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ARTICLE

α-Clustering in atomic nuclei from first principles
with statistical learning and the Hoyle state
character
T. Otsuka 1,2,3✉, T. Abe 2,4, T. Yoshida4,5, Y. Tsunoda 4, N. Shimizu4, N. Itagaki6, Y. Utsuno 3,4,

J. Vary 7, P. Maris 7 & H. Ueno2

A long-standing crucial question with atomic nuclei is whether or not α clustering occurs

there. An α particle (helium-4 nucleus) comprises two protons and two neutrons, and may be

the building block of some nuclei. This is a very beautiful and fascinating idea, and is indeed

plausible because the α particle is particularly stable with a large binding energy. However,

direct experimental evidence has never been provided. Here, we show whether and how

α(-like) objects emerge in atomic nuclei, by means of state-of-the-art quantum many-body

simulations formulated from first principles, utilizing supercomputers including K/Fugaku.

The obtained physical quantities exhibit agreement with experimental data. The appearance

and variation of the α clustering are shown by utilizing density profiles for the nuclei ber-

yllium-8, -10 and carbon-12. With additional insight by statistical learning, an unexpected

crossover picture is presented for the Hoyle state, a critical gateway to the birth of life.
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The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).
An alternative possibility is theoretical studies: quite a few

studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.
We show in this work, by state-of-the-art computational

simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.
In the present CI calculations, protons and neutrons are

moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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As the motion of all nucleons is explicitly treated, we calculate
the density distributions of protons and neutrons from the wave
functions. The density of protons and neutrons combined is
called matter density. The ground state of the 8Be nucleus has
Jπ= 0+, and hence the matter density should be isotropic in the
laboratory frame. Its theoretical density is shown in Fig. 3c. From
the measurement of this density, even if this were feasible, it is
virtually impossible to extract a footprint of the α clustering. In
fact, what we need is an instantaneous “snapshot” of the density
distribution (see Fig. 1b), but the experiment cannot provide it
yet. However, we show here how to develop a theoretical
snapshot from the MCSM wave function. It has been known that
the rotational band members, like those stated above, can be
described by a single snapshot, which is a particular state in
the body-fixed frame and rotates with given spins J= 0, 2, ... in
the laboratory frame42. We extract, in this work, this snapshot
state from the MCSM calculation. (Note that although the
snapshot state is often called the intrinsic state, we prefer the
snapshot state for the sake of clarity).
The wave functions of the MCSM are expanded with so-called

MCSM basis vectors, which are deformed Slater determinants.
Some 50–200 MCSM basis vectors are selected according to their
contributions to the energy eigenvalue, from a much larger
number of candidates generated stochastically. Such selected basis
vectors are further refined by variational recipes. One of the
useful features of MCSM is that each basis vector carries a certain

character expressed by its density profile, as exemplified in
Fig. 3g–j for the 8Be ground state. These density profiles are
originally in random directions, but their orientations are now
aligned. In this alignment process, we first calculate and
diagonalize the matter quadrupole matrix of each basis vector,
yielding three eigenvalues of the quadrupole moment. Such
quadrupole moments, obtained within quantum mechanics, are
mapped onto a classical uniform-density ellipsoid with the same
quadrupole moments. As shown in Fig. 4a, this ellipsoid is
specified by the three (principal) axes: the longest, middle, and
shortest axes, Rz, Ry, and Rx, put on the z, y, and x coordinates.

We then introduce the Q-aligned state: all basis vectors are
aligned so that Rz, Ry, and Rx of each basis vector point to the pre-
fixed directions. After this alignment process, all basis vectors are
superposed with their calculated amplitudes so as to yield the
MCSM ground state when the Q-aligned state is projected onto
Jπ= 0+ (or equivalently the Jπ= 0+ component is extracted). The
snapshot state we seek from theory is given by this Q-aligned
state, which provides the “snapshot of density profile”. We note
that the Q-aligned state indeed describes the rotational bands
almost perfectly, as confirmed by the angular momentum
projection performed numerically. This is remarkable since the
outcome from the first principles exhibits the rotational feature,
which is classical in the sense that a fixed object rotates. (For
technical details, see Methods.)
We now move on to actual density profiles of 8Be. Figure 3d

