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β-decay half-lives of neutron-rich nuclei around N = 82 are key data to understand the r-process
nucleosynthesis. We performed large-scale shell-model calculations in this region using a newly
constructed shell-model Hamiltonian, and successfully described the low-lying spectra and half-
lives of neutron-rich N = 82 and N = 81 isotones with Z = 42–49 in a unified way. We found
that their Gamow–Teller strength distributions have a peak in the low excitation energies, which
significantly contributes to the half-lives. This peak, dominated by ν0g7/2 → π0g9/2 transitions,
is enhanced on the proton-deficient side because the Pauli-blocking effect caused by occupying
the valence proton 0g9/2 orbit is weakened.
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Subject Index D13, D29, D40

1. Introduction

The solar system abundances and their peak structures indicate that the major origin of most elements
heavier than iron is r-process nucleosynthesis [1]. A neutron-star merger was found by measuring
a gravitational wave that is followed by optical emission, called a “kilonova” [2]. The properties of
neutron-rich nuclei are key issues to reveal the r-process nucleosynthesis that is expected to occur
in kilonova phenomena.

The r-process path is considered to go through the neutron-rich region of the nuclear chart. In the
region where the r-process path crosses the magic number N = 82, these nuclei form the waiting
points of neutron capture in the r-process. The path goes along the N = 82 line in the chart, bringing
about the so-called second peak of the natural abundance formed by the astrophysical r-process
nucleosynthesis. In a typical r-process model, after reaching 120Sr (Z = 38, N = 82), β decay and
neutron capture are repeated alternately to generate N = 82 and N = 81 nuclei up to 128Pd (Z = 46,
N = 82) [3]. This repeated process occurs if the β-decay rates of N = 81 are smaller than their
neutron-capture rates. Thus, the β-decay properties not only of the N = 82 isotones but also of the
N = 81 ones are necessary to determine the r-process path, hence motivating the study of those
very neutron-rich nuclei from the viewpoint of nuclear-structure physics. Note that the properties of
nuclei near N = 82 are also awaited in the context of fission recycling [4].

On the experimental side, β-decay half-lives of neutrino-rich nuclei around N = 82 have recently
been measured by the EURICA campaign conducted at the RI Beam Factory at RIKEN Nishina
Center [5,6]. More detailed data are now available for some nuclei. Many isomers have been identified
near the N = 82 shell gap, and some of their half-lives are obtained [7–11]. Furthermore, β-delayed
neutron-emission probabilities and low-lying level structure have been measured [12,13]. These data
provide a stringent test for nuclear-structure models. It should be noted that similar experimental
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activities are extended to the N = 126 region, known as the third peak of the solar system abundance,
for instance by the KISS (KEK Isotope Separator System) project [14].

A great deal of theoretical effort has also been made to systematically calculate β-decay half-
lives such as with the finite-range droplet model (FRDM) [15], FRDM-QRPA (quasiparticle random
phase approximation) [16], Hartree–Fock–Bogoliubov (HFB)-QRPA [17], density functional the-
ory (DFT)-QRPA [18,19], and the gross theory [20]. Recently, further sophisticated methods were
introduced into the systematic β-decay studies by introducing the finite amplitude method (FAM)-
QRPA [21] and by the relativistic covariant density functional theory (CDFT)-QRPA [22]. Novel
machine-learning techniques were also applied to predict β-decay half-lives [23]. The nuclear shell-
model calculation is also one of the most powerful theoretical schemes for this purpose. Previous
shell-model studies are, however, restricted to calculating the half-lives of the singly magic N = 82
[24–26] and N = 126 isotones [24,27] due to the exponentially increasing dimensions of the Hamil-
tonian matrices in open-shell nuclei. The present work aims to extend those previous shell-model
efforts to N = 81 isotones within a unified description of the structures of neutron-rich N = 82 and
N = 81 isotones. The measured half-lives are well reproduced by the calculation, and we predict
those for 125,126Ru, 124,125Tc, and 124Mo. It is also predicted that these nuclei have rather strong
Gamow–Teller strengths in the low excitation energies due to the increasing number of proton holes
in the g9/2 orbit, accelerating Gamow–Teller decay.

