JAEA-Data/Code 2009-010

臨界安全ハンドブック・データ集第2版

(受託研究)

Second Version of Data Collection Part of Nuclear Criticality Safety Handbook (Contract Research)

> 奥野 浩 須山 賢也 外池 幸太郎 山根 祐一 山本 俊弘 三好 慶典 内山 軍藏

Hiroshi OKUNO, Kenya SUYAMA, Kotaro TONOIKE, Yuichi YAMANE Toshihiro YAMAMOTO, Yoshinori MIYOSHI and Gunzo UCHIYAMA

> 安全研究センター 原子力エネルギー関連施設安全評価研究ユニット

> > Nuclear Facility Safety Research Unit Nuclear Safety Research Center

August 2009

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 〒319-1195 茨城県那珂郡東海村白方白根2番地4 電話029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2009

臨界安全ハンドブック・データ集第2版 (受託研究)

日本原子力研究開発機構安全研究センター

原子力エネルギー関連施設安全評価研究ユニット

奥野 浩、須山 賢也**、外池 幸太郎、山根 祐一、山本 俊弘+1、三好 慶典+2、内山 軍藏

(2009年6月17日受理)

本書は、1988年に発刊された「臨界安全ハンドブック・データ集」の改訂版として編まれたものである。本改訂版では、従来の版にはなかった均質 U-H₂O 及び UF₆-HF の臨界データを追加し、中濃縮度ウランの臨界データを充実させた。計算には旧日本原子力研究所で開発した連続エネルギーモンテカルロ法臨界計算コード MVP と日本の評価済み核データライブラリ JENDL-3 第 2 改訂版 (JENDL-3.2)を主に用いた。アクチニド金属及び酸化物の原子個数密度に関するデータを追加し、燃焼燃料の核種組成に関する情報を改訂した。臨界実験ベンチマーク計算及び単一ユニットの臨界データ (臨界となる質量、体積、寸法など)の計算では、ヒストリ数を 100 万に採ることにより、第1版よりも計算精度が概ね1桁向上した。

本報告書は、電源特会促進対策特別法に基づく文部科学省からの受託として行った研究成果である。

原子力科学研究所(駐在):〒319-1195 茨城県那珂郡東海村白方白根 2-4

+1 原子力研修センター

+2 東海研究開発センター 原子力科学研究所 安全試験施設管理部

※ 文部科学省へ出向中

JAEA-Data/Code 2009-010

Second Version of Data Collection Part of Nuclear Criticality Safety Handbook (Contract Research)

Hiroshi OKUNO, Kenya SUYAMA^{**}, Kotaro TONOIKE, Yuichi YAMANE, Toshihiro YAMAMOTO⁺¹, Yoshinori MIYOSHI⁺² and Gunzo UCHIYAMA

> Nuclear Facility Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

> > (Received June 17, 2009)

The report revised the *Data Collection* part of *Nuclear Criticality Safety Handbook*, which was published in 1988. This second version provided criticality data on homogeneous U-H₂O and UF₆-HF, which were not cited in the previous version, and increased those data on the medium-enriched uranium fuels. Calculations were performed mainly with the Continuous-Energy Monte Carlo Criticality Calculation Code, MVP, and the Japanese Evaluated Nuclear Data Library, JENDL-3 Revision 2, JENDL-3.2, both of which were developed at the late Japan Atomic Energy Research Institute (JAERI). Data on atomic number densities of actinide metal and oxide were additionally supplied, and nuclide compositions of irradiated fuels were improved from the first version. One million histories of neutrons were followed in benchmark calculations of critical experiments and in calculations of single-unit criticality data, i.e., critical mass, volume, dimensions, etc., to attain almost ten times higher precision than the first version.

Keywords: Data Collection, Criticality Safety, Handbook, Revision, MVP, JENDL-3.2,Medium-Enriched Uranium, Actinide, Single-Unit Criticality Data, Benchmark Calculation

This work was carried out by the former Japan Atomic Energy Research Institute (JAERI) under entrustment by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

- +1 Nuclear Technology and Education Center
- +2 Department of Criticality and Fuel Cycle Research Facilities, Nuclear Science Research Institute, Tokai Research and Development Center

X On loan to MEXT

目 次

 2. 原子個数密度	1.	序	1
 2.1 核燃料物質の原子個数密度の計算	2.	原子個数密度	5
11 0.1 0.1 0.1 2.2 コンクリート及びステンレス鋼の組成 11 2.3 軽水炉使用済燃料中の核種組成 11 3. 種々の核燃料に対する核特性パラメータ 37 4. 無限増倍率による未臨界判定 73 5. 単一ユニットの臨界データ 83 5.1 臨界データ 83 5.2 計算方法 85 5.3 計算条件 85 6. 臨界実験ベンチマーク計算 159 6.1 均質低濃縮ウラン系 159 6.1 均質低濃縮ウラン系 160 6.3 均質ブルトニウム系 160 6.4 均質ウラン・プルトニウム系 161 6.5 非均質ウラン・プルトニウム系 161 6.6 非均質ウラン・プルトニウム系 161 6.6 非均質ウラン・プルトニウム系 161	2	1 核燃料物質の原子個数密度の計算	5
2.3 軽水炉使用済燃料中の核種組成 11 3. 種々の核燃料に対する核特性パラメータ 37 4. 無限増倍率による未臨界判定 73 5. 単一ユニットの臨界データ 83 5.1 臨界データ 83 5.2 計算方法 83 5.3 計算条件 85 6.6 臨界実験ベンチマーク計算 159 6.1 均質低濃縮ウラン系 159 6.2 均質高濃縮ウラン系 160 6.3 均質プルトニウム系 160 6.4 均質ウラン・プルトニウム系 160 6.5 非均質ウラン・プルトニウム系 161 6.6 非均質ウラン・プルトニウム系 161 161 161 前辞 175	2	? コンクリート及びステンレス鋼の組成	11
 3. 種々の核燃料に対する核特性パラメータ	 2	- ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
 3. 種々の核燃料に対する核特性パラメータ	2.		
 4. 無限増倍率による未臨界判定	3.	種々の核燃料に対する核特性パラメータ	
 5. 単一ユニットの臨界データ	4.	無限増倍率による未臨界判定	73
5.1 臨界データ	5.	単一ユニットの臨界データ	83
5.2 計算方法	5.	1 臨界データ	83
5.3 計算条件	5.	2 計算方法	85
 6. 臨界実験ベンチマーク計算	5.	3 計算条件	85
 6.1 均質低濃縮ウラン系	6	昨思宝晩ベンチマーク斗笛	150
0.1 %資産液補 アノン ホ 159 6.2 均質高濃縮ウラン系 160 6.3 均質プルトニウム系 160 6.4 均質ウラン・プルトニウム系 160 6.5 非均質ウラン系 161 6.6 非均質ウラン・プルトニウム系 161 16.7 非均質ウラン・プルトニウム系 161 175 175	0.	咖介天秋、~ / 、 / 」 , □ , 戸 ,	
0.2 均質用液相 アノン ホート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0. 6	1 均良 Qille 福 クラン 示	
0.5 均質ウラン・プルトニウム系 160 6.4 均質ウラン・プルトニウム系 160 6.5 非均質ウラン系 161 6.6 非均質ウラン・プルトニウム系 161 111 111 115 115	0. 6	2 均頁向振祖ワノンボ	100
0.4 均質ウラン 0.4 均質ウラン系	0. 6	5 ろ夏ノルトーラムホーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	100
0.5 卵や気質ワラン・ポニー 101 6.6 非均質ウラン・プルトニウム系 161 謝辞 175	0. 6	+ 均負ワフラーフルドークムボ	100
101 謝辞	0. 6	5 9Fの頁ワフンパーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	101
謝辞	0.		101
	謝辞		

Contents

1. Introduction
2. Atomic Number Densities
2.1 Calculation of Atomic Number Densities in Nuclear Fuel Materials
2.2 Compositions of Concrete and Stainless Steel
2.3 Compositions of Nuclides in Light-Water Reactor Spent Fuel
3. Nuclear Characteristic Parameters for Various Fuel Compositions
4. Subcriticality Judgment Graphs for Infinite Fuel Systems73
5. Criticality Data for Single Units
5.1 Criticality Data
5.2 Calculational Method
5.3 Calcualtional Conditions
6. Benchmark Calculations of Critical Experiments
6.1 Homogeneous Low-Enriched Uranium Systems159
6.2 Homogeneous Highly Enriched Uranium Systems
6.3 Homogeneous Plutonium Systems
6.4 Homogeneous Uranium-Plutonium Systems
6.5 Heterogeneous Uranium Systems
6.6 Heterogeneous Uranium-Plutonium Systems
Acknowledgments

1. 序

1988年に科学技術庁原子力安全局核燃料規制課(当時)編としてにっかん書房(当時)から発刊された「臨界安全ハンドブック」には、「臨界安全ハンドブック・データ集」が参考に付けられていた。しかし、1999年に日本原子力研究所(当時;以下「原研」)から刊行された「臨界安全ハンドブック第2版」には、データ集に相当するものは付いていなかった。本報告書は、「臨界安全ハンドブック・データ集」の改訂版として、「臨界安全ハンドブック第2版」の参考として編まれたものである。

臨界データは、軽水炉燃料再処理施設、軽水炉燃料加工施設、軽水炉使用済燃料 貯蔵施設、核燃料輸送のほか、核燃料使用施設の臨界安全評価を念頭に置いて準備 された。1999 年に起きた核燃料加工施設の臨界事故の際に、ウラン濃縮度 20wt% の硝酸ウラニルの臨界データが臨界安全ハンドブックに記載されておらず、不便で あったことの反省から、本改訂版では、従来のデータ集よりも幅広い範囲の燃料を 対象とした。計算は主に原研で開発した連続エネルギーモンテカルロ法臨界計算コ ード MVP と評価済み核データ JENDL-3.2 を主に用いて算出した。なお、「臨界安 全ハンドブック・データ集」にあった「第6章 複数ユニットの臨界安全評価に使 用するデータ」及び「第7章 その他のデータ」及び付録は本改訂版では割愛して いる。

以下第2章では、種々の核燃料物質や構造材の原子個数密度の算出に関連するデ ータを示す。アクチニド金属及び酸化物の密度、並びに燃焼燃料の核種組成に関す る情報を第1版に比べて充実させた。第3章では、種々の燃料の核特性パラメータ として、中性子無限増倍率 k_∞、移動面積 M²、及び拡散係数 D を示す。これらのデ ータは、単一ユニットの臨界データを簡便に求める際だけでなく、複数ユニットの 安全評価にも使用可能である。第4章では、無限体系の未臨界領域判定図を示す。 無限体系で未臨界となる核燃料は、反射体なしの体系あるいは水反射体付き体系に おける臨界安全評価は不要である。

第5章では、単一ユニットの臨界データを示す。均質ウラン、非均質ウラン、均 質プルトニウム、均質ウラン・プルトニウム混合溶液、均質ウラン・プルトニウム 混合酸化物、及び非均質ウラン・プルトニウム混合酸化物の臨界データ(臨界とな る質量、体積、寸法など)が示してある。第6章では、臨界実験ベンチマーク計算 についての結果をまとめた。

本書に記載したデータ及び計算コードと臨界安全解析の関連を図 1.1 に示す。臨 界安全ハンドブックでは、臨界安全解析は単一ユニットの解析と複数ユニットの解 析からなり、各々、臨界データを用いる方法、簡易計算コードを用いる方法、詳細 計算コードを用いる方法の3つがある。これらの組み合わせである9通りの流れの 計算ができるように本書は配慮されている。使用者の目的に応じて、最も有効な計 算の流れを選ぶことができる。但し、各計算の流れごとに臨界の判定基準が異なる ので、得られた結果の評価にあたっては「臨界安全ハンドブック第2版」の第4章 を参照のこと。

This is a blank page.

2. 原子個数密度

機器あるいは装置の臨界安全解析を行うためには、各領域の核分裂性物質、構造材等の原子個 数密度をあらかじめ求める必要がある。解析の精度を上げるためには原子個数密度をできる限り 正確に求めなければならないが、データの不足等自ら限界があるため、理論あるいは計算による 補足が必要になってくる。

本章では、アクチニド金属を含む核燃料物質の原子個数密度計算に使用されるデータ、構造材 として代表的なコンクリート及びステンレス鋼の組成を示す。また軽水炉で使用された燃料中に は多くの核種が存在しているが、そのうち臨界安全解析上重要なウランとプルトニウムなどの同 位体組成の燃焼に伴う変化を示す。さらに、中性子吸収材の原子個数密度を示す。

2.1 核燃料物質の原子個数密度の計算

本節では、原子個数密度の計算に必要なアボガドロ数や原子量等の物理定数、理論密度、水溶液体系の密度式及び体系中の水素と核分裂性元素との原子個数比を表す式を示す。

2.1.1 物理定数

本データ集を作成する際に使用した物理定数を表 2.1 に示す¹⁾。各元素、核種の原子量、中性 子吸収断面積及び実効共鳴積分を表 2.2 に示す²⁾⁻⁵⁾。

2.1.2 アクチニド金属及び酸化物の密度

アクチニド金属及び酸化物の密度を表 2.3 に示す ^の。

2.1.3 理論密度及び水溶液系の密度式

核燃料取扱施設の臨界安全評価に多用されるウラン及びプルトニウムの単体あるいは化合物の 理論密度を表 2.4 に示す⁷⁾⁻¹⁰。表中の UO₂の値は²³⁸U の含有量の多い劣化ウランから天然ウラン を含み 3wt%程度の濃縮ウランに対して適用される。高濃縮度の UO₂の理論密度を表 2.5 に示す。 一方、表 2.4 の PuO₂の値は²³⁹Pu の含有率の高い組成(約 90wt%以上)に対して適用される。 ²³⁹Pu 含有率の低い PuO₂の理論密度を表 2.6 に示す¹¹⁾¹²⁾。 UO₂-PuO₂混合酸化物の理論密度の算出式を次に示す。

$$\rho = \frac{4M}{(a_0)^3 \cdot N_A}$$
ここで、 ρ :理論密度[g/cm³]
M:分子量
N_A:アボガドロ数
格子定数 a₀には次の値を用いる。
UO₂: a₀=5.4700 [Å]

$$PuO_{2} : a_{0} = 5.3960 \, [\text{Å}]$$

$$UO_{2} \cdot PuO_{2} : a_{0} = 5.4700 - 7.40 \times 10^{-4} \cdot \varepsilon_{PuO2} \, [\text{Å}]$$

$$(2.2)$$

(但し、 ε_{PuO2} は PuO_2 の個数百分率 [%] すなわち $PuO_2/(UO_2+PuO_2)\times 100$ を表す。)

次に溶液体系の密度算出式を示す。

$$\rho = 0.99928 + 1.7132 \times 10^{-3} \times C_{Pu25}$$

+1.4225 × 10⁻³ × C_{U25}
+3.9039 × 10⁻² × C_{HN25}
- 9.744 × 10⁻⁸ × C_{Pu25}²
- 1.076 × 10⁻⁷ × C_{U25}²
- 7.361 × 10⁻⁴ × C_{HN25}²
- 5.548 × 10⁻⁶ × T²
- 7.280 × 10⁻⁸ × C_{Pu25} × C_{U25}
- 4.876 × 10⁻⁵ × C_{Pu25} × C_{HN25}
- 1.427 × 10⁻⁶ × C_{Pu25} × T

- $1.520 \times 10^{-5} \times C_{U25} \times C_{HN25}$
- $8.865 \times 10^{-7} \times C_{U25} \times T$
- $-8.494 \times 10^{-5} \times C_{HN25} \times T$

(2.3)*

^{* 「}臨界安全ハンドブック第2版」(JAERI 1340) 44 頁の (3.17)式は、この (2.3)式に置換えられ るべきである。

ここで、 ρ:温度Tにおける溶液密度 [g/cm³] C_{Pu25}:25 ℃におけるプルトニウム濃度 [g/L] C_{U25}:25 ℃ におけるウラン濃度 [g/L] C_{HN25}:25 ℃ における遊離硝酸濃度 [mol/L] T:温度 [℃]

この SST 式は、以下の条件で適用可能であり、精度は 0.0032 g/cm³ である。

 $C_{U25} < 530$ g/L $C_{Pu25} < 480$ g/L $C_{Pu25} + C_{U25} < 350$ g/L (混合溶液の場合) $C_{HN25} < 7$ mol/L 10 < T < 60 °C.

これらの条件のうち、溶液中のウラン又はプルトニウムの濃度が適用範囲を超える場合には、最 大濃度の水溶液と結晶(硝酸プルトニウム 5 水和物結晶及び硝酸ウラニル 6 水和物結晶)の混合 物として扱う。

具体的には、温度 T の溶液中でのウラン濃度を C_U 、プルトニウム濃度を C_{Pu} 、硝酸プルトニウム 5 水和物結晶 ($Pu(NO_3)_4 \cdot 5H_2O$) 及び硝酸ウラニル 6 水和物結晶 ($UO_2(NO_3)_2 \cdot 6H_2O$)の体積分率をそれぞれ ξ_1 、 ξ_2 とするとき、これらの間には以下の関係がある。

$$C_{Pu}^{cry} \cdot \xi_1 + C_{Pu}^{sol} \cdot (1 - \xi_1 - \xi_2) = C_{Pu}$$

$$C_U^{cry} \cdot \xi_2 + C_U^{sol} \cdot (1 - \xi_1 - \xi_2) = C_U$$
(2.4)
(2.5)

ここで、

C^{cry}: 硝酸プルトニウム5水和物結晶中のプルトニウム濃度 [g/L]

- C_{Pu}^{sol} : 温度 T での SST 式適用範囲における硝酸プルトニウム水溶液中の最大プルトニウム濃度 [g/L]
- C_U^{cry} : 硝酸ウラニル 6 水和物結晶中のウラン濃度 [g/L]
- C_U^{cry} :温度 T での SST 式適用範囲における硝酸ウラニル水溶液中の最大ウラン濃度 [g/L]

(2.4)及び(2.5)を解くと、以下の式によりξ1、ξ2が求められる。

$$\xi_{1} = \frac{(C_{U}^{cry} - C_{U}^{sol})C_{Pu} - (C_{U}^{cry} - C_{U})C_{Pu}^{sol}}{(C_{Pu}^{cry} - C_{Pu}^{sol})(C_{U}^{cry} - C_{U}^{sol}) - C_{Pu}^{sol}C_{U}^{sol}}$$
(2.6)

$$\xi_{2} = \frac{(C_{Pu}^{cry} - C_{Pu}^{sol})C_{U} - (C_{Pu}^{cry} - C_{Pu})C_{U}^{sol}}{(C_{Pu}^{cry} - C_{Pu}^{sol})(C_{U}^{cry} - C_{U}^{sol}) - C_{Pu}^{sol}C_{U}^{sol}}$$
(2.7)

混合モデルによる温度 T での溶液密度は、

$$\rho = \rho_{Pu}^{cry} \cdot \xi_1 + \rho_U^{cry} \cdot \xi_2 + \rho^{sol} \cdot (1 - \xi_1 - \xi_2)$$
ここで、
$$\rho_{Pu}^{cry} : 硝酸プルトニウム 5 水和物結晶の密度 (=2.90 g/cm^{3 14})$$

$$\rho_U^{cry} : 硝酸ウラニル 6 水和物結晶の密度 (=2.772 g/cm^{3 15})$$
(2.8)

 ho^{sol} : SST 式適用限界での温度 T における溶液密度

となる。

(2) UO₂F₂水溶液

密度算出は次式¹⁶⁾ による。

$$\frac{1}{\rho} = \frac{1}{\rho_{H20}} - 0.9120 \cdot F + 0.0567F^{2}$$

ここで、
 ρ :溶液密度 [g/cm³]
 ρ_{H20} :水密度 [g/cm³]
F:溶液の UO₂F₂重量比
溶液温度:25℃

(2.9)

2.1.4 水素とウラン(またはプルトニウム)の原子個数比

臨界計算では対象とする体系中の水素(H)の量を正確に知ることは重要であり、H/U 比の僅か な違いが実効増倍率あるいは臨界寸法の計算値に大きな差異となって現われることがある。U あ るいは Pu の単体または化合物の水との均質混合物の H/U あるいは H/Pu 個数比の算出式は次の ように導くことができる。

