0Þ. The helicity amplitudes are expressed
in terms of the EM transition form factors

A1=2 ¼ −
effiffiffiffiffiffiffiffi
2ωq

p 1

4cΔ
ðG�

M1 − 3G�
E2Þ;

A3=2 ¼ −
effiffiffiffiffiffiffiffi
2ωq

p
ffiffiffi
3

p

4cΔ
ðG�

M1 þG�
E2Þ;

S1=2 ¼
effiffiffiffiffiffiffiffi
2ωq

p jqj
4cΔMB�

G�
C2; ð8Þ

where cΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

M3
B

2MB� jqj2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Q2

ðMB�þMBÞ2
q

. Then, we are able

to express the EM transition form factors inversely by the
transition amplitudes

G�
M1ðQ2Þ ¼ −2cΔ

Z
d3r3j1ðjqjjrjÞ

× hB�ð3=2; 1=2Þj½r̂ × V�11jBð1=2;−1=2Þi;

G�
E2ðQ2Þ ≃ −2cΔ

Z
d3r

ffiffiffiffiffiffiffiffi
20π

27

r
ωq

jqj
� ∂
∂r rj2ðjqjjrjÞ

�

× hB�ð3=2; 1=2ÞjY21ðr̂ÞV0jBð1=2;−1=2Þi;

G�
C2ðQ2Þ ¼ 4cΔ

MB�

jqj
Z

d3r
ffiffiffiffiffiffiffiffi
10π

p
j2ðjqjjrjÞ

× hB�ð3=2; 1=2ÞjY20ðr̂ÞV0jBð1=2; 1=2Þi: ð9Þ

Note that we neglect a term that provides a tiny correction
to the E2 transition form factor at low-energy regions,
which implements the current conservation.
From the form factors, the well-known quantities REM

and RSM, which are defined, respectively, as

REMðQ2Þ¼−
G�

E2ðQ2Þ
G�

M1ðQ2Þ ; RSMðQ2Þ¼−
jqj

2MB�

G�
C2ðQ2Þ

G�
M1ðQ2Þ ;

ð10Þ

can be obtained. The decay width is expressed in terms of
the helicity amplitudes [40]

ΓðB�→BγÞ¼ω2
q

π

MB

2MB�
ðjA1=2j2þjA3=2j2Þ

¼ αEM
16

ðM2
B� −M2

BÞ3
M3

B�M2
B

ðjG�
M1ð0Þj2þ3jG�

E2ð0Þj2Þ

ð11Þ

with the EM fine structure constant αEM.

III. SINGLY HEAVY BARYON IN THE CHIRAL
QUARK-SOLITON MODEL

The pion mean-field approach or the χQSM has one
great virtue. The model allows one to describe both light
baryons and singly heavy baryons on an equal footing.
While various properties of singly heavy baryons
were investigated in the previous works based on the
χQSM, it was not discussed formally how a singly heavy
baryon can be explicitly constructed in the χQSM.
Thus, before we compute the EM transition form factors
of singly heavy baryons, we first want to show how a singly
heavy baryon can be formulated in the present approach.
Let us first define the normalization of the baryon state
hBðp0;J03ÞjBðp;J3Þi¼2p0δJ0

3
J3ð2πÞ3δð3Þðp0−pÞ. In the large

Nc limit, this normalization can be expressed as
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hBðp0; J03ÞjBðp; J3Þi ¼ 2MBδJ0
3
J3ð2πÞ3δð3Þðp0 − pÞ, where

MB is a baryon mass. Since a singly heavy baryon consists
of the Nc − 1 valence quarks and a heavy quark, it can be

expressed in terms of the Ioffe-type current of the Nc − 1
valence quarks and a heavy-quark field in Euclidean
space as

jB; pi ¼ lim
x4→−∞

expðip4x4ÞN ðpÞ
Z

d3x expðip · xÞð−iΨ†
hðx; x4Þγ4ÞJ†Bðx; x4Þj0i;

hB; pj ¼ lim
y4→∞

expð−ip0
4y4ÞN �ðp0Þ

Z
d3y expð−ip0 · yÞh0jJBðy; y4ÞΨhðy; y4Þ; ð12Þ

where N ðpÞðN �ðp0ÞÞ stands for the normalization factor depending on the initial (final) momentum. JBðxÞ and J†BðyÞ
denote the Ioffe-type current of the Nc − 1 valence quarks [23] defined by

JBðxÞ ¼
1

ðNc − 1Þ! ϵα1���αNc−1
Γf1���fNc−1
ðTT3YÞðJJ3YRÞψf1α1ðxÞ � � �ψfNc−1αNc−1

ðxÞ;

J†BðyÞ ¼
1

ðNc − 1Þ! ϵα1���αNc−1
Γf1���fNc−1
ðTT3YÞðJJ03YRÞð−iψ†ðyÞγ4Þf1α1 � � � ð−iψ†ðyÞγ4ÞfNc−1αNc−1

; ð13Þ

where f1 � � � fNc−1 and α1 � � � αNc−1 denote, respectively,
the spin-isospin and color indices. ΓðTT3YÞðJJ3YRÞ are ma-
trices with the quantum numbers ðTT3YÞðJJ3YRÞ for the
corresponding baryon. For example, a singly heavy baryon
Σþ
c can be identified as the state with J ¼ 1=2, T ¼ 1,

T3 ¼ 0, and Y ¼ 2=3. The right hypercharge YR for singly
heavy baryons is constrained by the number of the valence
quarks. Note that YR ¼ Nc=3 for a light baryon, whereas
YR ¼ ðNc − 1Þ=3 for a singly heavy baryon. The right
hypercharge YR ¼ 1 with Nc ¼ 3 allows one to get the
lowest-lying representations for the SU(3) baryons, i.e., the
baryon octet (8) and decuplet (10) for the light baryons.
On the other hand, we find the baryon antitriplet (3̄),
sextet (6), and so on [25,36]. ψfkαkðxÞ denotes the light-
quark field, and ΨhðxÞ stands for the heavy-quark field. In

the limit of mQ → ∞, a singly heavy baryon satisfies the
heavy-quark flavor symmetry. Then, the heavy-quark field
can be written as

ΨhðxÞ ¼ expð−imQv · xÞΨ̃hðxÞ; ð14Þ

where Ψ̃hðxÞ is a rescaled heavy-quark field almost
on mass shell. It carries no information on the heavy-
quark mass in the leading-order approximation in the
heavy-quark expansion. v denotes the velocity of the heavy
quark [29–31,41].

