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Optomagnonic Josephson effect in antiferromagnets
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1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

(Dated: September 6, 2021)

Combining advanced technologies of optics and antiferromagnetic spintronics, we present a method
to realize ultrafast spin transport. The optical Barnett effect provokes quasiequilibrium Bose-
Einstein condensates (BECs) of magnons associated with the fully spin-polarized state in insulating
antiferromagnets (AFs). This optomagnonic Barnett effect enables us to exploit coherent magnons
of high frequency over the conventional ones of (sub-) terahertz associated with the Néel magnetic
order. We show that the macroscopic coherence of those optical magnon BECs induces a spin
current across the junction interface of weakly coupled two insulating AFs, and this optomagnonic
Josephson effect realizes ultrafast spin transport. The period of the optomagnonic Josephson os-
cillation is much shorter than the conventional one of the order of picoseconds. Thus we propose
a way to realize ultrafast spin transport in AFs by means of the macroscopic coherence of optical
magnon BECs.

I. INTRODUCTION

For the realization of rapid and efficient transmission of
information over electronics, inventing methods to han-
dle a fast and flexible manipulation of spin transport is
a central task in the field of spintronics [1–7]. For this
goal, antiferromagnets (AFs) [8–16] have an advantage
over ferromagnets (FMs) [17–20] in that spin dynamics
is much faster. The energy scale of FMs is character-
ized by the macroscopic and classical magnetic dipole in-
teraction in gigahertz (GHz) regime [17], and hence the
spin Josephson oscillation [21] operates of the order of
nanoseconds (ns) [4, 22]. On the other hand, the en-
ergy scale of AFs arises from microscopic and quantum-
mechanical spin exchange interactions. Therefore AFs
can operate at much higher frequency. Thus AFs are ex-
pected to be the best platform for ultrafast transport of
spin information [3, 5, 8–10]. The observation of spin cur-
rents by means of sub-terahertz (sub-THz) spin pumping
in AFs was reported in Refs. [13, 14]. Making use of the
property of AFs, spin Josephson effects of THz associ-
ated with the Néel magnetic order [23] were theoretically
proposed in Refs. [24, 25]. The spin Josephson oscillation
operates of the order of picoseconds (ps).

Another significant development in the manipulation
of magnetism is the utilization of laser-matter cou-
pling [26–29]. By means of the optical method [30–
36], the reversal of magnetization was achieved experi-
mentally [37–40], and an optical analog of the conven-
tional Barnett effect [41–43], i.e., laser-induced magne-
tization [44, 45], was proposed theoretically [35, 36].
This optical Barnett effect even provokes quasiequilib-
rium Bose-Einstein condensates (BECs) of magnons [46],
i.e., optical magnon BECs, and this behavior is espe-
cially called the optomagnonic Barnett effect [47]. Thus
the interdisciplinary field between optics and magnon-
ics [11, 48–50], dubbed optomagnonics, has been attract-
ing much attention.

In this paper using the macroscopic coherence of the
optical magnon BECs, we propose a method for the re-
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FIG. 1. Schematic picture of the optomagnonic Josephson
junction. The two insulating AFs are separated by a thin
film of a nonmagnetic insulator and weakly exchange-coupled.
We assume an identical material for each AF subjected to a
circularly polarized laser with the opposite polarization η =
±. In the vicinity of Ω = ΩBEC, the optical Barnett effect
realizes the quasiequilibrium magnon BEC, i.e., the optical
magnon BEC, associated with the fully spin-polarized state
in the high frequency regime, where spins in the left (right)
AF are along the +(-) z axis due to the opposite circular
polarization (cf., Tables I and II).

alization of ultrafast spin transport in insulating AFs.
The optical Barnett effect realizes the fully spin-polarized
state of insulating AFs. This enables us to exploit co-
herent magnons of high frequency over the conventional
ones of (sub-) THz associated with the Néel magnetic
order. We show that the macroscopic coherence of the
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optical magnon BECs induces a spin current across the
junction interface of weakly coupled two insulating AFs
(Fig. 1). We refer to this phenomenon as the opto-
magnonic Josephson effect. The period of the opto-
magnonic Josephson oscillation is much shorter than the
conventional one of the order of picoseconds. This ul-
trafast phenomenon intrinsic to AFs, the optomagnonic
Josephson effect, is the result from the confluence of op-
tics and antiferromagnetic magnonics. We also discuss
an experimental scheme for the observation.

We remark that in this paper using the scheme of
Refs. [44, 45], we consider transport of the optical
magnon BECs in AFs, i.e., magnon BECs out of equi-
librium, associated with the fully spin-polarized state
of high frequency over the conventional one of (sub-)
THz associated with the Néel magnetic order [51] (cf.,
Sec. III A). See Refs. [52, 53] for magnon BECs in equi-
librium subjected to a static magnetic field.

This paper is organized as follows. In Sec. II we quickly
review the optical Barnett effect. Then we investigate the
prominent application, the optomagnonic Josephson ef-
fect, in Sec. III and give an estimate for the experimental
feasibility in Sec. IV. Finally, we remark on several issues
in Sec. V and summarize in Sec. VI. Technical details are
described in the Appendices.

II. OPTICAL BARNETT EFFECT

Before going to the main subject, for readers’ conve-
nience let us quickly review the mechanism of the laser-
induced magnetization [44, 45], i.e., the optical Barnett
effect [35, 36]. See Refs. [44, 45] for details [54], espe-
cially for the importance of modulating laser frequency
adiabatically by the chirping technique [55, 56].
We consider a magnetic insulator with a large elec-

tronic gap described by the Hamiltonian H0 which has
the U(1) symmetry about an axis, and we take it the
z axis for convenience. Due to the large electronic gap,
spins in the circularly polarized laser interact only with
the magnetic component of the laser through the Zee-
man coupling. We take the polarization plane of the
laser as the xy plane. We adiabatically apply the laser
of the frequency Ω > 0 with the magnetic field ampli-
tude B0 > 0. For the generation of the optical Bar-
nett effect, the driving field amplitude B0 > 0 should
take a nonzero value B0 ̸= 0 of being strong enough
that B0 > |u0|, where u0 is the potential energy of
magnons in the lattice formed by surroundings (e.g.,
phonons and impurities, etc.). Since throughout this pa-
per we assume the clean magnet at low temperatures,
the condition is satisfied. The spin system subjected to
the laser is described by the time-periodic Hamiltonian,
Ĥ(t) = Ĥ0 − B0[Ŝ

x
tot cos(Ωt) + ηŜy

tot sin(Ωt)], where the
sign η = +(−) represents the left (right) circular polar-
ization and S

x(y,z)
tot :=

∑
j S

x(y,z)
j is the summation over

spin operators on all the spin sites. Using the unitary
transformation, we obtain an effective static Hamiltonian

in the rotational frame [57] of the frequency ηΩ around
the z axis as [44, 45]

