

日本原子力研究開発機構機関リポジトリ

Japan Atomic Energy Agency Institutional Repository

Title	マグノン Wiedemann-Franz 則
Author(s)	仲田 光樹
Citation	固体物理,56(8),p.429-439
Text Version	查読後
URL	https://jopss.jaea.go.jp/search/servlet/search?5070441
DOI	2023.1.16 現在なし
Right	アグネ技術センター

マグノン Wiedemann-Franz 則

日本原子力研究開発機構 先端基礎研究センター 仲田光樹

『固体物理』編集部からの許可を受けた著者最終稿^{*1} (2021 年 4 月版): Web 公開^{*2} (2022 年 4 月)

§1 背景:Wiedemann-Franz 則

黒船にのったアメリカ海軍代将、Perry、が浦賀に来航した 1853 年(嘉永 6 年)、 Wiedemann と Franz による『Ueber die Wärme-Leitungsfähigkeit der Metalle』 (金属の熱伝導率について)と題する論文が、Annalen der Physik 誌から出版され た¹⁾。そこでは、「金属の熱伝導率 K と電気伝導率 σ の比は、温度が一定であれば、 金属の種類が異なってもほぼ同一である」という実験結果が報告されている。これ は、電子が Thomson (J. J. Thomson) によって発見される 40 年以上も前の出来事 である。このように、現在は Wiedemann-Franz (WF) 則として知られる熱電法則

$$\frac{K}{\sigma} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2 T \tag{1}$$

も、当初は経験則として報告された。ここで、*e* は電気素量、*k*_B は Boltzmann 定数、*T* は絶対温度を表す。1900 年、Drude は気体分子運動論を金属に適用し、電気 伝導および熱伝導に関する理論を構築した。そこでは、金属中の伝導電子のふるま いは、古典的な電子気体として記述される。現在では Drude 模型として知られてい るこの理論は、金属のバルク中の熱流は伝導電子によって担われるという仮定のも

^{*1 『}固体物理』2021 年 8 月第 56 巻第 8 号 35(429) [Vol.56 No.8 2021 P.35 (429)]

^{*2} Web 公開時期(アグネ技術センター『固体物理』編集部):出版から半年後以降を推奨。著作権は 著者、版権はアグネが有する。

と、理想気体の状態方程式を援用することで、「金属の熱伝導率と電気伝導率の比は 温度に比例し、その比例定数は物質に依存せず、電気素量 e と Boltzmann 定数 k_B にのみによって特徴づけられる普遍的な定数をとる」という WF 則を定性的によく 説明する。1925 年、Fermi 粒子を特徴づける Pauli の排他律(原理)が提唱された。 Sommerfeld は、この電子の量子統計性を Drude 模型に取り込むことで、比例定数で ある Lorenz 数

$$L := \frac{K}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2 \tag{2}$$

も含めて、WF 則を定量的にもよく説明することに成功した^{2,3)}。

ここで、Wiedemann と Franz が研究を行っていた 19 世紀半ばあたりまで、熱を 微小な粒子のようなものととらえる「熱素説」が信じられていたことに留意された い。文献^{4,5,6)}によると、熱素説を解析的熱量学という一つの体系に昇華させた Laplace の大著『天体力学』(11 書、12 書)が 1823 年に出版され、その後およそ 20 年にもわたり、熱量保存則に対する信頼が持続される。こうした熱素説が全盛の時代 に、Herapath は気体分子運動論を提唱した。しかし、その論文は王立協会に掲載を 拒否された。科学史家の Kuhn は、熱素説を「通常想像しているよりはるかに優れた 成熟した理論」と評する。現在の「熱力学」の礎となる Clausius の論文『熱の動力お よび熱の理論にたいしてそこから導き出される諸法則について』の登場は、1850 年 まで待たなければならなかった^{*3}。

このような時代背景のもと、Wiedemann は論文を発表した翌年の 1854 年に、

^{*3} 当時の時代背景を概観する本段落は、文献^{4,5,6})に依拠する。熱量保存則については文献⁵⁾13 章 IV、Cleghorn の熱物質論については文献⁴⁾11 章 II、Lavoisier の熱素理論については 12 章が詳しい。Herapath の論文のその後の経緯については、文献⁵⁾17 章 VII および文献⁶⁾28 章 VI を参照されたい。1850年の Clausius の論文が発表されるまでの Carnot、Mayer、Joule、 Thomson (W. Thomson:後の Kelvin 卿)の貢献については文献⁵⁾18-24章、1850年以降の Clausius と Thomson (W. Thomson)による熱力学の体系化のあゆみ(熱力学第一法則、熱力学 第二法則の数学的定式化)については文献⁶⁾25-30章が詳しい。1850年代後半になってからは、 次第に気体分子運動論が市民権を獲得し始めた。1857年には、Krönig と Clausius がそれぞれ、 気体運動論に関する論文を相次いで発表している。その詳細については、文献⁶⁾28章 VI を参照 されたい。

Euler (L. Euler: 1707-1783)、Bernoulli (D. Bernoulli: 1700-1782)、Nietzsche (F. W. Nietzsche: 1844-1900) なども教鞭をとったスイス最古の大学である Basel 大学 (1460 年創立) の教授職に就いた ^{*4}。奇しくも、それからちょうど 160 年後の 2014 年から約 4 年間、筆者は Basel 大学で研究する機会を得た。本稿では、その間に筆者 が Loss らとともに理論的に提唱した熱磁気法則「マグノン版の WF 則」^{7, 8, 9)} につ いて紹介する。

§2 目的

Fermi 粒子と Bose 粒子がそれぞれもたらす物性は、本質的に異なることがよく知られている。特に、量子効果が支配的となる低温領域においては、その差異はより顕著となる。その代表例が(定積)比熱である³⁾。低温領域において、電子気体の比熱が温度 *T* に比例する一方、フォノンの比熱は *T*³ に比例する *⁵。

上述の Drude による気体分子運動論にもとづく古典的定式化に始まり、Sommerfeld による電子の量子統計性(Pauli の排他律)を加味した量子論的定式化におよ ぶ WF 則は、Fermi 統計に従う電子の物語である。それでは、Fermi 粒子ではなく、 Bose 粒子の場合、そのような物語は存在するのか。対応する輸送法則はどのように 定式化され、どのような温度依存性を示すのか。この素朴で基礎的な問いについて、 一つの知見をあたえることが本稿の目的である。

そのために本稿では、伝導電子が本質的に不在となる絶縁体を舞台とし、磁気を担う Bose 準粒子であるマグノン(スピン波の量子化)に着目する*⁶。そして、マグノ

^{*4} Basel はスイス北西部に位置し、ドイツ、フランス、スイス、3 国の国境が接する三国国境の都市である。

^{*&}lt;sup>5</sup> 気体分子運動論によると、熱伝導率は(定積)比熱に比例する。電子にとっては Fermi 温度、フォ ノンにとっては Debye 温度より低い温度領域が、低温領域に相当する。フォノン(格子振動の 量子化)は Bose 統計にしたがう Bose 準粒子である。低温での電子物性を評価するのに有効な Sommerfeld 展開は、Bose 粒子系には適用できない³⁾。

^{*&}lt;sup>6</sup> マグノン(準粒子)の基本的性質については、ほかの文献に譲りたい。優れた和書が数多く存在す る。たとえば、文献¹⁰⁾を参照されたい。

