User＇s Manual of SECOM2－DQFM：

A Computer Code for Seismic System Reliability Analysis

Qiao LIU，Ken MURAMATSU and Tomoaki UCHIYAMA＊

Risk Analysis and Applications Research Group
Nuclear Safety Research Center

March 2008

本レポートは日本原子力研究開発機構が不定期に発行する成果報告書です。
本レポートの入手並びに著作権利用に関するお問い合わせは，下記あてにお問い合わせ下さい。
なお，本レポートの全文は日本原子力研究開発機構ホームページ（http：／／www．jaea．go．jp／index．shtml）
より発信されています。このほか財団法人原子力弘済会資料センター＊では実費による複写頒布を行っ
ております。

〒319－1195 茨城県那珂郡東海村白方白根2番地 4
日本原子力研究開発機構 研究技術情報部 研究技術情報課
電話 029－282－6387，Fax 029－282－5920
＊〒319－1195 茨城県那珂郡東海村白方白根 2 番地 4 日本原子力研究開発機構内

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and／or copyright of this report should be addressed to Intellectual Resources Section，Intellectual Resources Department， Japan Atomic Energy Agency
2－4 Shirakata Shirane，Tokai－mura，Naka－gun，Ibaraki－ken 319－1195 Japan
Tel＋81－29－282－6387，Fax＋81－29－282－5920
© Japan Atomic Energy Agency， 2008

User's Manual of SECOM2-DQFM:
A Computer Code for Seismic System Reliability Analysis
Qiao LIU, Ken MURAMATSU and Tomoaki UCHIYAMA*
Nuclear Facility Safety Research Unit
Nuclear Safety Research Center, Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken

(Received January 30, 2008)

This is the English translation of the Japanese version of the user's manual of SECOM2-DQFM, which is developed for seismic reliability analysis of complex engineering systems, such as nuclear power plants.

Given that the seismic hazard curve of the location site of a plant and the fault tree / event tree (FT/ET) models of this plant were known, if the capacities and responses of components were available, the conditional occurrence probability (or frequency) of the top event of the FT models could be estimated with SECOM2-DQFM. In addition, the importance of each basic event as well as the occurrence frequency of each accident sequence could also be obtained.In order to evaluate the concurrent failure probability of multiple components due to earthquake, the method of Direct Quantification of Fault Tree using Monte Carlo simulation (DQFM) is adopted in SECOM2-DQFM. In this method, the capacity and response of each component are generated from their probability distributions. Then the capacities (as well as responses) of several components are made correlated following a given set of correlation rules.

As a user manual of SECOM2-DQFM, this report is organized as follows. Chapter 1 gives a short summary of SEOM2-DQFM. Then how to combine and execute SECOM2-DQFM is described in Chapter 2. Further, how to prepare the original SECOM2 format input data is written in Chapter 3. Finally, how to prepare the NAMELIST format input data is given in Chapter 4.

Keywords: Seismic Probabilistic Safety Assessment, Seismic System Reliability Analysis, Fault Tree, Event Tree, Monte Carlo Simulation, Correlations of Component Failures

[^0]地震時システム信頼性解析コードSECOM2－DQFM
のユーザーズマニュアル

日本原子力研究開発機構 安全研究センター原子力エネルギー関連施設安全評価研究ユニット

> 劉 峭, 村松 健, 内山 智曜*
（2008年1月30日受理）

本報告書は，原子力発電所をはじめとするプラントシステムの地震時のシステム信頼性解析を目的として開発してきた SECOM2－DQFM コードの日本語で記述されたユーザーズマニュアルの英訳版である。

SECOM2－DQFM コードは，対象プラントの地震ハザード曲線，システム故障や損傷を発生させる起因事象及び緩和設備の失敗の条件を表現するフォールトツリー及びイベントツリーのモデル， それらの FT／ET を構成する設備の地震応答と耐力に関するデータなどを入力条件として，ある地震動に対する FT モデル頂上事象の条件付き発生確率や発生頻度を計算するほか，基事象の重要度指標やET で定義した事故シーケンスの発生頻度を計算する機能がある。

また，SECOM2－DQFM コードは，地震による複数の設備の同時損傷確率を正しく評価するため に，応答又は耐力の確率分布間の相関によって生じる機器損傷の相関性を適切に表現できる ようモンテカルロ法を用いてフォールトツリーを定量化する DQFM（Direct Quantification of Fault Tree by Monte Carlo Simulation）手法を採用している。また FT モデルにおいてAND 結合された機器間のみでなく 0 R 結合された多数の機器間の相関性の影響も考慮できる。

本報告書はSECOM2－DQFM コードの使用手引きとして，以下の内容に構成される。
第1章：SECOM2－DQFM コードの概要
第2章：SECOM2－DQFM コード取扱方法
第3章：SECOM2初版形式入力マニュアル
第4章：NAMELIST 形式入力マニュアル

[^1]1. Summary of the Code 1
2. Instructions for Use 3
2.1 Introduction 3
2.2 Directories and Files Included in the Code Package 4
2.3 Compiling SECOM2-DQFM Codes 5
2.4 Executing SECOM2-DQFM Codes 7
2.5 Subroutine Structure of SECOM2-DQFM 10
3. SECOM2 Format Inputs 20
3.1 Introduction 20
3.2 Calculation Control Data 21
3.3 COMPONEN Data 27
3.4 HAZARD Data 46
3.5 FT Data 48
3.6 SETCOR Data 50
3.7 MONSET Data 53
3.8 SEQDATA Data 55
3.9 CMPSLCT Data 58
4. NAMELIST Format Inputs 59
4.1 Introduction 59
4.2 Calculation Title (Variable group name: CNTLTITLE) 60
4.3 Calculation Control Flags (Variable group name: CNTLFLG) 60
4.4 Event Names for Which Conditional Occurrence Probabilities Are Calculated : (Variable group name: CNTLCGOUT) 62
4.5 Calculation Condition (Variable group name : CNTLCOND) 62
4.6 Seismic Motion Levels for Analysis (Variable group name: CNTLSLVL) 63
4.7 Seismic Hazard (Variable group name: HAZARD) 63
4.8 Fault Tree (Variable group name: FTDATA) 63
4.9 Basic Event Reference Information (Variable group name: BEREF) 64
4.10 Basic Event Information (Variable group name: BEDATA) 64
4.11 Correlations Considered by Specifying the Same Random Variables (Variable group name : SAMERND) 66
4.12 Specification for Inverse Calculation of Correlation Coefficients (Variable group name: CORCTBK) 67
4.13 Correlation Coefficients (Variable group name: LOHDATA) 67
4.14. Event Tree (Variable group name: ETDATA) 68
4.15 Grouping of Accident Sequence (Variable group name: SEQGRP) 68
4.16 Conditional Probabilities of Containment Failure (Variable group name: NLCCVFP) 69
4.17 Source Term Release Quantities (Variable group name: NLSTERM) 69
4.18 Specifications of Calculation Target and Importance Measures (Variable group name: IMPDATA) 69
4.19 Sample of NAMELIST Format Input 70
5. Summary 75
References 75

目 次

1．計算コードの概要 1
2．コードの取扱方法 3
2.1 はじめに 3
2.2 パッケージに含まれるディレクトリの内容とファイルの構成． 4
2.3 コンパイル方法． 5
2.4 実行方法 7
2.5 サブルーチン構造 10
3．SECOM2 初版形式入力マニュアル 20
3．1 SECOM2 初版形式入力の概要 20
3.2 制御データ 21
3.3 COMPONEN データ 27
3．4 HAZARD データ 46
3.5 FTデータ 48
3.6 SETCOR データ 50
3．7 MONSET データ 53
3．8 SEQDATA データ 55
3．9 CMPSLCT データ 58
4．NAMELIST 形式入力マニュアル 59
4． 1 NAMELIST 形式人力の概要 59
4． 2 タイトルデータ：（変数群名：CNTLTITLE） 60
4.3 解析制御データ：（変数群名：CNTLFLG） 60
4.4 基事象•中間事象発生確率の出力指定データ：（変数群名：CNTLCGOUT） 62
4.5 解析条件データ：（変数群名：CNTLCOND） 62
4.6 解析対象地震動レベルデータ：（変数群名：CNTLSLVL） 63
4.7 地震ハザードデータ：（変数群名：HAZARD） 63
4．8 FT データ：（変数群名：FTDATA） 63
4.9 基事象参照データ：（変数群名：BEREF） 64
4． 10 基事象情報データ：（変数群名：BEDATA） 64
4． 11 同一乱数設定データ：（変数群名：SAMERND） 66
4． 12 相関係数逆算データ：（変数群名：CORCTBK） 67
4． 13 相関係数データ：（変数群名：LOHDATA） 67
4． 14 ET データ：（変数群名：ETDATA） 68
4.15 事故シーケンスグループデータ：（変数群名：SEQGRP） 68
4． 16 条件付き格納容器破損確率データ：（変数群名：NLCCVFP） 69
4．17 ソースターム放出量データ：（変数群名：NLSTERM） 69
4． 18 重要度指標計算指定データ：（変数群名：IMPDATA） 69
4． 19 入力データ例 70
5．終わりに 75
参考文献 75

Figures

Fig. 21 Tree Structure of Subroutines in SECOM2-DQFM 19
Fig. 3. 1 Sample of a fault tree model 45
Fig. 3. 2 Example of an Event Tree 57
Tables
Table 2. 1 Contents in the SECOM2-DQFM code package 4
Table 2. 2 Files in the "run" directory 4
Table 2. 3 List of the subroutines used in SECOM2-DQFM (1/3) 12
Table 2. 4 Correspondences of subroutines and include files (1/2) 15
Table 2. 5 Description of include files used in SECOM2-DQFM 17
Table 2. 6 List of Unit Numbers 18
Table 3. 1 SECOM2 format data input files 20
Table 3. 2 Sample of Calculation Control Data in SECOM2-DQFM Code 26
Table 3. 3 The basic event type and data blocks required for each type 28
Table 3. 4 Sample of COMPONEN Data (1/8) 37
Table 3. 5 Sample of HAZARD data 48
Table 3. 6 Sample of FT Data 49
Table 3. 7 Sample of SETCOR Data 52
Table 3. 8 Sample of MONSET Data 54
Table 3. 9 Sample of SEQDATA Data 57
Table 3. 10 Sample of CMPSLCT data 58
Table 4. 1 Sample of Namelist format input data(1/4) 71

1. Summary of the Code

Name of Computer Code SECOM2-DQFM

Object for Analysis

SECOM2-DQFM is a seismic system reliability analysis code for complex engineering systems such as nuclear power plants. It can perform (1) Calculation of conditional occurrence probability and frequency of a top event in a Fault Tree(FT) for each seismic motion level; (2) Analysis of accident sequences defined in an Event Tree(ET);(3) Importance analysis of basic events.

Calculations in this code are based on Direct Quantification of Fault Tree using Monte Carlo Simulation (DQFM) method.

Development of the Code

SECOM2 is the mother code system of SECOM2-DQFM, which was developed on the mainframe computer FACOM M-380, and then transplanted to a calculation server system SR8000, the operating system of which is UNIX: HI-UX/MPP for SR8000. SECOM2 is a code system which consists of 14 codes and written in ANSI standard Fortran 90.

SECOM2-DQFM is developed by combining three subroutine programs (monte.f, mntseq.f, mntimp.f) based on DQFM method in the SECOM2 code system for improvement of programming. In addition, new subroutines are added into it for extention of importance analysis capabilities.

Computer Systems on Which Code Can Be Executed

SECOM2-DQFM is transplanted to an IBM PC/AT compatible machine on which a Microsoft Windows operating system is installed. The source code can be compiled with a Fortran 90 compiler and math library IMSL. It can be run if the computer has 256 MB real memory.

Features of the Code

SECOM2-DQFM has the following features:

- Calculation of conditional occurrence probability and frequency of a top event in a Fault Tree for each seismic motion level
- Calculation of conditional occurrence probability for basic events and intermediate events in a Fault Tree(FT) for each seismic motion level
- Accident sequence analysis
- Accident sequence group analysis
- Importance analysis for basic events
- Importance analysis weighted with source term release quantities
- All above analyses with the consideration of correlations of component failures

It should be noted that the following functions, which were implemented in the original SECOM2 code system, is not implemented in SECOM2-DQFM code system.

- The quantification of a fault tree based on Minimal Cut Set (MCS) method ${ }^{(1)}$
- The quantification of a fault tree based on Boolean Arithmetic Model method ${ }^{(2)}$
- Uncertainty Analysis (This function was implemented in MCS method)

2. Instructions for Use

2.1 Introduction

SECOM2-DQFM is a seismic level 1 PSA (Probabilistic Safety Analysis) code designed for analyzing seismic reliability of plant systems such as nuclear power plants.

The standard feature in SECOM2-DQFM is the calculation of occurrence frequency of top event in a FT model given information about basic events and the seismic hazard curve. In addition, SECOM2-DQFM can calculate occurrence frequencies of accident sequences defined in ET and importance measures of all basic events. The strongest point of the code is that correlation of component failures can be considered by giving correlation coefficients between responses of components and between capacities of components.

In general, a computer code has three different types of manual: calculation method manual, programmer's manual, and user's manual. The documents about calculation methods of this code are included in Ref. 1)-3).There are no available programmer's manuals for SECOM2-DQFM, but variable definitions and subroutine notations are described in the comment lines of the source codes.

The tree structure of all subroutines and how to compile and run SECOM2-DQFM are shown in this user's manual to provide the user with additional information for programming. In addition, how to prepare the data input files are also included in this manual. The main contents included are listed as follows:

- Directories and files included in the code package (Section 2.2)
- Compiling SECOM2-DQFM (Section 2.3)
- Running SECOM2-DQFM (Section 2.4)
- Structure of subroutines (Section 2.5)
- SECOM2 (original version) format data input (Chapter 3)
- NAMELIST format input (Chapter 4)

SECOM2-DQFM has two data input interfaces: one is for data input which has the same format as in original version of the SECOM2 code system, and the other is for NAMELIST format input supported by Fortran 90. The two interfaces can be switched from one to the other by compiling the code switching a flag in the source code. The SECOM2 format input document is shown in Chapter 3, and the NAMELIST format input document is shown in Chapter 4.

2.2 Directories and Files Included in the Code Package

The code package has four directories : "src", "inc", "run", and "man". Table 2.1 shows file contents in each directory.

Table 2. 1 Contents in the SECOM2-DQFM code package

Directory	Description	Contents in Each Directory
"src"	Set of Source Codes (Except Include files)	Source Code Files of All Subroutines (*.for) Object Files of All Subroutines (*.obj) Makefile (MakeSECOM2DQFM) Batch File Used in Compiling (m.bat) Message File Generated in Compiling (f77a.msg) Executable File (secom2dqfm.exe)
"inc"	Set of Include Files	All Include files(*INC)
"run"	Set of Input and Output Files (Run the code in this directory)	Input and Output Files for Sample Problem (Table I-2 shows all kinds of files)
"man"	Directory for Manual	This Manual(man_e.pdf)

Subroutines in "src" directory and include files in "inc" directory are shown in Section 2.5. The "run" directory includes input and output files for sample problem, and the contents are shown in Table 2.2.

Table 2. 2 Files in the "run" directory

Directory	File Name	Description
Run/	SAMPLE	Calculation Control Data for Sample Problem
Run/	SAMPLEOUT	Output List for Sample Problem
Run/	go.bat	Batch File to Run the Code
Run/COMPONEN/	COMPONEN	COMPONEN Data for Sample Problem
Run/FT/	FT	FT Data for Sample Problem
Run/HAZARD/	HAZARD	HAZARD Data for Sample Problem
Run/SETCOR/	SETCOR	SETCOR Data for Sample Problem
Run/MONSET/	MONSET	MONSET Data for Sample Problem
Run/SEQDATA/	SEQDATA	SEQDATA Data for Sample Problem
Run/CMPSLCT/	CMPSLCT	CMPSLCT Data for Sample Problem
Run/	INPUT	NAMELIST format input file for Sample Problem

NAMELIST format data input method is explained in Chapter 4. The other data inputs
that have a SECOM2 format are explained in Chapter 3. The way to run a calculation is described Section 2.4.

2.3 Compiling SECOM2-DQFM Codes

Compaq Visual Fortran Professional Edition Version 6.6A, which was used in developing SECOM2-DQFM code, is a recommended compiler.

The user can change input formats from one to the other in compiling the source code. If the parameter "INAMELST" in the subroutine "initdat.for" is set to 0 , the executable file generated by compiler may read SECOM2 format input files. If "INAMELST" is set to 1 , NAMELIST format input becomes available.

To compile SECOM2-DQFM, It is necessary to execute the batch file "m.bat" on "Fortran Command Prompt" attached to "Compaq Visual Fortran." Compiling conditions are written on the Makefile "makeSECOM2DQFM" which is called from "m.bat" The procedure to compile the code is as follows.
(1) Start "Fortran Command Prompt"

(2) Change current directory to "src"

(3) Run the batch file "m.bat"

(4) Compiling completed

2.4 Executing SECOM2-DQFM Codes

SECOM2-DQFM has Cursor User Interface (CUI). Graphical User Interface (GUI) is not available. The user can run a calculation on the command prompt of MS-DOS.

