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Weierstrass Function Methodology for Uncertainty Analysis of Random 

Media Criticality with Spectrum Range Control 

Randomized Weierstrass function (RWF) has been under development for 

evaluating the uncertainty of random media criticality due to the material mixture 

in disorder. In this work, the modelling capability of RWF is refined so that the 

spectrum range can be controlled by specifying its lower and upper ends of the 

frequency domain variable. As a result, it becomes possible to make fair criticality 

comparison among replicas of random media under inverse power law power 

spectra. Technically, the infinite sum of trigonometric terms in RWF is formally 

extended to cover the arbitrarily low frequency domain and then truncated to finite 

terms for the sole purpose of spectrum range control. This means that the refined 

RWF is free of the issue of convergence towards a reference fractal characteristic 

of Weierstrass function and thus termed Incomplete Randomized Weierstrass 

function (IRWF). As a demonstration, a three-dimensional version of IRWF is 

applied to the mixture of three fuels with different burnups in a sufficiently water-

moderated environment. Monte Carlo criticality calculations are carried out to 

evaluate the uncertainty of neutron effective multiplication factor (keff) due to the 

indeterminacy of mixture formation. 

Keywords: Weierstrass function; random media; power spectrum; inverse power 

law; Monte Carlo criticality calculation 

 

1. Introduction 

In quite a general perspective, the dynamical system under extreme physical disorder 

has the tendency of evolving toward the equilibrium state characterized by an inverse 

power law power spectrum (Frieden and Huges, 1994). For example, fractional Brownian 

motion (FBM) (Reed et al, 1995) and Kolmogorov law of turbulence (Tatsumi, 1982) 

exhibit such a power spectrum and there are many phenomena in different fields under 

the same type of power spectrum (Bak et al, 1987; Dalziel et al, 1999; Miller et al, 1993). 

In reality, extreme physical disorder can indeed occur in high energy density devices if 
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engineering control is completely lost. Here, the loss of control under high energy density 

is one of the characteristics of a severe nuclear accident which undergoes the formation 

of a molten fissile substance of unknown nature called fuel debris. Its composition will 

eventually be revealed at points of measurements. However, it is very difficult, though 

not impossible, to estimate the spatial distribution of the composition of fuel debris. To 

cope with this issue, RWF (Ueki 2017, Ueki 2021) was developed as a randomized form 

of Weierstrass function for modelling the indeterminacy of fuel debris formation. The 

priority of RWF was placed on the mixture of constituent materials by way of molten 

transitional states with no intervention of control as opposed to the stochastic tessellation 

approach geared toward material fragmentation (Lamier et al, 2018; Marinosci et al, 

2018).  

The main topic in this paper is a practically-implementable representation of the 

macroscopic cross section of a material mixture formed via extreme disorder. Here, the 

material mixture is typically represented by the spatial distribution of volume fractions of 

constituent materials; extreme disorder, if left intact, eventually leads to the state 

characterized by the inverse power law power spectrum (Frieden and Huges, 1994) as 

mentioned earlier. In order to bring these points into action, it is important to start an 

investigation from representing a variation in space whose power spectrum is governed 

by the inverse power law power spectrum in terms of wave number (unit: 1/length). To 

this end, an ideal process is FBM since its power spectrum is exactly under the inverse 

power law over the whole domain of wave numbers (Reed et al, 1995). However, the 

integration of inverse power from zero to infinity diverges while the integration of a 

power spectrum observed in or constructed from measurements is usually finite. Faced 

with such a conflict between modelling and reality, it is worthwhile investigating a 

function which possesses some of the many reference characteristics of FBM. The fractal 
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dimension is one of the reference characteristics of complex systems and Weierstrass 

function is known to possess the same fractal dimension as FBM (Falconer, 2003). 

Moreover, both of FBM and Weierstrass function are continuous and non-differentiable 

everywhere (Falconer, 2003). Based on these common natures, RWF was utilized for 

generating random media replicas consisting of fuel and concrete and evaluating the 

uncertainty of criticality due to the indeterminacy of mixture formation (Ueki, 2017). It 

was also shown that the power spectrum of RWF is a discrete representation of the inverse 

power law power spectrum (Ueki, 2021). In this respect, RWF appears to give reactor 

physicists an analysis option for evaluating the criticality of fuel debris in terms of various 

inverse power law power spectra. However, RWF has no capability of specifying the 

upper and lower ends of a frequency domain variable. The control capability of spectral 

range should be built into RWF so that one could carry out the engineering uncertainty 

analysis of random media criticality under a fair and unified condition. 