displays the density profile of the Q-aligned state of 8Be on the xz
plane, visualizing two α clusters. For comparison, Fig. 3b depicts
the density profile of the α particle, which agrees with
experiment43 and is spherical (implying no difference between
laboratory and body-fixed frames). The 8Be density on the xy
plane is shown in panel e (f) for z= 1.65 (0.0) fm; the point of
highest density is near the former plane. These panels display
almost circular patterns with different magnitudes, consistent
with the α clustering. The α clustering thus emerges out of the
first-principles calculation without any assumption nor built-in
constraint. It is remarkable that in Fig. 3d, the two clusters look
like two free α particles with a separation distance ~3.5 fm, while
slight prolongation along the z axis is seen. The Variational
Monte Carlo calculation produced a similar density distribution
in a different manner17. Although the present calculation is made
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Fig. 3 Density profiles of 8,10Be ground state in the body-fixed frame unless otherwise specified. a Legend. b Matter density of 4He (α particle).
c Matter density of 8Be in the laboratory frame. d–f Matter density 8Be on the xz plane (d) and on the xy plane (e, f). g–j Matter density of MCSM basis
vectors for 8Be. k Matter density of the α-cluster part of 10Be. l Density of the excess neutrons of 10Be.
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within bound state approximation (i.e., no explicit inclusion of
continuum states), the α clustering appears just above the α decay
threshold5. The laboratory frame density distribution (see Fig. 3c)
is, in contrast, isotropic because of Jπ= 0+, blurring the
clustering.
The α clustering of 10Be arises similarly. Figure 3k depicts twice

the proton density for the ground-state Q-aligned state. This is
expected to represent the matter density due to α clusters, as
protons and neutrons tightly bind each other in the α cluster. The
two α clusters are closer than in 8Be, because the additional two
neutrons, called excess neutrons, behave like electrons making the
covalent bond of a molecule. Figure 3l exhibits the density
distribution of the two excess neutrons on the xy plane at z= 0,
indicating their circular motion about the z axis. Note that such a
molecular structure arises from first principles.
As shown in Fig. 4a, the lengths of Rz, Ry and Rx are

parametrized44 by variables, R0, β2, and γ, where R0 is the
average of Rx,y,z, and β2, called deformation parameter, represents
the magnitude of the ellipsoidal deformation from the sphere
(β2= 0). The angle γ (=0∘−60∘) specifies the ratio between Ry

and Rx: γ= 0∘ (60∘) implies prolate (oblate) shape (see Fig. 4a, b).
We use (β2, γ) as partial but useful labeling of the basis vector.

The β2-γ plane is introduced as usual (see Fig. 4c as an example): for
a given pair (β2, γ), the corresponding point on the plane is located
at the distance β2 from the origin, and at the angle γ from the
horizontal axis (γ= 0). In the T-plot of the MCSM45, basis vectors
are each shown by a circle, called T-plot circle, located at their
respective (β2, γ) values on the plane. The so-called potential energy
surface (PES) is superposed on this plane: the PES represents the
Hartree-Fock energies where the shapes are constrained to the (β2,
γ) values. The PES depicts what parts of the β2-γ plane gain more
binding energy within the mean-field estimate. The importance of
each basis vector can be evaluated by the overlap probability with
the eigenstate currently considered, and is expressed by the area of
each T-plot circle, meaning that larger circles are more relevant to
the eigenstate. The T-plot is shown in Fig. 4c, d for the ground states
of 8,10Be isotopes. In Fig. 4c, large T-plot circles are found around
β2= 1, whereas smaller circles are scattered. Since β2= 1 and γ= 0

imply Rz/Rx,y ~ 2.4, this concentration of large T-plot circles suggests
a strong stretching consistent with the dumbbell-like α clustering
(Fig. 1b). The far-reaching bottom of the PES (dark blue area) is
indicative of the slightly unbound nature of 8Be, while T-plot circles
there are smaller. The T-plot circles move to smaller β2 values in
10Be, again consistent with the weakening of α clustering and the
shift to more spherical nuclear shapes due to tighter binding.

Clustering in carbon-12 nucleus. We here discuss the structure
of 12C with the Daejeon16 interaction37. Figure 5a shows calcu-
lated lowest energy levels in comparison with experiment as well
as comparisons of electric quadrupole (E2) and monopole (E0)
transition strengths.
Figure 5b shows the convergence patterns of the energy

eigenvalues. The MCSM calculation becomes more accurate by
increasing the number (denoted k) of basis vectors. This means
that the ground-state energy for a given k, denoted Ek, is lowered
as k increases. This work takes k up to 300, partly because it is
almost the limit set by the computer but mainly because a
reasonable convergence is achieved. As Ek converges slowly as a
function of k, we monitor the convergence in a different way. We
introduce the energy variance rk, which is a measure of the
difference between the exact eigenvalue and the approximate
eigenvalue at k (for details see Methods)47. This rk is a useful
calculable variable: it is positive definite, and vanishes when the
approximation becomes exact. We thus plot Ek against rk in
Fig. 5b. This figure also shows an extrapolation with a polynomial
of rk up to a quadratic term. The estimated values at zero-variance
are shown in Fig. 5a. The energy eigenvalues of the 0þ1 and 2þ1
states follow parallel trajectories for rk < 400MeV2, suggesting
that the excitation energy, Exð2þ1 Þ, is estimated more accurately
than individual eigenvalues.
The squared transition strength, BðE2; 2þ1 ! 0þ1 Þ, and the 2þ1

