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Background: β-delayed neutron emission and fission are essential in r-process nucleosynthesis. Although the
number of experimental studies covering r-process nuclei has recently increased, the uncertainties of β-delayed
neutron emission and fission are still large for r-process simulations.
Purpose: Our aim is to introduce a theoretical framework for the description of β-delayed neutron-emission and
fission rates based on relativistic nuclear energy density-functional and statistical models and investigate their
properties throughout the nuclide map.
Methods: To obtain β strength functions, the relativistic proton-neutron quasiparticle random-phase approxi-
mation is employed. Particle evaporations and fission from highly excited nuclear states are estimated by the
Hauser-Feshbach statistical model. β-delayed neutron branching ratios Pn are calculated and compared with
experimental data, and the β-delayed fission branching ratio Pf are also assessed by using different fission
barrier data.
Results: Calculated Pn are in a good agreement with the experimental data and the root mean square deviation
is comparable to results of preceding works. It is found that energy withdrawal by β-delayed neutron-emission
sensitivity varies Pn, especially for nuclei near the neutron drip line. Pf depend sensitively on fission barrier data.
It is found that not only the barrier height but also the number of barrier humps is important to evaluate Pf .
Conclusions: The framework introduced in this work provides an improved theoretical description of the
β-delayed neutron emission and fission. Since Pf as well as Pn depend strongly on fission barrier information,
four kinds of fission barrier data are used in this work to allow further sensitivity studies of the r-process
nucleosynthesis on the nuclear fission. More studies on fission barrier are highly requested to assess the role
of β-delayed fission in the r-process study. A complete set of calculated data for β-delayed neutron emission
and fission are summarized as a table in supplemental material for its use in r-process studies as well as to
complement a part of nuclear data in which no experimental data are available.

DOI: 10.1103/PhysRevC.104.044321

I. INTRODUCTION

The origin of chemical elements in the universe is the long-
standing problem and one of the hottest topics in astrophysics.
Our knowledge accumulated so far indicates that heavy el-
ements in nature are generated by the dynamical processes
of stars. In particular, about a half of the elements heavier
than iron is considered to be produced by the r process [1,2]
(the other half is by the s process [1]). Although it is still not
concluded where the r process occurs, recent studies employ-
ing observation of gravitational waves provide evidence that a
neutron-star merger is one of the possible sites of the r process
[3,4].

The solar r-process abundance pattern shows a character-
istic mass distribution that has three peaks around A = 80–90,
130–138, and 195–208 [5–7]. The r-process simulation sug-
gests that the origin of these peaks is related to neutron magic
numbers of N = 50, 82, and 126, which is also related to
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nuclear mass [5,6,8]. However, the peak positions and abun-
dance ratios cannot be reproduced only by considering the
nuclear mass effects. Neutron capture, β decay, and other
decay modes sensitively influence the abundance pattern of
the r process [6,9–27].

During the r process, β− decay (hereinafter, we sim-
ply call it β decay) increases the atomic number of nuclei
and produces daughter nuclei in a highly excited state. De-
pending on the excitation energy, the daughter nuclei decay
through several particle-emission channels. In particular, β-
delayed neutron emission and fission (hereinafter we call
them BDNE and BDF, respectively) play a subsidiary role
in the r-process abundance. BDNE produces two different
effects on the r-process abundance. The first is that it leads
nuclei in an r-process site to detour the β−-decay path
(A,Z ) → (A,Z + 1) by reducing their neutron number, for
example, (A,Z ) → (A − 1,Z + 1) in case of one-neutron
(1n) emission, where Z equals the proton number. This ef-
fect smooths the even-odd fluctuation in the final r-process
abundance pattern [19–21]. Another effect of BDNE is that
it feeds neutrons to the r-process environment. This effect
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retards the progress of the freeze-out for the “cold” r-process
scenario [6].

The role of BDF is to reduce the abundance of heavy ele-
ments by breaking daughter nuclei into two or more fragments
during the r process and its freeze-out phase. Furthermore,
the fission fragments restart to capture environmental neutrons
and grow up toward heavy elements again. This phenomena,
also known as fission recycling, affects a wide range of the
r-process abundances together with neutron-induced fission
[22–27]. An understanding of fission in the r-process is es-
sential to answer the naive question, are superheavy elements
produced by dynamical processes in stars [28]?

A lot of experimental measurements of BDNE have been
carried out because of its importance in applications to the
r-process as well as for nuclear data evaluation (e.g., see
Refs. [29–33] for recent works). However, the experimental
difficulty rapidly increases as one tries to study very-neutron-
rich nuclei because of the low statistics. For this reason, there
are still nuclei for which BDNE and BDF have not been
measured yet. In particular, for BDF, only seven cases are
recognized near the β-stability line [34] (see Ref. [35], which
summarizes experimental studies for BDF).

Nuclei that are not investigated by experiment have to
be covered by theoretical models. Empirical systematics is
a useful approach and is provided in, e.g., Refs. [36–39]
for the β-delayed neutron branching ratio Pn and even for
BDF in Refs. [35,40]. Gross Theory (GT2) [41,42] is also an
effective tool. It has provided β strength functions systemat-
ically for nuclei in the nuclear chart, and not only half-lives
but also Pn and the β-delayed fission branching ratio Pf

have been calculated [20]. However, it is not clear whether
a phenomenological approach based on the GT2 is valid for
very-neutron-rich nuclei.

Another effective approach for theoretically predicting
Pn and Pf is a microscopic model. Typical approaches are
the configuration interaction (CI) model, the quasiparticle
random-phase approximation (QRPA), and the finite ampli-
tude method (FAM), which is essentially the same as the
QRPA but solves the problem in a different way. Recently,
the interacting boson model (IBM) based on the mean-field
approach has been applied to β-decay calculations as well
[43]. Although CI models are actively applied to the calcula-
tion of half-lives for r-process nuclei around N = 50, 82, and
126 shell closures, the application is still restricted to limited
nuclei due to the increasing computational cost [14,44,45].
For this reason, to calculate β decay for r-process nuclei, the
QRPA [46–51] and FAM [52–54] are applied in practice.

One of us has calculated Pn systematically for neutron-
rich nuclei in the framework of the proton-neutron relativistic
quasiparticle random-phase approximation (pn-RQRPA) [15].
This microscopic model starts from an effective interaction
determined by experimentally known ground-state properties
of nuclei and is believed to provide a more reliable β strength
function than purely phenomenological approaches. To pre-
dict β-delayed neutron branching ratios, a simplified approach
(hereinafter referred to as the cutoff method) assuming that
nuclei with excitation energies above the neutron threshold
always emit β-delayed neutron has been used, as done in
Refs. [48–50]. This assumption corresponds with a picture

that neutron emission is the only exit channel above neutron
thresholds and the kinetic energy of β-delayed neutrons is
zero. This prescription clearly omits the nuclear structure,
the selection rule of the decay chain, competition with other
decay channels, and kinematics. In fact, it is pointed out in
Ref. [55] that a competition between neutron emission and γ

deexcitation gives a non-negligible variation to the calculation
for Pn of nuclei, especially near the neutron drip line.

One of the approaches to treat nuclear decay in a more
physical and complete way is to apply a statistical decay
model, for example, the Hauser-Feshbach statistical model
(HFM) [56]. The HFM considers nuclear structure effects
through level densities and selection rules of the decay chain,
competition with other decay channels, and kinematics that
the cutoff method omitted. Combination of the QRPA β

strength function and the statistical decay model is there-
fore a feasible approach and has been carried out by several
groups using FRDM + QRPA [26,57,58] and nonrelativistic
QRPA [46,47,51,59–61]. The aim of this paper is directed
at estimating Pn and Pf by using this approach, namely, by
combining pn-RQRPA and HFM. Hereinafter, we refer to the
present work as pn-RQRPA + HFM to distinguish it from the
preceding work of pn-RQRPA [15].