We can show explicitly that the normalization factor
N �ðp0ÞN ðpÞ correctly turns out to be 2MB. The normali-
zation of the baryon state can be computed as

hBðp0; J03ÞjBðp; J3Þi ¼
1

Zeff
N �ðp0ÞN ðpÞ lim

x4→−∞
lim
y4→∞

exp ð−iy4p0
4 þ ix4p4Þ

×
Z

d3xd3y expð−ip0 · yþ ip · xÞ
Z

DUDψDψ†DΨ̃hDΨ̃†
hJBðyÞΨhðyÞð−iΨ†

hðxÞγ4ÞJ†BðxÞ

× exp

�Z
d4zfðψ†ðzÞÞfαði=∂ þ iMUγ5 þ im̂ÞfgψgαðzÞ þΨ†

hðzÞv · ∂ΨhðzÞg
�

¼ 1

Zeff
N �ðp0ÞN ðpÞ lim

x4→−∞
lim
y4→∞

exp ð−iy4p0
4 þ ix4p4Þ

×
Z

d3xd3y expð−ip0 · yþ ip · xÞhJBðyÞΨhðyÞð−iΨ†
hðxÞγ4ÞJ†BðxÞi0; ð15Þ

where Zeff represents the low-energy effective QCD partition function defined as

Zeff ¼
Z

DU expð−SeffÞ: ð16Þ
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Seff is called the effective chiral action defined by

Seff ¼ −NcTr ln ½i=∂ þ iMUγ5 þ im̂�: ð17Þ
h…i0 in Eq. (15) denotes the vacuum expectation value of
the baryon correlation function. M represents the dynami-
cal quark mass that arises from the spontaneous breakdown
of chiral symmetry. The Uγ5 denotes the chiral field that is
defined by

Uγ5ðzÞ ¼ 1 − γ5
2

UðzÞ þ U†ðzÞ 1þ γ5
2

ð18Þ

with

UðzÞ ¼ exp½iπaðzÞλa�; ð19Þ
where πaðzÞ represents the pseudo-Nambu-Goldstone
(pNG) fields and λa are the flavor Gall-Mann matrices.
m̂ designates the mass matrix of current quarks
m̂ ¼ diagðmu; md; msÞ. Note that we deal with the strange
current quark mass ms perturbatively. Thus, we will
consider it when we make a zero-mode quantization for
a collective baryon state. The propagators of a light quark in
the χQSM [23] are given by

Gðy; xÞ ¼ hyj 1

i=∂ þ iMUγ5 þ im̄
ðiγ4Þjxi

¼ Θðy4 − x4Þ
X
En>0

e−Enðy4−x4ÞψnðyÞψ†
nðxÞ

− Θðx4 − y4Þ
X
En<0

e−Enðy4−x4ÞψnðyÞψ†
nðxÞ; ð20Þ

where Θðy4 − x4Þ stands for the Heaviside step function.
Here, m̄ represents the average mass of the up and down
current quarks: m̄ ¼ ðmu þmdÞ=2. En is the energy ei-
genvalues of the single-quark state given by

HψnðxÞ ¼ EnψnðxÞ; ð21Þ

where H denotes the one-body Dirac Hamiltonian in the
presence of the pNG boson fields, which is defined by

H ¼ γ4γi∂i þ γ4MUγ5 þ γ4m̄1: ð22Þ

The heavy-quark propagator in the limit of mQ → ∞ is
expressed as

Ghðy; xÞ ¼ hyj 1∂4

jxi ¼ Θðy4 − x4Þδð3Þðy − xÞ: ð23Þ

Using these quark propagators and taking the limit of
y4−x4¼T→∞, we can derive the baryon correlation func-
tion hJBðyÞΨhðyÞð−iΨ†

hðxÞγ4ÞJ†BðxÞi0 as follows [23,42]:

hJBðyÞΨhðyÞð−iΨ†
hðxÞγ4ÞJ†BðxÞi0

∼ exp ½−fðNc − 1ÞEval þ Esea þmQgT�
¼ exp½−MBT�: ð24Þ

The result for the correlation function given in Eq. (24) is
canceled with the term exp ð−iy4p0

4 þ ix4p4Þ ¼ exp½MBT�
in the large Nc limit, i.e., −ip0

4 ¼ −ip4 ¼ MB ¼
OðNcÞ. Thus, the normalization factor becomes
N �ðp0ÞN ðpÞ ¼ 2MB. Using this normalization and
Eq. (24), we are able to produce the classical mass of
the singly heavy baryon correctly to be

MB ¼ ðNc − 1ÞEval þ Esea þmQ; ð25Þ

which was already defined in a previous work [26].

IV. EMTRANSITION FORMFACTORS FROMTHE
CHIRAL QUARK-SOLITON MODEL

In the present section, we will present here only the final
expressions of the EM transition form factors, since
detailed formalisms of how to derive the form factors of
the SU(3) baryons can be found in previous works. For a
detailed calculation, we refer to Refs. [43–45] (see also the
review [42]). The EM current for the heavy quark given in
the second term of Eq. (3) can be expressed in terms of the
effective heavy-quark field [46]

− iΨ†
hðxÞγμQhΨhðxÞ

¼ −i expð−imQv · xÞΨ̃†
hðxÞ

�
vμ þ

i
2mQ

ð  ∂μ − ∂⃗μÞ

þ 1

2mQ
σμνð  ∂μ þ ∂⃗μÞ

�
QhΨ̃hðxÞ

≈ −i expð−imQv · xÞΨ̃†
hðxÞvμQhΨ̃hðxÞ: ð26Þ

This indicates that the heavy quark does not contribute to
the EM transition form factors of the singly heavy baryons.
It only gives a constant contribution to their electric form
factors, which yields the correct charges corresponding to
the singly heavy baryon. Thus, we can simply consider the
light-quark current to compute the matrix element of the
EM current [44]

hB�;p0jVμð0ÞjB;pi¼ 1

Zeff
lim
T→∞

exp

�
−iðp0

4þp4Þ
T
2

�Z
d3xd3yexpð−ip0 ·yþip ·xÞ

Z
DUDψDψ†

×JB� ðy;T=2Þð−iψ†ð0ÞÞγμQ̂ψð0ÞJ†Bðx;−T=2Þexp
�Z

d4zðψ†ðzÞÞfαði=∂þiMUγ5þim̂ÞfgψgαðzÞ
�
: ð27Þ
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Since we ignore the meson fluctuation, the integration
over the pNG fields can be carried out easily. However,
there are the rotational and translational zero modes
that are not at all small, so we need to integrate exactly
over these zero modes. This is known as the collective
zero-mode quantization. For details about the zero-
mode quantization in the SU(3) χQSM, we refer to
Refs. [24,42].