spectroscopic electric quadrupole moment are calculated from the
wave functions thus obtained, and point to an oblate shape with
β2 ~ 0.6. Electric charges are simply bare values: 1e for proton and
0e for neutron with e being the unit charge. It is remarkable that
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Exð2þ1 Þ, BðE2; 2þ1 ! 0þ1 Þ and the quadrupole moment are in
excellent agreement with the experiment. We stress that the states
of strong ellipsoidal oblate deformation, with β2 ~ 0.6, can now be
described in such an ab initio approach, with virtually all relevant
correlations explicitly treated (i.e. no in-medium corrections like
effective charges, effective operators, etc).
Following the cases of Be isotopes, we analyze the density

distribution of the 0þ1 state in terms of Q-aligned states. Figure 6c
shows its density profile on the yz plane. For comparison, Fig. 6b
displays the calculated density of the α particle. The peak values
are similar between panels b and c. The pattern of Fig. 6c
resembles the one in Fig. 1c–i. Three (α-like) clusters are close-
lying in both panels. In the former, the distances between the
nearest peaks are ~1.9 and ~2.4 fm (if preferred, see two-
dimensional plot in Supplementary Figure 1). These are smaller
than the distance for 8Be (~3.5 fm), and this structure looks like
Fig. 1c–i, being closer to a quantum liquid (i.e., normal nuclear
matter with a basically constant nucleon density) rather than
well-separated α clusters. The lower density region in the center
of the nucleus (Fig. 6c) is seen. Although this contradicts the
naive independent particle model with the filling of the lowest s1/2
orbit, this trend is consistent with experiment43.

Novel picture of the Hoyle sate. The 0þ2 state of 12C is called the
Hoyle state21. Figure 6d shows its snapshot density profile
obtained from the corresponding Q-aligned state, presenting clear
differences from panel c. The Hoyle state appears to comprise

three well-separated α(-like) clusters. However, this is not the
full story.
The features of the Hoyle state can be clarified by the T-plot

shown in Fig. 4e, f for the 0þ1;2 states. These T-plot circles are
widely distributed, in contrast to Be cases (Fig. 4c, d). In order to
look into such a spread in the T-plot, we divide the whole PES
plane into three regions, I, II and III. The region I is bound by
β2 < 0.7, as shown by arcs in Fig. 4e–g. The outer area is divided
into region II for 6∘ ≤ γ ≤ 60∘ and region III for 0∘≤ γ ≤ 6∘, as
separated by the outgoing straight lines in Fig. 4e–g.
Regarding the 0þ1 state, large T-plot circles in the region I seem

to dominate the character of the 0þ1 state. In order to quantify this
feature, we decompose the 0þ1 state into the region I, -II, and -III
components comprising, respectively, basis vectors in the regions
I, II, and III. Proper orthogonalization is performed among them
(for technical details, see Methods). It is shown that the 0þ1 state
lies in region I (II) with 94% (6%) probability, meaning that this
state is predominantly in region I. Figure 6f exhibits the snapshot
density profile obtained from the region I component of the
Q-aligned state. The peak area of this density profile is flat and
wide, like normal nuclear matter, which is a quantum liquid. This
density profile shows an oblate and somewhat triangular shape
similar to Fig. 1c (this may be seen better in the two-dimensional
plot in Supplementary Figure 1). The density of the flat part is
close to the central density of the α particle, higher than the
normal density (~0.16 fm−3). The implication of this common
feature is worth noticing, as a possible characteristic feature of
light nuclei.
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Fig. 6 Density profiles on the yz plane of α or 12C nuclei. a Color code of the density. b Density of the α-particle ground state. c–e Density of 0+ states of
12C nucleus. f–i Decomposition into the regions. The probability in the indicated region is shown.
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The region II contribution to the snapshot density profile is
exhibited in Fig. 6g, displaying three α-like clusters. The region II
thus implies the clustering, making a minor part (6%) of the 0þ1 state.

The Hoyle state shows different characters: it comprises,
respectively, the region I, II, and III components with
probabilities 33%, 61%, and 6%. Figure 6h, i separately displays
the snapshot density profiles from regions I and II, where region
III is omitted because of its minor contribution. The density
profiles for regions I and II depict, respectively, the (quantum)
liquid and the clustering patterns. Major basis vectors in region II
are of triangular configurations, showing the special importance
of the triangles (see Supplementary Figure 2 and Methods for
more details). The Hoyle state thus comprises three α-like clusters
(Fig. 6i) with the probability ~2/3, but comprises, with the
probability 1/3, the (quantum) liquid in a modestly ellipsoidal
shape of β2 ~ 0.3 (Fig. 6h). This is a very striking feature, because
the clustering of the Hoyle state has been considered to emerge as
a (almost) pure stand-alone mode1–15. Note that three peaks in
panels d and i resemble that of panel b, with deeper valleys in
panel i than those in panel d.
Figure 5c schematically shows how the Hoyle state is formed.