This paper is organized as follows. The shell-model model space and its interaction are defined in
Sect. 2. Section 3 is devoted to the separation energies and low-lying spectra. The Gamow–Teller
strength distribution and the half-lives are discussed in Sect. 4. Section 5 is devoted to a discussion
of the enhancement of the Gamow–Teller transitions towards the proton-deficient nuclei and of its
origin. This paper is summarized in Sect. 6.

2. Framework of shell-model calculations

We performed large-scale shell-model calculations of N = 81 and N = 82 isotones. The model
space for the calculations is taken as 0f5/2, 1p3/2, 1p1/2, 0g9/2, 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2

for the proton orbits and 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2 for the neutron orbits with a 78Ni
inert core. These orbits are shown in Fig. 1. Although we focus on Z ≤ 50 nuclei in this study, the
single-particle orbits beyond the Z = 50 shell gap must be included in the model space explicitly so
that the Gamow–Teller transition causes a single-particle transition of the valence neutrons beyond
N = 50 to the same orbits and their spin–orbit partners. The model space is extended from that
of the earlier shell-model study [24] by adding the proton 0f5/2, 1p3/2, and 0h11/2 orbits. In the
preceding shell-model works [24,25], the proton 0h11/2 orbit was omitted to avoid contamination
by spurious center-of-mass excitation, although a neutron occupying the 0h11/2 orbit can decay to a
proton occupying 0h11/2 by the Gamow–Teller transition. In the present work, we explicitly include
the proton 0h11/2 orbits in the model space so that the proton single-particle orbits cover the full
neutron orbits. To fully satisfy the Gamow–Teller sum rule the proton 0h9/2 orbit is required, but its
single-particle energy is too high to significantly affect the Gamow–Teller strength of the low-lying
states and it is omitted in the present work. Contamination by spurious center-of-mass excitation
is removed by the Lawson method [28] with βCM �ω/A = 10 MeV. We truncate the model space
by restricting up to two proton holes in the pf shell and up to three protons occupying the orbitals
beyond the Z = 50 gap so that the numerical calculation is feasible. Even with the application of
such a truncation, the M -scheme dimension of the shell-model Hamiltonian matrix reaches 3.1×109
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Fig. 1. Single-particle energies for 132Sn determined from the experimental energy levels of its one-particle
and one-hole neighboring nuclei [30–35]. The single-particle orbits taken as the model space are shown.

and is quite large, and efficient usage of a supercomputer is essential. The shell-model calculations
were mainly performed on the CX400 supercomputer at Nagoya University and Oakforest-PACS at
the University of Tokyo and University of Tsukuba utilizing the KSHELL shell-model code [29],
which has been developed for massively parallel computation.

An effective realistic interaction for the shell-model calculation is constructed mainly by combining
the two established realistic interactions: the JUN45 interaction [36] for the f5pg9 model space and the
SNBG3 interaction [37] for the neutron model space of 50 < N , Z < 82. The JUN45 and SNBG3
interactions were constructed from the G-matrix interaction with phenomenological corrections
using a chi-square fit to reproduce the experimental energies. For the rest of the two-body matrix
elements (TBMEs), we adopt the monopole-based universal (VMU ) interaction [38] whose T = 1
central force is scaled by a factor of 0.75 in the same way as in Ref. [39]. The single-particle energies
are determined to reproduce the experimental energies of one-nucleon neighboring nuclei of 132Sn
as shown in Fig. 1. In addition, the strengths of the pairing interaction and the diagonal TBMEs
of the (π0g9/2, π0g9/2) and (π0g9/2, ν0h11/2) orbits are modified to reproduce the experimental
energy levels of 130Cd, 128Pd, and 130In. The TBMEs are assumed to have the mass dependence
(A/132)−0.3.

3. Separation energies and excitation energies

The binding energies and excitation energies of the N = 82 nuclei and those around them are
important not only for describing the β-decay properties, but also for confirming the validity of
the shell-model interaction. Figures 2 and 3 show the proton and neutron separation energies of
the N = 82 and N = 81 isotones, respectively. The present shell-model results reproduce the
experimental values excellently. The neutron separation energy determines the threshold energy of
the β-delayed neutron emission, which is important for the r-process nucleosynthesis. The Q value
of the β− decay is obtained using the proton and neutron separation energies as