Having taken into account the rotational 1=Nc and linear
ms corrections, we obtain the magnetic dipole form factors
GB→B��

M1 as

GB→B��
M1 ðQ2Þ ¼ −cΔ

Z
d3r

6ffiffiffi
2

p j1ðjqjjrjÞGB→B�
M1 ðrÞ; ð28Þ

where the corresponding magnetic dipole densities
GB→B�
M1 ðrÞ are defined as

GB→B�
M1 ðrÞ ¼

�
Q0ðrÞ þ

1

I1
Q1ðrÞ

�
hB�jDð8Þ

Q3jBi −
1ffiffiffi
3

p 1

I1
X1ðrÞhB�jDð8Þ

Q8J3jBi −
1

I2
X2ðrÞhB�jdpq3Dð8Þ

QpJqjBi

−
2

3
ms

�
K1

I1
X1ðrÞ −M1ðrÞ

�
hB�jDð8Þ

83 D
ð8Þ
Q8jBi −

2ffiffiffi
3

p ms

�
K2

I2
X2ðrÞ −M2ðrÞ

�
hB�jdpq3Dð8Þ

8pD
ð8Þ
QqjBi

−
2

3
msM0ðrÞhB�jDð8Þ

Q3jBi þ
2

3
msM0ðrÞhB�jDð8Þ

88 D
ð8Þ
Q3jBi: ð29Þ

The explicit expressions for the densitiesQi, X , andMi can be found in Appendix A. The hB�j…jBi stands for the matrix
elements of collective operators [35], of which the explicit values are found in Appendix B. Ii andKi stand for the moments
and anomalous moments of inertia [42]. The expression for the electric quadrupole form factors is given as

GB→B��
E2 ðQ2Þ ¼ cΔ

Z
d3r

ffiffiffiffiffi
10

9

r
ωq

jqj
� ∂
∂r rj2ðjqjjrjÞ

�
GB→B�
E2 ðrÞ; ð30Þ

with the electric quadrupole densities GB→B�
E2 ðrÞ,

GB→B�
E2 ðrÞ ¼ −

2

I1
I1E2ðrÞð3hB�jDð8Þ

Q3J3jBi − hB�jDð8Þ
Qi JijBiÞ

−
4ffiffiffi
3

p ms

�
K1

I1
I1E2ðrÞ −K1E2ðrÞ

�
ð3hB�jDð8Þ

83 D
ð8Þ
Q3jBi − hB�jDð8Þ

8i D
ð8Þ
Qi jBiÞ: ð31Þ

The explicit expressions for I1E2ðrÞ and K1E2ðrÞ can be
found in Appendix A. The Coulomb quadrupole form
factor GB→B��

C2 is written as

GB→B��
C2 ðQ2Þ ¼ cΔ

ffiffiffiffiffi
40

p Z
d3r

MB�

jqj j2ðjqjjrjÞGB→B�
C2 ðrÞ;

ð32Þ

where GB→B�
C2 ðrÞ is simply the same as GB→B�

E2 ðrÞ. Note that
for the E2 and C2 form factors, the leading contributions in
the large Nc expansion vanish, so that the rotational 1=Nc
corrections take over the role of the leading-order con-
tributions. Note that the present model satisfies a general
scheme of large-Nc QCD [47].
To scrutinize each contribution, it is more convenient to

decompose the densities into three different terms:

GB→B�
ðM1;E2;C2ÞðrÞ¼GB→B�ð0Þ

ðM1;E2;C2ÞðrÞþGB→B�ðopÞ
ðM1;E2;C2ÞðrÞ

þGB→B�ðwfÞ
ðM1;E2;C2ÞðrÞ: ð33Þ

The first term represents the SU(3) symmetric terms
including both the leading and rotational 1=Nc contribu-
tions, the second one denotes the linear ms corrections
arising from the current-quark mass term of the effective
chiral action, and the last terms come from the collective
baryon wave functions. When the effects of the flavor
SU(3) symmetry breaking are considered, a collective
baryon wave function is not any longer in a pure state but
becomes a state mixed with higher representations. Thus,
there are two different terms that provide the effects of flavor
SU(3) symmetry breaking. The explicit expressions of these
three terms for the M1 form factors are then given as

G
3̄1=2→63=2ð0Þ
M1 ðrÞ ¼ 1

4
ffiffiffi
3

p QB→B�

�
Q0ðrÞ þ

1

I1
Q1ðrÞ þ

1

2

1

I2
X2ðrÞ

�
; ð34Þ
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G
3̄1=2→63=2ðopÞ
M1 ðrÞ ¼ −

ms

60
ffiffiffi
3

p
�

QΛc→Σ�
c

−4QΞc→Ξ�
c
þ 3

��
K1

I1
X1ðrÞ −M1ðrÞ

�

−
ms

10
ffiffiffi
3

p
�

QΛc→Σ�
c

−QΞc→Ξ�
c
þ 2

��
K2

I2
X2ðrÞ −M2ðrÞ

�
þ ms

60
ffiffiffi
3

p
� −7QΛc→Σ�

c

QΞc→Ξ�
c
þ 1

�
M0ðrÞ; ð35Þ

G
3̄1=2→63=2ðwfÞ
M1 ðrÞ ¼ q

15

40
ffiffiffi
6

p
�

4QΛc→Σ�
c

−QΞc→Ξ�
c
þ 2

��
Q0ðrÞ þ

1

I1
Q1ðrÞ −

1

2

1

I2
X2ðrÞ

�

−
p
15

240

�
2QΛc→Σ�

c

−5QΞc→Ξ�
c
þ 4

��
Q0ðrÞ þ

1

I1
Q1ðrÞ þ

3

2

1

I2
X2ðrÞ

�
; ð36Þ

in the basis of the ½Λc → Σ�
c;Ξc → Ξ�

c� for 3̄1=2 → 63=2, and

G
61=2→63=2ð0Þ
M1 ðrÞ ¼ 1

30
ffiffiffi
2

p ð3QB→B� − 2Þ
�
Q0ðrÞ þ

1

I1
Q1ðrÞ þ

1

3

1

I1
X1ðrÞ þ

1

2

1

I2
X2ðrÞ

�
; ð37Þ

G
61=2→63=2ðopÞ
M1 ðrÞ ¼ −

ms

270
ffiffiffi
2

p

0
B@

4QΣc→Σ�
c
− 5

2QΞ0
c→Ξ�

c
− 1

2QΩc→Ω�
c
þ 3

1
CA
�
K1

I1
X1ðrÞ −M1ðrÞ

�

−
ms

135
ffiffiffi
2

p

0
B@

5QΣc→Σ�
c
þ 7

7QΞ0
c→Ξ�

c
− 2

QΩc→Ω�
c
þ 3

1
CA
�
K2

I2
X2ðrÞ −M2ðrÞ

�
þ ms

270
ffiffiffi
2

p

0
B@

−14QΣc→Σ�
c
þ 7

−16QΞ0
c→Ξ�

c
þ 11

−16QΩc→Ω�
c
þ 15

1
CAM0ðrÞ; ð38Þ

G
61=2→63=2ðwfÞ
M1 ðrÞ ¼ q

15

180

0
B@

4QΣc→Σ�
c
− 8

QΞ0
c→Ξ�

c
− 4

0

1
CA
�
Q0ðrÞ þ

1

I1
Q1ðrÞ −

1

I1
X1ðrÞ −

1

2

1

I2
X2ðrÞ

�

−
q24

180
ffiffiffi
5

p

0
B@

QΣc→Σ�
c
þ 1

2QΞ0
c→Ξ�

c
þ 4

3QΩc→Ω�
c
þ 6

1
CA
�
Q0ðrÞ þ

1

I1
Q1ðrÞ −

2

I1
X1ðrÞ −

2

I2
X2ðrÞ

�
; ð39Þ

in the basis of the ½Σc → Σ�
c;Ξ0

c → Ξ�
c;Ωc → Ω�

c� for 61=2 → 63=2. Similarly, the densities for the E2 form factors are
written by

