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Magnonic thermal transport using the quantum Boltzmann equation
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(Received 30 May 2021; revised 25 July 2021; accepted 26 July 2021; published 5 August 2021)

We present a formula for thermal transport in the bulk of Bose systems based on the quantum Boltzmann
equation (QBE). First, starting from the quantum kinetic equation and using the Born approximation for impurity
scattering, we derive the QBE of Bose systems and provide a formula for thermal transport subjected to a
temperature gradient. Next, we apply the formula to magnons. Assuming a relaxation time approximation and
focusing on the linear response regime, we show that the longitudinal thermal conductivity of the QBE exhibits
the different behavior from the conventional Boltzmann equation. The thermal conductivity of the QBE reduces
to the Drude type in the limit of the quasiparticle approximation, while not in the absence of the approximation.
Finally, applying the quasiparticle approximation to the QBE, we find that the correction to the conventional
Boltzmann equation is integrated as the self-energy into the spectral function of the QBE, and this enhances the
thermal conductivity. Thus, we shed light on the thermal transport property of the QBE beyond the conventional.

DOI: 10.1103/PhysRevB.104.064408

I. INTRODUCTION

The last decade has seen a rapid development of magnon-
based spintronics, dubbed magnonics, aiming at utilizing
the quantized spin waves, magnons, as a carrier of infor-
mation [1]. The main subject is the realization of efficient
transmission of information using spins in insulating mag-
nets. For this purpose, taking into account the fundamental
difference of the quantum-statistical properties between elec-
trons and magnons, i.e., fermions and bosons, respectively,
many magnonic analogs of electron transport have been es-
tablished both theoretically and experimentally [2], with a
particular focus on thermal transport, e.g., the thermal Hall
effect [3–6] and theWiedemann-Franz law [7–10] for magnon
transport.

The key ingredient in the study of thermal transport phe-
nomena is the Boltzmann equation [11]. As well as electron
transport, the conventional Boltzmann equation has been play-
ing a central role in the study of magnon transport (e.g.,
see Refs. [12–21]); the temperature gradient ∇T drives a
magnonic system out of equilibrium. The conventional Boltz-
mann equation describes the property of the system at time
t as (

∂

∂t
+ vk · ∇T

∂

∂T

)
fk,r,t = Ik,r,t , (1)

where vk := ∂ωk/(∂k) is the magnon velocity for the en-
ergy dispersion relation h̄ωk in the wave-number space k, h̄
represents the Planck constant, fk,r,t is the nonequilibrium
Bose distribution function of the absolute temperature T ,
and Ik,r,t is the collision integral for a position r. Within
the relaxation time approximation, the longitudinal thermal
conductivity of magnons in the bulk of magnets is propor-
tional to the relaxation time [9,19,21]. Under some conditions,

the relaxation time coincides with the lifetime of magnons,
which is proportional to the inverse of the Gilbert damping
constant α [22]. Thus the magnonic thermal conductivity of
the conventional Boltzmann equation reduces to the Drude
type [23] as a function of α in that it is proportional
to 1/α.

From the viewpoint of quantum field theory, the con-
ventional Boltzmann equation [Eq. (1)] is derived from
the quantum kinetic equation [24] by taking several ap-
proximations [25–28]. Assuming that the variation of the
center-of-mass coordinates is slow compared with that of
the relative coordinates, Kadanoff and Baym [29] applied an
approximation, called the gradient expansion, to the quan-
tum kinetic equation for the nonequilibrium Green’s function
[30]. The quantum kinetic equation of the lowest-order gradi-
ent approximation becomes the quantum Boltzmann equation
(QBE). The QBE describes the equation of motion for the
lesser Green’s function. The spectral function is assumed to
be the Dirac delta function in the quasiparticle approximation
[19,25–27,31]. In the limit of the quasiparticle approximation,
the QBE reduces to the conventional Boltzmann equation
[Eq. (1)] for the nonequilibrium distribution function of three
variables (k, r, t ).