2.4.1 Starting a Calculation with SECOM2 Format Input

If the source code is compiled by setting 0 to "INAMELST," the executable file can be run by the following procedure with prepared SECOM2 format input files.
(1) Start up a command prompt of MS-DOS in "run" directory

(2) Run the batch file "go.bat"
\qquad
(3) Specify the file name of calculation control data and push "Enter" key

(4) Specify a file name of output list and push "Enter" key

(5) Calculation completed

2.4.2 Starting a Calculation with NAMELIST Format Input

If the source code is compiled by setting 1 to "INAMELST," the executable can be run with given NAMELIST format input file. The input file name must be "INPUT", and the output file name is fixed to "OUTPUT."

Calculation can be started with a procedure written in (1) and (2) of section 2.4.1 after preparing "INPUT" in "run" directory.

2.5 Subroutine Structure of SECOM2-DQFM

Figure 2.1 shows a tree structure of subroutines used in the SECOM2-DQFM code package. The list of the subroutines is shown in Table 2.3. Each file includes only one subroutine or one function, and the file name is the same as the subroutine name or the function name included in the file. The calculation flow in SECOM2-DQFM is summarized as follows.
(1) Set initial conditions for variables
(2) Read NAMELIST format input (if 1 is set to INAMELST at (1))
(3) Read SECOM2 format input (if 0 is set to INAMELST at (1))
(4) Write input data on the output file for check
(5) Execute Cholesky decomposition of correlation coefficients
(6) Write correlation information on the output file for check
(7) Store probability values given by table, step function, or ramp function into arrays
(8) Link events in FT
(9) Generate random variables used as capacities and responses
(10) Judge occurrence of basic events
(11) Judge occurrence of top event
(12) Calculate conditional occurrence probabilities and frequencies of top event
(13) Execute inverse calculation of correlation coefficients
(14) Accident sequence analysis
(15) Importance analysis

The corresponding include files used in each subroutine are shown in Table 2.4. Description for each include file is listed in Table 2.5. One of the include files, NUNITINC is controlling unit numbers of input and output files. The unit numbers are listed in Table 2.6.

Table 2. 3 List of the subroutines used in SECOM2-DQFM (1/3)

Name	Description
beinp	Subroutine to read in basic event data in NAMELIST format input
ccbkinp	Subroutine to read in setting of inverse calculation of correlation coefficients
cdfcal	Subroutine to calculate occurrence probabilities and occurrence frequencies of events
cgpdat	Subroutine to search for basic events and intermediate events, the conditional occurrence probabilities of which is t to be calculated, and set flags to them
chekword	Subroutine to identify program name in calculation control data
chkout	Subroutine to write input data on output list file for check
cntlinp	Subroutine to read in calculation control data in NAMELIST format input
compar	Subroutine to store basic event parameters except basic event name using combination of abbreviated names and response factor, and link FT data and COMPONEN data
compfl	Subroutine to judge occurrence of basic events
compot	Subroutine to write basic event parameters on output for check
corcal	Subroutine for inverse calculation of correlation coefficients and output for check
cormul0	Subroutine to set variables for Cholesky decomposition
cormul1	Subroutine to generate correlated random variables
corrin	Subroutine to read in MONSET data
corrmk	Subroutine to set flags for correlation analysis using MONSET data
orr	Subroutine to write output for check about correlation
corset	Subroutine to store variables for inverse calculation of correlation coefficients and write output for check
dindf	Subroutine to calculate inverse function of cumulative standard normal distribution
dsldl	Subroutine to replace DSLDL in SSL2 library using DLCHRG in IMSL math library
eq	Subroutine to read in basic event data whose type is RESP.FAC.EQ
etinp	Subroutine to read ET data in NAMELIST format input
evfreq	Subroutine to calculate occurrence frequency of top event and output results
exslout	Subroutine to write caution message if seismic motion level for analysis exceeds maximum of seismic motion level in seismic hazard data
facdire	Subroutine to read in basic event data whose type is RESP.FAC.DIRE or RESP.FAC.EQ
flopen2	Subroutine to read in calculation control data (common part to SECOM2)
frs0	Subroutine to read in response spectrum from \$RESPONSESPECTRUM data blocks and calculate design response by interpolation
ft99ft06	Subroutine to open calculation control data file and output list file
ftcalmk	Subroutine to organize FT array with bottom up order
ftinp	Subroutine to read in FT data in NAMELIST format input
ftseq	Subroutine to rearrange FT and copy it to arguments for subroutine MNTSEQ
ftstra	Subroutine to link events in FT with bottom up order and top down order
gatcmp	Subroutine to abstract basic events from intermediate events and sort them
hranu2	Subroutine to generate random variable subjected to uniform distribution within a range from 0 to 1
hzdexd	Subroutine to calculate Spline interpolation of excessive occurrence frequencies
hzdinp	Subroutine to read in seismic hazard data in NAMELIST format input
hzdspl	Subroutine to calculate Spline interpolation of seismic hazard data
hzdyrg	Subroutine to calculate Spline interpolation of occurrence frequencies per Gal
imares	Subroutine to generate artificial response by substituting occurrence probability for parameters of inverse function of cumulative normal distribution

Table 2.3 List of the subroutines used in SECOM2-DQFM (2/3)

Name	Description
impinp	Subroutine to read in importance analysis data from NAMELIST format input
impset	Subroutine to fix occurrence of basic event for importance analysis
infmk	Subroutine to read in COMPONEN data
initdat	Subroutine to set initial condition
intern	Subroutine to read in basic event data whose type is INTERNAL
lentrm	Subroutine to count length of abbreviated names
lohinp	Subroutine to read in correlation coefficients in NAMELIST format input
makbar	Subroutine to generate analysis result table
maketbl	Subroutine to calculate variable Z used in Spline interpolation
mentl	Subroutine to read in calculation control data
mknf6	Subroutine to read in FT data
mknfot	Subroutine to write FT data on the output file for check
mntimp	Subroutine for importance analysis
mntseq	Subroutine for accident sequence analysis
moncal	Subroutine to generate random variables of capacities and responses
moncalb	Subroutine to generate random variable of response subfactor
moncalc	Subroutine to generate random variable of capacity
monun	Subroutine for uncertainty analysis
monunb	Subroutine to generate random variable for uncertainty analysis
monuno	Subroutine to write output for uncertainty analysis check
nmlstinp	Subroutine to read in NAMELIST format input
nmlstout	Subroutine to write NAMELIST format input
openio	Subroutine to open NAMELIST format input file and output list file
$\begin{aligned} & \text { pre_cormt } \\ & \text { rx } \end{aligned}$	Subroutine to make matrix of correlation coefficients based on SETCOR data
probex	Subroutine to store probability data using ramp and step function
probmk	Subroutine to get probabilities from random failure(constant) or table data
ranu2x	Function to generate 100 random variables subjected to uniform distribution, and return the random variable in turn
rdarr	Subroutine to read \$ARRANGEMENT data blocks in COMPONEN data
rdbld	Subroutine to search for \$RESPONSESPECTRUM data blocks for damping coefficient, building, and floor
rdcap	Subroutine to read in \$CAPACITY data blocks in COMPONEN data
rdcrd	Subroutine to read in SETCOR data
rddire	Subroutine to read in basic event data whose types are PROB.DIRE
rdimp	Subroutine to read in CMPSLCT data
rdpipe	Subroutine to read in design responses given directly
rdres	$\begin{array}{l}\text { Subroutine to read in abbreviated } \\ \text { \$RESPONSEFACTOR data blocks }\end{array}$ response factor names in
rdseq	Subroutine to read in SEQDATA data
resp	Subroutine to read in response factors and response subfactors
rlatn	Function for LHS iteration
scm2inp	Subroutine to read in SECOM2 format input
secom2dqf m	Main routine of SECOM2-DQFM
seisin	Subroutine to read in HAZARD data
setcgv	Subroutine to return correlated random variable to parent subroutine
skipdata	Subroutine to check program name in calculation control data
smrninp	Subroutine to read in data setting the same random variable to consider correlation in NAMELIST format input

Table 2.3 List of the subroutines in SECOM2-DQFM (3/3)

Name	Description
spline	Functions for Spline interpolation
stprmptbl	Subroutine to store probabilities from table, step function, ramp function, or random failure(constant)
syspfl	Subroutine to judge occurrence of intermediate events and top event
timeout	Subroutine to get and write CPU calculation time
usersr	Subroutine to read in basic event data whose type is FUNCTION
vranu	Subroutine to generate capacity subjected to logarithmic normal distribution using median and standard deviation
vranul	Subroutine to generate capacity subjected to logarithmic normal distribution using median and standard deviation by LHS
vranuls	Subroutine to generate response subjected to logarithmic normal distribution using median and standard deviation by LHS
vranus	Subroutine to generate response subjected to logarithmic normal distribution using median and standard deviation
vranuv	Subroutine to generate correlated capacity subjected to logarithmic normal distribution using median and standard deviation
vranuvs	Subroutine to generate correlated response subjected to logarithmic normal distribution using median and standard deviation

Table 2. 4 Correspondences of subroutines and include files (1/2)

Table 2.4 Correspondences of subroutines and include files (2/2)

Table 2. 5 Description of include files used in SECOM2-DQFM

Include File	Description
DBL_INC	Include file to declare double precision
NUNITINC	Include file to define unit number of input files and output files
PARAMINC	Include file to define maximum numbers
MCNTLINC	Include file to define variables for calculation control
INFMKINC	Include file to define variables for basic event information (Variables for media, not used directly in probability calculation)
COMPINC	Include file to define variables for basic events
GATEINC	Include file to define variables for FT
HZDININC	Include file to define input parameters for seismic hazard
CORRINC	Include file to define variables for analysis using correlation coefficients
MONTEINC	Include file to define variables for DQFM calculation
MNTSEQINC	Include file to define variables for accident sequence analysis
MNTIMPINC	Include file to define variables for importance analysis
SEQIMPINC	Include file to define variables used in both accident sequence analysis and importance analysis

Table 2. 6 List of Unit Numbers

Include File	Unit Number	Variable Name	Description	I/O
NUNITINC	0	NUNIT00	Standard Output(Monitor)	Output
	1	NUNIT01	Basic Event Occurrence Recording File	In/Out
	2	NUNIT02	Output List File	Output
	5	NUNIT05	Input from Keyboard	Input
	11	NUNIT11	NAMELIST Format Input File	Input
	20	NUNIT20	SECOM2 Format Calculation Control Data File	Input
	21	NUNIT21	SECOM2 Format COMPONEN Data File	Input
	22	NUNIT22	SECOM2 Format HAZARD Data File	Input
	23	NUNIT23	SECOM2 Format FT Data File	Input
	24	NUNIT24	SECOM2 Format SETCOR Data File	Input
	25	NUNIT25	SECOM2 Format MONSET Data File	Input
	26	NUNIT26	SECOM2 Format SEQDATA Data File	Input
	27	NUNIT27	SECOM2 Format CMPSLCT Data File	Input
	30	NUNIT30	Output of NAMELIST Format Input File	Output

Fig. 21 Tree Structure of Subroutines in SECOM2-DQFM

3. SECOM2 Format Inputs

3.1 Introduction

Input data including a seismic PSA model consists of the following information sets:

- Basic events and their information sets that are necessary to calculate occurrence probabilities,
- Fault Tree (FT),
- Event Tree (ET),
- Correlation coefficients between responses and between capacities,
- Seismic hazard,
- Calculation control flags, etc.

Most of the input files are available not only in SECOM2-DQFM but also in SECOM2 code system because they have the same formats. Table 3-1 lists the input files.

Table 3. 1 SECOM2 format data input files

Data Name	Contents	Necessary /Optional	Difference between SECOM2-DQFM and SECOM2 code system
Calculation Control Data	Specification of file names, calculation conditions, and flags	Necessary	Nothing
COMPONEN	Information which is necessary to calculate occurrence probabilities of basic events	Necessary	Nothing
HAZARD	Seismic hazard	Necessary	Nothing
FT	FT	Opcessary	Nothing
SETCOR	Correlation coefficients	correlation coefficients between	
capacities are added			

All files except SEQDATA and CMPSLCT are divided by data lines with "\$" (e.g. \$TITLE) into many data blocks. Comment lines can be inserted anywhere by placing " $<$ " at the beginnings of lines.

The following sections describe data parameters and their formats.

3.2 Calculation Control Data

Calculation control data consists of two parts: a common part to SECOM2 code system and a special part to SECOM2-DQFM code. The former is introduced in Section 3.2.1, and the latter is described in Section 3.2.2.

3.2.1 Common Part to SECOM2 Code System in Calculation Control Data File

The common part to SECOM2 code system consists of calculation title, directory name and file name for each kind of input, and seismic motion levels for analysis. These data must be given in order. The data formats are shown with the following explanatory notes.

(\#)[Input item]
[Description of the input item]
<Feature>
[Description of the feature controlled in the input item]
(Omitted if there is no explicit feature)
<Parameters>
[Description about parameters and flags]
<Format>
[Description of formats such as data type, column, etc.]
Fixed format is shown using edit descriptor in Fortran.
(Example)
(A8,2X,I2,2F8.0) : 8 characters of character type, 2 blank characters, 2 characters of integer type, a pair of 8 characters of real type
<Example>
Example may be shown if the format is complicated.

(1) Calculation Title

The user can give an adequate name that means a calculation case or date of a calculation to specify the calculation case later. This calculation title can be a mark in output list because it is redirected to output list.
<Format>
" $\$$ TITLE" is given in the first line of the calculation control data, and a calculation title is given at the next line with the following format.
(A80)
(2) Directory Name and File Name for Each Kind of Input

Sets of data names shown in Table 3-2 and the paths are given. One set must be given in one line. A path consists of a directory name and a file name based on the file specification rule in MS-DOS.

<Format>

A set of the data name and the path is repeated after the next line of " $\$$ DATASET" with the following format.
(A8,2X,A40)

(3) Seismic Motion Levels for Analysis

Conditional occurrence probabilities of events are calculated at seismic motion levels specified in this data block. Seismic motion means maximum acceleration induced by an earthquake. Gal is a default unit for seismic motion levels. 980 Gal is equal to the gravity acceleration, 1G.

<Format>

"\$SEISMICLEVEL" is given at first, and then seismic motion levels for analysis with the following format are given with ascending order. The maximum number of levels is 8 in 1 line, more levels are given in the next line.
(8(F8.0,2X))

After data blocks shown in (1), (2), and (3) are specified, "/EOD" is given in the next line which means the end of common part to SECOM2 code system.

3.2.2 Special Part to SECOM2-DQFM code in Calculation Control Data

(4) Old Name of the Code
<Format>
Old name of the code "MONTE" must be given from the first column.

(5) Controlling Calculation Condition

<Feature>
Specify number of iteration, flag of correlation analysis, etc.
<Parameters>

1) Flag of correlation analysis: ICRFLG

ICRFLG $=0$: Consider no correlation
$=1$: Consider correlation by assigning the same value to
to response subfactors or capacities
(Use MONSET data)
$=2$: Consider correlation with correlation coefficients method (Use SETCOR data)
2) Number of iteration: IREPR

Normally, Total number of iteration for every seismic motion level may be specified. If number of iteration is changed by seismic motion levels as shown in the input item (6), summation of the numbers of iteration must be specified.
3) Design basis seismic motion (Gal): BADS
4) Dummy flag: IUNCRT

It must be 0 .
5) Flag for LHS option: IFLGLTN

IFLGLTN=0: Do not use LHS option
$=1$: Use LHS option
<Format>

1) ~ 5) are given in turn with the following format.
(I2,2X,I8,2X,F8.0,2X,I1,2X,I1)
(6) Numbers of Iteration for Different Seismic Motion Levels
```
<Feature>
```

The user can specify the numbers of iteration for different seismic motion levels. It is necessary to improve resolution by increasing the number of iteration because conditional probabilities of seismic failures are very low at a small seismic motion level. On the other hand, such a high resolution is not required for analysis at a big seismic motion level because of high probabilities of seismic failures. To answer such specific inclination in seismic PSA, SECOM2-DQFM has a feature to change the number of iteration for different seismic motion levels. If the feature is used, summation of the numbers of iteration must be given in IREPR. When the feature is not used, IREPR is applied for every seismic motion level.
<Parameters>

1) Maximum seismic motion level at which 2) is applied (in the Gal)
2) Number of iteration that is applied at 1) or less
3) The end of data (must be 0.0)
<Format>
The set of 1) and 2) in one line is repeated with the following format, and finally 3) is given with the format (F8.0). If the feature is not used, only 3) is required.
(F8.0,2X,I8)
<Example>
If 50,000 is applied from 0 Gal to $600 \mathrm{Gal}, 30,000$ is applied from over 600 Gal to 900Gal, and 20,000 is applied from over 900 Gal to 2100 Gal , the following example is available by giving 100,000 to IREPR.

600.0	50000
900.0	30000
2100.0	20000
0.0	

(7) Seismic Hazard ID
<Feature>
Seismic hazard ID means a seismic hazard curve name. An ID must be selected for a calculation from IDs in HAZARD data shown in Section 3.4.

<Parameters>

Seismic hazard ID

<Format>

It is given with the following format.
(A8)
(8) Optional Output Flags for Check
<Feature>
Output options can be specified with flags for input redirection and checking calculation.