均質 U-H₂O:

$$\frac{\mathrm{H}}{\mathrm{U}} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{\mathrm{A}_{\mathrm{U}}}{\mathrm{A}_{\mathrm{H2O}}} \left(\frac{1}{\mathrm{C}_{\mathrm{U}}} - \frac{1}{\rho_{\mathrm{U}}} \right)$$
(2.10)

均質 UO2-H2O:

$$\frac{\mathrm{H}}{\mathrm{U}} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{1}{\mathrm{A}_{\mathrm{H2O}}} \cdot \left(\frac{\mathrm{A}_{\mathrm{U}}}{\mathrm{C}_{\mathrm{U}}} - \frac{\mathrm{A}_{\mathrm{UO2}}}{\rho_{\mathrm{UO2}}} \right)$$
(2.11)

均質 U₃O₈-H₂O:

$$\frac{H}{U} = 2 \cdot \rho_{H20} \cdot \frac{1}{A_{H20}} \cdot \left(\frac{A_{U}}{C_{U}} - \frac{A_{U308}}{3 \cdot \rho_{U308}} \right)$$
(2.12)

均質 Pu-H₂O:

$$\frac{\mathrm{H}}{\mathrm{Pu}} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{\mathrm{A}_{\mathrm{Pu}}}{\mathrm{A}_{\mathrm{H2O}}} \cdot \left(\frac{1}{\mathrm{C}_{\mathrm{Pu}}} - \frac{1}{\rho_{\mathrm{Pu}}}\right)$$
(2.13)

均質 PuO₂-H₂O:

$$\frac{\mathrm{H}}{\mathrm{Pu}} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{1}{\mathrm{A}_{\mathrm{H2O}}} \cdot \left(\frac{\mathrm{A}_{\mathrm{Pu}}}{\mathrm{C}_{\mathrm{Pu}}} - \frac{\mathrm{A}_{\mathrm{PuO2}}}{\rho_{\mathrm{PuO2}}}\right)$$
(2.14)

均質 ADU(II)-H₂O(ADU(II):3UO₃·NH₃·5H₂O、Ammonium Diuranate、重ウラン酸アンモニウム):

$$\frac{\mathrm{H}}{\mathrm{U}} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{1}{\mathrm{A}_{\mathrm{H2O}}} \cdot \left(\frac{\mathrm{A}_{\mathrm{U}}}{\mathrm{C}_{\mathrm{U}}} - \frac{\mathrm{A}_{\mathrm{ADU}}}{3\rho_{\mathrm{ADU}}}\right) + \frac{13}{3}$$
(2.15)

均質 PuO₂-UO₂-H₂O:

$$\frac{\mathrm{H}}{(\mathrm{U}+\mathrm{Pu})} = 2 \cdot \rho_{\mathrm{H2O}} \cdot \frac{1}{\mathrm{A}_{\mathrm{H2O}}} \cdot \left(\frac{\mathrm{A}_{\mathrm{PuO2}} \cdot \mathrm{A}_{\mathrm{U}} + \alpha \cdot \mathrm{A}_{\mathrm{UO2}} \cdot \mathrm{A}_{\mathrm{Pu}}}{\mathrm{A}_{\mathrm{U}} + \alpha \cdot \mathrm{A}_{\mathrm{Pu}}} \right)$$
$$\cdot \left(\frac{1}{\mathrm{C}_{\mathrm{PuO2}-\mathrm{UO2}}} - \frac{1}{\rho_{\mathrm{PuO2}-\mathrm{UO2}}} \right)$$
(2.16)

$$\hbar \mathcal{L} \, \mathcal{L} \, \alpha = \frac{C_{U}}{C_{Pu}} = \frac{100/\varepsilon - 1}{\left(\frac{A}{\frac{U02}{A_{Pu02}}}\right) \cdot \left(\frac{A}{\frac{Pu}{A_{U}}}\right)}$$

ɛ[wt%] は PuO₂ 富化度である。

式(2.10)から式(2.16)までに用いた記号の意味は次のとおりである。

 ρ : 理論密度[g/cm³]

A : 原子量または分子量

C : 濃度[g/cm³]

これらの記号は、 H_2O 、U、 U_3O_8 、Pu、 PuO_2 、ADU、 PuO_2-UO_2 などの関係する化合物の化学 式に添字をつけて用いる。

以上に示した算出式を用いて、ウランあるいはプルトニウムの濃度と H/U 比の関係を、均質 U-H₂O、均質 UO₂-H₂O、均質 Pu-H₂O、均質 PuO₂-H₂O、均質 ADU(II)-H₂O、均質 UO₂-PuO₂-H₂O の各核燃料物質について、それぞれ図 2.1 から図 2.6 に示す。

また、SST 式に基づいて、UO₂(NO₃)₂水溶液、Pu(NO₃)₄水溶液、及び UO₂(NO₃)₂-Pu(NO₃)₄水溶 液のウランあるいはプルトニウムの濃度と H/U 比の関係を求めたものを、それぞれ図 2.7 から図 2.9 に示す。

均質 UO_2F_2 水溶液(溶液温度 25°C)の場合、H/U 比はウラン濃度の関数として次式のように表せる。

$$\frac{H}{U} = 26.444 \cdot \frac{\rho_{U02F2}}{C_U} - 34.222 \qquad (2.17)$$

$$\rho_{U02F2} = \frac{1}{1.00294 - 0.9120F + 0.0567F^2} \qquad (2.18)^{-11}$$

$$F = \frac{1}{1 + 0.02922 \cdot \frac{H}{U}} \qquad (2.19)$$

但し、C_Uは溶液中の U 濃度[gU/cm³]である。上記三式による繰り返し計算により、C_Uに対する H/Uを得る。その結果を図 2.10 に示すとともに、CEA-N-2051¹⁷⁾(上記三式による結果)と西 独ハンドブック及び ARH-600 記載の U 濃度-H/U 曲線の比較を図 2.11 に示す。

2.2 コンクリート及びステンレス鋼の組成

コンクリート(普通コンクリート、重コンクリート)及びステンレス鋼(SUS304、 SUS304L)の密度、組成をそれぞれ表 2.7、表 2.8 に示す。

(1) コンクリート

原子力建家の構造物として用いられるコンクリートの組成は、今日まで数多く公表されている ^{9), 16)-18)}。コンクリートの密度、組成の標準値を設定するにあたり、数多くの文献値から次のよう な方針のもとに選択した。

- a) 普通コンクリート、重コンクリートのそれぞれについて標準値を設定する。
- b) 普通コンクリートの密度は既存の原子力施設の設計値程度(約 2.2~2.4)⁹⁾の値を採用 する。
- c) 各種文献に共通のデータをできるだけ採用する。
- d) 減速効果に影響する水素の含有率が平均的なデータを採用する。

以上の方針のもとに、普通コンクリートには文献 9)、18)、19)に示されているデータを、重コ ンクリートには文献 9) 及び 18) に示されているデータをそれぞれ標準値として設定した。なお、 実際の臨界安全設計にあたっては、コンクリート密度はそれが主として反射体として働く場合に は設計上で考えられるその上限値を、また主として遮蔽材として働く場合にはその下限値を用い ることが必要となる。

(2) ステンレス鋼

ステンレス鋼は原子力施設の機器類の材料としてよく用いられる。その種類は主として SUS304 及びこれより炭素含有量が少ない SUS304L である。

ステンレス鋼の密度、組成はわが国の国内規格に合致したものが適当と考えられるため、JIS 規格¹⁹⁾のデータを採用した。JIS 規格では化学成分の値が上限値もしくは範囲で示されているが、 上限値の場合はその値を、範囲の場合にはその中央値をそれぞれ採用した。また、ステンレス鋼 板とステンレス鋼管とでは化学成分が若干異なるが、ここではステンレス鋼板の値を採用した。

2.3 軽水炉使用済燃料中の核種組成

新燃料は、ガドリニウム等の吸収材核種の存在を無視した場合に、燃焼燃料より核分裂性物質 を多く含み、反応度価値が高くなる。従って臨界安全評価モデル上、燃焼燃料を新燃料で置きか えれば、反応度的により厳しい結果が得られる。但し、燃焼度の評価が臨界安全上妥当であれば、 燃焼に伴う核種組成の変化を考慮して臨界安全評価を行ってもよい。 燃焼燃料の核種組成は炉心の出力履歴や照射中の中性子スペクトルの変化に影響をうけるため、 正確にそれを求めるには、それらの条件を考慮した評価が必要である。核種組成評価で必要とさ れる精度は、その後行われる臨界安全評価手法とそれに含まれる安全裕度を考慮して決定されな ければならない。

核種組成の与え方の一例として、それを燃焼計算コードで求めた場合に、計算された組成と実 測値との比を予め評価して補正係数を求めておき、その係数で除することによって反応度的に保 守的な組成を与える手法がある。PWR に対して評価検討されている補正因子の一例を以下の 表 2.9 に示す²³⁾。この表に示されている補正因子によって ORIGEN 2.1 コードで得られた核種組 成を除する事で、反応度的に保守的な核種組成を与える事が提案されている。

燃焼計算コードの精度評価は、計算値と照射後試験で得られた燃料核種組成の測定データとの 比較によって行われるが、その実測データの取得は各国で行われている。表 2.10 に、照射後試 験によって燃焼燃料核種組成データが取得され、公開文献によってそれらを入手できる原子炉の 名前とその形式を示す。それらのデータを広く利用可能な形式のデータベースとした SFCOMPO が日本原子力研究所で開発され、OECD/NEA を通じてそのデータベースが公開されている²⁴⁾。 図 2.12 から図 2.17 に SFCOMPO に登録されている使用済 UO₂ 燃料の核種組成データのうち、 ウラン及びプルトニウム同位体の減損及び生成量を照射直後の値としてまとめたものを示す。図 中の実線は回帰曲線を示し、点線はそれぞれのデータの回帰曲線からのばらつきを示す偏差 σ の3倍の範囲を示す。測定データは、燃焼燃料の核種組成が、初期濃縮度や燃料ピッチ等の燃料 設計の差や、照射された場所が燃料の上部であるか下部であるかに依存した照射条件によってば らつくが、多くの測定データが、偏差 3σ の範囲に入っている事が示されている。これらのデー タは、計算コードの結果や、新たに測定されたデータの妥当性を検討する際に利用できる。

第2章の参考文献

- 1) E. R. Cohen and B. N. Taylor, "The 1986 adjustment of the fundamental physical constants," Rev. Mod Phys., **59**, p.1121 (1987).
- G. Audi and A. H. Wapstra, "The 1995 update to the atomic mass evaluation," Nuclear Physics A595, 409 (1995).
- IUPAC Commission on Atomic Weights and Isotopic Abundances, "Atomic Weights of the Elements, 1995," Pure Appl. Chem., 68, p.2339 (1996).
- 4) P. De Bievre and P. D. P. Taylor, "Table of the isotopic compositions of the elements," Int. J. Mass Spectrum. Ion Processes, **123**, p.149 (1993).
- K. Shibata, T. Nakagawa, H. Sugano and H. Kawasaki (Eds.), "Curves and Tables of Neutron Cross Sections in JENDL-3.2," JAERI-Data/Code 97-003 (1997).
- 6) Crystallographic data was compiled by R. G. Haire and calculated by J. E. Bigelow (1997).
- 7) R. D. Carter, G. R. Kiel and K. R. Ridgway "Criticality Handbook Volume I, II, III," ARH-600 Vol. I, II, III, Atlantic Richfield Hanford Co. (1968, 1969, 1971);
 W. Thomas, W. Weber, "Handbook of Criticality," Technical University of Munich (1972).
- 8) 日本化学会編、「化学便覧(改定2版)」 (1975).
- 9) 長谷川正義・三島良績監修、「原子炉材料ハンドブック」、日刊工業新聞社 (1977).
- 10) P. C. Debets and B. O. Loopstra, "On the uranates of ammonium-II X-ray investigation of the compounds in the system NH₃-UO₃-H₂O," J. Inorg. Nucl. Chem., 25, p.945 (1963)
- 11) Nuclear Materials and Equipment Corporation. Apollo. Pennsylvania 15613 U.S.A.
- 12)湯本鐐三・五十嵐孝行・増田純男・三島毅、「プルトニウムの取扱いに関する放射線外部被ば く線量の計算法の指針」、PNC TN852-73-01 (1973).
- 13) S. Sakurai and S. Tachimori, "Density equation of aqueous solution containing plutonium (IV), uranium (VI) and nitric acid," J. Nucl. Sci. Technol., 33, p.187 (1996).
- 14) E. Staritzky, "Plutonium tetranitrate pentahydrate, Pu(NO₃)₄·5H₂O," Anal. Chem., 28, pp.2021-2022 (1956).
- 15) J. J. Katz, G. T. Seaborg and L. R. Moss, "The Chemistry of the Actinide Elements, 2nd edition," p.342, Chapman and Hall, London, New York, vol.1 (1986).
- 16) J. S. Johnson and K.A. Kraus, "Density and refractive index of uranyl fluoride solutions," J. Am. Chem. Soc., 75, p.4594 (1953).
- 17) L. Maubert, "Standard de Criticite-Valeurs Minimales Critiques," CEA-N-2051, CEA (1983).

- 18) R. G. Jaeger et al. ed., "Engineering Compendium on Radiation Shielding, Volume II Shielding Materials," Springer-Verlag Berlin Heidelberg New York (1975).
- Argonne National Laboratory, "Reactor Physics Constants," USAEC Report ANL-5800 2nd Edition (1963).
- 20) E. P. Blizard and Lorraine S. Abbott (Ed.), "Reactor Handbook, Volume III Part B Shielding," Inter-Science Publishers (1962).
- 21)日本規格協会「JIS ハンドブック鉄鋼」、(財)日本規格協会 (1982).
- 22) J. F. Hogerton and R. C. Grass, "The Reactor Handbook, Vol.I, Physics," p.674, pp.725-727, McGraw-Hill Book Co., New York (1955).
- 23)燃料サイクル安全研究委員会、「燃焼度クレジット導入ガイド原案」、JAERI-Tech 2001-055 (2001).
- 24) 望月弘樹・須山賢也・ 野村靖・奥野浩、「WWW を利用した核種組成データベースシステム SFCOMPO on WWW ver. 2.0」、JAERI-Data/Code 2001-020 (2001);

(URL http://www.nea.fr/ sfcompo/)

表 2.1 物理定数¹⁾

アボガドロ数	6.0221367×10 ²³	$[mol^{-1}]$
気体定数	8.314510	$[J \text{ mol}^{-1} \text{ K}^{-1}]$
中性子の質量	1.008664904	[u]
陽子の質量	1.007276470	[u]
原子質量単位	1.6605402×10 ⁻²⁴	[g]

元素	核種	原子量	存在比[a/o]	σ_{a} [barn]*	RI _a [barn]
Н		1.00794			
	¹ H	1.007825	99.985	3.320×10^{-1}	1.491 × 10⁻¹
	² H	2.014102	0.015	5.500 × 10 ⁻⁴	2.863 × 10 ⁻⁴
В		10.811			
	¹⁰ B	10.012937	19.9	3.837×10^{3}	1.719×10^{3}
	¹¹ B	11.009305	80.1	5.075 × 10 ⁻³	2.542 × 10 ⁻³
С		12.0107			
	¹² C	12	98.9	3.530×10^{-3}	1.823 × 10 ⁻³
	¹³ C	13.003355	1.1		
N		14 00674			
	¹⁴ N	14.003074	99 634	1 844	9 456 × 10 ^{−1}
	¹⁵ N	15 000109	0.366	2 426 × 10 ⁻⁵	1.663×10^{-5}
		10.000100	0.000	2.1207.10	1.000 / 10
0		15.9994			
	¹⁶ O	15.994915	99.762	1.900 × 10 ⁻⁴	6.327 × 10 ⁻⁴
	¹⁷ O	16.999132	0.038		
	¹⁸ O	17.99916	0.200		
F	¹⁹ F	18.998403	100	9.570 × 10⁻³	1.949 × 10 ⁻²
Mg		24.305		6.298 × 10 ⁻²	2.333 × 10 ⁻¹
-	²⁴ Mg	23.985042	78.99	5.029 × 10 ⁻²	3.117 × 10 ⁻²
	²⁵ Mg	24.985837	10.00	1.904 × 10 ⁻¹	3.389 × 10⁻¹
	²⁶ Mg	25.982593	11.01	3.831×10^{-2}	1.890 × 10 ⁻²
AI	²⁷ AI	26.981538	100	2.311 × 10⁻¹	1.231 × 10⁻¹
Si		28.0855		1.711 × 10 ⁻¹	1.033 × 10 ⁻¹
	²⁸ Si	27.976927	92.23	1.767 × 10⁻¹	8.476 × 10 ⁻²

元素	核種	原子量	存在比[a/o]	σ_{a} [barn]*	RI _a [barn]
	²⁹ Si	28.976495	4.67	1.014×10^{-1}	6.636 × 10 ⁻²
	³⁰ Si	29.97377	3.10	1.075 × 10 ⁻¹	7.080 × 10 ⁻¹
S		32.066		5.218 × 10 ⁻¹	1.31
	³² S	31.97207	95.02	5.352 × 10 ⁻¹	7.863 × 10 ^{−1}
	³³ S	32.971458	0.75	5.202×10^{-1}	3.523
	³⁴ S	33.967867	4.21	2.236×10^{-1}	1.006×10^{-1}
	³⁶ S	35.967081	0.02	1.500×10^{-1}	1.209 × 10⁻¹
CI		35.4527		3.314 × 10	1.355 × 10
	³⁵ CI	34.968853	75.77	4.360 × 10	1.781 × 10
	³⁷ Cl	36.965903	24.23	4.329×10^{-1}	2.035×10^{-1}
К		39.0983		2.062	2.261
	³⁹ K	38.963707	93.2581	2.102	2.303
	⁴⁰ K	39.963999	0.0117	3.479 × 10	1.624×10^{1}
	⁴¹ K	40.961826	6.7302	1.459	1.58
Ca		40.078		4.358×10^{-1}	5.504 × 10 ⁻¹
	⁴⁰ Ca	39.962591	96.941	4.075×10^{-1}	5.460×10^{-1}
	⁴² Ca	41.958618	0.647	6.830×10^{-1}	4.367×10^{-1}
	⁴³ Ca	42.958767	0.135	1.166×10^{1}	5.839 × 10 ⁻¹
	⁴⁴ Ca	43.955481	2.086	8.884×10^{-1}	4.241×10^{-1}
	⁴⁶ Ca	45.953693	0.004	7.400×10^{-1}	3.391×10^{-1}
	⁴⁸ Ca	47.952534	0.187	1.093	4.843×10^{-1}
Cr		51.9961		3.071	1.555
	⁵⁰ Cr	49.94605	4.345	1.592×10^{1}	7.452
	⁵² Cr	51.940512	83.789	7.640×10^{-1}	4.622×10^{-1}
	⁵³ Cr	52.940654	9.501	1.821×10^{1}	8.621
	⁵⁴ Cr	53.938885	2.365	3.644×10^{-1}	1.842 × 10 ⁻¹

元素	核種	原子量	存在比[a/o]	σ_{a} [barn]*	RI _a [barn]
Mn	⁵⁵ Mn	54.93805	100	1.341 × 10	1.176 × 10
Fe		55.845		2.562	1.49
	⁵⁴ Fe	53.939615	5.8	2.156	2.145
	⁵⁶ Fe	55.934942	91.72	2.813	1.476
	⁵⁷ Fe	56.935399	2.2	2.462	1.434
	⁵⁸ Fe	57.93328	0.28	1.3	1.357
Co	⁵⁹ Co	58.9332	100	3.718×10^{1}	7.553×10^{1}
Ni		58.6934		4.383	2.851
	⁵⁸ Ni	57.935348	68.27	4.503	3.134
	⁶⁰ Ni	59.930791	26.10	2.9	1.505
	⁶¹ Ni	60.93106	1.13	2.509	2.476
	⁶² Ni	61.928349	3.59	1.420×10^{1}	6.889
	⁶⁴ Ni	63.92797	0.91	1.48	8.171 × 10 ^{−1}
Cu		63.546		3.785	4.284
	⁶³ Cu	62.929601	69.17	4.506	5.19
	⁶⁵ Cu	64.927794	30.83	2.168	2.22
Zr		91.224		1.943 × 10⁻¹	1.216
	⁹⁰ Zr	89.904704	51.45	1.112 × 10 ⁻²	1.806×10^{-1}
	⁹¹ Zr	90.905645	11.22	1.247	6.949
	⁹² Zr	91.90504	17.15	2.292 × 10 ⁻¹	7.201 × 10 ⁻¹
	⁹⁴ Zr	93.906316	17.38	4.981×10^{-2}	3.236 × 10 ^{−1}
	⁹⁶ Zr	95.908276	2.80	2.280×10^{-2}	5.865
Мо		95.94		2.582	2.572 × 10
	⁹² Mo	91.90681	14.84	2.075×10^{-2}	1.164
	⁹⁴ Mo	93.905088	9.25	1.311 × 10 ⁻²	1.418
	⁹⁵ Mo	94.905841	15.92	1.399×10^{-2}	1.186×10^{2}

