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Dynamic Probabilistic Risk Assessment of Nuclear Power Plants Using Multi-Fidelity Simulations 

 

Xiaoyu Zheng, Hitoshi Tamaki, Tomoyuki Sugiyama, Yu Maruyama 

Japan Atomic Energy Agency 

 

Abstract 

 

Dynamic probabilistic risk assessment (PRA) more explicitly treats timing issues and stochastic elements of 

risk models. It extensively resorts to iterative simulations of accident progressions for the quantification of 

risk triplets including accident scenarios, probabilities and consequences. Dynamic PRA leverages the level 

of detail for risk modeling while intricately increases computational complexities, which result in heavy 

computational cost. This paper proposes to apply multi-fidelity simulations for a cost-effective dynamic PRA. 

It applies and improves the multi-fidelity importance sampling (MFIS) algorithm to generate cost-effective 

samples of nuclear reactor accident sequences. Sampled accident sequences are simulated in a parallel 

manner by using mechanistic codes, which is treated as a high-fidelity model. Adaptively trained by using 

the high-fidelity data, low-fidelity model is used to predicting simulation results. Interested predictions with 

reactor core damages are sorted out to build the density function of the biased distribution for importance 

sampling. After when collect enough number of high-fidelity data, risk triplets can be estimated. By solving 

a demonstration problem and a practical PRA problem by using MELCOR 2.2, the approach has been proven 

to be effective for risk assessment. Comparing with previous studies, the proposed multi-fidelity approach 

provides comparative estimation of risk triplets, while significantly reduces computational cost.  

 

Keywords: Dynamic probabilistic risk assessment, Risk triplet, Multi-fidelity importance sampling, 

MELCOR 2.2, Surrogate model, Machine learning 
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1 Introduction 

 

Nuclear power plants (NPPs) produce radioactive fission products in the reactor core in normal 

operations and may release them to the environment, also known as source terms, during core-melt accidents. 

The NPP's risk is, therefore, assessed from the viewpoints related with core-damage or source term, and its 

management is required by stringent regulations. The NPP's risk management is based on two concepts; 

defense-in-depth (DiD) and probabilistic risk assessment (PRA). The DiD assumes multiple levels of 

incidents corresponding to their frequency and consequence, and requires best-effort countermeasures for 

each level, which are independent to those for other levels. In contrast, the PRA overviews the plant 

vulnerabilities in all the levels of incidents as well as in the comprehensive plant systems. Results of the 

PRA can be used to improve the DiD and to determine the most effective resource distribution among the 

safety systems and components in the plant [1]. PRA is a complementary means of deterministic analysis to 

provide a comprehensive view of the overall safety of the plant for the entire frequency-consequence 

spectrum. A nuclear power plant PRA analyzes the risk associated with operating the plant, expressed in 

terms of various metrics related to the different levels of damage to the plant and its environment, for example, 

core damage frequency (CDF) as a surrogate for latent cancer risk and large early release frequency (LERF) 

as a surrogate for prompt fatality risk [2].  

However, it is acknowledged that some residual risks will remain [3]. Low-frequency and high-

consequence severe accidents still threaten the safety of the public and environment. Estimation of accident 

frequency and consequence inevitably includes uncertainties using present PRA approaches. By explicitly 

modeling system dynamics via simulations, dynamic PRA approaches can allow a comprehensive 

uncertainty analysis and take into account the impact of physics as well as time-dependent failures. However, 

the computational cost and simulation speed of dynamic PRA is still a challenging problem to prohibit its 

practicability [4]. 

This paper applied a multi-fidelity simulation method for the estimation of risk triplets in dynamic RPA 

of nuclear power plants. Specifically, the authors proposed an adaptive multi-fidelity importance sampling 

(AMFIS) algorithm for alleviating computational cost and applied the method to a practical PRA problem. 

In this section, backgrounds are provided for better readability, including brief introductions of PRA, 

dynamic PRA and multi-fidelity methods. 

The paper is organized as following. Sections 1.1 ~ 1.3 introduce basics of PRA, dynamic PRA, multi-

fidelity methods and importance sampling. Section 2 introduces a multi-fidelity DPRA approach and 

proposes the improved multi-fidelity importance sampling algorithm to balance the high-fidelity and low-

fidelity simulations. Section 3 implements the proposed approaches to estimate the risk triplet of a boiling 

water reactor (BWR) station blackout (SBO) scenario, using MELCOR 2.2 [5], a severe accident code 

developed at Sandia National Laboratories (SNL). Section 4 summarizes the results and conclusions. 
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1.1 Probabilistic risk assessment (PRA) 

 

PRA is a comprehensive, structured and logic-based methodology to identify and quantify risk of 

complex systems. In nuclear engineering, PRA can provide important information to support regulatory 

decision-making and prioritize risk-significant areas. The methodology is therefore particularly important 

for the optimization of safety work. PRA applications, related to nuclear safety regulation, risk-informed 

design and plant operation improvements, are more and more numerous worldwide. Nowadays PRA is a 

necessary part of safety assessment for nuclear power plants [6]. Many nuclear regulatory authorities 

consider that the current state of the art of PRA is sufficiently well developed that it can be used centrally in 

the regulatory decision process – referred to as “risk-informed regulation” [7]. In August 1995, the United 

States Nuclear Regulatory Commission (USNRC) issued a Commission Policy Statement on the use of PRA 

methods in nuclear regulatory activities. The statement adopted policies that the use of PRA technology in 

USNRC regulatory activities should be increased to the extent supported by the state-of-art in PRA methods 

and data [8], for example, PRA has been applied to evaluating risk-informed applications for a licensing 

basis change that considers engineering issues and applies risk insights [9]. In White Paper on Nuclear 

Energy 2020 published by Japan Atomic Energy Commission (JAEC), Japanese government introduced the 

risk-informed inspection program in April 2020 with reference to the Reactor Oversight Process (ROP) of 

the USNRC [10], and PRA is becoming more and more important in the nuclear regulation of Japan. Besides, 

risk-informed approaches and PRA have been widely applied by NASA (National Aeronautics and Space 

Administration) to improve design and operation [11].  

