JAEA-Data/Code 2010-011

Preparation of Text Files of JAEA-TDB for Geochemical Calculation Programs

Akira KITAMURA and Yasushi YOSHIDA

Geological Isolation Research Unit Geological Isolation Research and Development Directorate September 2010

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根 2 番地 4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2010

JAEA-Data/Code 2010-011

Preparation of Text Files of JAEA-TDB for Geochemical Calculation Programs

Akira KITAMURA and Yasushi YOSHIDA*

Geological Isolation Research Unit Geological Isolation Research and Development Directorate Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received June 25, 2010)

We established a thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes. We prepared text files of the thermodynamic database (JAEA-TDB) for geochemical calculation programs of PHREEQC, EQ3/6 and Geochemist's Workbench. These text files are contained in the attached CD-ROM and will be available on our Website (http://migrationdb.jaea.go.jp/).

Keywords: Geological Disposal, High-level Radioactive Waste, TRU Waste, Thermodynamic Database, Geochemical Calculation Programs, PHREEQC, EQ3/6, Geochemist's Workbench

^{*} Inspection Development Company Ltd.

JAEA-TDB の地球化学計算コード用テキストファイルの整備

日本原子力研究開発機構 地層処分研究開発部門 地層処分基盤研究開発ユニット 北村 暁,吉田 泰^{*}

(2010年6月25日受理)

高レベル放射性廃棄物および TRU 廃棄物の地層処分の性能評価に用いるための熱力 学データベース (JAEA-TDB) を整備した。この JAEA-TDB のテキストファイルとして, PHREEQC, EQ3/6, Geochemist's Workbench といった地球化学計算コード用フォーマッ トを整備した。これらのテキストファイルは,本報告付属の CD-ROM に収納されると ともに,インターネット (http://migrationdb.jaea.go.jp/) でも公開され利用できるように なる予定である。

核燃料サイクル工学研究所(駐在):〒319-1194 茨城県那珂郡東海村村松 4-33 * ☆本間及株式会社

Contents

1.	Intro	duction	1
2.	Brief	f Summary on Development of JAEA-TDB	2
3	Prepa	aration of Text Files for JAEA-TDB	3
	3.1	Text File for PHREEQC	3
	3.2	Text File for EQ3/6	5
	3.3	Text File for Geochemist's Workbench	6
4	Conc	clusions	7
Refe	rence	s	8
App	endix.	Revised Thermodynamic Data Compiled for JAEA-TDB	12

目 次

1.	緒言		1
2.	JAE	A-TDB 整備の概要	2
3	JAE	A-TDB テキストファイルの作成	3
	3.1	PHREEQC 用フォーマット	3
	3.2	EQ3/6 用フォーマット	5
	3.3	Geochemist's Workbench 用フォーマット	6
4	結言		7
参考	文献		8
付録	k JA	EA-TDB としてコンパイルした熱力学データの改訂版	12

Content of Tables

Table 1	Correction of errata published in the first version of text file (100331c0.tdb) and	
	the TDB report	4
Table A 1	Selected equilibrium constants of aqueous species for JAEA-TDB ready to use	
	for the geochemical calculation programs (revised from Table 18 in the TDB	
	report)	12
Table A 2	Selected equilibrium constants of solid phases for JAEA-TDB ready to use for	
	the geochemical calculation programs (revised from Table 19 in the TDB report)	30

Content of Figures

Figure 1	Example of JAEA-TDB for PHREEQC format	3
Figure 2	Example of JAEA-TDB for EQ3/6 format	5
Figure 3	Example of JAEA-TDB for Geochemist's Workbench format	6

1. Introduction

Many radionuclides are contained in high-level radioactive waste (HLW) and are part of TRU waste packages and some of them have long half-lives (more than 10⁴ year). It is necessary to estimate the solubility of the radionuclides in ground waters and pore waters in an engineered barrier system for performance assessment of geological disposal of HLW and TRU wastes. Thermodynamic data, e.g., the equilibrium constant of solubility limiting solids at standard state (i.e. ionic strength of 0), are needed to estimate the solubility and aqueous species in the groundwater and porewater, and also data are fundamental information to estimating sorption and diffusion behaviors of chemical species on/in engineered barriers and host rocks. Therefore, the most reliable thermodynamic data should be integrated to carry out the reliable performance assessment by an implementation and regulatory organizations.