Ĥeff = Ĥ0 − ηℏΩŜz
tot +O(B0). (1)

Hereafter we assume a weak laser field B0 ≪ ℏΩ where
the B0S

x
tot term is negligibly small. In Eq. (1), the ef-

fective magnetic field Ω/γ with the gyromagnetic ratio
γ may be regarded as an optical analog [35, 36] of the
conventional Barnett field [41–43] along the z axis. This
optical Barnett field develops the total magnetization of
magnets. The direction of the optical Barnett field is
controllable by means of the change of the laser chirality
η = ±. The effective static Hamiltonian Ĥeff [Eq. (1)]
has the U(1) symmetry.
We remark that modulating laser frequency Ω slowly

enough through the chirping technique [55, 56], the adi-
abatic time-evolution is realized [44, 45]. Therefore the
spin configuration is determined in the way that the en-
ergy of the Hamiltonian Ĥeff [Eq. (1)] per a site is mini-
mized.

III. OPTOMAGNONIC JOSEPHSON EFFECT

A. Optical magnon BEC in AF

We apply the optical Barnett effect [Eq. (1)] to an in-
sulating AF described by the Hamiltonian,

Ĥ0 = J
∑
⟨i,j⟩

Ŝi · Ŝj +D
∑
i

(Ŝz
i )

2, (2)

where Ŝi(j) = (Ŝx
i(j), Ŝ

y
i(j), Ŝ

z
i(j)) represents the spin oper-

ator on the i(j)-th site having the spin quantum number
S, J > 0 is the exchange interaction between the nearest
neighbor spins ⟨i, j⟩, and D > 0 is the easy-plane single
ion anisotropy that stabilizes the Néel magnetic order on
the xy plane. Hereafter, we consider a cubic lattice.
First, the optical Barnett field [Eq. (1)] develops the

total magnetization of the AF along the z axis continu-
ously. We find from a microscopic calculation [51] that
in the high frequency regime Ω > ΩBEC defined as

ΩBEC := 2(6J +D)S/ℏ, (3)

spins are fully polarized along the ηz axis, and confirmed
the absence of the first order transition in the vicinity of
ΩBEC [51]. This assures the validity of the description in
terms of the magnon picture [58]. Hence we move to the
analysis by the magnon theory next. For the details of
the calculation, see the Appendices [51].
Note that magnons acquire the effective magnetic field

in the corotating frame as [51] Beff = (Bx
eff , 0, B

z
eff),

where Bx
eff := B0 along the x axis and Bz

eff := ℏ(Ω −
ΩBEC) + 6JS along the z axis. Since 6JS ≫ B0 in
general, the effective magnetic field along the x axis
Bx

eff = B0 is negligibly small compared with the z com-
ponent Bx

eff ≪ Bz
eff even in the vicinity of Ω ≈ ΩBEC.
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Throughout this paper we work under the assumption
that 0 < |u0| < B0 ≪ ℏΩ, 6JS.
Next, decreasing the frequency Ω from above the criti-

cal value ΩBEC in which spins are full polarized, magnon
BEC transition is provoked on the point Ω = ΩBEC and
magnons of π mode, k = π := (π/a, π/a, π/a), begin
to condensate, where k is the wavenumber and a is the
lattice constant. We refer to this behavior as the opto-
magnonic Barnett effect, and the resulting magnon con-
densate as the optical magnon BEC [47]. In the frequency
Ω < ΩBEC, the AF acquires a transverse component of lo-
cal magnetization associated with the spontaneous U(1)
symmetry breaking, and thus forms a macroscopic coher-
ent state. The optical magnon BEC state is described by
the effective Hamiltonian in the rotational frame of the
frequency ηΩ around the z axis as [51]

Ĥeff(k = π) = ℏ(Ω− ΩBEC)â
†
πâπ + Uâ†πâ

†
πâπâπ, (4)

where â(†)π is the bosonic annihilation (creation) operator
for magnons of the π mode in condensation,

U :=
ℏΩBEC

2SN
(5)

represents the magnitude of magnon-magnon interac-
tions, and N is the number of spin sites. The magnon-
magnon interaction is repulsive U > 0. Therefore the
magnon BEC characterized by the expectation value
⟨âπ⟩ ̸= 0 are stable [52].

Finally, the effective Hamiltonian for the optical
magnon BEC in the rotational frame is recast into the
Hamiltonian in the original stationary reference frame
as [51]

Ĥk=π = −ℏΩBECb̂
†
π b̂π + Ub̂†π b̂

†
π b̂π b̂π, (6)

where b̂
(†)
π is the magnon operator in the reference frame

and â
(†)
k = R̂†b̂

(†)
k R̂ for R̂ := exp(ηiΩtŜz

tot). This Hamil-
tonian depends solely on the material parameters ΩBEC

[Eqs. (3) and (5)], while it is independent of laser fre-
quency. Note that the number of magnon BECs is char-
acterized as a function of laser frequency [51].

We remark that condensation of the π mode magnons
does not induce a Josephson-like effect in the single AF
since the xy components of the nearest neighbor spins are
in the opposite direction and this results in sin(±π) = 0.

B. Optomagnonic Josephson junction

In this paper using the optical magnon BEC in the
vicinity of Ω = ΩBEC, we investigate the application of
the macroscopic coherence to ultrafast spin transport.
To this end, we consider a junction of weakly exchange-
coupled two insulating AFs shown in Fig. 1. The two
AFs are separated by a thin film of a nonmagnetic in-
sulator [24] and weakly exchange-coupled. The AFs are
subjected to a circularly polarized laser of the frequency

TABLE I. Comparison of the optical magnon BECs in the
junction of AFs shown in Fig. 1.