Q(β−, Z , N ) = BE(Z + 1, N − 1) − BE(Z , N ) + (mn − mp − me)c
2

= Sp(Z + 1, N ) − Sn(Z + 1, N ) + 0.782 MeV, (1)

where BE(Z , N ) denotes the binding energy of the (Z , N ) nucleus and 0.782 MeV is obtained from
the mass difference between a neutron, a proton, and an electron. The Q values of β decay given
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Fig. 2. Separation energies of N = 82 isotones. The solid lines show the proton and neutron separation
energies provided by the present shell-model study. The filled circles and the open triangles with error bars
denote the experimental values and the extrapolated values from the experimental systematics, respectively
[40]. The dotted lines and the dashed lines are given by the KTUY mass formula [41] and the FRDM [15].

Fig. 3. Separation energies of N = 81 isotones. See the caption of Fig. 2 for details.

by the shell-model results are in good agreement with the available experimental values, shown as
the difference between Sn and Sp in Figs. 2 and 3. For comparison, the result of the KTUY [41] and
the FRDM [15] mass formulae are also plotted in the figures, showing very good agreement with
the experimental values except for a slight underestimation in the proton separation energy of 130In.
On the proton-deficient side where experimental values are not available, the differences among
the theoretical predictions gradually increase as the proton number decreases, while the neutron
separation energies of the N = 82 isotones are rather close to one another.

Figure 4 shows low-lying energy levels in the neutron-rich N = 82 isotones from Z = 42–50. For
nuclei without data, we plot a few lowest levels obtained by the calculation. The calculated ground
states are 0+ for the even-Z isotopes and 9/2+ for the odd-Z isotopes. The experimental levels are
reproduced excellently by the shell-model results. The levels of 129Ag are experimentally unknown,
but two β-decaying states were found and tentatively assigned as 9/2+ and 1/2− [35] without their
excitation energies being known. In the present calculation, the 1/2− state is located very close to
the 7/2+ state. Considering a long E3 half-life in such a case, it is reasonable to assume that the
1/2− state predominantly decays through β emission.

Figure 5 shows the excitation spectra of the N = 81 isotones. Unlike the N = 82 isotones, several
candidates for the ground state and some β-decaying isomers are predicted. This is partly because
the 1d3/2 and the 0h11/2 neutron orbits are located very close in energy, as known from the spectra
of 131Sn, and the difference in their spin numbers is large. For 129Cd, two β-decaying states with
11/2− and 3/2+ were known and their order was controversial [7,8]. A recent experiment concluded
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Fig. 4. Excitation energies of N = 82 isotones: 133Sb, 131In, 130Cd, 129Ag, 128Pd, 127Rh, 126Ru, 125Tc, and 124Mo
compared between the shell model (SM) and experiment (Exp.) [35].

Fig. 5. Excitation energies of N = 81 isotones: 131Sn, 130In, and 129Cd, 128Ag, 127Pd, 126Rh, 125Ru, and 124Tc.
See the caption of Fig. 4 for details.

that its ground-state spin is 11/2− and the excitation energy of 3/2+ is 343(8) keV [11,12], which is
consistent with our shell-model prediction. For 127Pd, no experimental energy levels are known, and
the present order of 11/2− and 3/2+ agrees with another shell-model prediction [42]. With regard to
β-decay properties, the excitation energy of the 1+ state of 130In plays a crucial role in the β-decay
half-life of 130Cd [25], whose 0+ ground state decays to the lowest 1+ state most strongly with the
Gamow–Teller transition.

Figure 6 shows the calculated energy levels of the N = 80 and N = 79 isotones for which the
experimental data are available. We confirm a reasonable agreement between them.

The present calculation reproduces the experimental energies quite well, thus confirming the
validity of the model space and the effective interaction employed in the present shell-model
calculation.

4. Gamow–Teller strength function and β−-decay half-lives

We calculated the Gamow–Teller β−-strength functions for N = 82 and N = 81 neutron-rich
nuclei to estimate their half-lives. We adopted the Lanczos strength function method [43–45] with
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Fig. 6. Excitation energies of the N = 80 isotones (130Sn, 129In, and 128Cd) and the N = 79 isotones (129Sn
and 128In). The experimental values are taken from Refs. [12,35]. See the caption of Fig. 4 for details.