The main body of this paper consists of three sections. In Section 2, after a very brief 

review of RWF, the infinite sum of trigonometric terms in RWF is formally extended to 

cover the arbitrarily low spectrum range and then truncated to finite terms. It is shown 

that the discrete representation of any inverse power law power spectrum is obtained 

along with an arbitrarily set spectrum range. Since the truncation is not introduced in 

terms of keeping as many terms as practically possible for preserving the fractal nature 

of Weierstrass function, the resulting randomized function is termed IRWF with I 

indicating “incomplete”. In Section 3, numerical results are demonstrated for the 

criticality of fuel mixture in a sufficiently water-moderated environment by utilizing 

IRWF and partial volume pairing (PVP) (Ueki, 2021). The fluctuation of keff is shown 

under fair conditions of spectrum range which cannot be set for RWF (Ueki 2017, Ueki 
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2021; Araki et al, 2021). All the developments have been implemented in the Monte Carlo 

solver Solomon (Nagaya et al, 2019). Conclusions are summarized in Section 4. 

2. IRWF 

RWF is a randomized function defined as 

𝑊ሺ𝑥ሻ ൌ ∑ 𝐵௝
ି௝sin ሺ௝𝑥 ൅ 𝐴௝ሻ


௝ୀଵ ,  0,  1, 0    1,   (1) 

where   is a constant for amplitude adjustment, Bj are independent random variables 

with zero mean and unit variance, and Aj are independent random variables uniformly 

distributed on ሾ0,2ሻ. The independent variable x is multiplied by the power of a real 

number  larger than unity unlike the Fourier series while the inverse power of  is 

multiplied for ensuring convergence. The original deterministic form of Eq (1) is 

Weierstrass function 

∑ ି௝sin ሺ௝𝑥ሻ
௝ୀଵ    (2) 

which has the same fractal dimension  2 െ  as that of FBM with index   (Falconer, 

2003). RWF in Eq (1) can be extended to 

𝑊ሺ𝑥ሻ ൌ ∑ 𝐵௝
ି௝sin ሺ௝𝑥 ൅ 𝐴௝ሻ


௝ୀିெ ,   (3) 

where M is an arbitrarily large fixed integer. As will be shown later, the power spectrum 

of Eq (3) ranges over ሾ,ሻ where  is an arbitrarily small positive number. Now, for the 

purpose of spectral range control, terms with large and small summation indices are 

truncated to obtain 

𝑊ሺ𝑥ሻ ൌ ∑ 𝐵௝
ି௝ sin൫௝𝑥 ൅ 𝐴௝൯

୫ଶ
௝ୀ௠ଵ ,  

   1,  0,െ ൏ 𝑚1 ൏ 𝑚2 ൏ ,   (4) 

where m1 can be any integer because of the setup of M in Eq (3). In previous works (Ueki, 

2017; Ueki, 2021), under the restriction of 0 ൏  ൏ 1 as in Eq (1), m2 was taken to be as 

large as practically possible in order to maintain a characteristic of the fractal dimension 
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2 െ  shared by Weierstrass function and FBM. On the other hand, the index  in Eq (4) 

can be any non-negative values. More importantly, the truncation of terms at 𝑗 ൌ 𝑚2 

makes a complete break with the preservation of fractal nature in the limit of 𝑚2 

since, as will be shown later, the upper end of summation indices is determined for the 

sole purpose of specifying the highest end of the spectral range. Because of this breakup 

with fractal, W(x) in Eq (4) is termed IRWF as referred to in Section 1. 

Concerning the power spectrum of IRWF, one can resort to the Wiener-Khinchin 

theorem by way of the following steps. Firstly, the use of the properties of Aj and Bj yields 

𝐸ሾ𝑊ሺ𝑥ሻሿ ൌ 0,  (5) 

𝐸ሾሺ𝑊ሺ𝑥ሻሻଶሿ ൌ మ

ଶ
∑ ିଶ௝௠ଶ
௝ୀ௠ଵ ,   (6) 

𝐸ሾሺ𝑊ሺ𝑥 ൅ 𝑢ሻ െ𝑊ሺ𝑥ሻሻଶሿ  

ൌ 4ଶ𝐸ሾ∑ ቀି௝ cos ቀ௝ ቀ𝑥 ൅ ௨

ଶ
ቁ ൅ 𝐴௝ቁ sin ቀ௝ ௨

ଶ
ቁቁ

ଶ
௠ଶ
௝ୀ௠ଵ ሿ  

ൌ 2ଶ ∑ ିଶ௝sinଶሺ௝ ௨
ଶ
ሻ௠ଶ

௝ୀ௠ଵ ,  (7) 

where 𝐸ሾሿ stands for expectation. Secondly, Eqs (6)-(7) lead to 

𝐸ሾ𝑊ሺ𝑥ሻ𝑊ሺ𝑥 ൅ 𝑢ሻሿ ൌ మ

ଶ
∑ ିଶ௝cos ሺ௝𝑢ሻ௠ଶ
௝ୀ௠ଵ .   (8) 

Since Eqs (5) and (8) do not depend on x, IRWF is stationary. Finally, according to the 

Wiener-Khinchin theorem, the Fourier transform of Eq (8) with respect to u yields the 

power spectrum of W(x): 