This hierarchical structure of quantum field theory indi-
cates that by relaxing some of the approximations, quantum-
mechanical corrections to the conventional Boltzmann equa-
tion can be evaluated [26]. Such sound development has
been made successfully as to electrons [27]. The lifetime of
electrons in metals subjected to a strong impurity potential
becomes substantial, and the quasiparticle approximation is
not applicable. To solve the issue, Prange and Kadanoff intro-
duced an alternative approach [32], which was developed for
the application to superconductors and superfluids [33–36],
e.g., the Eilenberger equation [33]. However, those are for

2469-9950/2021/104(6)/064408(8) 064408-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9183-1106
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.064408&domain=pdf&date_stamp=2021-08-05
https://doi.org/10.1103/PhysRevB.104.064408


KOUKI NAKATA AND YUICHI OHNUMA PHYSICAL REVIEW B 104, 064408 (2021)

Fermi systems. Since the approach is based on the assumption
that [27] there is a Fermi surface and the Fermi energy, the
developed formula is not applicable to Bose systems, e.g.,
magnons. Thus, to the best of our knowledge [37], as for
magnons in the bulk of magnets, the thermal transport prop-
erty beyond the conventional Boltzmann equation remains an
open issue.

In this paper, we provide a solution to this fundamental
challenge by starting from the quantum kinetic equation and
developing the QBE for Bose systems. The purpose of any
useful formalism is to provide a method for calculation of
measurable quantities. First, using the QBE we develop a
formula for thermal transport in the bulk of Bose systems,
including the nonlinear response to the temperature gradi-
ent. Next, as a platform, we apply it to magnons. In the
conventional spintronics study, the Landau-Lifshitz-Gilbert
equation is playing the central role [38]. To develop a rela-
tion with it, using the Gilbert damping constant, we describe
the spectral function of magnons and study the longitudinal
thermal conductivity of the QBE. Finally, by applying the
quasiparticle approximation to the thermal conductivity of the
QBE, we find the correction to the conventional Boltzmann
equation and discuss thermal transport properties beyond the
conventional.

We remark that the conventional Boltzmann equation
[12–21], i.e., the transport theory based on the quasiparticle
approximation, cannot describe paramagnons in the bulk of
paramagnets [25]. The quasiparticle approximation assumes
that the spectrum has the form of the Dirac delta function.
However, the spectrum of paramagnons is broad, in general,
and has a peak with a sufficient width of a nonzero value
associated with the inverse of the finite lifetime [39–41]; the
spectrum cannot be approximated by the Dirac delta function.

Therefore, the conventional Boltzmann equation cannot de-
scribe paramagnons. In this paper, we also shed light on this
issue.

This paper is organized as follows. In Sec. II starting from
the quantum kinetic equation of the lowest-order gradient
approximation and using the Born approximation for impurity
scattering, we derive the QBE for Bose systems. In Sec. III,
first, using the QBE and assuming a steady state in terms
of time, we provide a formula for thermal transport in the
bulk of Bose systems subjected to a temperature gradient,
including the nonlinear response. Next, we apply the formula
to magnons in Sec. III A. To develop a relation with the con-
ventional spintronics study, we describe the spectral function
of magnons in terms of the Gilbert damping constant. Then,
assuming a relaxation time approximation and focusing on the
linear response regime, we evaluate the longitudinal thermal
conductivity of magnons in the bulk of magnets based on
the QBE. Finally, in Sec. III B, applying the quasiparticle
approximation to the magnonic thermal conductivity of the
QBE, we discuss the difference from that of the conventional
Boltzmann equation. Comparing also with the linear response
theory, we comment on our formula in Sec. IV. We remark on
open issues in Sec. V and give some conclusions in Sec. VI.
Technical details are deferred to Appendices A and B.

II. QUANTUM BOLTZMANN EQUATION FOR
BOSE SYSTEM

We consider a Bose system where the center-of-mass
coordinates, the position and time in center-of-mass (r, t),
respectively, vary slowly compared to the relative coordinates.
Up to the lowest order of the gradient expansion, the quantum
kinetic equation [25–28] for the system reduces to

− i

(
∂Hk,ω

∂t

∂

∂ω
− ∂Hk,ω

∂ω

∂

∂t
− ∂Hk,ω

∂r
∂

∂k
+ ∂Hk,ω

∂k
∂

∂r

)
G<

k,ω,r,t = (G<
k,ω,r,t�

>
k,ω,r,t − G>

k,ω,r,t�
<
k,ω,r,t ), (2)

where Hk,ω := h̄ω − h̄ωk for a frequency ω and the func-
tions G<(>)

k,ω,r,t and �
<(>)
k,ω,r,t are the lesser (greater) component

of the bosonic nonequilibrium Green’s function and that of
the self-energy, respectively; the variables (k, ω) arise from
the Fourier transform of the relative coordinates. Follow-
ing Ref. [25], we refer to Eq. (2) as the QBE. The QBE
is the equation of motion for the lesser Green’s function
G<

k,ω,r,t and consists of four variables (k, ω, r, t ), while the
conventional Boltzmann equation is for the nonequilibrium
Bose distribution function fk,r,t and consists of three vari-
ables (k, r, t ). The QBE in the limit of the quasiparticle
approximation reduces to the conventional Boltzmann equa-
tion. In this paper we study thermal transport of the QBE
for Bose systems and find the properties beyond the conven-
tional Boltzmann equation. Then, applying the quasiparticle
approximation to the thermal conductivity of the QBE,
we discuss the difference from the conventionalBoltzmann
equation.

