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The first measurements of differential branching fractions of inclusive semileptonic B → Xulþνl decays
are performed using the full Belle data set of 711 fb−1 of integrated luminosity at the ϒð4SÞ resonance and
for l ¼ e, μ. With the availability of these measurements, new avenues for future shape-function model-
independent determinations of the Cabibbo-Kobayashi-Maskawa matrix element jVubj can be pursued to
gain new insights in the existing tension with respect to exclusive determinations. The differential
branching fractions are reported as a function of the lepton energy, the four-momentum-transfer squared,
light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting
the backgrounds from semileptonic B → Xclþνl decays and other processes, and corrected for resolution
and acceptance effects.

DOI: 10.1103/PhysRevLett.127.261801

In this Letter, we present the first measurements of the
differential branching fractions of inclusive semileptonicB →
Xulþνl decays, obtained from analyzing the full Belle data
set of 711 fb−1 of integrated luminosity at the ϒð4SÞ
resonance and for l ¼ e, μ. The measured distributions can
be used for future studies of the nonperturbative decay
dynamics of B → Xulþνl transitions, and novel determina-
tions of the b-quark massmb and of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element jVubj. The presented
measurements use the same collision events that were ana-
lyzed in Ref. [1]. Therein, partial branching fractions of
charmless semileptonic decays were reported using an analy-
sis technique relying on the full reconstruction of the secondB
meson of the eþe− → ϒð4SÞ → BB̄ process. This approach
allows for the direct reconstruction of the four momentum of
the hadronic X system of the B → Xulþνl process and other
kinematic quantities of interest. The analysis strategy of the
presented measurements follows Ref. [1], but more stringent
selection criteria are applied to improve the resolution of key
variables and further suppress backgrounds from B →
Xclþνl decays and other processes. Charge conjugation is
implied throughout this Letter andB → Xulþνl is defined as
the average branching fraction of Bþ and B0 meson decays.
Differential branching fractions are reported as a function

of the lepton energy in the signal B rest frame EB
l ,

the invariant massMX and mass squaredM2
X of the hadronic

X system, the four-momentum-transfer squared q2 ¼
ðpB − pXÞ2 of the B to the lepton and neutrino system,
and the two light-cone momenta P� ¼ ðEB

X ∓ jpB
XjÞ with

EB
X and pB

X in the signal B rest frame. Measurements of these
distributions are of great interest as they allow for the study
of nonperturbative shape functions [2]. Shape functions
describe the Fermi motion of the b quark inside the B
meson, and enter in the calculation of the dynamics of B →
Xulþνl decays. Currently, properties of the leading-order
ΛQCD=mb shape function can only be studied using the
photon energy spectrum ofB → Xsγ decays and moments of
the lepton energy or hadronic invariant mass in charmed
semileptonic B decays [3–5]. The modeling of both the
leading and subleading shape functions introduce large
theory uncertainties on predictions of the B → Xulþνl
decay rate, and hence on the determination of jVubj. With
the presented differential branching fractions, we provide the
necessary experimental input for future model-independent
approaches, whose aim is to reduce this model dependence
by directly measuring the shape function [6,7]. This will lead
to more reliable determinations of jVubj from inclusive
processes and give new insights into the persistent tension
with the values obtained from exclusive determinations [8]
of about 3 standard deviations.
We analyze ð772� 10Þ × 106 Bmeson pairs recorded at

theϒð4SÞ resonance energy and 79 fb−1 of collision events
recorded 60 MeV below the ϒð4SÞ peak, which were both
recorded at the KEKB eþe− collider [9] by the Belle
detector. Belle is a large-solid-angle magnetic spectrometer
and a detailed description of its subdetectors and perfor-
mance can be found in Ref. [10]. Monte Carlo (MC)
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samples of B meson decays and continuum processes
(eþe− → qq̄ with q ¼ u, d, s, c) are simulated using the
EvtGen generator [11] and a detailed description of all
samples and models is given in Ref. [1]. The simulated
samples are used for the background subtraction and to
correct for detector resolution, selection, and acceptance
effects. The sample sizes used correspond to approximately
ten and five times, respectively, the Belle collision data
for B meson production and continuum processes.
Semileptonic B → Xulþνl decays are modeled as a mix-
ture of specific exclusive modes and nonresonant contri-
butions using a so-called “hybrid” approach [12], following
closely the implementation of [13,14]. In the hybrid
approach, the triple differential rate of the inclusive and
combined exclusive predictions are combined such that
partial rates of the inclusive prediction are recovered. This
is achieved by assigning three dimensional weights to the
inclusive contribution as a function of the generator-level
q2, EB