While the ground state of 8Be is made of clusters, the ground state
of 12C is mainly a liquid state with a certain mixing of clustering
state, as shown by the pink-green circle. We mention that 6%
probability implies amplitude ~1/4, which is not negligible in some
cases. In fact, the structure of the Hoyle state is determined not
only by the NN interaction but also by the orthogonality to the 0þ1
state with this mixing. In Fig. 5c, combining all relevant effects, the
0þ2 state (star symbol) emerges as composed of clustering (region
II) and quantum-liquid (region I) components (open circles in
designated colors) with the probabilities ~2/3 and 1/3, respectively.
The quantum liquid and clustering were sometimes regarded as

two “phases”, and a phase transition was discussed48,49. The
present work indicates that the nuclear forces mix the two
“phases” attractively (repulsively) in the ground (Hoyle) state,
which is incompatible with the phase transition picture. Instead,
the crossover is a more appropriate concept with varying mixing
for different states (see Fig. 5c). This is not like the usual
crossover picture, partly because the orthogonality matters in
excited states. Thus, ground and Hoyle states of 12C provide an
unexplored facet to the physics of crossover27.

The present ab initio no-core NN interactions contain more
intermediate and short-range components in general than other
interactions for nuclear structure studies, and hence are more
suitable for describing the coupling between states of two
different characters; clustering and liquid. In contrast, an effective
interaction designed just for the liquid is likely too soft to describe
this coupling. The mixing of α-clustering into the ground state is
probably related to the α decay of heavier nuclei, the mechanism
of which remains an open problem.
We note that ab initio nuclear forces favor triangular (α-)

configurations. Figure 6 (also Supplementary Figure 1) shows that
in the Hoyle state, the largest angle of the triangle is slightly larger
than 90∘, whereas the ground state is in a nearly equilateral
triangle shape with collapsed clustering.
The radius of the 0þ1 state is discussed in detail35 in agreement

with experiment37,43, whereas it is overestimated in some other
works12. The calculated density distribution of the ground state in
the laboratory frame consistently depicts basic similarities to the
experimental one43 and the one calculated by the GFMC18.

The difference of root-mean-square radii between the ground
and Hoyle states becomes 0.36 fm, which is rather close to the
value from experiment50, ≈0.5 fm, compared with other theore-
tical values50, 1.1–1.9 fm. The present smaller radius may signal
some impact on reaction rates, e.g., of stellar triple-α fusion24,25.

A linear-chain state3,15 (see Fig. 1c) presently appears as the 0þ3
state with excitation energy ~14MeV. Figure 6e shows its density
profile, and Fig. 4g shows the T-plot. This excitation energy
should come down in future calculations by expanding the model
space. We simply stress the natural appearance of the linear-
chain state.

Implications and future directions. The α clustering is discussed
in terms of quantum many-body simulations from first princi-
ples, by using state-of-the-art supercomputing facilities39,40. The
clustering in 8,10Be is clarified. Regarding 12C, its ground and first
2+ states appear as the members of a practically perfect rotational
band with strong oblate deformation. This means that an ab initio
interaction capable of describing enhanced quadrupole col-
lectivity in nuclei is already available37,38; an absolutely
encouraging message. These states are basically of a quantum
liquid, with certain mixture of the clustering.
The Hoyle state, critical to nucleosynthesis and the origin of

carbon-based life, exhibits the density profile with three α
clusters. This is of great importance and portends its formation in
the triple-α fusion process. Significantly, our analysis suggests
that this state comprises quantum-liquid and clustering compo-
nents in probability ratio ~1:2.
The structure of 12C can be viewed as a crossover of the

quantum liquid and clustering, both of which are favored by ab
initio nuclear forces, with weaker binding gained through the
clustering. Inspired by this feature, the clustering component is
expected to be meaningfully contained in a wide variety of nuclei
and states with various forms and degrees, which may result in
noticeable α-emission, α-knockout, or α-decay, if appropriate.
The clustering is presently considered to occur basically due to
nuclear forces, without being a near-α-threshold effect5. If this
holds, the clustering can be a major component of well-bound
excited states in some cases, for instance, where quantum-liquid
states of a given spin/parity are lying higher in energy. This is an
intriguing future ab initio challenge.
The present picture of 12C is obtained from the T-plot of

MCSM basis vectors, and furthermore, it is verified by the cluster
analysis (dendrogram) from statistical learning (see Discussion).
This approach reduces the model-dependence in the crossover
argument, and may open new avenues for looking into the
physical content of quantum many-body wave functions emer-
ging from complex CI calculations.
We finally note that the MCSM brought us crucial basis vectors

for the Hoyle state in the plateau of the PES (i.e., region II),
illuminating MCSM’s superb capabilities. In this respect, the
present work makes a prominent landmark in the MCSM
achievement28–31.