G
61=2→63=2ð0Þ
E2 ðrÞ ¼ −

1

5
ffiffiffi
2

p ð3QB→B� − 2Þ 1
I1
I1E2; ð40Þ

G
61=2→63=2ðopÞ
E2 ðrÞ ¼ −

8ms

135
ffiffiffi
2

p

0
B@

−2QΣc→Σ�
c
þ 1

8QΞ0
c→Ξ�

c
− 1

−8QΩc→Ω�
c
þ 3

1
CA
�
K1

I1
I1E2ðrÞ −K1E2ðrÞ

�
; ð41Þ

G
61=2→63=2ðwfÞ
E2 ðrÞ ¼ −

1

30

2
64q15

0
B@

4QΣc→Σ�
c
− 8

5QΞ0
c→Ξ�

c
− 4

0

1
CA −

q24ffiffiffi
5

p

0
B@

QΣc→Σ�
c
þ 1

2QΞ0
c→Ξ�

c
þ 4

3QΩc→Ω�
c
þ 6

1
CA
3
75 1

I1
I1E2ðrÞ; ð42Þ

in the basis of the ½Σc → Σ�
c;Ξ0

c → Ξ�
c;Ωc → Ω�

c� for 61=2 → 63=2. QB→B� stand for the charges of the corresponding
heavy baryons. Note that the E2 and C2 transition from factors [3̄1=2ðJ ¼ 0Þ → 63=2ðJ ¼ 1Þ] are forbidden
within this model.
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V. RESULTS AND DISCUSSION

A. Comparison with the lattice data

Since we use exactly the same set of the model
parameters as in Refs. [26,37,38], we proceed to present
the numerical results and discuss them. To compare the
present results with those from lattice QCD [20], we need
to employ the values of the unphysical pion mass. We refer
to Ref. [39] for details. In the left and right panels of Fig. 1,
we draw, respectively, the results for the M1 and E2
transition form factors with the pion mass varied from
the chiral limit (mπ ¼ 0) to mπ ¼ 550 MeV. We find that
when the larger value of the pion mass is used the results for
both the M1 and E2 form factors fall off more slowly, asQ2

increases. This feature is already known from the results for
the EM form factors of both the light and singly heavy
baryons [37–39,44]. There are only two lattice data at
Q2 ¼ 0 and Q2 ¼ 0.2 GeV2, and they indicate that the
lattice data on the M1 transition form factor of the Ω0

cγ →
Ω�0

c process falls off rather slowly, compared to the present
results with the corresponding value of the pion mass, i.e.,
mπ ¼ 156 MeV. As shown in the left panel of Fig. 1, the
present results are overestimated approximately by 50%.
Considering the fact that the lattice data on the Ω0

c → Ω�0
c

E2 transition form factor show large numerical uncertain-
ties, we are not able to draw any definitive conclusions
from the comparison with the lattice data. Actually, the
lattice data on the E2 form factors of Ω�0

c contain similar
uncertainties as shown in Ref. [48]. We anticipate future
experimental and lattice data, which will allow one to make
a quantitative comparison.
It is also interesting to see that the magnitude of the E2

form factor of the Ω0�
c → Ωc transition increases drastically

as Q2 gets closer to zero. This is in line with what was
found in Ref. [9], where the radiative decay Σ�

c → Λcγ was
examined. This indicates that the effects of the vacuum

polarization or the sea quarks become dominant over those
of the valence quarks asQ2 decreases. We will later discuss
each contribution of the valence and sea quarks to the E2
form factors in detail.
It is of great importance to know the magnetic dipole

transition form factors of the baryon sextet with spin 3=2,
since they provide essential information on their radiative
decays. As expressed in Eq. (11), the values of the M1 and
E2 transition form factors at Q2 ¼ 0 will determine the
decay rates of the radiative decays of the baryon sextet with
spin 3=2. However, since the values of the E2 transition
form factors are known to be rather small in the case of the
baryon decuplet, we expect that they would be also small in
the case of the baryon sextet with spin 3=2. As will be
shown later, the magnitudes of the E2 transition form
factors are indeed very small, compared with those of the
M1 transition form factors.

B. Valence- and sea-quark contributions

In Fig. 2, we show the results for the M1 form factors of
the EM transitions from the baryon antitriplet to the baryon
sextet with spin 3=2, drawing separately the valence- and
sea-quark contributions. On the other hand, Fig. 3 depicts
the results for those from the baryon sextet with spin 1=2 to
the baryon sextet with spin 3=2, again with the valence- and
sea-quark contributions separated. In general, the valence-
quark contributions dominate over those of the sea quarks.
In the case of the radiative excitation Ξ0

cγ → Ξ�0
c , the effect

of the sea quarks is negligibly small. Note that the
magnitude of this M1 form factor is approximately more
than ten times smaller, compared with those for the Λþ

c γ →
Σ�þ
c and Ξþ

c γ → Ξ�þ
c excitations. This is due to the U-spin

symmetry, which will be discussed later. Comparing the
results in Fig. 2 with those in Fig. 3, we find that the M1
excitations for the baryon antitriplet are larger than those
for the baryon sextet except for the Ξ0

cγ → Ξ�0
c excitation.

FIG. 1. Numerical results for the magnetic dipole and electric quadrupole transition form factors of the Ωcγ → Ω�
c transition with the

pion mass varied from 0 to 550MeV, drawn, respectively, in the left and right panels. The results are compared with the lattice data taken
from Ref. [20].
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While this can be understood by comparing Eq. (34) with
Eq. (37), the physical interpretation of these results is
originated from the spin configuration of the light valence
quarks inside heavy baryons. The spins of the light valence
quarks for the baryon antitriplet are in the spin-singlet state
(SL ¼ 0), whereas those for the baryon sextet are in the
spin-triplet state (SL ¼ 1). The M1 transitions occur more
likely due to the spin flip of the light valence quarks based
on the naive quark model. Thus, the M1 form factors for the
radiative excitations from the baryon antitriplet to the
baryon sextet with spin 3=2 turn out naturally larger than
those from the baryon sextet with spin 1=2 to the baryon
sextet with spin 3=2. On the other hand, the sea-quark
contribution arises from the polarized Dirac continuum due
to the presence of the Nc − 1 valence quarks. This can also
be interpreted as the contributions of the pion clouds with
spin zero in a traditional term. This means that those of the
pion clouds are suppressed for the M1 transitions.
When it comes to the E2 transitions, the situation is

the other way around. The E2 transitions are forbidden

between the different spin states. Thus, we have only the
finite results for the E2 form factors for the EM transitions
between the baryon sextet with spin 1=2 and with spin 3=2,
as shown in Fig. 4. The sea-quark contributions to the E2
form factors are remarkably sizable, which was already
shown in those of the baryon decuplet [43,44]. In the case
of the Ξ00

c → Ξ�0
c and Ω0

c → Ω�0
c EM transitions, the sea-

quark contributions dominate over those of the valence
quarks, in particular, in the smaller Q2 region. This implies
that the effects of the pion clouds play a significant role in
describing the E2 form factors. Knowing the fact that the
E2 transition form factors reveal how a baryon with spin
3=2 is deformed, the outer part of the charge distribution
governs the E2 form factors. As shown in Refs. [45,49], the
sea-quark part constructs the outer place of the charge and
mechanical distributions in a baryon, whereas the valence-
quark part is responsible for the inner part of these
distributions. In this sense, it is natural that the sea-
quark contributions contribute significantly to the E2
transition form factors in the smaller Q2 region. Note that