Within the framework of PRA, as a widely used definition, risk can be represented by the following set 

of triplets [12][13]: 

 𝑹𝑹 = 〈𝑺𝑺𝒊𝒊,𝑷𝑷𝒊𝒊,𝑪𝑪𝒊𝒊〉, 𝒊𝒊 = 𝟏𝟏,𝟐𝟐,⋯ ,𝑵𝑵 (1) 

where 𝑆𝑆𝑖𝑖 is a scenario of events that lead to hazard exposure, 𝑃𝑃𝑖𝑖 is the probability/frequency/ likelihood of 

the corresponding scenario, 𝐶𝐶𝑖𝑖  is the consequence of the scenario in terms of damage or loss. PRA’s 

structured analytical process quantifies probabilities and consequences of system failures or other events that 

could lead to accidents. As shown in Figure 1 [14], by addressing three fundamental questions of risk analysis, 

PRA identifies potential scenarios, estimates associated frequencies and consequences. Scenario 

identification begins with the selection of initiating events (IEs), and proceeds by determining pivotal events 

that may mitigate or exacerbate accident influences. Meanwhile, the frequencies of potential scenarios are 

determined by branching probabilities, and the consequences can be estimated based on methods such as 

deterministic analyses. Finally, by collecting all scenarios, as shown in Figure 2 (a), it can estimate risk triplet 

that is crucial information to support risk management and decision making. Plotted on log scale of 

probabilities, a risk curve in Figure 2 (b) can be developed to help visualize the risk of a nuclear power plant. 
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Figure 1 Implementation of risk triplet in PRA [11] 

 

 

Figure 2 An example of risk triplets and risk curve [12] 
 
Basic elements of PRA include the development of logic structures such as fault tree (FT) and event 

tree (ET) to proceed accident progression, the estimation of basic event probabilities of the logic structure, 

as well as the assessment of accident frequencies. The process inevitably includes uncertainties that could 

have a significant impact on the results of PRA models. Most importantly, in PRA models, epistemic 

uncertainty may arise from reasons such as incomplete knowledge about how to represent plant behavior 

and when making statistical inferences from data [15]. Specific reasons may include, for example, wrongness 

in collection of operational failure data, estimation error of parameters in constant failure rate of reliability 

model, inappropriate failure models, and system’s inability to perform its function under accidental 

conditions, etc.   

 

1.2 Dynamic PRA  

 

By explicitly considering time-dependent issues and stochastic behaviors of systems and components, 

dynamic PRA is one potential method to alleviate part of epistemic uncertainties in PRA. Dynamic PRA 

widely uses simulation approaches for generating risk scenarios. Stochastic and deterministic behaviors of 

plant elements are modeled as building blocks of the risk model [16]. Dynamic PRA uses a time-dependent 

phenomenological model of plant evolution along with is stochastic behavior to account for possible 

dependencies between failures [17].  

Dynamic PRA can provide risk models which track changes, interdependences and interactions among 
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plant elements as a function of time, so the overall methodology is more dynamic than FT/ET-based PRA. 

Over the past several decades, dynamic PRA methodologies have been developed and advanced, and 

numerous computational tools have emerged worldwide as well as associated applications to nuclear reactor 

PRAs. Figure 3 provides main tools, approaches and corresponding publications of dynamic PRA [18]-[36], 

and more detailed review of tools and methods can be found in publications [17][37]. The authors also added 

recent development statuses of Japan. Dynamic PRA tools are commonly coupled with deterministic system 

codes to quantify the risk triplet of Equation (1). The simulation-based scheme largely relies on Monte Carlo 

methods to estimate frequencies (𝑃𝑃𝑖𝑖)  and associated consequences (𝐶𝐶𝑖𝑖) . Dynamic PRA is an evolving 

research field. It has been applied to risk assessment of multi-unit nuclear power plant (NPP) [38][39], 

advanced fuel development [40], aging and degradation [41], and damage domain identification [42][43], to 

name a few.  

 

 
Figure 3 An incomplete list of dynamic PRA tools, approaches, and corresponding publications [4] 

 

Monte Carlo methods are extremely widespread in numerous fields, especially in risk assessment [44]-

[46]. By using randomly selected “what-if” scenarios, Monte Carlo simulation is a statistical technique by 

which a risk quantity can be calculated iteratively, with uncertainties visualized in the form of probability 

distribution. In the framework of dynamic PRA, models of accident evolution and human behaviors can be 

embedded within Monte Carlo simulation reproducing stochastic occurrences of system state transitions [47]. 

In practice, numerous trials of plant response are required to estimate the probability of rare critical scenarios 

and to identify associated hazardous conditions of the plant system. Data-mining-based methods are widely 

required to explore underlying risk information [48]-[51]. 

However, because the simulation of nuclear reactor accidents involves high-dimensional inputs/outputs, 

many of which evolves with time, and the simulation using black-box codes are usually computational 

demanding. These challenges make the Monte Carlo simulation of scenario identification and exploration 

difficult [52]. The computational cost problem of dynamic PRA has attracted wide interests and publications, 

for example, tradeoff between accuracy and cost [53], deterministic sampling [54] and machine learning 

algorithms [55][56] for scenario exploration, and guided simulation method [57], etc.  