元素	核種	原子量	存在比[a/o]	$\sigma_{a}(22)$ [barn]*	RI _a [barn]
	⁹⁶ Mo	95.904679	16.68	5.954 × 10 ^{−1}	1.754 × 10
	⁹⁷ Mo	96.906021	9.55	2.1	1.712 × 10
	⁹⁸ Mo	97.905408	24.13	1.300 × 10⁻¹	6.556
	¹⁰⁰ Mo	99.907477	9.63	1.990 × 10 ⁻¹	3.908
Tc	⁹⁹ Tc	98.906255		1.964 × 10	3.116 × 10 ²
Rh	¹⁰³ Rh	102.905504	100	1.466 × 10²	1.043 × 10 ³
Ag		107.8682		6.362 × 10	7.626 × 10 ²
	¹⁰⁷ Ag	106.905093	51.839	3.862 × 10	1.039 × 10 ²
	¹⁰⁹ Ag	108.904756	48.161	9.054 × 10	1.472×10^{3}
Cd		112.411		2.528 × 10 ³	6.781 × 10
	¹⁰⁶ Cd	105.906458	1.25	9.695×10^{-1}	1.071 × 10
	¹⁰⁸ Cd	107.904183	0.89	1.087	2.716 × 10
	¹¹⁰ Cd	109.903006	12.49	1.105 × 10	3.925 × 10
	¹¹¹ Cd	110.904182	12.80	2.394 × 10	4.979 × 10
	¹¹² Cd	111.902757	24.13	2.192	1.336 × 10
	¹¹³ Cd	112.904401	12.22	2.065×10^{4}	3.936×10^{2}
	¹¹⁴ Cd	113.903358	28.73	3.404 × 10 ⁻¹	1.695 × 10
	¹¹⁶ Cd	115.904755	7.49	7.484 × 10 ⁻²	1.743
In		114.818			
	¹¹³ In	112.904061	4.3	1.207 × 10	3.251 × 10 ²
	¹¹⁵ In	114.903878	95.7	2.010×10^{2}	3.208 × 10 ³
Cs	¹³³ Cs	132.905447	100	2.900 × 10	3.962 × 10 ²
Nd		144.24			
	¹⁴² Nd	141.907719	27.13	1.870 × 10	8.661
	¹⁴³ Nd	142.90981	12.18	3.250×10^{2}	1.288 × 10 ²

元素	核種	原子量	存在比[a/o]	σ_{a} [barn]*	RI _a [barn]
	¹⁴⁴ Nd	143.910083	23.80	3.603	4.3
	¹⁴⁵ Nd	144.912569	8.30	4.384 × 10	2.040×10^{2}
	¹⁴⁶ Nd	145.913112	17.19	1.399	2.908
	¹⁴⁸ Nd	147.916889	5.76	2.493	1.472 × 10
	¹⁵⁰ Nd	149.920887	5.64	1.202	1.590 × 10
Eu		151.964		4.560×10^{3}	2.201 × 10 ³
	¹⁵¹ Eu	150.919846	47.8	9.198 × 10 ³	3.065×10^{3}
	¹⁵³ Eu	152.921226	52.2	3.127 × 10 ²	1.410 × 10 ³
Gd		157.252			
	¹⁵² Gd	151.919788	0.20	1.056×10^{3}	9.892 × 10 ²
	154 Gd	153.920862	2.18	8.499 × 10	2.149 × 10 ²
	¹⁵⁵ Gd	154.922619	14.80	6.089 × 10 ⁴	1.534 × 10 ³
	¹⁵⁶ Gd	155.92212	20.47	2.188	1.205 × 10 ²
	¹⁵⁷ Gd	156.923957	15.65	2.541 × 10⁵	7.613 × 10 ²
	¹⁵⁸ Gd	157.924101	24.84	2.496	6.394 × 10
	¹⁶⁰ Gd	159.927051	21.86	7.961 × 10 ⁻¹	1.202 × 10
Pb		207.2		1.742 × 10 ⁻¹	1.464 × 10⁻¹
	²⁰⁴ Pb	203.973029	1.4	6.606×10^{-1}	1.86
	²⁰⁶ Pb	205.974449	24.1	3.060×10^{-2}	1.114 × 10⁻¹
	²⁰⁷ Pb	206.975881	22.1	7.120 × 10 ⁻¹	3.917 × 10⁻¹
	²⁰⁸ Pb	207.976636	52.4	5.007×10^{-4}	1.003×10^{-2}
U		238.0289			
	²³³ U	233.039628		5.765×10^{2}	9.126 × 10 ²
	²³⁴ U	234.040946	0.0055	9.975 × 10	6.380×10^{2}
	²³⁵ U	235.043923	0.7200	6.832×10^{2}	4.111 × 10 ²
	²³⁶ U	236.045562		5.356	3.534×10^{2}
	²³⁷ U	237.048724		4.541×10^{2}	1.133 × 10 ³
	²³⁸ U	238.050783	99.2745	2.717	2.801×10^{2}

表 2.2 元素及び核種の原子量^{2),3)}、存在比⁴⁾、中性子吸収断面積⁵⁾及び実効共鳴積分⁵⁾ (続き)

元素	核種	原子量	存在比[a/o]	σ_{a} [barn]*	RI _a [barn]
Np	²³⁷ Np	237.048167		1.646×10^{2}	6.683×10^{2}
Pu	²³⁸ Pu	238.049553		5.582×10^{2}	1.863×10^{2}
	²³⁹ Pu	239.052157		1.018×10^{3}	4.840×10^{2}
	²⁴⁰ Pu	240.053807		2.894 × 10 ²	8.111 × 10 ³
	²⁴¹ Pu	241.056845		1.374 × 10 ³	7.525×10^{2}
	²⁴² Pu	242.058737		1.879 × 10	1.136×10^{3}
Am	²⁴¹ Am	241.056823		6.034×10^{2}	1.319 × 10 ³
	²⁴² Am	242.059543		7.600×10^{3}	1.649×10^{3}
	²⁴³ Am	243.061373		7.850 × 10	1.831 × 10 ³
Cm	²⁴³ Cm	243.061382		7.476 × 10 ²	1.763×10^{3}
	²⁴⁴ Cm	244.062746		1.614 × 10	6.734×10^{2}
	²⁴⁵ Cm	245.065486		2.347×10^{3}	9.103×10^{2}
	²⁴⁷ Cm	247.070347		1.390×10^{2}	1.146×10^{3}
Cf	²⁴⁹ Cf	249.074847		2.171 × 10 ³	2.914×10^{3}
	²⁵¹ Cf	251.07958		7.813 × 10 ³	4.378×10^{3}

アクチニド	金属	酸化物		
核種	密度	分子式	密度	
	lg/cm j		[g/cm [*]]	
U-238	19.165	UO_2	表 2.4 及び 2.5 参照	
Pu-239	19.851	PuO ₂	表 2.4 及び 2.6 参照	
Am-241	13.660	AmO_2	11.686	
Cm-244	13.518	CmO ₂	11.921	
Cf-249	15.110	CfO ₂	12.469	

化合物	理論密度 [g/cm ³]
UO ₂	10.96 7)
UO ₃	7.29 ⁸⁾
U	19.05 ⁸⁾
UF ₆	5.09 ⁸⁾
U ₃ O ₈	8.43 ⁹⁾
ADU(II)*	4.83 ¹⁰⁾
Pu	19.816 ⁸⁾
PuO ₂	11.46 ⁸⁾

表 2.4 ウラン、プルトニウム系化合物の理論密度

*3UO₃・NH₃・5H₂O、Ammonium Diuranate、重ウラン酸アンモニウム

表 2.5²³⁵U 濃縮度の変化に伴う UO₂ 理論密度の変化

²³⁵ U 濃縮度(wt%)	UO ₂ 密度(g/cm ³)		
0 (天然)	10.96		
5	10.95		
20	10.93		
40	10.91		
60	10.89		
80	10.86		
100	10.84		

表 2.6 典型的な Pu 同位体組成を持つ PuO2の理論密度

Pu fissile 率[wt%]	93	90	80	75	50
	,5	70	00	15	50
PuO2密度[g/cm ³]	11.46	11.46	11.47	11.48	11.49
Pu 組成[wt%]	11)	12)	12)	12)	12)
²³⁸ Pu	0.0	0.02	0.09	0.494	0.101
²³⁹ Pu	93.0	90.484	77.68	68.18	38.408
²⁴⁰ Pu	7.0	8.573	18.50	22.07	45.624
²⁴¹ Pu	0.0	0.853	3.22	7.268	10.702
²⁴² Pu	0.0	0.07	0.51	2.037	5.165

種類	普通コンクリート	重コンクリート	
元素 密度	2.30	3.55	
Н	0.023	0.0219	
0	1.220	1.187	
С	0.0023	—	
Na	0.0368		
Mg	0.005	0.023	
Al	0.078	0.097	
Si	0.775	0.123	
Р	—	0.001	
S		0.004	
K	0.0299		
Ca	0.100	0.240	
Ti		0.096	
V	—	0.006	
Cr	—	0.003	
Mn	—	0.002	
Fe	0.032 ^{a)}	1.745	
Ni	a)	—	

表 2.7 典型的なコンクリートの密度及び組成 [g/cm³]

注a) FeとNiの値は文献19)及び22)から引用した。

表 2.8	典型的なステン	レス鋼の密度	$\left[g/cm^{3} \right]$	及び組成	$[wt\%]^{21}$
			18, 4, 11		[]

種 類	SUS304	SUS304L
密度[g/cm ³]	7.93	7.93
元素		
С	0.08	0.03
Si	1	1
Mn	2	2
Р	0.045	0.045
S	0.03	0.03
Ni	9.25	11
Cr	19	19
Fe	68.595	66.895
P S Ni Cr Fe	0.045 0.03 9.25 19 68.595	0.045 0.03 11 19 66.895

	補正因子							
核種	Obrigheim		美浜3号炉		玄海1号炉		高浜3号炉	
	PWR-U	PWR-US	PWR-U	PWR-US	PWR-U	PWR-US	PWR-UE	PWR 41J32
U-234	-	-	1.15	1.15	1.00	1.00	1.30	1.29
U-235	0.73	0.69	0.91	0.87	0.88	0.82	0.89	0.99
U-236	1.09	1.10	1.06	1.07	1.00	1.00	1.00	1.00
U-238	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Pu-238	1.49	1.59	1.00	1.01	1.00	1.00	1.10	1.00
Pu-239	0.94	0.95	0.85	0.83	0.86	0.94	0.91	0.97
Pu-240	1.36	1.23	1.08	1.01	1.00	1.00	1.16	1.07
Pu-241	0.94	0.99	0.78	0.84	0.86	0.81	0.86	0.92
Pu-242	1.85	1.96	1.00	1.08	1.00	1.00	1.00	1.00
Am-241	2.41	2.62	1.06	1.18	1.00	1.00	1.51	1.62

表 2.9 ORIGEN 2.1 で算出された組成に対して適用が検討される補正因子の例²³⁾

表 2.10 SFCOMPO²⁴⁾ にデータが内蔵されている照射後試験一覧

原子炉	国名	炉型	燃料集合体	燃料	サンプル数*
Obrigheim	独	PWR	14×14	UO ₂	23
Gundremmingen	独	BWR	6 ×6	UO ₂	12
Trino Vercellese	イタリア	PWR	15 × 15	UO ₂	39
JPDR	日本	BWR	6 × 6	UO ₂	30
敦賀1号	日本	BWR	7 × 7	UO ₂	10
福島第一 3 号炉	日本	BWR	8×8	UO_2 , UO_2 - Gd_2O_3	36(10)
福島第二 2 号炉	日本	BWR	8×8	UO_2 , UO_2 - Gd_2O_3	18(10)
美浜3号炉	日本	PWR	15 × 15	UO ₂	9
玄海 1 号炉	日本	PWR	14×14	UO ₂	2
高浜3 号炉	日本	PWR	17×17	UO_2 , UO_2 - Gd_2O_3	16(5)
Cooper	米国	BWR	7 × 7	UO ₂	6
Monticello	米国	BWR	8×8	UO_2 , UO_2 - Gd_2O_3	30(5)
Calvert Cliffs-1	米国	PWR	14×14	UO ₂	9
H.B.Robinson-2	米国	PWR	15 × 15	UO ₂	6

*()内は UO₂-Gd₂O₃ サンプルの数

図 2.7 U濃度-H/U曲線(UO₂(NO₃)₂水溶液)(²³⁵U濃縮度 0.711wt%)

図 2.11 UO₂F₂水溶液のU濃度-H/U曲線の比較

 図 2.12 燃焼度に対する²³⁵Uの減損量(可燃性中性子吸収材を使用していない UO₂燃料ペレット、tIHMは燃焼前のウラン量[トン]を表す)

 図 2.13 燃焼度に対する²³⁸Pu 生成量(可燃性中性子吸収材を使用していない UO₂燃料ペレット、tIHMは燃焼前のウラン量[トン]を表す)

図 2.14 燃焼度に対する ²³⁹Pu 生成量(可燃性中性子吸収材を使用していない UO₂燃料ペレット、tIHMは燃焼前のウラン量[トン]を表す)

 図 2.15 燃焼度に対する²⁴⁰Pu 生成量(可燃性中性子吸収材を使用していない UO2燃料ペレット、tIHMは燃焼前のウラン量[トン]を表す)

0	Calvert Cliffs-1 (PWR) [2.45/2.72/3.04wt%]
	Cooper (BWR) [2.94wt%]
	福島第二-2号炉 (BWR) [3.91wt%]
\odot	玄海1号炉 (PWR) [3.42wt%]
	Gundremmingen (BWR) [2.53wt%]
0	H.B.Robinson-2 (PWR) [2.55wt%]
O	美浜3号炉 (PWR) [3.20/3.21wt%]
⊖	Obrigheim (PWR) [2.83/3.00wt%]
$igodoldsymbol{\Theta}$	高浜3号炉 (PWR) [4.11wt%]
8	Trino Vercellese (PWR) [2.72/3.13/3.90wt%]
	Fitted Line
	+3σ
	-3 <i>σ</i>

図 2.16 燃焼度に対する ²⁴¹Pu 生成量(可燃性中性子吸収材を使用していない UO₂燃料ペレット、tIHMは燃焼前のウラン量 [トン] を表す)

 図 2.17 燃焼度に対する²⁴²Pu 生成量(可燃性中性子吸収材を使用していない UO₂燃料ペレット、tIHMは燃焼前のウラン量[トン]を表す)

3. 種々の核燃料に対する核特性パラメータ

核特性パラメータとは、ここでは、無限増倍率 k_{∞} 、中性子移動面積 M^2 及び拡散係数 D を指す。 これらの量を用いると、下記の方法により簡便に臨界データが求まる。目標とする中性子増倍率を k_{eff} とすると、それに対応するバックリング B^2 は下記の式で求まる。

$$B^{2} = \left(\frac{k_{\infty}}{k_{eff}} - 1\right) / M^{2}$$
(3.1)

B²に相当する球の半径r、無限平板の厚さT、無限長円柱の半径rは下記の式から求まる。

球 : B² =
$$\left(\frac{\pi}{r+d}\right)^2$$
 (3.2)

無限平板 :
$$\mathbf{B}^2 = \left(\frac{\pi}{\mathbf{T}+2\mathbf{d}}\right)^2$$
 (3.3)

無限円柱 :
$$B^2 = \left(\frac{2.405}{r+d}\right)^2$$
 (3.4)

ここで、dは外挿距離であり下記式で求まる。

$$d = 2D\left(\frac{1+\beta}{1-\beta}\right)$$
(3.5)

βはアルベド値で下記の式で求まる。

球 :
$$\beta = \frac{1 - 2D_R\left(\kappa_R + \frac{1}{r}\right)}{1 + 2D_R\left(\kappa_R - \frac{1}{r}\right)}$$
 (3.6)

無限平板:
$$\beta = \frac{1 - 2\kappa_{\rm R}D_{\rm R}}{1 + 2\kappa_{\rm R}D_{\rm R}}$$
(3.7)

無限円柱:
$$\beta = \frac{1 - 2D_{R}\kappa_{R} \frac{K_{1}(\kappa_{R} \cdot \mathbf{r})}{K_{0}(\kappa_{R} \cdot \mathbf{r})}}{1 + 2D_{R}\kappa_{R} \frac{K_{1}(\kappa_{R} \cdot \mathbf{r})}{K_{0}(\kappa_{R} \cdot \mathbf{r})}}$$
(3.8)

ここで、 K_0 及び K_1 は変形第2種のベッセル関数である。 D_R は反射体の拡散係数、 κ_R は反射体の 拡散距離の逆数である。反射体が水の場合には下記の値を用いる。

 $D_{H20}=0.47$ cm, $\kappa_{H20}=0.3$ cm⁻¹

以上のように k_∞、M² 及び D を用いて、k_{eff}に対応するバックリングまたは形状寸法を求めることが

できる。本章では、均質 U-H₂O、均質 UO₂-H₂O、UO₂F₂水溶液、UO₂(NO₃)₂水溶液、均質 Pu-H₂O、 均質 PuO₂-H₂O、Pu(NO₃)₄水溶液、均質 PuO₂-UO₂-H₂O、均質 ADU(II)-H₂O、UF₆-HF、UO₂(NO₃)₂-Pu(NO₃)₄ 混合水溶液、の 11 種類の核燃料物質について、H/X (X は U または U+Pu) あるいは濃度を変数と した k_∞、M²及び D を図 3.1.1 から図 3.11.3 に示す¹⁾。これらのデータは、SRAC95 コード²⁾と JENDL-3.2 に基づく 107 群ライブラリで計算した実効断面積を改良 POST コード³⁾で KENO 形式断面積セット に変換したものを用いて、SIMCRI コード⁴⁾を用いて計算したものである。原子個数密度は MAIL3.1 コード⁵⁾で採用している算出方式に基本的に従うものとした。但し、UO₂F₂水溶液、UO₂(NO₃)₂水 溶液、Pu(NO₃)₄水溶液、UO₂(NO₃)₂-Pu(NO₃)₄ 混合水溶液に関しては、結晶と測定で密度が確認され ている最大濃度の水溶液の混合モデルを採用した。

なお、温度、同位体組成等の諸条件は以下のように設定した。

①溶液温度は20℃。

②硝酸溶液における遊離硝酸は0モル。

③プルトニウム燃料については、プルトニウム同位体は²³⁹Puと²⁴⁰Puの2種類のみ。

④プルトニウムとウランが混じった体系では、ウランの同位体組成は天然のもの(この章では、

²³⁵U:²³⁸U=0.711:99.289 重量比)。プルトニウムは²³⁹Pu100%とする。

⑤UF₆-HFでは、減速度管理が行われているとし、HFの割合は 0.5wt%とする^の。

第3章の参考文献

- 1) H. Okuno and T. Takada, "Calculation of nuclear characteristic parameters and drawing subcriticality judgment graphs of infinite fuel systems for typical nuclear fuels," J. Nucl. Sci. Technol., **41**, p.481 (2004).
- 2) 奥村啓介・金子邦男・土橋敬一郎、「SRAC95;汎用核計算コードシステム」、JAERI-Data/Code 96-015 (1996).
- 3) 須山賢也・高田友幸、「POST-SRAC95 を使用した臨界計算のための断面積処理プログラム」、 JAERI-Data/Code 98-035 (1998).
- S. Nakamaru, N. Sugawara, Y. Naito, J. Katakura and H.Okuno, "SIMCRI: A Simple Computer Code for Calculating Nuclear Criticality Parameter," JEARI-M 86-027 (1986).
- 5) 須山賢也・小室雄一・高田友幸・川崎弘光・大内圭介、「断面積セット作成プログラム MAIL3.1」、 JAERI-Data/Code 98-004 (1998).
- 6) R. H. Dyer, F. M. Kovac and W. A. Pryor, "Moderation control in low enriched ²³⁵U uranium hexafluoride packaging operations and transportation," The 34th Annual Meeting of the Institute of Nuclear Materials Management, Scottsdale, AZ, USA, July 18-22, 1993.