<Parameters>

The user can select 0 (write output) or 1 (do not write output) for the following flags:

1) Flag to activate output option for basic event information: IINP1
2) Flag to activate FT output option: IINP2
3) Flag to activate output option for correlation information: IINP3
4) Flag to activate output option for seismic hazard: IINP4
5) Flag to activate checking output option for basic event names: IOUP1
6) Flag to activate checking output option for correlation coefficients: IOUP2
7) Flag to activate checking output option for conditional occurrence probabilities of basic events and intermediate events: IOUP3
<Format>
The flags from 1) to 4) are given with the following format.
(4I2)
The flags from 5) to 7) are given with the following format in the next line. (3I2)
(9) Names of the Events of Which Conditional Occurrence Probabilities are Calculated <Feature>

Conditional occurrence probabilities of basic events and intermediate events are calculated if the event names are specified by the user. The names must be the same as those defined in FT data. Maximum number of events should be no more than 30. <Parameters>

Basic event names and Intermediate event names: CGOUNM
<Format>
The maximum number of the names is 8 in 1 line, more names are given in the next line. They are given with the following format:
(8(2X,A8))

A sample of calculation control data in SECOM2-DQFM code is shown in Table 3.2.

Table 3. 2 Sample of Calculation Control Data in SECOM2-DQFM Code

```
$TITLE
<--------------------------------- TITLE
< A80
SAMPLE CONTROL DATA FOR SECOM2-DQFM CODE
$DATASET
< KIND > <---------- DATA SET NAME
< A8 > < A40 >
COMPONEN ..¥..¥dat¥COMPONEN¥COMPONEN
FT ..¥..¥dat¥FT¥FT1
HAZARD ..¥..¥dat¥HAZARD¥HAZARD
SETCOR ..¥..¥dat¥SETCOR¥SETCOR
MONSET ..¥..¥dat¥MONSET¥MONSET
$SEISMICLEVEL
<F8.0><F8.0><F8.0><F8.0><F8.0><F8.0><F8.0><F8.0>
\begin{tabular}{rrrccccc}
30.0 & 60.0 & 90.0 & 120.0 & 150.0 & 180.0 & 210.0 & 240.0 \\
270.0 & 300.0 & 330.0 & 360.0 & 390.0 & 420.0 & 450.0 & 480.0 \\
510.0 & 540.0 & 570.0 & 600.0 & 630.0 & 660.0 & 690.0 & 720.0 \\
750.0 & 780.0 & 810.0 & 840.0 & 870.0 & 900.0 & 930.0 & 960.0 \\
990.0 & 1020.0 & 1050.0 & 1080.0 & 1110.0 & 1140.0 & 1170.0 & 1200.0 \\
1230.0 & 1260.0 & 1290.0 & 1320.0 & 1350.0 & 1380.0 & 1410.0 & 1440.0 \\
1470.0 & 1500.0 & 1530.0 & 1560.0 & 1590.0 & 1620.0 & 1650.0 & 1680.0 \\
1710.0 & 1740.0 & 1770.0 & 1800.0 & 1830.0 & 1860.0 & 1890.0 & 1920.0 \\
1950.0 & 1980.0 & 2010.0 & & & & &
\end{tabular}
/EOD
MONTE
<I < I8 > < F8.0> I I
2 100000 180.0 0}0
<SEISMIC LEVEL, NUMBER OF TRIAL
< F8.0 > < I8 >
    0.0
<HAZID
< A8 >
MDL
<INPUT DATA TO OUTLIST
<I<I<I<I
    1111
<OUTPUT DATA OPTION
<I<I<I
    111
<CALC. GATE OR COMP
<< A8 > < A8 >
```

In the above sample the number of iteration is 100,000 , the design basis seismic motion is 180 Gal , and correlation analysis with given correlation coefficients specified in SETCOR data is used. The range of seismic motion levels for analysis is from 30Gal to 2010 Gal with an interval of 30 Gal .

3.3 COMPONEN Data

A COMPONEN data file includes information sets which are necessary to calculate conditional occurrence probabilities of all basic events. The basic events consist of seismic failure events, random failure events, etc.
(1)Structure of COMPONEN Data

A COMPONEN data consists of 10 kinds of data blocks which begin with data lines with "\$" as follows.

1) Data Block for Title (\$TITLE)
2) Data Block for Basic Event (\$ARRANGEMENT)
3) Data Block for Capacity or Random Failure (\$CAPACITY)
4) Data Block for Design Response(\$DESIGNRESPONSE)
5) Data Block for Response Spectrum(\$RESPONSESPECTRUM)
6) Data Block for Response Factor(\$RESPONSEFACTOR)
7) Data Block for Response Subfactor(\$SUBRESPONSEFACTOR)
8) Data Block for Table of Occurrence Probabilities (\$DIRECTPROBABILITY)
9) Data Block for Table of Response Factors or Subfactors (\$RESPONSETABLE)

Data block 1) must be given only one time in one data file, the others can be given as many times as necessary. Data block 2) is specified more than the number of basic events in FT. Basic events which are not used in FT can be added, but they are not used in the calculation. Data block 3) is necessary for each basic event specified at 2), but the number of 3) can be reduced by using the same 3) at more than one of 2). Data blocks from 4) to 8) are not necessary for every basic event. The necessity of the data blocks from 4) to 8) depends on the kind of basic event and the way to calculate probabilities. Number of the data blocks from 4) to 8) can be reduced in the same way as the data block 3).

The kind of basic events and data blocks required for each kind are listed in Table 3.3. ID for the kinds of basic events must be given in data block 3) and used for identification of the kinds. Especially, parameters given in data block 3) are different depending on the kinds of basic events. The parameters in data block 3) are described for each kind of basic event.

Data block 9) is used only when response factors or response subfactors are changed for each seismic motion level. They are not required unless flags for changing the factors are raised in data block 6). Using data block 9) makes accident sequence analysis and importance analysis unavailable.

Table 3. 3 The basic event type and data blocks required for each type

	Basic Event Type	Basic Event Type ID	Required Data Blocks *
(1)	Seismic Failure of Component (Use response spectrum)	RESP.FAC.EQ	2)\$ARRANGEMENT 3)\$CAPACITY 5)\$RESPONSESPECTRUM 6)\$RESPONSEFACTOR 7)\$SUBRESPONSEFACTOR
(2)	Seismic Failure of Component (Do not use response spectrum)	RESP.FAC.DIRE	2)\$ARRANGEMENT 3)\$CAPACITY 4)\$DESIGNRESPONSE 6)\$RESPONSEFACTOR 7)\$SUBRESPONSEFACTOR
(3)	Seismic Failure of Pipe (Do not use response spectrum)	RESP.FAC.PIPE	2)\$ARRANGEMENT 3)\$CAPACITY 4)\$DESIGNRESPONSE 6)\$RESPONSEFACTOR 7)\$SUBRESPONSEFACTOR
(4)	Random Failure	INTERNAL	2)\$ARRANGEMENT 3)\$CAPACITY
(5)	Basic Event Defined by Function (Step function and ramp function generating probability for each seismic motion level are available)	FUNCTION	2)\$ARRANGEMENT 3)\$CAPACITY
(6)	Basic Event Defined by Table (Table generating probability for each seismic motion level is given)	PROB.DIRE	2)\$ARRANGEMENT 3)\$CAPACITY 8)\$DIRECTPROBABILITY

* : The numbers with parentheses in front of data block names correspond with the item numbers in this section.

The data formats are shown based on the following explanatory notes in this section.

<Parameters>
[Description about parameters and flags]
<Format>
[Description for format such as data type, column, etc.]
Fixed format is shown using edit descriptor in Fortran.
(Example)
(A8,2X,I2,2F8.0) : 8 characters of character type, 2 characters of blank, 2 characters of integer type, a pair of 8 characters of real type
<Example>
Example may be shown if the format is complicated.
(2)Parameters and Their Formats in COMPONEN Data
1)Data Block for Title (\$TITLE)
<Parameters>
Title of the COMPONEN data file is given.
The user can give an adequate name that shows contents of the data.
<Format>
" $\$ T I T L E "$ is given in the first line of the COMPONEN data and a title is given in the next line with the following format:
(A80)
2) Data Block for Basic Event (\$ARRANGEMENT)
<Parameters>
The following parameters from (a) to (f) are required if the ID for the basic event type is "RESP.FAC.EQ" in \$CAPACITY data block. The parameters from (a) to (e) are required for "RESP.FAC.DIRE" or "RESP.FAC.PIPE". The parameters from (a) to (c) are required for "INTERNAL", "FUNCTION", or "PROB.DIRE". The parameters which are not required can be left blank.
(a) Description of basic event

The user can give an adequate description.
Blank is available if the user needs no description.
(b) Basic event name
(c) Capacity name assigned to basic event Capacity name must be defined in $\$$ CAPACITY data block.
(d) Response factor name assigned to basic event Response factor name must be defined in \$RESPONSEFACTOR data block
(e) Building name or design response name

A basic event whose type ID is "RESP.FAC.EQ" requires a building name. The building name must be defined in \$RESPONSESPECTRUM data block.

A basic event whose type ID is "RESP.FAC.DIRE" or "RESP.FAC.PIPE" requires a design response name. The design response name must be defined in \$DESIGNRESPONSE data block.
(f) Installation floor name

Basic event of seismic failure referring to a response spectrum requires specification of installation floor. The installation floor must be defined in \$RESPONSESPECTRUM data block.
<Format>
The parameters from (a) to (f) is given in the next line of "\$ARRANGEMENT" with the following format:
(A30,2X,A8,2X,A8,2X,A8,2X,A8,2X,A2)
3) Data Block for Capacity or Random Failure (\$CAPACITY)

Parameters for Capacity or Random Failure, basic event type ID etc. are given in this \$CAPACITY data block. The parameters are shown respectively for each basic event type because the parameters in this data block depend on the basic event types as follows.
(a)Parameters and their formats for "RESP.FAC.EQ"
<Parameters>
a) Description of capacity or random failure

The user can give an adequate description.
Blank is available if the user needs no description.
b) Capacity name required in $\$$ ARRANGEMENT data block
c) Abbreviated capacity name in 3 characters
d) Basic event type ID

Use ID in Table 3.3. "RESP.FAC.EQ" is adequate in this case.
e) Median of capacity in the Gal
f) Uncertainty due to randomness of capacity
g) Uncertainty due to lack of knowledge of capacity
h) Damping coefficient
i) Upper bound of natural frequency
j) Lower bound of natural frequency

Both of i) and j) are required because the average of i) and j) is used in the calculation.

<Formats>

a) is given in the next line of "\$CAPACITY" with the following format:
(A80)
Parameters from b) to g) are given in the next line of above with the following format: (A8,2X,A3,7X,A14,6X,F8.0,2X,F8.0,2X,F8.0)
Parameters from h) to j) are given in the next line of above with the following format: (10X,F8.0,2X,F8.0,2X,F8.0)
(b) Parameters and their formats for "RESP.FAC.DIRE" or "RESP.FAC.PIPE" <Parameters>
a) Description of capacity

The user can give an adequate description.
Blank is available if the user needs no description.
b) Capacity name required in \$ARRANGEMENT data block
c) Abbreviated capacity name in 3 characters
d) Basic event type ID

Use ID in Table 3.3.
"RESP.FAC.DIRE" or "RESP.FAC.PIPE" are adequate in this case.
e) Median of capacity in the Gal
f) Uncertainty due to randomness of capacity
g) Uncertainty due to lack of knowledge of capacity
<Formats>
a) is given in the next line of "\$CAPACITY" with the following format:
(A80)
Parameters from b) to g) are given in the next line of above with the following format: (A8,2X,A3,7X,A14,6X,F8.0,2X,F8.0,2X,F8.0)
(c) Parameters and their formats for "INTERNAL" <Parameters>
a) Description of capacity

The user can give an adequate description.

Blank is available if the user needs no description.
b) Capacity name required in \$ARRANGEMENT data block
c) Basic event type ID

Use ID in Table 3.3. "INTERNAL" is adequate in this case.
d) Median of random failure
e) Uncertainty due to randomness of random failure
f) Uncertainty due to lack of knowledge of random failure
<Formats>
a) is given in the next line of "\$CAPACITY" with the following format:
(A80)
Parameters from b) to f) are given in the next line of above with the following format: (A8,12X,A14,6X,F8.0,2X,F8.0,2X,F8.0)
(d) Parameters and their formats for "FUNCTION"

Probability defined in the step function or the ramp function must increase as seismic motion increases.
<Parameters>
a) Description of capacity

The user can give an adequate description.
Blank is available if the user needs no description.
b) Capacity name required in \$ARRANGEMENT data block
c) Basic event type ID

Use ID in Table 3.3. "FUNCTION" is adequate in this case.
d) Probability before increase
e) Seismic motion level at the beginning of probability increase for ramp and step function
f) Probability after increase
g) Seismic motion level at the end of probability increase for ramp function (0.0 for step function)
<Formats>
a) is given in the next line of "\$CAPACITY" with the following format:
(A80)
Parameters from b) to g) are given in the next line with the following format:
(A8,12X,A14,6X,F8.0,2X,F8.0,2X,F8.0,2X,F8.0)
(e) Parameters and their formats for "PROB.DIRE"
<Parameters>
a) Description of capacity

The user can give an adequate description.
Blank is available if the user needs no description.
b) Capacity name required in \$ARRANGEMENT data block
c) Basic event type ID

Use ID in Table 3.3. "PROB.DIRE" is adequate in this case.
<Formats>
a) is given in the next line of "\$CAPACITY" with the following format:
(A80)
b) and c) are given in the next line of above with the following format:
(A8,12X,A14)
4) Data Block for Design Response (\$DESIGNRESPONSE)
<Parameters>
Design response is given in this data block for a basic event whose type ID is "RESP.FAC.DIRE" or "RESP.FAC.PIPE". The following parameters from (a) to (c) are required for "RESP.FAC.DIRE". The following parameters from (a) to (d) are required for "RESP.FAC.PIPE".
(a) Design response name
(b) Abbreviated design response name in 3 characters
(c) Design response in the Gal
(d) Constant member of design response in the Gal
<Format>
Parameters from a) to b) are given in the next line of "\$DESIGNRESPONSE" with the following format:
(A8,2X,A3,7X,F8.0,2X,F8.0)
5) Data Block for Response Spectrum (\$RESPONSESPECTRUM)
<Parameters>
Response spectrum is given in $\$$ RESPONSESPECTRUM data block for a basic event whose type ID is "RESP.FAC.EQ". All response spectrums for a damping coefficient in a building must be included in a $\$$ RESPONSESPECTRUM data block. It means that one data block includes response spectrums for all defined natural periods on all
floors in a building.
(a) Building name in \$ARRANGEMENT data block
(b) Abbreviated building name in 1 character
(c) Damping coefficient
(d) Floor name in \$ARRANGEMENT data block in 2 characters
(e) Natural period
(f) Floor response in the Gal
<Formats>
Parameters from (a) to (c) are given in the next line of "\$RESPONSESPECTRUM" with the following format:
(A8,2X,A1,9X,F8.0)
All floors of (d) are given in the next line of above with the following format:
(16(A2,3X))
(e) and all floors of (f) are given after the next line of above with the following format: (8(F8.0,2X))

If number of (f) exceeds 8 , remained (f) are given in the next line of above with the following format:
(10X,7(F8.0,2X))

The sets of (e) and (f) can be given as many as the user's needs.
6) Data Block for Response Factor (\$RESPONSEFACTOR)
<Parameters>
One response factor and its response subfactors are given in one \$RESPONSEFACTOR data block for a basic event whose ID is "RESP.FAC.EQ", "RESP.FAC.DIRE", or "RESP.FAC.PIPE".
(a) Response factor name in \$ARRANGEMENT data block
(b) Abbreviated response factor name in 2 characters
(c) Flag for response factor table

Response factor table must be prepared in \$RESPONSETABLE data block if 1 is given in this flag. Blank is available in this flag when response factor table is not used.
(d) Response subfactor name

Response subfactor name must be the same as the name in \$SUBRESPONSEFACTOR data block. The name must begin with " F " and the
second character must be a number. The user can name it arbitrarily after the third character.
(e) Flag for response subfactor table

Response subfactor table must be prepared in \$RESPONSETABLE data block if 1 is given in this flag. Blank is available in this flag when response factor table is not used. (e) is ignored by the code when both (c) and (e) are raised in a response factor.
<Formats>
Parameters from (a) to (c) are given in the next line of "\$RESPONSEFACTOR" with the following format:
(A8,2X,A2,8X,I1)
The set of (d) and (e) is repeated for each response subfactor after above with the following format:
(A8,12X,I1)
7) Data Block for Response Subfactor (\$SUBRESPONSEFACTOR)
<Parameters>
All response subfactor names and the values which are necessary for one COMPONEN data are given in one \$SUBRESPONSEFACTOR data block for a basic event whose ID is "RESP.FAC.EQ", "RESP.FAC.DIRE", or "RESP.FAC.PIPE".
(a) Response subfactor name
(b) Median of response subfactor
(c) Uncertainty due to randomness of response subfactor
(d) Uncertainty due to lack of knowledge of response subfactor
<Format>
The set of parameters from (a) to (d) is repeated for all response subfactors after the next line of "\$SUBRESPONSEFACTOR" with the following format: (A8,2X,F8.0,2X,F8.0,2X,F8.0)
8) Data Block for Table of Occurrence Probabilities (\$DIRECTPROBABILITY)
<Parameters>
Conditional occurrence probabilities of a basic event are given in one \$DIRECTPROBABILITY data block for a basic event whose ID is "PROB.DIRE".
(a) Capacity name specified in \$ARRANGEMENT data block
(b) Seismic motion level in the Gal
(c) Conditional occurrence probability
<Formats>
(a) is given in the next line of "\$DIRECTPROBABILITY" with the following format: (A8)

The set of (b) and (c) is repeated for each seismic motion level after above with the following format:
(F8.0,2X,F8.0)
9) Data Block for Table of Response Factors or Subfactors (\$RESPONSETABLE)
<Parameters>
A table of response factor or response subfactor is given in a \$RESPONSETABLE data block.
(a) Response factor name or response subfactor name
(b) Seismic motion level in the Gal
(c) Median of response factor or response subfactor
(d) Uncertainty due to randomness of response factor or response subfactor
(e) Uncertainty due to lack of knowledge of response factor or response subfactor
<Formats>
(a) is given in the next line of "\$DIRECTPROBABILITY" with the following format: (A8)

The set of parameters from (b) to (e) is repeated for each seismic motion level with the following format:
(F8.1,3(2X,F8.3))

A sample of COMPONEN data is shown in Table 3.4, which includes 9 basic events shown in Figure 3.1.