Discussion
The present analysis based on the T-plot is examined from a
completely different and more mathematical method: cluster
analysis through unsupervised statistical learning26. The objects
are basis vectors, and the distance between a pair of them, ϕi and
ϕj, is defined as D(i, j)= 1− ∣(ϕi, ϕj)∣2, where the parenthesis
means a scalar product (i.e., overlap integral) of two basis vectors
with the Jπ= 0+ projection. Using this distance, a natural choice,
we draw the dendrogram in the complete linkage framework
shown in Fig. 4h: the dendrogram starts from the pair with the
shortest distance near the bottom of Fig. 4h, and moves up
linking more basis vectors having longer limits of the mutual
distances (see Methods for more details). The threshold of the
distance to define a group is set to 0.99, which means ∣(ϕi, ϕj)∣ >
0.1 within a given group. Figure 4h exhibits such classification
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into four groups (shown by different colors). One of them is very
minor and ignored. The remaining three groups in the dendro-
gram correspond remarkably well to regions I–III, as Fig. 4i
displays them like T-plot in the same color code as Fig. 4h. The
separation between regions I and II is particularly important in
the present study, and the cluster analysis of the statistical
learning clearly demonstrates that basis vectors in the region I are
distinctly different from those in region II. It is striking that the
classification conceived by the human brain (considerations on
shapes or T-plot) can be supported by the statistical technique
with no reference to shapes. This technique unravels the
decomposition of 300 MCSM basis vectors referring only to
“similarities” among them in the laboratory frame, by handling
44850 “data”.

Methods
Monte Carlo Shell Model. The MCSM28–31 uses Slater determinants as the basis
vectors, similarly to the conventional SM calculation (see Supplementary Note 3).
However, the Slater determinants are not the same as those used in the conven-
tional SM calculation where the Slater determinant is a direct product of some
single-particle states in general. Note that a product of A= Z+N single-particle
states is taken for the no-core MCSM. In the case of the MCSM basis vector, each
of such single-particle states is a superposition of all (more naive) single-particle
states of the given model space, with amplitudes determined by stochastic and
variational methods. The determination of those amplitudes is the most crucial
part of the MCSM procedure. A basis vector for the MCSM calculation is a Slater
determinant composed of such “stochastically—variationally deformed” single-
particle states. Those single-particle states are mutually independent. By having a
set of these MCSM basis vectors thus constructed, we diagonalize the Hamiltonian,
and obtain energy eigenvalues and eigenfunctions.

The set of MCSM basis vectors are obtained one by one using the condition that
the energy eigenvalue of the state of interest is lowered by the required amount or
more, when adding each new basis vector. For each MCSM basis vector, the single-
particle amplitudes mentioned above have to be determined properly. They are
initialized by a stochastic process and are improved variationally. Because of the
superposition over all single-particle states, the symmetries of the CI Hamiltonian
are lost, and the projection onto the angular momentum, the parity, etc. is carried
out for the MCSM basis vector. This is performed in the selection process of each
basis vector. Many candidates for this basis vector are tried and rejected, keeping
only ones meeting the minimum contribution condition. There are a number of
practical methodological refinements omitted for brevity here. Many applications
retain 50–100 MCSM basis vectors. The spurious center-of-mass motion is
suppressed by the Lawson method51. The HO quanta of the center-of-mass motion
are always monitored, and have been confirmed to be sufficiently small.

A large number of MCSM calculations have been performed as exemplified in
refs. 32,33,45,52–58. Most of these applications feature the adoption of an inert core
with valence nucleons for the description of the nuclear properties. However, here
we implement the ab initio no-core MCSM. All nucleons are then activated, and
the number of single-particle orbits is much larger. Furthermore, the adopted
realistic NN interactions fitting two-nucleon scattering data feature strong short-
range and tensor components coupling single-particle states more substantially.
Thus, solving the ab initio no-core MCSM is far more computationally challenging.
We select 100 MCSM basis vectors for Be isotopes, and 300 for 12C nucleus. The
maximum dimension of the vector space for a comparable full CI calculation is
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The single-particle wave functions used in
the present MCSM calculations are taken from the eigenstates of the HO potential,
with ℏω being 15 and 20MeV, respectively, for Be and C isotopes35. Because of the
ab initio no-core feature, the results are not sensitive to the ℏω value within
reasonable ranges35.

Convergence pattern of MCSM results. The present CI calculation is performed
by diagonalizing the Hamiltonian, denoted H, with a certain number of MCSM
basis vectors. By increasing this number, called k, the lowest eigenvalue for a given
quantum number is lowered.

In order to see the convergence of the calculated eigenvalue as k increases, we
use the variance47: rk ¼ hϕkjH2jϕki � hϕkjHjϕki2, where ϕk implies the eigenstate
obtained by including from the first up to the k-th basis vectors. If ϕk represents the
exact solution, rk= 0 holds. We plot the eigenvalues against the variance rk instead
of k (see Fig. 5b). Indeed, as k increases, the energy eigenvalue for a given quantum
number is lowered, and rk basically decreases, approaching zero for sufficiently
large k. As the MCSM solution becomes closer to the exact one, this behavior can
be empirically simulated by some extrapolation method, such as polynomials in rk.
A quadratic polynomial is used in this work.