0. 4 0. 2 0. 0 1. 0E-2 1. 0E-1 1. 0E+0 H/U 0. 0 0. 0 1. 0E+2 1. 0E+3 1. 0E+4 H/U

図3.1.1(b) 均質U-H₂0系の無限増倍率

図3.2.1(b) 均質U02-H20系の無限増倍率

1.0E+2

1.0E+3

1.0E+4

1.0E+1

H/U 図3.2.2(b) 均質U0₂-H₂0系の移動面積

1.0E-2

1.0E-1

1.0E+0

図3.2.3(b) 均質U0₂-H₂0系の拡散係数

[3. 5. 1 (b) 0021 2 小 A 夜 未 0 無 阪 垣 石

図3.3.2(b) U0₂F₂水溶液系の移動面積

図3.4.1(b) U0₂(N0₃)₂水溶液系の無限増倍率

図3.4.2(b) U0₂(N0₃)₂水溶液系の移動面積

図3.4.3(b) U0₂(N0₃)₂水溶液系の拡散係数

図3.5.1(b) 均質Pu-H₂0系の無限増倍率

-53-

図3.6.1(b) 均質Pu02-H20系の無限増倍率

図3.7.1(b) Pu(NO₃)₄水溶液系の無限増倍率

図3.7.2(b) Pu(NO₃)₄水溶液系の移動面積

図3.7.3(b) Pu(NO₃)₄水溶液系の拡散係数

図3.8.1(b) 均質Pu02-U02-H20系の無限増倍率(²³⁹Pu100%、²³⁵U濃縮度0.711wt%)

図3.8.2(b) 均質Pu0₂-U0₂-H₂0系の移動面積(²³⁹Pu100%、²³⁵U濃縮度0.711wt%)

図3.8.3(b) 均質Pu0₂-U0₂-H₂0系の拡散係数(²³⁹Pu100%、²³⁵U濃縮度0.711wt%)

- 64 -

UF₆-HF濃度[g/cm³] 図3.10.3(b) UF₆-HF系の拡散係数(HF 0.5wt%)

0.711wt%)

This is a blank page.

4. 無限増倍率による未臨界判定

核燃料物質中の核分裂性物質の濃縮度または濃度がある値以下であれば、その核燃料物質を無限 に集積しても臨界にならない。この値を無限体系の臨界データと呼ぶこととする。特に、濃縮度以 外の他の条件がいかなる場合でも臨界にならない濃縮度の上限値を臨界濃縮度といい、濃度以外の 条件がいかなる場合でも臨界とならない濃度の極限値を臨界濃度という。これらの値は核燃料物質 の化学形態や中性子減速材の種類及び量により異なる。種々の核燃料物質に対して無限体系の臨界 データを知ることは、臨界管理を非常に容易にする場合が多い。

3章で核特性パラメータを求めた対象に対して、核データとして JENDL-3.2¹⁾を使用し、SRAC95²⁾、 改良 POST コード³⁾、そして SIMCRI コード⁴⁾によって無限体系の中性子増倍率を算出した。均質 無限体系に対する臨界計算では中性子束の空間分布計算に関わる誤差が生じないこと、及び無限体 系は実在しないことから、中性子増倍率の計算誤差は 2%未満であることを見込んで、推定臨界下 限増倍率を 0.98 として推定臨界下限値を算出した。なお、計算の条件は以下である。

- 1. 溶液温度は20℃。
- 2. 硝酸溶液における遊離硝酸は0モル。
- 3. プルトニウム燃料については、プルトニウム同位体は²³⁹Puと²⁴⁰Puの2種類のみ。
- プルトニウムとウランが混じった体系では、ウランの同位体組成は天然のもの(この章では、²³⁵U:²³⁸U=0.711:99.289 重量比)。プルトニウムは²³⁹Pu 100%とする。
- 5. UF₆-HF では、減速度管理が行われているとし、HF の割合は 0.5wt% とする。⁵⁾

表 4.1 から表 4.3 に、得られた推定臨界下限濃縮度及び推定臨界下限濃度を与える。図 4.1 から図 4.11 にそれぞれの系に対する未臨界判定図を示す⁶⁾。与えられた図から、濃縮度に対応する H/X (X は U または U+Pu) 比を求め、2 章に示した H/X 比と溶液濃度の関係の図を使用して対応する濃度 を定めることが出来る。

第4章の参考文献

 T. Nakagawa, K. Shibata, S. Chiba, T. Fukahori, Y. Nakajima, Y. Kikuchi, T. Kawano, Y. Kanda, T. Ohsawa, H. Matsunobu, M. Kawai, A. Zukeran, T. Watanabe, S. Igarasi, K. Kosako and T. Asami., "Japanese Evaluated Nuclear Data Library, version 3, revision 2: JENDL 3.2," J. Nucl. Sci. Technol., 32, p.1259 (1995).

- 奥村啓介・金子邦男・土橋敬一郎、「SRAC95;汎用核計算コードシステム」、JAERI-Data/Code 96-015 (1996).
- 3) 須山賢也・高田友幸、「POST-SRAC95 を使用した臨界計算のための断面積処理プログラム」、 JAERI-Data/Code 98-035 (1998)
- 4) S. Nakamaru, N. Sugawara, Y. Naito, J. Katakura and H.Okuno, "SIMCRI: A Simple Computer Code for Calculating Nuclear Criticality Parameter," JEARI-M 86-027 (1986).
- 5) R. H. Dyer, F. M. Kovac and W. A. Pryor, "Moderation control in low enriched ²³⁵U uranium hexafluoride packaging operations and transportation," The 34th Annual Meeting of the Institute of Nuclear Materials Management, Scottsdale, AZ, USA, July 18-22, 1993.
- H. Okuno and T. Takada, "Calculation of nuclear characteristic parameters and drawing subcriticality judgment graphs of infinite fuel systems for typical nuclear fuels," J. Nucl. Sci. Technol., 41, p.481 (2004).

核燃料物質	推定臨界下限濃縮度**
均質 U-H2O	0.90
均質 UO2-H2O	0.94
UO ₂ F ₂ 水溶液	0.99
UO ₂ (NO ₃) ₂ 水溶液	1.86
ADU(II)-H ₂ O	1.17
PuO ₂ -UO ₂ -H ₂ O	0.12*
Pu(NO ₃) ₄ -UO ₂ (NO ₃) ₂ 水溶液	0.74*

表 4.1 無限体系の推定臨界下限濃縮度 [wt%]

* **Pu** 富化度

** 推定臨界下限増倍率 = 0.98

表 4.2 無限体系の推定臨界下限濃度 [²³⁵U g/L]

U系 (²³⁵U 100%)

核燃料物質	推定臨界下限濃度*			
均質 U-H2O	11.7			
均質 UO2-H2O	11.7			
UO ₂ F ₂ 水溶液	11.7			
UO ₂ (NO ₃)2 水溶液	11.9			

* 推定臨界下限増倍率 = 0.98

表 4.3 無限体系の推定臨界下限濃度[²³⁹Pu g/L]

Pu 系(²³⁹Pu 100%)

核燃料物質	推定臨界下限濃度*
均質 Pu-H2O	6.9
均質 PuO2-H2O	6.9
Pu(NO ₃) ₄ 水溶液	6.9

* 推定臨界下限増倍率 = 0.98

図 4.4 UO₂(NO₃)₂水溶液系の未臨界領域判定図

図 4.6 均質 PuO₂-H₂O 系の未臨界領域判定図

図 4.8 均質 PuO₂-UO₂-H₂O 系の未臨界領域判定図

図 4.10 UF₆-HF 系の未臨界領域判定図(HF 0.5wt%)

図 4.11 UO₂(NO₃)₂-Pu(NO₃)₄ 混合水溶液系の未臨界領域判定図(²³⁹Pu 100%,²³⁵U 濃縮度.0.711wt%)

This is a blank page.

5. 単一ユニットの臨界データ

様々な核燃料物質の推定臨界値及び推定臨界下限値を計算によって求めた。対象とした核燃料は、 主にLWR燃料再処理施設、LWR燃料加工施設を念頭において選定した。核燃料物質の形状は、球、 無限円柱、無限平板の3種類に限った。核燃料物質の周囲には十分な厚さ(30cm)の水反射体を設 けた。

5.1 臨界データ

各核燃料物質の推定臨界値及び推定臨界下限値を図 5.1 から図 5.38 に示す。均質 UO₂-H₂O、均質 PuO₂- H₂O 及び均質 PuO₂-UO₂-H₂O において、含水率は、水質量/(燃料質量+水質量)×100 wt% で 定義される。均質 PuO₂-UO₂-H₂O を除く 11 種類の燃料及び主要核分裂性核種に関して各図の最小値 (最小推定臨界値、最小推定臨界下限値)を表 5.1 から表 5.11 に示す。

また、その他の核分裂性核種の臨界質量(k_{eff}=1に対応)及び未臨界質量(k_{eff}=0.9, 0.8 に対応) を燃料濃度の関数として図 5.39 から図 5.43 に示す。さらに、各図の臨界質量の最小値を表 5.12 に 示す。

臨界データを計算するための方法、モデル、計算条件を 5.2 節から 5.4 節に示す。各図番の対応は 以下の表の通り。

核燃料物質	燃料濃	燃料濃度 vs (a)質量、(b)球体積、(c)円柱直径、(d)平板厚さ								
	235	²³⁵ U 濃縮度[wt%]								
	3	4	5	6	7	10	20	50	93.5	100
(1) 均質 U-H ₂ O	図 5.1	同左	同左	図 5.2	同左	同左	同左	図 5.3	同左	同左
(2) 均質 UO ₂ -H ₂ O	図 5.4	図 5.5	図 5.6	図 5.7	図 5.8	図 5.9	図 5.10			
(3) UO ₂ F ₂ 水溶液	図 5.11	同左	同左	図 5.12	同左	同左	同左			
(4) UO ₂ (NO ₃) ₂ 水溶液	図 5.13	同左	同左	図 5.14	同左	同左	同左			
(5) 均質 ADU(II)-H ₂ O	図 5.15	同左	同左	図 5.16	同左	同左	同左			
(6) UF ₆ -HF	図 5.17	同左	同左	図 5.18	同左	同左	同左			

核燃料物質	燃料濃度 vs (a)質量、(b)球体積、(c)円柱直径、(d)平板厚さ							
	Pu 組成[wt%]	Pu 組成[wt%] ²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu						
	100:0:0	95:5:0	80:10:10	71:17:12				
(7) 均質 PuO2-H2O		図 5.19	図 5.20	図 5.21				
(8) Pu(NO ₃) ₄ 水溶液	図 5.22		図 5.22	同左				

核燃料物質	燃料濃度 vs (a)質量、(b)球体積					
	²³⁵ U 濃縮度 0.711 wt%					
	(プロットは含	(プロットは含水率 1, 3, 5 wt%及び空隙なし)				
(4) 物质 140 140	PuO2富化度	PuO2富化度	PuO2富化度			
(9) 均貝 PuO ₂ -OO ₂ -A ₂ O	55[wt%]	35[wt%]	15[wt%]			
²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu=100:0:0	図 5.23	図 5.24	図 5.25			
80:10:10	図 5.26	図 5.27	図 5.28			
71:17:12	図 5.29	図 5.30	図 5.31			

核燃料物質	(U+Pu)濃度 vs (a)質量、(b)球体積、(c)円柱直	径、(d)平板厚さ					
(10) U,Pu 混合硝酸水溶液	Pu 富化度 0.744wt%, ²³⁵ U 濃縮度 2, 3.5wt%	図 5.32					
	(Pu 組成 ²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu=71:17:12)						
	(U+Pu)濃度 vs (a)円柱直径、(b)平板厚さ						
	Pu富化度10,30,50wt%, ²³⁵ U濃縮度0.711wt%	図 5.33					
	(Pu 組成 ²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu=71:17:12)						
	Pu富化度10,30,50wt%, ²³⁵ U濃縮度0.711wt%	図 5.34					
	(Pu 組成 ²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu=80:10:10)						

核燃料物質		質量 vs 燃料棒直径	質量 vs 燃料濃度
(11) 非均質 UO ₂ 及び	非均質 UO2-H2O	図 5.35	図 5.37
非均質 PuO2-UO2		(²³⁵ U濃縮度 5wt%)	(全 ²³⁵ U濃縮度)
	非均質	図 5.36	図 5.38
	PuO ₂ -UO ₂ -H ₂ O	(PuO2富化度 10wt%,	(全PuO2富化度)
	(²³⁵ U 濃縮度	Pu 組成 ²³⁹ Pu: ²⁴⁰ Pu: ²⁴¹ Pu =	
	0.711 wt%)	71:17:12)	

核燃料物質	燃料濃度	vs 質量				
(12)その他の核分	(k _{eff} =1.0,	(k _{eff} =1.0, 0.9, 0.8)				
裂性核種の臨界及	²⁴¹ Pu	^{242m} Am	²⁴³ Cm	²⁴⁹ Cf	²⁵¹ Cf	
び未臨界質量	図 5.39	図 5.40	図 5.41	図 5.42	図 5.43	

5.2 計算方法

連続エネルギーモンテカルロ臨界計算コード MVP¹⁾と日本の評価済み核データライブラリ JENDL-3.2²⁾の組合せを用いて均質燃料体系及び非均質燃料体系の臨界データを計算した。推定臨界 増倍率及び推定臨界下限増倍率は第6章に記したベンチマーク計算結果を用いて表 5.13 に記した値 を用いた。なお、標準偏差の計算には、燃料体系グループごとに、ベンチマーク計算の系統的誤差 のばらつきの他、個々のベンチマークモデルの誤差とベンチマーク計算の誤差を考慮して示してい る。また、推定臨界下限増倍率は、統計計算により得られた値と 0.98 とのうち、小さい方の値を採 用している³⁾。

計算の模式的な流れを図 5.44 に示す。対象の物理的なパラメータは、空隙を含む物質情報と幾何 形状、即ち物質の大きさと配置からなる。物質情報は、核種の物質中での原子個数密度であり、中 性子輸送コードに伝えられる。中性子輸送計算コード MVP の入力データは、幾何形状情報と計算 を管理するパラメータ情報からなる。実際には、原子個数密度は入力データを通して与えられるが、 図 5.44 では簡略化して原子個数密度が直接 MVP コードに与えられるように描いている。 MVP コ ードは中性子断面積も必要とし、評価済み核データライブラリ JENDL-3.2 の場合には JENDL-3.2 ARTLIB ライブラリとして与えられる。なお、マイナー・アクチニドの臨界データの計算に当って は、諸外国の同様なデータとの比較を容易にするため連続エネルギー計算コードとして MCNP コー ド⁴と JENDL-3.2 の組合せを用いた。

MVP あるいは MCNP では、任意に与えられた燃料寸法に対して中性子増倍率 k_{eff} が計算される。 特定の k_{eff} に対して対応する燃料寸法を決めるために、燃料寸法と k_{eff} の計算値を 2 次曲線に当ては めた。なお、マイナー・アクチニドの臨界質量 (k_{eff} =1に対応するもの)及び未臨界質量 (k_{eff} =0.9 及び 0.8 に対応するもの)の計算において各燃料濃度での k_{eff} =1,0.9,0.8 に対応する燃料球寸法の計 算には、参考文献 5) に記された方法を用いた。即ち、(1) k_{∞} の計算値、及び(2) k_{eff} =1,0.9,0.8 の値を

挟むように4つの球半径を決め対応する k_{eff} の計算値を $k_{eff} = k_{\infty} (1 - e^{-\alpha x})^{\beta x^{\prime}}$ の曲線に当てはめた。ここで、 α 、 β 、 γ はパラメータであり、xは球半径である。

5.3 計算条件

5.3.1 体系温度

体系温度は20℃とした(但し、UO₂F₂水溶液については、溶液温度は25℃として密度を算出した)。 したがって、燃料の原子個数密度を計算する際に用いる水の密度は、20℃における値0.99820 g/cm³ を採用した⁶。水反射体及び水減速材も同様である。

5.3.2 MVP

連続エネルギーモンテカルロ臨界計算コード MVP を用いた計算では、標準偏差が 0.06%以下に なることを目安にヒストリー数は 100 万程度とした。具体的には、5,000 個/世代×(250-50)世代 程度とした。

5.3.3 MCNP

連続エネルギーモンテカルロ臨界計算コード MCNP を用いた計算では、標準偏差が 0.06%以下に なることを目安にヒストリー数は 100 万程度とした。具体的には、5,000 個/世代×(250-50)世代 程度とした。

第5章の参考文献

- 森貴正・中川正幸、「MVP/GMVP: 連続エネルギー法及び多群法に基づく汎用中性子・光子輸送計算モンテカルロコード」、JAERI-Data/Code 94-007 (1994).
- T. Nakagawa, K. Shibata, S. Chiba, T. Fukahori, Y. Nakajima, Y. Kikuchi, T. Kawano, Y. Kanda, T. Ohsawa, H. Matsunobu, M. Kawai, A. Zukeran, T. Watanabe, S. Igarasi, K. Kosako and T. Asami., "Japanese Evaluated Nuclear Data Library, version 3, revision 2: JENDL 3.2," J. Nucl. Sci. Technol., 32, p.1259 (1995).
- 3) 奥野浩・内藤俶孝、「臨界安全解析コードシステム JACS の計算誤差評価」、JAERI-M 87-057 (1987).
- J.F. Briesmeister (ed.), "MCNP A General Monte Carlo N-Particle Transport Code, Version 4B," LA-12625-M (1997).
- 5) C.T. Rombough, S.H. Martonak and N.L. Pruvost, "Search technique for calculating critical and subcritical configurations with MCNP," ANS Trans. **76**, p.197 (1996).
- 6) 「理科年表」、昭和 60 年版、東京天文台編纂.