𝑃ሺ𝑘;𝑊ሻ ൌ ׬ 𝐸ሾ𝑊ሺ𝑥ሻ𝑊ሺ𝑥 ൅ 𝑢ሻሿ𝑒ି௜௞௨𝑑𝑢

ି    

ൌ మ

ସ
∑ ିଶ௝ ׬ ൫exp൫𝑖൫௝ െ 𝑘൯𝑢൯ ൅ exp൫െ𝑖൫௝ ൅ 𝑘൯𝑢൯൯𝑑𝑢


ି

௠ଶ
௝ୀ௠ଵ ,  (9) 

where k is wave number. Using the infinite plane wave representation of Dirac delta 

function 

ሺ𝑦ሻ ൌ ଵ

ଶ׬ 𝑒௜௬௨

ି 𝑑𝑢  (10) 
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(a brief sketch of proof is found in [8]), Eq (9) is rewritten as  

𝑃ሺ𝑘;𝑊ሻ ൌ మ

ଶ
∑ ିଶ௝ൣ൫𝑘 െ ௝൯ ൅ ൫𝑘 ൅ ௝൯൧௠ଶ
௝ୀ௠ଵ   (11) 

For  ൐ 0, the integration of Eq (11) over ൣ௠ଵିଵ, ௝൧ is 

׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
ೕ

೘భషభ ൌ ׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
ೕ

೘భ ൌ మ

ଶ
∑ ିଶ௜௝
௜ୀ௠ଵ   

ൌ మమሺభష೘భሻ

ଶ൫మିଵ൯
൬1 െ మሺ೘భషభሻ

మೕ
൰ ,𝑚1 𝑗𝑚2  (12) 

while the integration of 1 𝑘ଶାଵ⁄  over the same range yields 

׬
ௗ௞

௞మశభ
ೕ

೘భషభ ൌ మሺభష೘భሻ

ଶ
൬1 െ మሺ೘భషభሻ

మೕ
൰  ,𝑚1𝑗𝑚2.  (13) 

The dependency on 𝑘 ൌ ௝ in Eq (12) is the same as that in Eq (13), which means that 

IRWF in Eq (4) is a discrete representation of the inverse power law power spectrum 

1 𝑘ଶାଵ⁄  for  ൐ 0 and covers the spectrum over ൣ௠ଵିଵ, ௠ଶ൧. Similarly, the power 

spectra of Eqs (1) and (3) range over ሾ1,ሻ and ሾ,ሻ, respectively, where  is a positive 

value ିெିଵ which is arbitrarily close to zero. Obviously, RWF in Eq (1) utterly lacks 

the control capability of spectral range. 

For  ൌ 0, the integration of Eq (11) over ൣ௠ଵିଵ, ௝൧ is 

׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
ೕ

೘భషభ ൌ ׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
ೕ

೘భ ൌ మ

ଶ
ሺ𝑗 െ 𝑚1 ൅ 1ሻ  

ൌ మ

ଶ୪୬ ሺሻ
ln ൬

ೕ

೘భషభ൰ ,𝑚1 𝑗𝑚2  (14) 

while the integration of 1 𝑘⁄  over the same range yields 

׬
ௗ௞

௞

ೕ

೘భషభ ൌ ln ൬
ೕ

೘భషభ൰ ,𝑚1 𝑗𝑚2.  (15) 

The dependency on 𝑘 ൌ ௝ in Eq (14) is the same as that in Eq (15), which means that 

IRWF in Eq (4) with  ൌ 0 is a discrete representation of the exact inverse power law 

power spectrum 1 𝑘⁄ . 
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Typical use of Eq (11) is as follows. Suppose that one wants to express the spectral 

range 0.1𝑘100  with 45 teeth (representation points). In this case, by setting ௠ଶ ൌ

100,  ௠ଶି௠ଵାଵ ൌ 100/0.1 ൌ 1000 and 𝑚2 െ𝑚1 ൅ 1 ൌ 45, one obtains 𝑚1 ൌ െ14, 

𝑚2 ൌ 30 and  ൌ 1.166. On the other hand, in previous works on RWF (Ueki, 2017; 

Ueki, 2021), m2 was taken as the smallest integer 𝑀′ satisfying ିெ
ᇲ
൏ 0.01 for  ൐ 0 

while  was always fixed to 1.5, which implies no capability of specifying the highest 

end of spectral range. In addition, since  ൌ 0 was forbidden due to the convergence 

issue in Eq (1), the RWF for the 1/k spectrum representation required 𝑀ᇱ ൐ 1000 as in a 

setting of  ൌ 0.01,  ൌ 1.5 and ିଵଵଷ଺ ൌ 0.00999. The spectrum range 𝑘 ൏ 1 was 

utterly excluded in RWF because of the fixed setting of 𝑚1 ൌ 1. All these limitations and 

unpractical aspects are overcome in IRWF. 