FIG. 2. Results for the magnetic dipole transition form factors from the baryon antitriplet to the baryon sextet with spin 3=2, with the
valence- and sea-quark contributions separated. The dashed and short-dashed curves draw the valence- and sea-quark contributions,
respectively. The solid ones depict the total results.
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as Q2 increases the sea-quark contributions fall off much
faster than those of the valence quarks, which is also
understandable.
The magnitudes of the E2 transition form factors of a

baryon are in general much smaller than those of the
M1 transition form factors. The leading contribution to
the E2 form factors vanishes within the χQSM, so the

rotational 1=Nc correction takes the place of the leading
contribution as shown in Eq. (40). This indicates that the
magnitudes of the E2 form factors should be smaller than
those of the M1 ones. Moreover, the E2 form factors are
suppressed by the mass of a decaying baryon. Considering
the fact that the mass of a singly heavy baryon is much
larger than those of the baryon decuplet, one can expect

FIG. 3. Results for the magnetic dipole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin 3=2,
with the valence- and sea-quark contributions separated. The notations are the same as in Fig. 2.
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that the E2 transition form factors of the baryon sextet
would turn out to be much smaller than those of the
baryon decuplet. In addition, the matrix elements of the
SU(3) Wigner D functions for the baryon sextet are
smaller than those for the baryon decuplet. Thus, the
magnitudes of the E2 transition form factors for the
baryon sextet become approximately five to ten times

smaller than those for the baryon decuplet. Figure 5
presents the numerical results for the Coulomb quadru-
pole form factors from the baryon sextet with spin 1=2 to
that with spin 3=2. The main conclusion is the same as in
the case of the E2 transition form factors. The sea-quark
contributions are again dominant over those of the valence
quarks in the smaller Q2 region.

FIG. 4. Results for the electric quadrupole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin
3=2, with the valence- and sea-quark contributions separated. The notations are the same as in Fig. 2.
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C. Effects of explicit breaking of flavor
SU(3) symmetry

In Fig. 6, we examine the effects of flavor SU(3)
symmetry breaking on the M1 transition form factors.
While the linear ms corrections are very small to the Λþ

c →
Σ�þ
c and Ξþ

c → Ξ�þ
c magnetic transitions, they become the

leading contributions to the Ξ0
c → Ξ�0

c . The reason is clear
as mentioned previously. The U-spin symmetry forbids the
neutral EM transition from Ξ0

c → Ξ�0
c . As shown in

Eq. (34), the SU(3) symmetric leading contributions are
proportional to the charge of the singly heavy baryons
involved in the transition due to theU-spin symmetry. Note

FIG. 5. Results for the Coulomb quadrupole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin
3=2, with the valence- and sea-quark contributions separated. The notations are the same as in Fig. 2.
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that Ξ0
c belongs to the U-spin singlet, while Ξ�0

c is the U-
spin triplet. Only when ms ≠ mu:d, it allows the Ξ0

c → Ξ�0
c

transition mode. As a result, the magnitude of the Ξ0
c → Ξ�0

c
M1 form factor is tiny, compared to those of the other M1
transition form factors. In Fig. 7, we depict the results for
the M1 transition form factors from the baryon sextet with
spin 1=2 to the baryon sextet with spin 3=2 with the linear
ms considered. The effects of the flavor SU(3) symmetry
breaking are again negligibly small. It is interesting to
compare these results with those for the M1 form factors of
the baryon decuplet presented in Ref. [50]. While the linear
ms corrections are also very small in the case of the M1
transition form factors for the baryon decuplet, they turn
out to be much smaller for the baryon sextet than for the
decuplet. In the case of the E2 transition form factors, the
linear ms corrections are sizable for the Σþ

c → Σ�þ
c and

Ξ0þ
c → Ξ�þ

c E2 excitations as shown in Fig. 8. It is also
interesting to see that the linear ms corrections suppress the
E2 transition form factors for the Σþ

c → Σ�þ
c excitation.

These can be understood by examining Eqs. (41) and (42).

In Fig. 9, we draw the numerical results for the C2
transition form factors from the baryon sextet with spin
1=2 to that with spin 3=2. Knowing that the densities for
them are the same as those for the E2 transition form
factors, we can understand the sizable effects of the linear
ms on the Σþ

c → Σ�þ
c and Ξ0þ

c → Ξ�þ
c transitions.

D. Decay widths of the radiative decay for the baryon
sextet with spin 3=2

In Table I, we list the results for the widths of the
radiative decays from the baryon sextet with spin 3=2 to the
baryon antitriplet in the first three lines and to the baryon
sextet with spin 1=2 in the next lines. As written in Eq. (11),
the decay width for the B�

3=2 → B1=2γ is proportional to

jG�
M1j2 þ 3jG�

E2j2. Since we have already shown that the
values of G�

E2 are much smaller than those of G�
M1, the

decay widths are approximately proportional to jG�
M1j2.

The results Results for the radiative decay widths of
Bγ → B�, which are listed in Table I, indicate that the

FIG. 6. Results for the magnetic dipole transition form factors from the baryon antitriplet to the baryon sextet with spin 3=2. The
dashed curves draw the results in flavor SU(3) symmetry, whereas the solid ones depict those with flavor SU(3) symmetry breaking
taken into account.
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baryons in the sextet are more likely to decay into those in
the antritriplet. As explained previously, the spin state of
the decaying baryon is flipped in the M1 transition. This
explains why the decay rates from the baryon sextet with
spin 3=2 to the baryon antitriplet are much larger than the
63=2 → 61=2γ decays. As we have already seen from the
results for the form factors, the effects of the flavor SU(3)
symmetry are rather small. The fourth column lists the

results from the chiral quark-soliton model in a model-
independent approach [35] where all dynamical vari-
ables were determined by experimental data on the light
baryons.1 The present results seem overall underestimated,

FIG. 7. Results for the magnetic dipole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin 3=2.
The notations are the same as in Fig. 6.

1Note that in Ref. [35] the formula for the decay width contains
an error. The present results listed in the fourth column are the
corrected ones.
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compared with those from Ref. [35]. What is interesting
is that the present results are in agreement with those
from chiral perturbation theory [12]. On the other hand,
lattice QCD yields a very small value of the decay width
for Ω�0

c → Ω0
cγ, compared with the results from all

other works.