Left BEC Right BEC
Frequency O(10) THz O(10) THz
Circular polarization η = + η = −
Spin polarization +z axis −z axis
Spin angular momentum − +
Macroscopic coherent state bL =

√
NLe

iθL bR =
√
NRe

−iθR

Ω < ΩBEC with the opposite polarization η = ±. Thus
optical magnon BECs are realized and spins of the left
(right) AF are aligned along the +(-) z axis due to the
opposite circular polarization (Table I).
First, we assume an identical material for each AF.

From Eq. (6) the optical magnon BEC in the left (right)
AF is described by the Hamiltonian ĤL(R) in the original
stationary frame as [51]

ĤL =ℏΩLb̂
†
Lb̂L + ULb̂

†
Lb̂

†
Lb̂Lb̂L, (7a)

ĤR =ℏΩRb̂
†
Rb̂R + URb̂

†
Rb̂

†
Rb̂Rb̂R, (7b)

where

ΩL =ΩR := −ΩBEC < 0, (8a)
UL =UR := U > 0, (8b)

and b̂
(†)
L(R) is the bosonic annihilation (creation) operator

for magnon condensates of the π mode in the left (right)
AF.
Next, we focus on the junction interface connecting the

two AFs. Due to a finite overlap of the wave functions
of the localized spins that reside on the relevant two-
dimensional boundaries of each insulator, there exists in
general a finite exchange interaction between the bound-
ary spins [22, 59]. This induces a tunneling process of
magnons across the junction interface. Let us denote the
tunneling amplitude as | K |. Since two AFs are sepa-
rated by a thin film of a nonmagnetic insulator [24], those
are weakly exchange-coupled. In the tunneling limit, the
energy scale is assumed to be | K |≪| ℏΩL(R) | and
| K |≪ J . During the tunneling process, the spin angular
momentum is exchanged between the left and the right
BECs via magnons. Since spins in the left (right) AF
are aligned along the +(-) z axis by the opposite circular
polarization η = ±, the magnon of the left BEC car-
ries the spin angular momentum δSz

L = −, while that of
the right BEC carries the opposite δSz

R = +. Therefore,
within the low energy regime (i.e., in the lowest order of
magnon operators), from the conservation law of the to-
tal spin angular momentum the tunneling process at the
junction interface is effectively described by the Hamil-
tonian [51] V̂ = −K(b̂Lb̂R + b̂†Lb̂

†
R), where sgn(K) = ± in

general [24, 60]. Note that the total number of magnons
is not conserved due to this tunneling process.
Finally, the total Hamiltonian for the optomagnonic

Josephson junction, Fig. 1, is summarized as Ĥtot = ĤL+
ĤR+ V̂ . See the Appendices for the tunneling amplitude
in spin language [51].
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C. Optomagnonic Josephson equation

Starting from the Hamiltonian Ĥtot of the junction
system, we derive the spin Josephson equation of the
optomagnonic Barnett effect. First, since the optical
magnon BEC is a macroscopic coherent state, it acquires
a macroscopic coherence ⟨b̂L(R)(t)⟩ =: bL(R)(t) ̸= 0 char-
acterized as bL(t) =

√
NL(t)e

iθL(t) ∈ C and bR(t) =√
NR(t)e

−iθR(t) ∈ C, where NL(R)(t) is the number of
magnon BECs in the left (right) insulator and θL(R) is
the phase [4]. The sign change in the phase, iθL(t) and
−iθR(t), arises from the fact that spins of the left (right)
AF are aligned along the +(-) z axis by the opposite
circular polarization η = ±; the spin raising operation
corresponds to the magnon annihilation in the left BEC,
while to the magnon creation in the right BEC (Table. I).
Next, using the Heisenberg equation of motion for Ĥtot

and taking the expectation value ⟨b̂L(R)(t)⟩ =: bL(R)(t),
we derive [51] the two-state model [22, 61] for the optical
magnon BECs

iℏ
dbL(t)

dt
=ℏΩLbL + 2ULNLbL −Kb†R, (9a)

iℏ
dbR(t)

dt
=ℏΩRbR + 2URNRbR −Kb†L. (9b)

Then we divide Eqs. (9a) and (9b) into the real and imag-
inary parts as

d

dt
[NL(t)−NR(t)] = 0, (10a)

d

dt
[NL(t) +NR(t)] = −4K

ℏ
√
NLNRsin(θR − θL),

(10b)

−ℏ
dθL(t)

dt
= (ℏΩL + 2ULNL)−K

√
NR

NL
cos(θR − θL),

(10c)

ℏ
dθR(t)

dt
= (ℏΩR + 2URNR)−K

√
NL

NR
cos(θR − θL).

(10d)

Eqs. (10a) and (10b) mean that the total number of
magnons in condensation N+(t) := NL(t) +NR(t) is not
conserved due to the tunneling process, while the total
spin angular momentum N− := NL(t) − NR(t) is con-
served. This ensures that the left BEC acquires the spin
angular momentum lost in the right BEC, and vice versa.
The initial condition N+(0) and N−(0), i.e., NL(R)(0), is
characterized as a function of laser frequency [51].
Finally, we introduce the variable z(t) to describe the

spin current across the junction interface as z(t) :=
N+(t)/N−, and define the relative phase as θ(t) :=
θR(t)−θL(t), where | z(t) |≥ 1 by definition. In this work,
without loss of generality we assume the initial condition
N−(0) > 0 for convenience. Since N− := NL − NR is
constant, this ensures z(t) ≥ 1. In terms of the variables

I(t)

 t 
4×10

-2
8×10

-2
[ps]

FIG. 2. Plot of the rescaled Josephson spin current, I(t) :=
[ℏ/(2K)][dz/(dt)], as a function of time in the vicinity of Ω =
ΩBEC = 75 THz obtained by numerically solving Eqs. (11a)
and (11b) with the initial condition z(0) = 102 and θ(0) = 0
for experimental values given in the main text. Assuming
K = 0.375 µev, the period of the optomagnonic Josephson
oscillation becomes O(10−2) ps.

z(t) and θ(t), Eqs. (10a) - (10d) are summarized as [51]

dz(t)

dt
=− 2K

ℏ
√
z(t)2 − 1sinθ(t), (11a)

dθ(t)

dt
=
[
(ΩL +ΩR) +

UL − UR

ℏ
N−

]
(11b)

+
(UL + UR

ℏ
N−

)
z(t)− 2K

ℏ
z(t)√

z(t)2 − 1
cosθ(t).

