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We report measurements of the branching fractions and CP asymmetries for Dþ
s → Kþη, Dþ

s → Kþπ0,
and Dþ

s → πþη decays, and the branching fraction for Dþ
s → πþπ0. Our results are based on a data sample

corresponding to an integrated luminosity of 921 fb−1 collected by the Belle detector at the KEKB eþe−

asymmetric-energy collider. Our measurements of CP asymmetries in these decays are the most precise to
date; no evidence for CP violation is found.

DOI: 10.1103/PhysRevD.103.112005

Charm hadrons provide a unique opportunity to study
charge-parity (CP) violation in the up-quark sector. Within
the Standard Model (SM), CP violation (CPV) in charm
decays is expected to be small, at the level of 10−3 [1,2].
The largest effect is expected to occur in singly Cabibbo-
suppressed (SCS) decays [3–5], which receive a contribu-
tion from a “penguin” (internal loop) diagram. The only
evidence for CPV in the charm sector thus far was obtained
by the LHCb experiment [6], which measured SCS D0 →
KþK− and D0 → πþπ− decays. The LHCb result has
generated much interest in the literature [1,7,8]. One can
also search for CPV in Cabibbo-favored (CF) decays; as
these decays proceed via tree-level decay amplitudes, an
observation of CPV would be a clear sign of new physics.
Here we present improved measurements of the branch-

ing fractions and CP asymmetries for charm decays [9]
Dþ

s → Kþη, Dþ
s → Kþπ0, Dþ

s → πþη, and Dþ
s → πþπ0.

The first two modes are SCS decays, while Dþ
s → πþη is

CF, and Dþ
s → πþπ0 proceeds via an annihilation ampli-

tude. For this last mode, the branching fraction is expected
to be very small [2,10,11], and only an upper limit has been
obtained from experiments for its value [12]. The most
recent measurements of these branching fractions were
made by the CLEO [12] and BESIII [13] experiments.
Higher precision measurements would help improve theo-
retical predictions for CPV [1,2,14]. The only measure-
ments of CPV in these decays were made by the CLEO

experiment [12]; our measurements presented here have
significantly improved precision.
We define the CP asymmetry in the decay rates as

ACP ¼ ΓðDþ
s → fÞ − ΓðD−

s → f̄Þ
ΓðDþ

s → fÞ þ ΓðD−
s → f̄Þ ; ð1Þ

where ΓðDþ
s → fÞ and ΓðD−

s → f̄Þ are the partial decay
widths for the final state f and its CP-conjugate state f̄. As
our measured ACP corresponds to charged D mesons,
which do not undergo mixing, a nonzero value would
indicate direct CP violation [15].
Our measurements are based on data recorded by the

Belle detector [16] running at the KEKB [17] asymmetric-
energy eþe− collider. The data samples were collected at
eþe− center-of-mass (CM) energies corresponding to the
ϒð4SÞ and ϒð5SÞ resonances, and at 60 MeV below the
ϒð4SÞ resonance. The corresponding integrated luminos-
ities are 711 fb−1, 121 fb−1, and 89 fb−1, respectively. The
Belle detector is a large-solid-angle magnetic spectrometer
consisting of a silicon vertex detector (SVD), a central drift
chamber (CDC), an array of aerogel threshold Cherenkov
counters (ACC), a barrellike arrangement of time-of-flight
scintillation counters (TOF), and an electromagnetic calo-
rimeter (ECL) consisting of CsI(Tl) crystals. These com-
ponents are all located inside a superconducting solenoid
coil that provides a 1.5 T magnetic field. An iron flux-
return located outside of the coil is instrumented to detect
K0

L mesons and to identify muons.
We calculate signal reconstruction efficiencies, optimize

selection criteria, and study various backgrounds using
Monte Carlo (MC) simulated events. MC events are
generated using EvtGen [18] and PYTHIA [19], and they
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are subsequently processed through a detector simulation
using GEANT3 [20]. Final-state radiation from charged
particles is implemented during event generation using
the PHOTOS package [21].
Signal Dþ

s mesons are produced via the process
eþe− → cc̄, where one of the two charm quarks hadronizes
into a Dþ

s (or D−
s ) meson. We also search for a low-

momentum photon to reconstruct D�þ
s → Dþ

s γ decays.
Such events, in which aD�þ

s → Dþ
s γ decay is reconstructed,

are referred to as the “tagged” sample. Otherwise, in the case
of no reconstructed D�þ

