

日本原子力研究開発機構機関リポジトリ Japan Atomic Energy Agency Institutional Repository

Title	原子力事故時の放射性物質の大気中での挙動
Author(s)	堅田 元喜
Citation	大気環境学会誌,46(6);p.A91-A94
Text Version	Publisher
URL	http://jolissrch-inter.tokai-sc.jaea.go.jp/search/servlet/search?5031202
DOI	http://dx.doi.org/10.11298/taiki.46.A91
Right	©大気環境学会

原子力事故時の放射性物質の大気中での挙動

堅田 元喜

Genki Katata

Research Group for Environmental Science, Japan Atomic Energy Agency 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195, Japan

1. はじめに

2011年3月に起きた福島第一原子力発電所事故(以下、 福島第一原発事故)によって、大量の放射性物質が大気中 へと放出されました。日本原子力研究開発機構(以下、原 子力機構)では、緊急時環境線量情報予測システム世界版 WSPEEDI-II(寺田ら、2008)を用いて、放出率の推定 や大気中への拡散・沈着過程の解析を進めています。本稿 では、このシステムを用いたシミュレーション結果に基づ いて、原子力事故時に放出される放射性物質の大気中での 動きを解説します。福島第一原発事故の際に、大気へと放 出された放射性物質の量(放出量)を推定した結果や、そ れらが風とともに大気中を拡散し、大気中の渦(乱流)や 降雨によって地面へと落下(沈着)し、線量が増加するプ ロセスを解析した結果を示します。

2. WSPEEDI-IIの概要

WSPEEDI-Ⅱは、世界の任意地点での原子力事故に対応 可能なシステムとして開発されました(寺田ら,2008)。こ のシステムは、大気力学モデルと大気拡散モデルを基盤と した大気拡散予測機能、放出源推定機能などを有していま す。今回の福島第一原発事故では、このシステムの大気拡 散予測機能を利用して解析を進めています。WSPEEDI-Ⅲの予測性能は、過去の原子力事故(チェルノブイル事故) や人工トレーサガスの拡散実験などで検証されています。

3. 福島第一原発事故による放出量の推定

今回の事故で放出された放射性核種のうち、希ガスを除いて放出量が多かったものとして、放射性ヨウ素(131])と放射性セシウム(137Cs)が挙げられます。これらの核種について、2011年3月半ばから4月初めまでの福島第一原発事故の放出量を、環境中ダストデータと大気拡散モデル

(SPEEDI, WSPEEDI-II) を組み合わせることによって 算定しました (Chino et al. 2011)。この結果によると、3 月 15 日に放出量が大きく推定されました。これは、水素 爆発に伴う福島第一原発の2号機の損傷によるものと考え られています。

また、この日以降、大気への放出率は減少を続けており、 4月の初めの放出率は、3月半ばの値の100分の1と推定 されました。このことは、3月の終わりから原子炉が安定 し、大気への放出量が抑えられていたことを示しています。

4. 放射性物質の大気拡散・沈着・線量上昇

原発から放出された放射性物質は、放射性雲(プルーム) として風に乗って大気中を拡散します。このプルームが通 過したときに、空間線量率が上昇します。今回の事故では、 WSPEEDI-IIを用いて、放出率の推定値が最も大きかった 3月15日のプルームの動きを再現しました(Katata et al. 2011)。このプルームの動きの妥当性は、モニタリングポ ストと比較することによって検証されています。シミュレ ーションでは、15日に放出されたプルームは、午前中は南 から南西方向に流れていましたが、昼近くから徐々に西に 流れ、夕方には北西部へと向かっていました。このプルー ムの動きは、放出点付近の風向きの変化と連動しています。

大気中を拡散する放射性物質は、乱流によって直接地表面へと沈着するか(乾性沈着)、もしくは雨や霧・雪などに 取り込まれて地表面に沈着します(湿性沈着)。この沈着物 質からの線量は、プルームが通過した後も外部被ばくをも たらします(ground-shine)。シミュレーション結果によ れば、3月15日の午後に放出された高濃度のプルームが、 夕方以降に北西部から南下した降雨帯と重なり、湿性沈着 によって大量の放射性物質が福島県に沈着していました

(Katata et al. 2011)。3月16日以降に観測されている福 島第一原発の北西部に広がる高線量地帯は、これによって 形成されたと考えられます。

今後、3月15日以前のベントや水素爆発に伴う放射性物 質の放出量の推定や、東北・関東地域の線量上昇イベント の解析に取り組み、福島第一原発事故による被ばくを正確 に評価することを目指します。

文 献

- Chino M., Nakayama H., Nagai H., Terada H., Katata G., Yamazawa H. (2011) Preliminary estimation of release amounts of ¹³¹I and ¹³⁷Cs accidentally discharged from the Fukushima Daiichi Nuclear Power Plant into the atmosphere. *J. Nucl. Sci. Technol.*, 48, 1129–1134.
- Katata G., Terada H., Nagai H., Chino M. (2011). *J. Environ. Radioact.*, submitted.
- 寺田宏明, 永井晴康, 古野朗子, 掛札豊和, 原山卓也 (2008) 緊急時環境線量情報予測システム(世界版) WSPEEDI 第2版の開発. 日本原子力学会和文論文誌, 7, 257-267.

1/16 H23/07/03 市民講演会 「放射性物質と健康影響」 原子力事故時の放射性物質の 大気中での挙動	講演内容 2/16 >緊急時環境線量情報予測システム世界版WSPEEDI-II >大気中の放射性物質の広がり方 >どのような放射性物質が、どのくらい放出されたか? >原発から、どのように広がった(拡散した)か?
独立行政法人 日本原子力研究開発機構 環境動態研究グループ 研究員 堅田 元喜	>どのようなプロセスで落下(沈着)したか? >福島第一原発事故による被ばく量の試算
3/16 緊急時環境線量情報予測システム世界版WSPEEDI-II(1) 目的 国内外の原子力事故にともなって放出される放射性物質の大気 拡散と公衆への被ばくを、計算シミュレーションで迅速に予測す る。 対象範囲 水平:地球上の任意の領域(通常、100~数1000 km) 鉛直:地上から10 km 予測期間 約7日先までの将来予測 放出形態 地球上の任意地点からの時間変動放出 出力項目 気象場、空気中濃度、地表面沈着量、被ばく線量 操作機能 GUI操作による計算条件設定、計算実行、図形出力 ネットワーク 気象庁数値予報の収集、予測情報交換(日米欧)	4/16 緊急時環境線量情報予測システム世界版WSPEEDI-II(2)
大気拡散予測機能 5/16 BSPEEDI- II のモデル構成 サ地規想 サ地規機 サル規模 サル規模 サレス規模 サレス <l< td=""><td>大気中の放射性物質の広がり方 放射性物質 風による拡散 の放出 茶下(沈着) 人間(外部・内部 被ばく) 水分摂取 原子力施設 川・池・海 森林 作物・草 1. どのような放射性物質が、どのくらい放出されたか? 2. 原発から、どのように広がった(拡散した)か? 3. どのようなプロセスで落下(沈着)したか?</td></l<>	大気中の放射性物質の広がり方 放射性物質 風による拡散 の放出 茶下(沈着) 人間(外部・内部 被ばく) 水分摂取 原子力施設 川・池・海 森林 作物・草 1. どのような放射性物質が、どのくらい放出されたか? 2. 原発から、どのように広がった(拡散した)か? 3. どのようなプロセスで落下(沈着)したか?