Compared with previous dynamic PRA approaches which couple Monte Carlo sampling with 

mechanistic simulations, the authors are proposing a multi-fidelity method which balances both high-fidelity 

simulation (mechanistic codes) for preciseness and low-fidelity simulation (machine learning surrogate 
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models) for computational-cost-efficiency. Low-fidelity simulations can provide assistance by guiding the 

high-fidelity simulations with sampling candidates from important input domains or providing reliable 

predictions. Combing the following three potential strategies, the approach is capable to solve some 

limitations of present dynamic PRA methods. 

(1) Generate and simulate numerous accident scenarios using high-performance computing including 

parallel and cloud computing. 

(2) Use advanced sampling techniques including adaptive sampling and importance sampling etc. 

Importance sampling a Monte Carlo method with variance reduction [58], and it is widely applied in 

reliability engineering [59][60] and risk assessment [61] including rare event simulation [62]. 

(3) Apply multi-fidelity approaches by combining high-fidelity simulation based on severe accident 

codes and low-fidelity surrogate models. 

Next section provides a brief introduction for multi-fidelity methods and importance sampling. 

 

1.3 Multi-fidelity methods and multi-fidelity importance sampling (MFIS) 

 

Overall introduction and review of multi-fidelity methods and applications can be found in a review 

paper [63]. Mathematically, a black-box accident simulation code can be written as a function 𝑓𝑓: 𝒳𝒳 → 𝒴𝒴 

that maps from an input 𝐱𝐱 ∈ 𝒳𝒳  to an output 𝐲𝐲 ∈ 𝒴𝒴 , where 𝒳𝒳 ⊆ ℝ𝑑𝑑  is the domain of 𝑑𝑑 -dimensional 

model inputs and 𝒴𝒴 ⊆ ℝ𝑑𝑑′  is the domain of 𝑑𝑑′ -dimensional model outputs (𝑑𝑑,𝑑𝑑′ ∈ ℕ ). Representative 
inputs of nuclear reactor accident simulation codes include parameters related to thermal-hydraulic response 

of plant systems, core-degradation phenomena, hydrogen and fission product transport behaviors and setting 

of engineered safety features, etc. Representation outputs include fuel-cladding temperatures, core water 
level and source term released to the environment, etc. High-fidelity model 𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖𝑖: 𝒳𝒳 → 𝒴𝒴 is a model that 

can estimate outputs with the necessary accuracy for the task at hand, and low-fidelity model 𝑓𝑓𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖: 𝒳𝒳 → 𝒴𝒴 

is a model that can estimate the same outputs with lower accuracy than high-fidelity models. Generally, the 

computational cost of high-fidelity models is larger than that of low-fidelity models. Low-fidelity models 

used in this paper are mainly statistical surrogate model using machine learning methods. Figure 4 

conceptually illustrates the transition from high-fidelity dynamic RPA to multi-fidelity dynamic PRA. The 

left part is a typical dynamic PRA by using high-fidelity model iteratively to estimate the risk triplet of 

Equation (1), and the right part is the multi-fidelity dynamic PRA method, which introduces low-fidelity 

models to assist the risk triplet estimation with lower expected computational cost.  
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Figure 4 Expand the dynamic PRA from high-fidelity simulation to multi-fidelity simulation 

 

Multi-fidelity methods have been successfully practiced in diverse fields such as (1) uncertainty 

quantification in which runtime is significantly reduced and unbiased estimators of statistics are provided 

[64]-[67], (2) optimization that uses low-fidelity models to accelerate the search of global optimum [68]-

[71], and (3) statistical inference that leverages low-fidelity models to accelerate Markov chain Monte Carlo 

(MCMC) sampling for Bayesian inference [72]-[75].  

Because multiple models are required in multi-fidelity simulation, model management is required. One 

specific model management strategy in multi-fidelity simulation is the “filtering” strategy represented by 

multi-fidelity importance sampling [76]-[78], by which the sampling of high-fidelity model is guided by a 

biased distribution that is constructed via a low-fidelity model. The method is originated from importance 

sampling, a useful variance-reduction method in Monte Carlo along with others such as control variates and 

stratification [79][80]. Importance sampling can significantly improve the simulation efficiency especially 

for rare events [81][82], which are of low-probability but high-consequence.   

Importance sampling provided a foundation for simulation-based approaches for numerical integration, 

statistical physics, signal processing, reliability analysis and risk assessment, respectively [83]-[87].  

Here provides the mathematical introduction of importance sampling [79]. The standard setting for the 

usage of importance sampling is the estimation of a quantity ℓ, which can be the statistics of uncertainty 

quantification or risk quantities.  

 𝓵𝓵 = ∫𝒇𝒇(𝐱𝐱)𝚷𝚷(𝐱𝐱)𝒅𝒅𝐱𝐱 (2) 

where 𝑓𝑓(𝐱𝐱) is the objective function and Π(𝐱𝐱) is the probability density function of input vector 𝐱𝐱.  

To avoid the direct sampling from the density function Π, we can construct a biased distribution 𝑔𝑔(𝐱𝐱) 

as follows. 

  𝓵𝓵 = ∫𝒇𝒇(𝐱𝐱)𝚷𝚷(𝐱𝐱)𝒅𝒅𝐱𝐱 = ∫𝒇𝒇(𝐱𝐱)𝚷𝚷(𝐱𝐱)
𝒈𝒈(𝐱𝐱)𝒈𝒈(𝐱𝐱)𝒅𝒅𝐱𝐱 (3) 

As a result, all random sample are independent and identically distributed (iid), and the sampling is 

transformed to that samples (𝐱𝐱1,⋯ , 𝐱𝐱𝑀𝑀) are drawn from 𝑔𝑔(𝐱𝐱). 