In order to search for the power spectrum 1/𝑘ଶାଵ for    0 that cannot be realized 

by Eq (4), IRWF is also proposed as 

𝑌ሺ𝑥ሻ ൌ ∑ 𝐵௝
௝ sin൫ି௝𝑥 ൅ 𝐴௝൯

୫ଶ
௝ୀ௠ଵ ,   

   1, ൏ 0,െ ൏ 𝑚1 ൏ 𝑚2 ൏ .  (16) 

Here, the exponents in ௝ and ି௝ have the same sign unlike the exponents of  in Eq 

(4). By way of the same steps as in the derivation of Eq (8), one obtains from Eq (16) 

𝐸ሾ𝑌ሺ𝑥ሻ𝑌ሺ𝑥 ൅ 𝑢ሻሿ ൌ మ

ଶ
∑ ଶ௝cos ሺି௝𝑢ሻ௠ଶ
௝ୀ௠ଵ .   (17) 

Taking into account 𝐸ሾ𝑌ሺ𝑥ሻሿ ൌ 0 and using the Wiener Khinchin theorem with Eq (10), 

Eq (17) yields 

𝑃ሺ𝑘;𝑊ሻ ൌ మ

ଶ
∑ ଶ௝ൣ൫𝑘 െ ି௝൯ ൅ ൫𝑘 ൅ ି௝൯൧௠ଶ
௝ୀ௠ଵ .  (18) 

Here, the integration of Eq (18) over ൣି௝ , ିሺ௠ଵିଵሻ൧ is 

׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
షሺ೘భషభሻ

షೕ ൌ ׬ 𝑃ሺ𝑘;𝑊ሻ𝑑𝑘
ష೘భ

షೕ ൌ మ

ଶ
∑ ଶ௜௝
௜ୀ௠ଵ   
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ൌ మమ೘భ

ଶ൫ଵିమ൯
൬1 െ మሺభష೘భሻ

షమೕ
൰ ,𝑚1 𝑗𝑚2  (19) 

while the integration of 1 𝑘ଶାଵ⁄  over the same range yields 

׬
ௗ௞

௞మశభ
షሺ೘భషభሻ

షೕ ൌ మሺ೘భషభሻ

ଶሺିሻ
൬1 െ మሺభష೘భሻ

షమೕ
൰  ,𝑚1 𝑗𝑚2.  (20) 

The dependency on 𝑘 ൌ ି௝ in Eq (19) is the same as that of Eq (20), which means that 

IRWF in Eq (16) is a discrete representation of the power law power spectrum 1 𝑘ଶାଵ⁄  

for  ൏ 0 and covers the spectrum over ൣି௠ଶ, ିሺ௠ଵିଵሻ൧. 

Typical use of Eq (18) is as follows. Suppose that one wants to express the spectral 

range 0.1𝑘100  with 45 teeth (representation points). Then, by setting ି௠ଶ ൌ 0.1,  

௠ଶି௠ଵାଵ ൌ 100/0.1 ൌ 1000 and 𝑚2 െ𝑚1 ൅ 1 ൌ 45, one obtains 𝑚1 ൌ െ29, 𝑚2 ൌ

15 and  ൌ 1.166. In previous work (Ueki, 2021), 𝑘 ൐ 1 and 𝑘 ൏ 1 were excluded for  

 ൏ 0 and   ൐ 0, respectively, by the fixed setting of m1=1. It was thus impossible to 

make fare comparison for the spectra 1/𝑘, 01 and 1/𝑘, 12. This limitation is 

overcome in a pair of IRWFs in Eqs (4) and (16). Overall, the conditions 𝑚1 ൌ 1 with 

ି௠ଶ ൏ 0.01 for  ൐ 0 and ௠ଶ ൏ 0.01 for  ൏ 0 in line with the convergence of 

Weierstrass function in Eq (2) has been lifted so that the spectral range can be realized in 

a desired range. 

Three-dimensional versions of IRWF are 

𝑊ሺ𝐫ሻ ൌ ∑ 𝐵௝
ି௝ sin൫௝𝐫𝒋/𝑆 ൅ 𝐴௝൯

୫ଶ
௝ୀ௠ଵ ,   

   1,  0,െ ൏ 𝑚1 ൏ 𝑚2 ൏ ,  (21) 

𝑌ሺ𝐫ሻ ൌ ∑ 𝐵௝
௝ sin൫ି௝𝐫𝒋/𝑆 ൅ 𝐴௝൯

୫ଶ
௝ୀ௠ଵ ,   

   1,   0,െ ൏ 𝑚1 ൏ 𝑚2 ൏ ,  (22) 

where r is a vector in three-dimensional Euclidean space, ௝  independent vectors 

uniformly distributed over the unit sphere, and S a scaling factor which is introduced as 
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a scale of spatial variation independent of spectral characteristics (Ueki, 2017). When 

 ൌ 0,  𝑗 ൌ 𝑚1, … ,𝑚2 in Eq (21) and 𝑗 ൌ െ𝑚2, … ,െ𝑚1 in Eq (22) yield 𝑊ሺ𝐫ሻ ൌ 𝑌ሺ𝐫ሻ. 