This is the spin Josephson equation for the junction of the
AFs shown in Fig. 1 subjected to the optomagnonic Bar-
nett effect. We refer to this equation as the optomagnonic
Josephson equation. Eq. (11a), dz(t)/(dt) ∝ sinθ(t),
describes the Josephson spin current across the junc-
tion interface, and Eq. (11b), dθ/(dt), shows the time-
evolution of the relative phase. The numerical plot of the
Josephson spin current is depicted in Fig. 2. Eq. (11a)
means that due to the macroscopic coherence of the op-
tical magnon BEC, the spin current of O(K) arises from
the phase difference. This is in contrast to the junc-
tion of noncondensed magnons [59], where spin currents
of O(K2) are generated, e.g., by the temperature dif-
ference. Note that being independent of the sign of
the parameter K, the spin Josephson effect is induced;
Eqs. (11a) and (11b) are invariant under the transfor-
mation K → −K and θ(t) → θ(t) + π. Thus the effect
of the sign change, sgn(K) = ±, is absorbed into the
initial condition of the relative phase and the transport
property remains unchanged essentially.
We remark that the quasiequilibrium magnon BEC of

π mode corresponds to a macroscopic coherent spin pre-
cession where the xy components of the nearest neighbor
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TABLE II. The comparison of the spin Josephson effect in
the AF-AF junction; the conventional spin Josephson effect
of Ref. [24, 25] and the optomagnonic Josephson effect of this
study (Fig. 1).

Conventional Optomagnonic
Order Néel magnetic order Fully spin-polarized state
Coherence e.g., AF resonance Optical Barnett effect
Frequency Sub-THz or O(1) THz O(10) THz
Period O(1) ps O(10−2) ps

spins in the single AF are in the opposite direction. This
does not affect the Josephson effect in the junction of the
AFs since the Josephson equations [Eqs. (11a) and (11b)]
are invariant under the transformation θ(t) → θ(t) + 2π.

D. Optomagnonic Josephson spin current

The transition point for the optical magnon BEC of the
AF amounts to ΩBEC = O(10) THz. Under some con-
ditions, Eq. (11b) approximately reduces to dθ(t)/(dt) ≈
ΩL+ΩR and essentially results in θ(t) = (ΩL+ΩR)t+θ(0).
From Eq. (11a) we find that dz(t)/(dt) ∝ sin[(ΩL+ΩR)t+
θ(0)]. The period of the optomagnonic Josephson oscil-
lation is estimated to be 2π/ | ΩL +ΩR |= O(10−2) ps.
Thus ultrafast spin transport is realized in AFs. We refer
to this phenomenon as the optomagnonic Josephson ef-
fect. The analytic estimation agrees with the numerical
calculation shown in Fig. 2.

IV. EXPERIMENTAL FEASIBILITY

For an estimate, we assume the following experiment
parameter values for an insulating AF, NiO, as [62–64]
J = 6.3 meV, D = 0.1 meV, and S = 1. We find that the
transition point for the optical magnon BEC amounts to
ΩBEC = 75 THz, which is much higher than the conven-
tional one Ωres = O(1) THz or sub-THz for the antifer-
romagnetic resonance associated with the Néel magnetic
order [13, 14, 24, 25]. The numerical plot of the opto-
magnonic Josephson effect is in Fig. 2 with the parame-
ter values in its caption. Given these estimates we expect
that, while being challenging, our proposal will be within
experimental reach with current device and measurement
technologies, e.g., femtosecond mid-infrared pump-probe
spectroscopy [30, 65–68] for the ultrafast spin dynam-
ics, and Brillouin light scattering (BLS) [17, 69] for the
optical magnon BEC and the resulting Josephson effect.
Ref. [70] reported the observation of the ac Josephson ef-
fect of magnon BECs in 3He-B. We expect from a theoret-
ical viewpoint that to use the inverse spin Hall effect [71]
by attaching a metal to the insulating AF will be one of
the most promising strategies for the observation of the
magnon Josephson effect in magnets.

TABLE III. The comparison of the spin Josephson effect;
the FM-FM junction of Ref. [22] through microwave pumping
and the AF-AF junction of this work (Fig. 1) through the
optomagnonic Barnett effect, where sgn(ωL) = sgn(ωR) and
sgn(ΩL) = sgn(ΩR), respectively. See Ref. [22] for the details
of the frequency ωL(R) of the left (right) BEC in the FM-FM
junction.

FM-FM junction AF-AF junction
Magnon BEC Microwave pumping Optical Barnett
Total magnon number Conserved Nonconserved
Spin angular momentum Conserved Conserved
Josephson oscillation sin[(ωL − ωR)t] sin[(ΩL +ΩR)t]
Frequency O(1) GHz O(10) THz
Period O(1) ns O(10−2) ps

V. DISCUSSION

We remark on the difference between this study
and other works on spin Josephson effects proposed in
Refs. [22, 24, 25]. In the conventional low frequency
region of the AF, coherent magnons associated with
the Néel magnetic order are available, e.g., by antifer-
romagnetic resonance [15]. However, the frequency of
the conventional coherent magnons can amount only to
Ωres = O(1) THz or sub-THz [13, 14]. Thus the period
of the resulting Josephson-like effect is estimated to be
O(1) ps [24, 25]. Note that the quasiequilibrium magnon
BEC of Ref. [22] through microwave pumping in FMs is
in the O(1) GHz regime [17], in much lower frequency,
where the spin Josephson oscillation operates of the order
of ns.
There is a distinction also in the spin Josephson equa-