 𝐱𝐱𝟏𝟏,⋯ , 𝐱𝐱𝑴𝑴 ~𝒊𝒊𝒊𝒊𝒅𝒅 𝒈𝒈(𝐱𝐱) (4) 

The unbiased importance sampling estimator ℓ� of ℓ can be written as 
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 𝓵𝓵� = 𝟏𝟏
𝑴𝑴
∑ 𝒇𝒇(𝐱𝐱𝒎𝒎)𝚷𝚷(𝐱𝐱𝒎𝒎)

𝒈𝒈(𝐱𝐱𝒎𝒎)
𝑴𝑴
𝒎𝒎=𝟏𝟏  (5) 

The weight function is the ratios of true density function and biased density function. 

 𝒘𝒘(𝐱𝐱) = 𝚷𝚷(𝐱𝐱)
𝒈𝒈(𝐱𝐱) (6) 

We can find that the most challenging part is the choice of the biased distribution 𝑔𝑔(𝐱𝐱), which largely 

affect the convergence speed of the statistical estimation. In practice, importance sampling method evolves 

with modifications, for example, adaptive importance sampling uses an adapting biased distribution [88][89] 

to improve the efficiency of importance sampling. In recent years, by using surrogate models, the MFIS 

algorithm has been developed to construct the biased distribution via surrogate model [76][90]. In Section 

2, author improved the original MFIS algorithm by proposing an adaptive multi-fidelity algorithm to more 

quickly find the optimal biased distribution for importance sampling, and in Section 3, we apply it to dynamic 

PRA of nuclear power plants.  
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2 A multi-fidelity approach for dynamic PRA 

 

Simulation-based scenario exploration and probability estimation need iterative execution of simulation 

codes. The number of iterations generally depends on the magnitude of the occurrence probability of the 

lowest-probability scenarios. In PRA of nuclear power plants, severe accidents are known as high-

consequence and low-probability, and this property generally makes the number of Monte Carlo samples 

unaffordable. Multi-fidelity simulation is a powerful approach that can alleviate the unaffordable 

computational cost by appropriately using low-fidelity predictions to lead the sampling for high-fidelity 

simulations. It is expected that multi-fidelity approaches can make the simulation-based dynamic PRA more 

practical. 

 

2.1 A multi-fidelity approach for dynamic PRA 

 

Combining multi-fidelity modeling and importance sampling, we proposed JAEA’s approach of 

dynamic PRA based on multi-fidelity simulations in Figure 5. The approach consists of steps including: (1) 

sample from a biased distribution, (2) execute high-fidelity simulation using deterministic accident 

simulation codes such as MELOR 2.2 and save results to high-fidelity database, (3) judge completeness 

based on the convergence of risk metrics, (4) train a low-fidelity surrogate model using high-fidelity data 

and machine learning methods, (5) perform low-fidelity simulation using the surrogate and save the data to 

low-fidelity database, (6) update the biased distribution for the importance sampling of next iteration, and 

(7) process all high-fidelity data to calculate the risk triplets including probabilities.  

 

 

Figure 5 The dynamic PRA approach using multi-fidelity importance sampling 

 

Estimating statistics of model output with the Monte Carlo method often requires many model 

evaluations. The problem of computational cost gets worse when high-consequence accident sequences are 

of low-frequency, so it requires much more samples to re-generate those sequences. Furthermore, severe 

accident codes of nuclear power plants are expensive to evaluate. Importance sampling can reduce the 
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number of samples, but it is difficult to find an appropriate biased distribution. Multi-fidelity importance 

sampling is such a method that it uses surrogate model to obtain interested predictions, and then use the 

predictions to fit a usable biased distribution. Therefore, only a small number of high-fidelity model 

executions are required to get a biased distribution, which guide the random sampling so that unbiased 

estimation of the statistics of model output can be obtained at a low computational cost. The original MFIS 

algorithm is shown in Table 1. It consists of three main steps: (1) Surrogate model construction, (2) biased 

distribution fitting, and (3) importance sampling. The efficiency of cost-saving depends on the usability of 

biased distributions which are determined by the predictability of trained surrogate models. The number of 

high-fidelity model evaluations (𝑀𝑀′ ) is therefore required to be optimized. Too large 𝑀𝑀′  results in the 

unnecessary computational cost, but too small 𝑀𝑀′  will slow the convergence of importance sampling. 

However, it relies subjective judgements to determine the optimal value of 𝑀𝑀′.  

 

Table 1 The original MFIS algorithm [76] 

 Initialization 

Set the initial biased density distribution as the original probability density distribution 𝑔𝑔0(𝐱𝐱) =

Π(𝐱𝐱). 

 Surrogate model construction 

Evaluate the objective function for 𝑀𝑀′ times and save the high-fidelity database as 𝒟𝒟0. 

Use database to train a surrogate model 𝑆𝑆0. 

 Biased distribution fitting 

Initialize low-fidelity dataset 𝒟𝒟′ = {}. 

for 𝑘𝑘 𝑖𝑖𝑖𝑖 1,⋯ ,𝐾𝐾 

Sample 𝐱𝐱𝑘𝑘 from 𝑔𝑔0(𝐱𝐱). 

Evaluate surrogate 𝑆𝑆0 at 𝐱𝐱𝑘𝑘 and obtain the output 𝑆𝑆0(𝐱𝐱𝑘𝑘). 

if 𝑆𝑆0(𝐱𝐱𝑘𝑘) is a desired value 

add 𝐱𝐱𝑘𝑘 to dataset 𝒟𝒟′. 