l , and MX. For the inclusive contribution, we use
two different calculations, i.e. the De Fazio and Neubert
(DFN) model [15] and the Bosch-Lange-Neubert-Paz
(BLNP) model [16], and treat their difference as a sys-
tematic uncertainty. The simulated inclusive B → Xulþνl
events are hadronized with the JETSET algorithm [17] into
final states with two or more mesons. A summary of the
used B → Xulþνl branching fractions and decay models is
given in Table I. Semileptonic B → Xclþνl decays are
dominated by B → Dlþνl and B → D�lþνl decays,
which are simulated with form factor parametrizations
discussed in Refs. [18–20] and values determined
by Refs. [21,22]. The remaining B → Xclþνl decays
are simulated as a mix of resonant and nonresonant modes,
using Ref. [23] for the modeling of B → D��lþνl form
factors. The known difference between inclusive and

the sum of measured exclusive B → Xclþνl is filled with
B → Dð�Þηlþνl decays.
Collision events are reconstructed using the multivariate

algorithm of Ref. [34], in which one of the two B mesons
is fully reconstructed in hadronic final states (labeled as
Btag). Signal candidates are reconstructed by identifying an
electron or muon candidate with EB

l ¼ jpB
l j > 1 GeV in the

signal B rest frame, and by reconstructing the hadronic X
system of the B → Xulþνl semileptonic process using
charged particles and neutral energy depositions of the
collision event not used in the reconstruction of the Btag

candidate. The largest background after the reconstruction
is from the CKM-favored B → Xclþνl process, which
possesses a very similar decay signature, completely
dominating the selected candidate events. To identify
B → Xulþνl candidates, eleven distinguishing features
are combined into a single discriminant using a multivariate
classifier in the form of boosted decision trees (BDTs)
using the implementation of Ref. [35]. The most discrimi-
nating variables are the reconstructed neutrino mass M2

miss,
the vertex fit probability of the Xl decay vertex, and
the number of identified K� and K0

S in the X system. To
improve the resolution on the reconstructed variables or
the signal to background ratio, additional selections are
applied. For the measurements involving the hadronic X
system (MX, M2

X, q
2, P�), we demand the missing energy

Emiss and the magnitude of the missing momentum jpmissj
of the collision to be consistent with each other by requiring
jEmiss − jpmissjj < 0.1 GeV. This improves the resolution
by 21%–37%, depending on the observable, and removes
poorly reconstructed events. The signal efficiency after the
BDT selection and this additional requirement is 8% while
rejecting 99.5% of all B → Xclþνl background events, as
defined with respect to all selected signal or B → Xclþνl
events after successfully identifying a suitable Btag candi-
date. To reduce the contamination of B → Xclþνl and
other backgrounds, for the measurements of q2 and the
light-cone momenta P�, an additional requirement of
MX < 2.4 GeV is imposed: this selection, mostly targeting
poorly understood high-massXc states, removes in addition
background from secondary leptons and reduces the
B → Xclþνl contamination by an additional 20%. The
reconstruction resolution of the lepton energy is excellent,
thus no requirement on the missing energy and the
magnitude of the missing momentum of the event is
imposed, but to reduce background contributions we also
require MX < 2.4 GeV. This results in a signal efficiency
of 17% and 99% of B → Xclþνl background events are
rejected as defined with respect to all events after the Btag

selection.
The differential branching fractions are extracted by

subtracting the remaining background contributions from
B → Xclþνl and other sources in the measured distribu-
tions. This is implemented in a four-step procedure: first a

TABLE I. Semileptonic B → Xulþνl decays are modeled as a
mixture of specific exclusive modes and nonresonant contribu-
tions. The branching fractions are from the world averages from
Ref. [24] and the models and form factors (FFs) used are listed.
We use natural units (ℏ ¼ c ¼ 1).