Within the Born approximation, the self-energy due to
impurity scattering of the impurity potential Vk,k′ is given

as �k,ω,r,t = ∑
k′ Gk′,ω,r,t |Vk,k′ |2. Assuming that the function

Hk,ω is time independent and spatially uniform, the QBE
becomes

(∂t + vk · ∂r )G
<
k,ω,r,t

= 1

ih̄

∑
k′

|Vk,k′ |2(G<
k,ω,r,tG

>
k′,ω,r,t − G>

k,ω,r,tG
<
k′,ω,r,t ).

(3)

The QBE consists of the lesser (greater) Green’s functions
G<(>)

k,ω,r,t . The Kadanoff-Baym ansatz ensures that [25–27] the
Green’s functions are associated with the spectral function
Ak,ω,r,t and the nonequilibrium distribution function φk,ω,r,t
as G<

k,ω,r,t = −iAk,ω,r,tφk,ω,r,t and G>
k,ω,r,t = −iAk,ω,r,t (1 +

φk,ω,r,t ) for bosons, while G<
k,ω,r,t = iAk,ω,r,tφk,ω,r,t and

G>
k,ω,r,t = −iAk,ω,r,t (1 − φk,ω,r,t ) for fermions. The nonequi-

librium Bose distribution function in the wave-number
space is given as f QBEk,r,t :=

∫
[h̄dω/(2π )]Ak,ω,r,tφk,ω,r,t .

Using the Kadanoff-Baym ansatz for bosons, fi-
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nally, we obtain the QBE of the functions Ak,ω,r,t
and φk,ω,r,t as

(∂t + vk · ∂r )(Ak,ω,r,tφk,ω,r,t )

= − 1

h̄

∑
k′

|Vk,k′ |2Ak,ω,r,tAk′,ω,r,t (φk,ω,r,t − φk′,ω,r,t ).

(4)

The QBE is useful to a wide range of Bose
systems subjected to impurity scattering. For conve-
nience, we define the collision integral as Ik,ω,r,t :=
−∑

k′ |Vk,k′ |2Ak,ω,r,tAk′,ω,r,t (φk,ω,r,t − φk′,ω,r,t )/h̄. Here-
after, for simplicity, we drop the indices (r, t) when those are
not important.

III. THERMAL TRANSPORT IN THE BOSE SYSTEM

The temperature gradient drives the Bose system out of
equilibrium and generates a heat current. The QBE [Eq. (4)]
describes the transport property of a steady state in terms of
time as

vk · ∇T
∂

∂T
(Ak,ωφk,ω ) = Ik,ω, (5)

where we assume that the temperature gradient is spatially
uniform ∇T = (const.). In this section, first, using the func-
tions Ak,ω and φk,ω of the QBE [Eq. (5)], we provide a
formula for the heat current in the bulk of two-dimensional
Bose systems. Next, as a platform, in Sec. III A we apply the
formula to magnons in two-dimensional insulating magnets.
Assuming a relaxation time approximation for the function
Ak,ωφk,ω and focusing on the linear response regime, we
evaluate the thermal conductivity in the bulk of the magnet.
Finally, in Sec. III B, applying the quasiparticle approximation
to the magnonic thermal conductivity of the QBE, we dis-
cuss the difference from that of the conventional Boltzmann
equation.

The applied temperature gradient drives the system out
of equilibrium and the Bose distribution function φk,ω devi-
ates from the one, φ0 = (eβ h̄ω − 1)−1, in equilibrium, where
β := 1/(kBT ) is the inverse temperature and kB represents
the Boltzmann constant. The deviation is characterized as
the function δφk,ω := φk,ω − φ0. Since the self-energy arises
from impurity scattering, we assume that the spectral function
Ak,ω is little influenced by temperature and we neglect the
temperature dependence. Therefore the nonequilibrium Bose
distribution function in the wave-number space is given as
f QBEk = f QBE0 + δ f QBEk , with f QBE0 := ∫

[h̄dω/(2π )]Ak,ωφ0

and δ f QBEk := ∫
[h̄dω/(2π )]Ak,ωδφk,ω. The function con-

sists of two parts: the equilibrium component f QBE0 and the
nonequilibrium one δ f QBEk . Since each mode ω subjected to
a chemical potential μ carries the energy h̄ω, the heat cur-
rent density in the bulk of two-dimensional Bose systems,
jQ = ( jQx , jQy ), is given as

jQ =
∫

d2k
(2π )2

vk

∫
h̄dω

2π
(h̄ω − μ)Ak,ωδφk,ω. (6)

This is the formula for the heat current density of the QBE,
including the nonlinear response to the temperature gradient.