For  ൐ 0, Eq (21) is bounded by 

|𝑊ሺ𝐫ሻ| షሺ೘భሻሺଵିషሺ೘మశభష೘భሻሻ

ଵିష
   (23) 

if 𝐵௝ are chosen as the independent Bernoulli random variables taking 1 equally likely. 

When applied to the fluctuation of volume fractions, |𝑊ሺ𝑟ሻ|1 is required. In this case, 

 is chosen to be  

  ሺ೘భሻሺଵିషሻ

ଵିషሺ೘మశభష೘భሻ  ,   0.   (24) 

For the same reasoning,  

  ଵ

௠ଶାଵି௠ଵ
 ,   0,   (25) 

  షሺ೘భሻሺଵିሻ

ଵିሺ೘మశభష೘భሻ  ,   0.   (26) 

Figure 1 displays replicas of IRWF for =0.5, 0 where  is determined by the equalities 

in Eqs (24) and (25). The left subfigure corresponds to the power spectrum of 1/𝑘ଶ 

(=0.5) and the fractal nature of Brownian motion is barely seen because of the breakup 

with the connection with the convergence of Weierstrass function. The right subfigure 
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corresponds to the power spectrum of 1/𝑘 (=0). It is seen that fluctuation becomes finer 

as  decreases.  Figure 2 displays replicas of FBM corresponding to 1/𝑘ଶ and 1/𝑘ଵ.଴ଶ 

Figure 1. Plots of three-dimensional versions of IRWF corresponding to wave 
number range over [0.1, 100] (m1=-7, m2=16, =1.33352, S=50 cm, cubes: 
1003 

cm3 
in 1403 cm3) 

 

Figure 2. Plots of FBM corresponding to S=1 cm and wave number range (0, 
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spectra where the latter spectrum is chosen because FBM cannot represent the exact 1/𝑘 

spectrum. It is seen that the deviation from zero mean can be persistent in the 1/𝑘ଶ 

spectrum of FBM while the rapid and intense swinging around zero mean is characteristic 

of the 1/𝑘ଵ.଴ଶ spectrum. The three-dimensional transition between these two types of 

fluctuations corresponds to the change of colour texture in the subfigures of Figures 1.  

For arbitrarily set lower and upper spectral ends 𝑘ଵ ሺ൏ 1ሻ and 𝑘ଶ ሺ൐ 1ሻ, W(x) in Eq 

(4) is rewritten as 

∑ 𝐵௝ଵ
ି௝ sin൫ଵ

௝𝑥 ൅ 𝐴௝൯
଴
௝ୀ௠ଵ ൅ ∑ 𝐵௝ଶ

ି௝ sin൫ଶ
௝𝑥 ൅ 𝐴௝൯

୫ଶ
௝ୀଵ   

 ଵ  1, ଶ  1,  0,െ ൏ 𝑚1  0 ൏ 𝑚2 ൏ ,   (27) 

and the conditions ଵ
௠ଵିଵ ൌ 𝑘ଵ  and ଶ

௠ଶ ൌ 𝑘ଶ  determine ଵ  and ଶ  once a choice is 

made for the numbers of terms െ𝑚ଵ ൅ 1 and 𝑚ଶ. In some cases, the power spectrum 

constructed from measurements is close to the white noise near zero frequency. In these 

cases, Y(x) in Eq (16) and W(x) in Eq (4) are combined as 

∑ 𝐵ଵ௝ଵ
ሺଵሻ௝ sin൫ଵ

ି௝𝑥 ൅ 𝐴ଵ௝൯
୬ଶ
௝ୀ௡ଵ ൅ ∑ 𝐵ଶ௝ଶ

ିሺଶሻ௝ sin൫ଶ
௝𝑥 ൅ 𝐴ଶ௝൯

୫ଶ
௝ୀ௠ଵ ,  

 ଵ  1, ଶ  1,1 ൏  0,2  0,െ ൏ 𝑛1  𝑛2 ൏ ,െ ൏ 𝑚1  𝑚2 ൏ ,   (28) 

where 𝐵௜௝ and 𝐴௜௝ are, respectively, independent Bernoulli random variables taking 1 

equally likely and independent random variables uniform on ሾ0,2ሻ. Since the spectral 

domain covered by the first and second sums are ሾଵ
ି௡ଶ, ଵ

ିሺ௡ଵିଵሻሿ and ሾଶ
௠ଵିଵ, ଶ

௠ଶሿ, 

respectively, a desired power spectrum will be obtained under the restriction ଵ
ିሺ௡ଵିଵሻ ൌ

ଶ
௠ଵିଵ  at the breakpoint frequency (<1). Each sum in Eqs (27) and (28) are then made 

three-dimensional as in Eqs (21) and (22).  
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3. Demonstration of IRWF 

3.1 Description of sample problem 

A sample problem to which IRWF is applied consists of the mixture of three boiling 

water reactor (BWR) fuels with different burnups placed in a sufficiently water-

moderated environment. The material composition data are shown in Table 1 and 2. 