ンが担うスピン流および熱流を通じて、マグノン輸送に宿る熱磁気効果を抽出する。

§3 熱電効果

本論にうつるまえに、文献³⁾ に倣い、電子の熱電効果をおさらいする。特に、開 回路(電荷が逃げこむところのない有限の大きさの系)において、熱伝導率がどのよ うに定式化されるのかを確認する。ここでは簡単のため、Hall 流の存在しないトポロ ジカルに自明なバルク系を仮定する。トポロジカルに非自明な系、特に分数量子 Hall 系における WF 則、および、そこでの Lorenz 数と (Virasoro) 中心電荷との関係に ついては、文献^{11,12)} を参照されたい。

電子は電荷を担う Fermi 粒子である。そのため、電場 $E = (E_x, E_y, E_z)$ が力学 的駆動力、温度勾配 $\nabla T = (\partial_x T, \partial_y T, \partial_z T)$ が熱的駆動力 *⁷ として作用し、電流 $J = (J_x, J_y, J_z)$ および熱流 $J^Q = (J^Q_x, J^Q_y, J^Q_z)$ を生成する。こうした入力と応答 との関係は、線形応答領域において、次の輸送係数 L_{ij} (i, j = 1, 2) により特徴づけ られる

$$\begin{pmatrix} J_x \\ J_x^Q \\ L_{21} & L_{22} \end{pmatrix} \begin{pmatrix} E_x \\ -\partial_x T \end{pmatrix}.$$
(3)

ここで、輸送係数 L_{11} は電気伝導率 σ を表す。

§3.1 熱伝導率

熱伝導率の定式化をおさらいする³⁾。

- [1] 熱伝導率を測定するために、入力として温度勾配 $\partial_x T$ を x 軸方向にかける。
- [2] すると、電流 $J_x = -L_{12}\partial_x T$ が発生する [式 (3)]。

^{*7} 文献¹³)では、それぞれ、力学的攪乱、熱的攪乱、と表現されている。また、その5章「5. 熱的攪乱の問題」では熱的攪乱に対する理論の定式化について、2章「2. 揺らぎと散逸」では線形応答理論と揺動・散逸定理との関係、についても議論されている。後者の関係について、筆者は大沼悠一から教わった。本稿では他書に倣い、脚注においても人名は敬称略とし、日本語表記では姓名、それ以外の場合は姓を記すこととする。

[3] この電流の発生に伴い、電荷が蓄積し、電荷の偏りが生じる。

[4] その結果、阻止電場(retarding electric field) E_x^* が発生する。

[5] この阻止電場 E_x^* が対向電流 (countercurrent) $L_{11}E_x^*$ を生成する [式 (3)]。

[6] そのため、温度勾配をかけ続けると、最終的に、定常状態 $J_x = 0$ に到達する。

このような定常状態のもとで、熱伝導率は測定される。測定下で生じている阻止電 場 E_x^* は、定常状態 $J_x = 0$ の条件 [6] から

$$E_x^* = \frac{L_{12}}{L_{11}} \partial_x T \tag{4}$$

と評価できる。たしかに、温度勾配と反対方向に熱電場(thermoelectric field)が発 生することがわかる。もちろん、この熱電場も熱流を生成する。したがって、入力と して温度勾配をかけ続けたときに創出される熱流は、式(3)より

$$J_x^Q = -L_{21}E_x^* - L_{22}\partial_x T \tag{5a}$$

$$= -\left(L_{22} - \frac{L_{12}L_{21}}{L_{11}}\right)\partial_x T \tag{5b}$$

となる。式(5b)の右辺第二項が、熱電場誘起の対向熱流を記述する。このように、 電子の熱伝導率 K、 $J_x^Q = -K\partial_x T$ 、は

$$K = L_{22} - \frac{L_{12}L_{21}}{L_{11}} \tag{6}$$

と元来、表現される。電子の熱伝導率の定式化については、文献^{14,15)}も参照されたい。

§3.2 金属中の電子の熱伝導率

ここまで、熱電場誘起の対向熱流の寄与により、電子の熱伝導率が式 (6) で与えら れることを、定性的かつ定量的議論によってみてきた。ここからは、金属中の電子に 的を絞り、熱伝導率の定量的評価をさらに深める³⁾。

輸送係数 L_{ij} は、Fermi 分布関数を通じて Fermi エネルギー $E_{\rm F}$ により特徴づけられる。煩雑な計算^{2,15,16)}を経て、式(6)の右辺第一項は、第二項と比べて

$$O\left(\left(\frac{E_{\rm F}}{k_{\rm B}T}\right)^2\right)$$
程度も大きいことがわかる。つまり、式 (6) は
 $\frac{K}{L_{22}} = 1 + O\left(\left(\frac{k_{\rm B}T}{E_{\rm F}}\right)^2\right)$ (7)

と表現できる。一般に、金属中の電子の Fermi エネルギーは $E_{\rm F} \sim 10$ eV にも及び、 温度に換算すると $T_{\rm F} \sim 10^5$ K となる。このように、Fermi 温度は室温と比較しても はるかに高いため、 $O\left(\left(\frac{E_{\rm F}}{k_{\rm B}T}\right)^2\right)$ の項は無視できるほど小さくなる。この定量的理由 により、金属中の電子の熱伝導率は、

$$K \approx L_{22}$$
 (8)

と近似的にみなすことができる^{*8}。つまり、熱電場誘起の対向熱流が定量的に無視 できるほど小さくなるため、金属中の電子系においては、輸送係数 *L*₂₂ を熱伝導率 *K* と近似的に同一視することができる。このようにして、金属中の熱電効果を物語 る WF 則は、

$$\frac{K}{\sigma} \approx \frac{L_{22}}{L_{11}} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2 T \tag{9}$$

と定式化できる。ここで、電子の WF 則にとって、熱電場誘起の対向熱流の寄与は重 要ではないことに留意されたい。

§3.3 熱電能と Peltier 係数

ここまでみてきたように、式 (4) は、開回路に温度勾配をかけ続けたとき、定常状 態においてどれだけの熱電場が生じるかを表す。こうした物質の熱電性能を表す比例 係数

$$\mathcal{S} := \frac{L_{12}}{L_{11}} = \frac{E_x^*}{\partial_x T} \tag{10}$$

は熱電能(Seebeck 係数)とよばれる。熱電性能と相反関係にある現象を(輸送係数 L₁₁を単位として)特徴づける Peltier 係数は

$$\Pi := \frac{L_{21}}{L_{11}} \tag{11}$$

*⁸ この近似式は、半導体では成立しない ³⁾。

図1 磁性絶縁体バルク中のマグノン輸送の模式図。マグノンは、磁気モーメント µB を担う Bose 準粒子である。マグノンが流れると、磁気の流れであるスピン流 および熱流が生じる。本図は筆者らの論文⁷⁾より転載された。

で与えられる。Onsager 関係式^{*9}

$$L_{21} = TL_{12} \tag{12}$$

により、熱電性能と Peltier 係数の間には

$$\Pi = T\mathcal{S} \tag{13}$$

という、Kelvin ^{*10}の関係式が成立する³⁾。

§4 マグノン Wiedemann-Franz 則

それでは、本論にうつる。WF 則は元来、金属中の電子という Fermi 粒子が描き出 す物語である。それでは、Fermi 粒子ではなく、Bose 粒子の場合、そのような物語 は存在するのか。対応する輸送法則はどのように定式化され、どのような温度依存性 を示すのか。本節では、この素朴で基礎的な問いに対して、「マグノン版の WF 則」

