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Abstract. Adjoint Monte Carlo can be an efficient algorithm for solving photon transport problems where

the size of the tally is relatively small compared to the source. Such problems are typical in environmental

radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air

dose rate at a particular location. Moreover photon transport with continuous energy representation is vital

for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint

Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code

System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL-

4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the

library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned

within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent

and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The

calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new

adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses

potential future developments.

1 Introduction

The Monte Carlo method can be inefficient for solving ra-

diation transport problems with a small tally relative to the

source. The inefficiency is that many particle histories dur-

ing the course of a simulation fail to cross the tally region,

and hence make no contribution to the calculation result.

Large source, small tally geometries can require long com-

puting times to converge the calculation result to a desired

level of precision.

Adjoint Monte Carlo is one strategy for improving the

efficiency of large source, small tally transport problems.

In adjoint Monte Carlo, radiations are generated within

the tally region and transported backwards through the ge-

ometry, undergoing any physical interactions in reverse.

They contribute to the calculation result if they cross the

source region. The efficiency benefit is conferred by solv-

ing a problem where the ‘adjoint source region’ is rela-

tively much larger than the ‘adjoint tally region’, and thus

a larger fraction of particle histories score [1].

The adjoint method is a promising strategy for environ-

mental radioactivity transport problems. In these problems

it is often necessary to calculate gamma ray dose rates

at precise locations, where radioactivity dispersed widely

within the environment contributes significantly to the re-

sult. For example, the source may be natural potassium,

uranium and thorium series radioisotopes within soil, or

�e-mail: malins.alex@jaea.go.jp

radioactive fallout from a nuclear accident or test. In such

cases decay photons emitted hundreds of metres from the

detector are important [2].

Hoogenboom previously outlined a method of adjoint

Monte Carlo for photons with continuous energy represen-

tation [3, 4]. One benefit of continuous energy representa-

tion over a multigroup scheme is that energy spectra can be

evaluated with fine resolution, allowing the simulation of

gamma spectrometer responses. Continuous energy repre-

sentation is also important for accurately calculating radia-

tion protection quantities, such as ambient dose equivalent

(H∗(10)). However, there have only been a few implemen-
tations of adjoint Monte Carlo for photons with continuous

energy representation in popular transport codes [5, 6].

This paper outlines the addition of a continuous en-

ergy photon adjoint function to the Particle and Heavy Ion

Transport code System (PHITS) [7]. There are three main

components to the code developments. First, an adjoint

cross section library was developed adding adjoint inco-

herent scattering and pair production cross sections. Sec-

ond, a new adjoint function was added to PHITS, allowing

the transport and collision of pseudo-photons by coherent

and incoherent scattering, and implicit treatment for pho-

toelectric absorption. Finally, an adjoint tally function was

developed to recover the forward calculation result from

the pseudo-photon flux tallied over the real source volume.

    
 

DOI: 10.1051/, 06001 (2017) 715301EPJ Web of Conferences 53 epjconf/201
ICRS-13 & RPSD-2016

6001

© The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



2 Overview of forward Monte Carlo photon
transport

Monte Carlo radiation transport codes sample the Boltz-

mann transport equation

χ(r, E,Ω) = S (r, E,Ω) + Ĉ · T̂ · χ(r′, E′,Ω′). (1)

The subject of the equation is the emission density of pho-

tons with energy E [eV], in the direction Ω, from point r
in space, i.e. χ(r, E,Ω) [cm−3 eV−1 sr−1]. There are two
contributions to χ(r, E,Ω): photons emitted by radiation
sources, S (r, E,Ω) [cm−3 eV−1 sr−1], and photons emerg-
ing from collisions, given by Ĉ · T̂ · χ(r′, E′,Ω′).