Fig. 7. Gamow–Teller strength functions of N = 82 isotones, (a) 131In, (b) 130Cd, (c) 129Ag, and (d) 128Pd,
against the excitation energies of the daughter nuclei. The dashed lines are the folded strength functions by
a Lorentzian function with 1 MeV width. The values are shown without the quenching factor. The Qβ values
and the neutron separation energies are shown by red dotted lines and blue dotted lines, respectively.

250 Lanczos iterations to obtain sufficiently converged results. The magnitude of quenching of
axial vector coupling is still a challenging topic for nuclear physics and has large uncertainty mainly
caused by the nuclear medium effect and many-body correlations. In the present work, the quenching
factor is taken as qGT = 0.7, which has been most widely used [27,46] and is consistent with the
adopted value of the preceding work, qGT = 0.71 [25]. The first-forbidden transition is omitted in the
present work because its contribution to the half-lives is small, around 13%, and rather independent
of nuclides for the Z = 42–48, N = 82 isotones in a previous shell-model study [24]. Furthermore,
it is pointed out in Ref. [12] that a number of allowed transitions are observed in the β− decays of
121–131In and 121–125Cd, suggesting the dominance of GT transitions in the low excitation energies.
This point will be discussed later.

Figure 7 shows the Gamow–Teller distributions of N = 82 isotones, 131In (Z = 49), 130Cd
(Z = 48), 129Ag (Z = 47), and 128Pd (Z = 46). Figure 8 shows those of more proton-deficient
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Fig. 8. Gamow–Teller strength functions of proton-deficient N = 82 isotones, (a) 127Rh, (b) 126Ru, (c) 125Tc,
and (d) 124Mo. See the caption of Fig. 7 for details.

Table 1. β-decay half-lives of the N = 82 isotones by the present shell-model calculations (SMth), a shell-
model study with an experimental Q value (SMexp), earlier shell-model works (SM13 [24], SM07 [25], SM99
[26]), and recent experiments (Exp15 [6], Exp16 [7,8]). The half-lives are shown in ms.

T1/2 (ms), N = 82 SMth SMexp SM13 SM07 SM99 Exp15 Exp16
131In → 131Sn 156 154 247.53 260 177 261(3) 265(8)
130Cd → 130In 158 116 164.29 162 146 127(2) 126(4)
129Ag → 129Cd 44 69.81 70 35.1 52(4)
128Pd → 128Ag 28 47.25 46 27.3 35(3)
127Rh → 127Pd 13.9 27.98 27.65 11.8 20+20

−7
126Ru → 126Rh 9.2 20.33 19.76 9.6
125Tc → 125Ru 5.7 9.52 9.44 4.3
124Mo → 124Tc 4.0 6.21 6.13 3.5

N = 82 isotones, 127Rh (Z = 45), 126Ru (Z = 44), 125Tc (Z = 43), and 124Mo (Z = 42). The
Q values are taken from the experiments for 131In and 130Cd [35], while the present theoretical Q
values are used for the other nuclei. These figures present a very remarkable systematics of low-
energy Gamow–Teller strength distributions, which play a crucial role in those β-decay half-lives.
First, all the N = 82 isotones considered here have strong Gamow–Teller strengths in the low
excitation energies. Except for 131In, they are peaked at ∼ 3.5 MeV and ∼ 2 MeV for the odd-Z
and even-Z parents, respectively, and the Gamow–Teller strengths are more concentrated for the
even-Z isotopes. This odd–even effect is in accordance with what is found in the sd–pf shell region
[47]. Second, this low-energy Gamow–Teller peak grows with decreasing proton number. This is
an interesting feature of low-energy Gamow–Teller transitions predicted for this region, and more
detailed discussions will be given in Sect. 5.

Table 1 shows the β-decay half-lives of the N = 82 isotones. The half-life is estimated by accumu-
lating the transition probabilities from the parent ground state to the daughter states whose excitation
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Fig. 9. Neutron-emission probabilities of N = 82 isotones. The blue filled circles, black open squares,
and black open triangles denote the results by the present work, the earlier shell-model work [24], and the
FRDM+QRPA [16], respectively. The red diamond denotes the experimental value and the red line with an
arrow at Z = 47 denotes the experimental upper limit [48,49].