^{*9} 式 (3) で、熱的駆動力の表現として、 $\partial_x T$ の形式を採用したことに留意されたい。

^{*10} Kelvin 卿 (W. Thomson)。

を探求することで一つの知見をあたえる^{7,8,9)}。マグノンは電荷 *e* をもっていない が、Bohr 磁子 μ_B によって特徴づけられる磁気モーメントを担う Bose 準粒子であ る。そのため、マグノンが流れると、磁気の流れ、スピン流が生ずる。この性質に着 目し、スピン流と熱流により特徴づけられるマグノン輸送を探究することで、マグノ ン版の WF 則を抽出する。

電子の熱電効果に倣い、マグノンの熱磁気効果を定式化する。そのために、スペ クトル関数について、準粒子近似^{*11}が適用可能な「磁性絶縁体」に着目し、マグノ ンが担うスピン流および熱流を議論する。ここでは簡単のため、Hall 流の存在しな い、トポロジカルに自明な磁性絶縁体バルク中のマグノン輸送に着目する(第1図)。 トポロジカルに非自明な系における、マグノンの Hall 係数およびその物理(例:熱 Hall 効果)については、レビュー論文^{20, 21, 22})および解説記事^{23, 24, 25})を参照さ れたい。

§4.1 磁性絶縁体バルク中のマグノンが担う熱伝導率

電子の熱電効果に倣い、磁性絶縁体バルク中のマグノンが担う熱伝導率を、先ずは 定性的に議論する^{*12}。本稿では、電子系の開回路と同じく、マグノンの逃げこむと ころのない有限の大きさの系を想定する。

[1] 磁性絶縁体の熱伝導率を測定するために、入力として温度勾配を *x* 軸方向にかける。

[2] すると、マグノンが流れる。

[3] この移動に伴い、マグノンが蓄積し、磁化勾配が生じる。

[4] その結果、マグノンがうけるポテンシャルエネルギーの勾配が、*x* 軸方向に生 じる。

[5] 非平衡下に特有な、このポテンシャルエネルギー勾配が、力学的駆動力としてマ グノンに作用する。

^{*&}lt;sup>11</sup> スペクトル関数に対する準粒子近似については、たとえば、文献 ^{17, 18, 19)} を参照されたい。

^{*&}lt;sup>12</sup> マグノンの寄与の同定方法、および、フォノンの寄与については、ほかの文献に譲りたい。

この非平衡下に特有なポテンシャルエネルギー勾配は、有効磁場勾配 $\partial_x B_{\text{eff}}$ とし て理論に反映させることができ、本稿ではそれを「非平衡有効磁場勾配」とよぶこと にする。ここで B_{eff} は量子化軸方向の有効磁場をあらわす。このように、マグノン に対して非平衡有効磁場勾配 $\partial_x B_{\text{eff}}$ が力学的駆動力 ^{26, 27, 28)}、温度勾配 $\partial_x T$ が熱 的駆動力として作用し、x 軸方向にスピン流 \mathcal{J}_x および熱流 \mathcal{J}_x^Q を生成する。これら の入力と応答との関係は、線形応答領域において、次の輸送係数 \mathcal{L}_{ij} (i, j = 1, 2) に より特徴づけられる

$$\begin{pmatrix} \mathcal{J}_x \\ \mathcal{J}_x^Q \end{pmatrix} = \begin{pmatrix} \mathcal{L}_{11} & \mathcal{L}_{12} \\ \mathcal{L}_{21} & \mathcal{L}_{22} \end{pmatrix} \begin{pmatrix} \partial_x B_{\text{eff}} \\ -\partial_x T/T \end{pmatrix}.$$
 (14)

ここでは便宜上、熱的駆動力の表現として、 $\partial_x T$ ではなく、 $\partial_x T/T$ の形式を採用した。輸送係数 \mathcal{L}_{11} は、スピン伝導率 G を表す。非平衡有効磁場勾配 $\partial_x B_{\text{eff}}$ は、非平衡下においてのみ、マグノンにとって力学的駆動力として作用することに留意されたい。

次に、式 (14) にもとづいて、マグノンの担う熱伝導率を定式化する^{7,9)}。

[1] 磁性絶縁体の熱伝導率を測定するために、入力として温度勾配 $\partial_x T$ を x 軸方向 にかける。

[2] すると、スピン流 $\mathcal{J}_x = -\mathcal{L}_{12}\partial_x T/T$ が発生する。

[3] このスピン流の発生に伴い、マグノンが蓄積し、非平衡有効磁場勾配 $\partial_x B^*_{\text{eff}}$ が生じる。

[4] その結果、対向スピン流 $\mathcal{L}_{11}\partial_x B^*_{\text{eff}}$ が発生する。

[5] そのため、温度勾配をかけ続けると、最終的に、定常状態 $\mathcal{J}_x = 0$ に到達する。

このような定常状態のもとで、熱伝導率は測定される。測定下で生じている非平衡 有効磁場勾配 $\partial_x B^*_{\text{eff}}$ は、定常状態 $\mathcal{J}_x = 0$ の条件 [5] から

$$\partial_x B_{\text{eff}}^* = \frac{1}{T} \frac{\mathcal{L}_{12}}{\mathcal{L}_{11}} \partial_x T \tag{15}$$

と評価できる。この勾配は、電子系における熱電場 [式 (4)] に倣い、熱磁場勾配とも 位置付けることができる。この非平衡有効磁場勾配は、もちろん熱流も生成する。し たがって、入力として温度勾配をかけ続けたときに創出される熱流は、式 (14) より

$$\mathcal{J}_x^Q = \mathcal{L}_{21} \partial_x B_{\text{eff}}^* - \mathcal{L}_{22} \frac{\partial_x T}{T}$$
(16a)

$$= -\frac{1}{T} \left(\mathcal{L}_{22} - \frac{\mathcal{L}_{12}\mathcal{L}_{21}}{\mathcal{L}_{11}} \right) \partial_x T \tag{16b}$$

となる。式(16b)の右辺第二項が、非平衡有効磁場勾配に由来する対向熱流を表す。 このように、マグノンの担う熱伝導率 \mathcal{K} 、 $\mathcal{J}_x^Q = -\mathcal{K}\partial_x T$ 、は

$$\mathcal{K} = \frac{1}{T} \left(\mathcal{L}_{22} - \frac{\mathcal{L}_{12}\mathcal{L}_{21}}{\mathcal{L}_{11}} \right) \tag{17}$$

と表現される。ここで、1/T が出てきたのは、熱的駆動力の定式化 [式 (14)] におい て、 $\partial_x T$ ではなく、 $\partial_x T/T$ を採用したことに起因しており、形式的なものであるこ とに留意されたい。熱的駆動力の表現として式 (3) のように $\partial_x T$ の形式を採用すれ ば、マグノンの熱伝導率も式 (6) と同じく $\mathcal{K} = \mathcal{L}_{22} - \mathcal{L}_{12}\mathcal{L}_{21}/\mathcal{L}_{11}$ と表現される。