This paper is organized as follows: In Sec. II, we describe
theoretical framework to calculate BDNE and BDF using
pn-RQRPA + HFM. In Sec. III, the results obtained in this
work are presented and discussed in comparison with experi-
mental data and preceding works. Section IV summarizes this
work and presents some perspectives. The complete data table
containing the BDNE and BDF branching ratios is available
in the Supplemental Material [62].

II. THEORETICAL FRAMEWORK OF pn-RQRPA + HFM

A. β-delayed neutron and fission branching ratios

Our calculation is composed of two parts: First, we prepare
β strength functions for the Gamow-Teller (GT) and the first-
forbidden (FF) transitions by using the pn-RQRPA [15]. As
second step, we carry out the calculation of statistical decay
from the compound state by using the HFM calculation with
excitation energy and spin-parity given by the pn-RQRPA. Pn
and Pf are then obtained by multiplying neutron and fission
emission probabilities by the β-decay rates, respectively.

A fully self-consistent covariant density-functional theory
(CDFT) is adopted in this work. The ground state of all nuclei
is calculated with the relativistic Hartree-Bogoliubov (RHB)
model with the D3C* interaction [63]. The ground state of odd
nuclei are computed by employing the same model as that of
even-even nuclei, namely, we impose the expectation value
of the particle number operator to be an odd proton and/or
neutron number. On the top of the RHB model, excited states
are obtained within the pn-RQRPA. More details about the
pn-RQRPA used in this work are given in Ref. [15].

We assume that daughter nuclei reach the compound state,
namely, the thermally equilibrium state, soon after the β de-
cay. In the compound state, daughter nuclei lose their initial
information that they had before the β decay, except for the
spin-parity and the total energy of the system. The number

044321-2



β-DELAYED NEUTRON-EMISSION AND FISSION … PHYSICAL REVIEW C 104, 044321 (2021)

of protons and neutrons of the initial nuclei (precursor) are
defined as Z and N , respectively. Accordingly, the number of
protons and neutrons of the daughter nuclei are given by Z + 1
and N − 1, respectively.

The HFM calculation is executed with various different
excitation energies and spin-parity states of daughter nuclei.
However, excitation energies Ei,QRPA computed from the pn-
RQRPA are not identical to those of daughter nuclei. We thus
need some transformations. In the framework of pn-RQRPA,
coherent proton-neutron two-quasiparticle configurations are
regarded as excited states, where the lowest state becomes the
ground state of the daughter nuclei. Namely, the excitation
energies of the pn-RQRPA has to be subtracted from the low-
est value to obtain those with respect to the daughter nuclei.
However, it is time consuming and not straightforward to
find the lowest state within the pn-RQRPA. As an alternative
method to connect the pn-RQRPA and the HFM calculations,
we use in this work the noninteracting quasiparticle approxi-
mation, in which an odd-mass nucleus is approximated by one
quasiparticle state plus the wave function of the neighboring
even-mass nucleus. Based on this approximation, the excita-
tion energies with respect to daughter nuclei are computed
through [64,65]

E∗
i = Ei,QRPA − Ecorr, (1)

Ecorr =

⎧⎪⎨
⎪⎩
Ep0 + En0 (β decay for even-even nucleus)
Ep0 (for even-odd)
En0 (for odd-even)
0 (for odd-odd),

(2)

where the index i denotes an excited state of the daughter
nuclei with spin-parity Jπ , and Ep0 and En0 are the lowest
quasiparticle energies of proton and neutron calculated from
the RHB, respectively.

We should mention one issue arising from the use of the
noninteracting quasiparticle approximation in Eq. (1). The
pn-QRPA excitation energies Ei,QRPA consider correlations
caused by the two-body residual interactions, while the lowest
quasiparticle energies in Eq. (2) does not. As a result, Ei,QRPA
is frequently lower than Ecorr, and E∗

i becomes negative for
some nuclei. Although negative excitation energies are phys-
ically incorrect, we adopt an approximation that the HFM
calculation with E∗

i < 0 MeV ends up with no evaporation
from nuclei and the corresponding states become the ground
state.

Carrying out the HFM calculation, we obtain production
ratios of evaporation residues with proton number Z ′ = Z + 1
and neutron number N ′ = N − 1 − x defined as p(n)xn (E

∗
i ),

and spectra of emitted particles defined as dν (Eν,E∗
i ). Here,

Eν is the kinetic energy of the outgoing particle and ν =
{n, γ , p, α} represents a kind of the emitted particle, where the
letters in the brackets represent neutron, γ ray, proton, and α

particle, respectively. We did not consider other light-particle
emissions d , t , and 3He because they are strongly hindered
for the neutron-rich nuclei of interest. For heavy nuclei, the
fission channel, i.e., BDF, is open. BDF occurs directly after
β− decay of parent nuclei, i.e., (β−, f ), or indirectly after
multineutron emissions following the β decay, i.e., (β−, xn f ).
The fission probabilities from an excited state i are defined
as p( f )xn (E∗

i ). The case of x = 0 means fission occurs directly

from the daughter nucleus with no neutron emission. The
functions of p(n)xn (E

∗
i ), p

( f )
xn (E∗

i ), and dν (Eν,E∗
i ) are computed

by the HFM calculation implemented in the CCONE code [66].
Although we do not go into details about the HFM because
the formalism is given in, e.g., Refs. [55,60,66], we will ex-
plain the nuclear input details used in our calculation in the
Sec. II B.

The BDNE and BDF branching ratios are calculated by

Pn =
∑
x

Pxn = 1

R

∑
i,x

ri p
(n)
xn (E

∗
i ) (3)

and

Pf =
∑
x

Pxn, f = 1

R

∑
i,x

ri p
( f )
xn (E

∗
i ), (4)

respectively, where ri is the partial β−-decay rates to ex-
cited state i calculated by the pn-RQRPA, and R = ∑

i ri.
β-delayed α (p) emission branching ratios Pα and Pxnα (Pp

and Pxnp) are calculated in the same way. In this framework,
the following relations hold:

Pn + Pf + Pα + Pp = 1. (5)

The BDNE spectrum is calculated by

Dn(En) = Ns

∑
i

ri dn(En,E
∗
i ), (6)

where Ns is the normalization factor for spectra to be deter-
mined so as to satisfy∫ ∞

0
Dn(En) dEn = 1. (7)

The summation of i of Eqs. (3), (4), and (6) is carried out
for E∗

i � Qβ . The β-decay Q value is calculated from Qβ =
MnH + λn − λp − Ecorr [15] where MnH, λn, and λp are the
mass difference between neutron and hydrogen atom, and the
neutron and proton Fermi energies, respectively.

B. Nuclear input details for Hauser-Feshbach statistical model

1. β strength function

The present RHB model is solved by using the D3C∗ in-
teraction, resulting in discrete quasiparticle states obtained in
the canonical basis [63]. The pn-RQRPA equation is solved
by assuming coherent two quasiparticle (2qp) excitations. In
this scheme, the excited states are also discrete. Accordingly,
the β strength function also has a discrete shape in terms of
excitation energy. However, it is considered that actual excited
states have a broad distribution with a width because of cou-
pling to higher-order configurations (4qp, ..., nqp excitations)
[67] and continuum states, which are not taken into account in
the present pn-RQRPA. To account for those influences, we
introduce a weight function to the β strength functions. We
consider two types of weight functions, that is, the Gaussian
type and the Lorentzian type:

Ww(E ) =
⎧⎨
⎩

∑
i∈w gw

J ri
1√
2π�

e− (E−E∗
i )2

2�2∑
i∈w Ni gw

J ri
1
π

�/2
(E−E∗

i )
2+(�/2)2 .