s decay, events are referred to as the
“untagged” sample [22]. The former has low backgrounds,
while the latter has higher statistics. The tagged and
untagged samples are statistically independent; i.e., a
reconstructed Dþ

s candidate will be in one or the other
but not in both. Because the total number ofDþ

s produced in
data is not precisely known, we measure the branching
fractions of signal modes relative to that of the CF mode
Dþ

s → ϕð→ KþK−Þπþ, which has high statistics.
Charged-track candidates are required to originate near

the eþe− interaction point (IP) and have an impact
parameter along the z axis (defined as opposite the eþ
beam direction) of less than 4.0 cm, and in the x-y
(transverse) plane of less than 1.0 cm. The tracks are
required to have a transverse momentum greater than
100 MeV=c. To identify pion and kaon candidates, a
particle identification likelihood is constructed based on
energy-loss measurements in the CDC, time-of-flight
information from the TOF, and light yield measurements
from the ACC [23]. A track is identified as a kaon if the
ratio LðKÞ=ðLðKÞ þ LðπÞÞ > 0.6, where LðKÞ and LðπÞ
are the likelihoods that the track is a kaon or pion,
respectively. If this criterion is not satisfied, the track is
assumed to be a pion. The corresponding efficiencies are
approximately 84% for kaons and 94% for pions. Photon
candidates are reconstructed from electromagnetic clusters
in the ECL that do not have an associated charged track.
Such candidates are required to have an energy greater than
50 MeV in the barrel region, and greater than 100 MeV in
the end cap region. The hit times of energy deposited in the
ECL must be consistent with the beam collision time, as
calculated at the trigger level. The photon energy deposited
in the 3 × 3 array of ECL crystals centered on the crystal
with the highest energy is required to exceed 80% of the
energy deposited in the corresponding 5 × 5 array of
crystals.
Candidate π0’s are reconstructed fromphoton pairs having

an invariant mass satisfying 0.120 GeV=c2 < Mγγ <
0.150 GeV=c2; this range corresponds to about 2.5σ in
mass resolution. Candidate η mesons are reconstructed via
η → γγ (ηγγ) and η → πþπ−π0 (η3π) decays. To reduce
combinatorial background from low-energy photons, π0

and ηγγ candidates are required to have jEγ1 − Eγ2 j=
ðEγ1 þ Eγ2Þ < 0.9, where Eγ1 and Eγ2 are the energies of
the two photons. If a photon can pair with another photon to

form a π0 candidate, then it is not used to reconstruct ηγγ
candidates. The invariantmasses of ηγγ and η3π candidates are
required to satisfy 0.500 GeV=c2 < Mγγ < 0.580 GeV=c2

and 0.538 GeV=c2 < Mπþπ−π0 < 0.557 GeV=c2, respec-
tively; these ranges correspond to about 3.0σ in mass
resolution. Mass-constrained fits are performed for π0, ηγγ ,
and η3π candidates to improve their momentum resolution.
For the reference mode Dþ

s → ϕπþ, ϕ candidates are
reconstructed from KþK− pairs that form a vertex and have
an invariant mass satisfying 1.010 GeV=c2 < MKþK− <
1.030 GeV=c2. We also reconstruct K0

S → πþπ− decays,
as the multiplicity of such decays (and alsoKþ candidates) is
used later by a neural network to reduce backgrounds. These
candidates are reconstructed from πþπ− pairs that form a
vertex and satisfy jMπþπ− −mK0

S
j < 20 MeV=c2, wheremK0

S

is the nominal mass of the K0
S [24].

We subsequently reconstructDþ
s candidates by combining

a Kþ or πþ track with a π0, ηγγ, or η3π candidate. ForDþ
s →

ϕπþ decays, we combine a πþ track with a ϕ candidate. For
Dþ

s → ðKþ; πþÞπ0 andDþ
s → πþηγγ decays, we require that

the invariant mass satisfy 1.86 GeV=c2 < MDþ
s
<

2.07 GeV=c2; for Dþ
s → Kþðηγγ; η3πÞ and Dþ

s → πþη3π ,
we require 1.86 GeV=c2 < MDþ

s
< 2.05 GeV=c2. A nar-

rower range is chosen for Dþ
s → Kþðηγγ; η3πÞ in order to

avoid an excess of events in the region M > 2.05 GeV=c2

originating from Dþ
s → πþη decays, with the πþ misidenti-

fied as a Kþ. A narrower range is chosen for Dþ
s → πþη3π

due to its better resolution.
For the reference mode Dþ

s → ϕπþ, we require
1.93 GeV=c2 < MDþ

s
< 2.01 GeV=c2. In addition, for

Dþ
s → ðKþ; πþÞη3π and Dþ

s → ϕπþ decays, we require
that the charged tracks form a vertex. To suppress com-
binatorial backgrounds and also Dþ