Using dataset 𝒟𝒟′, fit a mixture of normal distribution 𝑔𝑔𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝐱𝐱), which is a biased distribution fitted 

by using low-fidelity predictions. 

 Importance sampling 

Draw 𝑀𝑀 samples 𝐱𝐱1′ , 𝐱𝐱2′ ,⋯ , 𝐱𝐱𝑀𝑀′  from 𝑔𝑔𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏(𝐱𝐱). 

Compute importance weights 𝑤𝑤(𝐱𝐱𝟏𝟏′ ),𝑤𝑤(𝐱𝐱𝟐𝟐′ ),⋯ ,𝑤𝑤(𝐱𝐱𝑴𝑴′ ) based on Equation (6). 

Evaluate high-fidelity model. 

 Outputs 

Calculate the unbiased importance estimator based on Equation (5). 

 
To improve the predictability of surrogate model and usability of biased distribution, as shown in Table 

2, the authors have added an adapting step and release the computational requirements of the burn-in step. 

This approach can continuously optimize the surrogate model when more high-fidelity simulations are 
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performed. Other applications of adaptive multi-fidelity surrogates can be found in recent publications for 

efficiency improvement [91]. When the number of adapting steps 𝐽𝐽 becomes large, the predictability of 

surrogate model will improve, so low-frequency and high-consequence accident sequence will be sampled 

in a more frequent manner. Weights of samples will be normalized using the equation at the final step of the 

algorithm. 

 

Table 2 The proposed AMFIS algorithm 

 Initialization 

Select the total number of adapting steps 𝐽𝐽. 

Set the initial biased density distribution as the original probability density distribution 𝑔𝑔0(𝐱𝐱) =

Π(𝐱𝐱). 

Evaluate the objective function for 𝑀𝑀′ times (𝑀𝑀′ ≥ 1) and save the high-fidelity database as 𝒟𝒟0. 

 Model evaluation, surrogate model construction and biased distribution generation 

for 𝑗𝑗 𝑖𝑖𝑖𝑖 1,⋯ , 𝐽𝐽 
Use the database 𝒟𝒟𝑗𝑗−1 to train a low-fidelity surrogate model, 𝑆𝑆𝑗𝑗. 

Initialize low-fidelity dataset 𝒟𝒟′ = {}. 

for 𝑘𝑘 𝑖𝑖𝑖𝑖 1,⋯ ,𝐾𝐾 
Sample 𝐱𝐱𝑗𝑗𝑘𝑘 from 𝑔𝑔𝑗𝑗−1(𝐱𝐱). 

Evaluate surrogate 𝑆𝑆𝑗𝑗 at 𝐱𝐱𝑗𝑗𝑘𝑘 and obtain the output 𝑆𝑆𝑗𝑗�𝐱𝐱𝑗𝑗𝑘𝑘�. 

if 𝑆𝑆𝑗𝑗�𝐱𝐱𝑗𝑗𝑘𝑘� is a desired value 

add 𝐱𝐱𝑗𝑗𝑘𝑘 to dataset 𝒟𝒟′. 

Using dataset 𝒟𝒟′ , fit a mixture of normal distribution 𝑔𝑔𝑗𝑗(𝐱𝐱) , which is an updated biased 

distribution. 
Check if 𝑔𝑔𝑗𝑗(𝐱𝐱) converges to an optimal biased distribution 𝑔𝑔𝑙𝑙𝑜𝑜𝑜𝑜(𝐱𝐱). If converged, stop adapting. 

Draw 𝑀𝑀  samples 𝐱𝐱𝑗𝑗1′ ,𝐱𝐱𝑗𝑗2′ ,⋯ , 𝐱𝐱𝑗𝑗𝑀𝑀′   from 𝑔𝑔𝑗𝑗(𝐱𝐱)  or 𝑔𝑔𝑙𝑙𝑜𝑜𝑜𝑜(𝐱𝐱) , compute importance weights 

𝑤𝑤�𝐱𝐱𝒋𝒋𝟏𝟏′ �,𝑤𝑤�𝐱𝐱𝒋𝒋𝟏𝟏′ �,⋯𝑤𝑤�𝐱𝐱𝒋𝒋𝑴𝑴′ �, evaluate high-fidelity model, and update the high-fidelity database 

𝒟𝒟𝑗𝑗−1 to 𝒟𝒟𝑗𝑗. 

 Outputs 

Normalize importance weights 𝑤𝑤��𝐱𝐱𝒋𝒋𝒎𝒎′ � =
𝑤𝑤�𝐱𝐱𝒋𝒋𝒎𝒎

′ �

∑ ∑ 𝑤𝑤�𝐱𝐱𝒋𝒋𝒎𝒎
′ �𝑀𝑀

𝑚𝑚=1
𝐽𝐽
𝑗𝑗=1

  [84], and calculate the unbiased 

importance estimator. 