The formula [Eq. (6)] is useful to Bose systems (e.g., insula-
tors and metals) with the spectral function of arbitrary shape.

A. Magnonic thermal conductivity

As a platform, we apply the formula for the heat current of
the QBE [Eq. (6)] to magnons in a two-dimensional insulating
magnet where time-reversal symmetry is broken, e.g., due to
an external magnetic field. At sufficiently low temperatures,
the effect of magnon-magnon interactions and that of phonons
are negligibly small, and impurity scattering makes a major
contribution to the self-energy. Therefore, we work under the
assumption that the spectral function Ak,ω is little influenced
by temperature, and we neglect the temperature dependence.

First, we comment on the chemical potential of magnons
subjected to the temperature gradient [7–9]. The applied tem-
perature gradient induces magnon transport, which leads to
an accumulation of magnons at the boundaries and builds
up a nonuniform magnetization in the sample. This magne-
tization gradient plays the role of an effective magnetic field
gradient and works as the gradient of a nonequilibrium spin
chemical potential [15,42–44] for magnons. This generates a
countercurrent of magnons and thus the nonequilibrium spin
chemical potential contributes to the thermal conductivity. See
Ref. [9] for details. In this paper, for simplicity, we consider a
sufficiently large system and work under the assumption that
the effect of the boundaries is negligibly small. Consequently,
the nonequilibrium magnon accumulation becomes negligible
and the nonequilibrium spin chemical potential of magnons
vanishes. In the magnonic system, the heat current is identified
with the energy current [5,8]. Note that [15,42–44] the spin
chemical potential of magnons is peculiar to the system out of
equilibrium [45].

Then, we consider thermal transport carried by magnons
with the energy dispersion relation h̄ωk = Dk2 + 
, where
D represents the spin stiffness constant, k := |k| denotes the
magnitude of the wave number, and 
 is the magnon en-
ergy gap, e.g., due to an external magnetic field and a spin
anisotropy, etc. Assuming a relaxation time approximation for
the function Ak,ωφk,ω of

Ik,ω = −Ak,ωφk,ω − Ak,ωφ0

τR
k,ω

(7)

and focusing on the linear response regime, from Eq. (5) the
nonequilibrium component δφk,ω is given as

δφk,ω = −τR
k,ωvk · ∇T

∂φ0

∂T
+ O((∇T )2), (8)

where τR
k,ω is the relaxation time for the magnonic sys-

tem. Under the assumption that impurity scattering is elastic
and that the relaxation time depends solely on the mag-
nitude of the wave number, it is evaluated as 1/τR

k,ω =∑
k′ |Vk,k′ |2Ak′,ω(1 − vk · vk′/|vk|2)/h̄. We remark that the re-

laxation time τR
k,ω is different from the magnon lifetime τL

k,ω

in general. Those are distinct quantities. However, when the
impurity potential is localized in space, the Fourier compo-
nent Vk,k′ becomes independent of the wave number, and the
relaxation time coincides with the magnon lifetime, which
takes a wave-number-independent value as τR

ω = τL
ω . From the

Landau-Lifshitz-Gilbert equation [38], the magnon lifetime is
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associated with the inverse of the Gilbert damping constant α
and it is described as h̄/(2τL

ω ) = αh̄ω [21,46–50]. Therefore,
under the assumption that the real part of the self-energy
is negligibly small compared with the magnon energy gap,
the spectral function is given as Ak,ω = 2αh̄ω/[(Hk,ω )2 +
(αh̄ω)2]. See Appendices A and B for details [22].