s candidates originating
from B decays, we require that the Dþ

s momentum in the
eþe− CM frame be greater than 2.3 GeV=c.
We reconstruct D�þ

s candidates by combining a Dþ
s

candidate with a γ. The γ is required to have an energy
Eγ > 0.15 GeV and not be associated with a π0 candidate.
The mass difference ΔM ≡MDþ

s γ −MDþ
s
, where MDþ

s
is

the invariant mass of theDþ
s candidate, is required to satisfy

0.125 GeV=c2 < ΔM < 0.155 GeV=c2. The upper and
lower ranges correspond to about 2.5σ and 3.5σ in
resolution, respectively. The lower range is larger due to
a longer tail in the distribution of γ energy. The Dþ

s
candidates that satisfy the aboveD�þ

s → Dþ
s γ requirements

constitute the tagged sample.
To suppress backgrounds, we use a neural network (NN)

[25] based on the following input variables. (1) The
momentum of the Dþ

s in the CM frame. (2) jdlxyj or
jdrj, where jdlxyj is the distance in the x-y plane (transverse
to the eþ beam) between the Dþ

s decay vertex and its
production vertex. The latter is taken to be the eþe− IP. For
modes in which there is only one charged track, the Dþ

s

Y. GUAN et al. PHYS. REV. D 103, 112005 (2021)
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decay vertex cannot be reconstructed; in this case, we use
the variable jdrj, which is the impact parameter of the
charged track in the x-y plane with respect to the IP. (3) The
cosine of the helicity angle θh, which is the angle in theDþ

s
rest frame between the momentum of the Kþ or πþ
daughter and the opposite of the boost direction of the
lab frame. (4) The number of K� and K0

S candidates
reconstructed recoiling against the signal Dþ

s candidate.
For eþe− → cc̄ events, the charm quark that does not
hadronize to the signal Dþ

s typically produces a kaon via a
c → s transition. (5) The angle between theDþ

s momentum
and the thrust axis of the event, both evaluated in the CM
frame. The thrust axis (t̂) is defined as the unit vector that
maximizes the quantity

P
i jt̂ ·  pij=

P
i j  pij, where  pi are

the momenta of particles, and i runs over all particles in the
event. For eþe− → cc̄ events, Dþ

s mesons tend to be
produced with high momentum, and thus their direction
tends to be close to that of t̂. (6) The angle between the Dþ

s
momentum and the vector joining its decay vertex and its
production vertex in the x-y plane. This variable is available
only for Dþ

s → ðKþ; πþÞη3π and Dþ
s → ϕπþ decays, i.e.,

modes with more than one charged track in the final state.
The NN outputs a single variable (ONN), which ranges

from−1 toþ1. Events with values close toþ1 (−1) aremore
signallike (backgroundlike). For each signal mode, we
require that ONN be greater than some minimum value,
which is determined by optimizing a figure-of-merit (FOM).
The FOM is taken to be the ratioNsig=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsig þ Nbkg

p
, where

Nsig and Nbkg are the expected yields of signal and
background events, respectively. The former is evaluated
viaMC simulation, using world-average values of branching
fractions for signal modes [24]. The latter is evaluated by
scaling events in data that are reconstructed in a mass
sideband. This sideband is defined as 2.04 GeV=c2 <
MDþ

s
< 2.10 GeV=c2 for Dþ

s → ðKþ; πþÞπ0 and Dþ
s →

ðKþ; πþÞηγγ; 2.02 GeV=c2 < MDþ
s
< 2.05 GeV=c2 for

Dþ
s → Kþη3π; and 2.02 GeV=c2 < MDþ

s
< 2.10 GeV=c2

for Dþ
s → πþη3π. For Dþ

s → πþπ0 decays, the branching
fraction is unknown; thus, for this mode the FOM is taken to
be εsig=

ffiffiffiffiffiffiffiffiffi
Nbkg

p
, where εsig is the reconstruction efficiency

[26]. The final selection criteria range fromONN > 0.70 for
Dþ

s → πþη3π to ONN > 0.94 for Dþ
s → πþπ0. The corre-

sponding signal efficiencies range from35% forDþ
s → πþπ0

to 63% for Dþ
s → πþη3π.