§4.2 磁性絶縁体バルク系のマグノン Wiedemann-Franz 則

ここで、+ \hbar のスピン角運動量を担いながら三次元磁性絶縁体バルク中を伝搬する マグノンに着目する(第 1 図)。長波長近似のもと、マグノンのエネルギーは、波数 について二次の分散関係をもち、スピン剛性定数 D とマグノンエネルギーギャップ Δ により特徴づけられる。緩和時間近似のもと²⁹⁾、通常の Boltzmann 方程式^{*13} にもとづく解析計算により、式 (14) の輸送係数 \mathcal{L}_{ij} は

$$\mathcal{L}_{11} = (g\mu_{\rm B})^2 \mathcal{C} \, {\rm Li}_{3/2}({\rm e}^{-b}),$$
 (18a)

$$\mathcal{L}_{12} = g\mu_{\rm B}k_{\rm B}T\mathcal{C}\Big[\frac{5}{2}{\rm Li}_{5/2}({\rm e}^{-b}) + b\,{\rm Li}_{3/2}({\rm e}^{-b})\Big]$$
(18b)

$$=\mathcal{L}_{21},\tag{18c}$$

$$\mathcal{L}_{22} = (k_{\rm B}T)^2 \mathcal{C} \Big[\frac{35}{4} {\rm Li}_{7/2}({\rm e}^{-b}) + 5b \, {\rm Li}_{5/2}({\rm e}^{-b}) + b^2 \, {\rm Li}_{3/2}({\rm e}^{-b}) \Big],$$
(18d)

^{*&}lt;sup>13</sup> Boltzmann 方程式と線形応答理論との比較については、たとえば、文献^{18,19})を、量子輸送方程式(Kadanoff-Baym 方程式)との関係については文献^{18,19})3章、文献¹⁷)Sec. 6、および文献³⁰)Sec. 4 を、Kadanoff-Baym ansatz については文献¹⁷)Sec. 8.2 を、それぞれ参照されたい。

と導出され、式 (18c)の関係式が成立することが示される⁹⁾。ここで、定数 g は 磁性絶縁体を構成するスピンの g 因子、Li_s $(z) := \sum_{n=1}^{\infty} z^n/n^s$ は多重対数関数 (polylogarithm function)、変数 b はマグノンエネルギーギャップを基準にして無次 元化された逆温度 $b := \Delta/(k_{\rm B}T)$ 、共通項 C は、現象論的に導入された緩和時間 τ お よびスピン剛性定数を用いて $C := \tau(k_{\rm B}T)^{3/2}/(4\pi^{3/2}\hbar^2\sqrt{D})$ と定義、導入される。 一般に、輸送係数 \mathcal{L}_{ij} の評価には煩雑な計算が必要である。一つの具体例として、 \mathcal{L}_{11} の積分計算過程を紹介する^{*14}。

$$\tilde{\mathcal{L}}_{11} := -\int_0^\infty dx x^4 \frac{e^{x^2+b}}{(e^{x^2+b}-1)^2}$$
(19a)

$$= -\int_{0}^{\infty} dx x^{4} \frac{e^{\alpha x^{2} + b}}{(e^{\alpha x^{2} + b} - 1)^{2}} |_{\alpha = 1}$$
(19b)

$$= \frac{d}{d\alpha} \int_0^\infty dx x^2 \frac{1}{\mathrm{e}^{\alpha x^2 + b} - 1} \mid_{\alpha = 1}$$
(19c)

$$= \frac{d}{d\alpha} \int_0^\infty dx x^2 \frac{e^{-(\alpha x^2 + b)}}{1 - e^{-(\alpha x^2 + b)}} |_{\alpha = 1}$$
(19d)

$$= \frac{d}{d\alpha} \int_0^\infty dx x^2 \sum_{n=1}^\infty e^{-n(\alpha x^2 + b)} |_{\alpha=1}$$
(19e)

$$= -\sum_{n=1}^{\infty} n \mathrm{e}^{-nb} \int_{0}^{\infty} dx x^{4} \mathrm{e}^{-nx^{2}}$$
(19f)

$$= -\frac{3\sqrt{\pi}}{8} \sum_{n=1}^{\infty} \frac{\mathrm{e}^{-nb}}{n^{3/2}}$$
(19g)

$$= -\frac{3\sqrt{\pi}}{8} \text{Li}_{3/2}(e^{-b}). \tag{19h}$$

*¹⁴ 係数 \mathcal{L}_{11} の積分計算にとって本質的でない因子を除いたものを $\tilde{\mathcal{L}}_{11}$ として定義、導入した。た しかに単なる計算問題ではあるが、筆者が(恥を忍んで)その計算過程の一部をここに紹介する ことに、多少なりとも意義があると信じたい。少なくとも、恥ずかしながら、筆者にとっては参 考になる。筆者はこの評価を、共同研究者の Loss から教わった。式(19c)以降の計算手順は、 Debye 模型におけるフォノン比熱の評価手順に類似する³⁾: $\int_0^\infty dx \frac{x^3}{e^x-1} = \int_0^\infty dx x^3 \frac{e^{-x}}{1-e^{-x}} =$ $\sum_{n=1}^{\infty} \int_0^\infty dx x^3 e^{-nx} = \sum_{n=1}^{\infty} (6/n^3) \int_0^\infty dx e^{-nx} = 6 \sum_{n=1}^{\infty} (1/n^4) = 6\zeta(4) = 2\pi^4 \mathcal{B}_2 =$ $\pi^4/15$ 。ここでは Gauss 積分は出てこず、部分積分をくりかえすことで、Riemann ゼータ関数 (Riemann zeta function) $\zeta(4)$ および Bernoulli 数 (Bernoulli number) $\mathcal{B}_2 = 1/30$ に帰着す る。ちなみに、式(19a)を b による微分に書き換えて評価すれば、わざわざ変数 α を導入する必 要はないことに、本稿を作成しているときにきづいた。 式 (19f) で、Gauss 積分を用いた。同様の計算手順を経て、輸送係数 *L_{ij}* の全成分は 導出される。Bose 分布関数を通じ、マグノンの量子統計性が反映されていることに 留意されたい。

Fermi 面の存在しないマグノン系においては、マグノンエネルギーギャップを基準 にして、温度領域を区分することができる。マグノンエネルギーギャップよりも十分 低い温度領域、

$$k_{\rm B}T \ll \Delta,$$
 (20)

すなわち $b \gg 1$ が低温領域となる。式 (18a)-(18d) から、マグノンの熱伝導率 \mathcal{K} と スピン伝導率 G の比は、低温領域において温度に比例することがわかる

$$\frac{\mathcal{K}}{G} = \frac{\frac{1}{T} \left(\mathcal{L}_{22} - \frac{\mathcal{L}_{12} \mathcal{L}_{21}}{\mathcal{L}_{11}} \right)}{\mathcal{L}_{11}} \stackrel{\simeq}{=} \frac{5}{2} \left(\frac{k_{\rm B}}{g \mu_{\rm B}} \right)^2 T \,. \tag{21}$$