Photons emerging from collisions at r first have to be
transported to the collision site. This process is described

by the transport operator, T̂ , which operates on the emis-
sion density χ(r′, E′,Ω′). The result of the operation is the
collision density ψ(r, E′,Ω′) [cm−3 eV−1 sr−1]:

ψ(r, E′,Ω′) = T̂ (r′ → r, E′,Ω′) · χ(r′, E′,Ω′)

=

∫ ∞

0

Σt(r, E′)e−β(r,L,E
′,Ω′)χ(r′, E′,Ω′)dL. (2)

The integral here is over all path lengths L = |r − r′| [cm]
by which a photon can travel from r′ to r. The factor
Σt(r, E′) [cm−1] is the total macroscopic cross section for
a photon with energy E′ to undergo an interaction at r.
Assuming there is no directional dependence of the cross

sections within the transport media, and that polarization

effects can be discounted, the interaction cross sections are

independent of a photon’s direction of travel. The expo-

nential term in Eq. (2) describes the attenuation faced by

photons traversing towards the collision site, where

β(r, L, E′,Ω′) =
∫ L

0

Σt(r − lΩ′, E′)dl. (3)

The outcome of collisions is described by the collision

operator

Ĉ · ψ = Ĉ(r, E′ → E,Ω′ → Ω) · ψ(r, E′,Ω′)

=

∫ ∞

0

∫
4π

Ps(r, E′)
∑

A

PA(r, E′)
∑

j

P j,A(r, E′)

· f j,A(E′ → E,Ω′ → Ω)ψ(r, E′,Ω′)dE′dΩ′. (4)

The collision operator has intentionally been expended

here into various factors, corresponding with steps or de-

cisions taken in Monte Carlo sampling of the Boltzmann

equation. The integral is over all possible incident photon

energies and incident directions of travel to the collision

site (note dΩ′ is a solid angle).
The first factor is the probability that a scattering rather

than an absorption interaction occurs:

Ps(r, E′) =
Σs(r, E′)
Σt(r, E′)

. (5)

Here Σs(r, E′) [cm−1] is the total macroscopic cross sec-
tion for all scattering interactions. Monte Carlo codes with

implicit treatment of the photoelectric effect, i.e. photo-

electric interactions are modelled as pure absorption pro-

cesses into E = 0 eV, adjust the photon weight by Ps(r, E′)
upon each collision. Note PHITS offers more advanced

treatments of the photoelectric effect in forward mode, in-

cluding simulation of luminescence photons and ejected

electrons [8], but the implicit treatment is outlined here as

that is what is used in the adjoint mode.

The second factor in Eq. (4) is the probability that

the scattering interaction occurs with an atom of type A
amongst the various nuclides in the material:

PA(r, E′) =
Σs,A(r, E′)
Σs(r, E′)

. (6)

The sum of numerator over all atom types in the material

is the denominator, i.e. Σs(r, E′) =
∑
A
Σs,A(r, E′).

The third factor is the probability for a type j scattering
interaction to occur upon collision with the type A atom:

Pj,A(r, E′) =
Σ j,A(r, E′)
Σs,A(r, E′)

. (7)

Again the sum of the various possible numerators in this

equation is the denominator, Σs,A(r, E′) =
∑

j
Σ j,A(r, E′).

The macroscopic interaction cross sections are related

to microscopic interaction cross sections, σ j,A(E′) [b], by

Σ j,A(r, E′) = nA(r)σ j,A(E′) × 10−24. (8)

Here nA(r) [cm−3] is the number density of atoms of type A
in the material at r. The factor of 10−24 ensures Σ j,A(r, E′)
has units of cm−1.

The final factor of the collision operator (Eq. (4)) is

the normalized probability density function (pdf) for the

possible outcomes of the scattering interaction:

f j,A(E′ → E,Ω′ → Ω) = d
2σ j,A(E′)
dEdΩ

· 1

σ j,A(E′)
. (9)

The first factor on the right hand side of this equation is

the differential microscopic cross section.

Monte Carlo codes sample Eq. (1) by simulating pho-

ton histories. A history is spawned by sampling the source

term S . The photon is transported through the geometry
to a collision site by sampling T̂ . The weight of the pho-
ton history is multiplied by the factor Ps prior to sampling
the collision itself. The collision nuclide and the type of

interaction are selected according to PA and Pj,A, respec-

tively. The outcome of the interaction is determined by

sampling f j,A. The process of transport followed by col-

lision repeats until either the photon leaves the simulation

geometry, or its energy or weight fall outside the bounds

of interest, upon which the history is terminated.

The result of a Monte Carlo simulation is typically cal-

culated using a track length tally for the photon flux com-

bined with a chosen response function. This corresponds

to solving the integral:

R =
∫
. . .