These data were computed using the SWAT 4.0 code system (Kashima et al, 2014). The 

geometry is shown in Figure 3 where the inner sphere is occupied by BWR fuels in Table 

1 and water in Table 2. 
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Table 1. BWR fuel composition data（unit: atoms/b cm） 

 
burnup (GWd/t)* 

15.2 24..2 37.5 
234U 5.9808E-06 5.3923E-06 4.6383E-06 
235U 6.0824E-04 4.5413E-04 2.7596E-04 
238U 2.2847E-02 2.2889E-02 2.2926E-02 
238Pu 5.2710E-07 1.6461E-06 4.7983E-06 
239Pu 1.0731E-04 1.2499E-04 1.3421E-04 
240Pu 2.1475E-05 3.7581E-05 5.8905E-05 
241Pu 7.9357E-06 1.5211E-05 2.4107E-05 
242Pu 1.2858E-06 4.2769E-06 1.1965E-05 

241Am 2.3857E-06 4.7629E-06 7.8171E-06 
95Mo 2.2875E-05 3.5524E-05 5.2984E-05 
99Tc 2.3159E-05 3.6008E-05 5.4041E-05 

103Rh 1.3170E-05 2.0451E-05 2.9812E-05 
143Nd 1.9107E-05 2.8023E-05 3.7735E-05 
145Nd 1.3677E-05 2.1010E-05 3.0779E-05 
147Sm 5.2342E-06 7.6397E-06 1.0252E-05 
149Sm 1.1941E-07 1.1249E-07 1.0720E-07 
150Sm 4.4851E-06 7.5358E-06 1.2122E-05 
152Sm 2.0905E-06 3.1753E-06 4.3827E-06 
153Eu 1.4220E-06 2.7342E-06 4.8356E-06 
155Gd 2.7162E-07 1.2875E-07 2.0688E-07 
157Gd 4.5914E-08 4.4543E-08 4.3721E-08 

O 4.8104E-02 4.8497E-02 4.9080E-02 
* burnup under 70% void fraction and then 5 years of cooling 

 

 

Table 2 Water（25℃）composition data（unit: atoms/b cm） 
H 6.666E-02 O 3.333E-02 
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Let BWR fuels in Table 1 be type 1, 2 and 3, respectively, according to 15.2 GWd/t, 

24.2 GWd/t and 37.5 GWd/t. The macroscopic cross section  of the random mixture of 

these fuels is 

  ෡ோሺ𝐫,𝐸ሻ ൌ 𝑉෠ଵሺ𝐫ሻோ,ଵሺ𝐸ሻ ൅ 𝑉෠ଶሺ𝐫ሻோ,ଶሺ𝐸ሻ ൅ 𝑉෠ଷሺ𝐫ሻோ,ଷሺ𝐸ሻ   (29) 

where the hat ^ indicates a replica, E is energy, R implies a nuclear reaction type, and 

𝑉෠௜ሺ𝐫ሻ ሺ𝑖 ൌ 1,2,3ሻ stand for space-dependent volume fractions. Obviously, 

𝑉෠ଵሺ𝐫ሻ ൅ 𝑉෠ଶሺ𝐫ሻ ൅ 𝑉෠ଷሺ𝐫ሻ ൌ 1, 0  𝑉෠௜ሺ𝐫ሻ  1, 𝑖 ൌ 1,2,3.   (30) 

The mean volume fractions over replicas are assumed to be position-independent and 

separated into two nonnegative parts 

𝑉ଵ ൌ 𝐸ሾ𝑉෠ଵሺ𝐫ሻሿ ൌ 𝑉ଵ,ଶ ൅ 𝑉ଵ,ଷ    

𝑉ଶ ൌ 𝐸ሾ𝑉෠ଶሺ𝐫ሻሿ ൌ 𝑉ଶ,ଷ ൅ 𝑉ଶ,ଵ   

𝑉ଷ ൌ 𝐸ሾ𝑉෠ଷሺ𝐫ሻሿ ൌ 𝑉ଷ,ଵ ൅ 𝑉ଷ,ଶ    (31) 

where by Eq (30) 

 𝑉ଵ ൅ 𝑉ଶ ൅ 𝑉ଷ ൌ 1.  (32) 

The method of PVP (Ueki, 2021) determines the quantities on the righthand sides in Eq 

(31) by 

 𝑉ଵ,ଶ:𝑉ଵ,ଷ ൌ 𝑉ଶ:𝑉ଷ, 𝑉ଶ,ଷ:𝑉ଶ,ଵ ൌ 𝑉ଷ:𝑉ଵ, 𝑉ଷ,ଵ:𝑉ଷ,ଶ ൌ 𝑉ଵ:𝑉ଶ.   (33) 