マグノンは電荷 *e* をもっていないが、Bohr 磁子 $\mu_{\rm B}$ に特徴づけられる磁気モーメン トを担う Bose 準粒子であるため、マグノンが流れると、電流のかわりにスピン流が 生じる。したがって、電子の熱伝導率 *K* と電気伝導率 σ の比を通じて金属中の熱電 効果を物語る WF 則 [式 (1)] に倣い、磁性絶縁体中の熱磁気効果を特徴づけるこの関 係式 \mathcal{K}/G [式 (21)] を、マグノン版の WF 則、すなわち「マグノン WF 則」と位置 付けることができる。そして、Lorenz 数 [式 (2)] に倣い、その比例定数

$$\mathcal{L}_{\rm m} := \frac{5}{2} \left(\frac{k_{\rm B}}{g\mu_{\rm B}} \right)^2 \tag{22}$$

を「マグノン Lorenz 数」とよぶことにする。ここで、マグノンの輸送係数 \mathcal{L}_{ij} その ものは元来、多重対数関数 Li_s(e^{-b}) (s = 3/2, 5/2, 7/2) によって特徴づけられてお り、無次元化された逆温度 $b := \Delta/(k_{\rm B}T)$ を通じて指数関数的にも逆温度 $1/(k_{\rm B}T)$ に依存していたこと、また、WF 則は輸送係数の比として表現されることに留意され たい。

Fermi 粒子と Bose 粒子がそれぞれもたらす物性は、本質的に異なることがよく知られている。特に、量子効果が支配的となる低温領域においては、その差異はより顕著となる(例:低温下における、電子比熱とフォノン比熱の温度依存性の違い)。し

表 1 トポロジカルに自明なバルク系における、電子とマグノンの WF 則。マグ ノン WF 則は、電子の WF 則と同じく、温度について線形なふるまいを示す。本 表は、筆者らの論文³²⁾より転載された。

	電子系	マグノン系
量子統計性	Fermi 統計	Bose 統計
WF 則	$\frac{K}{\sigma} = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2 T$	$\frac{\mathcal{K}}{\overline{G}} \stackrel{\rightarrow}{=} \frac{5}{2} \left(\frac{k_{\rm B}}{g\mu_{\rm B}}\right)^2 T$
Lorenz 数	$L = \frac{\pi^2}{3} \left(\frac{k_{\rm B}}{e}\right)^2$	$\mathcal{L}_{\rm m} = \frac{5}{2} \left(\frac{k_{\rm B}}{g \mu_{\rm B}} \right)^2$

かし、式 (21) の通り、それでもなお、マグノン WF 則は電子の WF 則と同じ温度依 存性を示すことが明らかになった。こうした、WF 則の温度について線形なふるまい は、Fermi 粒子と Bose 粒子という量子統計性の違いに依らないという意味において、 普遍的性質であるといえる³¹⁾。さらに、マグノン Lorenz 数は、g 因子を除いて、物 質パラメータ (例:スピン剛性定数)に依存しない、つまり物質の種類によらない。 トポロジカルに自明なバルク系における電子とマグノンの WF 則は、表1 にまとめ られる。

最後に、電子系とマグノン系の WF 則の差異について、Fermi 粒子系と Bose 粒子 系という量子統計性の観点から議論する。電子系の輸送係数 L_{ij} は、Fermi 分布関数 を通じて Fermi エネルギー $E_{\rm F}$ により特徴づけられる。金属中の電子系では、定量的 に $K/L_{22} = 1 + O\left(\left(\frac{k_{\rm E}T}{E_{\rm F}}\right)^2\right)$ となるため、輸送係数 L_{22} を熱伝導率 K と近似的に 同一視することができることをみた。つまり、熱電場誘起の対向熱流は、無視できる ほど小さい。このように、金属中の熱電効果を熱伝導率と電気伝導率の比として特徴 づける電子系の WF 則にとって、熱電場誘起の対向熱流は重要でない。熱電場誘起 の対向熱流を無視した場合でも、式 (1) の WF 則は再現される。一方、マグノンは Bose 粒子である。そのため、輸送係数 L_{ij} は、Fermi エネルギーと本質的に無縁の Bose 分布関数により特徴づけられる。その結果、電子系とは対照的に、非平衡有効 磁場勾配に由来する対向熱流成分、 $-L_{12}L_{21}/(TL_{11})$ 、は定量的に有意となる。その

13

ため、輸送係数 *L*₂₂/*T* をマグノンの熱伝導率 *K* と同一視することはできない *¹⁵

$$\mathcal{K} \neq \mathcal{L}_{22}/T. \tag{23}$$

このように、磁性絶縁体中の熱磁気効果を熱伝導率とスピン伝導率の比として特徴づけるマグノン系の WF 則にとって、非平衡有効磁場勾配に由来する対向熱流は本質的に重要である。もし、この非平衡有効磁場勾配に誘起される対向熱流の有意な寄与を取り込まない場合、式 (21) のマグノン WF 則を再現することはできない。

§4.3 熱磁気効果

電子系の熱電効果に倣い、式 (15) から、温度勾配をかけ続けたとき、定常状態に おいてどれだけの非平衡有効磁場勾配が生じるかを表す比例係数

$$S_{\rm m} := \frac{1}{T} \frac{\mathcal{L}_{12}}{\mathcal{L}_{11}} = \frac{\partial_x B_{\rm eff}^*}{\partial_x T} \tag{24}$$

をマグノン Seebeck 係数とよぶ ^{7,9)}。そして、相反関係にある現象を(輸送係数 \mathcal{L}_{11} を単位として)特徴づける

$$\mathcal{P}_{\mathrm{m}} := \frac{\mathcal{L}_{21}}{\mathcal{L}_{11}} \tag{25}$$

をマグノン Peltier 係数とよぶ。Onsager 関係式 [式 (18c)] $\mathcal{L}_{12} = \mathcal{L}_{21}$ により ^{*16}、 マグノン Seebeck 係数とマグノン Peltier 係数の間には、

$$\mathcal{P}_{\rm m} = T \mathcal{S}_{\rm m} \tag{26}$$

^{*&}lt;sup>15</sup> 1/T が伴うのは、熱的駆動力の定式化 [式 (14)] において、 $\partial_x T$ ではなく、 $\partial_x T/T$ を採用したこ とに起因しており、形式的なものである。式 (3) のように $\partial_x T$ の形式を採用すれば、マグノンの熱 伝導率も式 (6) と同じく $\mathcal{K} = \mathcal{L}_{22} - \mathcal{L}_{12}\mathcal{L}_{21}/\mathcal{L}_{11}$ となる。

^{*&}lt;sup>16</sup> 熱的駆動力の定式化 [式 (14)] において、 $\partial_x T$ ではなく、 $\partial_x T/T$ を採用したことに留意されたい。

図 2 無次元化された逆温度 $b := \Delta/(k_{\rm B}T)$ を関数とした、磁性絶縁体接合系にお けるマグノンの熱伝導率とスピン伝導率の比。低温領域 $b \gg 1$ において、マグノ ン WF 則、 $\mathcal{K}/G \stackrel{\rightarrow}{=} [k_{\rm B}/(g\mu_{\rm B})]^2T$ 、が成立する。マグノン Lorenz 数は、磁性絶 縁体バルク系と比較して小さくなる。本図は、筆者らの論文⁷⁾より転載された。