energies are below the Qβ value. The shell-model results show reasonable agreement with the exper-
imental values. While the present half-lives of 129Ag and 128Pd are closer to the experimental values
than the earlier shell-model result, the half-life of 131In is underestimated. This underestimation
is caused by the large Gamow–Teller transition to the lowest 7/2+ state of the daughter 131Sn at
Ex = 2.4 MeV, which might imply the need for further improvement of the theoretical model. This
state is considered to be dominated by the ν0g7/2-hole state of 132Sn. In the pure π0g−1

9/2 → ν0g−1
7/2

single-particle transition, the corresponding B(GT) value is as much as 1.78 without the quench-
ing factor being introduced. On the other hand, the present calculation gives B(GT) = 0.58. This
value is considerably reduced from the single-particle value due to configuration mixing, but further
reduction is required to completely reproduce the data.

For comparison, Table 1 also shows three shell-model results by the Strasbourg group: SM13 [24],
SM07 [25], and SM99 [26]. The half-lives of 126Ru, 125Tc, and 124Mo predicted by the present
calculation are close to those of SM99 [26]. The half-lives of SM13 [24] and SM07 [25] are quite
close to each other. While the first-forbidden transition was omitted and the quenching factor of
the Gamow–Teller transition was taken as qGT = 0.71 in SM07, the first-forbidden transition is
included with qGT = 0.66 in SM13. The agreement of these results indicates that the contribution
of the first-forbidden decay is rather independent of the nuclides and can be absorbed into the minor
change of the Gamow–Teller quenching factor in this mass region.

β-delayed neutron emission is important for understanding the freezeout of the r process [1].
Figure 9 shows β-delayed neutron-emission probabilities Pn for N = 82 nuclei. In the present
calculation, we accumulate the probabilities of the β decay to the states above the neutron-emission
threshold Sn to obtain Pn. The present shell-model results show an odd–even staggering similar
to that of the earlier shell model [24], while the FRDM-QRPA results show weaker odd–even
staggering. This odd–even staggering is caused by the difference in the peak position and the degree
of concentration of the Gamow–Teller transition strengths. As discussed already using Figs. 7 and
8, the Gamow–Teller peaks of the even-Z parent nuclei are located at around Ex = 2 MeV, which is
lower than Sn, causing their small Pn values. For 124Mo, it is predicted that this low-energy Gamow–
Teller strength is concentrated by a single peak that is located slightly below Sn. Hence its Pn is
very sensitive to the details of the energies concerned. For the odd-Z nuclei of 127Rh and 125Tc, the
low-energy Gamow–Teller peak is located higher than Sn, enlarging their Pn values.
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Fig. 10. Gamow–Teller strength functions of N = 81 isotones, (a) 130In, (b) 129Cd, (c) 128Ag, and (d) 127Pd.
See the caption of Fig. 7 for details.

Fig. 11. Gamow–Teller strength functions of N = 81 isotones, (a) 126Rh, (b) 125Ru, (c) 124Tc, and (d) the
isomeric 3/2+ state of 129Cd. See the caption of Fig. 7 for details.

Figures 10 and 11 show the Gamow–Teller β−-strength distribution of N = 81 isotones, namely
130In, 129Cd, 128Ag, 127Pd, 126Rh, 125Ru, and 124Tc, obtained by the present shell-model calculations.
Figure 11 also shows the distribution of the isomeric 3/2+ state of 129Cd. The Q(β−) values are
taken from experiments for 130In and 129Cd [35], and from shell-model values for the other nuclei.
Low-energy Gamow–Teller peaks are obtained in all the cases calculated. They are located higher
for the odd-Z parents due to pairing correlation in the daughter nuclei, but fragmented in a similar
manner. Like the case of the N = 82 isotones, those peaks are enhanced as the proton number
decreases and the proton 0g9/2 orbit becomes unoccupied.
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Table 2. β-decay half-lives of the N = 81 isotones obtained by the present shell-model study (SMth), a shell-
model study with an experimental Q value (SMexp), and experiments (Exp15 [6], Exp16 [7,8]). The half-lives
are shown in ms. The half-life of the 3/2+ isomeric state of 129Cd is also shown.