A small fraction of events have multiple Dþ
s candidates.

This fraction ranges from 1% to 5%, depending on the
decay mode. For such events, we select one candidate in an
event by choosing the one with the smallest χ2 resulting
from the mass-constrained fit of the η or π0 decay. If, after
this selection, there are still multiple candidates, we choose
the one with the highest value of ONN. For the reference
mode Dþ

s → ϕπþ, which has no η or π0 in the final state,

we choose the candidate with the highest ONN. The
efficiency of this best-candidate selection is evaluated from
MC simulation to be about 70%.
The number of signal events is obtained from an

unbinned maximum likelihood fit to the Dþ
s mass distri-

bution. For each mode, we perform a simultaneous fit to the
MDþ

s
distributions of both the tagged and untagged sam-

ples. The nominal fitting range is 1.86–2.07 GeV=c2.
However, for Dþ

s → Kþðηγγ; η3πÞ and Dþ
s → πþη3π , the

range is 1.86–2.05 GeV=c2. We fit theDþ
s andD−

s samples
separately but simultaneously.
The following probability density functions (PDFs) are

used for fitting signal and background components. For the
signal component, the sum of a Crystal Ball (CB) function
[27] and a Gaussian function, with both having the same
mean, is used. For Dþ

s → πþηγγ and Dþ
s → πþη3π , which

have high statistics, the common mean and the widths are
floated. For other signal modes, the means are fixed to
those from Dþ

s → πþη, while the widths are fixed to MC
simulation values that are scaled to account for differences
in resolution between data and the MC. The scaling factors
are determined by comparing signal shape parameters
between data and MC simulation for Dþ

s → πþη. The
relative fraction of the Gaussian function and two remain-
ing parameters of the CB function are fixed to MC
simulation values.
The dominant background is combinatorial, for which

a second-order Chebyshev polynomial is used. All
background parameters are floated. The decays Dþ →
ðKþ; πþÞπ0 andDþ → ðKþ; πþÞη form peaks in theDþ

s →
ðKþ; πþÞπ0 and Dþ

s → ðKþ; πþÞη mass distributions; these
peaks are described byGaussian functions. TheDþ → πþπ0

and Dþ → πþη decays also form peaks in the Dþ
s → Kþπ0

and Dþ
s → Kþη mass distributions (albeit very small) when

the πþ ismisidentified as aKþ. The shape of this background
and the fractions ofDþ → πþπ0 andDþ → πþη decays that
are misidentified are taken from MC simulation. The yields
ofDþ → πþπ0 andDþ → πþη are obtained from the fits to
the πþπ0 and πþη mass distributions.

For the reference modeDþ
s → ϕπþ, the signal PDF is the

sum of a bifurcated Student’s t-distribution [28] and a
Gaussian function. The mean and width of the signal peak
and the fraction of the Gaussian function are floated. There
is a small background from Dþ

s → KþK−πþ, in which the
kaons do not originate from ϕ → KþK−. As this back-
ground has the same mass distribution as Dþ

s → ϕπþ, it
cannot be distinguished from the latter in the fit. We thus
correct the ϕπþ yield to account for the KþK−πþ con-
tribution. This contribution is estimated from MC simu-
lation to be ð1.73� 0.03Þ% [29].
The MDþ

s
distributions along with projections of the fit

result are shown in Figs. 1, 2, and 3. The branching fraction
Bsig for the signal modes is calculated as
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Bsig ¼
�
Nsig