(8)

(9)
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FIG. 1. Weight functions of Gaussian type (the dotted line) of
Eq. (8) and Lorentzian (the solid line) type of Eq. (9) with E∗ =
10 MeV and width � = 0.6 MeV. The inserted panel is depicted in a
linear scale

The index w is used to distinguish the GT (	Jπ = 1+) and
the FF transitions (	Jπ = 0−, 1−, 2−), and the factor gw

J
is a statistical factor that will be explained later. Since the
Lorentzian function that is proportional to 1/E2 has a finite
strength even far from the mean, we introduce a cutoff energy
Ecut to reduce anomalously large strengths at distant energies.
This cutoff energy is determined by Lω(Ecut ) = Lω(E∗

i )/1000,
and the weight function of Eq. (9) is active within the en-
ergy range of E∗

i ± Ecut. The factor Ni in Eq. (9) is then
introduced to renormalize the Lorentzian function to unity.
In this scheme, a part of the β strength functions may stray
to the negative energies in terms of daughter nuclei. In this
case, we integrate the β strengths at negative energies and set
them at E∗ = 0 MeV, namely, the ground state of the daughter
nuclei. A schematic picture that depicts Eqs. (8) and (9) with
r = 1, E∗ = 10MeV, and � = 0.6MeV (Ecut = 9.5MeV) are
shown in Fig. 1. Within E∗ ± 2�, the Gaussian function has a
broader distribution than the Lorentzian function. Beyond this
energy range, the Gaussian function rapidly fades out while
the Lorentzian function still has a finite strength distribution.

From Eqs. (8) and (9), Eqs. (3), (4), and (6) are rewrit-
ten as

Pxn = 1

R

∫ Qβ

0
Ww(E )p(n)xn (E )dE , (10)

Px f = 1

R

∫ Qβ

0
Ww(E )p( f )xn (E )dE , (11)

Dn(En) = N
∫ Qβ

0
Ww(E )dn(En,E )dE , (12)

respectively. In the later section, we determine the width pa-
rameter � that minimizes the root mean square deviation of Pn
from the experimental data.

2. Spin and parity

In case of even-even nuclei, the spin-parity of the ground
state is always 0+ and that of the daughter nuclei is uniquely

determined according to the decay types. In case of odd mass
nuclei, the situation becomes complicated a little because the
spin of the ground state is not always zero and the angular-
momentum coupling is relevant to estimate the spin-parity of
daughter nuclei. In this work, we use the following method
for odd-mass nuclei. First we determine the spin-parity of the
ground state of parent nuclei. We adopt the experimental data
if they are available. If not, we use the spin-parity of the state
with the lowest quasiparticle energy deduced from the RHB
calculation, namely, Jgs = jp with πgs = (−)lp and Jgs = jn
with πgs = (−)ln for odd-even and even-odd nuclei, respec-
tively. Here, jp ( jn) and lp (ln) are the total and orbital angular
momentum of the proton (neutron), respectively. For the spin
state of odd-odd nuclei, we apply the Nordheim method [68],
which is given by

Jgs = jp + jn if jp = lp ± 1
2 and jn = ln ± 1

2 ,

Jgs = | jp − jn| if jp = lp ± 1
2 and jn = ln ∓ 1

2 ,
(13)

and the parity is computed via πgs = π
(p)
gs π (n)

gs = (−)lp+ln . Af-
ter determining the spin-parity of parent nuclei in this way,
we can conclude that of the daughter nuclei according to
the β-decay type. The spin of the daughter nuclei (Jf ) thus
has |Jgs − 	J| � Jf � Jgs + 	J and the parity π f = πgsπα ,
where 	J = 0, 1, 2 and πα = ± depending on the type of
β transitions. We assumed the equal distribution of the β

strength function for each J
π f

f state. The factor gw
J in Eq. (9)

is determined so that total amount of the β strength function
is conserved. For example, in the case of a 1± transition
from a parent nucleus with the J = 3/2 (1/2) state, Jf =
5/2, 3/2, 1/2 (3/2, 1/2) and g1

±
3/2(1/2) = 1/3 (1/2).

In the HFM calculation, transmission coefficients of nu-
cleons and α particles are calculated by the optical potentials
of Koning-Delaroche [69] and Avrigeanu [70], respectively.
For nuclear level densities, the Gilbert-Cameron method [71]
with the Mengoni-Nakajima parameter [72] is adopted. For
γ strength functions, the enhanced generalized Lorentzian
function [73] is used. Mass data are taken from the global
nuclear mass model [74] and used for calculating neutron
separation energies Sxn, Qβ , Qα and so on.

Transmission coefficients for fission are calculated as fol-
lows: We assume a double- or triple-humped parabolic barrier
with the barrier penetrability for each barrier calculated by the
Hill-Wheeler equation [75]. The transmission coefficients are
obtained by assuming that the fission process occurs through
the transition states above the fission barrier. All transition
states were approximated by the level-density formula de-
scribed above. The transmission coefficient of a single barrier
for the state having excitation energy E and spin-parity Jπ ,
Ti(E , Jπ ) is calculated by

Ti(E , Jπ ) =
∫ ∞

0

ρi(ε, Jπ )

1 + exp
(−2π E−Vi−ε

h̄ωi

)dε, (14)

where the subscripts i = A, B, and C indicate the in-
ner, middle, and outer barriers, respectively, ρi(ε, Jπ ) is
the level density at the saddle points, and Vi and h̄ωi

represent the height and curvature of the fission barrier,
respectively. The transmission coefficients for nuclei with
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double- and triple-humped barriers are approximated to be
T (E , Jπ ) = TATC (TA + TC ) and T (E , Jπ ) = TATBTC/(TATB +
TBTC + TCTA), respectively.

Since predicted fission barrier data greatly vary among
fission barrier data as we will see, our calculation is car-
ried out using four different fission barriers: HFB-14 [76],
the Extended Thomas Fermi plus Strutinsky Integral (ETFSI)
method [77], the FRDM [78], and the Spherical Basis Method
(SBM) [79]. The former two provide multihumped fission bar-
rier data, while the latter two give only single-barrier informa-
tion. Fission barrier heights of FRDM are relatively low, while
those of SBM are relatively high. The curvature parameter we
used is h̄ωA(h̄ωB) = 1.04(0.60), 0.80(0.52), 0.65(0.45) MeV
for even-even, even-odd or odd-even, and odd-odd nuclei,
respectively, that are determined to reproduce fission cross
sections of uranium isotopes [66]. In case of HFB-14, the
information on barrier curvature, fission path, and the level
density at the saddle points is provided [80,81], so we use
them to calculate the fission transmission coefficients.

III. RESULTS

A. β-delayed neutron emission

In the last section, the width parameter � is introduced to
make the β strength function a broad distribution. To deter-
mine the most likely �, we estimate the root mean squared
(rms) value of P1n, which is defined as

σ xn
rms =

√√√√ 1

Nexpt

Nexpt∑
i

[
log10

(
Pxn,i(c)

Pxn,i(e)

)]2

, (15)

where Nexpt is the number of experimental data and P(i)
xn (c)

and P(i)
xn (e) are the β-delayed neutron branching ratios of

theoretical models and experiment of nucleus i, respectively.
Note that in Ref. [26] a linear scaled rms is adopted to discuss
the predictive power of P1n calculated by the FRDM + QRPA
+ HFM [58]. However, we adopted logarithmic scaled rms as
Eq. (15) because experimental Pxn extend from a small value
of 10−2 to 102 as like half-lives.