T1/2 (ms), N = 81 SMth SMexp Exp15 Exp16
130In → 130Sn 286 311 284(10)
129Cd → 129In 182 139 154.5(20) 147(3)
129Cd ( 3

2

+
) → 129In 266 181 157(8)

128Ag → 128Cd 49 59(5)
127Pd → 127Ag 32 38(2)
126Rh → 126Pd 17 19(3)
125Ru → 125Rh 11
124Tc → 124Ru 7.0

Fig. 12. Gamow–Teller strength functions of 122Zr. See the caption of Fig. 7 for details.

Table 2 shows the β-decay half-lives of the N = 81 isotones. The half-lives of the five nuclei with
Z ≥ 45 show reasonable agreement with the available experimental values, indicating the validity of
the present shell-model calculation. The half-life of the 3/2+ isomeric state of 129Cd is also shown
in the table to demonstrate the capability to obtain the β-decay rates of isomeric states.

In Tables 1 and 2, SMth and SMexp show the shell-model results using the shell-model Q value
and those using the experimental Q value, respectively, to discuss the uncertainty of the present
theoretical model. The deviations of the choice of the Q values are up to 30% at most. The fitted
quenching factor to reproduce the experimentally measured half-lives of 129Cd, 130Cd, and the 3/2+
isomer by the SMexp result is qGT = 0.67, which shows a 9% increase in the half-life estimate. These
differences are considered as the uncertainties of the present model.

5. Possible occurrence of superallowed Gamow–Teller transitions toward Z = 40

As mentioned in the last section, Figs. 7 and 8 show that for the even-Z parents a low-energy Gamow–
Teller peak emerges at ∼ 2 MeV and that its magnitude is enhanced as the proton number decreases.
As depicted in Fig. 12, this peak is finally concentrated in a single state at 122Zr with Z = 40, leading
to B(GT) = 2.7 calculated with the quenching factor 0.7. In this section, we focus on this growing
Gamow–Teller peak toward Z = 40.
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First, we discuss why this peak is enlarged with decreasing Z . By analyzing one-body transition
densities obtained in the present calculations, one can see that those low-energy Gamow–Teller
peaks are dominated by the ν0g7/2 → π0g9/2 transition. If the π0g9/2 orbit is completely filled,
this transition does not occur due to Pauli blocking. This blocking effect is weakened by removing
protons from the π0g9/2 orbit, hence the enlargement of the low-energy Gamow–Teller peak.

The resulting B(GT) values of this peak are particularly large at 124Mo and 122Zr compared to
typical values. It is known from the systematics [50] that the log ft values of allowed β decays
are distributed around log ft ∼ 6, which corresponds to B(GT) ∼ 10−3–10−2 for Gamow–Teller
transitions. A well-known deviation from this systematics is the superallowed (Fermi) transition.
When isospin is a good quantum number, the Fermi transition occurs only between isobaric analog
states, giving a typical log ft of 3.5. With regard to Gamow–Teller transitions, however, there are
only a few cases where the log ft value is comparable to those of the superallowed Fermi transitions
because of the fragmentation of Gamow–Teller strengths. Since B(GT) = 1 leads to log ft = 3.58, a
B(GT) value of the order of unity is a good criterion to compare the superallowed Fermi transition.

It was proposed in Ref. [51] that such extraordinarily fast Gamow–Teller transitions be classified
as super-Gamow–Teller transitions. At that time, only two Gamow–Teller transitions, 6He→6Li
and 18Ne→18F, were known to satisfy the condition of a super-Gamow–Teller transition defined
in Ref. [51], i.e., B(GT) > 3. These large Gamow–Teller strengths are caused by the constructive
interference of j> → j> and j> → j< matrix elements [52]. It was also predicted in Ref. [51] that two
N = Z doubly magic nuclei 56Ni and 100Sn were candidates for nuclei causing super-Gamow–Teller
transitions. Although the Gamow–Teller strengths from 56Ni were measured to be fragmented about
a decade later [53], 100Sn is now established to have a very large B(GT) value (9.1+3.0

−2.6 in Ref. [54]
or 4.4+0.9

−0.7 in Ref. [55]) to a 1+ state located at around 3 MeV. This Gamow–Teller decay is called
“superallowed Gamow–Teller” decay in Ref. [54] by analogy with the superallowed Fermi decay.