235 _{1 J}		最小推定	官臨界値		最小推定臨界下限値			
連縮市	ウラン	武士建	無限円柱	無限平板	ウラン	武士建	無限円柱	無限平板
(成州日)文	質量	邓仲相	直径	厚さ	質量	邓仲慎	直径	厚さ
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]
3	94.3	41.3	29.7	14.8	76.3	34.2	27.7	13.4
4	52.9	28.5	26.0	12.3	44.5	24.3	24.3	11.3
5	35.8	22.6	23.8	10.9	30.2	19.3	22.3	10.1
6	25.0	19.2	22.3	10.1	21.5	16.5	21.1	9.22
7	20.3	16.9	21.3	9.40	17.3	14.6	20.2	8.65
10	12.6	13.5	19.5	8.20	10.9	11.8	18.5	7.54
20	5.14	9.66	17.1	6.64	4.48	8.49	16.2	6.09
50	1.72	3.54	11.5	3.23	1.52	3.13	11.0	2.89
93.5	0.87	1.25	7.91	1.73	0.77	1.12	7.57	1.55
100	0.79	1.12	7.57	1.59	0.69	1.01	7.24	1.43

表 5.1 均質 U-H₂O の最小推定臨界値及び最小推定臨界下限値

表 5.2 均質 UO2-H2O の最小推定臨界値及び最小推定臨界下限値

235 _{1 J}		最小推定	官臨界値			最小推定的	定臨界下限値		
連縮市	ウラン	动体建	無限円柱	無限平板	ウラン	动体建	無限円柱	無限平板	
派加汉	質量	以仲相	直径	厚さ	質量	以仲俱	直径	厚さ	
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]	
3	98.2	55.4	32.7	16.6	81.6	45.2	30.6	15.3	
4	55.5	36.1	28.2	13.5	45.9	30.4	26.5	12.7	
5	37.0	28.0	25.7	12.2	31.1	23.7	24.2	11.2	
6	27.7	23.4	24.1	11.1	23.5	20.2	22.8	10.3	
7	21.6	20.4	22.9	10.4	18.5	17.6	21.7	9.56	
10	12.9	15.7	20.7	9.00	11.1	13.6	19.7	8.34	
20	5.25	10.8	17.8	7.21	4.62	9.5	17.0	6.65	

表 5.3 UO₂F₂水溶液の最小推定臨界値及び最小推定臨界下限値

235 _{1 1}	最小推定臨界値				最小推定臨界下限値			
連縮市	ウラン	球休痔	無限円柱	無限平板	ウラン	球休痔	無限円柱	無限平板
(成小旧)文	質量	小仲俱	直径	厚さ	質量	小仲俱	直径	厚さ
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]
3	108	73.4	36.5	19.1	87.4	61.5	34.2	17.6
4	58.2	46.5	31.1	15.6	48.0	39.4	29.2	14.4
5	38.3	34.9	28.0	13.6	32.4	29.9	26.3	12.6
6	28.1	28.4	25.8	12.3	23.8	24.2	24.4	11.4
7	22.1	24.2	24.4	11.4	18.7	21.0	23.1	10.6
10	12.9	17.8	21.8	9.75	11.1	15.5	20.8	9.07
20	5.28	11.6	18.5	7.64	4.60	10.2	17.6	7.06

235 _{T T}		最小推定	官臨界値		最小推定臨界下限値			
し 濃縮度	ウラン	动体建	無限円柱	無限平板	ウラン	动体建	無限円柱	無限平板
10天中日/又	質量	场件相	直径	厚さ	質量	小仲俱	直径	厚さ
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]
3	424	343	62.7	36.2	305	243	55.7	31.8
4	143	136	45.3	25.0	111	110	41.8	22.6
5	77.0	84.0	38.3	20.2	61.5	69.1	35.6	18.5
6	49.1	60.2	34.0	17.4	40.2	50.1	31.9	16.1
7	35.5	47.2	31.1	15.6	29.3	40.0	29.2	14.5
10	17.6	30.0	26.3	12.6	15.0	25.7	25.0	11.7
20	6.00	16.3	21.0	9.21	5.19	14.3	20.0	8.58

表 5.4 UO₂(NO₃)₂水溶液の最小推定臨界値及び最小推定臨界下限値

表 5.5 ADU(II)-H₂Oの最小推定臨界値及び最小推定臨界下限値

235 _{1 1}		最小推定	宦臨界値		最小推定臨界下限値				
連縮市	ウラン	武仕建	無限円柱	無限平板	ウラン	飞伏住	無限円柱	無限平板	
(成小旧)文	質量	以仲相	直径	厚さ	質量	以仲俱	直径	厚さ	
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]	
3	119	67.4	35.3	18.5	95.9	54.5	32.9	16.8	
4	61.6	42.1	30.0	14.9	51.7	35.3	27.9	13.7	
5	40.6	31.0	26.9	12.9	33.8	26.4	25.4	12.0	
6	29.7	26.0	25.0	11.7	25.0	22.1	23.6	10.8	
7	23.1	22.2	23.6	10.9	19.8	19.1	22.3	10.1	
10	13.4	16.8	21.2	9.37	11.5	14.6	20.1	8.68	
20	5.40	11.1	18.2	7.40	4.71	9.86	17.3	6.84	

表 5.6 UF₆-HFの最小推定臨界値及び最小推定臨界下限値

235 _{T I}		最小推定	宦臨界値		最小推定臨界下限値				
連縮市	ウラン	武仕住	無限円柱	無限平板	ウラン	武仕住	無限円柱	無限平板	
版州12	質量	以仲俱	直径	厚さ	質量	邓仲慎	直径	厚さ	
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]	
3	4169	1226	96.4	56.5	2456	722	80.2	45.9	
4	1830	538	72.5	40.4	1240	364	63.3	34.7	
5	1142	336	61.8	33.9	828	243	55.1	29.2	
6	888	261	55.7	29.6	648	190	50.0	26.0	
7	685	201	50.9	26.7	525	154	46.6	23.5	
10	422	124	43.0	21.4	339	99.7	39.4	18.9	
20	185	54.5	31.9	14.6	154	45.4	29.8	13.0	

プルトニ		最小推定	官臨界値		最小推定臨界下限値			
ウム組成 ²³⁹ Pu : ²⁴⁰ Pu : ²⁴¹ Pu	プルトニ ウム 質量	球体積	無限円柱 直径	無限平板 厚さ	プルトニ ウム 質量	球体積	無限円柱 直径	無限平板 厚さ
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]
95:5:0	0.61	1.27	7.98	1.95	0.54	1.15	7.69	1.80
80:10:10	0.68	1.32	8.09	1.94	0.60	1.21	7.80	1.77
71:17:12	0.89	1.41	8.34	2.09	0.76	1.29	8.04	1.92

表 5.7 均質 PuO2-H2O の最小推定臨界値及び最小推定臨界下限値

表 5.8 Pu(NO₃)₄水溶液の最小推定臨界値及び最小推定臨界下限値

プルトニ		最小推定	宦臨界値		最小推定臨界下限值			
ウム組成 ²³⁹ Pu : ²⁴⁰ Pu : ²⁴¹ Pu	プルトニ ウム 質量	レトニ フム 球体積 無限P 直径		無限平板 厚さ	プルトニ ウム 質量	球体積	無限円柱 直径	無限平板 厚さ
[wt%]	[kgU]	[L]	[cm]	[cm]	[kgU]	[L]	[cm]	[cm]
100:0:0	0.51	7.81	15.8	5.87	0.46	7.03	15.1	5.48
80:10:10	0.69	12.4	18.9	7.82	0.61	11.1	18.1	7.25
71:17:12	0.89	15.8	20.7	8.95	0.78	14.0	19.7	8.28

表 5.9 UO₂(NO₃)₂-Pu(NO₃)₄混合硝酸水溶液の最小推定臨界値及び最小推定臨界下限値

プルト			μ	最小推定臨界値					最小推定臨界下限值				
ニウム 組成 ²³⁹ Pu : ²⁴⁰ Pu : ²⁴¹ Pu	Pu 富化度	²³⁵ U 濃縮 度	(U+Pu) 質量	球体 積	無限円 柱直径	無限平板 厚さ	(U+Pu) 質量	球体 積	無限円 柱直径	無限平板 厚さ			
[wt%]	[wt%]	[wt%]	[kg(U+Pu)]	[L]	[cm]	[cm]	[kg(U+Pu)]	[L]	[cm]	[cm]			
71:17:12	0.744	2	592	504	72.3	42.1	432	377	65.1	37.5			
71:17:12	0.744	3.5	116	123	44.2	24.0	96.4	104	41.5	22.3			
71:17:12	10	0.711			29.5	14.6			28.1	13.8			
	30	0.711			23.7	10.8			22.7	10.2			
	50	0.711			22.3	9.90			21.3	9.35			
80:10:10	10	0.711			26.6	12.8			25.5	12.1			
	30	0.711			21.6	9.55			20.8	9.01			
	50	0.711			20.3	8.71			19.5	8.16			

²³⁵ U	最小推定臨界下限値
濃縮度	U 質量
[wt%]	[kgU]
3	67.1
5	27.7
7	16.9
10	10.4
15	6.44
20	4.56
30	2.82
50	1.56

表 5.10 最適燃料寸法での非均質 UO2 -H2O の最小推定臨界下限値

表 5.11 最適約	料寸法での非均質 PuO2-	O2-H2Oの最小推定臨界	下限值(²³⁹ Pu 100%)	235 U 0.711 wt%)
------------	----------------	---------------	------------------------------	-----------------------

PuO ₂	最小推定臨界下限値
富化度	(U+Pu)質量
[wt%]	[kg(U+Pu)]
5	21.2
10	10.0
15	6.31
20	4.55
30	2.91
50	1.70

表 5.12 その他の核分裂性核種の最小臨界下限値

校建		最小推定臨界下限值							
似但	反射体なし	SUS 反射体付き	水反射体付き						
	質量[kg]	質量[kg]	質量[kg]						
²⁴¹ Pu	0.52	0.21	0.28						
^{242m} Am	0.044	0.018	0.021						
²⁴³ Cm	0.39	0.15	0.18						
²⁴⁹ Cf	0.12	0.052	0.059						
²⁵¹ Cf	0.064	0.027	0.032						

体系	平均 m	標準偏差 s	標本数	パラメータ μ*	m - μs	推定臨界 増倍率	推定臨界 下限増倍率
均質低濃縮ウラ ン系	1.0073	0.0050	75	2.411	0.9951	1.0073	0.98
均質高濃縮ウラ ン系	1.0052	0.0070	55	2.503	0.9878	1.0052	0.98
均質プルトニウ ム系	1.0044	0.0077	46	2.566	0.9846	1.0044	0.98
均質ウラン・プル トニウム系	0.9999	0.0057	29	2.775	0.9839	0.9999	0.98
非均質ウラン系	1.0026	0.0064	121	2.303	0.9878	1.0026	0.98
非均質ウラン・プ ルトニウム系	0.9991	0.0053	47	2.558	0.9855	0.9991	0.98

表 5.13 MVP と JENDL-3.2 の組合せに対する臨界計算の誤差評価

* パラメータµ: 非心 t 分布のパラメータ。標本数の関数。未臨界確率 97.5% 、信頼度 97.5% としている。

図 5.1(a) 均質 U-H₂O の臨界質量(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.1(b) 均質 U-H₂O の臨界球体積(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.1(c) 均質 U-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.1(d) 均質 U-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.2(a) 均質 U-H₂O の臨界質量(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.2(b) 均質 U-H₂O の臨界球体積(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.2(c) 均質 U-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.2(d) 均質 U-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.3(a) 均質 U-H₂O の臨界質量(²³⁵U 濃縮度 50,93.5,100wt%、水反射体付き)

図 5.3(b) 均質 U-H₂O の臨界球体積(²³⁵U 濃縮度 50,93.5,100wt%、水反射体付き)

図 5.3(c) 均質 U-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 50,93.5,100wt%、水反射体付き)

図 5.3(d) 均質 U-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 50,93.5,100wt%、水反射体付き)

図 5.4(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 3wt%、水反射体付き)

図 5.4(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 3wt%、水反射体付き)

図 5.4(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 3wt%、水反射体付き)

図 5.5(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 4wt%、水反射体付き)

図 5.5(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 4wt%、水反射体付き)

図 5.5(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 4wt%、水反射体付き)

図 5.5(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 4wt%、水反射体付き)

図 5.6(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 5wt%、水反射体付き)

図 5.6(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 5wt%、水反射体付き)

図 5.6(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 5wt%、水反射体付き)

図 5.6(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 5wt%、水反射体付き)

図 5.7(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 6wt%、水反射体付き)

図 5.7(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 6wt%、水反射体付き)

図 5.7(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 6wt%、水反射体付き)

図 5.7(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 6wt%、水反射体付き)

図 5.8(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 7wt%、水反射体付き)

図 5.8(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 7wt%、水反射体付き)

図 5.8(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 7wt%、水反射体付き)

図 5.8(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 7wt%、水反射体付き)

図 5.9(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 10wt%、水反射体付き)

図 5.9(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 10wt%、水反射体付き)

図 5.9(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 10wt%、水反射体付き)

図 5.9(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 10wt%、水反射体付き)

図 5.10(a) 均質 UO₂-H₂O の臨界質量(²³⁵U 濃縮度 20wt%、水反射体付き)

図 5.10(b) 均質 UO₂-H₂O の臨界球体積(²³⁵U 濃縮度 20wt%、水反射体付き)

図 5.10(c) 均質 UO₂-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 20wt%、水反射体付き)

図 5.10(d) 均質 UO₂-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 20wt%、水反射体付き)

図 5.11(b) UO₂F₂水溶液の臨界球体積(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.11(c) UO₂F₂水溶液の臨界無限円柱直径(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.11(d) UO₂F₂水溶液の臨界無限平板厚さ(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.12(a) UO₂F₂水溶液の臨界質量(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.12(b) UO₂F₂水溶液の臨界球体積(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.12(c) UO₂F₂水溶液の臨界無限円柱直径(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.12(d) UO₂F₂水溶液の臨界無限平板厚さ(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.13(a) UO₂(NO₃)₂水溶液の臨界質量(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.13(b) UO₂(NO₃)₂水溶液の臨界球体積(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.13(c) UO₂(NO₃)₂水溶液の臨界無限円柱直径(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.13(d) UO₂(NO₃)₂水溶液の臨界無限平板厚さ(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.14(a) UO₂(NO₃)₂水溶液の臨界質量(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.14(b) UO₂(NO₃)₂水溶液の臨界球体積(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.14(c) UO₂(NO₃)₂水溶液の臨界無限円柱直径(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.14(d) UO₂(NO₃)₂水溶液の臨界無限平板厚さ(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.15(a) 均質 ADU(II)-H₂O の臨界質量(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.15(b) 均質 ADU(II)-H₂O の臨界球体積(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.15(c) 均質 ADU(II)-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.15(d) 均質 ADU(II)-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.16(a) 均質 ADU(II)-H₂O の臨界質量(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.16(b) 均質 ADU(II)-H₂O の臨界球体積(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.16(c) 均質 ADU(II)-H₂O の臨界無限円柱直径(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.16(d) 均質 ADU(II)-H₂O の臨界無限平板厚さ(²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.17(a) UF₆-HF の臨界質量(HF 0.5wt%、²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.17(b) UF₆-HF の臨界球体積(HF 0.5wt%、²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.17(c) UF₆-HFの臨界無限円柱直径(HF 0.5wt%、²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.17(d) UF₆-HFの臨界無限平板厚さ(HF 0.5wt%、²³⁵U 濃縮度 3,4,5wt%、水反射体付き)

図 5.18(a) UF₆-HFの臨界質量(HF 0.5wt%、²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.18(b) UF₆-HFの臨界球体積(HF 0.5wt%、²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.18(c) UF₆-HFの臨界無限円柱直径(HF 0.5wt%、²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

図 5.18(d) UF₆-HFの臨界無限平板厚さ(HF 0.5wt%、²³⁵U 濃縮度 6,7,10,20wt%、水反射体付き)

(²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=95:5:0、水反射体付き)

図 5.22(b) Pu(NO₃)₄水溶液の臨界球体積(水反射体付き)

図 5.23(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=100:0:0、PuO₂ 富化度 55wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.24(a) 均質 PuO₂-UO₂-H₂O の臨界質量 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=100:0:0、PuO₂ 富化度 35wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.24(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=100:0:0、PuO₂ 富化度 35wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.25(a) 均質 PuO₂-UO₂-H₂O の臨界質量 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=100:0:0、PuO₂ 富化度 15wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.25(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=100:0:0、PuO₂ 富化度 15wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.26(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=80:10:10、PuO₂ 富化度 55wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.27(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=80:10:10、PuO₂ 富化度 35wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

(²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、PuO₂ 富化度 55wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.29(b) 均質 PuO₂-UO₂-H₂O の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、PuO₂ 富化度 55wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.32(b) UO₂(NO₃)₂-Pu(NO₃)₄水溶液の臨界球体積 (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、Pu 富化度 0.744wt%、水反射体付き)

(²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、Pu 富化度 0.744wt%、水反射体付き)

(²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=80:10:10、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.36 非均質 $PuO_2 - UO_2 - H_2O$ の推定臨界下限値(質量) (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、 PuO_2 富化度 10wt%、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.38 最適燃料寸法での非均質 PuO₂-UO₂-H₂Oの推定臨界下限値(質量) (²³⁹Pu: ²⁴⁰Pu: ²⁴¹Pu=71:17:12、²³⁵U 濃縮度 0.711wt%、水反射体付き)

図 5.39(b) 均質²⁴¹Pu-H₂Oの未臨界質量(SUS 反射体付き)

図 5.40(a) 均質^{242m}Am-H₂Oの未臨界質量(反射体なし)

図 5.44 MVP と JENDL-3.2 の組合せによる臨界データ計算の模式図

終了

MVP

臨界データ

ARTLIB

6. 臨界実験ベンチマーク計算

「臨界安全ハンドブック・データ集」は、「臨界安全ハンドブック」(第1版)¹⁾の参考資料として添付されている。しかし、「臨界安全ハンドブック第2版」を1999年に原研の報告書(JAERI 1340)として刊行した際に、データ集部分は含まなかった。

「データ集」の改訂に当り、臨界データを算出する臨界計算手法に関しては、これまでの核デー タライブラリとして ENDF/B-IV を用いた多群モンテカルロ計算に基づくものから、核データライブ ラリ JENDL-3.2²⁾を用いた連続エネルギーモンテカルロ計算に基づくものに改めた。また、計算ヒス トリ数を2桁近く増加することにより、計算精度も1桁近く向上した。

一方、臨界計算の検証に用いる臨界実験に関しても、OECD/NEA による評価活動が進み、その結 果得られた評価済み臨界実験データは、ICSBEP ハンドブック³にまとめられている。ICSBEP ハン ドブック記載のものを検証計算に用いることにより、計算の信頼度の向上を図ることができる。

ここでは 5 章の臨界データの算出に用いた連続エネルギーモンテカルロコード MVP⁴⁾ によるベ ンチマーク計算結果を示す。これらのベンチマーク計算結果は、5 章の臨界データの算出に用いた 推定臨界増倍率及び推定臨界下限増倍率の導出の根拠となるものである。なお、推定臨界増倍率は 類似の臨界実験体系のベンチマーク計算結果に基づき、臨界状態であると推定される確率が最も高 い中性子増倍率の値であり、標本の平均値に等しい。推定臨界増倍率の算出にあたっては、ICSBEP ハンドブックに与えられている各体系のベンチマークモデル実効増倍率(ベンチマークモデルと実 験体系のバイアスを考慮したベンチマークモデル自身の持つ実効増倍率)とその不確かさ、モンテ カルロ法による臨界計算の標準偏差を考慮している。また、推定臨界下限増倍率は、臨界超過確率 2.5%、信頼度 97.5%として、これ以下ならば臨界にならないと判断される中性子増倍率の値である。 この値が 0.98 より高い場合には、安全側の判断に基づき、0.98 を推定臨界下限増倍率として扱うこ ととする⁵⁾。

6.1 均質低濃縮ウラン系

ICSBEP ハンドブックから均質低濃縮ウランの臨界実験体系を75件選択し、連続エネルギーモン テカルロ計算コード MVP と JENDL-3.2 の組合せでベンチマーク計算を実施した。計算結果を表 6.1 に示す。均質低濃縮ウランの実験データのほとんどは原研の STACY で行われた 10%濃縮の硝酸ウ ラニル水溶液のものである(LEU-SOL-THERM-004, 007-011)。またフランスで行われた UO₂ 粉末を 用いた低減速体系の臨界実験(LEU-COMP-THERM-049)も含まれている。ロシアで行われた実験 (LEU-SOL-THEM-005,-006)は B₄C 吸収棒を含むものである。計算は 100 万ヒストリーとし、実効増 倍率の標準偏差は 0.1%以下である。誤差評価の結果は 5 章の表 5.10 に示すとおり、標本数 75 で推 定臨界増倍率 1.0073 に対して、推定臨界下限増倍率は 0.98 である。参考のため、ベンチマークモデ ルの k_{eff} が 1 から異なっていることを考慮した k_{eff} 計算値の頻度分布を図 6.1 に示す。

6.2 均質高濃縮ウラン系

ICSBEP ハンドブックから均質高濃縮ウランの臨界実験体系を55 件選択し、連続エネルギーモン テカルロ計算コード MVP と JENDL-3.2 の組合せでベンチマーク計算を実施した。なお、 HEU-SOL-THERM-010 には溶液を昇温させた実験も含まれるが、これらは計算対象からは除外した。 また、HEU-SOL-THERM-028,029,030 には B₄C 吸収棒を用いた実験も含まれる。MVP と JENDL-3.2 による計算結果を表 6.2 に示す。計算は 100 万ヒストリーとし、実効増倍率の標準偏差は 0.1%以下 である。誤差評価の結果は5章の表 5.10 に示すとおり、標本数 55 で推定臨界増倍率 1.0052 に対し て、推定臨界下限増倍率は 0.98 である。参考のため、ベンチマークモデルの k_{eff} が 1 から異なって いることを考慮した k_{eff} 計算値の頻度分布を図 6.2 に示す。

6.3 均質プルトニウム系

ICSBEP ハンドブックから均質プルトニウム燃料の臨界実験体系を選択し、連続エネルギーモン テカルロ計算コード MVP と JENDL-3.2 の組合せでベンチマーク計算を実施した。選択した実験体 系は、プルトニウム金属の高速系、プルトニウム溶液の熱系の計 46 ケースである。 PU-COMP-MIXED-002 は PuO₂ 粉末とポリスチレンからなる均質体系であるが、実効増倍率の計算 値が極端に高いために計算対象からは除外している。MVP と JENDL-3.2 による計算結果を表 6.3 に 示す。誤差評価の結果は5章の表 5.10 に示すとおり、標本数 46 で推定臨界増倍率 1.0044 に対して、 推定臨界下限増倍率は 0.98 である。参考のため、keff 計算値の頻度分布を図 6.3 に示す。