 

2.2 Comparison of sampling methods including MC, IS, MFIS, AMFIS 

 

Modifying Equation (2), failure probability of a system can be defined as [92]  
 𝑷𝑷𝒇𝒇 = ∫ 𝚷𝚷(𝐱𝐱)𝒅𝒅𝐱𝐱 

𝛀𝛀𝒇𝒇
= ∫ 𝑰𝑰(𝐱𝐱)𝚷𝚷(𝐱𝐱)𝒅𝒅𝐱𝐱 (7) 

 𝑰𝑰(𝐱𝐱) = �𝟏𝟏, 𝒉𝒉(𝐱𝐱) ≤ 𝑪𝑪 
𝟎𝟎, 𝒉𝒉(𝐱𝐱) > 𝑪𝑪  (8) 
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Where 𝑃𝑃𝑖𝑖 is the failure probability, Ω𝑖𝑖 is the area of failure domain, Π is the probability density function 

of input vector 𝐱𝐱. 𝐼𝐼(𝐱𝐱) is an indicator function whose value is determined by the state function ℎ(𝐱𝐱) and 

the critical value 𝐶𝐶. The failure probability can be acquired by concluding the limit state function and the 

area of failure domain, as shown in Figure 6, so the calculation of failure probability can be reached by 

sampling from the whole input space  

 

Figure 6 Limit state function of the basic reliability  

 

Using the sampling-based simulation, the failure probability can be written as 

 𝑷𝑷𝒇𝒇 ≈
∑ 𝑰𝑰(𝐱𝐱𝒎𝒎)𝑴𝑴
𝒎𝒎=𝟎𝟎

𝑴𝑴
 (9) 

To efficiently obtain a credible failure probability, we compare the computational cost of different 

sampling methods with a simple problem, of which 𝑥𝑥1 and 𝑥𝑥2 are of truncated exponential distributions 

and critical value C of reliability state function equals 0.35. We selected exponential distribution as an 

example because the relative low failure probability can reflect the practical occurrence frequency of severe 

accidents of nuclear power plants. 

 

 𝒙𝒙𝟏𝟏~𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒅𝒅 𝑬𝑬𝒙𝒙𝑬𝑬𝑬𝑬𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊𝑻𝑻𝑬𝑬(𝝀𝝀 = 𝟏𝟏)  (10) 

 𝒙𝒙𝟐𝟐~𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒅𝒅 𝑬𝑬𝒙𝒙𝑬𝑬𝑬𝑬𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊𝑻𝑻𝑬𝑬(𝝀𝝀 = 𝟏𝟏) (11) 

 𝟎𝟎 < 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 ≤ 𝟒𝟒 (12) 

 

Figure 7 provides a qualitative comparison according to the convergence rate of Monte Carlo, 

importance sampling with an appropriate biased distribution, original multi-fidelity importance sampling, 

and multi-fidelity importance sampling with adaptive surrogates. It can be observed that importance 

sampling provides faster generation of rare failure events compared with Monte Carlo sampling. For small 

failure probabilities, the number of samples in the failure domain of the surrogate model typically decreases 

significantly such that fitting a mixture model fails [76]. Comparing with MFIS, AMFIS does not need to 

train a precise surrogate model beforehand, while the predictability of surrogate used by AMFIS will improve 

as more high-fidelity data accumulate. Besides, the exploration of input domain in AMFIS also taking into 

account the prediction uncertainty so that the low-probability area tends to be more frequently visited.  
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Figure 7 Calculation of failure probability by using different methods 

 
Figure 8 depicts the adjustment of biased distribution with the prediction from low-fidelity simulations, 

which provide data for fitting a biased distribution. A probably appropriate biased distribution can be 

obtained by the converging statistics of the finite Gaussian Mixture model. Figure 9 shows the 1000 samples 

generated from Monte Carlo, importance sampling and AMFIS. The areas of sample points represent the 

weights that are necessary for estimating the final probability results. Samples of AMFIS shows a more 

averaged distribution on the input space with limited number of samples. 

 

 
Figure 8 Adjustment of biased distribution using adaptive surrogate for multi-fidelity importance sampling 
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Figure 9 Comparison of three samplers at 1000 times of sampling (area of each sample represents the 

associated weight, and the numbers show fractions of failure data) 

 

2.3 Risk triplet estimation 

 

Low-fidelity data accelerate the analysis by providing appropriate biased distributions for importance 

sampling, and when enough number of high-fidelity simulations has been performed, risk triplets are able to 

be calculated, as Step (7) of Figure 4. Step (3) of completeness judgement is based on the convergence of 

risk triplets such as probability distributions of accident sequences, with unavoidable subjectivities. Section 

3 implements the multi-fidelity approach to PRA of a BWR NPP.  
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3 Multi-fidelity dynamic PRA of a BWR nuclear power plant 

 

This section demonstrates the application of multi-fidelity importance sampling to practical BWR 

dynamic PRA of the scenario of SBO considering the stuck-open of a safety relieve valve (SRV). 

 

3.1 Traditional PRA model 

 

To well illustrate the proposed importance sampling method, a simplified BWR SBO scenario is chosen, 

as shown as an event tree in Figure 10 [93][94]. Starting from initiating events (IEs), the even tree consisting 

pivotal events including SRVs’ success to close, operability of high-pressure coolant injection (HPCI) and 

reactor core isolation cooling (RCIC) systems, availability of depressurization and alternative water injection 

and recovery of offsite and emergency diesel generators (EDGs). The model presents eight accident 

sequences, associated end states and probabilities. The risk triplet can be calculated by using tools such as 

SAPHIRE [95], based on Boolean algebra and branch probabilities.  

 

 
Figure 10 Simplified event tree model for BWR SBO with an SRV stuck open  

 

3.2 High-fidelity model for accident simulation using MELCOR 

 

Mechanistic BWR SBO simulation is performed using MELCOR, Version 2.2. Figure 11 depicts the 

MELCOR nodalization scheme. The creation of a simplified BWR model is for saving time in dynamic PRA. 

The input deck has been built based on BWR test case input of Sandia National Laboratories and the 

modeling of Fukushima Daiichi NPP Unit 1 [96]. The plant model includes two main parts of hydrodynamics 

and core. Core channel has been divided in two control volumes of core and bypass. The reactor coolant 

system (RCSodeled as a lower plenum, downcomer, upper plenum with reactor pressurized dome (RPV). 