Table 3. 4 Sample of COMPONEN Data (1/8)
\$TITLE
SAMPLE COMPONEN DATA FOR SECOM2-DQFM MANUAL \$ARRANGEMENT
LOSP INITIATOR

LOSP LOSP RESPA11 GROUND1
\$ARRANGEMENT
RHR HEAT EXCHANGER
\$ARRANGEMENT
RHR HEAT EXCHANGER B \$ARRANGEMENT
RHR PUMP A
\$ARRANGEMENT
RHR PUMP B
\$ARRANGEMENT
RHR VALVE A
\$ARRANGEMENT
\$ARRANGEMENT
RHR VALVE B
\$ARRANGEMENT
LPCI A INTERNAL
\$ARRANGEMENT
LPCI A INTERNAL

KHXA	RHRHX	RESPD11	MAIN	B1
KHXB	RHRHX	RESPD11	MAIN	B1
KPUMPA1	RHRPUMP	RESPD11	MAIN	B2
KPUMPB1	RHRPUMP	RESPD11	MAIN	B2

KMOVA12	LMOV	RESPD11	MAIN	6 F
KMOVB11	LMOV	RESPD11	MAIN	6 F

\$CAPACITY
$\begin{array}{lllll}\text { \$CAPACIIT } \\ \text { LOSP INITATOR (CERAMIC INSULATOR) } \\ \text { LOSP LSP } & & & \\ \text { RESP.FAC.DIRE } & 650 . & 0.25 & 0.25\end{array}$
\$CAPACITY

LARGE MORTOR OPERATED VALVE					
LMOV	MOV	RESP.FAC.EQ	6468.	0.26	0.60

LMOV MOV RESP.FAC.EQ
\$CAPACITY
RHR HEAT EXCHANGER

\$RESPONSESPECTRUM						
MAIN	M	. 5				
6F 3F	2F 1F	B1 B2				
0.0000	296.099	166.276	146.944	131.681	127.673	123.724
0.0294	296.099	166.276	146.944	131.681	127.673	123.724
0.0323	299.866	167.778	147.554	137.083	125.755	125.099
0.0357	347.017	184.095	173.548	137.636	147.202	126.855
0.0400	303.276	172.841	160.162	139.960	135.545	128.891
0.0455	299.157	169.798	155.864	136.974	141.350	139.285
0.0500	322.316	177.539	159.851	154.167	152.807	152.423
0.0556	308.363	206.321	170.004	146.394	162.303	150.972
0.0588	341.038	212.222	182.957	153.639	173.905	167.720
0.0625	383.357	274.287	224.685	169.804	193.353	194.195
0.0667	406.040	259.427	254.844	195.986	163.584	191.027
0.0690	414.675	255.114	274.813	238.673	198.721	207.553
0.0714	460.619	264.744	285.161	246.217	190.656	174.378
0.0741	496.657	272.599	359.281	331.287	255.904	191.325
0.0769	468.182	236.094	288.410	282.914	255.756	189.809
0.0800	356.844	224.399	247.166	262.478	240.901	202.346
0.0833	422.774	230.695	225.097	249.385	256.686	226.906
0.0870	373.447	325.030	254.789	284.267	315.148	331.328
0.0909	417.314	501.590	328.835	278.880	327.345	390.778
0.0952	357.647	581.355	393.128	266.101	255.802	360.376
0.1000	358.320	745.705	543.781	374.572	234.343	344.842
0.1053	401.097	753.392	612.862	460.992	248.041	249.112
0.1111	413.588	634.862	549.725	447.337	280.854	203.944
0.1176	409.952	451.195	429.823	380.018	277.878	189.422
0.1250	704.431	742.579	814.146	779.273	601.995	388.569
0.1290	783.541	743.041	804.948	795.123	652.899	451.075
0.1333	756.707	698.089	800.345	793.705	654.856	449.009

Table 3.4 Sample of COMPONEN Data (2/8)

0.1379	736.354	590.592	685.844	699.920	613.006	453.253
0.1429	705.831	487.244	573.523	585.473	511.645	394.546
0.1481	908.635	606.477	724.027	752.278	713.781	563.028
0.1538	977.861	611.232	767.248	820.950	768.923	620.318
0.1600	949.749	533.838	694.275	765.074	744.681	625.580
0.1667	976.422	543.828	748.314	845.444	839.774	715.859
0.1739	1335.235	590.679	834.817	957.794	972.274	871.754
0.1818	1259.008	485.388	682.264	786.654	826.691	761.060
0.1905	1002.588	364.327	493.993	577.634	612.919	597.657
0.2000	1302.283	412.576	564.496	701.178	789.558	784.344
0.2083	1237.034	368.561	511.585	626.079	699.049	695.330
0.2174	1703.210	398.989	545.152	718.754	843.688	878.869
0.2273	1691.308	428.141	549.019	718.133	865.886	931.290
0.2381	2119.867	491.160	596.116	790.076	968.930	1058.281
0.2500	1807.352	504.116	473.809	575.313	734.954	829.507
0.2632	2249.975	623.962	470.196	618.516	786.726	896.497
0.2778	2455.475	830.701	564.310	556.087	691.734	800.962
0.2899	2645.932	899.222	588.521	515.741	574.097	710.970
0.3030	2451.591	939.820	653.318	548.423	549.009	630.168
0.3175	2486.890	1067.641	757.515	572.190	500.300	536.686
0.3333	3513.254	1601.516	1171.435	874.456	678.516	641.233
0.3448	3680.295	1826.315	1395.392	1078.248	826.464	696.739
0.3571	4305.189	2213.089	1729.092	1371.743	1064.217	864.578
0.3704	3977.586	2090.918	1650.604	1322.949	1033.937	833.773
0.3846	3360.469	1890.397	1550.053	1284.177	1030.877	822.988
0.4000	4145.294	2421.065	2006.231	1684.129	1386.139	1141.963
0.4167	3258.974	1933.589	1620.043	1383.080	1158.753	974.798
0.4348	3012.922	1948.107	1686.601	1481.223	1280.424	1109.118
0.4545	1946.076	1320.303	1166.390	1044.466	923.922	816.892
0.4762	3818.457	2636.043	2341.858	2108.468	1874.585	1664.019
0.5000	2261.888	1640.116	1483.705	1358.141	1231.396	1115.045
0.5263	2508.637	1837.535	1670.150	1535.212	1398.299	1273.210
0.5556	1154.376	897.082	831.882	778.874	724.446	673.442
0.5882	1545.278	1238.843	1161.348	1098.166	1033.184	971.741
0.6250	1359.254	1073.810	1002.695	945.302	889.388	843.303
0.6667	1193.557	981.307	927.655	884.570	840.586	799.379
0.7143	1176.770	994.052	947.436	909.712	870.744	833.552
0.7692	713.378	616.421	594.824	576.962	558.276	540.067
0.8333	1045.974	912.843	878.953	851.446	823.428	796.969
0.9091	458.365	419.440	409.551	401.436	393.099	384.996
1.0000	636.634	593.261	582.057	572.764	562.982	553.440
1.1111	388.294	355.201	346.809	339.955	332.885	326.148
1.2500	465.124	442.452	436.637	431.841	426.808	421.845
1.4286	250.998	237.466	233.988	231.123	228.131	225.230
1.6667	279.439	268.950	266.281	264.101	261.823	259.621
2.0000	137.321	130.544	128.841	127.458	126.047	124.730
2.5000	120.270	118.506	118.066	117.691	117.265	116.811
3.3333	29.876	29.235	29.069	28.929	28.778	28.628
5.0000	15.213	14.488	14.349	14.283	14.215	14.150
\$RESPONSESPECTRUM						
MAIN	M	1.0				
6F 3F	2F 1F	B1 B2				
0.0000	296.106	166.311	146.955	131.506	124.744	124.238
0.0294	296.106	166.311	146.955	131.506	124.744	124.238
0.0323	299.609	168.797	146.778	135.237	125.124	124.083
0.0357	313.903	179.878	161.597	136.420	133.536	125.247
0.0400	298.785	170.349	156.495	136.282	133.308	126.734
0.0455	297.003	171.001	152.314	134.935	132.907	133.124
0.0500	312.597	176.559	157.337	145.415	143.757	139.220
0.0556	298.744	189.085	160.051	140.067	148.951	143.864
0.0588	330.441	198.860	173.826	149.059	153.915	153.416
0.0625	336.073	242.884	197.846	154.114	165.389	162.952
0.0667	375.699	251.704	246.797	189.248	158.991	174.877
0.0690	361.077	226.630	243.278	211.417	183.706	189.813
0.0714	412.102	224.461	253.518	225.324	172.707	159.901
0.0741	420.216	226.252	266.297	249.665	198.859	172.890
0.0769	419.433	222.546	237.812	224.224	201.832	158.784
0.0800	362.590	220.352	202.877	213.154	193.192	174.230
0.0833	392.007	215.198	200.367	235.235	242.883	213.471
0.0870	365.007	294.634	226.597	248.620	267.312	277.199
0.0909	369.991	397.571	273.237	220.516	258.649	319.892
0.0952	337.911	478.216	345.879	249.759	211.922	280.381
0.1000	360.946	566.657	428.981	315.252	204.546	267.486

Table 3.4 Sample of COMPONEN Data (3/8)

0.1053	381.891	653.032	531.308	401.646	225.765	223.770
0.1111	383.639	500.200	427.590	353.127	233.728	172.231
0.1176	424.976	381.389	360.718	318.733	236.289	180.645
0.1250	618.075	575.537	631.967	606.351	479.998	322.421
0.1290	659.320	606.111	672.944	665.619	555.557	388.474
0.1333	644.984	555.580	624.975	621.126	522.871	366.122
0.1379	671.511	461.046	547.451	563.068	495.951	373.184
0.1429	602.590	419.369	485.015	498.033	439.743	331.286
0.1481	759.889	499.298	584.946	597.461	574.970	461.567
0.1538	735.416	446.746	558.983	601.964	567.499	460.634
0.1600	745.455	441.962	567.173	623.799	607.681	513.592
0.1667	862.614	480.957	655.110	737.422	733.031	629.081
0.1739	1071.483	478.567	664.951	763.165	796.420	716.834
0.1818	940.827	365.241	483.001	556.340	589.545	539.146
0.1905	824.029	319.910	399.299	455.442	478.007	456.140
0.2000	1088.975	335.105	453.497	555.736	610.588	605.732
0.2083	925.434	296.078	381.568	478.874	556.810	564.549
0.2174	1345.446	333.777	399.994	532.468	627.084	654.721
0.2273	1259.992	365.096	437.504	532.275	632.555	671.665
0.2381	1526.110	384.153	438.323	568.561	682.153	735.150
0.2500	1388.428	401.926	407.741	475.427	593.754	670.822
0.2632	1846.914	528.503	378.907	499.833	627.158	709.750
0.2778	2071.561	719.546	488.384	443.189	521.823	589.814
0.2899	1969.595	682.068	509.485	465.439	505.827	565.254
0.3030	1991.551	795.425	556.066	475.506	472.028	502.355
0.3175	2015.440	881.463	631.302	478.234	426.067	442.552
0.3333	2770.124	1270.659	932.676	714.763	556.511	509.011
0.3448	2802.594	1358.790	1050.270	821.440	625.967	538.820
0.3571	3164.773	1642.108	1288.848	1027.114	799.637	649.018
0.3704	3202.801	1677.747	1321.872	1056.027	822.457	674.675
0.3846	2605.683	1442.177	1174.722	971.365	775.611	614.303
0.4000	3170.257	1848.037	1531.979	1289.572	1059.933	881.980
0.4167	2633.936	1553.628	1303.255	1112.165	932.775	785.618
0.4348	2488.487	1615.555	1403.128	1235.043	1071.866	929.457
0.4545	1745.626	1175.699	1035.004	923.834	813.251	714.492
0.4762	2671.576	1838.099	1632.502	1467.848	1302.952	1155.378
0.5000	1934.318	1386.477	1250.256	1142.626	1034.169	936.468
0.5263	1916.068	1397.309	1266.948	1162.510	1057.163	959.950
0.5556	960.776	745.248	690.831	646.608	601.264	558.863
0.5882	1187.262	904.225	834.419	783.639	738.239	695.287
0.6250	1074.478	841.573	783.576	737.461	691.071	648.699
0.6667	1029.760	843.485	797.604	760.433	723.077	687.987
0.7143	954.365	803.145	764.656	733.485	701.377	670.755
0.7692	601.259	529.294	510.770	495.445	479.410	463.770
0.8333	784.150	678.864	652.159	630.706	608.766	588.191
0.9091	408.329	363.715	352.607	343.634	334.490	325.732
1.0000	517.084	481.909	472.908	465.451	457.606	449.936
1.1111	353.571	322.836	315.027	308.704	302.191	295.983
1.2500	360.450	340.131	335.756	332.126	328.296	324.495
1.4286	223.731	214.854	212.591	210.734	208.805	206.939
1.6667	230.439	221.075	218.698	216.748	214.732	212.792
2.0000	121.758	118.099	117.154	116.370	115.546	114.743
2.5000	104.426	102.895	102.519	102.191	101.822	101.415
3.3333	27.938	27.295	27.130	26.993	26.844	26.697
5.0000	14.764	14.024	13.849	13.741	13.670	13.602
\$RESPONSESPECTRUM 13.602						
MAIN	M					
$6 \mathrm{~F} \quad 3 \mathrm{~F}$	2 F 1F	B1 B2				
0.0000	296.015	166.301	146.990	131.054	124.658	124.355
0.0294	296.015	166.301	146.990	131.054	124.658	124.355
0.0323	299.223	168.520	147.094	133.230	125.234	124.418
0.0357	307.859	175.996	155.466	134.485	130.402	126.024
0.0400	297.173	169.650	153.843	134.588	129.274	126.052
0.0455	295.318	170.589	151.531	134.344	129.955	131.132
0.0500	304.279	172.991	154.797	141.440	136.968	134.558
0.0556	298.181	181.660	157.807	138.844	142.321	139.713
0.0588	321.097	190.669	165.196	144.135	145.741	145.934
0.0625	325.222	219.032	178.171	149.174	153.685	152.253
0.0667	350.197	216.632	208.622	172.643	152.528	161.426
0.0690	341.587	208.544	209.683	186.750	167.919	171.690
0.0714	367.970	212.187	216.776	192.264	161.717	155.004
0.0741	370.310	216.302	225.171	205.098	175.480	161.126
0.0769	383.279	216.635	208.384	191.722	173.710	150.452

Table 3.4 Sample of COMPONEN Data (4/8)