Nϕπþ

��
εϕπþ

εsig

�
· Bϕπþ ; ð2Þ

where Nsig and Nϕπþ are the yields of the signal and
reference mode Dþ

s → ϕπþ, respectively. Each yield is the
sum of the yields for the tagged and untagged samples. The
terms εsig and εϕπþ are the corresponding reconstruction
efficiencies, as evaluated from MC simulation. The branch-
ing fraction Bϕπþ for Dþ

s → ϕð→ KþK−Þπþ is taken to be
the world-average value ð2.24� 0.08Þ% [24].
All signal yields and resulting branching fractions are

listed in Table I. Aweighted average of the results from the
two η decay channels (ηγγ and η3π) is also given. The results
listed include systematic uncertainties, which are discussed
later. As no significant signal for Dþ

s → πþπ0 is observed,
we set an upper limit on its branching fraction using a
Bayesian approach. We calculate the likelihood function L
as a function of branching fraction; the value ξ that satisfiesR ξ
0 LðxÞdx ¼ 0.90 is taken to be the 90% confidence level
(C.L.) upper limit. We include systematic uncertainty into
this limit by convolving LðxÞ, before integrating, with a
Gaussian function whose width is equal to the total
systematic uncertainty. The result is BðDþ

s → πþπ0Þ <
1.2 × 10−4 at 90% C.L.
As the Dþ

s and D−
s samples are fitted separately, we

obtain the raw asymmetry Araw, defined as

Araw ¼ NDþ
s
− ND−

s

NDþ
s
þ ND−

s

: ð3Þ

In this expression, NDþ
s
(ND−

s
) is the signal yield for theDþ

s

(D−
s ) sample. This raw asymmetry receives three contri-

butions,

Araw ¼ ACP þ AFB þ Aϵ; ð4Þ

where ACP is the intrinsic CP asymmetry of interest; AFB is
the “forward-backward” asymmetry that arises from inter-
ference between amplitudes mediated by a virtual photon
and by a Z0 boson; and Aϵ is an asymmetry that arises from
a difference in reconstruction efficiencies between posi-
tively charged and negatively charged tracks. The asym-
metry AFB is an odd function of the cosine of the Dþ

s polar
angle in the CM frame (cos θCMDs

). The asymmetry Aϵ arises
from small differences in tracking and particle identifica-
tion efficiencies and depends on the momentum and polar
angle of the charged track. ForD�þ

s → Dþ
s γ decays, we find

that the momentum distribution of the πþ or Kþ in the Dþ
s

decay is essentially the same as that in prompt Dþ
s decays.

Thus, for a Dþ
s decay mode, we take Aϵ to be the same for

both the tagged and untagged samples.
For the mode Dþ

s → πþη, we correct for AFB and Aϵ

using the reference mode Dþ
s → ϕπþ. As the momentum

spectrum and polar angle distributions of the πþ daughters

FIG. 1. Data and fit projection for Dþ
s → Kþπ0 (upper two

rows),Dþ
s → Kþηγγ (middle two rows), andDþ

s → Kþη3π (lower
two rows). Left side shows Dþ

s candidates, right side shows D−
s

candidates. For each pair of rows, top is the untagged sample,
bottom is the tagged sample. The solid red line is the total fit, the
dotted red line is signal, the broken green line is background from
Dþ, and the dashed blue line is combinatorial background. The
plots beneath the distributions show the residuals.
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in both decay modes are essentially identical, the asym-
metry Aϵ is expected to be the same. As the asymmetry AFB
is independent of decay mode, subtracting the Dþ

s → πþη
and Dþ

s → ϕπþ raw asymmetries yields the difference in
CP asymmetries,

ΔAraw ≡ Aπη
raw − Aϕπ

raw ¼ Aπη
CP − Aϕπ

CP: ð5Þ

Thus, Aπη
CP ¼ ΔAraw þ Aϕπ

CP. Inserting the well-measured
value Aϕπ

CP¼−0.0038�0.0026�0.0008 [24] subsequently
yields Aπη

CP.
For signal modes Dþ

s → Kþπ0 and Dþ
s → Kþη, the

mode Dþ
s → ϕπþ cannot be used to correct for Aϵ as the

Kþ and πþ daughters are of different types. In this case, we
calculate Aϵ using previous Belle measurements of K�
efficiencies made as a function of track momentum and
polar angle [30]. We convolve this two-dimensional effi-
ciency map with the corresponding momentum and angular
distributions, as determined from MC, of the K� tracks in
our signal modes to obtain Aϵ. The resulting values of Aϵ

range from −0.001 to −0.008. Correcting for this asym-
metry results in Acorr, which is the sum of ACP and AFB. As
AFB is an odd function of the polar angle cos θCMDs

, we
extract ACP and AFB by calculating

ACPðcos θCMDs
Þ ¼ Acorrðcos θCMDs

Þ þ Acorrð− cos θCMDs
Þ

2

AFBðcos θCMDs
Þ ¼ Acorrðcos θCMDs

Þ − Acorrð− cos θCMDs
Þ

2
: ð6Þ

FIG. 2. Data and fit projection for Dþ
s → πþπ0 (upper two

rows), Dþ
s → πþηγγ (middle two rows), and Dþ

s → πþη3π (lower
two rows). Left side shows Dþ

s candidates, right side shows D−
s

candidates. For each pair of rows, top is the untagged sample,
bottom is the tagged sample. The solid red line is the total fit, the
dotted red line is signal, the broken green line is background from
Dþ, and the dashed blue line is combinatorial background. The
plots beneath the distributions show the residuals.