Q-aligned state and density profiles. The eigenstate, with spin/parity Jπ and
other quantum numbers ξ, calculated by the MCSM is expressed as a superposition

of MCSM basis vectors mentioned above as

ΨðJπ ; ξÞ ¼ N ∑
i
f ð0Þi ðJπ ; ξÞ P̂ðJπÞ ϕð0Þi ; ð1Þ

where N denotes a normalization constant, i is the index of the basis vector, ϕð0Þi

and f ð0Þi mean, respectively, the i-th basis vector and its amplitude. Here, P̂ðJπÞ
implies a projector onto the quantum numbers such as Jπ. The additional quantum
number ξ, for instance the sequential index, can be omitted hereafter unless
needed.

If the orientation of ϕð0Þi in the three-dimensional configuration space is
changed (i.e. rotated), the same eigenstate is obtained with appropriately changed
f ð0Þi , because of the projection by P̂. However, for the snapshot state of a given
rotational band, the orientations of individual basis vectors matter, as discussed in
Results when referring to Fig. 3g–j.

As a general trend, in order to gain in binding energy, the attractive feature of
the NN interaction is expected to maximize the overlap between ellipsoids
corresponding to individual basis vectors. This implies alignment of the longest
axis (Rz) of each MCSM basis vector to the same direction. The Ry and Rx axes are
aligned likewise. In Fig. 3g–j, the density profiles are shown for selected MCSM
basis vectors thus aligned.

We then introduce the Q-aligned state: all basis vectors are aligned in this way,
and are superposed with appropriate amplitudes so that its projection onto Jπ= 0+

becomes the MCSM ground state. From the aforementioned general argument, this
Q-aligned state is expected to show the features of the snapshot (intrinsic) state to a
good extent. Furthermore, a more detailed inspection presented later indicates that
the picture of a rotating object, classical in some sense, holds nearly perfectly,
which is a non-trivial and even unexpected feature for an ab initio calculation. The
“snapshot” we seek from theory can thus be provided by the density profile of the
Q-aligned state.

We then rotate ϕð0Þi with appropriate Euler angles so that the ellipsoidal axes of
the resulting basis vector ϕi are aligned to the pre-fixed directions (as mentioned in
Results). This is done for all i’s separately. The Q-aligned state is then defined by

Ω ðJπ ; ξÞ ¼ N 0 ∑
i
f iðJπ ; ξÞ ϕi; ð2Þ

where N 0 denotes a normalization constant and fi stands for modified amplitude.
As the state Ω (Jπ, ξ) is defined in the body-fixed frame, it does not conserve Jπ, but
the amplitude fi(Jπ, ξ) retains dependence on Jπ and ξ. The same eigenstate as in eq.
(1) is written as

ΨðJπ ; ξÞ ¼ N ∑
i
f iðJπ ; ξÞ P̂ðJπÞ ϕi: ð3Þ

Figure 3g–i depict the density profiles of basis vectors thus aligned, and Fig. 3d–f
exhibit the density profiles of the Q-aligned state (see eq. (2)) for the 8Be ground state.
Figure 3k–l present the density profiles for the 10Be ground state.

Likewise, Figures 6c–e exhibit the density profiles of the Q-aligned states for the
three 0+ states of 12C.

We discuss the validity of the Q-aligned state as the snapshot state, from
which the snapshot of the nucleus can be obtained. The Q-aligned state in eq. (2)
is obtained from a given Jπ= 0+ MCSM eigenstate, like the state in eq. (1). We
generate a Jπ= 2+ state from this Q-aligned state. Here, we introduce the
quantum numbers M and K. The former means, as usual, the z-component of the

angular momentum J
!

in the laboratory frame. The K quantum number is

defined in the body-fixed frame, implying the z- (x-)component of J
!

for prolate
(oblate) shape. In the case of J= 0, only M= K= 0 is allowed. For J= 2, M can be
any value between −2 and 2, on which the energy does not depend due to the
rotational symmetry of the Hamiltonian. In the limit of an ideal quantum rotor,
the Jπ= 0+ and 2+ members are obtained by rotating the same snapshot (or
intrinsic) state (i.e., by the angular momentum projection of this state). The
Q-aligned state, by definition, generates the Jπ= 0+ MCSM eigenstate. This
means that if the Jπ= 2+ state is also generated from the Q-aligned state in the
same way as the one for the Jπ= 0+ state, the rotational band picture with a good
K holds. Here, the same way implies the projection onto Jπ= 2+ with Kπ= 0+.
This hypothesis is examined by calculating the overlap probability between the
Jπ= 2+ state thus obtained and the corresponding Jπ= 2+ MCSM eigenstate. The
resulting overlap probabilities are 99% for both 8Be and 12C. These values
definitely suggest that for the lowest Jπ= 0+ and 2+ states of these nuclei, the
corresponding Q-aligned state is regarded as the snapshot (or intrinsic) state, and
the resulting nuclear snapshot makes nearly perfect sense. The overlap probability
for 10Be turns out to be 90%, which, though large, is smaller than the one for 8Be
or 12C. The difference from 8Be or 12C is due to excess neutrons, and means that
this snapshot is most important but, to be complete, other snapshots may arise
with 10% probability in total. The effects of excess neutrons are an interesting
future subject.