Control volumes are connected with flow paths, which allow mass and energy exchange. Containment 

8 CD 4.0E-06

2.1E-01

7.7E-01

1.7E-02

8.6E-04

3.3E-03

8.2E-04

1.1E-04

Probability

7 CD

5 CD

6 OK

3 CD

4 OK

2 OK

IEs SRV Close HPCI or RCIC
Depressurization and

Alternative Water
Injection

Offsite or EDGs
Recovery

1 OK

A B C D E
#

End
State
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system consists of wetwell and drywell. Drywell is equipped with a filtered vent to the environment. Drywell 

is accepting mass from lower plenum leak and releasing mass to the environment after when the containment 

fails. Stochastic variables that affect the occurrence of pivotal events of Figure 10 are shown in Table 3. The 

selection and parameter setting of probability distributions refers to previous researches on BWR SBO 

dynamic PRA [94], and sampled values have been reflected to MELCOR inputs via control functions.   

 

 

Figure 11 Nodalization of a simplified BWR model using MELCOR 2.2 

 

Table 3 List of stochastic input variables and associated distributions 

 Stochastic variables Distributions Parameters 

1 EDGs recovery time 
Lognormal μ=0.793, σ=1.982 

2 Power grid recovery time 

3 Battery life Triangular (left, mode, right): (4,5,6) 

4 Number of cycles before SRV stuck open happens Geometric 
Stuck-open probability of an 

individual trial: 8.56E-4 

5 RCIC failure time 
Exponential λ=1.0E-1 

6 HPIC failure time 

7 RCIC extended time Lognormal μ=0.75, σ=0.5 

8 Alternative water available time 
Lognormal μ=0.75, σ=0.5 

9 Manual automatic depressurization activation 
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3.3 Adaptive multi-fidelity importance sampling with parallel computation 

 

To saving the computation cost, the multi-fidelity importance sampling has been executed in parallel 

on JAEA’s supercomputer system, which applies HPE SGI8600 that comprises a CPU calculational unit and 

a GPGPU calculational unit. The CPU unit in HPE SGI8600 is a blade-type large-scale cluster system with 

a total theoretical peak performance of 2.801 PFLOPS. It contains 706 nodes, each of which owns two Intel 

Xeon Gold 6242R Processors of 3.1 GHz and 20 cores.  

Figure 12 depicts the iterative process that consist of the initial sampling, 40 parallel processing of high-

fidelity simulation, low-fidelity simulation and the obtaining of final risk results. Surrogate model has been 

trained by using support vector machine (SVM), and introductions of SVM can be found in references [97]-

[99].  

 

 
Figure 12 Implementation of multi-fidelity DPRA with AMFIS applying parallel processing (40 processes) 

of high-fidelity MELCOR simulations 

 

3.4 Results of multi-fidelity dynamic PRA 

 

Figure 13 summarize the results of BWR SBO accident, comparing with traditional PRA and previous 

dynamic PRA results. In general, dynamic PRA is capable of providing a more complete risk provide by 

covering more trivial accident sequences, which are neglected for the convenience of modeling or for their 

insignificant risk influence. For example, as a complement of the conservativeness of traditional PRA, 

Sequences 4, 7, 10 and 11 are generated by the dynamic PRA simulations. In accordance with previous 
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studies [93][94],  consisting of heading events of no SRV stuck open, HPIC and RCIC failures, successful 

alternative water injection, Sequence 4 was not modeled in traditional PRA, because it was assumed that 

there is no adequate time for operators to depressurize reactor coolant system (RCS) and align alternative 

water injection system. Sequences 7, 10 and 11 are neglected because RCS depressurization are not modeled 

for simplification in the original event tree model when an SRV is stuck open. However, in the present study, 

SRV stuck-open failure is modeled as geometric distribution, which means that the failure doesn’t have to 

occur at the initial timing of the accident. Dynamic PRA softens the conservative assumption, so Sequences 

7, 10 and 11 appears in the current risk triplet. 

Compared with previous PRA and dynamic PRA results, JAEA’s dynamic PRA also shows agreements 

on the estimation of probabilities and consequences, as shown in Figure 14. Most results of multi-fidelity 

dynamic PRA agree with that of high-fidelity analysis, as the direct comparison in Figure 15 illustrates. 

However, for low-frequency sequences, there are variations which are most likely resulted from the weight 

calculation process. Gaussian mixture model is used to estimate high-dimensional probability density 

functions of biased distributions, so the estimation process unavoidably brings noises to the weight 

calculation of Equation (6), but the variation is trivial as the final point estimate of conditional core damage 

probability (CCDP) does not differentiate. Comparing with the four practical exercises of risk assessment, 

Table 4 shows that estimates of CCDP show good agreements between high-fidelity and multi-fidelity 

dynamic PRA results. Dynamic PRA generally applies a simulation-based method, which is based on random 

sampling. The proposed multi-fidelity method additionally combines both high- and low-fidelity simulators. 

The multi-fidelity dynamic PRA also provides comparative results, while the computational cost is largely 

reduced, especially the execution of high-fidelity simulations. For each importance sampling, five thousand 

low-fidelity simulations are performed to obtain the biased distribution, so totally low-fidelity simulations 

have been executed for millions of times. However, because the cheap computational cost of low-fidelity 

models, the overall CPU time is reduced form 2.39E+04 hours to 3.11E+03 hours, reduced by 87.0%. 

Because the multi-fidelity simulation is performed in parallel following the process of Figure 12, the actual 

wall-time is even shorter.  