Figure 2 shows σ 1n
rms as a function of width parameter � of

the Gaussian type of Eq. (8) (dashed line) and the Lorentzian
type of Eq. (9) (solid line). Experimental data are mainly
taken from ENSDF [34], however, we replace the data if a
new BDNE branching ratio reported in Ref. [82] is available.
Below � = 0.2 (0.4) MeV for the Lorentzian (Gaussian) type,
σ 1n
rms are more than 1.0, which means a factor of ten difference

in P1n on average. This is because β feedings above one
neutron separation energy Sn are limited and P1n is mostly
underestimated. Increasing �, σ 1n

rms becomes smaller because
some β strengths seep into energies above Sn and the ma-
jority of the calculated P1n comes close to the experimental
values. Although there exists a β strength function that es-
capes from the 1n emission energy window (Sn � E∗ < S2n)
to x-neutron (xn) ones (Sx � E∗ < S(x+1)n), this outflow is
generally smaller than the gain to the 1n emission energy
window because β-decay rates become lower with increasing
excitation energies. Eventually, σ 1n

rms takes a minimum value
at � = 0.6 MeV for the Lorentzian type (σ 1n

rms = 0.602) and at

 0.5

 0.6
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 0.8

 0.9

 1

 1.1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2  1.4
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m
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FIG. 2. Estimated σ 1n
rms value given in Eq. (15) as a function of

the width � calculated with the Gaussian-type function (8) and the
Lorentzian type function (9).

� = 1.2 MeV for the Gaussian type (σ 1n
rms = 0.694). Above

the minimal points, σ 1n
rms turn into a slow increase. This is

because β strengths contribute too much at energies above Sn,
and a majority of calculated P1n becomes large as compared
with experimental values.

The Lorentzian-type weight function gives a better re-
sult than the Gaussian one in terms of σ 1n

rms. It is difficult
to explain this because the result of σ 1n

rms is complicatedly
convoluted by the many P1n data. However, it is considered
that the little leakage of the β strength function extending
far outside of the mean of the Lorentzian function plays a sig-
nificant role for the better agreement of P1n with experimental
data. In fact, the Gaussian-type weight function needs a wider
width than the Lorentzian type to give the minimal σ 1n

rms. In
the subsequent sections in this paper, we discuss BDNE and
BDF using the weight function of Lorentzian type with � =
0.6 MeV, the width of which is reasonable as compared with
the experimental measurements of low-lying GT resonances
for stable tin isotopes investigated by (3He, t) reactions [83].

Table I lists σ 1n
rms of the pn-RQRPA + HFM together with

the pn-RQRPA [15], Gross theory (GT2) [41,42], and FRDM
+ QRPA + HFM [58]. We also list σ 1n

rms classified by four
different ranges of P1n. The total value of σ 1n

rms was 0.798 for
the pn-RQRPA. Note that, in the pn-RQRPA, the β strength
functions are weighted by a Lorentzian function using a width
of 130 keV that is determined so as to reproduce β-delayed
neutron yield of thermal-neutron-induced fission of 235U. The
present result of pn-RQRPA + HFM greatly improves that of
pn-RQRPA, providing σ 1n

rms = 0.601, which is comparable to
that of the GT2 (σ 1n

rms = 0.595) and the FRDM + QRPA +
HFM (0.512). Especially, we obtained a remarkable improve-
ment in σ 1n

rms throughout from 1 � P1n � 100. Although σ 1n
rms

is deteriorated in P1n < 1, the result of pn-RQRPA + HFM is
still slightly better than that of the FRDM + QRPA + HFM.

Figure 3(a) shows the ratio of P1n for the pn-RQRPA +
HFM to that for the pn-RQRPA as a function of mass number
A. We can see that most of the data points are above unity, i.e.,
most of P1n is increased by the present framework. The main
reason for the increments is the use of the large �. Figures 3(b)
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TABLE I. Result of σ 1n
rms defined by Eq. (15) for different ranges of P1n(e) (%).

Model P1n(e) < 1 1 � P1n(e) < 10 10 � P1n(e) < 50 50 � P1n(e) � 100 All P1n(e) data

pn-RQRPA + HFM 0.952 0.446 0.570 0.317 0.601
pn-RQRPA 0.857 0.727 0.925 0.460 0.798
GT2 0.852 0.656 0.464 0.320 0.595
FRDM + QRPA + HFM 1.084 0.442 0.482 0.281 0.512
Number of nuclei 50 92 91 34 267

and 3(c) show the ratio of calculated P1n to experimental
P1n (C/E) for the pn-RQRPA + HFM and the pn-RQRPA,
respectively. The underestimations of P1n (i.e., C/E < 1) for
the pn-RQRPA are improved for the pn-RQRPA + HFM. We
confirmed that 73% of P1n corresponding to 193 nuclei are
improved for the pn-RQRPA + HFM.

Figure 4 plots Pn in the N − Z plane, which are calculated
by the pn-RQRPA + HFM with HFB-14 fission-barrier data.
The magic numbers (Z,N = 20, 28, 50, 82, 126) and possible
magic number N = 184 are shown by the double lines. For
nuclei close to the valley of stability, Pn are almost zero. As the
neutron number increases, Pn are enhanced due to small Sxn
and large Qβ of neutron-rich nuclei. We observe the odd-even
dependence, especially for the Z direction in the bottom-right
sector from Z = 82 and N = 126 and the upper-left sector
from Z = 82 and N = 184. In general, looking at an isotonic
chain, Qβ of odd-Z nuclei are larger than those of neighboring
even-Z nuclei because of pairing correlations, while Sxn are
less sensitive to Z numbers. As a consequence, we obtain
the result that Pn of odd-Z nuclei are larger than neighboring
even-Z nuclei, generating the odd-even dependence. As an
example, the set of [Qβ(MeV), Sn(MeV)] for 220Ir (Z = 77)
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FIG. 3. (a) Ratio of P1n for pn-RQRPA + HFM to that for
pn-RQRPA. Panels (b) and (c) represent ratio of calculated to ex-
perimental data of P1n (C/E) for pn-RQRPA + HFM (this work) and
pn-RQRPA [15], respectively.

is about [12.2, 2.3], while that for the neighboring nuclei
219Os (Z = 76) and 221Pt (Z = 78) are about [11.1, 1.7] and
[9.9, 2.2], respectively. Around the mass regions 95 < Z <

101 and 184 < N < 200, Pn displays a patchy pattern. In this
region BDF plays a role competing with BDNE. We discuss it
later in Sec. III B.

One may notice that Pn abruptly decrease in a region from
Z ≈ 65, N ≈ 140 to Z ≈ 80, N ≈ 180 forming a “valley” in
Fig. 4. In this region the single-particle energy of neutron
1i11/2 state exceeds that of proton 1h11/2 states in terms of the
canonical single-particle basis, allowing the 0− FF transition
with a low excitation energy. This is also seen in the ratio
of the FF β decay rates to the total decay rates (Fig. 12 of
Ref. [15]). Since the β decays via the 0− transition mostly
feed levels lower than neutron threshold energies, a sudden
decrease of Pn occurs. However, with increasing neutron num-
ber, the energy difference of neutron 1i11/2 and proton 1h11/2
states extends, and 0− FF transitions involving this configura-
tion feed to excited states higher than Sxn. Eventually, Pn takes
a high value again in the region close to the neutron drip line.

Figure 5 shows Pxn from x = 1 to 5 in the N-Z plane, which
are calculated with the HFB-14 fission barrier data. Since 1n
emission occurs most easily for neutron-rich nuclei at excited
states, P1n distribute in a wide range of the N-Z plane. How-
ever, in a region close to the neutron drip line, 1n emissions
are no longer the major decay mode. Instead, multineutron
emissions become significant due to large Qβ and low Sxn.
Because the 2n emission channel is open at higher energy,
P2n extend in a more neutron-rich side than P1n. Similarly, the
distributions of Pxn gradually shift to the neutron drip line with
increasing x.