Finally, from Eqs. (6) and (8), we obtain the longitudinal
thermal conductivity of magnons in the bulk of the two-
dimensional insulating magnet, κxx := − jQx/(∂xT ), as

κxx =1

2

(
D

π

)2 1

kBT 2

∫ ∞

0
dkk3

×
∫

dω
(h̄ω)2

(Hk,ω )2 + (αh̄ω)2
eβ h̄ω

(eβ h̄ω − 1)2
, (9)

where we assume that the temperature gradient is applied
along the x axis. In contrast to the conventional Boltz-
mann equation (cf., Sec. I), the thermal conductivity of the
QBE in the absence of the quasiparticle approximation does
not reduce to the Drude type [23], as a function of the
Gilbert damping constant α, in that it is not proportional
to 1/α. The factor 1/α arises from the relaxation time τR

ω

in δφk,ω [Eq. (8)] as τR
ω = τL

ω = 1/(2αω). However, it can-
cels out by the factor 2αh̄ω of the spectral function Ak,ω =
2αh̄ω/[(Hk,ω )2 + (αh̄ω)2] [Eq. (6)]. Therefore the integrand
remains the Lorentz type [51], and the thermal conductivity of
the QBE does not reduce to the Drude type in the absence of
the quasiparticle approximation.

B. Comparison: Conventional Boltzmann equation

The QBE in the limit of the quasiparticle approximation
reduces to the conventional Boltzmann equation, which pro-
vides the thermal conductivity of the Drude type [23] in terms
of the Gilbert damping constant α (cf., Sec. I). This agrees
with our formula of the QBE [Eq. (6)]; when we employ the
quasiparticle (qp) approximationAk,ω ≈ Aqp

k,ω := 2πδ(Hk,ω )
for Eq. (6), the thermal conductivity of the QBE reduces to
κxx ≈ κ

qp
xx as

κqp
xx = 1

2

(
D

π

)2 1

kBT 2

π

α

∫ ∞

0
dkk3ωk

eβ h̄ωk

(eβ h̄ωk − 1)2
. (10)

This is consistent with Eq. (9) in the limit of α → 0. Thus,
we find in the limit of the quasiparticle approximation that
the thermal conductivity of the QBE becomes the Drude
type, as a function of α, in that it is proportional to 1/α as
κxx ≈ κ

qp
xx ∝ 1/α. The factor 1/α arises from the relaxation

time τR
ω = τL

ω = 1/(2αω) in δφk,ω [Eq. (8)].
In conclusion, using the QBE we have developed the

formula for thermal transport in the bulk of Bose sys-
tems, with a particular focus on magnons. As a function of
the Gilbert damping constant, the thermal conductivity of
the QBE reduces to the Drude type [23] in the limit of the
quasiparticle approximation, while not in the absence of the
approximation. This is the main difference in the thermal con-
ductivity between the QBE and the conventional Boltzmann
equation.

We remark that our formula based on the QBE reduces
to the Drude type [23] in the limit of the quasiparticle ap-
proximation. This means that, by relaxing the quasiparticle

α

α

0.005
20

200

α
0.001

1.0
0.09

κxxqp
κxxκxx κxx (a) (b)

FIG. 1. (a) Plots of the rescaled thermal conductivity of
magnons, κ̃xx := [2π 2 h̄/(k2BT )]κxx , as a function of the Gilbert damp-
ing constant α [52,53] obtained by numerically solving Eqs. (9) and
(10) for 
 = kBT with a fixed temperature. The red line denotes
Eq. (9) of the QBE. The black line denotes Eq. (10) for κxx ≈ κqp

xx

in the limit of the quasiparticle approximation, i.e., the conventional
Boltzmann equation. The correction to the conventional Boltzmann
equation enhances the thermal conductivity. Inset: The enhancement
still works and remains significant even for small values of the
parameter α. (b) The plot of the ratio κxx/κ

qp
xx = 1 + (κxx − κqp

xx )/κ
qp
xx

as a function of the Gilbert damping constant α, i.e., the ratio of
the magnonic thermal conductivity κxx of the QBE to the magnonic
thermal conductivity κqp

xx of the conventional Boltzmann equation
(i.e., the QBE in the limit of the quasiparticle approximation). In
units of κqp

xx , the correction to the conventional Boltzmann equation
and the resulting enhancement of the magnonic thermal conductivity
increase as the value of α becomes large.

approximation, the correction to the conventional Boltzmann
equation is integrated as the self-energy into the spectral func-
tion Ak,ω,r,t of the QBE; Fig. 1 shows that the correction to
the conventional Boltzmann equation enhances the thermal
conductivity of the QBE. Thus our thermal transport theory
of the QBE with four variables (k, ω, r, t ) is identified as an
appropriate extension of that of the conventional Boltzmann
equation with three variables (k, r, t ).