The B(GT) values predicted for 124Mo and 122Zr in the present study are of the order of unity,
although not reaching the measured value of 100Sn. Thus, they are new candidates for superallowed
Gamow–Teller transitions. Interestingly, these two regions of superallowed Gamow–Teller transition
share the same underlying mechanism. In the extreme single-particle picture, the π0g9/2 orbit is
completely filled and the ν0g7/2 orbit is completely empty in 100Sn. Since the former and latter
orbits are the highest occupied and lowest unoccupied ones, respectively, its low-energy Gamow–
Teller transition is caused by the π0g9/2 → ν0g7/2 transition. On the other hand, in 122Zr, the ν0g7/2

orbit is completely filled and the π0g9/2 orbit is completely empty. As for the order of single-particle
levels, Fig. 13 shows the evolution of the effective single-particle energies of N = 82 isotones
as a function of Z . For protons, the π0g9/2 orbit keeps the lowest unoccupied orbit in this range.
For neutrons, although the ν0g7/2 orbit is the lowest at Z = 50 among the five orbits of interest,
it increases with decreasing Z to finally be the second highest at Z = 40. This is caused by a
particularly strong attractive monopole interaction between π0g9/2 and ν0g7/2 due to a cooperative
attraction of the central and tensor forces [38]. This sharp change of the ν0g7/2 orbit in going from
Z = 40 to 50 is established from the energy levels of 91Zr and 101Sn, as mentioned in Ref. [38]. In
122Zr, the ν0g7/2 orbit is thus close to the highest occupied level, giving a low-energy Gamow–Teller
state by the ν0g7/2 → π0g9/2 transition. If one is restricted to the configuration most relevant to the
low-energy Gamow–Teller transition, the final state of the 122Zr decay, (ν0g7/2)

−1(π0g9/2)
+1, is the

particle–hole conjugation of that of the 100Sn decay, (π0g9/2)
−1(ν0g7/2)

+1. A schematic illustration
of these configurations is given in Fig. 14. Accordingly, the B(GT) values from the vacuum to these
single-particle configurations, i.e., those of Figs. 14(a) and (b), are identical.

11/15

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/3/033D

01/6149489 by Japan Atom
ic Energy Agency user on 30 M

arch 2021



PTEP 2021, 033D01 N. Shimizu et al.

Fig. 13. Effective single-particle energies of the N = 82 isotones for neutron orbits (top) and proton orbits
(bottom) as a function of the proton number calculated with the Hamiltonian used in this study.

Fig. 14. Schematic illustration of the dominant single-particle transition in (a) the β+ decay of 100Sn and (b)
the β− decay of 122Zr. The filled and open circles denote particles and holes, respectively.

One of the important ingredients for making B(GT) large in those nuclei is that the B(GT) value
obtained within the single configuration of Fig. 14(a) [and (b)] is also large. To be more specific, let
us compare two cases as the initial state, (i) |(π0g9/2)

10; J = 0〉 and (ii) |(π0g9/2)
2; J = 0〉, where

one proton can move to the ν0g7/2 orbit through the Gamow–Teller transition. Case (i) corresponds
to Fig. 14(a) and yields B(GT) = 17.78 (without the quenching factor), whereas case (ii) gives
B(GT) = 3.56. The ratio of these two B(GT) values, 10 to 2, is just that of the number of protons in
the initial state. This proportionality is well understood by remembering the Ikeda sum rule.
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Fig. 15. Hamiltonian matrix elements concerning theπ0g9/2 and ν0g7/2 orbits used in this study. The circles and
squares are the hole–hole matrix elements, 〈(π0g9/2)

−1(ν0g7/2)
−1|V |(π0g9/2)

−1(ν0g7/2)
−1〉J , and particle–hole

matrix elements, 〈π0g9/2(ν0g7/2)
−1|V |π0g9/2(ν0g7/2)

−1〉J , respectively.

Although the B(GT) value in the extreme single-particle picture is as large as 17.78 for the config-
urations of Figs. 14(a) and (b), it is reduced in reality by the quenching factor and fragmentation over
other excited states. To minimize fragmentation, it is desirable to suppress the level density with the
same J π near the state of interest. 100Sn and 122Zr are doubly magic (or semi-magic) nuclei, thus
having a favorable condition for that. Another important factor to affect level density is excitation
energy. As presented in Figs. 7, 8, and 12, the low-energy Gamow–Teller peak is located stably
at around 2 MeV by changing Z . This excitation energy is low enough to isolate the peak, if one
remembers that the superallowed Gamow–Teller state from the 100Sn decay is located at ∼ 3 MeV.
In the present calculations, we do not include neutron excitations beyond the N = 82 shell gap.
Since these excitations typically cost more than 4 MeV by estimating from the first excitation energy
of 132Sn, they probably do not contribute much to fragmentation.