0.0800	357.604	218.139	191.608	186.146	172.332	158.050
0.0833	373.731	219.216	191.423	197.788	203.590	181.631
0.0870	353.986	273.829	209.043	203.225	216.814	218.511
0.0909	356.185	345.715	245.348	196.834	209.007	252.995
0.0952	340.565	400.170	293.500	216.582	183.416	229.819
0.1000	358.227	437.814	334.478	256.479	179.251	216.544
0.1053	373.016	479.251	396.195	307.276	196.215	187.610
0.1111	373.104	390.218	339.347	282.980	203.173	163.285
0.1176	410.167	343.799	320.896	285.364	218.941	167.785
0.1250	521.091	413.705	440.439	421.302	342.337	248.515
0.1290	555.619	431.452	471.499	466.400	397.258	291.232
0.1333	554.177	414.632	455.810	451.125	382.639	278.663
0.1379	571.623	357.494	402.806	415.577	372.320	290.118
0.1429	536.537	346.336	387.702	389.536	350.359	274.096
0.1481	628.576	388.282	436.917	443.792	414.947	344.366
0.1538	603.169	357.412	434.181	461.248	433.334	352.178
0.1600	604.994	357.246	443.567	478.998	461.012	386.300
0.1667	679.865	380.453	483.031	538.430	533.683	459.884
0.1739	811.439	362.969	460.750	520.114	546.889	499.279
0.1818	800.570	297.451	369.112	408.482	430.439	398.685
0.1905	779.909	281.208	332.216	371.676	385.302	379.595
0.2000	923.765	286.813	344.081	406.218	444.375	444.006
0.2083	828.944	270.462	313.281	379.863	443.021	449.730
0.2174	1070.272	296.780	328.273	400.571	456.549	478.099
0.2273	1015.523	321.995	350.332	401.300	468.870	493.874
0.2381	1117.626	336.356	344.612	406.950	481.183	511.676
0.2500	1063.176	352.835	337.380	366.805	424.080	472.430
0.2632	1294.622	428.678	318.884	359.401	428.482	485.353
0.2778	1564.067	580.087	404.937	364.990	401.162	438.695
0.2899	1526.414	579.728	431.945	385.131	403.617	436.821
0.3030	1598.610	647.688	468.446	398.725	393.778	414.648
0.3175	1655.413	723.147	529.085	414.668	371.837	386.422
0.3333	1996.147	919.780	685.224	540.602	438.502	407.063
0.3448	2003.708	991.911	775.855	616.410	478.794	413.740
0.3571	2165.331	1135.485	893.433	720.821	570.469	468.090
0.3704	2202.645	1173.996	932.477	753.169	599.675	500.991
0.3846	1975.192	1094.293	889.368	733.375	585.465	473.508
0.4000	2143.477	1241.294	1037.149	887.674	745.651	631.550
0.4167	1929.562	1179.316	1001.647	863.979	732.782	622.645
0.4348	1887.315	1231.008	1070.659	943.788	819.928	711.501
0.4545	1461.053	984.213	866.618	773.428	681.133	598.738
0.4762	1667.790	1139.084	1012.174	912.624	814.626	726.855
0.5000	1368.105	965.728	872.650	800.436	727.601	661.811
0.5263	1300.389	968.766	885.280	817.942	749.552	686.115
0.5556	834.131	650.717	604.078	566.070	527.075	490.291
0.5882	879.212	676.462	626.521	588.713	553.243	520.051
0.6250	782.321	619.460	579.378	547.658	515.812	486.472
0.6667	740.646	607.864	575.077	548.480	521.447	496.074
0.7143	685.688	566.592	536.607	512.373	487.745	465.944
0.7692	482.312	426.097	411.530	399.420	386.656	374.126
0.8333	549.389	473.623	455.137	440.587	426.066	412.631
0.9091	367.182	326.085	316.195	308.222	300.041	292.225
1.0000	385.838	357.105	349.758	343.747	337.460	331.402
1.1111	300.071	273.409	266.714	261.308	255.794	250.599
1.2500	275.474	259.250	255.463	252.326	249.033	245.767
1.4286	197.463	187.178	184.669	182.682	180.693	178.853
1.6667	175.717	169.187	167.537	166.185	164.766	163.360
2.0000	111.278	107.899	107.002	106.254	105.457	104.675
2.5000	76.496	74.488	74.004	73.603	73.170	72.733
3.3333	25.526	24.612	24.382	24.203	24.029	23.875
		12.852	12.621	12.468	12.358	12.286
\$RESPONSESPECTRUM 12.286						
MAIN	M	4.0				
6F 3F	2F 1F	B1 B2				
0.0000	295.923	166.291	147.024	130.604	124.572	124.472
0.0294	295.923	166.291	147.024	130.604	124.572	124.472
0.0323	298.837	168.243	147.411	131.253	125.345	124.753
0.0357	301.932	172.198	149.567	132.577	127.341	126.806
0.0400	295.570	168.953	151.236	132.915	125.362	125.372
0.0455	293.644	170.179	150.753	133.755	127.068	129.170
0.0500	296.182	169.495	152.299	137.573	130.499	130.052
0.0556	297.618	174.526	155.593	137.631	135.987	135.682
0.0588	312.017	182.816	156.994	139.374	138.001	138.817

Table 3. 4 Sample of COMPONEN Data (5/8)

0.0625	314.721	197.522	160.452	144.393	142.810	142.258
0.0667	326.425	186.448	176.352	157.495	146.328	149.009
0.0690	323.150	191.902	180.727	164.962	153.488	155.297
0.0714	328.563	200.584	185.358	164.055	151.427	150.256
0.0741	326.332	206.790	190.397	168.487	154.850	150.162
0.0769	350.241	210.881	182.598	163.932	149.505	142.557
0.0800	352.686	215.947	180.964	162.561	153.725	143.374
0.0833	356.308	223.309	182.879	166.302	170.654	154.541
0.0870	343.298	254.493	192.848	166.119	175.856	172.248
0.0909	342.894	300.622	220.305	175.695	168.893	200.087
0.0952	343.240	334.861	249.054	187.811	158.744	188.376
0.1000	355.530	338.267	260.794	208.663	157.084	175.305
0.1053	364.347	351.715	295.442	235.078	170.534	157.294
0.1111	362.859	304.419	269.315	226.767	176.613	154.804
0.1176	395.873	309.914	285.470	255.488	202.866	155.840
0.1250	439.325	297.377	306.956	292.728	244.156	191.550
0.1290	468.229	307.123	330.356	326.807	284.064	218.332
0.1333	476.155	309.441	332.433	327.653	280.016	212.096
0.1379	486.594	277.199	296.378	306.720	279.509	225.541
0.1429	477.724	286.021	309.914	304.675	279.143	226.779
0.1481	519.955	301.950	326.349	329.648	299.460	256.925
0.1538	494.704	285.942	337.244	353.426	330.888	269.257
0.1600	490.999	288.770	346.900	367.809	349.743	290.557
0.1667	535.832	300.951	356.152	393.136	388.548	336.194
0.1739	614.506	275.293	319.258	354.469	375.540	347.750
0.1818	681.223	242.244	282.077	299.920	314.272	294.818
0.1905	738.152	247.187	276.403	303.317	310.576	315.895
0.2000	783.619	245.481	261.064	296.927	323.408	325.459
0.2083	742.514	247.063	257.215	301.323	352.485	358.262
0.2174	851.377	263.883	269.412	301.346	332.391	349.123
0.2273	818.487	283.982	280.529	302.554	347.541	363.144
0.2381	818.479	294.507	270.935	291.276	339.421	356.134
0.2500	814.117	309.741	279.160	283.000	302.893	332.711
0.2632	907.484	347.708	268.370	258.424	292.745	331.902
0.2778	1180.900	467.658	335.748	300.590	308.401	326.295
0.2899	1182.954	492.743	366.206	318.679	322.059	337.570
0.3030	1283.197	527.390	394.633	334.343	328.500	342.254
0.3175	1359.699	593.265	443.419	359.551	324.509	337.411
0.3333	1438.420	665.793	503.424	408.878	345.517	325.534
0.3448	1432.547	724.091	573.139	462.555	366.224	317.695
0.3571	1481.515	785.166	619.330	505.867	406.979	337.600
0.3704	1514.814	821.499	657.789	537.168	437.238	372.019
0.3846	1497.260	830.326	673.330	553.694	441.934	364.982
0.4000	1449.249	833.756	702.149	611.029	524.557	452.228
0.4167	1413.554	895.186	769.840	671.177	575.669	493.481
0.4348	1431.374	937.993	816.967	721.218	627.207	544.655
0.4545	1222.871	823.914	725.627	647.509	570.479	501.736
0.4762	1041.154	705.899	627.562	567.417	509.317	457.268
0.5000	967.634	672.663	609.090	560.724	511.912	467.708
0.5263	882.543	671.653	618.590	575.504	531.449	490.394
0.5556	724.179	568.177	528.220	495.563	462.040	430.134
0.5882	651.090	506.070	470.421	442.273	414.605	388.979
0.6250	569.604	455.968	428.393	406.706	384.999	364.815
0.6667	532.703	438.063	414.633	395.604	376.042	357.695
0.7143	492.650	399.712	376.571	357.916	339.183	323.670
0.7692	386.897	343.020	331.572	322.006	311.847	301.810
0.8333	384.911	330.433	317.636	307.778	298.197	289.471
0.9091	330.180	292.348	283.544	276.459	269.140	262.165
1.0000	287.905	264.623	258.678	253.866	248.858	244.096
1.1111	254.666	231.550	225.811	221.189	216.521	212.173
1.2500	210.532	197.602	194.370	191.699	188.907	186.141
1.4286	174.279	163.067	160.413	158.363	156.366	154.578
1.6667	133.990	129.477	128.344	127.417	126.426	125.412
2.0000	101.701	98.580	97.730	97.016	96.248	95.490
2.5000	56.036	53.923	53.420	53.013	52.580	52.163
3.3333	23.321	22.193	21.913	21.701	21.509	21.352
5.0000	12.948	11.779	11.503	11.313	11.172	11.098
\$RESPONSESPECTRUM						
MAIN	M	5.0				
$6 \mathrm{~F} \quad 3 \mathrm{~F}$	2F 1F	B1 B2				
0.0000	295.894	166.287	147.035	130.459	124.544	124.510
0.0294	295.894	166.287	147.035	130.459	124.544	124.510
0.0323	298.713	168.154	147.513	130.623	125.381	124.862

Table 3.4 Sample of COMPONEN Data (6/8)

0.0357	300.049	170.993	147.716	131.969	126.371	127.059
0.0400	295.055	168.730	150.406	132.381	124.128	125.154
0.0455	293.107	170.047	150.503	133.566	126.152	128.545
0.0500	293.622	168.385	151.503	136.351	128.482	128.634
0.0556	297.437	172.290	154.887	137.242	134.009	134.409
0.0588	309.148	180.357	154.442	137.876	135.598	136.601
0.0625	311.413	191.057	155.132	142.886	139.475	139.181
0.0667	319.121	177.655	167.065	152.907	144.386	145.219
0.0690	317.429	186.832	172.284	158.503	149.112	150.360
0.0714	316.798	196.986	176.247	155.886	148.256	148.759
0.0741	313.316	203.818	180.388	158.152	148.739	146.794
0.0769	340.223	209.061	174.996	155.873	142.455	140.105
0.0800	351.117	215.247	177.666	155.623	148.173	138.945
0.0833	350.873	224.643	180.210	157.273	161.229	146.710
0.0870	339.927	248.563	187.906	155.679	164.394	159.549
0.0909	338.721	287.396	212.800	169.386	157.695	185.531
0.0952	344.105	316.195	236.230	179.389	151.531	176.694
0.1000	354.665	311.311	240.717	195.253	150.548	163.778
0.1053	361.599	318.371	268.811	215.659	163.003	148.617
0.1111	359.621	281.032	250.003	211.163	168.824	152.168
0.1176	391.379	299.733	274.920	246.552	197.947	152.179
0.1250	415.837	267.392	273.272	260.350	218.984	176.149
0.1290	443.132	275.290	294.609	291.450	254.991	198.993
0.1333	453.453	281.622	300.314	295.599	253.237	194.253
0.1379	462.008	255.403	268.503	278.148	254.864	207.981
0.1429	460.198	268.934	288.358	281.504	259.452	213.358
0.1481	489.149	278.469	297.090	299.557	269.610	233.804
0.1538	464.119	266.125	310.900	324.393	303.368	246.964
0.1600	459.083	269.650	320.506	337.826	319.985	265.100
0.1667	496.299	279.076	322.873	355.280	350.809	303.941
0.1739	561.901	251.849	283.694	313.308	332.739	309.528
0.1818	646.723	226.751	258.684	271.527	284.007	267.520
0.1905	725.190	237.136	260.512	284.106	289.751	297.756
0.2000	743.192	233.486	238.860	268.431	291.961	294.491
0.2083	716.654	239.969	241.395	279.672	327.475	332.974
0.2174	790.917	254.089	252.807	274.961	300.106	315.517
0.2273	763.579	272.727	261.162	276.257	315.603	328.920
0.2381	740.379	282.175	250.747	261.547	303.349	316.919
0.2500	747.084	297.020	262.646	260.328	271.792	297.199
0.2632	809.402	325.047	253.876	232.391	258.957	293.682
0.2778	1078.758	436.322	316.094	282.380	283.367	296.637
0.2899	1089.756	467.618	347.249	299.829	299.486	310.690
0.3030	1195.544	493.634	373.439	315.915	309.880	321.753
0.3175	1276.232	556.634	418.908	343.416	310.594	322.996
0.3333	1294.414	600.009	455.857	373.722	319.999	302.934
0.3448	1285.866	654.323	519.900	421.713	335.949	291.796
0.3571	1311.132	697.240	550.416	451.364	365.055	303.887
0.3704	1342.822	732.300	587.893	481.789	394.958	338.027
0.3846	1369.510	759.721	615.633	505.797	403.679	335.642
0.4000	1277.683	733.497	619.285	541.811	468.404	406.126
0.4167	1278.807	819.168	707.293	618.775	532.641	457.894
0.4348	1309.461	859.395	748.851	661.398	575.373	499.759
0.4545	1154.783	778.085	685.311	611.507	538.832	473.984
0.4762	894.623	605.120	538.052	486.923	437.849	393.890
0.5000	865.547	598.737	542.512	500.018	457.127	418.255
0.5263	779.011	596.946	551.170	513.923	475.756	440.140
0.5556	691.964	543.900	505.886	474.789	442.861	412.384
0.5882	591.078	460.932	428.966	403.369	377.836	354.263
0.6250	514.289	413.136	388.715	369.554	350.401	332.534
0.6667	479.081	394.217	373.191	356.106	338.478	321.950
0.7143	442.908	357.247	335.994	318.877	301.750	287.848
0.7692	360.392	319.888	309.295	300.429	290.991	281.645
0.8333	343.254	294.273	282.905	274.210	265.835	258.251
0.9091	319.081	282.248	273.767	266.947	259.885	253.161
1.0000	262.008	240.283	234.738	230.265	225.616	221.213
1.1111	241.564	219.488	214.027	209.633	205.209	201.103
1.2500	193.076	181.062	177.999	175.469	172.828	170.212
1.4286	167.410	155.986	153.304	151.245	149.254	147.487
1.6667	122.792	118.794	117.792	116.974	116.093	115.180
2.0000	98.797	95.754	94.919	94.217	93.459	92.708
2.5000	50.693	48.597	48.099	47.698	47.274	46.870
3.3333	22.653	21.466	21.173	20.952	20.755	20.598
5.0000	12.677	11.453	11.164	10.964	10.815	10.740

Table 3.4 Sample of COMPONEN Data (7/8)

\$RESPONSESPECTRUM						
MAIN	M	7.0				
$6 \mathrm{~F} \quad 3 \mathrm{~F}$	2F 1F	B1 B2				
0.0000	295.849	166.282	147.052	130.242	124.502	124.566
0.0294	295.849	166.282	147.052	130.242	124.502	124.566
0.0323	298.527	168.020	147.667	129.679	125.434	125.025
0.0357	297.231	169.192	144.968	131.057	124.922	127.441
0.0400	294.282	168.393	149.164	131.579	122.290	124.827
0.0455	292.298	169.848	150.127	133.282	124.783	127.608
0.0500	289.803	166.725	150.311	134.529	125.500	126.524
0.0556	297.165	168.972	153.829	136.659	131.080	132.513
0.0588	304.873	176.712	150.671	135.646	132.053	133.325
0.0625	306.491	181.707	147.441	140.644	134.594	134.668
0.0667	308.416	165.175	153.978	146.240	141.506	139.685
0.0690	308.994	179.439	160.293	149.240	142.748	143.211
0.0714	299.849	191.681	163.348	144.330	143.599	146.530
0.0741	294.666	199.417	166.281	143.755	139.978	141.857
0.0769	325.657	206.347	164.127	144.463	132.448	136.486
0.0800	348.765	214.195	172.805	145.718	140.179	132.525
0.0833	342.835	226.669	176.259	144.577	147.993	135.647
0.0870	334.906	239.883	180.693	141.165	148.506	142.148
0.0909	332.526	268.545	201.965	160.297	142.197	165.560
0.0952	345.415	289.996	218.131	167.397	141.268	160.435
0.1000	353.366	274.670	213.328	176.644	141.204	147.814
0.1053	357.495	273.972	233.123	189.367	152.273	136.431
0.1111	354.794	249.120	223.468	189.641	157.724	148.279
0.1176	384.698	285.010	259.743	233.666	190.754	146.820
0.1250	382.771	227.796	229.338	218.171	185.849	155.236
0.1290	407.809	233.416	247.884	245.235	216.680	173.021
0.1333	421.253	244.329	257.652	253.096	217.621	170.146
0.1379	427.265	225.735	231.348	240.018	221.749	184.053
0.1429	434.979	245.080	258.655	249.853	232.355	194.606
0.1481	446.114	246.469	257.856	259.297	230.131	202.814
0.1538	421.538	238.810	275.015	285.062	266.137	216.788
0.1600	414.837	243.186	284.455	297.173	279.831	230.869
0.1667	442.133	249.060	278.478	304.978	300.718	261.061
0.1739	490.969	220.218	237.416	260.099	277.244	259.687
0.1818	597.978	205.242	227.027	233.714	243.790	231.062
0.1905	706.075	222.748	238.261	257.414	260.959	272.354
0.2000	686.142	216.499	208.898	230.548	250.228	253.274
0.2083	679.354	229.656	219.360	249.929	293.078	298.177
0.2174	707.772	240.004	229.684	239.478	257.256	270.859
0.2273	687.670	256.592	234.458	240.862	272.906	283.314
0.2381	636.474	264.550	223.114	222.355	256.074	265.797
0.2500	656.296	278.820	239.572	229.529	230.827	250.686
0.2632	681.179	293.638	233.488	198.008	215.237	244.207
0.2778	941.199	392.996	288.613	256.985	249.409	256.935
0.2899	962.920	432.134	320.505	273.492	268.404	274.150
0.3030	1074.564	446.775	343.615	290.030	283.781	293.137
0.3175	1159.961	505.631	384.486	320.445	290.732	302.415
0.3333	1104.063	512.898	392.492	326.343	285.040	271.788
0.3448	1092.588	561.622	448.825	366.843	294.963	256.681
0.3571	1090.534	582.917	460.723	380.078	309.859	259.309
0.3704	1119.683	615.770	496.285	408.888	338.806	292.552
0.3846	1197.189	664.444	537.844	441.293	352.164	295.799
0.4000	1056.604	604.643	512.453	451.976	394.889	345.342
0.4167	1099.515	716.571	622.455	547.391	473.763	409.026
0.4348	1144.978	753.152	656.725	580.445	505.200	438.960
0.4545	1059.214	713.754	628.716	560.969	494.401	435.013
0.4762	711.720	479.693	426.629	386.610	348.588	314.535
0.5000	731.608	502.338	455.623	420.678	385.401	353.394
0.5263	645.398	499.708	463.144	433.297	402.616	373.931
0.5556	646.076	509.241	473.983	445.099	415.436	386.994
0.5882	510.880	400.366	373.261	351.080	328.464	307.683
0.6250	440.869	356.035	335.724	319.850	304.019	289.178
0.6667	408.256	336.259	318.398	303.876	288.810	274.689
0.7143	377.235	301.588	282.923	267.911	252.968	241.187
0.7692	323.820	287.923	278.502	270.597	262.150	253.758
0.8333	288.807	247.089	237.581	230.386	223.555	217.424
0.9091	303.046	267.674	259.659	253.220	246.529	240.166
1.0000	227.295	207.748	202.763	198.760	194.609	190.699
1.1111	223.072	202.478	197.411	193.339	189.259	185.493
1.2500	169.452	158.702	155.883	153.557	151.133	148.733