We observe that Pxn in Fig. 5 do not spread over a simple
straight band from low to heavy nuclei in the N-Z plane,
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FIG. 4. Total β-delayed neutron branching ratios (Pn = ∑
x Pxn)

calculated by the pn-RQRPA + HFM with HFB-14 fission barrier
data [76]. The black filled squares stand for stable or long-lived
nuclei.
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FIG. 5. β-delayed neutron branching ratio of P1n to P5n in the
N-Z plane.

but show bends around neutron magic numbers N = 50, 82,
126, and 184. In general, nuclei with the magic numbers are
strongly bound as compared with neighboring nuclei, while
nuclei with a few more neutrons than the magic numbers are
relatively weakly bound. As a result, Sxn of nuclei with a
few more neutrons than the magic numbers are low and it is
easy for those nuclei to emit neutrons from the highly excited
states. Thus, Pxn tend to have a high value along the neutron
magic numbers, making the bends.

In the work of pn-RQRPA [15], only up to 5n emissions
are considered. However, through this study, we confirmed
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FIG. 6. Same as Fig. 5, but for P6n to P10n.

that x > 5 should have been considered for nuclei close to
the neutron drip line. Figure 6 shows the Pxn(6 � x � 10).
Note that a different color scale from Fig. 5 is used to display
the results clearly. With increasing x, the distribution of Pxn
approaches the more-neutron-rich side, and the number of
nuclei with a prominent Pxn significantly decreases. In the
case of HFB-14 fission-barrier data, the number of nuclei
with Pxn > 10% is 356, 254, 197, 121, and 91 for x = 6,
7, 8, 9, and 10, respectively. For P10n only a limited nuclei
near the neutron drip line show a meaningful value, especially
around Z = 26 and N = 65, Z = 40 and N = 95, Z = 55 and
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FIG. 7. Average difference Mx for various x defined in Eq. (16).

N = 135, and Z = 85 and N = 195, where the calculated Qβ

value reaches about 20 MeV.
To see the variations from the pn-RQRPA that uses the

cutoff method, we compute the average difference defined as

Mx = 1

NN

NN∑
i

(
P(HFM)
xn − P(cut)

xn

)
. (16)

where NN is the number of nuclei and P(HFM)
xn and P(cut)

xn are
β-delayed branching ratios of the pn-RQRPA + HFM and the
pn-RQRPA. The result is shown in Fig. 7. Upon increasing x,
Mx decreases monotonically and become negative for x � 5.
This indicates that the BDNE branching ratios for low neutron
multiplicity are increased in the present approach, while they
are decreased for high neutron multiplicity.

To understand the difference of the results between the
pn-RQRPA + HFM and pn-RQRPA further, we plot the β

strength function of GT transition and xn emission energy
windows in Fig. 8(a) in case of 140Sn as an example. We can
see that the most of the β strengths locate in the 1n emission
energy window. Since the amount of the β-strengths to xn
emission energy window directly becomes Pxn in the cutoff
method, P1n will be large for the pn-RQRPA.

On the other hand, in the pn-RQRPA + HFM, the BDNE
branching ratios are calculated through multiplying the β

strength functions by the isotope production ratios pi, as in
Eq. (10). Namely, the isotope production ratio mainly governs
the difference of Pxn between the pn-RQRPA + HFM and the
pn-RQRPA. Figure 8(b) shows pi of Sb isotopes as a function
of the excitation energy of the daughter nucleus 140Sb. Until
Sn = 2.3 MeV, pi of 140Sb is unity. Namely, only γ deexcita-
tion occurs for 140Sb without emitting any neutron. Entering
the 1n emission energy window from E∗ = Sn, pi of 139Sb
suddenly becomes almost one and that of 140Sb becomes al-
most zero. If the n-γ competition plays a role for this nucleus,
the curves of pi of 139,140Sb at E∗ = Sn become more smooth
[55]. Upon further increasing the energy, pi of 139Sb begins to
decrease from S2n = 5.9MeV and that of 138Sb becomes dom-
inant from E∗ ≈ 7 MeV. A remarked point is that pi of 138Sb
extend into not only the 2n emission energy window but the
3n emission energy window. This wide distribution is due to a
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FIG. 8. (a) β strength function of 140Sn. x-neutron (xn) emis-
sion energy windows are separated by the dotted lines. (b) Isotope
production ratios, pi of 137–140Sb as a function of excitation energy,
assuming 1+ excited states of 140Sb (the daughter nucleus of 140Sn).
The calculation is performed by the HFM.

competition with 1n and 3n neutron-emission channels. How-
ever, the results of the pn-RQRPA and pn-RQRPA + HFM
will be almost the same because there are no significant β

strengths above the 2n emission energy window. Table II lists
Pxn of 140Sn for the pn-RQRPA + HFM and the pn-RQRPA
[15], in which the contributions from the FF transitions are
included in addition to the GT transition. We can see that the
results of the pn-RQRPA + HFM and the pn-RQRPA show
a good agreement in this nucleus. Namely, the cutoff method
works well only if 0n and 1n emissions are the major decay
channel, like this case. We should mention that P0n and P1n

TABLE II. β-delayed neutron branching ratios (in units of %)
of 140Sn and 162Sn calculated by the pn-RQRPA + HFM and the
pn-RQRPA.

140Sn 162Sn

pn-RQRPA pn-RQRPA
Model + HFM pn-RQRPA + HFM pn-RQRPA

P0n 62.6 57.7 12.5 10.4
P1n 36.8 41.7 34.2 19.1
P2n 0.6 0.3 12.9 15.7
P3n 0.1 0.1 17.7 20.2
P4n 0.0 0.0 7.1 1.5
P5n 0.0 0.0 13.6 9.4
P6n 0.0 0.0 1.2 1.4
P7n 0.0 0.0 0.7 20.1
P8n 0.0 0.0 0.1 0.6
P9n 0.0 0.0 0.0 0.8
P10n 0.0 0.0 0.0 0.8
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FIG. 9. (a) β strength function of 162Sn. xn emission energy
windows are separated by the dotted lines. (b) Isotope production
ratios of 162–156Sb from 1+ excited states of 162Sb (the daughter
nucleus of 162Sn) as a function of excitation energy. The calculation
is performed by the HFM.

are also largely different from those estimated by the cutoff
method if the n-γ competition would be significant [55].

As going to more neutron-rich nuclei, the difference be-
tween the pn-RQRPA and the pn-RQRPA + HFM becomes
striking. Figure 9 shows the β strength function of 162Sn and
the isotope production ratios of Sb isotopes in the case of the
GT transition. The 1n-to-9n emission energy windows exist
closely up to E∗ = 10 MeV and the 2n emission energy win-
dow is at much lower energy than 140Sn. The most significant
β strengths are in the 7n emission energy window, so that P7n
is expected to be large in the cutoff method. On the other hand,
looking at Fig. 9(b), pi of different isotopes distribute into
a wide range of excitation energy and are not stuffed inside
a specific neutron-emission energy window. As mentioned,
this wide distribution ranging over various neutron-emission
energy windows is due to the competition with 1n, 2n, and
multineutron-emission channels. In the 7n emission energy
window, pi of 156–159Sb isotopes exist side by side. Note that
pi of 155Sb produced by 7n emission is about zero in the 7n
emission energy window, so that P7n will be almost zero in the
pn-RQRPA + HFM. This mismatch comes about because the
daughter nucleus and descendant nuclei lost their excitation
energy every time neutrons are emitted. This never happens
in the framework of the cutoff method. The results of Pxn
for the pn-RQRPA + HFM and the pn-RQRPA are listed in
Table II, in which they show a large difference. We notice that
P7n = 20% for the pn-RQRPA, but 0.7% for the pn-RQRPA+
HFM. The missing fraction of P7n is redistributed to Pxn with
x � 6. Note again that contributions from the FF transitions
are included in the result of Table II.