B Value Bþ Value B0

B → πlþνl
a,e ð7.8� 0.3Þ × 10−5 ð1.5� 0.06Þ × 10−4

B → ηlþνl
b,e ð3.9� 0.5Þ × 10−5 � � �

B → η0lþνl
b,e ð2.3� 0.8Þ × 10−5 � � �

B → ωlþνl
c,e ð1.2� 0.1Þ × 10−4 � � �

B → ρlþνl
c,e ð1.6� 0.1Þ × 10−4 ð2.9� 0.2Þ × 10−4

B → Xulþνl
d,e ð2.2� 0.3Þ × 10−3 ð2.0� 0.3Þ × 10−3

aBCL FFs [25] from fit to LQCD [26] and Ref. [27].
bPole FFs from LCSR [28].
cBSZ FFs fit [29] to LCSR [30] and Refs. [31–33].
dDFN [15] (mKN

b ¼ ð4.66� 0.04Þ GeV, aKN ¼ 1.3� 0.5) or
BLNP model [16] (mSF

b ¼ 4.61 GeV, μ2SFπ ¼ 0.20 GeV2).
eInclusive and exclusive decays are mixed using hybrid
approach [12].
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binned likelihood fit to the MX distribution is carried out to
estimate the number of background events. TheMX fit takes
the shape of signal and background from MC simulations
and includes as nuisance parameters systematic effects that
can impact the template shapes. To reduce the dependence
on the precise modeling of the B → Xulþνl process, a
coarse binning is used. In particular, the resonance region
(MX ∈ ½0; 1.5� GeV) is described by a single bin. The
analyzed hadronic invariant mass spectra with and without
the selection on jEmiss − jpmissjj < 0.1 GeV and the used
binning for the different fits are shown in Fig. 1.
In the second step, the background is subtracted using

the estimated normalization from the correspondingMX fit
in the kinematic variable under study. The background
shape is taken from MC simulation. The statistical uncer-
tainty on the background-subtracted yields are determined
using a bootstrapping procedure [36,37] to properly incor-
porate the correlation from the MX fit as the same data
events are analyzed. The same method is used to determine

the statistical correlations between all bins of all measured
distributions. The systematic uncertainties associated with
modeling the background shape and normalization are also
propagated into the uncertainties of the estimated signal
yields. In the third step, the signal yields are unfolded using
the singular value decomposition (SVD) algorithm from
Ref. [38] with the implementation of Ref. [39]. The
regularization parameter of the unfolding method was
carefully tuned with simulated samples to minimize the
dependence on mb, the shape function modeling, and the
composition of the B → Xulþνl signal. In the final step
the unfolded yields are corrected for efficiency and accep-
tance effects to the partial phase space defined by
EB
l > 1 GeV, also correcting for QED final-state radiation.

The full analysis procedure was validated with independent
MC samples and ensembles of pseudoexperiments and no
biases of central values or uncertainties were observed.
Systematic uncertainties from the background subtrac-

tion, the modeling of the detector response for
B → Xulþνl, and uncertainties entering the total normali-
zation are consistently propagated through the background
subtraction, unfolding, and efficiency correction procedure.
For the background subtraction we evaluate B → Xulþνl
and B → Xclþνl modeling (FFs, nonperturbative param-
eters and composition) and detector related systematic
uncertainties. The largest systematic uncertainties are
typically from the assumptions entering the modeling of
the B → Xulþνl signal composition, but depending on

FIG. 1. The reconstructed MX distributions after the BDT
selection without (top) and with (bottom) the requirement of
jEmiss − jpmissjj < 0.1 GeV are shown. The arrows indicate the
coarse binning used in the background subtraction fit for the
different variables. Removing the MX > 2.4 GeV events im-
proves the signal to background ratio for EB

l , q
2, and P�, but is

not necessary for measurements of MX and M2
X.