Table 3.4 Sample of COMPONEN Data (8/8)

1.4286	157.562	145.887	143.176	141.112	139.136	137.405
1.6667	107.650	104.328	103.499	102.822	102.086	101.309
2.0000	94.573	91.646	90.833	90.148	89.404	88.665
2.5000	43.585	41.543	41.060	40.674	40.268	39.885
3.3333	21.681	20.414	20.103	19.871	19.668	19.511
5.0000	12.279	10.978	10.673	10.459	10.299	10.223
\$DESIGNRESPONSE						
GROUND	G1F					
\$RESPONSEFACTOR						
RESPA11 A4						
F1						
F21A3						
F22A3						
F23A3						
F4A1						
\$RESPONSEFACTOR						
RESPD11 D4						
F1						
F21A2						
F22D2						
F31X2						
F32X2						
\$SUBRESPONSEFACTOR						
F1	0.936	0.125	0.00			
F21A2	1.00	0.00	0.45			
F21A3	1.03	0.00	0.45			
F22A3	0.96	0.00	0.25			
F22D2	1.00	0.00	0.25			
F23A3	1.00	0.00	0.00			
F31X2	1.01	0.00	0.01			
F32X2	0.89	0.00	0.22			
F4A1	1.00	0.00	0.00			

Fig. 3. 1 Sample of a fault tree model

3.4 HAZARD Data

Seismic hazard is given as the unit of excessive occurrence frequency or occurrence frequency per Gal in HAZARD data.
(1) Structure of HAZARD Data

HAZARD data consists of the following 4 kinds of data blocks which begin with data lines with "\$".

1) Data Block of Title (\$TITLE)
2) Data Block of Seismic Motion Level (\$SEISMICLEVEL)
3) Data Block of Excessive Occurrence Frequency (\$HAZARD)
4) Data Block of Occurrence Frequency per Gal (\$H1/YG)
5) and 2) are given only once in one HAZARD data. 3) and 4) are given once or more with seismic hazard ID for each. Seismic hazard ID can be named by the user arbitrarily, and selected in calculation control data. Each seismic hazard ID must be unique in one HAZARD data.
(2) Parameters in HAZARD data
6) Data Block of Title (\$TITLE)
<Parameters>
Title of the HAZARD data can be given.
The user can give an adequate name that shows contents of the data.

<Format>

" $\$$ TITLE" is given in the first line of the HAZARD data and a title is given in the next line with the following format:
(A80)

2) Data Block of Seismic Motion Level (\$SEISMICLEVEL)
 <Parameters>

Seismic motion levelः SLVL
<Format>
"\$SEISMICLEVEL" is given at first, and seismic motion levels for analysis are given from the small value in order with the following format. The maximum number of levels is 8 in 1 line, more levels are continued in the next line.
(8(F8.0,2X))
3) Data Block of Excessive Occurrence Frequency (\$HAZARD)
<Parameters>
(a) Seismic hazard ID: HAZID
(b) Excessive occurrence frequency: HAZD
<Formats>
(a) is given in the next line of "\$HAZARD" with the following format:
(A8)
Excessive occurrence frequency is given for each seismic motion level specified in \$SEISMICLEVEL data block with the following format. The maximum number of frequencies is 8 in 1 line, more frequencies are continued in the next line.
(8E10.3)
4) Data Block of Occurrence Frequency per Gal (\$H1/YG)
<Parameters>
(a) Seismic hazard ID: HAZID
(b) Occurrence Frequency per Gal: HAZD
<Formats>
(a) is given in the next line of "\$H1/YG" with the following format:
(A8)

Occurrence frequency per Gal are given for each seismic motion level specified in \$SEISMICLEVEL data block with the following format. The maximum number of frequencies is 8 in 1 line, more frequencies are continued in the next line. (8E10.3)

A sample of HAZARD data is shown Table 3. 5. Seismic hazard "MDL" is given from 30 Gal to 2250 Gal with an equal interval of 30 Gal in this sample.

Table 3. 5 Sample of HAZARD data

```
$TITLE
SAMPLE HAZARD DATA FOR SECOM2-DQFM MANUAL
$SEISMICLEVEL
\begin{tabular}{rrcccccc}
0.0 & 30.0 & 60.0 & 90.0 & 120.0 & 150.0 & 180.0 & 210.0 \\
240.0 & 270.0 & 300.0 & 330.0 & 360.0 & 390.0 & 420.0 & 450.0 \\
480.0 & 510.0 & 540.0 & 570.0 & 600.0 & 630.0 & 660.0 & 690.0 \\
720.0 & 750.0 & 780.0 & 810.0 & 840.0 & 870.0 & 900.0 & 930.0 \\
960.0 & 990.0 & 1020.0 & 1050.0 & 1080.0 & 1110.0 & 1140.0 & 1170.0 \\
1200.0 & 1230.0 & 1260.0 & 1290.0 & 1320.0 & 1350.0 & 1380.0 & 1410.0 \\
1440.0 & 1470.0 & 1500.0 & 1530.0 & 1560.0 & 1590.0 & 1620.0 & 1650.0 \\
1680.0 & 1710.0 & 1740.0 & 1770.0 & 1800.0 & 1830.0 & 1860.0 & 1890.0 \\
1920.0 & 1950.0 & 1980.0 & 2010.0 & 2040.0 & 2070.0 & 2100.0 & 2130.0
\end{tabular}
2160.0 2190.0 2220.0 2250.0
$HAZARD
MDL
5.174E-01 1.546E-01 3.784E-02 1.560E-02 8.060E-03 4.679E-03 2.917E-03 1.910E-03
1.295E-03 9.016E-04 6.409E-04 4.632E-04 3.395E-04 2.518E-04 1.887E-04 1.427E-04
1.087E-04 8.352E-05 6.458E-05 5.025E-05 3.933E-05 3.095E-05 2.448E-05 1.946E-05
1.554E-05 1.246E-05 1.004E-05 8.114E-06 6.585E-06 5.363E-06 4.383E-06 3.594E-06
2.957E-06 2.440E-06 2.019E-06 1.676E-06 1.394E-06 1.163E-06 9.732E-07 8.161E-07
6.860E-07 5.779E-07 4.880E-07 4.130E-07 3.502E-07 2.976E-07 2.534E-07 2.161E-07
1.847E-07 1.581E-07 1.356E-07 1.165E-07 1.003E-07 8.647E-08 7.466E-08 6.456E-08
5.591E-08 4.850E-08 4.212E-08 3.664E-08 3.191E-08 2.784E-08 2.431E-08 2.126E-08
1.861E-08 1.632E-08 1.432E-08 1.258E-08 1.107E-08 9.750E-09 8.597E-09 7.588E-09
6.705E-09 5.930E-09 5.251E-09 4.654E-09
```


3.5 FT Data

Information of Fault Tree models is given in the FT data file. SECOM2-DQFM can calculate up to 400 basic events in a FT model.

(1)Structure of FT Data

FT data consists of the following 2 kinds of data blocks which begin with data lines with " $\$$ ".

1) Data Block of Title (\$TITLE)
2) Data Block of Fault Tree (\$FT)
3) and 2) are given only once in one FT data. In $\$ F T$ data block, the set of top event and the lower events is given at first, and then the lower events are developed in order. Gate types allowed in FT data are as follows:

$$
\begin{array}{ccc}
\mathrm{X}=\mathrm{Y} \text { OR } \mathrm{Z} & : & \mathrm{X}=\mathrm{Y} \cup \mathrm{Z} \\
\mathrm{X}=\mathrm{Y} \operatorname{AND} \mathrm{Z} & : & \mathrm{X}=\mathrm{Y} \cap \mathrm{Z}
\end{array}
$$

(2)Parameters in FT data

1) Data Block of Title (\$TITLE)

<Parameters>

Title of the FT data can be given.
The user can give an adequate name that shows contents of the data.
<Format>
" $\$$ TITLE" is given in the first line of the FT data and a title is given in the next line with the following format:
(A80)
2) Data Block of Fault Tree (\$FT)
<Parameters>
The sets of parameters from (a) to (d) are repeated for building a FT.
(a) Description for top event or intermediate event The user can give an adequate description of the event. Blank is available if no description is necessary.
(b) Name of top event or intermediate event
(c) Gate type

Select OR or AND.
(d)Lower intermediate name or basic event name

<Format>

The sets of parameters from (a) to (d) are repeated for each top event or intermediate event with the following format after "\$FT". (d) can not be given more than 4 in one line. (d) from 5th to 8th must be given in the next line with (a), (b), and (c) left blank. Maximum number of (d) is 8 for each (b).
(A24,2X,A8,2X,A4,2X,4(A8,2X))

Table 3.6 shows a sample of FT data based on the Figure 3.1

Table 3. 6 Sample of FT Data

```
$TITLE
SAMPLE FT DATA FOR SECOM2-DQFM MANUAL
$FT
\begin{tabular}{lclcll} 
LOSPIT & AND & RHR & LOSP & & \\
RHR & AND & RHRA & RHRB & & \\
RHRA & OR & KPUMPA1 & KMOVA12 & KHXA & KINRHRA \\
RHRB & OR & KPUMPB1 & KMOVB11 & KHXB & KINRHRB
\end{tabular}
```


3.6 SETCOR Data

Correlation coefficients are given in SETCOR data. 1.0 is given for a fully correlated basic event group. Correlation coefficients can be given by the user between groups. Parameters which can be made to be correlated are realistic response and capacity.

(1)Structure of SETCOR Data

SETCOR data consists of the following 3 kinds of data blocks which begin with data lines with "\$".

1) Data Block of Title (\$TITLE)
2) Data Block of Groups in Which Responses are Fully Correlated (\$SCORSET)
3) Data Block of Groups in Which Capacities are Fully Correlated (\$CCORSET)
4) Data Block of Response Correlation Coefficients between Groups (\$RCORFAC)
5) Data Block of Capacity Correlation Coefficients between Groups (\$CCORFAC)
6) can be omitted. 2) and 3) can be specified up to 30 groups by repeating the data block. The sets of two groups and correlation coefficient between two groups are repeated in a data block 4) or 5).
(2)Parameters in SETCOR Data
7) Data Block of Title (\$TITLE)
<Parameters>
Title of the SETCOR data can be given.
The user can give an adequate name that shows contents of the data.
<Format>
" $\$$ TITLE" is given in the first line of the SETCOR data and a title is given in the next line with the following format:
(A80)
8) Data Block of Groups in Which Responses are Fully Correlated (\$SCORSET)
<Parameters>
(a)Group name : SCRGRP
(b)Basic event names whose responses are fully correlated in the group: SCORCOM
<Formats>
(a) is given in the next line of "\$SCORSET" with the following format:
(A8)
(b) is given with the following format. The maximum number of basic events is 8 in 1 line, more basic events are continued in the next line.
(8(A8,2X))
9) Data Block of Groups in Which Capacities are Fully Correlated (\$CCORSET)
<Parameters>
(a) Group name: SCRGRP
(b) Basic event names whose capacities are fully correlated in the group: SCORCOM

<Format>

(a) is given in the next line of "\$CCORSET" with the following format:
(A8)
(b) is given with the following format. The maximum number of basic events is 8 in 1 line, more basic events are given in the next line.
(8(A8,2X))

4) Data Block of Response Correlation Coefficients between Groups (\$RCORFAC)

<Parameters>
(a)The first group name: SCRGP1
(b)The second group name: SCRGP2
(c)Response correlation coefficient between group (a) and (b): RGPFAC
<Format>
The set of (a),(b), and (c) are repeated after the next line of "\$RCORFAC" with the following format. Only one correlation coefficient can be given in one line. (2(A8,2X),F8.0)
5) Data Block of Capacity Correlation Coefficients between Groups (\$CCORFAC)
<Parameters>
(a) The first group name: SCRGP1
(b) The second group name: SCRGP2
(c) Capacity correlation coefficient between group (a) and (b): RGPFAC
<Format>
The set of (a),(b), and (c) are repeated after the next line of "\$CCORFAC" with the following format. Only one correlation coefficient can be given in one line.
(2(A8,2X),F8.0)

A sample of SETCOR data is shown in Table 3.7.

Table 3. 7 Sample of SETCOR Data

```
$SCORSET
RCORR012
KMOVA12 KMOVB11
$SCORSET
RCORR021
KHXA KHXB
$SCORSET
RCORR024
KPUMPA1 KPUMPB1
$SCORSET
RCORR025
LOSP
$RCORFAC
RCORR012 RCORR021 0.75
RCORR012 RCORR024 0.75
RCORR021 RCORR024 0.75
```

Table 3.7 shows the correlation relationships between 6 components shown in Figure 3.1. Responses between the same kind of components are fully correlated, and 0.75 are set to different kinds of components in the sample.

NOTE:

Cholesky decomposition is not always available for some given correlation coefficients. For example, the following case is not realistic: one correlation coefficient is given as 1.0 between component A and B, the other is given as 1.0 between B and C, and another is given as 0.0 between A and C. In this case, Cholesky decomposition can not be performed. The user should examine correlation coefficients again in such conditions.

3.7 MONSET Data

MONSET data is required when the user considers correlations by applying the same random variable to response subfactors or capacities. The same random variable can be applied to five parameters, capacity and response subfactors from F1 to F4.

SECOM2-DQFM has one more feature: inverse calculation of correlation coefficients by sampling random variables. The specification for this feature can be also given in MONSET data.

(1) Structure of MONSET Data

MONSET data consists of the following 3 kinds of data blocks which begin with data lines with "\$".

1) Data block of correlation using the same random variable (\$CORRELATION)
2) Data block of inverse calculation of capacity correlation coefficients (\$CAPCCAL)
3) Data block of inverse calculation of response correlation coefficients (\$RESCCAL)

All 3 kinds of data blocks can be given once or more in one MONSET data. Data block 1) is not necessary if correlation is not considered applying the same random variable. Data block 2) and 3) are not necessary if inverse calculation of correlation coefficients is not required by the user.
(2) Parameters in MONSET Data

1) Data block of correlation using the same random variable (\$CORRELATION)
<Parameters>
(a) Group name in which the same random variable is applied: CRGPNM1
(b) Flag to specify a parameter: ICORFLG

ICORFLG=1: Apply the same random variable to capacity
$=2$: Apply the same random variable to response subfactor F1
=3: Apply the same random variable to response subfactor F2
=4: Apply the same random variable to response subfactor F3
$=5$: Apply the same random variable to response subfactor F4
(c) Basic event name in group CRGPNM1: CCOMPN
<Formats>
The set of (a) and (b) is given in the next line of "\$CORRELATION" with the following format:
(A8,2X,I2)
(c) are given with the following format. The maximum number of basic events is 8 in 1 line, more basic events are given in the next line.
(8(A8,2X))
2) Data block of inverse calculation of capacity correlation coefficients (\$CAPCCAL)
<Parameters>
(a) Group name for inverse calculation of capacity correlation coefficient: CGNAME
(b) Basic event name in group CGNAME: CRFNM1
<Formats>
(a) is given in the next line of "\$CAPCCAL" with the following format:
(A8)
(b) are given with the following format. The maximum number of basic events is 8 in 1 line, more basic events are given in the next line.
(8(A8,2X))
3) Data block of inverse calculation of response correlation coefficients (\$RESCCAL)
<Parameters>
(a) Group name for inverse calculation of response correlation coefficient: CGNAME
(b) Basic event name in group CGNAME: CRFNM1
<Formats>
(a) is given in the next line of "\$RESCCAL" with the following format:
(A8)
(b) are given with the following format. The maximum number of basic events is 8 in 1 line, more basic events are given in the next line.
(8(A8,2X))

A sample of MONSET data is shown in Table 3.8.

Table 3. 8 Sample of MONSET Data

\$CORRELATION						
CORF1	2					
KHXA	KHXB	KPUMPA1	KPUMPB1	KMOVA12	KMOVB11	LOSP

Table 3.8 is an example in which a partial correlation relationship is considered between component failures shown in Figure 3.1, by applying the same random variable to response
subfactor F1.