∫
ηφ(r, E′,Ω′)φ(r, E′,Ω′)d3rdE′dΩ′. (10)
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Here ηφ(r, E′,Ω′) is the response function of choice, and
φ(r, E′,Ω′) [cm−2 eV−1 sr−1] is the photon flux, related to
the collision density by

φ(r, E′,Ω′) =
ψ(r, E′,Ω′)
Σt(r, E′)

. (11)

3 Adjoint Monte Carlo formalism
The PHITS adjoint function follows the formalism out-

lined by Hoogenboom [3, 4] and Gabler et al. [5]. The

adjoint Boltzmann transport equation is:

ζ+(r, E,Ω) = ηφ(r, E,Ω) + C̃ · T̃ · ζ+(r′, E′,Ω′), (12)

where superscript pluses and diacritic tildes denote adjoint

quantities and operators, respectively. The first quantity,

ζ+(r, E,Ω), is the adjoint analogue of the forward emis-
sion density, i.e. the density of pseudo-photons emitted at

r. The operators T̃ and C̃ are analogues of the forward

transport and collision operators, respectively.

Eq. (12) is sampled with the Monte Carlo method by

simulating pseudo-photon histories. A pseudo-photon his-

tory is spawned by sampling an initial position, energy and

direction from the ‘adjoint source term’, ηφ. This is in fact
the tally response function for the corresponding forward

transport problem. For a typical response function, such

as a flux calculation, a pseudo-photon is spawned at a ran-

dom location within the forward tally volume. The initial

energy is chosen randomly from within the energy range

of interest at the forward tally, and the initial direction of

travel is also random.

The adjoint transport operator is basically the same as

the forward transport operator:

ξ+(r, E′,Ω′) = T̃ (r′ → r, E′,Ω′) · ζ+(r′, E′,Ω′)

= T̂ (r′ → r, E′,−Ω′) · ζ+(r′, E′,Ω′)

=

∫ ∞

0

Σt(r, E′)e−β(r,L,E
′,−Ω′)ζ+(r′, E′,Ω′)dL.

(13)

The result of the transport operation is the pseudo-photon

collision density, ξ+(r, E′,Ω′). A pseudo-photon is trans-
ported to a collision site by randomly selecting a path

length through the transport media from the exponential

distribution in Eq. (13).

Although similar in form, the adjoint collision operator

is different from the forward collision operator in a number

of respects:

C̃ · ξ+ = C̃(r, E′ → E,Ω′ → Ω) · ξ+(r, E′,Ω′)

=

∫ ∞

0

∫
4π

P+s (r, E
′)
∑

A

P+A(r, E
′)
∑

j

P+j,A(r, E
′)

· f +j,A(E
′ → E,Ω′ → Ω)ξ+(r, E′,Ω′)dE′dΩ′.

(14)

Each of the factors in this integral are described in turn.

The first factor, P+s (r, E′), is the adjoint analogue of the
forward scattering probability (Ps):

P+s (r, E
′) =
Σ+s (r, E′)
Σt(r, E′)

. (15)

The denominator here is the same as the forward case,

i.e. the total macroscopic cross section for both absorp-

tion and scattering (Eq. (5)). However the numerator,

Σ+s (r, E′) [cm−1], is a new quantity. It is the total adjoint
macroscopic cross section for the scattering interactions.

Note P+s is not a probability per se, as it can take values
greater than 1. The weight of a pseudo-photon is multi-

plied by P+s (r, E′) upon each collision.
The second factor in Eq. (14) is the probability that the

adjoint scattering interaction occurs with an atom of type

A in the medium:

P+A(r, E
′) =
Σ+s,A(r, E

′)
Σ+s (r, E′)

. (16)

This is a true probability as the sum of the possible numer-

ators totals the denominator: Σ+s (r, E′) =
∑
A
Σ+s,A(r, E

′).

The third factor is the probability for interaction type j
to occur amongst the possible scattering interactions:

P+j,A(r, E
′) =
Σ+j,A(r, E

′)

Σ+s,A(r, E′)
. (17)

Again the sum of the possible numerators, i.e. partial ad-

joint macroscopic cross sections for scattering, is the de-

nominator: Σ+s,A(r, E
′) =
∑

j
Σ+j,A(r, E

′).