tion due to the direction of the macroscopic coherent
spin precession in the BEC phase. In the same way
as in Ref. [22], the Josephson spin current of this work
[Eqs. (11a) and (11b)] is proportional to sinθ(t). How-
ever, in contrast to Ref. [22], the relative phase of this
work is described essentially as the sum of the frequency
ΩL(R) of the left (right) BEC as θ(t) = θR(t) − θL(t) =
(ΩL + ΩR)t + θ(0) where sgn(ΩL) = sgn(ΩR) [Eq. (8a)].
This arises from that through the optomagnonic Barnett
effect of the opposite circular polarization η = ±, spins
in the left (right) AF are aligned along the +(-) z axis,
see Fig. 1 (cf., Table I). Consequently, the direction of
the macroscopic coherent spin precession in the left BEC
phase becomes opposite to the one in the right. There-
fore the relative phase becomes the sum of the frequency
as θ(t) = (ΩL + ΩR)t + θ(0) with sgn(ΩL) = sgn(ΩR).
On the other hand, since spins in the FM-FM junction
of Ref. [22] are aligned along the same direction, the rela-
tive phase is characterized essentially as the difference of
the frequency ωL(R) of the left (right) BEC as (ωL−ωR)t
where sgn(ωL) = sgn(ωR). For the details of the fre-
quency ωL(R), see Ref. [22]. Thus, using the scheme of
Fig. 1 we can enhance the frequency of the Josephson os-
cillation. For all of these reasons, ultrafast spin transport
is realized in our AF-AF junction. Those are summarized
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in Tables II and III.
Several comments on our approach are in order. First,

in this paper we assume not the easy-axis anisotropy but
the easy-plane anisotropy. Therefore a spin-flop transi-
tion [72] is absent in this setup [51]. Second, we find that
a dc spin Josephson effect might be induced but realized
unstably in this setup [51]. Third, for the difference be-
tween the inverse Faraday effect [30, 32] and the optical
Barnett effect [35, 36], i.e., the laser-induced magnetiza-
tion [44, 45], see Ref. [47]. Last, throughout this paper,
we have assumed a sufficiently low temperature where
phonon degrees of freedom ceases to work [73–76]. It will
be interesting to study the effect of phonons on the spin
Josephson effect, which we leave for future work.

We remark that Ref. [77] reported experimental signa-
tures of spin superfluid in Cr2O3 subjected to a strong
magnetic field along the easy-axis. For the generation
of the spin superfluid [53], the easy-plane anisotropy is
essential, while originally Cr2O3 possesses the easy-axis
anisotropy. From this, it is expected that the applied
magnetic field changes the spin anisotropy of Cr2O3 and
effectively makes it the easy-plane. Thus we can control
the spin anisotropy. Still, to find the insulating AF which
intrinsically possesses the perfect easy-plane anisotropy,
i.e., the U(1) spin-rotational symmetry within the easy-
plane, is of significance. To the best of our knowledge,
this remains a challenge of the antiferromagnetic spin-
tronics study.

VI. CONCLUSION

Using the macroscopic coherence of the optical magnon
Bose-Einstein condensates intrinsic to insulating antifer-
romagnets, we have proposed the optomagnonic Joseph-
son effect. The optomagnonic Barnett effect associated
with the fully spin-polarized state enables us to exploit
coherent magnons of high frequency over the conven-
tional ones of (sub-) terahertz associated with the Néel
magnetic order. Applying the optomagnonic Barnett ef-
fect to the junction of weakly coupled two insulating an-
tiferromagnets, we have shown that the ultrafast spin
Josephson effect of those optical magnon Bose-Einstein
condensates is realized. The period of the optomagnonic
Josephson oscillation is much shorter than the conven-
tional one of the order of picoseconds. Our work builds a
bridge between optics and magnonics, and is expected to
become the key ingredient for the ultrafast manipulation
of spin information.
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Appendix A: Classical spin theory

In this Appendix we derive the critical frequency Ωc

for the fully spin-polarized state of AFs, and evaluate
the magnetization along the z axis as a function of laser
frequency (Fig. A.1). First, we consider the antiferro-
magnetic model described by the Hamiltonian

Ĥ0 = J
∑
⟨i,j⟩

Ŝi · Ŝj +D
∑
i

(Ŝz
i )

2. (A1)

The easy-plane single ion anisotropy D > 0 stabilizes the
Néel magnetic order on the xy plane. Under the appli-
cation of circularly polarized laser, the effective Hamilto-
nian reduces to (see the main text)

Ĥeff =Ĥ0 − ηℏΩ
∑
i

Ŝz
i . (A2)

The AF consists of the sublattice A and B. The classi-
cal spin configuration is determined in the way that the
energy per spin ϵ,

ϵ =
E

N
(A3a)

=
z0J

2
SA · SB +

D

2
[(Sz

A)
2 + (Sz

B)
2]− ηℏΩ

2
(Sz

A + Sz
B)

(A3b)

is minimized, where N is the number of spin sites, E
denotes the total energy, z0 represents the coordination
number, and SA(B) is the spin on the sublattice A (B).
Next, we focus on the vicinity of the critical fre-

quency Ωc (Fig. A.1). Since Eq. (A3b) has the
U(1) symmetry, without loss of generality we as-
sume that SA and SB are in the xz plane as
SA = (S sin θ, 0, ηS cos θ) =: (mx

A, 0,m
z
A) and SB =

(−S sin θ, 0, ηS cos θ) =: (mx
B, 0,m

z
B). Then Eq. (A3b)

is rewritten as

ϵ =
z0JS

2

2
cos(2θ) +DS2 cos2 θ − ℏΩS cos θ (A4a)

=(z0J +D)S2 cos2 θ − ℏΩS cos θ − z0JS
2

2
. (A4b)

We call the 0 < θ < π case as the V-shape phase, which
corresponds to the magnon BEC phase as we see below,
since the sublattice magnetization SA and SB form the
V-shape. For the stability of the V-shape phase 0 < θ <
π, the condition

z0J +D > 0 (A5)



7

0

1.0

0

mA
z

Ω
～

(a)

B A

B A

B A

(b)

(c)

x

z(a)(b)(c)

=12
～
ΩBEC

FIG. A.1. Plot of the magnetization along the z axis
mz

A = mz
B for η = 1 as a function of the rescaled frequency

Ω̃ := ℏΩ/J obtained by numerically solving Eq. (A4b), i.e.,
minimizing the energy ϵ, with the experimental parameter
values given in the main text. The optical Barnett field de-
velops the magnetization continuously. The absence of the
first order transition, i.e., jump of mz