FIG. 3. Data and fit projection for the reference mode
Dþ

s → ϕπþ. Left side shows Dþ
s candidates, right side shows

D−
s candidates. Upper row is the untagged sample, lower row is

the tagged sample. The solid red line is the total fit, the dotted red
line is signal, and the dashed blue line is background. The plots
beneath the distributions show the residuals.
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We perform this calculation in three bins of j cos θCMDs
j:

[0, 0.4], [0.4, 0.7], and [0.7, 1.0]. The results for ACP and
AFB are plotted in Fig. 4. We subsequently fit these
points to a constant to obtain final values of ACP; the
results are listed in Table II. For Dþ

s → πþπ0, no signal is
observed, and thus there is no result for ACP.

The systematic uncertainties for the branching frac-
tions are summarized in Table III. The uncertainty due
to charged track reconstruction is evaluated from a study
of partially reconstructed D�þ → πþD0ð→ K0

Sπ
þπ−Þ

decays and found to be 0.35% per track. The uncertainty
due to particle identification is evaluated from a study of
D�þ → πþD0ð→ K−πþÞ decays. We note that the uncer-
tainties due to tracking and particle identification par-
tially cancel between the signal and reference modes.
The uncertainty due to π0=η → γγ reconstruction is
evaluated from a study of τ− → π−π0ντ decays and
found to be 2.4%.
To study the systematic uncertainty due to the ONN

requirement, we remove this requirement for the high-
statistics Dþ

s → πþη mode and also for the reference mode
Dþ

s → ϕπþ. We subsequently use the sPlot [32] technique
to extract the ONN distribution for each decay. From these
distributions, we calculate the efficiencies of the ONN
requirements used for the six signal decay modes. We
repeat this calculation for both data and MC samples and
take the difference between the resulting efficiencies as
the systematic uncertainty due to the ONN requirement.

TABLE I. Reconstruction efficiencies, fitted signal yields, and resulting relative and absolute branching fractions. The yields listed are
the sums of those from the tagged and untagged samples. The first and second uncertainties listed are statistical and systematic,
respectively. The third uncertainty is due to the external branching fraction Bϕπþ . Results from the two η decay modes are combined via a
weighted average and also listed. All results are corrected for the π0 → γγ, η → γγ, or η → πþπ−π0 branching fractions.

Decay mode ε (%) Fitted yield B=Bϕπþ (%) B (10−3)

Dþ
s → Kþπ0 8.10� 0.04 11978� 846 3.28� 0.23� 0.13 0.735� 0.052� 0.030� 0.026

Dþ
s → Kþηγγ 7.42� 0.05 10716� 429 8.04� 0.32� 0.35 1.80� 0.07� 0.08� 0.06

Dþ
s → Kþη3π 4.04� 0.02 3175� 121 7.62� 0.29� 0.33 1.71� 0.07� 0.08� 0.06

Dþ
s → Kþη � � � � � � 7.81� 0.22� 0.24 1.75� 0.05� 0.05� 0.06

Dþ
s → πþπ0 6.63� 0.04 491� 734 0.16� 0.25� 0.09 0.037� 0.055� 0.021� 0.001

Dþ
s → πþηγγ 10.84� 0.02 166696� 1173 85.54� 0.64� 3.32 19.16� 0.14� 0.74� 0.68

Dþ
s → πþη3π 6.50� 0.03 56132� 407 83.55� 0.64� 4.37 18.72� 0.14� 0.98� 0.67

Dþ
s → πþη � � � � � � 84.80� 0.47� 2.64 19.00� 0.10� 0.59� 0.68

Dþ
s → ϕπþ 22.05� 0.13 1005688� 2527 1 � � �

FIG. 4. CP asymmetries (left) and AFB (right) in bins of
j cos θCMDs

j, for Dþ
s → Kþπ0 (upper), Dþ

s → Kþηγγ (middle),
and Dþ

s → Kþη3π (lower). In the plots on the left, the horizontal
line shows the result of a fit to a constant, and the red shaded
region shows the �1σ errors. In the plots on the right, the dashed
line show the leading-order prediction [31].