As for the forward case, the adjoint macroscopic cross

sections are related to adjoint microscopic cross sections

by the number density of atoms in the collision material:

Σ+j,A(r, E
′) = nA(r)σ+j,A(E

′) × 10−24. (18)

The adjoint microscopic cross sections, σ+j,A(E
′), also have

units of barns. They are calculated by integration of the

differential cross section for the corresponding forward in-

teraction. The integration range covers all incident photon

energies that could yield an outgoing photon with energy

equal to the colliding pseudo-photon:

σ+j,A(E
′) =
∫ ∞

0

dσ j,A(E)
dE′ dE. (19)

The final factor in Eq. (14) is the probability density

function for the possible outcomes of adjoint scattering:

f +j,A(E
′ → E,Ω′ → Ω) =

d2σ+j,A(E
′)

dEdΩ
· 1

σ+j,A(E
′)
. (20)

The purpose of the adjoint simulation is to calculate

the tally response of the corresponding transport forward

problem. The response is given by:

R =
∫
. . .

∫
S (r, E′,Ω′)

ξ+(r, E′,Ω′)
Σ+s (r, E′)

d3rdE′dΩ′

=

∫
. . .

∫
S (r, E′,Ω′)φ+(r, E′,Ω′)d3rdE′dΩ′. (21)

Here φ+(r, E′,Ω′) = ξ+(r, E′,Ω′)/Σ+s (r, E′) is the pseudo-
photon flux.

    
 

DOI: 10.1051/, 06001 (2017) 715301EPJ Web of Conferences 53 epjconf/201
ICRS-13 & RPSD-2016

6001

3



4 Interactions

The PHITS adjoint mode currently supports coherent and

incoherent scattering, and implicit photoelectric absorp-

tion. This section outlines calculation of the adjoint mi-

croscopic cross sections, and the Monte Carlo sampling

strategies for the outcome of adjoint collisions.

4.1 Coherent scattering

4.1.1 Forward

Coherent scattering between a photon and an atom leads

to a change in the direction of travel of the photon, but,

to very good approximation, the energy of the photon is

preserved. The differential cross section for the interaction

is [9]:

dσcoh(E′)
dμ

= πr2e (1 + μ
2)F2(Z, x′) × 1028, (22)

where re = 2.817×10−15 m is the classical electron radius,
and μ = Ω′ ·Ω is the cosine of the scattering angle.

Eq. (22) consists of two parts: Thomson’s cross section

for scattering off a free electron, and the form factor cor-

rection to this, F(Z, x′), which accounts for atomic binding
effects. Z is the atomic number of the collision atom, and
x′ [Å−1] is the inverse wavelength of the recoiling atom:

x′ =
E′e(1 − μ)0.5√
2hc × 1010 . (23)

Here e = 1.602 × 10−19 J eV−1, h = 6.626 × 10−24 J s is
Planck’s constant, and c = 2.998 × 108 m s−1 is the speed
of light.

In a PHITS forward mode calculation, coherent scat-

tering interactions are simulated as follows. The photon

cross section library (based on JENDL-4.0 [10]) contains

tabulated point data for the microscopic cross sections,

σcoh(E′), calculated by integrating Eq. (22) numerically.
The cross sections are stored against logarithmic values of

the incoming energy E′. The library also contains tables
for the form factor at point values of x′, and for the integral
of the form factor at point values of x′2.

Upon a coherent scattering interaction, the scattering

angle cosine is sampled from fcoh(E′, μ) using the rejec-
tion technique method from Carter and Cashwell [11]. A

scattering azimuth is selected randomly from [0, 2π].

4.1.2 Adjoint

The adjoint microscopic cross section for pseudo-photon

coherent scattering from (E′,Ω′) to (E,Ω) is:

σ+coh(E
′) =
∫ ∞

0

dσcoh(E)
dE′ dE

=

∫ 1

−1
dσcoh(E)
dμ′

dμ′

dE′
dE
dμ
dμ

=

∫ 1

−1
dσcoh(E)
dμ′

dμ. (24)

The steps above use the facts that E′ = E, μ′ = μ and
x′ = x for this interaction. The adjoint microscopic cross
sections are thus identical to the forward microscopic cross

sections at all energies, i.e. σ+
coh
(E′) = σcoh(E′). Likewise

the probability density function for the scattering cosine is

the same as the forward case:

f +coh(E
′, μ) =

dσ+
coh
(E′)

dμ
· 1

σ+
coh
(E′)

=
dσcoh(E)
dμ′

· 1

σcoh(E)
= fcoh(E, μ′). (25)

PHITS thus samples a pseudo-photon coherent scatter-

ing event identically to a forward photon coherent scatter-

ing event. The code employs the same cross sections and

rejection technique for the pdf as per the forward case.