We already observed that the E2 transition form factors
are very small. This means that the ratios REM as defined in
Eq. (10) will turn out to be also very small. As listed in
Table II, the values of REM for the radiative transitions of
the baryon sextet with spin 3=2 are indeed very small.
Except for the Ξ0þ

c γ → Ξ�þ
c excitation, the values of the

FIG. 8. Results for the electric quadrupole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin
3=2. The notations are the same as in Fig. 6.
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ratios REM and RSM are approximately two times smaller
than those for the baryon decuplet.

VI. SUMMARY AND CONCLUSION

We aimed in the present work at investigating the
electromagnetic transition form factors for the singly heavy

baryons with spin 3=2, based on the pion mean-field
approach or the chiral quark-soliton model. Having taken
into account the rotational 1=Nc and linear ms corrections,
we computed the magnetic dipole, electric quadrupole, and
Coulomb quadrupole transition form factors for the radi-
ative excitations from the baryon antitriplet and sextet with
spin 1=2 to the baryon sextet with spin 3=2. Since the

FIG. 9. Results for the Coulomb quadrupole transition form factors from the baryon sextet with spin 1=2 to the baryon sextet with spin
3=2. The notations are the same as in Fig. 6.
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model parameters were already fixed in producing proper-
ties of the light baryons, we use exactly the same set of the
parameters for the present investigation. We compared the
results for the magnetic dipole and electric quadrupole
transition form factors with those from a lattice calculation.
However, the lattice results for the form factor for theΩ0

c →
Ω�0

c M1 transition seems to be underestimated in compari-
son with those from other works. Since the lattice calcu-
lation suffers from large uncertainties in the results for the
corresponding E2 transition form factor, we were not able
to draw any conclusion from the comparison of the present
results with the lattice ones. We then examined the valence-
and sea-quark contributions to the M1, E2, and C2
transition form factors. While the sea-quark contributions
are marginal to the M1 form factors, they dominate over the
valence-quark contributions in the smaller Q2 region. On
the other hand, the sea-quark contributions fall off faster
than the valence-quark ones as Q2 increases. The magni-
tudes of the M1 transitions form factors from the baryon
antitriplet to the baryon sextet with spin 3=2 are in general
larger than those from the baryon sextet with spin 1=2 to the
sextet with spin 3=2. This indicates that the M1 transitions
occur more naturally between the states with the total spin
flipped. Since the E2 and C2 transitions take place in the
transitions without any spin flip, we have null results for the
transitions from the baryon antitriplet to the sextet with
spin 3=2.

We also examined the effects of flavor SU(3) symmetry
breaking by considering the linear ms corrections.
Except for the Ξ0

c → Ξ�0
c transition that is forbidden by

theU-spin symmetry, we found that the effects of the flavor
SU(3) symmetry breaking are negligibly small. Since the
U-spin symmetry is broken by the finite value of the
strange current quark mass, the M1 transition form factor
for the Ξ0

c → Ξ�0
c radiative excitation is finite but tiny,

compared with those for other transition modes. Similarly,
we found that the linearms corrections yield also very small
contribution to the E2 transition form factors except for the
Σþ
c → Σ�þ

c and Ξ0þ
c → Ξ�þ

c transitions. Similar features
were seen in the results for Coulomb quadrupole form
factors. We also computed the widths of the radiative
decays for the baryon sextet with spin 3=2. The results for
the transitions within the baryon sextet are in agreement
with those from chiral perturbation theory. Finally, we
presented the results for the ratios of the E2 over M1 and
C2 over M1. They turn out to be approximately two times
smaller than those for the baryon decuplet. As the electro-
magnetic (transition) form factors provide the most valu-
able information on the structure of the hadrons, it is
extremely important to measure them, experimentally and/
or by lattice QCD computations. So far, very limited
information is given for the charmed baryons, and further
experimental and computational efforts are highly desired.
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TABLE I. Results for the radiative decay widths of Bγ → B� with and without flavor SU(3) symmetry breaking, given in units of keV.

ΓðBcγ → B�
cÞ

χQSM
(ms ¼ 0 MeV)

χQSM
(ms ¼ 180 MeV) χSM [35]

LQCD
[20]

Bag
[51] χPT [12]

QCDSR
[16,17] QM [15]

Λþ
c γ → Σ�þ

c 63.37 69.76 191.13� 15.15 � � � 126 161.8 130(45) 151(4)
Ξþ
c γ → Ξ�þ

c 34.14 31.97 55.77� 5.22 � � � 44.3 21.6 52(25) 54(3)

Ξ0
cγ → Ξ�0

c 0 0.08 1.61� 0.42 � � � 0.908 1.84 0.66(32) 0.68(4)

Σþþ
c γ → Σ�þþ

c 1.12 1.08 2.41� 0.22 � � � 0.826 1.20 2.65(1.20) � � �
Σþ
c γ → Σ�þ

c 0.07 0.06 0.11� 0.02 � � � 0.004 0.04 0.40(16) 0.140(4)

Σ0
cγ → Σ�0

c 0.28 0.30 0.80� 0.06 � � � 1.08 0.49 0.08(3) � � �
Ξ0þ
c γ → Ξ�þ

c 0.09 0.09 0.21� 0.02 � � � 0.011 0.07 0.274 � � �
Ξ00
c γ → Ξ�0

c 0.35 0.34 0.64� 0.05 � � � 1.03 0.42 2.142 � � �
Ω0

cγ → Ω�0
c 0.38 0.34 0.49� 0.08 0.074 1.07 0.32 0.932 � � �

TABLE II. Results for the REM and RSM on Bγ → B� with and
without flavor SU(3) symmetry breaking.

χQSM ðms¼0MeVÞ χQSM ðms¼180MeVÞ
REM½%� RSM½%� REM½%� RSM½%�

Σþþ
c γ→Σ�þþ

c −0.87 −0.88 −0.75 −0.76
Σþ
c γ → Σ�þ

c −0.87 −0.88 −0.58 −0.59
Σ0
cγ → Σ�0

c −0.87 −0.88 −0.89 −0.91
Ξ0þ
c γ → Ξ�þ

c −0.93 −0.95 −1.63 −1.69
Ξ00
c γ → Ξ�0

c −0.93 −0.95 −1.04 −1.06
Ω0

cγ → Ω�0
c −0.96 −0.98 −1.19 −1.22
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APPENDIX A: DENSITIES FOR THE EM
TRANSITION FORM FACTORS

The densities of the magnetic dipole transition form
factors are expressed explicitly as follows:

Q0ðrÞ ¼ ðNc − 1Þhvaljriγ5fr̂ × σg · τhrjvali þ Nc

X
n

R1ðEnÞhnjriγ5fr̂ × σg · τhrjni;