TABLE II. Measured CP asymmetries. The first and second
uncertainties listed are statistical and systematic, respectively.
Results from the two η decay modes are combined via a weighted
average and also listed.

Decay mode Araw ACP

Dþ
s → Kþπ0 0.115� 0.045 0.064� 0.044� 0.011

Dþ
s → Kþηγγ 0.046� 0.027 0.040� 0.027� 0.005

Dþ
s → Kþη3π −0.011� 0.033 −0.008� 0.034� 0.008

Dþ
s → Kþη � � � 0.021� 0.021� 0.004

Dþ
s → πþηγγ 0.007� 0.004 0.002� 0.004� 0.003

Dþ
s → πþη3π 0.008� 0.006 0.002� 0.006� 0.003

Dþ
s → πþη � � � 0.002� 0.003� 0.003

Dþ
s → ϕπþ 0.002� 0.001 � � �
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This uncertainty ranges from 0.9% to 1.2% for the signal
modes, and is 0.6% for the reference mode.
There is systematic uncertainty in the reconstruction

efficiencies εsig and εϕπþ arising from a possible difference
between MC and data in the fraction of Dþ

s decays
originating from Dþ�

s → Dþ
s γ. This difference is common

to both signal and normalization modes and nominally
cancels out in the ratio εϕπþ=εsig. However, there could be a
small difference remaining if there were a difference in
reconstruction efficiencies between tagged and untagged
Dþ

s decays, and this difference itself deviated between
signal and normalization modes. Thus, the systematic
uncertainty in the ratio εϕπþ=εsig due to such differences
is found to be small, only 0.7%. The statistical errors on εsig
and εϕπþ due to the limited sizes of the MC samples used to
evaluate them are taken as a systematic uncertainty.
The systematic uncertainties due to the fitting procedure

are evaluated as follows. (a) The uncertainty due to fixed
parameters in the fits is estimated by varying these
parameters according to their uncertainties. For each signal
mode, we vary all such parameters simultaneously, repeat-
ing the fit 1000 times. We plot the fit results and take the
rms of these distributions as the systematic uncertainty. (b)
The uncertainty due to the amount of peaking background
from Dþ → πþðπ0=ηÞ decays is evaluated by varying this
background by �1σ; the resulting changes in the signal
yields are assigned as systematic uncertainties. (c) The

uncertainty due to the choice of fitting range is evaluated by
varying this range; the change in the branching fraction is
assigned as a systematic uncertainty. (d) To evaluate
potential fit bias, we perform 1000 fits to “toy” MC
samples. Small differences observed between the fitted
signal yields and the input values are assigned as systematic
uncertainties.
The uncertainty on the branching fraction for the

reference mode Dþ
s → ϕπþ, which is taken from

Ref. [24] and is external to the analysis, is taken as a
systematic uncertainty. All uncertainties are added in
quadrature to give, for each signal mode, an overall
systematic uncertainty. These overall uncertainties are also
listed in Table III.
The systematic uncertainties for ACP are evaluated in a

similar manner as those for the branching fraction and are
summarized in Table IV. The effect of a possible CP
asymmetry [24] in peaking background from Dþ →
πþðπ0=ηÞ is considered as a systematic uncertainty. The
uncertainty in ACP due to our choice of cos θCMDs

bins is
evaluated by shifting the bin boundaries; the change in ACP
is taken as the systematic uncertainty. The uncertainty on
ACP for the reference mode (from Ref. [24]) is taken as a
systematic uncertainty.
In summary, we have used the full Belle data set of

921 fb−1 to measure the branching fractions for four decay
modes of the Dþ

s , and CP asymmetries for three decay

TABLE III. Systematic uncertainties for the ratio of branching fractions, in percent. The overall uncertainty is the
sum in quadrature of the listed uncertainties and corresponds to the systematic uncertainty listed in Table I. The
uncertainty due to fitting for Dþ

s → πþπ0 is fractionally large because the signal yield is so small.