4.2 Incoherent scattering

4.2.1 Forward

Incoherent scattering occurs between a photon and a quasi-

free atomic electron. There is a correlated change in the

energy and the direction of propagation of the photon after

the interaction. The outgoing photon energy is:

E =
E′

1 + k′(1 − μ) , (26)

where k′ = E′/Ee is the incident photon energy relative
to the rest energy of an electron, Ee = 0.511 MeV. The
differential cross section is [9]:

dσincoh(E′)
dμ

= πr2e
( E

E′
)2( E

E′ +
E′

E
− 1 + μ2

)
S (Z, x′) × 1028.

(27)

The factor S (Z, x′) is the incoherent scattering function,
which corrects the Klein-Nishina cross section for atomic

binding effects. The second argument is the wavelength of

the recoiling target:

x′ =
E′e(1 − μ)0.5(1 + (k′2 + 2k′)(1 − μ))0.5√

2hc(1 + 2k′(1 − μ)) × 1010 . (28)

For a forward incoherent scattering event, the PHITS

cross section library contains tables for σincoh(E′) against
ln(E′), obtained by numerical integration of Eq. (27). The
library also contains S (Z, x′) values against x′.

To sample the pdf for the scattering cosine, a candi-

date is drawn in accordance to the Klein-Nishina com-

ponent of Eq. (27) first. Kahn’s rejection method is em-

ployed for photons below 1.5MeV [12] and Koblinger’s
method for E′ > 1.5 MeV [13], following Blomquist

and Gelbard [14]. The candidate is then accepted or

rejected against the incoherent scattering function [11].

Note for the calculation of S (Z, x′), Monte Carlo codes
(e.g. MCNP [15]) commonly approximate x′ using

Eq. (23) instead of Eq. (28).
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Figure 1. Forward and adjoint incoherent scattering cross sec-
tions for oxygen.

4.2.2 Adjoint

In adjoint mode, pseudo-photons gain (or preserve) energy

upon incoherent scattering. The outgoing pseudo-photon

energy is:

E =
E′

1 − k′(1 − μ) . (29)

The adjoint microscopic cross section is given by inte-

grating numerically:

σ+incoh(E
′) =
∫ Emax

0

dσincoh(E)
dE′ dE

=

∫ 1

μmin

dσincoh(E)
dμ′

dμ′

dE′
dE
dμ
dμ

=

∫ 1

μmin

πr2e
(E′

E
+

E
E′ − 1 + μ2

)
S (Z, x) × 1028dμ

=

∫ 1

μmin

πr2e
(

1

1 − k′(1 − μ) − k′(1 − μ) + μ2
)

· S (Z, x) × 1028dμ. (30)

During numerical integration, the scattered pseudo-photon

energy E must be calculated using μ via Eq. (29) in order
to evaluate x. It is necessary to set a minimum scattering
cosine for when E′ ≥ Emax/(1+ 2Emax/Ee), where Emax is
the maximum energy of interest in adjoint photon calcula-

tions:

μmin =

⎧⎪⎪⎨⎪⎪⎩−1 E′ ≤ Emax/(1 + 2Emax/Ee),
1 − 1/k′ + Ee/Emax otherwise.

(31)

We chose Emax = 3.0 MeV for the PHITS adjoint mode,
as this range covers the main radioactive decay photons.

Without setting Emax, the integral in Eq. (30) would di-
verge for E′ ≥ Ee/2.

An example of the adjoint microscopic incoherent

scattering cross section is given in Fig. 1 for scattering

off an oxygen atom. The adjoint cross section increases

from low energies to peak at Emax/(1 + 2Emax/Ee). At en-
ergies above this, the cross section decreases because the

��������	�
�
�������������

�

�

���

���

���

���

�

�������

��� ��� ��� ���

Figure 2. Acceptance efficiency of rejection methods for sam-
pling the forward and adjoint Klein-Nishina distributions.

pseudo-photon scattering pathways to energies above Emax
are truncated.

The shape of the adjoint cross section curve and the

position of the peak in Fig. 1 necessarily depend on the

value chosen for Emax. As an example, the curves for ger-
manium under two different choices of Emax are given in
ref. [5].