6.4 均質ウラン・プルトニウム系

ICSBEP ハンドブックから均質ウラン・プルトニウム燃料の臨界実験体系を 29 件選択し、連続エ ネルギーモンテカルロ計算コード MVP と JENDL-3.2 の組合せでベンチマーク計算を実施した。計 算はすべてウラン・プルトニウム混合溶液を用いた実験を対象としている。そのうち MIX-SOL-THERM-001 には中性子吸収材を用いた実験も含まれる。MOX 粉末とポリスチレンから なる均質体系の実験が従来、均質ウラン・プルトニウム系のベンチマークに用いられていたが、実 効増倍率の計算値が極端に高いために計算対象からは除外している。MVP と JENDL-3.2 による計 算結果を表 6.4 に示す。誤差評価の結果は 5 章の表 5.10 に示すとおり、標本数 29 で推定臨界増倍率 0.9999 に対して、推定臨界下限増倍率は 0.98 である。参考のため、keff 計算値の頻度分布を図 6.4 に示す。

6.5 非均質ウラン系

ICSBEP ハンドブックから非均質ウランの臨界実験体系を 121 件選択し、連続エネルギーモンテ カルロ計算コード MVP と JENDL-3.2 の組合せでベンチマーク計算を実施した。MVP と JENDL-3.2 による計算結果を表 6.5 に示す。LEU-COMP-THERM-032 には高温、高圧で行った実験も含まれる が、これらは除外し、室温で行った実験のみを対象としている。また、LEU-COMP-THERM-007,016, 021 には中性子吸収材を用いた実験が含まれる。計算は 100 万ヒストリーとし、実効増倍率の標準 偏差は 0.1%以下である。誤差評価の結果は 5 章の表 5.10 に示すとおり、標本数 121 で推定臨界増 倍率 1.0026 に対して、推定臨界下限増倍率は 0.98 である。参考のため、ベンチマークモデルの k_{eff} が 1 から異なっていることを考慮した k_{eff}計算値の頻度分布を図 6.5 に示す。

6.6 非均質ウラン・プルトニウム系

ICSBEP ハンドブックから非均質ウラン・プルトニウム系の臨界実験体系を47件選択し、連続 エネルギーモンテカルロ計算コード MVP と JENDL-3.2の組合せでベンチマーク計算を実施した。 MVP と JENDL-3.2 による計算結果を表 6.6 に示す。MIX-COMP-THERM-002,003 には中性子吸収 材を用いた実験も含まれる。計算は100万ヒストリーとし、実効増倍率の標準偏差は0.1%以下であ る。誤差評価の結果は5章の表 5.10 に示すとおり、標本数 47 で推定臨界増倍率 0.9991 に対して、 推定臨界下限増倍率は 0.98 である。参考のため、ベンチマークモデルの k_{eff} が 1 から異なっている ことを考慮した k_{eff} 計算値の頻度分布を図 6.6 に示す。

第6章の参考文献

- 1) 「臨界安全ハンドブック」科学技術庁原子力安全局核燃料規制課編、にっかん書房 (1988).
- T. Nakagawa, K. Shibata, S. Chiba, T. Fukahori, Y. Nakajima, Y. Kikuchi, T. Kawano, Y. Kanda, T. Ohsawa, H. Matsunobu, M. Kawai, A. Zukeran, T. Watanabe, S. Igarasi, K. Kosako and T. Asami., "Japanese Evaluated Nuclear Data Library, version 3, revision 2: JENDL 3.2," J. Nucl. Sci. Technol., 32, p.1259 (1995).
- "International Handbook of Evaluated Criticality Safety Benchmark Experiments," NEA/NSC/DOC(95)03, September 2003 Edition (2003).
- 4) 森貴正、中川正幸、「MVP/GMVP:連続エネルギー法及び多群法に基づく汎用中性子・光子輸送計算モンテカルロコード」、JAERI-Data/Code 94-007 (1994).
- 5) 奥野浩・内藤俶孝、「臨界安全解析コードシステム JACS の計算誤差評価」、JAERI-M87-057 (1987).

表 6.1(1) 均質低濃縮ウラン系臨界ベンチマーク解析結果

	ケース	(鉄米)		濃縮度		ベンチマーク	モデル keff	計質	結里	
ICSBEP ID number	番号	化学式	H/U-235	(wt%)	反射体	keff		keff	10	備考
LEU-SOL-THERM-001 SHEBA	-	UO2F2	453.9	4.94		0.9991	0.0029	1.01766	0.00074	
LEU-SOL-THERM-002	1	UO2F2	1098.3	4 89		1 0038	0.0040	1.00232	0.00059	
SHEBA	2	UO2F2	1001.3	4.89		1.0024	0.0037	0.99842	0.00060	
	3	UO2F2	1001.3	4.89		1.0024	0.0044	1.00296	0.00066	
LEU-SOL-THERM-003	1	$UO_2(NO_3)_2$	770.3	10.07		0.9997	0.0039	0.99775	0.00096	
IPPE	2	$UO_2(NO_3)_2$	877.6	10.07		0.9993	0.0032	1.00524	0.00073	
IIIE	2	$UO_2(NO_3)_2$	807.0	10.07		0.0005	0.0042	1.00524	0.00073	
	4	$UO_2(NO_3)_2$	013.2	10.07		0.9995	0.0042	1.00022	0.00071	
		$UO_2(NO_3)_2$	1173 /	10.07		0.9997	0.0042	1.00548	0.00071	
	5	$UO_2(NO_3)_2$	1212.1	10.07		0.0000	0.0048	1.00700	0.00073	
	7	$UO_2(NO_3)_2$	1213.1	10.07		0.9999	0.0049	1.00709	0.00074	
	/	$UO_2(NO_3)_2$	1411.6	10.07		0.9994	0.0049	1.011/4	0.00100	
	0	$UO_2(NO_3)_2$	1411.0	10.07		0.9993	0.0032	1.01505	0.00080	
	9	$UO_2(NO_3)_2$	1457.5	10.07	-10	0.9996	0.0032	1.01621	0.00090	
LEU-SOL-THERM-004	1	$UO_2(NO_3)_2$	/19.0	9.97	水	0.9994	0.0008	1.00563	0.000/1	
SIACY 円柱体系	29	$UO_2(NO_3)_2$	//1.3	9.97	水	0.9999	0.0009	1.00835	0.00070	
(60cm 徑)	33	$UO_2(NO_3)_2$	842.2	9.97	水	0.9999	0.0009	1.00594	0.00069	
	34	UO2(NO3)2	895.8	9.97	水	0.9999	0.0010	1.00782	0.00058	
	46	UO2(NO3)2	941.7	9.97	水	0.9999	0.0010	1.00792	0.00065	
	51	UO2(NO3)2	983.6	9.97	水	0.9994	0.0011	1.00647	0.00057	
	54	UO2(NO3)2	1017.6	9.97	水	0.9996	0.0011	1.00593	0.00058	
LEU-SOL-THERM-005	1	UO2(NO3)2	972.2	5.64	水	1.0000	0.0042	1.01257	0.00097	B ₄ C 吸収棒
IPPE	2	UO2(NO3)2	972.2	5.64	水	1.0000	0.0051	1.00801	0.00093	B ₄ C 吸収棒
	3	UO2(NO3)2	972.2	5.64	水	1.0000	0.0064	1.00960	0.00086	B ₄ C 吸収棒
LEU-SOL-THERM-006	1	UO2(NO3)2	531.5	10.07	水	1.0000	0.0037	1.00672	0.00082	B ₄ C 吸収棒
IPPE	2	UO2(NO3)2	531.5	10.07	水	1.0000	0.0038	1.00054	0.00095	B ₄ C 吸収棒
	3	UO2(NO3)2	531.5	10.07	水	1.0000	0.0041	1.00284	0.00090	B ₄ C 吸収棒
	4	UO2(NO3)2	531.5	10.07	水	1.0000	0.0041	1.00435	0.00086	B4C 吸収棒
	5	UO2(NO3)2	531.5	10.07	水	1.0000	0.0047	1.00523	0.00093	B ₄ C 吸収棒
LEU-SOL-THERM-007	14	UO2(NO3)2	709.2	9.97		0.9961	0.0009	0.99699	0.00059	
STACY 円柱体系	30	UO2(NO3)2	770.0	9.97		0.9973	0.0009	1.00634	0.00061	
(60cm 径)	32	UO2(NO3)2	842.2	9.97		0.9985	0.0010	1.00161	0.00056	
	36	UO2(NO3)2	896.0	9.97		0.9988	0.0011	1.00477	0.00058	
	49	UO2(NO3)2	942.2	9.97		0.9983	0.0011	1.00426	0.00055	
LEU-SOL-THERM-008	74(C50)	UO2(NO3)2	954.8	9.97	コンクリート	1.0002	0.0015	1.00781	0.00052	
STACY 円柱体系	76(C100)	UO2(NO3)2	954.8	9.97	コンクリート	0.9999	0.0014	1.00842	0.00060	
(60cm 径)	78(C200)	UO2(NO3)2	950.7	9.97	コンクリート	0.9999	0.0014	1.00852	0.00052	
	72(C300)	UO2(NO3)2	956.4	9.97	コンクリート	0.9999	0.0014	1.00837	0.00059	
LEU-SOL-THERM-009	92(B010)	UO2(NO3)2	935.8	9.97	ホーロンコンクリート	0.9998	0.0014	1.00576	0.00057	
STACY 円柱体系	93(B050)	UO2(NO3)2	934.1	9.97	ホーロンコンクリート	0.9999	0.0014	1.00736	0.00062	
(60cm 径)	94(B155)	UO2(NO3)2	933.5	9.97	ホーロンコンクリート	0.9999	0.0014	1.00663	0.00055	
LEU-SOL-THERM-010	83(P30)	UO2(NO3)2	946.2	9.97	ポリエチレン	0.9999	0.0015	1.00651	0.00059	
STACY 円柱体系	85(P60)	UO2(NO3)2	944.8	9.97	ポリエチレン	0.9999	0.0014	1.00851	0.00055	
(60cm 径)	86(P100)	UO2(NO3)2	943.6	9.97	ポリエチレン	1.0000	0.0014	1.00735	0.00056	
	88(P200)	UO2(NO3)2	941.7	9.97	ポリエチレン	1.0001	0.0014	1.00687	0.00058	
LEU-SOL-THERM-016	105	$UO_2(NO_3)_2$	468 7	9 97	7K	0 9996	0.0013	1.01352	0.00079	
STACY 平板体系	113	$UO_2(NO_3)_2$	514.2	9.97	水	0.9999	0.0013	1.01332	0.00085	
	125	$UO_2(NO_3)_2$	608.4	9.97	7K	0 9994	0.0014	1 01261	0.00078	
	129	$UO_2(NO_3)_2$	650.2	9.97	水	0.9996	0.0014	1 01065	0.00086	
	131	$UO_2(NO_3)_2$	699 1	9,97	1 K	0.9995	0.0014	1.01027	0.00074	
	140	$UO_2(NO_3)_2$	738.9	9.97	7K	0.9992	0.0015	1 00886	0.00072	
	196	$UO_2(NO_3)_2$	771.8	9.97	水	0.9994	0.0015	1.00976	0.00077	<u></u>
LEU-SOL-THERM-017	104	$UO_2(NO_3)_2$	468 7	9.97	~1~	0.9981	0.0013	1.01135	0.00070	
STACY 平板体系	122	$UO_2(NO_3)_2$	510.8	9.97		0.9986	0.0013	1.00983	0.00072	
	122	$UO_2(NO_3)_2$	610.9	9.97		0.9989	0.0013	1.00700	0.00072	
	125	$UO_2(NO_2)_2$	650.1	9.97		0.9907	0.0014	1.00777	0.00077	
	120	$UO_2(NO_3)_2$	690.2	9.07		0.9987	0.0015	1.00886	0.00064	
	147	$UO_2(NO_3)_2$	729.0	9.97		0.9996	0.0015	1.00909	0.00063	

ICEDED ID anather	ケース	燃料	11/11 225	濃縮度	同时体	ベンチマーク	モデル keff	計算	結果	供求
ICSBEP ID number	番号	化学式	H/U-255	(wt%)	区别评	keff	1σ	keff	1σ	脯朽
LEU-COMP-THERM-049	1	UO2(粉末)	39.94	4.98	ポリエチレン	1.0000	0.0034	1.00504	0.00077	
MARACAS	2	UO2(粉末)	39.94	4.98	ポリエチレン	1.0000	0.0034	1.00606	0.00077	
	3	UO2(粉末)	39.94	4.98	ポリエチレン	1.0000	0.0034	1.00405	0.00075	
	4	UO2(粉末)	39.94	4.98	ポリエチレン	1.0000	0.0034	1.00603	0.00076	
	5	UO2(粉末)	49.95	4.98	ポリエチレン	1.0000	0.0042	1.00636	0.00078	
	6	UO2(粉末)	49.95	4.98	ポリエチレン	1.0000	0.0042	1.00803	0.00074	
	7	UO2(粉末)	49.95	4.98	ポリエチレン	1.0000	0.0042	1.00626	0.00074	
	8	UO2(粉末)	49.95	4.98	ポリエチレン	1.0000	0.0042	1.00531	0.00080	
	9	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0037	1.00383	0.00080	
	10	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0037	1.00695	0.00073	
	11	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0037	1.00540	0.00073	
	12	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0037	1.00641	0.00076	
	13	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0036	1.00491	0.00077	
	14	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0036	1.00495	0.00075	
	15	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0036	1.00672	0.00076	
	16	UO2 (粉末)	59.68	4.98	ポリエチレン	1.0000	0.0036	1.00520	0.00080	
	17	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0036	1.00666	0.00084	
	18	UO2(粉末)	59.68	4.98	ポリエチレン	1.0000	0.0030	1.00697	0.00079	

表 6.1(2) 均質低濃縮ウラン系臨界ベンチマーク解析結果

表 6.2 均質高濃縮ウラン系臨界ベンチマーク解析結果

	ケース	燃料	11/11 025	濃縮度	亡时任	ベンチマーク	モデル keff	計算	結果	/地 士.
ICSBEP ID number	番号	化学式	H/U-235	(wt%)	反射体	keff	1σ	keff	1σ	佩考
HEU-SOL-THERM-009	1	UO2F2	35.84	93.18	水	1.0000	0.0057	1.01582	0.00104	
ORNL	2	UO ₂ F ₂	47.23	93.18	水	1.0000	0.0057	1.01359	0.00099	
	3	UO ₂ F ₂	76.08	93.18	水	1.0000	0.0057	1.01175	0.00103	
	4	UO2F2	126.47	93.18	水	1.0000	0.0057	1.00601	0.00106	
HEU-SOL-THERM-010	1	UO2F2	269.97	93.13	水	1.0000	0.0018	1.00953	0.00100	
ORNL										
HEU-SOL-THERM-011	1	UO ₂ F ₂	523.41	93.18	水	1.0000	0.0020	1.01024	0.00089	
ORNL	2	UO2F2	533.12	93.18	水	1.0000	0.0020	1.00788	0.00092	
HEU-SOL-THERM-012	1	UO ₂ F ₂	1272.25	93.18	水	0.9999	0.0058	1.00472	0.00064	
ORNL										
HEU-SOL-THERM-014	1	UO2(NO3)2	405.00	89.04	水	1.0000	0.0028	0.99843	0.00089	
IPPE		. ,								
HEU-SOL-THERM-015	1	UO2(NO3)2	278.39	89.04	水	1.0000	0.0032	1.00703	0.00100	
IPPE	2	UO2(NO3)2	278.39	89.04	水	1.0000	0.0034	0.99709	0.00092	
HEU-SOL-THERM-016	1	$UO_2(NO_3)_2$	175.20	89.04	水	1.0000	0.0036	0.99863	0.00103	
IPPE	-									
HEU-SOL-THERM-017	1	UO2(NO3)2	132.79	89.04	水	1.0000	0.0028	0.99987	0.00103	
IPPE	2	$UO_2(NO_3)_2$	132.79	89.04	水	1.0000	0.004	0.99188	0.00106	
	3	UO2(NO3)2	132.79	89.04	水	1.0000	0.0036	0.98842	0.00099	
HEU-SOL-THERM-018	1	$UO_2(NO_3)_2$	86.03	89.04	水	1.0000	0.0034	1.00157	0.00106	
IPPE	2	$UO_2(NO_3)_2$	86.03	89.04	水	1.0000	0.0046	0.99604	0.00098	
	3	UO2(NO3)2	86.03	89.04	水	1.0000	0.0042	1.00142	0.00103	
HEU-SOL-THERM-019	1	$UO_2(NO_3)_2$	54.72	89.04	水	1.0000	0.0041	1.00903	0.00107	
IPPE	-	0 02(1103)2	02	0,101	/3*	110000	010011	1.00702	0.00107	
HEU-SOL-THERM-025	1	UO2(NO3)2	555.76	89.04	水	1.0002	0.0025	1.00712	0.00083	
IPPE	2	UO2(NO3)2	555.76	89.04	水	1.0007	0.0025	1.00736	0.00090	
	4	UO2(NO3)2	534.62	89.04	水	1.0003	0.0027	1.00943	0.00084	
	5	UO2(NO3)2	367.79	89.04	水	1.0013	0.003	1.00996	0.00091	
HEU-SOL-THERM-028	1	UO2(NO3)2	374.56	89.08	水	1.0000	0.0023	1.00477	0.00098	
IPPE	2	UO2(NO3)2	374.56	89.08	水	1.0000	0.0034	1.00437	0.00094	
	3	UO2(NO3)2	374.56	89.08	水	1.0000	0.0026	1.00609	0.00105	
	4	UO2(NO3)2	374.56	89.08	水	1.0000	0.0028	1.00594	0.00093	B4C
	5	UO2(NO3)2	374.56	89.08	水	1.0000	0.0031	1.00127	0.00099	-
	6	UO2(NO3)2	374.56	89.08	水	1.0000	0.0023	1.00570	0.00092	B4C
	7	UO2(NO3)2	374.56	89.08	水	1.0000	0.0038	1.00589	0.00094	
	8	UO2(NO3)2	374.56	89.08	水	1.0000	0.0027	1.00555	0.00088	B4C
	9	UO2(NO3)2	91.48	89.08	水	1.0000	0.0049	1.00534	0.00096	
	10	UO2(NO3)2	91.48	89.08	水	1.0000	0.0053	1.00112	0.00106	B4C
	11	UO2(NO3)2	91.48	89.08	水	1.0000	0.0051	1.00860	0.00098	
	12	UO2(NO3)2	91.48	89.08	水	1.0000	0.0046	1.00199	0.00090	B4C
	13	UO2(NO3)2	91.48	89.08	水	1.0000	0.0058	1.00562	0.00098	
	14	UO2(NO3)2	91.48	89.08	水	1.0000	0.0046	1.00439	0.00101	B4C
	15	UO2(NO3)2	91.48	89.08	水	1.0000	0.0064	1.01442	0.00098	
	16	UO2(NO3)2	91.48	89.08	水	1.0000	0.0052	1.00869	0.00105	B4C
	17	UO2(NO3)2	91.48	89.08	水	1.0000	0.0066	1.00425	0.00104	
	18	UO2(NO3)2	91.48	89.08	水	1.0000	0.0060	1.00575	0.00094	B4C
HEU-SOL-THERM-029	1	UO2(NO3)2	91.48	89.08	水	1.0000	0.0066	1.00805	0.00096	
IPPE	2	UO2(NO3)2	91.48	89.08	水	1.0000	0.0058	1.01057	0.00090	B4C
	3	UO2(NO3)2	91.48	89.08	水	1.0000	0.0068	1.00201	0.00102	B4C
	4	UO2(NO3)2	91.48	89.08	水	1.0000	0.0074	0.99989	0.00103	B4C
	5	UO2(NO3)2	91.48	89.08	水	1.0000	0.0067	1.00732	0.00098	B4C
	6	UO2(NO3)2	91.48	89.08	水	1.0000	0.0065	1.00726	0.00099	B4C
	7	UO2(NO3)2	91.48	89.08	水	1.0000	0.0063	1.00813	0.00099	B4C
HEU-SOL-THERM-030	1	UO2(NO3)2	374.56	89.08	水	1.0000	0.0039	1.00514	0.00099	
IPPE	2	UO2(NO3)2	374.56	89.08	水	1.0000	0.0032	1.00392	0.00093	B4C
	3	UO2(NO3)2	374.56	89.08	水	1.0000	0.0031	1.00346	0.00093	B4C
	4	UO2(NO3)2	91.14	89.08	水	1.0000	0.0064	1.01140	0.00099	
	5	UO2(NO3)2	91.14	89.08	水	1.0000	0.0058	1.00617	0.00100	
	6	UO2(NO3)2	91.14	89.08	水	1.0000	0.0059	1.00622	0.00100	B4C
	7	UO2(NO3)2	91.14	89.08	水	1.0000	0.0064	1.00642	0.00103	B4C