Q1ðrÞ ¼
i
2
ðNc − 1Þ

X
n≠val

signðEnÞ
En − Eval

hnjriγ5½fr̂ × σg × τ�hrjvali · hvaljτjni

þ i
4
Nc

X
n;m

R4ðEn; EmÞhmjriγ5½fr̂ × σg × τ�hrjni · hmjτjni;

X1ðrÞ ¼ ðNc − 1Þ
X
n≠val

1

En − Eval
hvaljriγ5fr̂ × σghrjvali · hnjτjvali þ 1

2
Nc

X
n;m

R5ðEn; EmÞhnjriγ5fr̂ × σghrjmi · hmjτjni;

X2ðrÞ ¼ ðNc − 1Þ
X
n0

1

En0 − Eval
hvaljriγ5fr̂ × σg · τhrjn0ihn0jvali þ Nc

X
n0;m

R5ðEm; En0Þhmjriγ5fr̂ × σg · τhrjn0ihn0jmi;

M0ðrÞ ¼ ðNc − 1Þ
X
n≠val

1

En − Eval
hvaljriγ5fr̂ × σg · τhrjnihnjγ0jvali

−
1

2
Nc

X
n;m

R2ðEn; EmÞhmjriγ5fr̂ × σg · τhrjnihnjγ0jmi;

M1ðrÞ ¼ ðNc − 1Þ
X
n≠val

1

En − Eval
hvaljriγ5fr̂ × σghrjni · hnjγ0τjvali

−
1

2
Nc

X
n;m

R2ðEn; EmÞhmjriγ5fr̂ × σghrjni · hnjγ0τjmi;

M2ðrÞ ¼ ðNc − 1Þ
X
n0

1

En0 − Eval
hvaljriγ5fr̂ × σg · τhrjn0ihn0jγ0jvali

− Nc

X
n0;m

R2ðEn0 ; EmÞhmjriγ5fr̂ × σg · τhrjn0ihn0jγ0jmi: ðA1Þ

The densities of the electric quadrupole transition form factors are given as

−2
ffiffiffiffiffi
10

p
I1E2ðrÞ ¼ ðNc − 1Þ

X
n≠val

1

En − Eval
hvaljτjni · hnjrif

ffiffiffiffiffiffi
4π

p
Y2 ⊗ τ1g1hrjvali

þ 1

2
Nc

X
n;m

R3ðEn; EmÞhnjτjmi · hmjrif
ffiffiffiffiffiffi
4π

p
Y2 ⊗ τ1g1hrjni;

−2
ffiffiffiffiffi
10

p
K1E2ðrÞ ¼ ðNc − 1Þ

X
n≠val

1

En − Eval
hvaljγ0τjni · hnjrif

ffiffiffiffiffiffi
4π

p
Y2 ⊗ τ1g1hrjvali

þ 1

2
Nc

X
n;m

R5ðEn; EmÞhnjγ0τjmi · hmjrif
ffiffiffiffiffiffi
4π

p
Y2 ⊗ τ1g1hrjni: ðA2Þ

The regularization functions in Eqs. (A1) and (A2) are defined by
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R1ðEnÞ ¼ −
1

2
ffiffiffi
π

p En

Z
∞

0

ϕðuÞ du
u
e−uE

2
n ;

R2ðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

ϕðuÞ duffiffiffi
u

p Eme−uE
2
m − Ene−uE

2
n

En − Em
;

R3ðEn; EmÞ ¼
1

2
ffiffiffi
π

p
Z

∞

0

ϕðuÞ duffiffiffi
u

p
�
e−uE

2
m − e−uE

2
n

uðE2
n − E2

mÞ
−
Eme−uE

2
m þ Ene−uE

2
n

En þ Em

�
;

R4ðEn; EmÞ ¼
1

2π

Z
∞

0

ϕðuÞdu
Z

1

0

dαe−uE
2
nð1−αÞ−uE2

mα
Enð1 − αÞ − αEmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αð1 − αÞp ;

R5ðEn; EmÞ ¼
signðEnÞ − signðEmÞ

2ðEn − EmÞ
; ðA3Þ

with proper-time regulator ϕðuÞ ¼ cθðu − Λ−2
1 Þ þ ð1 − cÞθðu − Λ−2

2 Þ. The cutoff parameters c;Λ1, and Λ2 were
determined in Ref. [42]. jvali and jni denote the states of the valence and sea quarks with the corresponding eigenenergies
Eval and En of the single-quark Hamiltonian hðUcÞ, respectively [42].

APPENDIX B: COLLECTIVE MATRIX ELEMENTS OF ELECTROMAGNETIC FORM FACTOR

In Tables III, IV, V, and VI, we present the results for all relevant matrix elements of the SU(3) Wigner D functions.

TABLE III. The matrix elements of the collective operators for the leading-order contributions and the 1=Nc rotational corrections to
the electrimagnetic transition form factors.

B3̄γ
� → B6 Λcγ

� → Σ�
c Ξcγ

� → Ξ�
c B6γ

� → B6 Σcγ
� → Σ�

c Ξ0
cγ

� → Ξ�
c Ωcγ

� → Ω�
c

hB6jDð8Þ
33 jB3̄i 1

2
ffiffi
3

p − 1

2
ffiffi
3

p T3 hB6jDð8Þ
33 jB6i 1

5
ffiffi
2

p T3
1

5
ffiffi
2

p T3 0

hB6jDð8Þ
83 jB3̄i 0 − 1

4 hB6jDð8Þ
83 jB6i 1

5
ffiffi
6

p − 1

10
ffiffi
6

p − 1
5

ffiffi
2
3

q
hB6jDð8Þ

38 J3jB3̄i 0 0 hB6jDð8Þ
38 J3jB6i − 1

5
ffiffi
6

p T3 − 1

5
ffiffi
6

p T3 0

hB6jDð8Þ
88 J3jB3̄i 0 0 hB6jDð8Þ

88 J3jB6i − 1

15
ffiffi
2

p 1

30
ffiffi
2

p
ffiffi
2

p
15

hB6jdab3Dð8Þ
3a JbjB3̄i − 1

4
ffiffi
3

p 1

4
ffiffi
3

p T3 hB6jdab3Dð8Þ
3a JbjB6i − 1

10
ffiffi
2

p T3 − 1

10
ffiffi
2

p T3 0

hB6jdab3Dð8Þ
8a JbjB3̄i 0 1

8 hB6jdab3Dð8Þ
8a JbjB6i − 1

10
ffiffi
6

p 1

20
ffiffi
6

p 1

5
ffiffi
6

p

hB6jDð8Þ
3i JijB3̄i 0 0 hB6jDð8Þ

3i JijB6i 0 0 0

hB6jDð8Þ
8i JijB3̄i 0 0 hB6jDð8Þ

8i JijB6i 0 0 0

TABLE IV. The matrix elements of the collective operators for the ms corrections to the electromagnetic transition form factors.