One may wonder why the low-energy Gamow–Teller peak is kept at Ex ∼ 2 MeV from
Z = 48 to Z = 40 in spite of the sharp change of the ν0g7/2 energy as shown in Fig. 13.
This is due to the nature of two-body Hamiltonian matrix elements. The low-energy Gamow–
Teller state always has a neutron hole in 0g7/2. For nuclei close to Z = 50, this state has a few
proton holes in 0g9/2, and thus its excitation energy is dominated by the hole–hole matrix ele-
ment 〈(π0g9/2)

−1(ν0g7/2)
−1|V |(π0g9/2)

−1(ν0g7/2)
−1〉J=1 as well as the single-particle energy of

ν0g7/2. As presented in Fig. 15, this matrix element is the most attractive among the possible J
values. Hence the low-energy Gamow–Teller state is located lower than the simple estimate that the
0g7/2 orbit lies ∼ 3 MeV below the Fermi surface at Z = 50 (see Fig. 13).

This situation changes as more protons are removed from the π0g9/2 orbit. For nuclei close to
Z = 40, the number of particles is smaller than the number of holes in the 0g9/2 orbit, and the
particle–hole matrix element 〈π0g9/2(ν0g7/2)

−1|V |π0g9/2(ν0g7/2)
−1〉J plays a dominant role. In

Fig. 15, we also show the particle–hole matrix elements that are derived from the hole–hole matrix
elements by using the Pandya transformation. The J = 1 coupled matrix element has the largest
positive value, thus losing the largest energy. This explains the calculated result that the low-energy
Gamow–Teller state is not drastically lowered toward Z = 40 as expected from the evolution of the
ν0g7/2 orbit, and also the observation that the corresponding state for the 100Sn decay is located at
∼ 3 MeV [54]. It should be noted that this J dependence is an example of the parabolic rule that
holds for short-range attractive forces [56].
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To briefly summarize this section, the predicted superallowed Gamow–Teller transition toward Z =
40 occurs due to (a) the full occupation of a neutron high-j orbit (ν0g7/2 in this case) and the emptiness
of its proton spin–orbit partner (π0g9/2 in this case) and (b) the low excitation energy of the J = 1
particle–hole state created by these two orbits. Since the J = 1 proton–neutron particle–hole matrix
elements are generally most repulsive among possible J , it is necessary to fulfill (b) in that the ν0g7/2

orbit and the π0g9/2 orbit are close to the highest occupied orbit and the lowest unoccupied orbit,
respectively. The tensor-force-driven shell evolution plays a crucial role in satisfying this condition.

6. Summary

We have constructed a shell-model effective interaction and performed large-scale shell-model cal-
culations of neutron-rich N = 82 and N = 81 nuclei by utilizing our developed shell-model code
and state-of-the-art supercomputers. We demonstrated that the experimental binding and excitation
energies of neutron-rich N = 79, 80, 81 nuclei are well reproduced by the available experimen-
tal data including the low-lying excited states. The present study gives the Gamow–Teller strength
functions and the β-decay half-lives of N = 82 and N = 81 nuclei, which are reasonably consistent
with the available experimental data, and several predictions for further proton-deficient nuclei. In
these isotones, as the proton number decreases from Z = 49 to Z = 42, the proton 0g9/2 orbit
becomes unoccupied and the Gamow–Teller strengths of the low-lying states increase because of
the Pauli-blocking effect. We predict that the low-energy Gamow–Teller strength is further enlarged
in 122Zr to make its log ft value equivalent to that of the superallowed beta decay. This is quite an
analogous case to the so-called “superallowed Gamow–Teller” transition observed in 100Sn in terms
of the Gamow–Teller strength and underlying mechanism.

In the present work, we assume that the contribution of the first-forbidden transition is independent
of the nuclides and can be absorbed into a single quenching factor of the Gamow–Teller transition.
Further investigation to estimate the first-forbidden decay, especially for the N = 81 isotones, is
also expected.
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