The probability density function for the outcome of

pseudo-photon incoherent scattering is:

f +incoh(E
′, μ) =

dσ+
incoh

(E′)
dμ

· 1

σ+
incoh

(E′)

= πr2e
(

1

1 − k′(1 − μ) − k′(1 − μ) + μ2
)

· S (Z, x) × 1028
σ+
incoh

(E′)
. (32)

The ‘adjoint Klein-Nishina component’ of this pdf can be

sampled using the following rejection method. First a can-

didate μ is selected uniformly in [μmin, 1]. This is accepted
if:

1/(1 − k′(1 − μ)) − k′(1 − μ) + μ2
m

> r, (33)

where r is a uniform random deviate in [0, 1] and m is the

maximum value of the numerator in [μmin, 1]:

m =

⎧⎪⎪⎨⎪⎪⎩
1

1−k′(1−μmin) − k′(1 − μmin) + μ2min E′ ≤ 2.020 MeV,
2 otherwise.

(34)

Note the formula for m is conditional on the incoming

pseudo-photon energy E′. This is because the maximum
of the adjoint Klein-Nishina distribution switches from oc-

curring at μ = μmin to μ = 1 around a crossover energy at
E′ = 2.020 MeV (for Emax = 3.0 MeV). The crossover
energy can be established for Emax � 3.0 MeV by numeri-
cally solving

1/(1 − k′(1 − μmin)) − k′(1 − μmin) + μ2min = 2. (35)
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Table 1. Data blocks in PHITS adjoint ACE cross section files. The block length N is defined in the ACE file header. Note: zero barn

cross sections are stored as 0.0 in the tables.

# Data Unit Length

1 Logarithms of energies for forward cross sections ln(MeV) N
2 Logarithms of forward incoherent cross sections ln(b) N
3 Logarithms of forward coherent cross sections ln(b) N
4 Logarithms of forward photoelectric cross sections ln(b) N
5 Logarithms of forward pair production cross sections ln(b) N
6 Incoherent scattering functions - 21

7 Integrated coherent form factors - 55

8 Coherent form factors - 55

9 Average heating numbers MeV per collision N
10 Logarithms of energies for adjoint cross sections ln(MeV) N + 1
11 Logarithms of adjoint incoherent cross sections ln(b) N + 1

The acceptance efficiency of the adjoint Klein-Nishina

distribution rejection routine per candidate scattering co-

sine is:

e =

∫ 1
μmin
(1/(1 − k′(1 − μ)) − k′(1 − μ) + μ2)dμ

m(1 − μmin)

=

1
3
− k′

2
− μ3

min

3
− k′μ2

min

2
+ k′μmin − ln(1−k′(1−μmin))

k′

m(1 − μmin) . (36)

The variation of e with the incident pseudo-photon energy
E′ is shown in Fig. 2. In forward mode, Kahn’s method has
a fairly flat acceptance efficiency of ≈ 60 % between 1 keV
and 1.5MeV. The rejection method developed for the ad-
joint mode generally has good acceptance efficiency, how-

ever there is a dip in efficiency between 150 and 650 keV.

Each candidate μ sampled from the adjoint Klein-

Nishina distribution must then be accepted or rejected in

line with the incoherent scattering function. Again μ must
be used to evaluate x (approximated with Eq. (23), as per
the forward case) in order to rejection sample S (Z, x).

4.3 Photoelectric effect

PHITS adjoint mode implements an implicit treatment of

the photoelectric effect. This marks a departure from for-

ward mode, which offers more detailed physics simulation

for the relaxations associated with photoelectric interac-

tions.

In adjoint mode, the weight of a pseudo-photon is mul-

tiplied by P+s upon each collision, then either a coherent
or incoherent scattering event is forced. As it is possible

for P+s to be greater than one, pseudo-photon weights can
become large and cause high variances in calculation re-

sults [5]. This risk should be monitored in adjoint calcula-

tion results.

5 Adjoint Cross Section Library

The original PHITS photon cross section library, which

is based on JENDL-4.0 [10], was extended to facilitate

the adjoint transport function. The adjoint specific library

files are encoded in the ACE format. There is one file for

each element, with filenames XY000.j90p. Characters X

and Y are substituted with the element symbol, e.g. sodium
is Na000.j90p. The second character is substituted with
an underscore for elements with single character symbols,

e.g. O_000.j90p for oxygen.
The first nine blocks of data in the new adjoint library

files are identical to the original PHITS photon cross sec-

tion files (Table 1). The blocks contain energies and mi-

croscopic cross sections for forward incoherent, coherent,

photoelectric and pair production interactions, all stored

logarithmically. They are followed by blocks containing

incoherent scattering functions, integrated coherent form

factors, coherent form factors, and average heating num-

bers.