Japan Atomic Energy Agency (JAEA) has developed the thermodynamic database (JAEA-TDB) for the performance assessment of geological disposal of radioactive waste ¹⁾. Main part of the thermodynamic data in JAEA-TDB were selected and estimated by JAEA, however, some part of therm were taken from data selected by the Nuclear Energy Agency (NEA) in the Organisation for Economic Co-operation and Development (OECD) ²⁾ and those selected by Japan Nuclear Cycle Development Institute (JNC; one of the predecessor of JAEA) ³⁾. The thermodynamic data were compiled and converted to be available for use of geochemical calculation programs (shown in Tables 18 and 19 in the TDB report ¹⁾).

We prepared text files ready for use of some geochemical calculation programs, e.g., PHREEQC ⁴⁾, EQ3/6 ⁵⁾ and Geochemist's Workbench ⁶⁾.

2. Brief Summary on Development of JAEA-TDB

Selection of thermodynamic data for JAEA-TDB was performed on the basis of the fundamental plan¹⁾, the content of which was briefly described below.

Selection of equilibrium constant of reaction at standard state (K°) was obligatorily performed, and selection of other thermodynamic values on enthalpy, entropy and heat capacity was recommended.

Thermodynamic data for chemical compounds and species for radioelements with naturally occurring elements (e.g., halogen, oxygen, carbon, nitrogen, sulfur, phosphorus) and some organic ligands were selected. Other thermodynamic data which were needed to select were quoted from those called "Auxiliary Data" selected by the NEA².

Review and selection of thermodynamic values obtained from experimental data should be based on the "TDB-1" guideline by the OECD/NEA⁷⁾. Thermodynamic values or databases selected by the NEA²⁾ and Lothenbach *et al.*⁸⁾, which were based on the "TDB-1" guideline⁷⁾, could be selected to the JAEA-TDB after surveying the latest literature and checking consistency of the value in the database. Otherwise review and selection of thermodynamic values should be performed after surveying the literature to collect proposed thermodynamic data.

Application of chemical analogues and models should be considered to obtain thermodynamic values for some species for which there has been no published experimental data. Some unreliable thermodynamic values, which are important for the performance assessment of geological disposal of radioactive wastes, may be selected as tentative values while specifying their reliability and the needs for the values to be determined.

All thermodynamic values should be standardized at 298.15 K and at zero ionic strength, using the Brønsted-Guggenheim-Scatchard Model (usually called the "specific ion interaction theory (SIT)")²⁾ for correction of ionic strength.

3. Preparation of Text Files for JAEA-TDB

3.1 Text File for PHREEQC

We prepared a text file of JAEA-TDB for the geochemical calculation program "PHREEQC" using that of JNC-TDB ^{1,9}. Equilibrium constants listed in Tables 18 and 19 in the TDB report ¹⁾ were installed into the PHREEQC format as shown in the following figure.

Figure 1 Example of JAEA-TDB for PHREEQC format

Four lines are occupied for each reaction. The first line shows the number of the referred literature listed in the last part of the text file and corresponding to the TDB report ¹⁾. The second and third lines show the reaction and its logarithm of equilibrium constant. The fourth line shows an error (i.e. uncertainty) of the equilibrium constant. Although it is still difficult to handle error propagation in the geochemical calculation programs, users can find reliability of the selected equilibrium constants and trace procedure of the data selection.

We published the first version of PHREEQC format named "100331c0.tdb" on our Website (<u>http://migrationdb.jaea.go.jp/</u>). However, we found some errata in the TDB file, hence we corrected the file and updated with the file name of "100331c1.tdb". The corrected contents are summarized in Table 1, and revised tables are shown in Appendix.

We recognize that the latest version of PHREEQC (Ver. 2.17; published in February, 2010) contains the subroutine for ionic strength correction by the SIT. Using the SIT, however, is not currently applicable to the present text file for JAEA-TDB due to insufficiency of ion-interaction parameters. We will try to update the text file after developing all ion-interaction parameters.