A(B), assures the valid-
ity of the description in terms of magnons. (a) In the high
frequency regime Ω̃ > Ω̃BEC = 12, spins are fully polarized
along the z axis. (b) Decreasing the frequency, the optical
magnon BEC transition is provoked on the point Ω̃ = Ω̃BEC,
where the AF acquires a transverse component of local mag-
netization associated with the spontaneous U(1) symmetry
breaking. Thus a macroscopic coherent state is formed. (c)
In the low frequency regime Ω̃ ∼ 0, the Néel magnetic order is
developed on the xy plane and we take it the x axis without
loss of generality. Throughout this paper we study the optical
magnon BEC (b) in the vicinity of Ω̃ = Ω̃BEC.

is necessary. This condition corresponds to the repul-
sive interaction between magnons in the spin wave the-
ory (cf., Appendix B). The energy of Eq. (A3b) takes the
minimum at θ = 0 for ℏΩ ≥ 2(z0J + D)S and at θ =
arccos{ℏΩ/[2(z0J +D)S]} ̸= 0 for ℏΩ < 2(z0J + D)S.
Thus the critical frequency for the fully spin-polarized
state of AFs is given as

ℏΩc = 2(z0J +D)S. (A6)

Finally, magnetization along the z axis per spin is given
as

ηSz =S cos θ (A7a)

=
ℏΩ

2(z0J +D)
(A7b)

=
Ω

Ωc
S. (A7c)

The numerical plot is provided in Fig. A.1.

Appendix B: Magnon theory

In this Appendix we derive the transition point for
the magnon BEC, ΩBEC, associated with the fully spin-

polarized state in the high frequency regime, and evaluate
the number of magnon condensates in the vicinity of Ω =
ΩBEC. The ground state is fully polarized S = (0, 0, ηS)
for Ω > Ωc. First, we perform the Holstein-Primakoff
transformation,

ηŜz
i = S − n̂i,

Ŝx
i + ηiŜy

i =
√
2S

(
1− n̂i

2S

)1/2

âi,

Ŝx
i − ηiŜy

i =
√
2Sâ†i

(
1− n̂i

2S

)1/2

,

where â†i and âi are creation and annihilation operators
for bosons, i.e., magnons, and n̂i ≡ â†i âi is the number
operator. We make an expansion and retain up to the
fourth order terms of âi and â†i ,

ηŜz
i = S − n̂i,

Ŝx
i + ηiŜy

i =
√
2S

(
1− n̂i

4S

)
âi,

Ŝx
i − ηiŜy

i =
√
2Sâ†i

(
1− n̂i

4S

)
.

Using the magnon operator, the Hamiltonian [Eq. (A2)]
is rewritten as

Ĥeff = JS
∑
⟨i,j⟩

(â†i âj +H.c.)− J

4

∑
⟨i,j⟩

(â†i n̂iâj + â†i n̂j âj +H.c.)

− z0JS
∑
i

n̂i + J
∑
⟨i,j⟩

n̂in̂j − 2DS
∑
i

n̂i

+D
∑
i

n̂2
i + ℏΩ

∑
i

n̂i, (B1)

where constant terms are dropped. We consider the cubic
lattice and the configuration number is z0 = 6. After the
Fourier transform for the positional vector ri as

âk =

√
1

N

∑
i

e−ik·ri âi,

â†k =

√
1

N

∑
i

eik·ri â†i ,

n̂k = â†kâk,

we obtain

Ĥeff = 2JS
∑
k

[cos(kxa) + cos(kya) + cos(kza)]n̂k

+ (−z0JS − 2DS + ℏΩ)
∑
k

n̂k + Û , (B2)

where a is the lattice constant. The interaction term Û
is represented as
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Û =− J

2N

∑
k1,k2,k3,k4

[cos(k1,xa) + cos(k1,ya) + cos(k1,za)]â
†
k1
â†k2

âk3 âk4δk1+k2,k3+k4

− J

2N

∑
k1,k2,k3,k4

[cos(k4,xa) + cos(k4,ya) + cos(k4,za)]â
†
k1
â†k2

âk3
âk4

δk1+k2,k3+k4

+
J

N

∑
k1,k2,k3,k4

[cos((k1,x − k2,x)a) + cos((k1,y − k2,y)a) + cos((k1,z − k2,z)a)]â
†
k1
âk2

â†k3
âk4

δk1+k3,k2+k4

+
D

N

∑
k1,k2,k3,k4

â†k1
âk2

â†k3
âk4

δk1+k3,k2+k4
. (B3)

The magnon Hamiltonian in the corotating frame
[Eq. (B2)] consists of the kinetic energy, the magnon-
magnon interaction, and the Zeeman energy of the mag-
netic field in the magnet. The effective magnetic field
Beff = (Bx

eff , 0, B
z
eff) magnons acquire in the corotat-

ing frame is Bz
eff := ℏ(Ω − ΩBEC) + 6JS along the z

axis, while Bx
eff := B0 along the x axis. Since 6JS =

O(10)meV ∼ O(102)T and consequently 6JS ≫ B0

in general, the effective magnetic field along the x axis
Bx

eff = B0 is negligibly small compared with the z com-
ponent Bx

eff ≪ Bz
eff even in the vicinity of Ω ≈ ΩBEC.

When Ω is decreased from the large value, the band,
2JS[cos(kxa)+ cos(kya)+ cos(kza)]− z0JS− 2DS+ℏΩ,
touches the zero energy at the wavenumber k = π :=
(π/a, π/a, π/a). Therefore the magnons created by â†π
condensate at

ℏΩBEC = 2(6J +D)S, (B4)

which coincides with ℏΩc [Eq. (A6)].
Next, we consider the interaction term. Since magnons

condensate at k = π, we only keep the term with k1 =
k2 = k3 = k4 = π in Eq. (B3) as

Û =
3J

N
â†πâ

†
πâπâπ +

3J +D

N
â†πâπâ

†
πâπ (B5a)

=
6J +D

N
â†πâ

†
πâπâπ +

3J +D

N
n̂π. (B5b)

Thus 6J + D > 0 corresponds to repulsive interaction.
The k = π sector in the Hamiltonian of Eq. (B2) is given
as

Ĥeff(k = π) = (−12JS − 2DS + ℏΩ+
3J +D

N
)n̂π

+
6J +D

N
â†πâ

†
πâπâπ. (B6)

Since we treat a macroscopic system, the number of spin
sites N is large enough to approximate as

Ĥeff(k = π) ≃ (−12JS − 2DS + ℏΩ)n̂π

+
6J +D

N
â†πâ

†
πâπâπ (B7a)

= ℏ(Ω− ΩBEC)n̂π +
ℏΩBEC

2NS
â†πâ

†
πâπâπ.