The analysis presented above is not currently feasible for the Hoyle state of 12C
due to the computing limitations and we present a different argument later.

We next discuss the density profiles of the decomposed Q-aligned states. For
the sake of simplicity, we restrict ourselves to the Jπ= 0+ states. The decomposed
Q-aligned state corresponding to the region L (=I, II, or III) of the PES is defined
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as,

θ½L�n ¼ N 0
L;n ∑

i2RegionL
f ið0þn Þ ϕi; ð4Þ

where N 0
L;n is a normalization and n refers to the n-th Jπ= 0+ state. The projection

onto Jπ= 0+ produces,

Θ½L�
n ¼ N 00

L;n P̂ðJπ ¼ 0þÞ θ½L�n ; ð5Þ

where N 00
L;n is a normalization.

For the Jπ= 0þ1 state (n= 1), this definition works for region I. The density
profile of θ½I�n¼1 is shown in Fig. 6f, exhibiting a feature close to quantum liquid. We
calculate the overlap probability between Θ½I�

1 and the Jπ=0þ1 MCSM eigenstate.
The obtained value, 94%, is mentioned in Results, as an indicator of region I
dominance of the Jπ= 0þ1 state, consistent with the visual appearance in Fig. 6f.

For region II, however, the situation is slightly more complex: states θ½I�1 and θ½II�1

have a small overlap, and hence Θ½I�
1 and Θ½II�

1 are not completely orthogonal. We
take a superposition of Θ½I�

1 and Θ½II�
1 , so that the resulting projected state, denoted

~Θ
½II�
1 , is orthogonal to Θ½I�

1 , fixed above. By using the same relative mixing

amplitudes, ~θ
½II�
1 is obtained and normalized, and its density profile is shown in

Fig. 6g, indicating α-like clustering. The overlap probability of ~Θ
½II�
1 with the Jπ= 0þ1

MCSM eigenstate is 6%, suggesting a minor mixture of the clustering into the
Jπ= 0þ1 state. We analyzed region III similarly, but found the overlap probability to
be negligible.

For the Jπ= 0þ2 (Hoyle) state, we first take the region II component (i.e., not
orthogonalized to any state yet), because of its importance: the Θ½II�

2 state shows the
overlap probability with Jπ= 0þ2 (Hoyle) state, 61%, meaning that the region II is
most relevant to the Jπ= 0þ2 (Hoyle) state. The density profile of θ½II�2 is shown in
Fig. 6i, depicting a clear α-like cluster structure. Similar to the previous case, a
superposition of θ½II�2 and θ½III�2 and another superposition of Θ½II�

2 and Θ½III�
2 are

taken, so that the resulting state, denoted ~Θ
½III�
2 , is orthogonal to Θ½II�

2 . This order of
the orthogonalization was taken because of a relatively large overlap probability of
Θ½III�

2 with the Jπ= 0þ2 state, but this is due to the non-orthogonality between Θ½II�
2

and Θ½III�
2 . In fact, the overlap probability of ~Θ

½III�
2 with the Jπ= 0þ2 state becomes as

small as 6%. We next obtain ~θ
½I�
2 and ~Θ

½I�
2 , so that ~Θ

½I�
2 is orthogonal to Θ½II�

2 and
~Θ
½III�
2 . The overlap probability of ~Θ

½I�
2 with the Jπ= 0þ2 (Hoyle) state is 33%, which is

remarkably high. Figure 6h shows the density profile of the ~θ
½I�
2 state thus obtained,

and implies that this component of the Hoyle state is basically a quantum liquid.
We now see that the cluster and the quantum liquid are strongly coupled and
mixed in the Hoyle state, as stated in the Results. The density profile obtained from
~θ
½III�
2 is shown in Supplementary Figure 1j, where a linear configuration like
Fig. 1c–iii is seen.

Density profiles of basis vectors and Hoyle state. Supplementary Figure 2
shows the density profiles for selected MCSM basis vectors in region II. Two basis
vectors, carrying the two largest overlap probabilities with the Hoyle state, are
shown for each 6∘-bin from γ= 6∘ to 60∘. Here, the overlap is calculated with the
Jπ= 0+ projection and normalization. The left basis vector in panel e carries the
largest probability, 56%, among all shown in Supplementary Figure 2. This basis
vector depicts 85% overlap probability with the (normalized) region II component
of the Hoyle state. The region II Q-aligned state is thus dominated by a single Slater
determinant. Consistently, Supplementary Figure 1i is similar to Supplementary
Figure 2e (left). Panels c–f display distinct α clustering, but the clustering is
smeared in the Q-aligned state due to the remaining basis vectors (panels g–k).
This is due to the fluctuations of the cluster configurations, and such fluctuations
are related to the gain of correlation energies provided by the NN interaction. The
fluctuations imply that the snapshot is not completely fixed, and somewhat varies
around the one given by the Q-aligned state. The dominance of the basis vector in
Supplementary Figure 2e (left) certainly overshadows this fluctuation.