表 6.3 均質プルトニウム系臨界ベンチマーク計算結果

ICSBEP ID number	ケース	H/Pu-239	Pu-239/Pu	反射体	ベンチマーク	モデル keff	計算	〔結果	備考
	番号		(wt%)		keff	1σ	keff	1σ	
PU-MET-FAST-009			94.80	アルミニウム	1.0000	0.0027			
LANL							0.99986	0.00060	
PU-MET-FAST-011			94.46	水	1.000	0.001			
LANL							0.99900	0.00120	
PU-MET-FAST-021	Be-Reflected		95.21	Be	1.0000	0.0026	1.00400	0.00070	
VNIIEF	BeO-Reflected		95.21	BeO	1.0000	0.0026	0.99300	0.00070	
PU-MET-FAST-023			98.20	グラファイト	1.0000	0.0020	0 99500	0.00060	
PULMET_FAST_024			98.20	ポリエチレン	1.0000	0.0020	0.77500	0.00000	
VNIIEF			98.20	N()_) 00	1.0000	0.0020	0.99800	0.00060	
PU-MET-FAST-025			98.20	steel	1.0000	0.0020			
VNIIEF							0.99648	0.00060	
PU-MET-FAST-027			89.66	ポリエチレン	1.0000	0.0022			
VNIIEF							1.00000	0.00070	
PU-MET-FAST-028			89.66	steel	1.0000	0.0022			
VNIIEF							1.00100	0.00060	
PU-MET-FAST-030			88.87	グラファイト	1.0000	0.0021			
VNIIEF							0.99900	0.00060	
PU-MET-FAST-032			88.87	steel	1.0000	0.0020	0.00000	0.00070	
VNIEF			00.04	1 1 . 1	1.0000	0.0016	0.99800	0.00070	
PU-MEI-FASI-041			88.24	depleted-U	1.0000	0.0016	0.00800	0.00070	
VINIEF	1	799.0	08.24	-t~	1.0000	0.0047	1.00700	0.00070	
PU-SOL-THERM-005 Hanford	1	756.0	98.24	小	1.0000	0.0047	1.00700	0.00090	
DU SOL THEDM 004	1	087.0	98.24	- 水	1.0000	0.0047	1.00000	0.00090	
Hanford	2	987.0	99.40		1.0000	0.0047	1.00800	0.00090	
manora	2	970.9	99.40	小	1.0000	0.0047	1.00400	0.00090	
	3	934.0 888.0	99.40		1.0000	0.0047	1.00400	0.00090	
	5	042.0	99.40		1.0000	0.0047	1.00300	0.00090	
PU-SOL-THERM-005	1	902.8	95.95	水	1.0000	0.0047	1.00219	0.00090	
Hanford	2	867.7	95.95	水	1.0000	0.0047	1.00217	0.00083	
	3	834.4	95.95	水	1.0000	0.0047	1.00410	0.00094	
	4	765.2	95.95	水	1.0000	0.0047	1.00973	0.00085	
	5	694.1	95.95	水	1.0000	0.0047	1.00973	0.00083	
	6	633.4	95.95	水	1.0000	0.0047	1.01026	0.00087	
	7	580.6	95.95	水	1.0000	0.0047	1.00795	0.00085	
	8	868.7	95.60	水	1,0000	0.0047	1.00755	0.00089	
	9	825.1	95.60	水	1,0000	0.0047	1.00589	0.00082	
PU-SOL-THERM-006	1	1061.1	96.88	水	1.0000	0.0035	1.00400	0.00090	
Hanford	2	1017.8	96.88	水	1.0000	0.0035	1.00600	0.00090	
	3	940.1	96.88	水	1.0000	0.0035	1.00700	0.00090	
PU-SOL-THERM-007	2	109.2	95.01	水	1.0000	0.0047	1.00426	0.00092	
PNL	3	113.6	95.01	水	1.0000	0.0047	1.00016	0.00092	
	5	266.7	95.01	水	1.0000	0.0047	1.00594	0.00092	
	6	261.2	95.01	水	1.0000	0.0047	0.99907	0.00090	
	7	264.9	95.01	水	1.0000	0.0047	1.00159	0.00091	
	8	257.6	95.01	水	1.0000	0.0047	0.99690	0.00092	
	9	258.9	95.01	水	1.0000	0.0047	0.99437	0.00092	
	10	284.1	95.01	水	1.0000	0.0047	0.99914	0.00091	
PU-SOL-THERM-010	9-1	266.9	97.15	水	1.0000	0.0048	1.02006	0.00096	
Hanford	9-2	356.9	97.15	水	1.0000	0.0048	1.01648	0.00085	
	9-3	484.2	97.15	水	1.0000	0.0048	1.01131	0.00082	
	12-1	543.4	97.10	水	1.0000	0.0048	1.01155	0.00093	
	12-2	618.3	97.10	水	1.0000	0.0048	1.01463	0.00090	
	12-3	728.1	97.10	水	1.0000	0.0048	1.02005	0.00084	
	12-4	849.7	97.10	水	1.0000	0.0048	1.01450	0.00083	

注)燃料の化学式は以下のとおり。

PU-MET-FAST:金属 Pu

PU-SOL-THERM : Pu(NO₃)₄

ICSBEP ID number	ケース	H/(U+Pu)	Pu 富化度	反射体	ベンチマーク	ウモデル keff	計算	結果	備考
	番号		(wt%)		keff	1σ	keff	1σ	
MIX-SOL-THERM-004	065	654.4	39.68	裸	1.0000	0.0033	1.00211	0.00096	
PNL(PNC-DOE, 円筒)	066	650.7	39.69	水	1.0000	0.0033	0.99897	0.00081	
	067	651.7	39.69	コンクリート	1.0000	0.0068	1.00211	0.00079	
	068	211.3	40.56	コンクリート	1.0000	0.0078	1.00387	0.00087	
	069	210.1	40.53	水	1.0000	0.0029	0.99653	0.00084	
	070	210.7	40.52	裸	1.0000	0.0029	0.99821	0.00096	
	077	134.7	39.64	裸	1.0000	0.0026	0.99912	0.00077	
	078	134.5	39.69	水	1.0000	0.0026	0.99684	0.00076	
	083	134.0	39.72	コンクリート	1.0000	0.0077	1.00353	0.00078	
MIX-SOL-THERM-005	063	664.2	39.50	裸	1.0000	0.0037	0.99792	0.00081	
PNL(PNC-DOE, 平板)	064	651.1	39.81	水	1.0000	0.0037	1.00282	0.00084	
	071	210.9	40.66	水	1.0000	0.0037	1.00271	0.00087	
	072	210.9	40.66	水	1.0000	0.0037	0.99964	0.00085	
	074	210.3	40.62	裸	1.0000	0.0037	0.99171	0.00088	
	075	134.3	39.66	裸	1.0000	0.0037	0.99051	0.00091	
	076	134.3	39.64	水	1.0000	0.0037	0.99781	0.00078	
MIX-SOL-THERM-001	087	226.6	21.86	水	1.0000	0.0016	0.99649	0.00086	2wt%B4C-Conc.
PNL(PNC-DOE, 円環)	087s	224.8	21.96	水	1.0000	0.0016	0.99734	0.00084	
	100	335.9	22.78	水	1.0000	0.0052	1.00994	0.00088	Cd-Poly(中実)
	091	46.29	22.13	水	1.0000	0.0016	0.99212	0.00079	0wt%B4C-Conc.
	092	45.21	22.16	水	1.0000	0.0016	0.99769	0.00087	1wt%B4C-Conc.
	093	44.16	22.14	水	1.0000	0.0016	1.00044	0.00082	6wt%B4C-Conc.
	094	44.08	22.16	水	1.0000	0.0016	1.00143	0.00076	
	098	73.00	22.73	水	1.0000	0.0016	1.00085	0.00088	2wt%B4C-Conc.
	099	72.01	22.73	水	1.0000	0.0052	1.00775	0.00086	Cd-Poly
	108	116.35	22.55	水	1.0000	0.0016	1.00034	0.00081	2wt%B4C-Conc.
	095	110.44	96.78	水	1.0000	0.0016	1.00241	0.00084	2wt%B4C-Conc.
	096	213.22	96.66	水	1.0000	0.0016	1.00078	0.00091	2wt%B4C-Conc.
	097	418.64	96.20	水	1.0000	0.0016	1.00437	0.00087	2wt%B4C-Conc.

表 6.4 均質ウラン・プルトニウム系臨界ベンチマーク解析結果

注) 燃料の化学式はすべて UO2 (NO3) 2-Pu(NO3)4 である。

表 6.5(1) 非均質ウラン系臨界ベンチマーク解析結果

ICSBEP ID number	ケース	燃料棒	水対燃料	濃縮度	燃料棒	ベンチマーク	ウモデル keff	計算結果		備考
	番号	直径	体積比	(wt%)	本数	keff	10	keff	1σ	110 5
	1	(cm)	11 DATE	(1 224		10	nom	10	
I FU_COMP_THERM_002	1	1 265	3 887	4 31	$10 \times 11 \pm 5$	0 9997	0.0020	1.00150	0.00081	
PNI	2	1.265	3.882	4 31	0x11+3	0.9997	0.0020	1.00150	0.00083	
THE .	3	1.265	3.882	4 31	9x15+3	0.9997	0.0020	1.00202	0.000000	
	1	1.265	3.882	4 31	15x8x3	0.9997	0.0018	1.00240	0.00084	
	5	1.265	3.882	4.31	13x8x3	0.9997	0.0010	0.00800	0.00082	
LEU COMP THEPM 006	1	1.205	1.447	2.506	10-10	1,000	0.001	1.00127	0.00032	
TCA	1	1.25	1.447	2.590	19X19 20x20	1.000	0.002	1.00127	0.00077	
ICA	2	1.25	1.447	2.590	20x20	1.000	0.002	1.00140	0.00077	
	3	1.25	1.447	2.590	21X21	1.000	0.002	1.00020	0.00078	
	4	1.25	1.766	2.596	1/X1/	1.000	0.002	1.001//	0.00082	
	5	1.25	1.766	2.596	18x18	1.000	0.002	0.99949	0.00078	
	6	1.25	1.766	2.596	19x19	1.000	0.002	1.00097	0.00079	
	/	1.25	1.766	2.596	20x20	1.000	0.002	1.00313	0.00080	
	8	1.25	1.766	2.596	21x21	1.000	0.002	1.00278	0.00081	
	9	1.25	2.392	2.596	16X16	1.000	0.002	1.00260	0.00080	
	10	1.25	2.392	2.596	1/X1/	1.000	0.002	1.00210	0.00075	
	11	1.25	2.392	2.596	18x18	1.000	0.002	1.00138	0.00078	
	12	1.25	2.392	2.596	19x19	1.000	0.002	1.00199	0.000/1	
	13	1.25	2.392	2.596	20x20	1.000	0.002	1.00076	0.00082	
	14	1.25	2.891	2.596	15x15	1.000	0.002	1.00094	0.00077	
	15	1.25	2.891	2.596	16x16	1.000	0.002	1.00164	0.00076	
	16	1.25	2.891	2.596	1/x1/	1.000	0.002	1.00069	0.00073	
	1/	1.25	2.891	2.596	18x18	1.000	0.002	1.00130	0.00079	
	18	1.25	4.13	2.596	19x19	1.000	0.002	0.99998	0.00077	
LEU-COMP-THERM-00/	1	0.79	1.82	4.738	22 x 22	1.0000	0.0016	1.00189	0.00078	boron
I.P.S.N. at SRSC Valduc,	2	0.79	3.81	4.738	16 x 17	1.0000	0.0016	1.00363	0.00089	(5.0e-5 wt%)
C.E.A.	3	0.79	7.58	4.738	15 x 15	1.0000	0.0016	1.00141	0.00083	
	4	0.79	11.54	4.738	18 x 17	1.0000	0.0016	1.00081	0.00073	
LEU-COMP-THERM-016	1	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99964	0.00069	
PNL					(68.8mm)*					
	2	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99931	0.00070	
					(76.4mm)*					
	3	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99813	0.00071	
					(75.1mm)*					
	4	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99796	0.00071	
	_				(74.2mm)*	1 0000				
	5	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99968	0.00074	
			2 0 1 0	2.25	(//.6mm)*	1.0000	0.0001	0.00550	0.00070	
	6	1.12	2.918	2.35	$20 \times 1/ \times 3$	1.0000	0.0031	0.99770	0.00078	
	7	1.10	2 0 1 9	2.25	(104.4mm)*	1.0000	0.0021	0.00007	0.00072	
	/	1.12	2.918	2.35	$20 \times 1/ \times 3$ (114.7mm)*	1.0000	0.0031	0.99996	0.00073	
	0	1.12	2.019	2.25	$(114.71111)^{-1}$	1.0000	0.0021	0.00084	0.00076	204L steel
	0	1.12	2.918	2.33	$20 \times 17 \times 3$ (75 6mm)*	1.0000	0.0031	0.99964	0.00070	(1.1% P)
	Q	1 1 2	2 018	2 35	$20 \times 17 \times 3$	1.0000	0.0031	1 00120	0.00077	(1.1/0 D)
	,	1.12	2.910	2.55	(96.2 mm)*	1.0000	0.0051	1.00127	0.00077	
	10	1.12	2 918	2 35	$20 \times 17 \times 3$	1.0000	0.0031	0.99872	0.00073	304L steel
	10	1.12	2.910	2.55	(73 6mm)*	1.0000	0.0051	0.77072	0.00075	(1.6% B)
	11	1.12	2.918	2.35	$20 \times 17 \times 3$	1 0000	0.0031	1 00076	0.00075	(110/0 2)
			2.710	2.00	(95.2mm)*	1.0000	0.0001	1.00070	0.00075	
	12	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	0.99879	0.00074	Boral
					(63.3mm)*					
	13	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	0.99984	0.00072	Boral
	-				(90.3mm)*					
	14	1.12	2.918	2.35	20 x 16,	1.0000	0.0031	1.00051	0.00074	Boral
					22 x 16 x 2			-		
					(50.5mm)*					
	15	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99868	0.00072	
					(66.2mm)*					
	16	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99615	0.00069	
					(77.2mm)*					

注)燃料の化学式はすべて UO2 である。

* クラスター間の距離を示す。

表 6.5(2) 非均質ウラン系臨界ベンチマーク解析結果

ICSBEP ID number	ケース	燃料棒	水対燃料	濃縮度	燃料棒	ベンチマー	クモデル keff	計算	結果	備考
	番号	直径	体積比	(wt%)	本数	keff	1σ	keff	1σ	
		(cm)								
LEU-COMP-THERM-016	17	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99681	0.00073	
PNL					(75.1mm)*					
	18	1.12	2.918	2.35	20 x 15,	1.0000	0.0031	1.00017	0.00071	
					24 x 15 x 2					
					(68.8mm)*					
	19	1.12	2.918	2.35	20 x 15,	1.0000	0.0031	1.00071	0.00070	
					24 x 15 x 2					
					(70.0mm)*					
	20	1.12	2.918	2.35	20 x 15,	1.0000	0.0031	1.00144	0.00077	Cu (Cd)
					24 X 15 X 2					
	21	1.12	2.018	2.25	$(31.51111)^{*}$	1.0000	0.0021	0.00068	0.00074	Cd
	21	1.12	2.910	2.55	$(67.4 \text{mm})^*$	1.0000	0.0051	0.99908	0.00074	Cu
	22	1.12	2 918	2 35	$20 \times 17 \times 3$	1.0000	0.0031	1 00036	0.00075	Cd
	22	1.12	2.910	2.55	(76.0mm)*	1.0000	0.0051	1.00050	0.00075	Cu
	23	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	0.99902	0.00078	Cd
					(93.7mm)*					
	24	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	0.99958	0.00072	Cd
					(77.8mm)*					
	25	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	0.99899	0.00071	Cd
					(94.0mm)*					
	26	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	1.00006	0.00073	Cd
					(75.4mm)*					
	27	1.12	2.918	2.35	20 x 17 x 3	1.0000	0.0031	1.00000	0.00070	Cd
					(93.9mm)*					
	28	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99895	0.00071	
					(86.7mm)*					
	29	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	0.99897	0.00076	
					(87.8mm)*					
	30	1.12	2.918	2.35	20 x 16 x 3	1.0000	0.0031	1.00095	0.00075	
	21	1.10	2.019	2.25	(88.3mm)*	1.0000	0.0021	1.00126	0.00072	
	51	1.12	2.918	2.35	$20 \times 10 \times 3$ (87.0mm)*	1.0000	0.0031	1.00126	0.00073	
	32	1.12	2.018	2.35	$(37.91111)^{-1}$	1.0000	0.0031	0.00070	0.00072	
	52	1.12	2.910	2.55	20 x 10 x 3 (87 8mm)*	1.0000	0.0031	0.99970	0.00072	
LEU-COMP-THERM-018	1	0.743	2 764	7	376	1.0000	0.0020	1.00426	0.00095	
AEA Technology	1	0.745	2.704	'	570	1.0000	0.0020	1.00420	0.00075	
LEU-COMP-THERM-019	1	0.436	1 527	5	3937	1 0000	0.0063	1 01850	0.00092	
Kurchatov Institute	2	0.436	2 397	5	2124	1.0000	0.0058	1 01418	0.00101	
	3	0.436	10.054	5	1319	1.0000	0.0061	1.01064	0.00085	
LEU-COMP-THERM-020	1	0.46	7 048	5	3267	1 0000	0.0061	0 99775	0.00096	
Kurchatov Institute	2	0.46	7.048	5	1305	1.0000	0.0061	1.00524	0.00073	
	3	0.46	7.048	5	1051	1.0000	0.0061	1.00622	0.00099	
	4	0.46	7.048	5	952	1.0000	0.0061	1.00575	0.00071	
	5	0.46	7.048	5	842	1.0000	0.0061	1.00548	0.00073	
	6	0.46	7.048	5	785	1.0000	0.0061	1.00709	0.00074	
	7	0.46	7.048	5	654	1.0000	0.0061	1.01174	0.00100	
LEU-COMP-THERM-021	1	0.46	3.453	5	2612	1.0000	0.0072	1.01503	0.00086	Boric Acid
Kurchatov Institute	2	0.46	3.453	5	2300	1.0000	0.0072	1.01621	0.0009	Boric Acid
	3	0.46	3.453	5	2128	1.0000	0.0072	1.01587	0.00089	Boric Acid
	4	0.46	7.048	5	3267	1.0000	0.0050	1.01326	0.00076	Boric Acid
	5	0.46	7.048	5	2865	1.0000	0.0050	1.01528	0.00075	Boric Acid
	6	0.46	7.048	5	2307	1.0000	0.0050	1.01535	0.00075	Boric Acid
LEU-COMP-THERM-022	1	0.416	1.619	10	1969	1.0000	0.0046	1.00739	0.00095	
Kurchatov Institute	2	0.416	2.575	10	1151	1.0000	0.0046	1.01140	0.00096	
	3	0.416	4.869	10	629	1.0000	0.0036	1.01261	0.00095	
	4	0.416	7.981	10	462	1.0000	0.0037	1.01257	0.00097	
	5	0.416	10.986	10	410	1.0000	0.0038	1.00801	0.00093	
	6	0.416	19.835	10	483	1.0000	0.0046	1.00960	0.00086	
	7	0.416	20.352	10	504	1.0000	0.0046	1.00672	0.00082	