(B7b)

In order for the magnon BEC state with finite ⟨n̂π⟩ to
be stabilized, the repulsive interaction 6J + D > 0 is
necessary, which corresponds to Eq. (A5).
Finally, by minimizing Eq. (B7a) we obtain

⟨n̂π⟩ =
12JS + 2DS − ℏΩ

2(6J +D)
N (B8a)

=
ΩBEC − Ω

ΩBEC
NS. (B8b)

Thus the number of magnon condensates is characterized
as a function of laser frequency Ω for Ω < ΩBEC. The
magnetization along the z axis per spin is provided as

⟨η
∑

i Ŝ
z
i ⟩

N
=S −

⟨
∑

i n̂i⟩
N

(B9a)

≃S − ⟨n̂π⟩
N

(B9b)

=
Ω

ΩBEC
S, (B9c)

which corresponds to Eq. (A7c).

Appendix C: Reference frame

In this Appendix we give the description in the original
stationary reference frame. Note that in Appendices A
and B we describe the system in the rotating frame. We
represent the transformation, R := exp(ηiΩtSz), to the
rotating frame. The observables transform as

(S̃x, S̃y) =R−1(Sx, Sy)R

=(cos(Ωt)Sx + η sin(Ωt)Sy,−η sin(Ωt)Sx + cos(Ωt)Sy).

The Heisenberg equation of motion is as

i∂tÕ =i∂t(R
†OR)

=(i∂tR
†)OR+R†(i∂tO)R+R†O(i∂tR)

=(i∂tR
†)RÕ +R†[O,H]R+ ÕR†(i∂tR)

=[Õ, H̃+R†(i∂tR)].
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Thus the effective Hamiltonian is given as H̃+R†(i∂tR) =

H̃ − ηΩSz.
The purpose of this Appendix is to give the descrip-

tion in the original stationary reference frame. First, we
represent the magnon operators in the reference frame as
b̂(†), i.e.,

â
(†)
k = R̂†b̂

(†)
k R̂, (C1)

where R̂ = exp(ηiΩtŜz
tot) = exp[iΩt(NS −

∑
k â

†
kâk)].

The time-evolution is evaluated as

iℏ∂tb̂(†)k =iℏ∂t(R̂â
(†)
k R̂†)

=(iℏ∂tR̂)â
(†)
k R̂† + R̂(iℏ∂tâ(†)k )R̂† + R̂â

(†)
k (iℏ∂tR̂†)

=− ℏΩR̂(NS −
∑
k

â†kâk)R̂
†R̂â

(†)
k R̂† + R̂[â

(†)
k , Ĥ]R̂† + ℏΩR̂â

(†)
k R̂†R̂(NS −

∑
k

â†kâk)R̂
†

=− ℏΩ(NS −
∑
k

b̂†kb̂k)b̂
(†)
k + [b̂

(†)
k , R̂ĤR̂†] + ℏΩb̂(†)k (NS −

∑
k

b̂†kb̂k)

=[b̂
(†)
k , R̂ĤR̂† + ℏΩ(NS −

∑
k

b̂†kb̂k)]

=[b̂
(†)
k , R̂ĤR̂† − ℏΩ

∑
k

b̂†kb̂k]. (C2)

Next, we focus on the k = π sector. The effective Hamil-
tonian in the rotating frame is given as Eq. (B7b);

Ĥeff(k = π) = ℏ(Ω− ΩBEC)â
†
πâπ +

ℏΩBEC

2NS
â†πâ

†
πâπâπ.

Finally, from Eq. (C2) we obtain the corresponding
Hamiltonian in the original stationary reference frame
as

R̂Ĥeff(k = π)R̂† − ℏΩb̂†π b̂π = −ℏΩBECb̂
†
π b̂π

+
ℏΩBEC

2NS
b̂†π b̂

†
π b̂π b̂π (C3a)

=: Ĥk=π. (C3b)

The equation of motion is given as

iℏ∂tb̂π =[b̂π,−ℏΩBECb̂
†
π b̂π +

ℏΩBEC

2NS
b̂†π b̂

†
π b̂π b̂π]

=− ℏΩBECb̂π +
ℏΩBEC

NS
b̂†π b̂π b̂π, (C4a)

iℏ∂tb̂†π =[b̂†π,−ℏΩBECb̂
†
π b̂π +

ℏΩBEC

2NS
b̂†π b̂

†
π b̂π b̂π]

=ℏΩBECb̂
†
π − ℏΩBEC

NS
b̂†π b̂

†
π b̂π. (C4b)

If we approximate b̂†π b̂π = â†πâπ ≃
[(ΩBEC − Ω)/ΩBEC]NS, cf., Eq. (B8b), those reduce to

iℏ∂tb̂π = −ℏΩb̂π, iℏ∂tb̂†π = ℏΩb̂†π. (C5)

These equations represent the precession with the fre-
quency Ω in synchronization with the laser field.

Appendix D: Optomagnonic Josephson equation

In this Appendix starting from the Hamiltonian Ĥtot =
ĤL + ĤR + V̂ for the junction of weakly coupled two
magnon BECs (see the main text), we derive the opto-
magnonic Josephson equations in the main text. First,
the Heisenberg equation of motion provides

iℏ
db̂L
dt

=[b̂L, ĤL + V̂ ] (D1a)

=ℏΩLb̂L + 2ULb̂
†
Lb̂Lb̂L −Kb̂†R, (D1b)

iℏ
db̂R
dt

=[b̂R, ĤR + V̂ ] (D1c)

=ℏΩRb̂R + 2URb̂
†
Rb̂Rb̂R −Kb̂†L. (D1d)

Taking the expectation value ⟨b̂L(R)⟩ =: bL(R) ∈ C, we
obtain the two-state model in the main text.
Next, noting that (dbL(R)/dt)/bL(R) = (d/dt)lnbL(R)

and multiplying the two-state model by 1/bL(R), it is re-
cast into

iℏ
d

dt
lnbL =ℏΩL + 2ULNL −K

b†R
bL

, (D2a)

iℏ
d

dt
lnbR =ℏΩR + 2URNR −K

b†L
bR

. (D2b)

Since bL(t) =
√

NL(t)e
iθL(t) and bR(t) =
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NR(t)e