Source BðKþπ0Þ
BðϕπþÞ

BðKþηγγÞ
BðϕπþÞ

BðKþη3πÞ
BðϕπþÞ

Bðπþπ0Þ
BðϕπþÞ

BðπþηγγÞ
BðϕπþÞ

Bðπþη3πÞ
BðϕπþÞ

Tracking 0.7 0.7 � � � 0.7 0.7 � � �
Particle identification 1.8 1.8 1.9 1.9 1.9 4.0
π0=η → γγ 2.4 2.4 2.4 2.4 2.4 2.4
ONN requirement 1.1 1.3 1.2 1.3 1.3 1.3
D�þ

s fraction in ε 0.7 0.7 0.7 0.7 0.7 0.7
MC statistics 0.8 0.8 0.8 0.8 0.7 0.7
Fitting 2.2 2.6 2.4 56.2 1.5 1.2
Bðη → γγÞ � � � 0.5 � � � � � � 0.5 � � �
Bðη → πþπ−π0Þ � � � � � � 1.2 � � � � � � 1.2

Overall uncertainty 4.1 4.4 4.4 56.3 3.9 5.2

TABLE IV. Systematic uncertainties for ACP. The overall uncertainty is the sum in quadrature of the listed
uncertainties.

Source Kþπ0 Kþηγγ Kþη3π πþηγγ πþη3π ϕπþ

Fitting 0.0056 0.0035 0.0020 0.0005 0.0005 0.0002
Dþ → πþðπ0=ηÞ background 0.0062 0.0022 0.0031 � � � � � � � � �
cos θCMDs

binning 0.0068 0.0028 0.0068 � � � � � � � � �
ACP in Dþ

s → ϕπþ � � � � � � � � � 0.0027 0.0027 � � �
Overall uncertainty 0.0108 0.0050 0.0077 0.0027 0.0027 0.0002
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modes. Our results for the branching fractions relative to
that of the reference mode Dþ

s → ϕð→ KþK−Þπþ (Bϕπþ)
are

BðDþ
s → Kþπ0Þ=Bϕπþ ¼ ð3.28� 0.23� 0.13Þ%

BðDþ
s → KþηÞ=Bϕπþ ¼ ð7.81� 0.22� 0.24Þ%

BðDþ
s → πþπ0Þ=Bϕπþ ¼ ð0.16� 0.25� 0.09Þ%

BðDþ
s → πþηÞ=Bϕπþ ¼ ð84.80� 0.47� 2.64Þ%:

Multiplying these results by the world-average value
Bϕπþ ¼ ð2.24� 0.08Þ% [24] gives

BðDþ
s →Kþπ0Þ¼ð0.735�0.052�0.030�0.026Þ×10−3

BðDþ
s →KþηÞ¼ð1.75�0.05�0.05�0.06Þ×10−3

BðDþ
s →πþπ0Þ¼ð0.037�0.055�0.021�0.001Þ×10−3

BðDþ
s →πþηÞ¼ð19.00�0.10�0.59�0.68Þ×10−3;

where the third uncertainty listed is due to Bϕπþ . As we do
not observe any signal for Dþ

s → πþπ0, we set an upper
limit on its branching fraction,

BðDþ
s → πþπ0Þ < 1.2 × 10−4 ð90%C:L:Þ:

Our results for Dþ
s → Kþη and Dþ

s → πþπ0 are the most
precise to date. Our result for Dþ

s → πþη is consistent with
a previous, less precise Belle result [29] and independent of
it. All of these results are consistent within 2 standard
deviations with world-average values [24], and also with
recent results from the BESIII experiment [13]. For Dþ

s →
ðKþ; πþÞπ0 and Dþ

s → πþη, our results agree with theory
predictions [1,2,10,11]. However, for Dþ

s → Kþη, our
result is significantly higher than theory predictions.
Our results for the CP asymmetries are

ACPðDþ
s → Kþπ0Þ ¼ 0.064� 0.044� 0.011

ACPðDþ
s → KþηÞ ¼ 0.021� 0.021� 0.004

ACPðDþ
s → πþηÞ ¼ 0.002� 0.003� 0.003:

These results are the most precise to date and represent a
significant improvement in precision over current world-
average values [24]. They show no evidence of CP
violation but are consistent with theory predictions
[1,2,8], which are very small. Our improved results for
branching fractions and CP asymmetries can be input into
sum rules to provide more stringent predictions for CP
violation in charm decays [14].
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