In the cutoff method, Pxn with a large x can have a finite
value if it is energetically allowed. However, excitation energy
of nuclei is wasted every time neutrons are emitted. As a
consequence, the relative difference of Pxn between the cutoff
method and the HFM becomes larger as nuclei have lower Sxn
and higher Qβ that enable multineutron emission. As seen in
Fig. 7, Pxn for x � 5 become negative due to this reason. The
reduced fractions in x � 5 turn into Pxn for x � 4. Since P10n
do not obtain a backward flow from higher x, the reduction is
larger than others.

Figure 10 shows P1n of Pd (Z = 46) and Ag (Z = 47)
isotopes that are considered as important β-delayed neutron
precursors in the r process [16], and Os (Z = 76) and Ir (Z =
77) isotopes. We plot the results of the FRDM + QRPA +
HFM [58] for comparison. The result of pn-RQRPA + HFM
shows a P1n similar to that of the FRDM + QRPA + HFM for
nuclei with small mass numbers. Upon going toward heavier
mass, the two calculations begin to differ. The noticeable
contrasts are found in nuclei close to the neutron drip line and
210 � A � 230 for Os and Ir isotopes. A major factor affect-
ing P1n is the β strength function and one neutron separation
energies Sn that are calculated from the theoretically predicted
mass data, for which the pn-RQRPA + HFM and the FRDM
+ QRPA + HFM use the global nuclear mass model [74]
and FRDM2012 [84], respectively. For most of nuclei close
to the drip line, Sn of the global nuclear mass model is lower
than those of FRDM; for example, Sn of 240Ir is 269 keV
for the global mass model and 690 keV for FRDM2012. To
check the sensitivity of P1n to mass data, we carry out the
same calculation replacing the mass data of the pn-RQRPA
+ HFM with FRDM2012 and find that the result for nuclei
near the drip line globally becomes close to that of the FRDM
+ QRPA + HFM. However, P1n in 210 � A � 230 for Os and
Ir isotopes still differ significantly. We thus consider that the
deviations found in 210 � A � 230 for Os and Ir isotopes are
mainly attributed to the β strength function and those found
near the neutron drip line is due to the mass data.

In this work, if daughter nuclei in the ground state are
unstable against neutron emissions, i.e., for the case of Sn =
0 MeV, we let them emit one neutron automatically. There-
fore, P0n of corresponding nuclei become zero and the fraction
shifts to P1n. One can see the effect in Fig. 10, which shows
odd-even staggering for nuclei near the neutron drip line. For
example, P1n for 150Pd is about 40%, while that for 149,151Pd
is almost zero. The remarkably high fraction of P1n for 150Pd
is because the daughter nucleus 150Ag is a neutron-unbound
nucleus according to the global nuclear mass model [74]. On
the other hand, 149,151Ag is stable against neutron emission,
keeping P1n small.

We also computed delayed-neutron yield of thermal-
neutron-induced fission of 235U. The result is shown in
Table III. The fission-fragment yields of thermal-neutron-
induced fission of 235U are taken from JENDL Fission
Product Yield 2011 (JENDL/FPY2011) [85,86]. The pn-
RQRPA gives the β-delayed neutron yield closest to the
experimental data among the four models because the Pn are
tuned to reproduce it. The result of pn-RQRPA + HFM also
reproduces the experimental data in the same order. Note that
the calculated delayed neutron yields are an aggregated value
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FIG. 10. β-delayed neutron branching ratio P1n of Pd, Ag, Os,
and Ir isotopes as a function of A. The experimental data are taken
from Ref. [82].

summed over fission-fragment yields. Looking into important
precursor nuclei contributing the delayed neutron yield, the
result of pn-RQRPA is not necessarily correct. For example,
a precursor contributing the delayed neutron yield the most is
137I [P1n(e) = 7.66% [34]] according to the recent evaluation
[82], while it is 91Rb for the pn-RQRPA calculation and
137I enters the eighth place with P1n = 0.7%. On the other
hand, the pn-RQRPA + HFM calculation shows 137I to be the
most important precursor, however, the Pn (≈2.25%) is still

TABLE III. β-delayed neutron yield of thermal-neutron-induced
fission of 235U. Fission-fragment yields are taken from JENDL/FPY-
2011 [85,86].

Model β-delayed neutron yield

pn-RQRPA 1.43 × 10−2

pn-RQRPA + HFM 1.00 × 10−2

GT2 0.81 × 10−2

FRDM + QRPA + HFM 0.81 × 10−2

Expt. [87] (1.58 ± 0.05) × 10−2

underestimated and thus the calculated delayed neutron yield
is smaller than the experimental value.

The advantage of using the HFM is that one can estimate
the spectra of emitted particles. In particular, a high interest is
paid to delayed neutron spectra, which are expected to be used
for nondestructive analysis of nuclear materials [88,89]. How-
ever, it is difficult to measure delayed neutron spectra system-
atically for nuclei in the nuclear chart. Therefore, theoretical
predictions are used to fill out the lack of the evaluated nuclear
data such as ENDF/B-VIII.0 [90] and forthcoming JENDL-5
if no experimental data are available. As an example, Fig. 11
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FIG. 11. BDNE spectrum of (a) 89Br and (b) 138I. The calculated
result is shown by the solid line (red). Experimental data are taken
from Rudstam et al. [91] and Shalev et al. [92].
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FIG. 12. BDNE branching ratios Pn (left panels) and BDF branching ratios Pf (right panels) in unit of % calculated by the fission barrier
data of (a) HFB-14 [76], (b) FRDM [78], (c) ETFSI [77], and (d) SBM [79]. Nuclei where no fission barrier or β-decay data are provided are
given as blank.

shows the BDNE spectrum of 89Br and 138I, which are typical
β-delayed neutron precursors. We also plot the experimental
data taken from Refs. [91,92]. Although fine structures ob-
served in the experimental data are not reproduced well by the
pn-RQRPA + HFM, the computed results reasonably emulate
the experimental β-delayed neutron spectra.

B. Effect of β-delayed fission

Figures 12(a)–(d) show BDNE and BDF branching ratios
for Z � 90 in the N-Z plane using different fission barrier
data of HFB-14 [76], FRDM [78], ETFSI [77], and SBM,
respectively [79]. Note that nuclei where no fission barrier or
β-decay data are provided are given as blank. As is obvious,
for nuclei where Pf is significant, Pn is small since they are
correlated. We can see that Pn and Pf greatly vary among the
fission barrier data. A common feature is that BDF branching
ratios become high around 93 � Z � 110 and 184 � N �
200 for FRDM, ETFSI, and SBM. Although the number of
nuclei calculated in this region is limited for HFB-14, Pf

become meaningful as well around Z = 100 and N = 190.
BDF is also significant from Z = 91, N = 160 to Z = 100,
N = 185 for FRDM, ETFSI, and SBM, while that for HFB-
14 is negligibly small. There exists an odd-even dependence
for Pf in the region of N = 160 to 185, in particular, for
FRDM and SBM. This odd-even dependence is also found in
Ref. [26], which calculates Pf with the FRDM + QRPA and
the FRDM barrier data [78]. An effect of the neutron magic
number of N ≈ 184 is seen for ETFSI and weakly for FRDM
and SBM. On the neutron-rich side, Pn become major for
HFB-14, ETFSI, and SBM, while BDNE and BDF compete
with each other for FRDM.

Figure 13 shows P1n and P1n f calculated with the different
fission barrier data for Z � 90 in the N-Z plane. The number

of nuclei showing a significant P1n f is much less than Pf .
This means that most nuclei do fission directly after β decay
without emitting neutrons in a high probability. However,
FRDM still has relatively many nuclei with prominent P1n f
as compared with the other fission barrier data. As will be
discussed later, this is because fission barrier of FRDM is low
and single-humped. Figure 14 shows the result of P2n and P2n f .
The number of nuclei having a significant P2n f is even less
than that of P1n f . In particular, there are few nuclei showing a
prominent P2n f for HFB-14 and SBM, and accordingly their
distributions of P2n become similar to each other. On the other
hand, there are still a lot of nuclei with prominent P2n f in the
neutron-rich region for FRDM. ETFSI also shows some nuclei
that have compelling P2n f .