B3̄γ
� → B6 Λcγ

� → Σ�
c Ξcγ

� → Ξ�
c B6γ

� → B6 Σcγ
� → Σ�

c Ξ0
cγ

� → Ξ�
c Ωcγ

� → Ω�
c

hB6jDð8Þ
88 D

ð8Þ
33 jB3̄i

ffiffi
3

p
20

0 hB6jDð8Þ
88 D

ð8Þ
33 jB6i

ffiffi
2

p
45
T3

1

45
ffiffi
2

p T3 0

hB6jDð8Þ
88 D

ð8Þ
83 jB3̄i 0 1

20 hB6jDð8Þ
88 D

ð8Þ
83 jB6i − 1

30
ffiffi
6

p 0 1

10
ffiffi
6

p

hB6jDð8Þ
83 D

ð8Þ
38 jB3̄i 1

20
ffiffi
3

p − 1
5
ffiffi
3

p T3 hB6jDð8Þ
83 D

ð8Þ
38 jB6i

ffiffi
2

p
45
T3

1

45
ffiffi
2

p T3 0

hB6jDð8Þ
83 D

ð8Þ
88 jB3̄i 0 1

20 hB6jDð8Þ
83 D

ð8Þ
88 jB6i − 1

30
ffiffi
6

p 0 1

10
ffiffi
6

p

hB6jdab3Dð8Þ
8a D

ð8Þ
8b jB3̄i 0

ffiffi
3

p
20

hB6jdab3Dð8Þ
8a D

ð8Þ
8b jB6i −

ffiffi
2

p
45

1

30
ffiffi
2

p 1

15
ffiffi
2

p

hB6jdab3Dð8Þ
3a D

ð8Þ
8b jB3̄i 1

10
− 1

10
T3 hB6jdab3Dð8Þ

3a D
ð8Þ
8b jB6i 1

9
ffiffi
6

p T3
7

45
ffiffi
6

p T3 0

hB6jDð8Þ
83 D

ð8Þ
33 jB3̄i 0 0 hB6jDð8Þ

83 D
ð8Þ
33 jB6i − 1

45

ffiffi
2
3

q
T3

4
45

ffiffi
2
3

q
T3

0

hB6jDð8Þ
83 D

ð8Þ
83 jB3̄i 0 0 hB6jDð8Þ

83 D
ð8Þ
83 jB6i − 1

45
ffiffi
2

p 1

15
ffiffi
2

p − 1

15
ffiffi
2

p

hB6jDð8Þ
8i D

ð8Þ
3i jB3̄i 0 0 hB6jDð8Þ

8i D
ð8Þ
3i jB6i 1

45

ffiffi
2
3

q
T3 − 4

45

ffiffi
2
3

q
T3

0

hB6jDð8Þ
8i D

ð8Þ
8i jB3̄i 0 0 hB6jDð8Þ

8i D
ð8Þ
8i jB6i 1

45
ffiffi
2

p − 1

15
ffiffi
2

p 1

15
ffiffi
2

p
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TABLE V. The relevant transition matrix elements of the collective operators coming from the 15-plet component of the baryon wave
functions.

B
15
γ� → B6 Λcγ

� → Σ�
c Ξcγ

� → Ξ�
c B

15
γ� → B6 Σcγ

� → Σ�
c Ξ0

cγ
� → Ξ�

c Ωcγ
� → Ω�

c

hB6jDð8Þ
33 jB15

i 1

6
ffiffiffiffi
15

p −
ffiffi
5

p
18
T3 hB6jDð8Þ

33 jB15
i 1

9
ffiffi
5

p T3 1
9

ffiffi
5
6

q
T3

0

hB6jDð8Þ
83 jB15

i 0 1

4
ffiffiffiffi
15

p hB6jDð8Þ
83 jB15

i − 1

3
ffiffiffiffi
15

p − 1
6
ffiffiffiffi
10

p 0

hB6jDð8Þ
38 J3jB15

i 0 0 hB6jDð8Þ
38 J3jB15

i 1

3
ffiffiffiffi
15

p T3 1
9

ffiffi
5
2

q
T3

0

hB6jDð8Þ
88 J3jB15

i 0 0 hB6jDð8Þ
88 J3jB15

i − 1

3
ffiffi
5

p − 1

2
ffiffiffiffi
30

p 0

hB6jdab3Dð8Þ
3a JbjB15

i 1

4
ffiffiffiffi
15

p −
ffiffi
5

p
12
T3 hB6jdab3Dð8Þ

3a JbjB15
i 1

18
ffiffi
5

p T3 1
18

ffiffi
5
6

q
T3

0

hB6jdab3Dð8Þ
8a JbjB15

i 0 1
8

ffiffi
3
5

q
hB6jdab3Dð8Þ

8a JbjB15
i − 1

6
ffiffiffiffi
15

p − 1

12
ffiffiffiffi
10

p 0

hB6jDð8Þ
3i JijB15

i 0 0 hB6jDð8Þ
3i JijB15

i 0 0 0

hB6jDð8Þ
8i JijB15

i 0 0 hB6jDð8Þ
8i JijB15

i 0 0 0

TABLE VI. The relevant transition matrix elements of the collective operators coming from the 15- and 24-plet components of the
baryon wave functions.

B3̄γ
� → B

15
Λcγ

� → Σ�
c Ξcγ

� → Ξ�
c B6γ

� → B24 Σcγ
� → Σ�

c Ξ0
cγ

� → Ξ�
c Ωcγ

� → Ω�
c

hB
15
jDð8Þ

33 jB3̄i 1ffiffiffiffi
30

p −
ffiffi
5

p
6
T3 hB24jDð8Þ

33 jB6i 1

90
ffiffi
2

p T3
1

45
ffiffi
3

p T3 0

hB
15
jDð8Þ

83 jB3̄i 0 1
4

ffiffi
3
5

q
hB24jDð8Þ

83 jB6i 1

15
ffiffi
6

p 1
30

1
30

hB
15
jDð8Þ

38 J3jB3̄i 0 0 hB24jDð8Þ
38 J3jB6i − 1

15
ffiffi
6

p T3 − 2
45
T3 0

hB
15
jDð8Þ

88 J3jB3̄i 0 0 hB24jDð8Þ
88 J3jB6i −

ffiffi
2

p
15

− 1

5
ffiffi
3

p − 1

5
ffiffi
3

p

hB
15
jdab3Dð8Þ

3a JbjB3̄i 1

2
ffiffiffiffi
30

p − 1

12
ffiffi
5

p T3 hB24jdab3Dð8Þ
3a JbjB6i 1

45
ffiffi
2

p T3
2

45
ffiffi
3

p T3 0

hB
15
jdab3Dð8Þ

8a JbjB3̄i 0 1
8

ffiffi
3
5

q
hB24jdab3Dð8Þ

8a JbjB6i 1
15

ffiffi
2
3

q
1
15

1
15

hB
15
jDð8Þ

3i JijB3̄i 0 0 hB24jDð8Þ
3i JijB6i 0 0 0

hB
15
jDð8Þ

8i JijB3̄i 0 0 hB24jDð8Þ
8i JijB6i 0 0 0
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