−iθR(t), those are rewritten as

iℏ
(1
2

1

NL

dNL

dt
+ i

dθL
dt

)
= ℏΩL + 2ULNL

−K

√
NR

NL
ei(θR−θL), (D3a)

iℏ
(1
2

1

NR

dNR

dt
− i

dθR
dt

)
= ℏΩR + 2URNR

−K

√
NL

NR
ei(θR−θL). (D3b)

Dividing Eq. (D3a) into the real and imaginary parts, we
obtain

−ℏ
dθL
dt

=(ℏΩL + 2ULNL)−K

√
NR

NL
cos(θR − θL),

(D4a)

ℏ
dNL

dt
=− 2K

√
NLNRsin(θR − θL). (D4b)

In the same way, Eq. (D3b) provides

ℏ
dθR
dt

=(ℏΩR + 2URNR)−K

√
NL

NR
cos(θR − θL),

(D5a)

ℏ
dNR

dt
=− 2K

√
NLNRsin(θR − θL). (D5b)

Here, we remark that the calculation of
[Eq. (D4b)]−[Eq. (D5b)] gives

d

dt
(NL −NR) = 0. (D6)

This means that the total spin angular momentum is con-
served and N− := NL − NR is constant. On the other
hand, the calculation of [Eq. (D4b)]+[Eq. (D5b)] pro-
vides

d

dt
(NL +NR) = −4K

ℏ
√
NLNRsin(θR − θL). (D7)

This describes the magnonic Josephson spin current flow-
ing across the junction interface. Introducing N+(t) :=
NL(t) + NR(t) > 0 and defining z(t) := N+(t)/N−, it
satisfies

| z(t) |≥ 1. (D8)

In this work, without loss of generality we assume the
initial condition N−(0) > 0 for convenience. Since N− :=
NL −NR is constant, this ensures z(t) ≥ 1 and

z2 =
N2

− + 4NLNR

N2
−

(D9a)

=1 + 4
NLNR

N2
−

, (D9b)

resulting in
√
NLNR

N−
=

√
z2 − 1

2
. (D10)

Finally, using the relation, from Eq. (D7) we obtain

dz(t)

dt
= −2K

ℏ
√

z(t)2 − 1sinθ(t), (D11)

where θ(t) := θR(t) − θL(t) is the relative phase. The
calculation of [Eq. (D4a)] + [Eq. (D5a)] gives

ℏ
d

dt
(θR − θL) = (ℏΩL + ℏΩR) + 2(ULNL + URNR)

−K
(√NR

NL
+

√
NL

NR

)
cos(θR − θL).

(D12)

Since√
NR

NL
+

√
NL

NR
=

2√
z2 − 1

z, (D13a)

ULNL + URNR =
UL + UR

2
N−z +

UL − UR

2
N−,

(D13b)

Eq. (D12) is rewritten as

dθ(t)

dt
=

[
(ΩL +ΩR) +

UL − UR

ℏ
N−

]
+
(UL + UR

ℏ
N−

)
z(t)

− 2K

ℏ
z(t)√

z(t)2 − 1
cosθ(t). (D14)

Eqs. (D11) and (D14) are the optomagnonic Josephson
equation in the main text.
We remark that introducing the normalized time

τ :=
2K

ℏ
t, (D15)

the optomagnonic Josephson equations [Eqs. (D11)
and (D14)] are recast into the dimensionless form as

dz(τ)

dτ
= −

√
z(τ)2 − 1sinθ(τ), (D16a)

dθ(τ)

dτ
=

[ℏ(ΩL +ΩR)

2K
+

UL − UR

2K
N−

]
+

(UL + UR

2K
N−

)
z(τ)− z(τ)√

z(τ)2 − 1
cosθ(τ).

(D16b)

Appendix E: Tunneling amplitude

In this Appendix we estimate the tunneling amplitude
in spin language. Due to a finite overlap of the wave
functions of the localized spins that reside on the rele-
vant two-dimensional boundaries of each insulator, there
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exists in general a finite exchange interaction between the
boundary spins. Let us assume that it is described by the
boundary spin Hamiltonian as V̂s = −JtunŜL · ŜR, where
ŜL(R) is the spin operator for the boundary spins form-
ing the macroscopic coherent state; the spin quantum
number in the left (right) insulator is SL(R) and Jtun of
|Jtun| ≪ J is the weak spin exchange interaction between
the boundary spins. By means of the magnon theory, it
reduces to the tunneling Hamiltonian V̂ in the main text
as V̂s ≈ −Jtun

√
SLSR(b̂Lb̂R + b̂†Lb̂

†
R). Thus we find that

the tunneling amplitude is represented in spin language
as

| K |=| Jtun |
√

SLSR. (E1)

Note that sgn(K) = sgn(Jtun) = ± in general, see the
main text.

Appendix F: An analysis on optomagnonic dc
Josephson effect

In this Appendix under the assumption that magnon
BECs are realized stably, we discuss an attempt to re-
alize an optomagnonic dc Josephson effect. Assuming

the initial condition z(0) ≫ 1 and tuning the parameters
as ℏ(ΩL + ΩR) + (UL − UR)N− = 0 and UL + UR = 0,
the optomagnonic Josephson equation in the main text
is recast into

dz(τ)

dτ
|τ≪1=− z(τ)sinθ(τ), (F1a)

dθ(τ)

dτ
|τ≪1=− cosθ(τ), (F1b)

where τ := (2K/ℏ)t is the normalized time. Noting that
dθ(τ)/(dτ) |τ≪1= 0 when θ(0) = ±π/2, we find that
the functions, z(τ) |τ≪1= −z(0)τ + z(0) and z(τ) |τ≪1=
z(0)τ + z(0), approximately satisfy the Josephson equa-
tion for θ(0) = π/2 and θ(0) = −π/2, respectively.
This implies that the dc Josephson effect satisfying
dz(τ)/(dτ) |τ≪1= (const.) and dθ(τ)/(dτ) |τ≪1= 0 is
induced for τ ≪ 1.
From this, one might suspect that the dc Josephson

effect is realizable. However, it requires the condition
UL + UR = 0, which means that the magnon-magnon in-
teraction is attractive in one side. Therefore, the magnon
BEC state itself is unstable in one side as long as one em-
ploys this setup.
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