Two new blocks follow to facilitate adjoint incoherent

scattering. Block 10 contains the logarithms of energies

as per block 1, but with an additional data point added at

Emax/(1 + 2Emax/Ee). The maximum in the microscopic

adjoint incoherent scattering cross section occurs at this

energy (Fig. 1). Block 11 contains logarithms of the mi-

croscopic cross sections for adjoint incoherent scattering,

obtained by numerical integration of Eq. (30). PHITS in-

terpolates between the adjoint incoherent scattering cross

sections using log-log interpolation, as per the forward

case.

Note separate data blocks are unnecessary for adjoint

coherent scattering or photoelectric effect cross sections.

The adjoint coherent scattering cross sections are equal to

the forward cross section (section 4.1.2). As the adjoint

photoelectric treatment is implicit, adjoint cross sections

are not needed for this interaction. However, the forward

photoelectric cross sections need to be read in to calcu-

late Σt(r, E′) for both adjoint transport and collision oper-
ations.

6 Pseudo-photon transport in PHITS

An adjoint simulation is called by the iadjoint = 1 flag
in the [Parameters] section of a PHITS input file. This
instructs the code to simulate the pseudo-photon particle

type. The user defines a source region in the input file

that coincides geometrically to the tally region in the cor-

responding forward transport problem. Pseudo-photons

are generated within the source with energies uniformly
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Source Tally

5 cm 5 cm
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cm

Figure 3. Geometry of the flux spectrum calculation.

between the minimum energy of interest for the forward

tally and the highest photon energy emitted by the forward

radiation source.

Each pseudo-photon is tracked through the geometry

to a collision site, upon which its weight is adjusted by P+s
to account for non-absorption by the photoelectric effect.

Then either a coherent or incoherent scattering interaction

is forced. Coherent scattering is sampled identically to

a forward mode calculation (section 4.1.1). A scattering

cosine is sampled first from the Thomson distribution and

then rejected against the coherent scattering form factors.

A scattering azimuth is selected uniformly in [0, 2π].
Upon incoherent scattering, the pseudo-photon scat-

tering cosine is sampled according to the adjoint Klein-

Nishina distribution and rejected against the incoherent

scattering function (section 4.2.2). A scattering azimuth

is selected uniformly in [0, 2π].

7 PHITS adjoint tally

To obtain the calculation result the user defines the ad-

joint tally type in the input file ([T-Adjoint]). This

tally type is the parallel of the forward track length tally,

[T-Track] [8].
The geometry chosen for the [T-Adjoint] tally

([mesh] input) must correspond to the source geometry
in the forward problem. The energy mesh of this tally

([e-type] input) should be the same as for the forward
case. Finally the user defines the energy distribution of the

photon source in the forward problem via input flags at the

end of [T-Adjoint].
PHITS tallies a pseudo-photon if it crosses the adjoint

tally region with energy within the photon source energy

range. The tally calculates the contribution of a pseudo-

photon history to the calculation result using a track length

estimator: WTl/V . Here W is the pseudo-photon weight,

Tl [cm] is the track length through the tally region, and

V [cm3] is the tally volume. Importantly, in a departure

from the usual forward case, it is the energy of the pseudo-

photon history upon generation in the adjoint source re-

gion that determines the energy bin that the history is tal-

lied within for the [T-Adjoint] tally. This process re-
covers the calculation result of the corresponding forward

problem (i.e. Eq. (21) is solved by [T-Adjoint]).

8 Examples

We present two example calculations to demonstrate the

PHITS adjoint function. The first is a calculation for a
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Figure 4. Photon flux spectrum calculated with forward and ad-
joint Monte Carlo for the geometry in Fig. 3.

photon spectrum demonstrating the accuracy of the ad-

joint method. The second is an application to a simple

large source, small tally transport problem, to gauge the

potential performance of the adjoint method for this class

of problem.