The heat current density in the bulk of d-dimensional
Bose systems (d = 1, 2, and 3) is given as jQ =∫
[ddk/(2π )d ]vk

∫
[h̄dω/(2π )](h̄ω − μ)Ak,ωδφk,ω. Using

this equation we have numerically confirmed after a
straightforward calculation that the behavior holds for
d-dimensional magnonic systems in that the correction to
the conventional Boltzmann equation enhances the thermal
conductivity.

IV. DISCUSSION

To conclude, a few comments on our approach are in order.
First, the conventional Boltzmann equation [12–21] [Eq. (1)],
i.e., the transport theory based on the quasiparticle approxi-
mation, cannot describe paramagnons [25]. The quasiparticle
approximation assumes that the spectrum has the form of the
Dirac delta function. However, the spectrum of paramagnons
is broad, in general, and has a peak with a sufficient width
of a nonzero value associated with the inverse of the finite
lifetime [39–41]; the spectrum of paramagnons cannot be
approximated by the Dirac delta function. Therefore, the con-
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ventional Boltzmann equation cannot describe paramagnons.
On the other hand, our formula based on the QBE is applicable
to magnons with the spectrum of arbitrary shape [Eq. (6)].
In that sense, it is expected that our thermal transport theory is
useful also to paramagnons in the bulk of paramagnets [54].

We remark that as well as insulators, our formula [Eq. (6)]
is applicable, in principle, also to metals; the spectral function
is described in terms of the Gilbert damping constant [22],
and the value for metals (e.g., transition metal ferromagnets)
[55], α = O(10−2), is large compared with that for insulators,
α = O(10−3), in general [38,52,53]. Figure 1 shows the be-
havior of the magnonic thermal conductivity in the region
O(10−3) � α � O(10−2). As seen in Fig. 1(b), κxx/κ

qp
xx =

1 + (κxx − κ
qp
xx )/κ

qp
xx , in units of κ

qp
xx the correction to the con-

ventional Boltzmann equation and the resulting enhancement
of the magnonic thermal conductivity increase as the value of
α becomes large. The damping constant is associated with the
inverse of the magnon lifetime [22].

Next, our formula based on the QBE has an advantage
over the linear response theory in that it includes the non-
linear response; Eq. (6) is the formula for the heat current
density including the nonlinear response to the temperature
gradient. Here, using the QBE we develop an analysis on
the nonlinear response. We apply the relaxation time ap-
proximation [Eq. (7)] for the function Ak,ωφk,ω to the QBE
[Eq. (5)]. Since the relaxation is induced by impurity scat-
tering, we assume that the relaxation time is little influenced
by temperature, and we neglect the temperature dependence.
Using the method of successive substitution, the nonequi-
librium component of the Bose distribution function δφk,ω

[Eq. (6)] is evaluated, beyond the liner response regime,
as δφk,ω = ∑∞

n=1(−τR
k,ωvk · ∇T )n[∂nφ0/(∂T n)], where the

nonequilibrium component δφk,ω is arranged in terms of the
function (∇T )n. Last, combining this equation with Eq. (6),
we can obtain each coefficient of the nonlinear response to
the temperature gradient. The formula is not restricted to
magnonic systems, and it is useful to a wide range of Bose
systems.

Finally, we add a comment to the linear response theory.
According to Ref. [49], which focuses on the region α � 1,
the linear response theory (i.e., Kubo formula) results in the
magnonic thermal conductivity of the Drude type [23], the
same as the conventional Boltzmann equation, in that it is
proportional to the inverse of the Gilbert damping constant.
Note that the temperature gradient is not mechanical force
but thermodynamic force; the temperature gradient is not
described by a microscopic Hamiltonian. Therefore, it is not
straightforward to integrate the temperature gradient into the
linear response theory. Reference [49] described the effect of
the temperature gradient with the help of the thermal vector
potential [56] associated with the Luttinger’s approach [57],
i.e., a fictitious scalar field called a gravitational potential. For
the details, see Ref. [49]. We remark that the Boltzmann equa-
tion has no difficulty in integrating the temperature gradient
into the formalism [e.g., see Eq. (1)].

Note that Ref. [49] explains that there is the problem as-
sociated with the Luttinger’s gravitational potential formalism
(i.e., the scalar potential formalism) also in magnonic systems.
The problem that there are unphysical equilibrium contribu-
tions in the Luttinger’s gravitation formalism is caused by

the issue that the gravitational scalar potential couples to the
total energy. To overcome this problem, Ref. [49] introduced
the thermal vector potential by means of rewriting Luttinger’s
gravitational scalar potential and developed the formalism so
that the thermal vector potential couples to the energy current.
Thus, the problem is solved in that the unphysical equilibrium
contributions are automatically canceled by diamagnetic cur-
rents associated with the vector potential. See Ref. [49] for
details. The above issue is irrelevant to our work based on the
Boltzmann equation.