 

 
Figure 13 Results comparison among traditional PRA, high-fidelity DPRA (RELAP5-3D), high-fidelity 

DPRA (MELCOR + Monte Carlo), multi-fidelity DPRA (MELCOR + AMFIS) 

 

# End
State

Traditional PRA
(INL PRA)

High-Fidelity DPRA
(INL RELAP5-3D)

High-Fidelity DPRA
(MELCOR+Monte Carlo)

Multi-Fidelity DPRA
 (MELCOR+AMFIS)

SBO SRV Close HPCI or RCIC
 Alternative

Water Injection
Offsite or EDG

Recovery

2 OK 7.70E-01 8.60E-01 7.54E-01
1 OK 2.10E-01 1.00E-01 2.27E-01 2.02E-01

7.83E-01
9.99E-01 3 CD 1.70E-02 1.00E-02 1.25E-02 1.36E-02

4 OK N/A 2.10E-02 8.99E-04 1.10E-04

7 OK N/A 9.90E-06 1.90E-04 1.88E-04
6 CD 3.30E-03 5.00E-03 1.40E-03 2.29E-04
5 OK 8.60E-04 5.60E-03 2.90E-03 1.69E-04

6.11E-04

1.37E-06 2.03E-06

12 CD 4.00E-06 5.00E-07 5.99E-07 1.50E-06

8.56E-04 9 CD 1.10E-04 2.10E-07 5.81E-05
8 OK 8.20E-04 1.70E-06 6.04E-04

5.01E-05
10 OK N/A 6.70E-07
11 OK N/A 9.70E-07 2.31E-06 3.57E-06
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Figure 14 Comparison of sequence probabilities 

 
Figure 15 Validation of multi-fidelity simulation results 

 
Table 4 Comparison of methods 

 
Traditional 

PRA (INL) 

High-Fidelity 

DPRA (INL) 

High-Fidelity 

DPRA (JAEA) 

Multi-Fidelity  

DPRA (JAEA) 

Methodology Logic-based 
Simulation-

based 

Simulation-

based 
Simulation-based 

Sampling methods - Monte Carlo Monte Carlo 
Multi-fidelity importance 

sampling 

Simulators - RELAP5-3D MELCOR 2.2 
MELCOR2.2 and  

Machine learning model 

Cost 

High-Fidelity 

(number of runs) 
- 2.00E+04 2.00E+04 2.06E+03 

Low-Fidelity 

(number of runs) 
- - - 9.92E+06 

Total CPU time 

(hours) 
- - 2.39E+04 3.11E+03 

Estimated CCDP 2.04E-02 1.50E-02 1.40E-02 1.39E-02 
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4 Conclusions 

 

As an evolving research field, dynamic PRA approaches explicitly treat stochastic elements including 

timing issues in PRA of nuclear power plants. It can provide a more elaborate risk assessment by detailed 

modeling, but on the other hand, dynamic PRA faces practicability obstacles for its computational 

complexity and overwhelming cost. Because dynamic PRA extensively applies Monte Carlo simulations to 

assess uncertainties and risk, many samples are required to quantify accident scenarios, 

frequencies/probabilities and consequences, that is, the risk triplet. The number of samples increases 

significantly especially when low-frequency scenarios need to be generated. 

To improve the practicability of dynamic PRA regarding computational cost, the authors have proposed 

to apply multi-fidelity importance sampling (MFIS) to accelerate the assessment. Importance sampling has 

been an effective method for rare event simulation. The main idea is to use low-cost low-fidelity surrogate 

model to build an appropriate biased distribution for importance sampling, from which random samples are 

extracted and sent to high-fidelity simulation.  The overall method structure of MFIS is kept unchanged for 

the application, but to optimize the biased distribution, the authors slightly improved MFIS by adding an 

adapting step in which the biased distribution keeps being updated with forthcoming high-fidelity simulation 

data. To distinguish from the previous study, the improved method is called adaptive multi-fidelity 

importance sampling (AMFIS). As an example, we provide a demonstration of estimating failure probability 

of a two-dimensional problem to show advantages of importance sampling and multi-fidelity importance 

sampling. Results confirm the effectiveness of AMFIS in rare event simulation and most importantly, with 

it avoids the predetermination of a biased distribution when using an adaptive surrogate model.  

The proposed method is applied to a practical PRA example that requires to evaluate the core damage 

frequency of a BWR SBO scenario with the possibilities of safety-relief valve stuck-open, loss of coolant 

injection and recovery of power. To treat the time-dependency of event tree headings, we selected stochastic 

variables and determined their distributions based on previous researches. The accident is simulated using 

MELCOR2.2, as a high-fidelity model. Low-fidelity surrogate models are constructed in the analysis by 

using MELCOR2.2 simulation data and a machine learning algorithm of support vector machine. The 

surrogate model keeps being updated during the analysis when high-fidelity data accumulates. Therefore, 

the biased distribution is adaptive. According to the previous publications, because only high-fidelity data 

are used for probability estimation, the estimate of risk triplet is theoretically unbiased. A parallel version of 

AMFIS is also provided to further accelerated the analysis. The authors have implemented the multi-fidelity 

simulation and importance sampling methods in the JAEA’s dynamic PRA tool of RAPID, which controls 

the computational procedure of sampling, code execution, surrogate model training/updating, probability 

density estimation of biased distribution, weight calculation and data processing. As the results, JAEA’s 

dynamic PRA results show agreements with previous PRA and dynamic PRA results of Idaho National 

Laboratory in United States. It proves that the multi-fidelity approach can provide reliable risk results while 

being cost-effective versus plain Monte Carlo simulation.  
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