という関係式が成立する。マグノンエネルギーギャップよりも十分低い温度領域、 $k_{\rm B}T \ll \Delta$ 、すなわち $b \gg 1$ を満たす低温領域において、両者は次の値に帰着する⁹⁾

$$S_{\rm m} \stackrel{\ensuremath{\scriptstyle\simeq}}{=} \frac{1}{g\mu_{\rm B}} \frac{\Delta}{T},$$
(27a)

$$\mathcal{P}_{\rm m} \stackrel{2}{=} \frac{\Delta}{g\mu_{\rm B}}.$$
 (27b)

§4.4 磁性絶縁体接合系のマグノン Wiedemann-Franz 則

ここまで、トポロジカルに自明な三次元磁性絶縁体バルク中のマグノン輸送に着目 し、マグノン版の WF 則および Lorenz 数が、式 (21)(22) で与えられることをみた。 一方、摂動論が適用可能な三次元磁性絶縁体接合系においては ^{*17}、マグノン WF 則

^{*&}lt;sup>17</sup> 接合系の場合、式(14)の入力は、非平衡有効磁場勾配および温度勾配ではなく、左右の非平衡有 効磁場差および温度差、として理論的には定式化される。文献³³⁾も参照されたい。

は⁷⁾

$$\frac{\mathcal{K}}{G} \stackrel{\sim}{=} \left(\frac{k_{\rm B}}{g\mu_{\rm B}}\right)^2 T \tag{28}$$

に帰着し、磁性絶縁体バルク系と比較して、マグノン Lorenz 数は小さくなる

$$\mathcal{L}_{\rm m} := \left(\frac{k_{\rm B}}{g\mu_{\rm B}}\right)^2. \tag{29}$$

マグノン Seebeck 係数およびマグノン Peltier 係数は、磁性絶縁体バルク系と同じふ るまい [式 (27a)(27b)] を示す。無次元化された逆温度 $b := \Delta/(k_{\rm B}T)$ を関数とした、 磁性絶縁体接合系におけるマグノン WF 則を第 2 図に、マグノン Seebeck 係数を 第 3 図に示す。ここで、左右の磁性絶縁体は、接合領域中のスピン交換相互作用 $J_{\rm ex}$ を通じ、弱結合しているとする ^{*18}。そして Schwinger-Keldysh 形式 ^{34, 35, 36)} [経路 順序 (contour-ordered) Green 関数] ^{37, 38)} に基づき ^{*19}、 $J_{\rm ex}$ について二次までの 摂動計算を行い、接合面近傍に生成されるスピン流および熱流を評価した。そしてマ グノンの輸送係数を導出した ^{*20}。計算の詳細は、文献 ⁷⁾ に譲りたい。

こうした、マグノン Lorenz 数の定量的違いに対する定性的理解を深めていくこと は、今後の課題である。トポロジカルに非自明な系であるマグノン Hall 系において も、ある条件下においては、式 (28) のマグノン WF 則がマグノン Hall 係数について 成立することが、文献⁸⁾で示唆されている。レーザー照射下のトポロジカル相にお

^{*&}lt;sup>18</sup> そうした弱結合は、左右の磁性絶縁体の間に、薄い非磁性絶縁体をはさむことで実現できると期待 される。

^{*19} Schwinger の先駆的貢献 (closed time path の導入) ³⁴) について、筆者は高麗雄介から教わって 以来、Schwinger-Keldysh 形式 ^{34, 35, 36}) と表記するようになった。Schwinger-Keldysh 形式 (実時間形式) と、いわゆる松原形式 ³⁹) (虚時間形式) との比較については文献 ⁴⁰) Sec. 5.7 を、 Gell-Mann and Low の定理 ⁴¹) に基づく理論形式との比較については、例えば、文献 ⁴⁰) Sec. 4.2 および文献 ⁴²) Sec. 1.1 を、それぞれ参照されたい。研究分野によっては、Schwinger-Keldysh formalism は、その経路 (closed time path) を象徴して in-in formalism ともよばれる ⁴³)。そ の経路の特性を生かした有用な Langreth 定理 ⁴⁴) については、文献 ³⁷) Appendix B.2 や文 献 ¹⁷) Sec. 4.3、文献 ³⁸) を参照されたい。

^{*20} 接合系における輸送係数を Schwinger-Keldysh 形式に基づいて評価する場合、入力(駆動力)に 対する応答関数を評価するのではなく、このような解析手順となることに留意されたい³⁷⁾。具体 例については、文献¹⁷⁾ Sec. 12.4 および Sec. 13.8、また、文献³³⁾ も参照されたい。

図3 無次元化された逆温度 $b := \Delta/(k_{\rm B}T)$ を関数とした、磁性絶縁体接合系にお けるマグノン Seebeck 係数。低温領域 $b \gg 1$ では $S_{\rm m} \stackrel{?}{=} \Delta/(g\mu_{\rm B}T)$ に帰着する。 本図は、筆者らの論文⁷⁾より転載された。

ける、マグノン WF 則の成立の可否については、文献⁴⁵⁾ Sec. IV を参照されたい。

ちなみに、Keldysh のあゆみ、および、その研究の歴史については、『In memoriam Leonid V. Keldysh』と題する文献⁴⁶⁾が詳しい。2002 年に Dresden で開催された 研究会『Progress in Nonequilibrium Green's Functions』での Keldysh の講演録 も、その文献⁴⁶⁾の付録(supporting information)として出版されている。そこで は、当時のソビエト連邦での研究活動の様子、Landau school 等、を垣間見ること ができる。Keldysh は、Landau school ではなく、Tamm (I. E. Tamm) school に 所属していた、とある。また、Keldysh 自身の研究についてだけでなく、Schwinger, Kadanoff, Baym らの研究についても、Keldysh の視点から言及されており、非常に 興味深い。Keldysh の論文³⁶⁾の Russian original は [L. V. Keldysh, ZhETF **47**, 1515 (1964)] である。文献³⁰⁾ は「Schwinger が導入した方法を用いて、Keldysh と Fujita (藤田重次)^{47, 48)}が独立に、Kadanoff-Baym 方程式を導出した」と Sec. 3.1 で言及している^{*21}。

^{*&}lt;sup>21</sup> Kadanoff, Baym, Keldysh そして Schwinger らの研究の歴史的経緯については、文献¹⁷⁾ Sec.