We emphasize that apart from minor differences, all basis vectors in panels c–k
show triangular clustering configurations in common, reflecting the underlying
importance of triangular configurations in region II.

We note that the basis vector in Supplementary Figure 2e (left) is the 3rd basis
vector in the sequence of the present MCSM basis-vector generation process,
meaning that such an important basis vector is picked up at this very early stage
and that the calculation then proceeded on a more gradual process of further
lowering the energy.

The Q-aligned state for region I is closer to spherical shape and lacks visible
clustering. It is interesting to note that this result underscores the capability of our
methods to reveal significant non-collective aspects of our solutions in conjunction
with the collective aspects.

The region I and -II components are mixed in the Hoyle state, as emphasized in
the Results. The signs of the mixing amplitudes are determined also by the
orthogonality to the ground state, and the NN interaction between these
components yields a repulsive contribution. Thus, this off-diagonal contribution
cancels substantial α-α correlation effects, which tend to lower the energies of

clustering states. If this aspect were overlooked, the α-α interaction could look
erroneously weak.

Dendrogram of MCSM basis vectors. The dendrogram of basis vectors shown in
Fig. 4h is drawn in the complete linkage framework of the clustering from statistical
learning26. The distance defined in the Discussion is now denoted d(x, y), where x
and y are elements, and are basis vectors with the Jπ=0+ projection and normal-
ization in the present work.

The quantity L is introduced as the longest distance for a given set {a, b, c, ....}:
L(a, b, c, ....)=max{d(a, b), d(a, c), d(b, c), ....}. A set {a, b, c, ....} is defined by the
threshold t so that L(a, b, c, ....) < t is fulfilled. In Fig. 4h, the dendrogram is drawn
from the minimum t, for which the pair, {a, b}, can form the first set. By raising t,
another basis vector c can join and the second set, {a, b, c}, is formed, because of
d(a, b), d(a, c), d(b, c) < t. We can continue by adding elements for larger t values,
and draw the dendrogram. In Fig. 4h, t is changed from a small value up to 0.99. If
the distance is beyond the threshold, no additional element is added, and the group
is fixed. We end up with three major groups and a minor group, as shown in
Fig. 4h. The minor one is not considered hereafter. The three major groups
basically correspond to different regions determined by the T-plot shown in Fig. 4i.
This clean relation is remarkable, as this dendrogram classification is carried out
without knowing the shape of each basis vector.

In the MCSM, basis vectors are added so that the energy eigenvalue is lowered.
The newly added basis vector can be very different from existing basis vectors or
moderately different from them. The former and the latter may belong to different
groups, and the present cluster analysis method unravels such grouping structure.
In this sense, this method should have general applicability.

Configuration convergence of the ground and Hoyle states of 12C. The single-
particle states used in the present MCSM calculation are taken from single-particle
states of the HO potential, each of which has a fixed value for its HO quanta
(2nr+ l) with nr and l being the number of radial nodes and the orbital angular
momentum, respectively. By utilizing this property, the MCSM eigenfunction can
be grouped into components with definite total quanta of the harmonic oscillator.
The difference between a given total quanta and the lowest possible quanta is
denoted, Nℏω. So, the 0ℏω component corresponds to the conventional SM states
without excitations between HO shells (below or above). Supplementary Figure 3
depicts the probability of the Nℏω component as a function of N for several MCSM
eigenstates of 12C nucleus. The ground and 2þ1 states have 0ℏω components with
probabilities ≈0.6. In contrast, the 0þ2 (Hoyle) state shows rather constant prob-
abilities up to N= 8. This analysis clearly indicates characters drastically different
between the ground and Hoyle states.

The gradually decreasing probabilities of the N= 2, 4, 6 components of the
ground and 2þ1 states displayed in Supplementary Figure 3 suggest strong
polarization effects, which are the origin of the effective charges needed in the
conventional SM calculations with 0ℏω or similar wave functions. The present
result indicates that nucleons remain in the lowest HO shell with probabilities
~50 or 60% only, and the probabilities are damped gradually as N increases.
However, this is not the case with the Hoyle state: the probability even increases
towards N= 6 as a consequence of the α clustering. It is not damped quickly,
implying that the inclusion of more single-particle orbits, corresponding to
higher HO shells, may further improve the calculation. The convergence as a
function of the number of HO shells included is an important technical issue.
The number of HO shells is appropriate for the present purpose, and is also at
the edge of the current computational feasibility. Relevant detailed discussions
are found in ref. 35.
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