Figure 3. Spherical system of fuel mixture 
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Denoting IRWF in Eq (21) as 𝑊௜,௝ሺ𝐫ሻ for the BWR fuel pairing of types i and j and taking 

into account Eq (5), PVP computes the volume fractions in Eq (29) as  

𝑉෠ଵሺ𝐫ሻ ൌ 𝑉ଵ,ଶ ൅ 𝑉ଵ,ଷ ൅ 𝑚𝑖𝑛൫𝑉ଵ,ଶ,𝑉ଶ,ଵ൯  𝑊ଵ,ଶሺ𝐫ሻ 

െ𝑚𝑖𝑛൫𝑉ଵ,ଷ,𝑉ଷ,ଵ൯𝑊ଷ,ଵሺ𝐫ሻ, 

𝑉෠ଶሺ𝐫ሻ ൌ 𝑉ଶ,ଷ ൅ 𝑉ଶ,ଵ ൅ 𝑚𝑖𝑛൫𝑉ଶ,ଷ,𝑉ଷ,ଶ൯  𝑊ଶ,ଷ,ሺ𝐫ሻ 

െ𝑚𝑖𝑛൫𝑉ଶ,ଵ,𝑉ଵ,ଶ൯  𝑊ଵ,ଶሺ𝐫ሻ, 

𝑉෠ଷሺ𝐫ሻ ൌ 𝑉ଷ,ଵ ൅ 𝑉ଷ,ଶ ൅ 𝑚𝑖𝑛൫𝑉ଷ,ଵ,𝑉ଵ,ଷ൯  𝑊ଷ,ଵሺ𝐫ሻ 

െ𝑚𝑖𝑛൫𝑉ଷ,ଶ,𝑉ଶ,ଷ൯  𝑊ଶ,ଷሺ𝐫ሻ.  (34) 

where 𝑊௜,௝ሺ𝐫ሻ are independent of each other and can be replaced by 𝑌௜,௝ሺrሻ, i.e., IRWF in 

Eq (22). When the water-to-fuel volume ratio is 𝐴ுమை:𝐴ி௨௘௟ , the macroscopic cross 

section inside the inner sphere in Figure 4 is  

 
஺ಹమೀ

஺ಹమೀା஺ಷೠ೐೗
 ோ

ுమைሺ𝐸ሻ ൅ ஺ಷೠ೐೗
஺ಹమೀା஺ಷೠ೐೗

෡ோሺ𝐫,𝐸ሻ.   (35) 

where ோ
ுమைሺ𝐸ሻ  is the macroscopic reaction-type R cross section of water. Various 

parameters are set as 𝑉ଵ ൌ 4/9 , 𝑉ଶ ൌ 2/9 , 𝑉ଷ ൌ 1/3  and  𝐴ுమை:𝐴ி௨௘௟ ൌ 5: 2 . These 

parameters and the geometry in Figure 3 are chosen so that essential features of fuel debris 

in a sufficiently water-moderated environment can be extracted. A series of Monte Carlo 

criticality calculations are carried out by Solomon (Nagaya et al, 2019) where the delta-

tracking scheme by Spanier (Spanier, 1966) is available for the neutron transport 

computation under continuously varying macroscopic cross sections (Ueki, 2021). The 

JENDL 4.0 nuclear data libraries (Shibata et al, 2011) are used. The scaling factor S is set 

to 30 cm, the radius of the fuel and water region in Figure 3. The constant for amplitude 

adjustment  is determined by the equality in Eqs (24)-(26). Each Monte Carlo criticality 

calculation corresponds to a replica of the triple ሺ𝐹ଵ,ଶሺ𝐫ሻ, 𝐹ଶ,ଷሺ𝐫ሻ,𝐹ଷ,ଵሺ𝐫ሻሻ, 𝐹 ൌ 𝑊,𝑌 and 

consists of 50000 neutrons per generation and 5200 generations with initial 200 
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generations discarded. This computational condition yields a keff standard deviation of 

0.00006~0.00007 for each replica, i.e., a sufficiently small statistical error which allows 

one to evaluate the variation of keff over replicas of order 0.1%kୣ୤୤/kୣ୤୤ or larger. 

3.2 Numerical results 

Figure 4 shows the effect of spectral range on keff uncertainty evaluated over 100 

replicas of the random media represented by Eq (35) under the 1/k2 power spectrum ( ൌ

0.5). Here, a visually displayed variation in keff is interpreted as the keff uncertainty due 

to the indeterminacy of the mixture formation of three fuels. It is clearly seen that low 

frequency domains are more influential on the fluctuation of keff than high frequency 

domains. This result is deemed conclusive since  is determined in a fair manner by the 

equality in Eq (24) with m2=0, m1=-23,  ൌ 1.33352 for the left subfigure and m2=24, 

m1=1,  ൌ 1.33352 for the right subfigure. No error bar is shown for all replicas because 

the error bar of Monte Carlo criticality calculation on a single replica is smaller than the 

corresponding marker size. 