§5 関連事項

本稿で紹介した非平衡有効磁場は、研究分野によっては、非平衡スピン化学ポテン シャル^{49,50,51,52)}、元来は Johnson-Silsbee ポテンシャル⁵³⁾、として理解されて おり、実験的検証も進んでいる。マイクロ波ポンピングによる準平衡マグノン凝縮現 象の室温での観測⁵⁴⁾が報告されたことが、一つの契機になったと推測される。準平 衡マグノン凝縮については、文献⁵⁵⁾を参照されたい。非平衡スピン化学ポテンシャ ル⁵⁶⁾、および、そのマグノンスピン伝導率の測定⁵⁷⁾も報告されている。非平衡下 においてのみ、スピン(マグノン)にとって力学的駆動力として作用することに留意 されたい。

低次元スピン系では量子ゆらぎが強くなるため、マグノン描像は破綻する¹⁰⁾。量 子スピン鎖⁵⁸⁾ に対する、朝永-Luttinger 液体模型に基づく熱伝導率の解析、対応 する WF 則、そして性能指数をはじめとする熱磁気効果については、それぞれ、文 献^{59,60,61)} を参照されたい。

§6 展望

スピン流および熱流の測定技術は、近年、著しい進展を遂げている。紙面の都合 上、ここ五年間に限っても(それ以前の発展は文献^{62,32,33)}を参照されたい)、非平 衡スピン化学ポテンシャル⁵⁶⁾、マグノンスピン伝導率⁵⁷⁾、スピン波スピン流の長 距離伝搬⁶³⁾、スピン波の Snell の法則^{64,65)}、等の測定が報告されている。さらに、 低温領域におけるマグノン物性の実験的検証も進んでいる^{66,67,68)}。これらを鑑み、 本稿で紹介したマグノン WF 則も、原理的にはすでに測定可能であると期待できる。

本稿では、磁性絶縁体バルク系におけるマグノン WF 則⁹⁾を、通常の(半古典的) Boltzmann 方程式をもとにして紹介した。文献¹⁷⁾ Sec. 6 では、通常の Boltzmann 方程式が、勾配展開の最低次近似およびスペクトル関数に対する準粒子近似を経て、

⁵ および文献⁴²⁾ Sec. 1.1 も参照されたい。

量子輸送方程式から導出される様が、詳細に記述されている。特に「そうした近似 条件を工夫することで、量子力学的な補正を輸送方程式に取り込むことが可能であ る」と Sec. 6.3 で言及している。そうした量子補正は、はたしてマグノン WF 則に 影響するのか、また、その効果はどのように表現されるのか、今後の展開が期待され る⁶⁹⁾。

§7 おわりに

本稿では、伝導電子が本質的に不在である磁性絶縁体を舞台として、磁気を担う Bose 準粒子であるマグノンが担うスピン流および熱流を通じ、マグノン輸送に宿る 熱磁気効果をみた。特に、マグノン版の WF 則を紹介し、WF 則の温度に対して線形 なふるまいが、量子統計性の違い(Fermi 粒子と Bose 粒子)に依らないという意味 において、普遍的な性質であることをみた。しかし、熱伝導率の評価には、量子統計 性の違いに応じた注意が必要である。熱伝導率を測定するために温度勾配をかけ続け ると、粒子の移動に伴い、粒子がうけるポテンシャルに勾配が生じる。その結果、こ の非平衡系に特有の力学的駆動力によって、対向熱流が発生する。Fermi エネルギー によって特徴づけられる金属中の電子系の場合、この対向熱流は抑制され、定量的に 無視できるほど小さくなる。一方、Bose 統計にしたがうマグノン系の場合、この対 向熱流は定量的に有意となる。そのおかげで、マグノン WF 則は温度に対して線形 なふるまいを示す。

広中平祐の著書『生きること学ぶこと』集英社(2011)によると、岡潔からうけた 「問題というものは、あなたのやり方とは逆に、具体的な問題からどんどん抽象して いって、最終的に最も理想的な形にすることが大切だ」というアドバイスが一つの きっかけとなって特異点解消の問題を解決することができ、Fields 賞につながった、 とある。本研究では、物性理論研究の標準的方法に倣い、ハミルトニアンを指定して 具体的計算を行うことにより、マグノン WF 則を導出した。ハミルトニアンの具体 的な形を指定することなく、任意の Bose 粒子系のハミルトニアン、という一般性を 保ったまま議論することができれば、マグノン WF 則に対する定性的理解をより深 めることができると期待する。筆者はこれまで物理学を使って研究活動をおこなって きたが、そのようにして物理学を創ることにささやかながら貢献することができれ ば、筆者にとって望外の喜びである。

謝辞

本稿で紹介した研究は、Se Kwon Kim, 高吉慎太郎, Pascal Simon, Jelena Klinovaja, Daniel Loss の各氏との共同研究に基づく。本稿の作成にあたり、中堂博之、大 沼悠一、荒木康史、高麗雄介の各氏から有益な助言をいただいた。紙面の都合上、皆 様を列挙することはできないが、お世話になった多くの研究者の方々に感謝する。同 様の理由により、参考文献について、必ずしも網羅的ではないかもしれない点、あら かじめお断りしておく。ご容赦願いたい。本誌の特性を鑑み、日本語で書かれた、入 手しやすい優れた文献を優先させていただいた。本稿で紹介した研究の一部は、文部 科学省卓越研究員事業、日本学術振興会-ETH Zurich 共同事業(日本 – スイス若手 研究者交流事業)、JSPS Postdoctoral Fellow for Research Abroad (No. 26-143), JSPS Research Fellow (No. 25-2747)、Swiss National Science Foundation、NCCR QSIT からの支援のもとに行われた。最後に、面識のなかった筆者を博士課程の時分 よりあたたかく迎えてくださった Daniel Loss 氏に、この場をお借りして改めて、心 より感謝申し上げます。

〔参考文献〕

- 1) R. Franz and G. Wiedemann. Annalen der Physik, Vol. 165, p. 497, 1853.
- E. M. Lifshitz and L. P. Pitaevskii. *Physical Kinetics: Landau and Lifshitz Course of Theoretical Physics Volume 10*. Pergamon Press, 1981.
- N. W. Ashcroft and N. D. Mermin. Solid State Physics. Brooks Cole, Belmont, CA, 1976.
- 4) 山本義隆. 熱学思想の史的展開 1 熱とエントロピー. 筑摩書房, 2008.
- 5) 山本義隆. 熱学思想の史的展開 2 熱とエントロピー. 筑摩書房, 2009.
- 6) 山本義隆. 熱学思想の史的展開 3 熱とエントロピー. 筑摩書房, 2009.
- 7) K. Nakata, P. Simon, and D. Loss. *Phys. Rev. B*, Vol. 92, p. 134425, 2015.
- 8) K. Nakata, J. Klinovaja, and D. Loss. Phys. Rev. B, Vol. 95, p. 125429, 2017.
- 9) K. Nakata, S. K. Kim, J. Klinovaja, and D. Loss. *Phys. Rev. B*, Vol. 96, p. 224414, 2017.
- 10) 久保健. 物性研究, Vol. 75, p. 175, 2000.
- 11) C. L. Kane and M. P. A. Fisher. Phys. Rev. B, Vol. 55, p. 15832, 1997.
- 12) N. Read and D. Green. Phys. Rev. B, Vol. 61, p. 10267, 2000.
- 13) 中嶋貞雄. 線形応答理論の成立. 日本物理學會誌, Vol. 51, p. 699, 1996.
- J. M. Ziman. Principles of the Theory of Solids: Seond Edition. Cambridge University Press, Cambridge, 1979.
- 15) 斯波弘行. 基礎の固体物理学. 培風館, 2007.
- A. A. Abrikosov. Fundamentals of the Theory of Metals. Dover Publications, 2017.
- H. Haug and A.P. Jauho. Quantum Kinetics in Transport and Optics of Semiconductors. Springer New York, 2007.