3.8 SEQDATA Data

The event tree defining accident sequences is given in SEQDATA data. Conditional probabilities of containment failure and source term release quantities can also be given for accident sequence analysis and importance analysis.
(1) Parameters in SEQDATA Data

The following 2), 3), and 4) can be omitted from SEQDATA data if they are not necessary.
<Parameters>

1) Parameters defining accident sequences
(a) Position of top event in FT: IOUT

The order from the beginning of FT data is specified.
(b) Number of headings in ET: NSYS
(c) Name of heading: SNAM
(d) Number of accident sequences: NTAC The set of parameters from (e) to (h) is repeated NTAC times.
(e) Name of accident sequence: ACNAM
(f) Number of branches in ACNAM: NISEQ The set of (g) and (h) is repeated NISEQ times.
(g) Heading name of the branch: CANAM
(h) Branching condition at CANAMः ISEQ ISEQ=0: Occur
$=1$: Not occur
2) Parameters defining accident sequence groups
(i) Number of accident sequence groups: NGROUP
(j) Accident sequence group name: GROUP
(k) Number of accident sequence included in GROUP: NGRPIN
(1) Accident sequence name included in GROUP: GRPSEQ
3) Parameters for conditional probabilities of containment failure
(m) Flag for conditional probabilities of containment failure: NTAC2

NTAC2=0: Conditional probabilities of containment failure are not given.
=NTAC: Use conditional probabilities of containment failure
(n) Number of containment failure mode: NCCVFP
(o) Conditional probability of containment failure: CCVFP
4) Parameters for source term release quantities
(p) Flag for source term release quantities: NTAC3

NTAC3=0 : Source term release quantities are not given
=NTAC: Use source term release quantities
(q) Number of containment failure mode: NSTERM
(r) Source term release quantity: STERM
<Format>
Character variables are enclosed by single quotes " ، "in SEQDATA data. Two or more variables in the same line are divided with commas ", " between variables.

1) Parameters defining accident sequences
(a) is given by integer in the first line.
(b) is given by integer in the second line.
(c) is repeated in the third line as many as the number specified at (b).
(d) is given by integer in the fourth line.
(e), (f), and the sets of (g) and (h) repeated as many as the number specified at (f) are given after the fifth line. It means that one accident sequence is given in one line.
2) Parameters defining accident sequence groups
(i) is given in the next line of 1).

The sets of (j), (k), and (l) is given after the next line of (i). It means that one accident sequence group is given in one line. (l) is repeated as many as the number specified at (k).
3) Parameters for conditional probabilities of containment failure
(m) is given in the next line of 2).
The sets of (n) and (o) is given after the next line of (i). It means that conditional probabilities for one accident sequence are given in one line. (o) is repeated as many as the number specified at (n).
4) Parameters for source term release quantities
(p) is given in the next line of 3).

The sets of (q) and (r) is given after the next line of (i). It means that release quantities for one accident sequence are given in one line. (r) is repeated as many as the number specified at (q).

Table 3.9 shows a sample of SEQDATA based on ET shown in Fig. 3.2. Text after the
character " $"$ " in Table 3.9 are comments and they are not necessary for the code.

Table 3. 9 Sample of SEQDATA Data

```
1/GATE-NUMBER
2/ANALYZING-SYSTEM
'LOSP','RHRA','RHRB'
4/SEQUENCE-NUMBER
'SEQW',3,'LOSP',0,'RHRA',1,'RHRB',1
'SEQX',3,'LOSP',0,'RHRA',1,'RHRB',0
'SEQY',3,'LOSP',0,'RHRA',0,'RHRB',1
'SEQZ',3,'LOSP',0,'RHRA',0,'RHRB',0
2/SEQUENCE-GROUP
'NOCD',3,'SEQW','SEQX','SEQY'
'CD',1,'SEQZ'
4/CONDITIONAL-CV-FAIL-PROB
1,0.5
1,0.5
1,0.5
1,0.5
4/SOURCE-TERM-RELEASE-FRACTION
1,0.5
1,0.5
1,0.5
1,0.5
```

Loss of Off Site Power	RHR A Train	RHR B Train
LOSP	RHRA	RHRB

Note : Only SEQZ results core damage accident

Fig. 3. 2 Example of an Event Tree

3.9 CMPSLCT Data

Information of basic events which are specified for importance analysis is included in CMPSLCT data. Individual basic events or groups of basic events can be specified as targets for importance analysis. The user can select either one of the five importance measures: FV, RAW, RRW, RR, and RA.
(1)Parameters in CMPSLCT data
<Parameters>

1) Position of top event in FT: IOUT

The position of the event in the FT model is specified.
2) Flag to select importance measure: IKIN

IKIN=1: Select RAW
=2: Select FV
=3: Select RRW
=4: Select RA
$=5$: Select RR
3)Number of basic event groups: ISNU
4)Number of basic events in the group: NCIM
5)Basic event name: COMIN
<Format>
Character variables are enclosed by single quotes " ‘" in CMPSLCT data. Two or more variables in the same line are divided with commas " " between variables.
$1)$ is given with integer in the first line.
2) is given with integer in the second line.
$3)$ is given with integer in the third line.
The sets of 4) and 5) are given after the next line of 3). It means that basic events in one group are given in one line. 5) is repeated as many as the numbers specified at 4).

A sample of CMPSLCT data is shown in Table 3.10. In this sample the measure FV is calculated for seven basic events.

Table 3. 10 Sample of CMPSLCT data

```
M
7
1,'KMOVA12'
1,'KMOVB11'
1,'KHXA'
1,'KHXB'
1,'KPUMPA1'
1,'KPUMPB1'
1,'LOSP'
```


4. NAMELIST Format Inputs

4.1 Introduction

Input data in which seismic PSA model is represented includes basic events, their information necessary for calculating their occurrence probabilities, fault tree, event tree, correlation coefficients of responses and capacities, calculation conditions, etc. The whole model can be given with NAMELIST format input. The input format is shown in this chapter.

4.1.1 General Form of NAMELIST Format

NAMELIST format input consists of the following 4 elements:
(1) Variable group name
(2) Variable name
(3) Parameter
(4) Comment

A variable is defined by a combination of a variable name and its parameter(s). One or more variables are included in a variable group. The whole NAMELIST format input data includes several variable groups shown in this chapter. Comments can be placed optionally in NAMELIST format input data.

An equal sign must be given between a variable name and a parameter as follows:
VARIABLENAME = PARAMETER

Two or more parameters in a variable array can be given from the $i^{\text {th }}$ parameter with the following way:

$$
\text { VARIABLENAME }(\mathrm{i})=\mathrm{i}^{\text {th }} \text { PARAMETER, } \mathrm{i}+1^{\text {th }} \text { PARAMETER, } \mathrm{i}+2^{\text {th }} \text { PARAMETER }
$$

Two or more variables can be given in one line by placing blanks or commas between variables.

An ampersand "\&" with a variable group name (e.g. "\&GROUP") is a sign of the beginning of the variable group. An end of variable group can be given with a slash mark "p" or "\&END". Variables in a group can be defined between the beginning and the end, and given an arbitrary order. If the user gives a variable twice or more with different parameters, the last one becomes active.

Order of variable groups must be the same as the orders given in the following sections. In
addition, any variable groups can not be skipped.

An exclamation mark "!" means the beginning of a comment. Comments can be inserted optionally unless a combination of a variable name and parameter(s) is divided. Characters between "!" and the end of the line are counted as a comment.

The rules mentioned above are just an abstract of NAMELIST format inputs for explaining how to make inputs with this manual. Details of NAMELIST format can be seen in the following sections.

4.1.2 NAMELIST Format Data Input for SECOM2-DQFM

The following descriptions about NAMELIST format input for SECOM2-DQFM are divided into several sections for every variable group. In each section all of the variables in a variable group are shown. Format information of variables is given with single characters such as: I is a integer type, R is a real type, and A is a character type.

SECOM2-DQFM requires only one input file for each calculation using NAMELIST format at this stage. It is possible that SECOM2-DQFM may require additional files (e.g. minimal cut set files) in the future.

An input file name must be "INPUT", and an output file name is fixed to "OUTPUT". Necessary variable groups for calculations are shown from Section.4.2 to Section 4.10. Variable groups from Section 4.11 to Section 4.18 are optional. The user can skip the contents of variable groups but the start sign and the end signs (i.e. \&GROUP and \&END) if the contents are not necessary for the calculation case.

4.2 Calculation Title (Variable group name: CNTLTITLE)

The user can give an adequate name that means the calculation case or date of the calculation to specify the calculation case later. This calculation title can be a mark in output list because it is redirected to output list.
(Variable Name) (Format) (Parameter)
CTITLE A80 Calculation Title
4.3 Calculation Control Flags (Variable group name: CNTLFLG)

Calculation Control Flags are given for selection of analysis options and output options available in SECOM2-DQFM.

(Variable Name)	(Format)	(Parameter)
ICRFLG	I	Correlation analysis flag $=0$, No correlation is considered. $=1$, Correlation considered by assigning the same value to a response subfactors or capacity of different components. (Use SAMERND and CORCTBK) $=2$, Correlation considered by assigning a correlation coefficient to different component directly (Use LOHDATA, SAMERND, and CORCTBK)
IMTSEQ	I	Accident sequence analysis flag $=0$, No accident sequence analysis $=1$, Accident sequence analysis is done. (Use ETDATA and SEQGRP)
IMTIMP	I	Importance analysis flag $=0$, No importance analysis $=1$, Importance analysis is done (Use IMPDATA)
IFLGLTN	I	Flag for selecting Monte Carlo / LHS $=0$, Use Monte Carlo method $=1$, Use LHS method (Correlation analysis is unavailable.)
IINP1	I	Flag to activate output option for basic event information $=0$, No output $=1$, Activate output option
IINP2	I	Flag to activate output option FT data $=0$, No output $=1$, Write it on output file
IINP3	I	Flag to activate output option for correlation information $=0$, No output $=1$, Activate output option

IINP4	I	Flag to activate output option for seismic hazard $=0$, No output $=1$, Activate output option
IOUP1	I	Flag to activate checking output option for basic event names $=0$, No output $=1$, Activate output option
IOUP2	I	Flag to activate checking output option for correlation coefficients $=0$, No output $=1$, Activate output option
IOUP3	I	Flag to activate checking output option for conditional occurrence probabilities of basic events and intermediate events $=0$, No output $=1$, Activate output option

4.4 Event Names for Which Conditional Occurrence Probabilities Are Calculated : (Variable group name: CNTLCGOUT)

Basic event names and intermediate event names are given if the conditional occurrence probabilities of these events are required by the user. The names must be the same as the names given in FT data. Allowed maximum number of events is 30 .

(Variable Name)	(Format)	(Parameter)
MCGOUP	I	Number of Events
CGOUNM(I)	I	Basic event name or intermediate event name

4.5 Calculation Condition (Variable group name : CNTLCOND)

Calculation condition in SECOM2-DQFM consists of design basis seismic motion and number of iteration.

(Variable Name)	(Format)	(Parameter)
BADS	R	Design basis seismic motion (in the Gal)
IREPR	I	Number of iteration

4.6 Seismic Motion Levels for Analysis (Variable group name: CNTLSLVL)

Conditional occurrence probabilities of events are calculated at seismic motion levels specified in this variable group. Seismic motion means maximum acceleration induced by an earthquake. Gal is assumed to be given as the unit for seismic motion levels. 980 Gal is equal to the gravity acceleration, 1G.

(Variable Name)	(Format)	(Parameter)
NOFSLV	I	Number of seismic motion levels for analysis
SEISML(I)	R	Seismic motion level for analysis (in the Gal)

4.7 Seismic Hazard (Variable group name: HAZARD)

A seismic hazard curve is given as the unit of excessive occurrence frequency or occurrence frequency per Gal in this variable group.

(Variable Name)	(Format)	(Parameter)
ITYPHZD	I	Unit of seismic hazard
		$=0$, Excessive occurrence frequency
		$=1$, Occurrence frequency per Gal
	I	Number of data points
ISLVL	R	Seismic motion level (in the Gal) SLVL(I)
HAZD(I)	R	Excessive occurrence frequency or
		occurrence frequency per Gal

4.8 Fault Tree (Variable group name: FTDATA)

Fault Tree for PSA model is given in variable group FTDATA. SECOM2-DQFM is available for modeling up to 400 basic events in FT. Integrated Fault Tree in which top event is core damage is assumed to be given to SECOM2-DQFM. It means that GTNAME(1), the first variable in intermediate event name array, must be top event. Number of characters for events is up to 8 .

(Variable Name)	(Format)	(Parameter)
MGATE	I	Number of intermediate events
GTNAME(I)	A8	Intermediate event name
GTTYPE(I)	A4	Gate type (AND or OR)
NIN(I)	I	Number of lower intermediate events or basic events under GTNAME(I)
INNAME(J,I)	A8	the Jth Lower intermediate event name or basic event name under GTNAME(I)

4.9 Basic Event Reference Information (Variable group name: BEREF)

Variable group BEREF gives links between basic events in FT and basic event information shown in Section 4.10. Basic events which are not defined in FT can be specified in this group, but they are not used for analysis.

(Variable Name)	(Format)	(Parameter)
NTCOMP	I	Number of basic events
KNAME3(I)	A8	Basic event name
IKNAME3(I)	I	Ordinal number of KNAME3(I) in variable group
		BEDATA shown in Section 4.10

4.10 Basic Event Information (Variable group name: BEDATA)

Variable group BEDATA includes information sets which are necessary to calculate conditional occurrence probabilities of all basic events. The basic events consist of seismic failure events, random failure events, etc.

Information sets for basic events depend on the basic event types, ICAPFLG.

(Variable Name)	(Format)	(Parameter)
KTCOMP	I	Number of basic event information sets
<<In the case of ICAPFLG $=1,2$, or $3:$ for basic events of seismic failures >>		

KNAMED(I) I Basic event information set name (Only for output for check, not used in calculation) It means Basic event name using combination of abbreviated names in SECOM2 format input.

ICAPFLG(I) I Basic event type, 1, 2, or 3 can be specified (There is no difference between 1,2 , and 3 in NAMELIST format input)

DESRES(I)	R	Design response in Gal
CMEDI(I)	R	Median of capacity
CRAND(I)	R	Uncertainty due to randomness of capacity
CUNCE(I)	R	Uncertainty due to lack of knowledge of capacity
RMEDI1(J,I)	R	Median response subfactor F1 at the $J^{\text {th }}$ seismic motion level
RRAND1(J,I)	R	Uncertainty due to randomness of F1 at the $J^{\text {th }}$

RUNCE1(J,I)	R	seismic motion level Uncertainty due to lack of knowledge of F1 at the Jth seismic motion level
RMEDI2(J,I)	R	Median response subfactor F2 at the Jth seismic motion level
RRAND2(J,I)	R	Uncertainty due to randomness of F2 at the Jth seismic motion level
RUNCE2(J,I)	RUncertainty due to lack of knowledge of F2 at the Jth seismic motion level	
RMEDI3(J,I)	RMedian response subfactor F3 at the Jth seismic motion level	
RRAND3(J,I)Uncertainty due to randomness of F3 at the Jth seismic motion level		
RMEDI4(J,I)	RUncertainty due to lack of knowledge of F3 at the Jth seismic motion level Median response subfactor F4 at the Jth seismic motion level	
RRAND4(J,I)	R \quadUncertainty due to randomness of F4 at the Jth seismic motion level	
RUNCE4(J,I)	RUncertainty due to lack of knowledge of F4 at the Jth seismic motion level	

Note:
Response subfactors can not be changed for all of seismic motion levels at this stage when NAMELIST format input is used. It means that response factor table or response subfactor table in SECOM2 format input is not available in NAMELIST format input. Response subfactor at first seismic motion level ($J=1$) is always applied to all of seismic level in NAMELIST format input.
<<In the case of ICAPFLG $=4$: for basic events of random failures >>
KNAMED(I) I Basic event information set name
(Only for output for check, not used in calculation)
Basic event name using combination of abbreviated names in SECOM2 format input

ICAPFLG(I) I Basic event type, 4 is specified in this case.

IRAND(I)
R Mean value of random failure probability
R Uncertainty due to randomness of random failure probability

(Variable Name)	(Format)	(Parameter)
NUMCG	I	Number of correlation groups
CRGPNM1 1 (A8	Correlation group name
ICORFLG(I)	I	Flag selecting a parameter applied the same random variable $=1$, Apply the same random variable to capacity $=2$, Apply the same random variable to response subfactor F1 $=3$, Apply the same random variable to response subfactor F2 $=4$, Apply the same random variable to response subfactor F3 $=5$, Apply the same random variable to response subfactor F4
NUMC(I)	I	Number of basic events in the $\mathrm{I}^{\text {th }}$ correlation group
CCOMPN(J,I)	A8	the $\mathrm{I}^{\text {th }}$ Basic event name in the $\mathrm{I}^{\text {th }}$ correlation group

4.12 Specification for Inverse Calculation of Correlation Coefficients (Variable group name: CORCTBK)

Variable group CORCTBK is for inverse calculation of correlation coefficients. The user can check correlation coefficients of responses and capacities by grouping basic events when variable group SAMERND is used.

(Variable Name)	(Format)	(Parameter)
CFGNUM	I	Number of groups for inverse calculation
IGCAL(I)	I	Flag selecting a parameter $=1$ Calculate response correlation coefficient
		$=2$ Calculate capacity correlation coefficient
CGNAME(I)	A8	the $I^{\text {th }}$ Group name

4.13 Correlation Coefficients (Variable group name: LOHDATA)

Basic events which are fully correlated are grouped, and then correlation coefficients between groups are given by the user in the variable group LOHDATA. Correlation can be considered for response or capacity, or both response and capacity.