FIG. 2. The relative systematic uncertainties on the unfolded
differential branching fraction as a function of MX and q2 are
shown. The different uncertainty sources are color coded.
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the region of phase space also the background subtraction
uncertainty can be a dominant source of uncertainty.
Figure 2 shows the relative uncertainties on the unfolded
differential branching fractions as a function ofMX and q2.
The total systematic uncertainties range from 9% to
130% in relative error, and the background uncertainty
is the dominant source of error in regions of phase space
that are enriched in B → Xclþνl (e.g., above MX≈mD0 ¼
1.86GeV). The exclusive B → Xulþνl modeling errors
only contribute significantly in the resonance region at low
MX or high q2. The full systematic and statistical corre-
lations between all measured distributions are determined
to allow for a future simultaneous analysis of all measured
distributions, and are provided with the full systematic
uncertainties of all measured distributions in Supplemental
Material, Ref. [40].

The measured differential branching fractions as a
function of EB

l , q
2, MX, M2

X, P−, and Pþ are shown in
Fig. 3 and the numerical values with full correlations can be
found in Supplemental Material, Ref. [40]. The distribu-
tions are compared to the B → Xulþνl hybrid MC and
the fully inclusive DFN [15] and BLNP [16] predictions
with model parameters listed in Table I. All predictions
are scaled to match the B → Xulþνl partial branching
fraction (ΔB) with EB

l > 1 GeV of ΔB ¼ 1.59 × 10−3

from Ref. [1]. The uncertainty band of the hybrid prediction
includes variations on the composition, form factors, and
the inclusive modeling, whose central value is based on the
DFN prediction but includes the difference to BLNP as an
additional uncertainty. The agreement between the mea-
sured and predicted distributions is fair overall, with
differences occurring for the fully inclusive predictions

FIG. 3. The measured differential B → Xulþνl branching fractions are shown: the lepton energy in the B rest frame (EB
l ), the four-

momentum-transfer squared of the B to the Xu system [q2 ¼ ðpB − pXÞ2], the invariant hadronic mass and mass squared of the Xu

system (MX, M2
X), and the light-cone momenta of the hadronic Xu system [P� ¼ ðEB

X ∓ jpB
XjÞ]. The hybrid MC prediction and two

inclusive calculations are also shown and scaled to ΔB ¼ 1.59 × 10−3.
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in the resonance region of, e.g., low MX, and near the end
point of q2 and EB

l . There the hybrid MC describes the
B → Xulþνl process more adequately due to the explicit
inclusion of resonant contributions. The largest discrepancy
is observed in EB

l , but the data points in the range of EB
l ∈

½1–1.8� GeV exhibit strong correlations and are only
weakly correlated or anticorrelated with the other bins of
the spectrum. To quantify the agreement with the three
displayed predictions we carry out a χ2 test using the
experimental covariance only. We find a good χ2 of 13.5 for
the measured EB

l spectrum and the hybrid prediction with
16 degrees of freedom. Similarly we find for the DFN and
BLNP predictions χ2 values of 16.2 and 16.5, respectively.
In conclusion, this Letter presents the first measurements

of differential branching fractions of inclusive semileptonic
B → Xulþνl decays as a function of EB

l , q
2, MX, M2

X, P−,
and Pþ (a first preliminary measurement of the shape of the
spectrum of M2

X was presented in Ref. [44] and Ref. [45]
reported a differential branching fraction measurement as a
function EB

e , but without providing the full experimental
uncertainties). The measurements use the full Belle data set
of 711 fb−1 of integrated luminosity at the ϒð4SÞ resonance
and for l ¼ e, μ in which one of the two Bmesons was fully
reconstructed in hadronic modes. The differential branching
fractions are obtained by subtracting B → Xclþνl and other
backgrounds with the normalization determined by a fit to
the MX distribution of the hadronic X system. The resulting
distributions are corrected for detector resolution and effi-
ciency effects and unfolded to the phase space of the lepton
energy of EB

l > 1 GeV in the rest frame of the signal B
meson. The measurements are, depending on the region of
phase space, statistically or systematically limited, and show
fair agreement to hybrid and inclusive predictions of
B → Xulþνl decays. The measured distributions are sensi-
tive to the shape function governing the nonperturbative
dynamics of the b → u transition and will allow future direct
determinations of the shape function and jVubj, as proposed
by Refs. [6,7]. These novel analyses will provide new
insights into the persistent tensions on the value of jVubj
from inclusive and exclusive determinations [8].
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