注)燃料の化学式はすべて UO2 である。

* クラスター間の距離を示す。

表 6.5(3) 非均質ウラン系臨界ベンチマーク解析結果

ICSBEP ID number	ケース	燃料棒	水対燃料	濃縮度	燃料棒	ベンチマー	クモデル keff	計算	結果	備考
	番号	直径	体積比	(wt%)	本数	keff	1σ	keff	1σ	
		(cm)								
LEU-COMP-THERM-023	1	0.416	10.986	10	1503	1.0000	0.0044	1.00054	0.00095	
Kurchatov Institute	2	0.416	10.986	10	901	1.0000	0.0044	1.00284	0.00090	
	3	0.416	10.986	10	745	1.0000	0.0044	1.00435	0.00086	
	4	0.416	10.986	10	619	1.0000	0.0044	1.00523	0.00093	
	5	0.416	10.986	10	523	1.0000	0.0044	1.00754	0.00092	
	6	0.416	10.986	10	445	1.0000	0.0044	1.00816	0.00087	
LEU-COMP-THERM-024	1	0.416	1.325	10	2625	1.0000	0.0054	1.00674	0.00090	
Kurchatov Institute	2	0.416	4.153	10	1297	1.0000	0.004	1.01384	0.00094	
LEU-COMP-THERM-025	1	0.416	1.619	7.5	2410	1.0000	0.0041	0.99264	0.00090	
Kurchatov Institute	2	0.416	2.575	7.5	1433	1.0000	0.0044	1.00077	0.00091	
	3	0.416	4.869	7.5	831	1.0000	0.0047	1.00513	0.00093	
	4	0.416	7.981	7.5	661	1.0000	0.0052	1.00523	0.00086	
LEU-COMP-THERM-031	1	0.46	1.577	5	3717	1.0000	0.0045	0.99235	0.00085	
Kurchatov Institute	2	0.46	1.577	5	3710	1.0000	0.0045	0.99728	0.00089	
	3	0.46	1.577	5	3011	1.0000	0.0045	0.99685	0.00087	
	4	0.46	1.577	5	2903	1.0000	0.0045	0.99237	0.00087	
	5	0.46	1.577	5	2877	1.0000	0.0045	0.99422	0.00083	
	6	0.46	1.577	5	2649	1.0000	0.0045	0.99502	0.00083	
LEU-COMP-THERM-032	1	0.416	1.619	10	2002	1.0000	0.0045	1.00704	0.00096	
Kurchatov Institute	4	0.416	1.619	10	421	1.0000	0.0037	1.00762	0.00093	
	7	0.416	1.619	10	523	1.0000	0.0045	1.00663	0.00086	
LEU-COMP-THERM-039	1	0.79	1.8231	4.738	459	1.0000	0.0014	0.99998	0.00087	
I.P.S.N. at SRSC Valduc,	2	0.79	1.8231	4.738	448	1.0000	0.0014	1.00032	0.00089	
C.E.A.	3	0.79	1.8231	4.738	420	1.0000	0.0014	1.00295	0.00085	
	4	0.79	1.8231	4.738	392	1.0000	0.0014	0.99922	0.00089	
	5	0.79	1.8231	4.738	320	1.0000	0.0014	1.00072	0.00082	
	6	0.79	1.8231	4.738	363	1.0000	0.0014	1.00145	0.00092	
	7	0.79	1.8231	4.738	459	1.0000	0.0014	0.99910	0.00082	
	8	0.79	1.8231	4.738	448	1.0000	0.0014	1.00177	0.00088	
	9	0.79	1.8231	4.738	448	1.0000	0.0014	0.99896	0.00083	
	10	0.79	1.8231	4.738	420	1.0000	0.0014	1.00129	0.00092	
	11	0.79	1.8231	4.738	459	1.0000	0.0014	0.99857	0.00088	
	12	0.79	1.8231	4.738	459	1.0000	0.0014	0.99990	0.00083	
	13	0.79	1.8231	4.738	459	1.0000	0.0014	0.99978	0.00084	
	14	0.79	1.8231	4.738	459	1.0000	0.0014	0.99910	0.00093	
	15	0.79	1.8231	4.738	459	1.0000	0.0014	0.99936	0.00083	
	16	0.79	1.8231	4.738	459	1.0000	0.0014	1.00009	0.00086	
	17	0.79	1.8231	4.738	459	1.0000	0.0014	1.00147	0.00085	

注)燃料の化学式はすべて UO2 である。

* クラスター間の距離を示す。

表 6.6 非均質ウラン・プルトニウム系臨界ベンチマーク解析結果

ICSBEP ID number	ケース	燃料棒	水対燃	PuO ₂	燃料棒	ベンチマー	ウモデル keff	計算約	吉果	備考
	番号	直径	料体積	富化度	本数	keff	1σ	keff	1σ	I
		(cm)	比	(wt%)						
MIX-COMP-THERM-001	Case1	0.494	3.335	22.37	605	1.0000	0.0025	0.99905	0.00084	L
PNL	Case2	0.494	6.858	22.37	279	1.0000	0.0026	0.99835	0.00093	L
	Case3	0.494	10.881	22.37	205	1.0000	0.0032	0.99846	0.00091	
	Case4	0.494	17.534	22.37	162	1.0000	0.0039	0.99985	0.00088	I
MIX-COMP-THERM-002	PNL-30	1.283	1.195	2.04	469	1.0024	0.0060	0.99906	0.00079	
PNL	PNL-31	1.283	1.195	2.04	761	1.0009	0.0047	1.00088	0.00076	boron
	PNL-32	1.283	2.525	2.04	195	1.0042	0.0031	1.00174	0.00081	
	PNL-33	1.283	2.525	2.04	761	1.0024	0.0024	1.00790	0.00072	boron
	PNL-34	1.283	3.641	2.04	161	1.0038	0.0025	1.00217	0.00078	I
	PNL-35	1.283	3.641	2.04	689	1.0029	0.0027	1.00706	0.00067	boron
MIX-COMP-THERM-003	1	0.857	1.681	6.59	506	1.0000	0.0071	0.99912	0.00082	
CRX (Westinghouse)	2	0.857	2.165	6.59	361	1.0000	0.0057	1.00079	0.00086	
	3	0.857	2.165	6.59	441	1.0000	0.0052	1.00156	0.00083	boron
	4	0.857	4.706	6.59	169	1.0000	0.0028	0.99943	0.00088	
	5	0.857	5.672	6.59	144	1.0000	0.0024	0.99966	0.00089	
	6	0.857	10.754	6.59	121	1.0000	0.0020	1.00037	0.00090	
MIX-COMP-THERM-004	1	1.065	2.420	3.0	529	1.0000	0.0046	0.99583	0.00080	
TCA	2	1.065	2.420	3.0	529	1.0000	0.0046	0.99672	0.00082	
	3	1.065	2.420	2.8	529	1.0000	0.0046	0.99744	0.00073	
	4	1.065	2.976	3.0	441	1.0000	0.0039	0.99650	0.00075	
	5	1.065	2.976	3.0	441	1.0000	0.0039	0.99773	0.00078	
	6	1.065	2.976	3.0	441	1.0000	0.0039	0.99797	0.00079	
	7	1.065	4.239	3.0	400	1.0000	0.004	0.99688	0.00076	
	8	1.065	4.239	3.0	400	1.0000	0.004	0.99957	0.00073	
	9	1.065	4.239	3.0	400	1.0000	0.004	1.00002	0.00074	
	10	1.065	5.552	3.0	441	1.0000	0.0051	0.99853	0.00074	
	11	1.065	5.552	3.0	441	1.0000	0.0051	0.99861	0.00068	
MIX-COMP-THERM-005	1	1.264	2.219	3.99	253	1.0008	0.0022	1.00165	0.00076	
Hanford	2	1.264	2.853	3.99	179	1.0011	0.0026	0.99922	0.00076	
	3	1.264	3.912	3.99	139	1.0016	0.0029	1.00617	0.00067	
	4	1.264	4.820	3.99	122	1.0021	0.0028	1.00398	0.00071	
	5	1.264	7.558	3.99	124	1.0026	0.0036	1.00533	0.00071	
	6	1.264	10.405	3.99	181	1.0033	0.0042	1.00487	0.00065	
	7	1.264	11.875	3.99	272	1.0035	0.0042	1.00758	0.00061	
MIX-COMP-THERM-006	1	1 283	1 767	2.04	320	1 0016	0.0051	0.99831	0.00068	
Hanford	2	1.203	2.740	2.04	192	1.0017	0.0036	1 00160	0.00073	
Thumoru	3	1.203	3 767	2.04	152	1.0026	0.0036	0.99763	0.00073	
	4	1 283	4 649	2.04	148	1.0051	0.0044	1 00518	0.00074	 I
	5	1.203	6 534	2.04	163	1 0040	0.0054	1.00549	0.00067	 I
	6	1.203	7 306	2.04	180	1.0040	0.0051	1.00349	0.00066	
	7	1.203	3 767	2.04	151	1.0024	0.0045	0.99489	0.00066	
MIX-COMP-THERM-009	1	0.945	1 410	1.5	1/187	1.0024	0.0054	1.00086	0.00070	
PNI.	2	0.045	1 860	1.5	820	1.0005	0.0034	0.006/1	0.00070	
11112	3	0.945	3.017	1.5	18/	1.0020	0.0049	0.99041	0.00008	
	3	0.945	4 100	1.5	420	1.0055	0.0050	0.99800	0.00078	
	- + -	0.945	5 454	1.5	420	1.0040	0.0002	1 00110	0.00072	
	6	0.945	5 802	1.5	432	1.0057	0.0074	1.00119	0.00004	
1	0	0.745	5.072	1.5	-100	1.0007	0.0000	1.00147	0.00005	

注)燃料の化学式はすべて UO2 -PuO2 である。

 図 6.1 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (均質低濃縮ウラン系)

 図 6.2 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (均質高濃縮ウラン系)

図 6.3 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (均質プルトニウム系)

図 6.4 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (均質ウラン・プルトニウム系)

 図 6.5 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (非均質ウラン系)

図 6.6 MVP と JENDL-3.2 の組合せによる臨界ベンチマーク解析結果の頻度分布 (非均質ウラン・プルトニウム系)
謝辞

本報告書は、電源開発促進対策特別法に基づく文部科学省からの受託として旧原 子力研究所が行った研究成果「平成 15 年度文部科学省受託事業 再処理施設臨界 安全技術開発等 ①再処理施設臨界安全技術開発 成果報告書」に基づいています。 同成果報告書は、臨界安全性専門部会(下記の表に当時の専門部会の名簿を示す) の検討を受けてまとめたものです。ここに重ねて謝意を表し、同専門部会メンバー への謝辞といたします。また、須藤俊幸氏(核燃料サイクル技術開発部門 技術主 幹)には、原稿全体を閲読の上、いろいろと有益なコメントを戴きました。篤く感 謝いたします。

氏	名	職名	所 属 (当時)
山根	義宏	専門部会長	名古屋大学
三澤	毅	専門委員	京都大学
岩崎	智彦	同上	東北大学
松本	忠邦	同上	核燃料サイクル開発機構
須藤	俊幸	同上	核燃料サイクル開発機構
板原	國幸	同上	日本原燃(株)
中田	哲夫	同上	(財)原子力安全基盤機構
牧口	浩文	同上	(財)グローバル・ニュークリア・フュエル・ジャパン
夏目	智弘	同上	三菱重工業(株)
黒石	武	同上	原子燃料工業(株)
三橋	偉司	同上	(財)東芝
寺山	弘通	同上	三菱マテリアル
石井	一弥	同上	(財)日立製作所
松村	哲夫	同上	(財)電力中央研究所
金子	俊幸	同上	(財)日本総合研究所
藤根	幸雄	同上	日本原子力研究所
野村	靖	同上	日本原子力研究所
三好	慶典	同上	日本原子力研究所
櫻庭	耕一	同上	日本原子力研究所

臨界安全性専門部会名簿(平成15年度当時)

This is a blank page.

表 1. SI 基本単位								
SI 基本ì	SI 基本単位							
名称	記号							
メートル	m							
キログラム	kg							
秒	s							
アンペア	Α							
ケルビン	Κ							
モル	mol							
カンデラ	cd							
	<u>SI 基本単作</u> SI 基本社 名称 メートル キログラム 秒 アンペア ケルビン モ ル カンデラ							

	表 2.	. <u>ჰ</u>	专本单位	位を	を用いて表されるSI組立単	位の例	
如去早					SI 基本単位		
	小口	<u></u> .,	重		名称	記号	
面				積	平方メートル	m^2	
体				積	立法メートル	m^3	
速	さ	,	速	度	メートル毎秒	m/s	
加		速		度	メートル毎秒毎秒	m/s^2	
波				数	毎メートル	$m^{\cdot 1}$	
密	度,	質	量 密	度	キログラム毎立方メートル	kg/m^3	
面	積		密	度	キログラム毎平方メートル	kg/m^2	
比		体		積	立方メートル毎キログラム	m ³ /kg	
電	流		密	度	アンペア毎平方メートル	A/m^2	
磁	界	\mathcal{O}	強	さ	アンペア毎メートル	A/m	
量	濃 度	(a)	, 濃	度	モル毎立方メートル	mol/m ³	
質	量		濃	度	キログラム毎立法メートル	kg/m ³	
輝				度	カンデラ毎平方メートル	cd/m^2	
屈	护	ŕ	率	(b)	(数字の) 1	1	
HŁ	洒	瑞士	索	(b)	(数字の) 1	1	

(a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度 (substance concentration) ともよばれる。
 (b) これらは電気で最多ないは次元1をもっ量であるが、そのこと を表す単位記号である数字の1は通常は表記しない。

表3.固有の名称と記号で表されるSI組立単位

			SI 組立単位	
組立量	夕称	記문	他のSI単位による	SI基本単位による
	11 117		表し方	表し方
平 面 角	ラジアン ^(b)	rad	1 ^(b)	m/m
立 体 角	ステラジアン ^(b)	$sr^{(c)}$	1 ^(b)	$m^{2/}m^2$
周 波 券	(ヘルツ ^(d)	Hz		s ^{·1}
力	ニュートン	Ν		m kg s ^{·2}
圧力,応力	パスカル	Pa	N/m^2	m^{1} kg s ²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	$m^2 kg s^{-3}$
電荷,電気量	, クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{\cdot 3} A^{\cdot 1}$
静電容量	ファラド	F	C/V	$m^{2} kg^{1} s^{4} A^{2}$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{-3} A^{-2}$
コンダクタンス	ジーメンス	s	A/V	$m^{2} kg^{1} s^{3} A^{2}$
磁床	ウエーバ	Wb	Vs	$m^2 kg s^{2} A^{1}$
磁束密度	テスラ	Т	Wb/m ²	$\mathrm{kg}~\mathrm{s}^{2}\mathrm{A}^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	$cd sr^{(c)}$	cd
照度	ルクス	lx	lm/m^2	m^{2} cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s^{1}
吸収線量,比エネルギー分与,	ガレイ	Gw	I/Ira	m ² 2
カーマ	7 4 1	цу	0/kg	шs
線量当量,周辺線量当量,方向	SUNCE (g)	Su	I/lra	$m^2 a^{\cdot 2}$
性線量当量, 個人線量当量		51	5/Kg	m s
酸素活性	カタール	kat		s^{-1} mol

 酸 米 16 1日 パラール Rat 15 mol
 15 mol

 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや
 コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。
 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明
 示されない。

 (c)潮光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ペクレルは放射性核和の統計的過程についてのみ使用される。
 (e)やルシウス度はケルビンの特別な名称で、せルシウス温度を表すために使用される。セルシウス度とケルビンの
 単位の大きさは同一である。したがって、温度差や温度間隔を表す数値はどちらの単位で表しても同じである。
 (f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4.単位	立の中に固有の名称と記号を含むSI組立単位の例

	SI 組立単位				
組立量	名称	記号	SI 基本単位による 表し方		
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹		
カのモーメント	ニュートンメートル	N m	$m^2 kg s^2$		
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²		
角 速 度	ラジアン毎秒	rad/s	$m m^{1} s^{1} = s^{1}$		
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$		
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³		
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$		
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$		
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$		
熱伝導率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹		
体積エネルギー	ジュール毎立方メートル	J/m^3	m^{-1} kg s ⁻²		
電界の強さ	ボルト毎メートル	V/m	m kg s ^{·3} A ^{·1}		
電 荷 密 度	クーロン毎立方メートル	C/m^3	$m^{\cdot 3}$ sA		
表 面 電 荷	クーロン毎平方メートル	C/m^2	m ⁻² sA		
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m^2	$m^{2} sA$		
誘 電 卒	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$		
透 磁 率	ヘンリー毎メートル	H/m	$m \text{ kg s}^2 \text{ A}^2$		
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$		
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{2} K^{1} mol^{1}$		
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ^{∙1} sA		
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{-3}$		
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$		
放 射 輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	$m^2 m^{-2} kg s^{-3} = kg s^{-3}$		
酵素活性濃度	カタール毎立方メートル	kat/m ³	$m^{3} s^{1} mol$		

表 5. SI 接頭語						
乗数	接頭語	記号	乗数	接頭語	記号	
10^{24}	э 9	Y	10 ⁻¹	デシ	d	
10^{21}	ゼタ	Z	10^{-2}	センチ	с	
10^{18}	エクサ	Е	10 ⁻³	ミリ	m	
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ	
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n	
10^{9}	ギガ	G	10^{-12}	ピ ⊐	р	
10^{6}	メガ	М	10^{-15}	フェムト	f	
10^3	キロ	k	10^{-18}	アト	а	
10^2	ヘクト	h	10^{-21}	ゼプト	z	
10^1	デ カ	da	10^{-24}	ヨクト	у	

表6.SIに属さないが、SIと併用される単位						
名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
日	d	1 d=24 h=86 400 s				
度	٥	1°=(п/180) rad				
分	,	1'=(1/60)°=(п/10800) rad				
秒	"	1"=(1/60)'=(п/648000) rad				
ヘクタール	ha	$1ha=1hm^{2}=10^{4}m^{2}$				
リットル	L, 1	$1L=11=1dm^3=10^3cm^3=10^{-3}m^3$				
トン	t	$1t=10^{3}$ kg				

_

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣され	る奴値	い実験的に得られるもの
名称	記号	SI 単位で表される数値
電子ボルト	eV	$1eV=1.602\ 176\ 53(14)\times10^{-19}J$
ダルトン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg
統一原子質量単位	u	1u=1 Da
天 文 単 位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m

	表8.SIに属さないが、SIと併用されるその他の単位								
	名称		記号	SI 単位で表される数値					
バ	-	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa					
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa					
オン	グストロー	- L	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m					
海		里	Μ	1 M=1852m					
バ	-	\sim	b	$1 \text{ b}=100 \text{fm}^2=(10^{\cdot 12} \text{cm})2=10^{\cdot 28} \text{m}^2$					
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s					
ネ		パ	Np ¯	の形法しの教徒始み順係は					
ベ		N	В	→1単位との数値的な関係は、 対数量の定義に依存					
デ	ジベ	N	dB -	Alge Action (1)					

表 9. 固有	すの名称	をもつCGS組立単位
名称	記号	SI 単位で表される数値
エルグ	erg	$1 \text{ erg}=10^{-7} \text{ J}$
ダイン	dyn	$1 \text{ dyn} = 10^{-5} \text{N}$
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$
スチルブ	sb	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{ m}^{\cdot 2}$
フォト	ph	$1 \text{ ph}=1 \text{cd sr cm}^2 10^4 \text{lx}$
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{\cdot 2} = 10^{\cdot 2} \text{ ms}^{\cdot 2}$
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$
エルステッド ^(c)	Oe	1 Oe = $(10^3/4\pi)$ A m ⁻¹

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 📑 」 は対応関係を示すものである。

表10. SIに属さないその他の単位の例

	1	名利	Ћ		記号	SI 単位で表される数値
キ	ユ		y	ĺ	Ci	$1 \text{ Ci}=3.7 \times 10^{10} \text{Bq}$
ν	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy
ν				Д	\mathbf{rem}	$1 \text{ rem}=1 \text{ cSv}=10^{-2} \text{Sv}$
ガ		$\boldsymbol{\mathcal{V}}$		7	γ	1 γ =1 nT=10-9T
フ	I		ル	11		1フェルミ=1 fm=10-15m
メー	ートル	系	カラ	ット		1メートル系カラット=200 mg=2×10-4kg
F				ル	Torr	1 Torr = (101 325/760) Pa
標	準	大	気	圧	atm	1 atm = 101 325 Pa
ħ	17		п	_	oo1	1cal=4.1858J(「15℃」カロリー), 4.1868J
~	14		/		cal	(「IT」カロリー)4.184J(「熱化学」カロリー)
3	ク		П	\sim	μ	$1 \ \mu = 1 \mu m = 10^{-6} m$

この印刷物は再生紙を使用しています