V. OUTLOOK

We give a few perspectives on further research. As a
platform, in Secs. III A and III B focusing on insulating mag-
nets at sufficiently low temperature, we have studied thermal
transport of magnons under the assumption that the effect of
magnon-magnon interactions and that of phonons are negligi-
bly small and that elastic impurity scattering makes a major
contribution to the self-energy. It is of interest to study those
effects on magnonic thermal transport of the QBE, with con-
sidering also the case that impurity scattering is inelastic [58];
while the details of the relaxation time vary, the form of the
nonequilibrium component [Eq. (8)] remains unchanged and
the formula for the heat current [Eq. (6)] still holds even if
impurity scattering is inelastic. Therefore, we expect that the
result qualitatively remains unchanged.

Through the interaction with impurities, magnons acquire
the self-energy and thus carry more energy. The effect is
integrated into the thermal conductivity through the spectral
function via the self-energy, while it is neglected in the quasi-
particle approximation. Therefore the thermal conductivity of
the QBE takes a larger value than the one in the limit of the
quasiparticle approximation. We intuitively understand the re-
sult as explained above. Still, to further develop the qualitative
understanding will be of significance, particularly in terms of
the quantum interference effect intrinsic to magnons (i.e., spin
waves).

In this paper relaxing the quasiparticle approximation and
using the QBE for Bose systems, we have found that the
correction to the conventional Boltzmann equation enhances
the thermal conductivity. Therefore, based on the QBE, it is
intriguing to study the effect of the correction on the magnonic
Wiedemann-Franz law [7–10]; at low temperatures magnon
transport obeys a magnonic analog of the Wiedemann-Franz
law [59], a universal law, in that the ratio of heat to spin
conductivity is linear in temperature and does not depend
on material parameters except the g factor. Note that the
magnonic Wiedemann-Franz law for the bulk of magnets has
been proposed in Ref. [9] based on the conventional Boltz-
mann equation. For the magnonic Wiedemann-Franz law of
the QBE, the spin conductivity and the off-diagonal elements
of the Onsager coefficient [9] remain to be obtained. We
believe it can be evaluated by following the study [25] on
the electrical conductivity of the QBE and developing it into
the Bose system. Using the QBE, it will be intriguing also
to study the magnonic Hall coefficients in topologically non-
trivial magnonic systems [4–6,8–10]. We leave the advanced
studies for future work.
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VI. CONCLUSION

Developing the quantum Boltzmann equation, we have
provided the formula for thermal transport in the bulk of Bose
systems, including the nonlinear response to the temperature
gradient. We have then applied the formula to magnons and
have shown that thermal transport of the quantum Boltz-
mann equation exhibits behavior different from that of the
conventional Boltzmann equation. The longitudinal thermal
conductivity of the quantum Boltzmann equation reduces
to the Drude type in the limit of the quasiparticle approx-
imation, while not in the absence of the approximation.
Relaxing the quasiparticle approximation, we have found that
the correction to the conventional Boltzmann equation is in-
tegrated as the self-energy into the spectral function of the
quantum Boltzmann equation, and this enhances the thermal
conductivity. Our formula is useful to Bose systems, includ-
ing metals as well as insulators, with the spectral function
of arbitrary shape. Using the quantum Boltzmann equation
we have found the thermal transport property beyond the
conventional.
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APPENDIX A: RELAXATION TIME AND
MAGNON LIFETIME

In this Appendix, we show that the relaxation time
coincides with the magnon lifetime and takes a wave-number-
independent value under the assumptions that the relaxation
time depends solely on the magnitude of the wave number,
the impurity scattering is elastic, and the impurity potential is
localized in space. We remark that at sufficiently low temper-
atures, the effect of magnon-magnon interactions and that of
phonons are negligibly small, and impurity scattering makes
a major contribution to the self-energy. Therefore, we assume
that the spectral function is little influenced by temperature
and neglect the temperature dependence.