Variables with $\mathrm{I}=1$ are for responses, variables with $\mathrm{I}=2$ are for capacities in the following description.

(Variable Name)	(Format)	(Parameter)
ISCRG(I)	I	Number of correlation group
SCRGRP(J,I)	A8	Correlation group name
ISCRGC(J,I)	1	Number of basic events in $\mathrm{J}^{\text {th }}$ correlation group
SCRCOM(K,J,I)	A8	Basic event name in the $I^{\text {th }}$ correlation group
ISCR(I)	I	Number of give correlation coefficients
SCRGP1(L,I)	A8	1 st correlation group name
SCRGP2(L,I)	A8	2nd correlation group name
RGPFAC(L,I)	R	Correlation coefficient between SCRGP1(L,I) and
		SCRGP2(L,I)

4.14. Event Tree (Variable group name: ETDATA)

Event Tree defining accident sequences is given in SEQDATA data. It is not necessary to define event tree when accident sequence analysis is not required. Headings in ET are specified with the same names as events in FT. Branching conditions such as success or failure are also specified at headings of all accident sequences. Notice that the specifications of the branching condition in ETDATA because they are opposite from general codes. In ETDATA data file, Success=1and Failure $=0$.

(Variable Name)	(Format)	(Parameter)
NSYS	I	Number of headings in ET
SNAM(I)	A8	the $I^{\text {th }}$ heading name
NTAC	I	Number of accident sequences
ACNAM(I)	A8	the I I $^{\text {th }}$ accident sequence name
NISEQ(I)	I	Number of branches in ACNAM(I)
CANAM(J,I)	A8	Heading name at the Jth branch in ACNAM(I)
ISEQ(J,I)	I	Branching condition at CANAM(J,I)
	$=0$, Failure	
	$=1$, Success	

4.15 Grouping of Accident Sequence (Variable group name: SEQGRP)

Accident sequences defined in variable group ETDATA can be grouped when subtotals of conditional occurrence probabilities and occurrence frequencies are required by the user.

(Variable Name)	(Format)	(Parameter)
NGROUP	I	Number of accident sequence groups
GROUP(I)	A8	the $\mathrm{I}^{\text {th }}$ accident sequence group name
NGRPIN(I)	I	Number of accident sequences in GROUP(I)
GRPSEQ(J,I)	A8	the $J^{\text {th }}$ accident sequence name in GROUP(I)

4.16 Conditional Probabilities of Containment Failure (Variable group name: NLCCVFP)

Conditional probabilities of containment failure are given for all accident sequences and containment failure modes when occurrence frequencies of accident sequence are necessary to be weighted.

(Variable Name)	(Format)	(Parameter)
NTAC2	I	Flag to use conditional probabilities of containment failure $=0$, Do not use conditional probabilities of containment failure $=$ NTAC, Use conditional probabilities of containment failure
NCCVFP(I)	I	Number of containment failure modes in Ith accident sequence
CCVFP(J,I)	R	Conditional probability at the $\mathrm{J}^{\text {th }}$ containment failure mode in the $I^{\text {th }}$ accident sequence

4.17 Source Term Release Quantities (Variable group name: NLSTERM)

Source term release quantities are given for all accident sequences and containment failure modes when occurrence frequencies of accident sequence need to be weighted.

| (Variable Name) | (Format) | (Parameter) |
| :--- | :---: | :---: | :--- |
| NTAC3 | I | Flag to use source term release quantities
 $=0$, Do not use source term release quantities
 =NTAC, Use source term release quantities |
| NSTERM(I) | I | Number of containment failure modes in the $I^{\text {th }}$
 accident sequence |
| STERM(J,I) | R | Source term release quantity at the $J^{\text {th }}$ containment
 failure mode in the $I^{\text {th }}$ accident sequence |

4.18 Specifications of Calculation Target and Importance Measures (Variable group name: IMPDATA)

Which basic events and which measures are used for importance analysis can be specified in the variable group IMPDATA. Individual basic events or groups of basic events can be specified as targets of importance analysis. The user can select one of the five importance measure: FV, RAW, RRW, RR, and RA.

(Variable Name)	(Format)	(Parameter)
IOUT	I	Ordinal number of top event from the beginning of FT
IKIN	I	Flag to select importance measure

$$
\begin{aligned}
& =1, \mathrm{RAW} \\
& =2, \mathrm{FV} \\
& =3, \mathrm{RRW}
\end{aligned}
$$

ISNU	I	Number of basic event groups
NCIM(I)	I	Number of basic events in $I^{\text {th }}$ group
COMIN(J,I)	I	Basic event name in I ${ }^{\text {th }}$ group

4.19 Sample of NAMELIST Format Input

Table 4.1 shows a sample of NAMELIST format input that is equivalent to SECOM2 format input files shown in Chapter 3.
Table 4. 1 Sample of Namelist format input data(1/4)

Table 4.1 Sample of Namelist format input data(2/4)

Table 4.1 Sample of Namelist format input data(3/4)

Table 4.1 Sample of Namelist format input data(4/4)

5. Summary

SECOM2-DQFM is developed for performing seismic PSA of complex engineering system, such as nuclear power plants.

Given that the seismic hazard curve of the location site of a plant and the fault tree / event tree (FT/ET) models of this plant were known, if the capacities and responses of components were available, the conditional occurrence probability (or frequency) of the top event of the FT models could be estimated with SECOM2-DQFM. In addition, the importance of each basic event as well as the occurrence frequency of each accident sequence can also be obtained.

In order to evaluate the concurrent failure probability of multiple components due to earthquake, the method of Direct Quantification of Fault Tree using Monte Carlo simulation (DQFM) is adopted in SECOM2-DQFM. Correlations of component failures include correlations of component responses and correlations of component responses. In most existed seismic system reliability analysis codes, correlations of component responses (or capacities) can only be assumed as fully correlated or fully independent. However, in SECOM2-DQFM, partial correlation of component failures can also be generated by assigning partial correlation coefficients to the responses (or capacities) of two components. In addition, the effect of correlations on the union and intersection of the failures of multiple components are also taken into consideration in SECOM2-DQFM.

In the Seismic PSA Standard issued by Atomic Energy Society of Japan, the DQFM method is prescribed as one of the methods in which correlations of component failures can be considered. To the authors' knowledge, SECOM2-DQFM (as well as its mother version SECOM2) is the only code system in which the DQFM method is implemented. Opening SECOM2-DQFM to the public will promote the widespread utilization of the DQFM method and activate the world-wide study of seismic PSA. Therefore, for the potential user's convenience, the user's manual of SECOM2-DQFM is summarized in this report.

References

1) E.L. Leverentz et al, "User's guide for the WAM-BAM computer code", EPRI 217-2-5, 1976.
2) W. E. Vesely et al, "Fault tree handbook", NUREG-0492, 1981.
3) Risk Analysis Laboratory, "Summary Report of Seismic PSA of BWR Model Plant," JAERI-Research 99-035, May, 1999.
4) Tomoaki Uchiyama, et al., "User's Manual of SECOM2 : A Computer Code for Seismic System Reliability," JAERI-Data/Code 2002-011, March, 2002.
5) Yuichi Watanabe, et al., "Development of the DQFM method to consider the effect of correlation of component failures in seismic PSA of nuclear power plant," Reliability Engineering and System Safety, Vol. 79, pp.265-279. 2003.

基本量	SI 基本単位	
	名称	記号
長 さ	メートル	m
質 量	キログラム	kg
時 間	秒	s
電 流	$ア ン ヘ ゚ ア$	A
熱力学温度	ケルビン	K
物 質 量	モ ル	mol
光 度	カンデラ	cd

組立量	SI 基本単位	
	名称	記号
面 積	平 方 メ ー ト ル	m^{2}
体 積	立 法メートト	m^{3}
速 さ ，速 度	メ－ト ル 毎 秒	m / s
加 速 度	メートル毎秒毎秒	$\mathrm{m} / \mathrm{s}^{2}$
波 数	毎メート	m－1
密度（質量密度）	キログラム毎立法メートル	$\mathrm{kg} / \mathrm{m}^{3}$
質量体積（比体積）	立法メートル毎キログラム	$\mathrm{m}^{3} / \mathrm{kg}$
電 流 密 度	アンペア毎平方メートル	$\mathrm{A} / \mathrm{m}^{2}$
磁 界の強さ	アンペア毎メートル	A / m
（物質量の）濃度	モル毎立方メートル	$\mathrm{mol} / \mathrm{m}^{3}$
輝 度	カンデラ毎平方メートル	$\mathrm{cd} / \mathrm{m}^{2}$
屈 折 率	（数 の） 1	1

乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	ヨ 夕	Y	10^{-1}	デ シ	d
10^{21}	ゼ タ	Z	10^{-2}	セン チ	c
10^{18}	エ ク サ	E	10^{-3}	ミ リ	m
10^{15}	ペ 夕	P	10^{-6}	マイクロ	μ
10^{12}	テ ラ	T	10^{-9}	ナ ノ	n
10^{9}	ギ ガ	G	10^{-12}	ピ コ	p
10^{6}	メガ	M	10^{-15}	フェムト	f
10^{3}	キ ロ	k	10^{-18}	ア ト	a
10^{2}	へクト	h	10^{-21}	ゼプト	Z
10^{1}	デ カ	da	10^{-24}	ヨクト	y

表6．国際単位系と併用されるが国際単位系に属さない単位

名称	記号	SI 単位による値
分 時 日 度 分 秒 $\begin{gathered} \text { リットル } \\ \text { トン } \\ \text { ネーパ } \end{gathered}$ ベル	min h d 0 , ＂ $1, ~$ t Lp B	$\begin{aligned} & 1 \mathrm{~min}=60 \mathrm{~s} \\ & 1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s} \\ & 1 \mathrm{~d}=24 \mathrm{~h}=86400 \mathrm{~s} \\ & 1^{\circ}=(\pi / 180) \mathrm{rad} \\ & 1^{\prime}=(1 / 60)^{\circ}=(\pi / 10800) \mathrm{rad} \\ & 1^{\prime \prime}=(1 / 60)^{\prime}=(\pi / 648000) \mathrm{rad} \\ & 1 \mathrm{l}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3} \\ & 1 \mathrm{t}=10^{3} \mathrm{~kg} \\ & 1 \mathrm{~Np}=1 \\ & 1 \mathrm{~B}=(1 / 2) \ln 10(\mathrm{~Np}) \\ & \hline \end{aligned}$
表7．国際単位系と併用されこれに属さない単位で SI単位で表される数値が実験的に得られるもの		
名称 電 子 ボ ル 統一原子質量単仡 天 文 単	記号 下 eV 位 u 位 ua	SI 単位であらわされる数値 $1 \mathrm{eV}=1.60217733(49) \times 10^{-19} \mathrm{~J}$ $1 \mathrm{u}=1.6605402(10) \times 10^{-27} \mathrm{~kg}$ $1 \mathrm{ua}=1.49597870691(30) \times 10^{11} \mathrm{~m}$
表8．国際単位系に属さないが国際単位系と併用されるその他の単位		
名称	記号	SI 単位であらわされる数値
海 里		1 海里 $=1852 \mathrm{~m}$
ノ ト		1 ノット＝ 1 海里毎時 $=(1852 / 3600) \mathrm{m} / \mathrm{s}$
ア ー ル	a	$1 \mathrm{a}=1 \mathrm{dam}^{2}=10^{2} \mathrm{~m}^{2}$
$へ$ へタール	ha	$1 \mathrm{ha}=1 \mathrm{hm}^{2}=10^{4} \mathrm{~m}^{2}$
バール	bar	$1 \mathrm{bar}=0.1 \mathrm{MPa}=100 \mathrm{kPa}=1000 \mathrm{hPa}=10^{5} \mathrm{~Pa}$
オングストローム	\AA	$1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$
バ ー ン	b	$1 \mathrm{~b}=100 \mathrm{fm}^{2}=10^{-28} \mathrm{~m}^{2}$

表7．国際単位系と併用されこれに属さない単位で

表8．国際単位系に属さないが国際単位系と
併用されるその他の単位

c）測光学では，ステラジアンの名称と記号srを単位の表し方の中にそのまま維持している。
（d）この単位は，例としてミリセルシウス度 $m{ }^{\circ} \mathrm{C}$ のようにSI接頭語を伴って用いても良い。

組立量	SI 組立単位		
	名称	記号	SI 基本単位による表し方
粘 度	パス カ ル 秒	$\mathrm{Pa} \cdot \mathrm{S}$	$\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-1}$
力のモーメン	ニュートンメートル	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
表 面 張 力	ニュートン毎メートル	N／m	$\mathrm{kg} \cdot \mathrm{s}^{-2}$
角 速 度	ラジアン毎秒	$\mathrm{rad} / \mathrm{s}$	$\mathrm{m} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}=\mathrm{s}^{-1}$
角 加 速 度	ラジアン毎平方秒	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{m} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-2}=\mathrm{s}^{-2}$
熱流密度，放射照度	ワット毎平方メートル	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{kg} \cdot \mathrm{s}^{-3}$
熱容量，エントロピー	ジュール毎ケルビン	J／K	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$
質量熱容量（比熱容量），質量エントロピー	ジュール毎キログラム毎ケルビン	$\mathrm{J} /(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$
質 量エ比エネルキ	ジュール毎キログラム	J／kg	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$
熱 伝 導 率	ワット毎メートル毎ケ ルビン	W／（m • K ）	$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-3} \cdot \mathrm{~K}^{-1}$
体 積エ ネ ルギ	$\begin{aligned} & \text { ジュール毎立方メート } \\ & \text { ル } \end{aligned}$	$\mathrm{J} / \mathrm{m}^{3}$	$\mathrm{m}^{-1} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2}$
電 界 の 強 さ	ボルト毎メートル	V / m	$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-3} \cdot \mathrm{~A}^{-1}$
体 積 電 荷	クーロン毎立方メート	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{m}^{-3} \cdot \mathrm{~S} \cdot \mathrm{~A}$
電 気 変 位	クーロン毎平方メート ル	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{m}^{-2} \cdot \mathrm{~S} \cdot \mathrm{~A}$
誘 電 率	ファラド毎メートル	F / m	$\mathrm{m}^{-3} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~s}^{4} \cdot \mathrm{~A}^{2}$
透 磁 率	ヘンリー毎メートル	H／m	$\mathrm{m} \cdot \mathrm{kg} \cdot \mathrm{s}^{-2} \cdot \mathrm{~A}^{-2}$
モルエネ	ジュール毎モル	$\mathrm{J} / \mathrm{mol}$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~mol}^{-1}$
$\begin{array}{ll} \text { モ ル エ ン ト } \\ \text { モ } & \text { ト ピー } \\ \text { モ } & \text { 熱 } \\ \text { 容 } & \text { 量 } \end{array}$	$\begin{aligned} & \text { ジュール毎モル毎ケル } \\ & \text { ビン } \end{aligned}$	$\mathrm{J} /(\mathrm{mol} \cdot \mathrm{K})$	$\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}$
照射線量（X 線及び γ 線）	クーロン毎キログラム	C／kg	$\mathrm{kg}^{-1} \cdot \mathrm{~s} \cdot \mathrm{~A}$
吸収 線 量 率	グ レ イ 毎 秒	Gy／s	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-3}$
放 射 強 度	ワット毎ステラジアン	W／sr	$\mathrm{m}^{4} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}=\mathrm{m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}$
放 射 輝 度	$\begin{aligned} & \text { ワット毎平方メートル } \\ & \text { 毎ステラジアン } \end{aligned}$	W／（m² m^{2} ）	$\mathrm{m}^{2} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-3}=\mathrm{kg} \cdot \mathrm{s}^{-3}$

表 9．固有の名称を含むCGS組立単位

名称	記号	SI 単位であらわされる数値
キ ュ リ	Ci	$1 \mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}$
レント	R	$1 \mathrm{R}=2.58 \times 10^{-4} \mathrm{C} / \mathrm{kg}$
ラ ド	rad	$1 \mathrm{rad}=1 \mathrm{cGy}=10^{-2} \mathrm{~Gy}$
レ ム	rem	1 rem $=1 \mathrm{cSv}=10^{-2} \mathrm{~Sv}$
X 線 単 位		1 X unit＝1．002 $\times 10^{-4} \mathrm{~nm}$
ガ ン マ	γ	$1 \gamma=1 \mathrm{nT}=10^{-9} \mathrm{~T}$
ジャンスキー	Jy	$1 \mathrm{Jy}=10^{-26} \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~Hz}^{-1}$
フ エ ル ミ		1 fermi＝1 fm＝10 ${ }^{-15} \mathrm{~m}$
メートル系カラット		1 metric carat $=200 \mathrm{mg}=2 \times 10^{-4} \mathrm{~kg}$
ル	Torr	1 Torr $=(101325 / 760) \mathrm{Pa}$
標 準 大 気 圧	atm	$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
カ ロ リ	cal	
ミ ク ロ ン	μ	$1 \mu=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$

（a）ラジアン及びステラジアンの使用は，同じ次元であっても異なった性質をもった量を区別するときの組立単位の表し方として利点がある。組立単位を形作るときのいくつかの用例は表4に示されている。
（b）実際には，使用する時には記号rad及びsrが用いられるが，習慣として組立単位として の際には，1＂は明号されない

[^0]: * Computer Simulation and Analysis of Japan Co., Ltd.

[^1]: 原子力科学研究所（駐在）：〒319－1195 茨城県那珂郡東海村白方白根 2－4
 ＊株式会社シー・エス・エー・ジャパン