- 18) 北孝文. 物性研究, Vol. 90, p. 1, 2008.
- 19) T. Kita. Prog. Theor. Phys., Vol. 123, p. 581, 2010.
- 20) S. Murakami and A. Okamoto. J. Phys. Soc. Jpn., Vol. 86, p. 011010, 2017.
- H. Kondo, Y. Akagi, and H. Katsura. Prog. Theor. Exp. Phys., p. ptaa151, 2020.
- 22) V. Bonbien, F. Zhuo, A. Salimath, O. Ly, A. Abbout, and A. Manchon. arXiv:2102.01632.
- 23) 小野瀬佳文, 井手上敏也, 桂法称, 塩見雄毅, 永長直人, 十倉好紀. 固体物理,
 Vol. 46, p. 47, 2011.
- 24) 村上修一. 固体物理, Vol. 50, p. 631, 2015.
- 25) 松本遼. 物性研究, Vol. 96, p. 580, 2011.
- 26) F. D. M. Haldane and D. P. Arovas. Phys. Rev. B, Vol. 52, p. 4223, 1995.
- 27) F. Meier and D. Loss. Phys. Rev. Lett., Vol. 90, p. 167204, 2003.
- 28) S. Fujimoto. Phys. Rev. Lett., Vol. 103, p. 047203, 2009.
- G. D. Mahan. *Many-Particle Physics*. Kluwer Academic, Plenum Publishers, New York, 2000.
- 30) P. Danielewicz. Ann. Phys., Vol. 152, p. 239, 1984.
- 31) A. J. Leggett. Private communication (2015).
- 32) K. Nakata, P. Simon, and D. Loss. J. Phys. D: Appl. Phys., Vol. 50, p. 114004, 2017.
- 33) 大沼悠一. 磁性絶縁体/金属二層構造におけるスピン流生成の微視的理論. 博士論 文, 東北大学, 2016.
- 34) J. Schwinger. J. Math. Phys, Vol. 2, p. 407, 1961.
- 35) P. C. Martin and J. Schwinger. Phys. Rev., Vol. 115, p. 1342, 1959.
- 36) L. V. Keldysh. Sov. Phys. JETP, Vol. 20, p. 1018, 1965.
- 37) G. Tatara, H. Kohno, and J. Shibata. Physics Report, Vol. 468, p. 213, 2008.
- 38) 柴田絢也, 河野浩, 多々良源. 固体物理, Vol. 43, p. 319, 2008.

- 39) T. Matsubara. Prog. Theor. Phys., Vol. 14, p. 351, 1955.
- J. Rammer. Quantum Field Theory of Non-equilibrium States. Cambridge University Press, Cambridge, 2007.
- 41) M. Gell-Mann and F. Low. Phys. Rev., Vol. 84, p. 350, 1951.
- A. Kamenev. Field Theory of Non-Equilibrium Systems. Cambridge University Press, 2011.
- 43) Y. Korai and T. Tanaka. Phys. Rev. D, Vol. 87, p. 024013, 2013.
- 44) D. C. Langreth and J. W. Wilkins. Phys. Rev. B, Vol. 6, p. 3189, 1972.
- 45) K. Nakata, S. K. Kim, and S. Takayoshi. *Phys. Rev. B*, Vol. 100, p. 014421, 2019.
- 46) M. Bonitz, A. Jauho, M. Sadovskii, and S. Tikhodeev. *physica status solidi* (b), Vol. 256, p. 1800600, 2019.
- 47) S. Fujita. *Physica*, Vol. 30, p. 848, 1964.
- 48) S. Fujita. Introduction to Non-Equilibrium Quantum Statistical Mechanics.W. B. Saunders Company, Philadelphia, 1966.
- 49) V. Basso, E. Ferraro, A. Magni, A. Sola, M. Kuepferling, and M. Pasquale. *Phys. Rev. B*, Vol. 93, p. 184421, 2016.
- 50) V. Basso, E. Ferraro, and M. Piazzi. Phys. Rev. B, Vol. 94, p. 144422, 2016.
- 51) V. Basso, E. Ferraro, and M. Piazzi. Phys. Rev. B, Vol. 94, p. 179907, 2016.
- 52) L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A. Duine, and B. J. van Wees. *Phys. Rev. B*, Vol. 94, p. 014412, 2016.
- 53) M. Johnson and R. H. Silsbee. Phys. Rev. B, Vol. 35, p. 4959, 1987.
- 54) S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A. Melkov, A. A. Serga,
 B. Hillebrands, and A. N. Slavin. *Nature (London)*, Vol. 443, p. 430, 2006.
- 55) Y. M. Bunkov and G. E. Volovik. Novel Superfluids (Chapter IV); eds. K. H. Bennemann and J. B. Ketterson. Oxford University Press, Oxford, 2013, arXiv:1003.4889.

- 56) C. Du, T. V. der Sar, T. X. Zhou, P. Upadhyaya, F. Casola, H. Zhang, M. C. Onbasli, C. A. Ross, R. L. Walsworth, Y. Tserkovnyak, and A. Yacoby. *Science*, Vol. 357, p. 195, 2017.
- 57) L. J. Cornelissen, J. Shan, and B. J. van Wees. *Phys. Rev. B*, Vol. 94, p. 180402, 2016.
- 58) T. Giamarchi. Quantum Physics in One Dimension. Oxford University Press, London, 2003.
- 59) C. L. Kane and M. P. A. Fisher. Phys. Rev. Lett., Vol. 76, p. 3192, 1996.
- 60) A. Klümper and K. Sakai. J. Phys. A, Vol. 35, p. 2173, 2002.
- 61) S. Furukawa, D. Ikeda, and K. Sakai. J. Phys. Soc. Jpn., Vol. 74, p. 3241, 2005.
- 62) A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands. Nat. Phys., Vol. 11, p. 453, 2015.
- 63) L. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef, and B. J. van Wees. Nat. Phys., Vol. 11, p. 1022, 2015.
- 64) K. Tanabe, R. Matsumoto, J. Ohe, S. Murakami, T. Moriyama, D. Chiba,K. Kobayashi, and T. Ono. *Appl. Phys. Express*, Vol. 7, p. 053001, 2014.
- 65) J. Stigloher, M. Decker, H. S. Körner, K. Tanabe, T. Moriyama, T. Taniguchi, H. Hata, M. Madami, G. Gubbiotti, K. Kobayashi, T. Ono, and C. H. Back. *Phys. Rev. Lett.*, Vol. 117, p. 037204, 2016.
- 66) Y. Tabuchi, S. Ichino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura. *Phys. Rev. Lett.*, Vol. 113, p. 083603, 2014.
- 67) Y. Tabuchi, S. Ichino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura. *Science*, Vol. 349, p. 405, 2015.
- 68) Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura. *Comptes Rendus Physique*, Vol. 17, p. 729, 2016.
- 69) D. Loss. Private communication (2015).

英文題目・英文シノプシス

英文題目: Magnonic Wiedemann-Franz law

英文シノプシス: We present a magnonic analogue of the Wiedemann-Franz law for electron transport. We show that the ratio of heat to spin conductivity of magnons in insulating magnets is linear in temperature, being universal, in spite of the fact that the quantum-statistical properties of bosons and fermions are fundamentally different, in particular in the low temperature regime where quantum effects dominate.

著者略歴・専攻など

仲田 光樹 なかた こうき 2014 京都大学大学院理学研究科物理学・宇宙物理学専攻修了, 博士(理学) 同年 Basel 大学 博士研究員 2018 日本原子力研究開発機構(先端基礎研究センター)卓越研究員 2021 同副主任研究員,現在に至る 専門 物性理論 e-mail: nakata.koki@jaea.go.jp