We consider magnons with the energy dispersion relation
of h̄ωk = Dk2 + 
, where |k| =: k denotes the magnitude of
the wave number. First, assuming the steady state in terms
of time and applying the relaxation time approximation for
the function Ak,ωφk,ω to the QBE (see the main text), within
the linear response regime we obtain the nonequilibrium
component δφk,ω as δφk,ω = −τR

k,ωvk · ∇T [∂φ0/(∂T )] +
O((∇T )2). Next, using the relaxation time approximation for
the collision integral Ik,ω = −∑

k′ |Vk,k′ |2Ak,ωAk′,ω(φk,ω −
φk′,ω )/h̄, we reach δφk,ω/τR

k,ω = ∑
k′ |Vk,k′ |2Ak′,ω(δφk,ω −

δφk′,ω )/h̄. Finally, combining the equations under the as-

sumption that the relaxation time depends solely on the
magnitude of the wave number and that the impurity scat-
tering is elastic, we obtain the relaxation time as 1/τR

k,ω =∑
k′ |Vk,k′ |2Ak′,ω(1 − vk · vk′/|vk|2)/h̄.
Since we assume that impurities are dilute, the effect can

be taken into account within the Born approximation (see the
main text for details). When the impurity potential is local-
ized in space, the Fourier component becomes independent
of the wave number and it is described as |Vk,k′ |2 =: u2nimp,
where nimp is the impurity concentration [26]. Then, the self-
energy becomes independent of the wave number k, and it
is given as �k,ω = �ω := u2nimp

∑
k′ Gk′,ω. Therefore, the

spectral function Ak,ω depends solely on the magnitude of
the wave number |k| =: k and it is denoted as Ak,ω = Ak,ω.
We remark that the spectral functionAk,ω consists of the self-
energy �k,ω = �ω and the function Hk,ω = Hk,ω; since we
assume that the energy dispersion relation of magnons takes
the form of h̄ωk = Dk2 + 
, the function Hk,ω := h̄ω − h̄ωk
depends only on the magnitude of the wave number and
it is represented as Hk,ω = Hk,ω. Thus, the spectral func-
tion becomes dependent only on the magnitude of the wave
number as Ak,ω = Ak,ω. Using this result with the relation∫ 2π
0 dθcosθ = 0, finally, we obtain the relaxation time as
1/τR

k,ω = 1/τR
ω := u2nimp

∑
k′ Ak′,ω/h̄, and we find that it is

independent of the wave number k.
The relaxation time coincides with the lifetime for the

impurity potential of |Vk,k′ |2 = u2nimp. The lifetime τL
k,ω is

associated with the imaginary part of the self-energy and it
is described as h̄/(2τL

k,ω ) := −Im�r
k,ω in general, where �r

k,ω

represents the retarded component of the self-energy and it
is given as �r

kω = �r
ω := u2nimp

∑
k′ Gr

k′,ω for the impurity
potential of |Vk,k′ |2 = u2nimp. Since the imaginary part of
the retarded Green’s function is associated with the spec-
tral function as ImGr

k′,ω = −Ak′,ω/2, the lifetime becomes
1/τL

k,ω = 1/τL
ω := u2nimp

∑
k′ Ak′,ω/h̄ and takes the wave-

number-independent value. Thus the lifetime coincides with
the relaxation time 1/τL

ω = 1/τR
ω .

We stress that the relaxation time is different from the
lifetime in general. Those are distinct quantities. However,
under the assumptions that the relaxation time depends solely
on the magnitude of the wave number, the impurity scattering
is elastic, and the impurity potential is localized in space,
the relaxation time coincides with the lifetime and takes the
wave-number-independent value.

APPENDIX B: MAGNON SPECTRAL FUNCTION AND
GILBERT DAMPING CONSTANT

In this Appendix, we describe the spectral function of
magnons in terms of the Gilbert damping constant α. The
Landau-Lifshitz-Gilbert equation is playing the central role
in the conventional spintronics study [38]. Therefore to de-
velop a relation with it, it is useful to describe the spectrum
as a function of the Gilbert damping constant. First, as
seen above, the spectral function Ak,ω = Ak,ω consists of
the function Hk,ω = Hk,ω and the self-energy �k,ω = �ω,
and it is described as Ak,ω = −2Im�r

ω/[(Hk,ω )2 + (Im�r
ω )

2]
[25–27], where we assume that the real part of the self-energy
is negligibly small compared with the magnon energy gap.
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Next, the lifetime is defined as the imaginary part of the
self-energy, in general, as h̄/(2τL

ω ) := −Im�r
ω. Since the

lifetime of magnons is associated with the inverse of the
Gilbert damping constant as [21,46–50] h̄/(2τL

ω ) = αh̄ω, the

imaginary part of the self-energy is characterized in terms of
the Gilbert damping constant. Finally, the spectral function
is described as a function of the Gilbert damping constant as
Ak,ω = 2αh̄ω/[(Hk,ω )2 + (αh̄ω)2].
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