Figure 15 shows the result for P3n f . For HFB-14 and SBM,
only a few nuclei show a prominent P3n f . Thus the distribution
of P3n is almost the same. In our calculation, P3n f of all nuclei
are less than 10% for HFB-14, ETFSI, and SBM, while there
are still a number of prominent P3n f in neutron-rich sides for
FRDM. We also plot P4n and P4n f in Fig. 16. There are a
couple of nuclei that give a significant P4n f for ETFSI and
no compelling P4n f for HFB-14 and SBM. Even for FRDM,
only limited nuclei show a prominent P4n f . In Fig. 17, no
significant P5n f is observed for HFB-14, ETFSI, and SBM,
and the results of P5n are almost the same at least for the nuclei
where the calculation is done. For FRDM, there are still nuclei
that have a prominent P5n f , however, the number is decreased
from P4n f . We confirm that Pxn f (x � 6) are less than 1% for
HFB-14, ETFSI, and SBM, while those for FRDM are still
large, especially for nuclei with odd Z from 93 to 103. An
importance of multichance fission has been pointed out using
the FRDM fission barrier data [26]. However, it is seen from
this work that the importance of multichance fission strongly
depends on fission barrier data.
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FIG. 13. Same as Fig. 12, but for P1n f .

To understand the result of Pxn f more qualitatively, we plot
fission barrier heights (Bf ) of fermium isotopes used in this
work in Fig. 18. The numbers in parentheses for the HFB-14
indicate the (1) inner, (2) middle, and (3) outer fission barriers.
Similarly, the numbers in parentheses for the ETFSI indicate
(1) inner and (2) outer fission barriers. The fission barrier of
SBM is as high as the other fission barrier data for 160 � N �
185, while it becomes significantly larger above N = 186.
Thus, Pf of SBM are comparable to the other fission barrier

data around Z = 100, N = 170, while they are strongly hin-
dered for the neutron-rich region. HFB-14 has triple fission
barriers. Although the inner barrier height decreases from
N = 160 to 178, the middle and outer barriers emerge from
N = 170. This triple-humped structure strongly hinders the
fission rates and Pf in this region, as we have seen in Fig. 12.
Around N = 190, the inner and middle barrier heights are low
and the outer barrier is irrelevant so that Pf become significant
in this region. With increasing neutron number, the inner and
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FIG. 14. Same as Fig. 12, but for P2n f .
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FIG. 15. Same as Fig. 12, but for P3n f .

middle barriers become high again and the fission rates are
again hindered. Similar to HFB-14, the inner barrier of ETFSI
decreases from N = 160 to 172. However, the barrier heights
are about 2 MeV lower than HFB-14 and BDF competes
with BDNE. As a result, Pf for ETFSI are significant in this
region, in contrast with HFB-14. From N = 173, the inner
barrier increases and peaks around N = 183. This fact makes
Pf of ETFSI less important, showing the valley in this region
as seen in Fig. 12. The outer barrier which emerges from

N = 183 would also have a meaningful effect on forming the
valley. Above N = 192, the inner barrier of the ETFSI shows
a behavior similar to that of HFB-14. However, Pf of ETFSI is
larger than that of HFB-14 because ETFSI is a single-humped
barrier while HFB-14 gives a double- or triple-humped fission
barrier in this region. The barrier heights of FRDM are rather
constant (Bf ≈ 4 MeV) except in 184 � N � 200, where Bf

are close to the inner and middle barriers of HFB-14. In spite
of that, the reason why the FRDM has more prominent Pxn f
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FIG. 16. Same as Fig. 12, but for P4n f .
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FIG. 17. Same as Fig. 12, but for P5n f .

in this region is that HFB-14 as well as ETFSI have a double-
or triple-humped barrier. The importance of BDF is thus not
determined only by the fission barrier height but by the num-
ber of barrier humps. The SBM also provides a single barrier,
however, the barrier height is larger than for the FRDM and
Pf are significantly reduced.

C. β-delayed α emission

In this work, we allow daughter nuclei also to decay
by α-particle emission and study the β-delayed α emission
branching ratio Pα as well as BDNE and BDF. The calculated
Pα are shown in Fig. 19. Note that the maximum scale is set
to be Pα = 10% for illustration. Because we found that nuclei
where β-delayed α emission is prominent are not affected by
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the selection of fission barrier data, the results in the case
of the FRDM fission barrier data are plotted. Since neutron
emission overcomes α-particle emission in the neutron-rich
region, a non-negligible Pα is observed only in a band of
near the valley of stability. To our knowledge, experimental
data on β-delayed α-particle emission has been reported only
for 214Bi (Pα = 0.003%) [81,93] in the range of Fig. 19. The
calculated result of Pα for 214Bi is 0.026%. Although our
model overestimates the experimental data, it shows that the
β-delayed α-particle emission branching ratio is very small.

Exceptional cases exceeding Pα = 10% are 210,211Bi (Z =
83) and 248Am (Z = 95), that have Pα = 92.5%, 48.9%,
and 15.9%, respectively. The daughter nuclei 210,211Po and
248Cm have a relatively high α-decay rates from the ground
states [93]. It is not thus surprising that they do α-particle
emission following β decay, competing with γ and other
deexcitations. We checked delayed proton emission branching
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FIG. 19. Delayed alpha branching ratios Pα (%) in the case of
FRDM fission barrier data. The black filled squares indicate stable
or long-lived nuclei.
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FIG. 20. Mean number of emitted neutrons in the N-Z plane. The
calculation is performed by the HFB-14 fission barrier data [76].

ratios Pp as well; however, no significant Pp is obtained in
this work. Note that our calculation is carried out only for
nuclei in the β-stability line to a neutron-rich region. Our
future plan is to study a neutron-deficient region where it
is expected that Pα as well as Pp become more important
than Pn.

D. Number and energy of emitted neutrons

From the β-delayed neutron branching ratios and spectra,
we can also calculate the mean number and the mean kinetic
energy of emitted neutrons that are defined as

〈n〉 =
∑
x

x(Pxn + Pxn f + Pxnα + Pxnp) (17)

and

〈En〉 =
∫

EnDn(En)dEn, (18)

respectively. Those quantities are important for examining the
r-process final abundance after the freeze-out phase. Note that
neutrons can be also provided from highly excited fission
fragments, known as prompt neutrons. However, the results
discussed in this work are limited to β-delayed neutrons since
the prompt neutrons are beyond our scope.

Figure 20 shows the mean number 〈n〉 of β-delayed neu-
trons in the N-Z plane. As expected, the value of 〈n〉 near
the valley of the stability is small, while it becomes promi-
nent as the neutron number increases. In our calculation, the
maximum 〈n〉 is about 9.7 for 192La, which is in the spot
showing a prominent Pxn even for a large x, as we have
seen in Fig. 6. We also plot the mean neutron numbers for
nickel, tin, and fermium isotopes for the pn-RQRPA + HFM
and the pn-RQRPA in Fig. 21. For most nuclei, the mean
neutron number is less than 1. From the appreciably-neutron-
rich side where the neutron number is approximately double
the proton number, 〈n〉 begins to increase significantly, being
more than 1. The difference between the pn-RQRPA + HFM
and the pn-RQRPA is not large for nuclei with a relatively
small A, while 〈n〉 of the pn-RQRPA + HFM becomes sig-
nificantly smaller than those of pn-RQRPA as the neutron
number increases, because excitation energies to be used for
neutron emissions are reduced effectively by β-delayed neu-
trons, as discussed in the previous section. For nuclei at the
neutron drip line, the deviations of 〈n〉 from the pn-RQRPA
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FIG. 21. Mean number of emitted neutrons for nickel, tin, and
fermium isotopes.

that uses the cutoff method are approximately a factor of
two.