8.1 Spectrum calculation

This calculation was for gamma ray spectrum inside an in-

finite oxygen medium, density ρ = 1.0 g cm−3. The source
and tally volumes were adjacent cubes, volume 125 cm3

(Fig. 3). Photons were emitted from the source with uni-

form probability between 0.95 and 1.0MeV. The photon
flux was tallied in 50 keV wide energy bins.

The calculated spectra are shown in Fig. 4. The adjoint

method gives a basically identical result to the forward

method at higher energies, to within statistical error. There

is however a discernible difference between the fluxes cal-

culated in forward and adjoint mode for the lowest en-

ergy bins (0.05–0.1MeV). This is an artifact of the im-
plicit treatment of the photoelectric effect in adjoint mode,

which is an important interaction at these low energies.

The forward mode calculation includes relaxation photons

from photoelectric interactions, leading to the higher flux

results in the lower energy bins.

8.2 Large source, small detector geometry

Source

100 cm

150 cm

10
0 

cm

Tally - 1 cm3

Figure 5. Geometry of simple large source, small detector test
problem.
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Table 2. Tally results, relative errors and CPU run times for flux calculation for the large source, small detector test problem. Forward
mode results were calculated with the conventional [T-Track] tally (no acceleration), and with the point tally biasing method

([T-Point]). Adjoint mode results are in the [T-Adjoint] column.

[T-Track] [T-Point] [T-Adjoint]
φ [×10−6 cm−2 source-1] 2.3603 2.4188 2.4056
Relative err. [%] 2.24 0.38 0.10
CPU time [min] 436 7.5 7.5

The second test problem consisted of a photon source

that was relatively much larger than the tally (Fig. 5).

The source and tally were within an infinite scattering

medium consisting of oxygen, density ρ = 0.01 g cm−3.
A 1.0m3 source emitted photons uniformly in the energy
range 0.05–1.0MeV. A 1.0 cm3 tally was located on the
centre line from one of the source faces. The separation

between the source and tally was 150 cm. The calcula-

tion result was the total flux over the 0.05–1.0MeV energy
range at the tally.

The calculation was performed in adjoint mode for

7.5min run time on a 3.4GHz four-core desktop com-
puter. For comparison with an accelerated (biased) for-

ward method, a calculation was executed with the PHITS

point tally ([T-Point] [8]) for the same CPU run time.
Finally the calculation was run in unbiased forward mode

with the [T-Track] tally for 436min, i.e. 58 times longer
than the point and adjoint calculations.

The results of the fluxes and tally relative errors for

the three calculation modes are given in Table 2. The rel-

ative error for the unbiased forward tally was an order of

magnitude higher than for the point and adjoint calcula-

tion methods. This is despite the much longer run time

and larger number of histories simulated. The adjoint and

point tallies gave comparable flux results and calculation

relative errors.

9 Conclusion and future developments

A new adjoint function has been added to PHITS for pho-

ton transport problems with continuous energy represen-

tation. Currently the function can treat coherent and in-

coherent scattering, and implicit photoelectric absorption.

The function is based on three developments to PHITS: a

new adjoint cross section library, a pseudo-photon simula-

tion mode, and an adjoint tally function.

The new mode is a candidate for solving transport

problems with small detector sizes relative to the source.

In a simple test case for this class of transport problem, the

adjoint mode offered orders of magnitude speed-up versus

an unbiased forward calculation. The adjoint performance

was comparable to a biased forward calculation using the

point tally. A benefit of the adjoint method over the com-

mon point and ring tally forward biasing methods is it al-

lows the tally volume to be any shape.

A number code developments are planned to improve

the functionality of the PHITS adjoint mode. The devel-

opments are based on the point energy function [5], where

pseudo-photons are forced to scatter to discrete energies.

This will allow the incorporation of pair production inter-

actions [4]. Pseudo-photon histories will be scattered to

Ee to enable this interaction to occur.
The point energy function will also allow calcula-

tions for photon sources with discrete energies (e.g. line

sources, such as radioactive decay gamma rays) [5]. Cur-

rently such calculations are not possible in the PHITS

adjoint mode, as pseudo-photon histories are unlikely to

cross the adjoint tally region with the requisite discrete en-

ergies to contribute to the calculation result. With a point

energy function, pseudo-photons histories will be split off

and forcibly scattered to the discrete energies after each

collision. These sub-histories will then contribute to the

calculation result if they cross the adjoint tally region.
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