 

Figure 5 shows the effect of inverse power law on keff uncertainty evaluated over 100 

replicas of the random media represented by Eq (35). The value of  ranges over -0.5, -

0.25, -0.125, -0.01, 0.01, 0.125, 0.25, and 0.5, respectively, for the power spectra 1/k0 

Figure 4. Effect of spectral range on keff uncertainty (1/(wave number)2 spectrum case) 
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(white), 1/k0.5, 1/k0.75, 1/k0.98, 1/k1.02, 1/k1.25, 1/k1.5, 1/k2 (brown), and the spectral range is 

0.1 cm-1  k  100 cm-1 by m2=16, m1=-7,  ൌ 1.33352 for   0 and by m2=8, m1=-15, 

 ൌ 1.33352 for  ൏ 0. It is seen that keff uncertainty significantly decreases as the law 

of power spectrum approaches the white noise and the decreasing trend is nearly 

monotonic. This result is also deemed conclusive because the spectral range is fixed and 

 is determined in a fair manner by the equalities in Eqs (24)-(26). 

Figure 5. Effect of inverse power law on keff uncertainty over 

100 replicas (k: wave number) 



19 
 

Figure 6 shows the effect of spectral range and inverse power law on keff uncertainty 

evaluated over 100 replicas of the random media represented by Eq (35). The parameters 

(m1, m2) for the four spectral ranges 0.001 cm-1  k  1 cm-1, 0.01 cm-1  k  10 cm-1, 0.1 

cm-1  k  100 cm-1, and 1 cm-1  k  1000 are, respectively, (1,24), (-7,16), (-15,8) and 

(-23,0) for the 1/k0 spectrum and (-23,0), (-15,8), (-7,16) and (1,24) for the 1/k2 spectrum. 

It is seen that the keff uncertainty of the 1/k2 spectrum stays relatively large as far as the 

spectral range includes k < 1 cm-1 while the keff uncertainty of the 1/k0 spectrum is small 

as far as the spectral range includes k > 1 cm-1. 

 

All the results in Figures 4-6 cannot be obtained by RWF in previous works (Ueki, 

2017; Ueki, 2021; Araki et al, 2021) because of the lack of the control capability of 

spectral range. Moreover, since the parameter m1 is always set to 1 in RWF, the 

comparison of the 1/k0 and 1/k2 spectra by RWF ends up with the one like comparing the 

1/k2 spectrum over 1 cm-1  k  1000 cm-1 with the 1/k0 spectrum over 0.001 cm-1  k  

Figure 6. Effect of spectral range and inverse power law on 
keff uncertainty over 100 replicas (k: wave number)  
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1cm-1. A judgment based on such a comparison is off the point in terms of Figure 6. On 

the other hands, the control capability of spectral range in IRWF can produce results like 

Figures 4-6 which will be valuable from an engineering judgment point of view. This is 

the most important achievement by IRWF. 

4. Conclusions 

In this work, Weierstrass function methodology which is termed IRWF has been 

established as a refined version of RWF. The main accomplishment of IRWF is the 

capability of discretely representing any inverse power law power spectrum between the 

arbitrarily set lower and upper ends of spectral range. The representation points are spaced 

at powers of a real number larger than unity. IRWF is thus suitable for realizing power 

spectrum in a desired domain over several orders of magnitude. Practically, IRWF gives 

reactor physicists an option of carrying out the uncertainty analysis of random media 

criticality under various inverse power law power spectra in terms of the identical spectral 

range and representation points. This enables reactor physicists to make fair criticality 

comparison for various random media. IRWF is demonstrated for the fluctuation of fuel 

debris criticality in a sufficiently water-moderated environment. The numerical results 

show that the frequency domains at small orders of magnitude are more influential on the 

fluctuation of keff than those at large orders of magnitude. All the new developments have 

been implemented in Solomon (Nagaya et al, 2019). Here, it is worthwhile pointing out 

that the implementation of IRWF in any Monte Carlo criticality and reactor physics code 

needs the delta-tracking method of neutron transport (Spanier and Gelbard, 1969) in order 

to handle macroscopic cross sections continuously varying in space. 

The application of IRWF is fundamentally limited to the random media under power 

law power spectrum, i.e., a linear law on the logarithmic scale. However, in other cases, 

the uncertainty analysis of random media criticality may also be desired in terms of the 
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power spectrum under a different law represented on a linear scale. For example, a 

partially and insufficiently functioning cooling system may prevent extreme physical 

disorder from fully evolving into the state characterized by the inverse power law power 

spectrum. To cope with these realities, it will be necessary to develop a randomized 

function which can realize a power spectrum of arbitrary shape. It will also be of practical 

significance to introduce the method of overlaying voxels and unstructured meshes on 

random media in order to handle the precipitation of foreign substance. These challenges 

are avenues for new development in the foreseeable future. 
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