We also plot the results with different fission barrier data
for fermium isotopes (185 � N � 200) in the inset of Fig. 21.
The mean neutron number of SBM is the largest in this mass
region, although the variation of 〈n〉 among the fission barrier
data is rather small. This is because the fission rates of SBM
are low due to the high fission barriers as seen in Fig. 18,
and the chances for emitting more neutrons are enhanced
instead of fission. The difference among fission barrier data
becomes negligible as going to the neutron drip line because
Pf are commonly much smaller than Pn. Figure 22 shows the
mean energy of β-delayed neutrons. In the region of light
nuclei around 8 � Z � 28, the mean energy is relatively large,
while it becomes smaller as going to heavier nuclei. The
average energy 〈En〉 for Z � 28 is 935 keV, while that for
Z > 28 is 432 keV. In addition, 〈En〉 tend to be high for nuclei
just above the neutron magic number, especially for N = 28,
50, and 82.

The kinetic-energy distribution of an emitted neutron,
Xn(εn), is approximately expressed by

Xn(εn) ∝ ρN (E
∗ − εn − Sn)ρn(εn), (19)

where ρN (E ) and ρn(εn) are the level density of decayed
nuclei with an excitation energy of E and the phase space of
the emitted neutron with the kinetic energy εn, respectively. In
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FIG. 22. Mean energy of emitted neutrons in the N-Z plane.
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FIG. 23. Mean energy of β-delayed neutron 〈En〉. For fermium
isotopes, the results with different fission barrier data are also plotted
together.

general, the level density exponentially grows as the excitation
energy increases. Thus a transition to higher levels is the
most likely, however, the phase space of the outgoing neutron
becomes small instead. For light nuclei and nuclei around the
neutron magic numbers, the level densities are relatively low
even at a high excitation energy and thus emitted neutrons can
have a large phase space easily. On the other hand, the level
densities of heavy nuclei rapidly increase as the excitation
energy goes up, the phase space of neutron is limited, and the
kinetic energy becomes low.

We plot the mean energy for nickel, tin, and fermium
isotopes in Fig. 23. For comparison, we also plot the results
with different fission barrier data in the case of fermium
isotopes. For nickel isotopes, 〈En〉 gradually increase and
become relatively high for N = 50, 52, and 54. The high
mean energies are mainly due to the N = 50 magic number,
as discussed above. Upon increasing the neutron number,
〈En〉 almost become constant around 1 MeV. For tin isotopes,
we can see again that the mean energy is locally high for
N = 84 just above the neutron magic number N = 82. The
mean energy becomes 〈En〉 ≈ 0.6 MeV upon increasing the
neutron number. For fermium isotopes, 〈En〉 are about 0.3
to 0.4 MeV, which are only about one-third of nickel iso-
topes and half of tin isotopes. We can also see the fission
barrier dependence of 〈En〉 around 185 < N < 200. How-
ever, the variations are not large because the mean energies
of delayed neutrons do not vary significantly with neutron
number.

IV. SUMMARY

In this work, we calculated the BDNE and BDF by
combining the discrete β strength function provided by the
pn-RQRPA [15] and Hauser-Feshbach statistical model [56].
We could improve P1n over a wide range of nuclei as compared
with the preceding work of Ref. [15] and obtained the root
mean square of P1n, which is comparable to other preceding
studies upon adjusting a phenomenological width parame-

ter. The different role of Gaussian- and the Lorentzian-type
weight functions was also discussed.

We next discussed partial β-delayed neutron branching ra-
tios Pxn. With increasing x, the distribution of Pxn approaches
the more-neutron-rich side, and the number of nuclei with
a prominent Pxn significantly decreases. We also studied the
variations from the pn-RQRPA calculations that use the cutoff
method. We concluded that the cutoff method works reason-
ably well only if 0n and 1n emissions are the main decay
channels, while isotope production ratios calculated by the
HFM calculation becomes important to obtain an exact re-
sult for neutron-rich nuclei that emits multiple β-delayed
neutrons. Calculated β-delayed neutron spectra of 89Br and
138I were compared with the experimental data and it turned
out that the pn-RQRPA + HFM was able to emulate the
experimental data although some fine structures were not re-
produced well. We also calculated the β-delayed neutron yield
of thermal-neutron-induced fission of 235U. The computed
result underestimated the experimental data by about 35%.
We pointed out that the discrepancy was due to small Pn of
important precursors. An improvement is expected if the Pn of
those nuclei are better reproduced.

BDF branching ratios were calculated with four fission bar-
rier data. By comparing the results of the different barrier data,
BDF commonly became important around 93 � Z � 110 and
184 � N � 200. It was also found that most nuclei fission
directly with a high probability after β decay without emitting
neutrons. However, we confirmed that both Pf and Pxn f for
most nuclei vary greatly over the fission barrier data used.
Taking fermium isotopes as an example, we discussed the
relation between the BDF branching ratios and barrier heights,
and it was found that the BDF are sensitive not only to the
barrier height but also to the number of barrier humps. The
FRDM results in a single-humped barrier of relatively low
height, so that Pf and Pxn f are larger than the other fission
data, while HFB-14 and ETFSI give a multihumped barrier,
so that Pf and Pxn f are smaller than the other fission data.
However, the number of nuclei given in HFB-14 and ETFSI
is smaller than FRDM and SBM. For this reason, it is diffi-
cult to choose the best BDF data that can be recommended
from our results. However, the products with four barriers
allow further sensitive studies of r-process nucleosynthesis
on the nuclear fission. To accurately assess the role of BDF
in the r process, detailed information (fission path, curva-
ture, the number of barrier hump, etc.) and an extension to a
wide range of nuclei based on microscopic models are highly
required.

We also discussed the mean number and energy of de-
layed neutrons. For most nuclei, the mean number of delayed
neutrons is less than 1. As the ratio of neutron number to
proton number becomes appreciably large, the mean number
of delayed neutrons increases. We also studied the fission
barrier dependence and found that the mean number becomes
high if BDF is suppressed. The mean number for pn-RQRPA
+ HFM was smaller than that of pn-RQRPA because ex-
citation energies were reduced by β-delayed neutrons. The
mean energy of delayed neutrons was large for light nuclei
and nuclei close to the magic numbers. It was explained that
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this was governed by the interplay of the level densities of
decayed nuclei and the phase space of emitted neutrons. Upon
going to neutron-rich nuclei, the mean energy becomes almost
constant.

We should comment on several subjects for future work.
One of them is level structures of neutron-rich nuclei which
were calculated by the phenomenological method as de-
scribed in Sec. II A because they are not known. More
accurate data of BDNE and BDF are expected when the level
structures are investigated in the future. We also calculated
odd-mass nuclei in the same way as even-mass nuclei, namely,
we just imposed the expectation value of the particle number
operator to be odd in the RHB calculation. Applying the
equal-filling approximation and the blocking approximation,
which are more advanced ways to treat odd mass nuclei, may
improve the present result. Taking into account continuum
states, which become important especially for neutron-rich

nuclei, as well as the shape deformation, will also improve
the accuracy of BDNE and BDF calculations. Our discussion
in this work is limited to neutron-rich nuclei. However, it will
be interesting to extend our framework to neutron-deficient
nuclei where it is expected that Pα as well as Pp become more
important than neutron-rich nuclei.

A table of BDNE, BDF, and β-delayed α-particle emission
branching ratios calculated in this work is available in the
Supplemental Material [62].
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