line No.	page	line	content	first version $^{1)}$	this version
100331	Nos. in			(10055100.000)	(10055101.00)
c0.tdb	Iei.	1			
634			reaction for AsO ₄ ²⁻	no references	addition of ref. 12
1641	61	27	$\log K^{\circ}$ for PdOH ⁺	-0.680 ± 0.450	-0.650 ± 0.640
1646	61	28	$\log K^{\circ}$ for Pd(OH) ₂ (aq)	-3.110 ± 0.310	-3.110 ± 0.630
1651	61	29	$\log K^{\circ}$ for Pd(OH) ₃	-15.400 ± 0.390	-14.200 ± 0.630
2069	63	40	$\log K^{\circ}$ for PbCl ₄ ²⁻	1.350 (ref. 6)	1.330 ± 0.830 (ref. 80)
	67	15	$\log K^{\circ}$ for Np(OH) ₂ ²⁺	0.870 ± 0.150	-0.870 ± 0.150
	67	16	$\log K^{\circ}$ for Np(OH) ₃ ⁺	4.300 ± 0.300	-4.300 ± 0.300
3038			reaction for $NpO_2(CO_3)_2^{3-2}$	+1.0 NpO2+ +1.0 CO3-2 = NpO2(CO3)-	+1.0 NpO2+ +2.0 CO3-2 = NpO2(CO3)2-3
	67	42	reaction for NpO ₂ (CO ₃) ₂ OH ⁴	$\begin{array}{l} 2 \operatorname{NpO_2^+} + 2 \operatorname{CO_3^{2-}} + \operatorname{H_2O(1)} \\ \Leftrightarrow \operatorname{NpO_2(CO_3)_2OH^{4-}} + \operatorname{H^+} \end{array}$	$\begin{array}{l} NpO_2^{+} + 2 CO_3^{2-} + H_2O(1) \\ \Leftrightarrow NpO_2(CO_3)_2OH^{4-} + H^+ \end{array}$
3061	67	42	$\log K^{\circ}$ for NpO ₂ (CO ₃) ₂ OH ⁴	5.306 ± 1.174	-5.306 ± 1.174
3143	68	9	$\log K^{\circ}$ for $(NpO_2)_2CO_3(OH)_3^{-1}$	4.493 ± 4.253	2.867 ± 4.254
4165	72	26	$\log K^{\circ}$ for Am(cit)(aq)	7.990	(removed due to duplication of $\log K^{\circ}$)
4169	72	27	$\log K^{\circ}$ for AmH(cit) ⁺	11.670	(removed due to duplication of $\log K^{\circ}$)
4351			$\log K^{\circ}$ for Th(OH) ₃ Is ₂	-105.900	-70.300
4355			$\log K^{\circ}$ for Th(OH) ₄ Is ₂ ²⁻	-70.300	-105.900
4633			reaction for Fe ₃ Al ₂ (SiO ₄) ₃ (almandine)	no references	addition of ref. 2
4697	74	49	$\log K^{\circ}$ for SiO ₂ ·0.5H ₂ O(am)	(bad stoichiometry)	(removed)
			addition of log K° for Pd(s) \Leftrightarrow Pd ²⁺ + 2 e ⁻	(no datum)	-29.570 ± 1.120 (ref. 69)
5579	78	19	log K° for Pd(OH) ₂ (s)	-4.040 ± 0.290	-4.120 ± 0.630
5627	78	47	log K° for Sm ₂ (CO ₃) ₃ (am)	-16.700 ± 1.100	-33.400 ± 2.200
5895	79	37	$\log K^{\circ}$ for Ac ₂ (CO ₃) ₃ (am)	-16.700 ± 5.100	-33.400 ± 5.100
6101	80	22	$\log K^{\circ}$ for NpO ₂ OH(am, aged)	-4.700 ± 0.500	4.700 ± 0.500
6107	80	23	log K° for NpO ₂ OH(am, fresh)	-5.300 ± 0.200	5.300 ± 0.200
6239	80	45	$\log K^{\circ}$ for $\operatorname{Am}_2(\operatorname{CO}_3)_3(\operatorname{am})$	-16.700 ± 1.100	-33.400 ± 2.200
6281	81	2	log K° for Cm ₂ (CO ₃) ₃ (am)	-16.700 ± 1.100	-33.400 ± 2.200
6434			ref. 69	J. Nucl. Sci. Technol., submitted.	J. Nucl. Sci. Technol., 47(8), 760-770 (2010).
6446	35	8	ref. 81	J. Solution Chem., submitted.	J. Solution Chem., 39, 999-1019 (2010).
6460	36	16	ref. 95	J. Solution Chem, in press.	J. Solution Chem, 38(12), 1573-1587 (2009).
			correction of typographical errata		

Table 1Correction of errata published in the first version of text file (100331c0.tdb)and the TDB report 1)

3.2 Text File for EQ3/6

We prepared a text file of JAEA-TDB for the geochemical calculation program "EQ3/6" using that of JNC-TDB^{1,9)}. Equilibrium constants listed in Tables 18 and 19 in the TDB report¹⁾ after correcting errata shown in Table 1 were installed into the EQ3/6 format as shown in the following figure.

```
+-----
Np (CO3) 2 (OH) 2--
  sp.type = aqueous
  revised =
  charge = -2.0
  4 element(s):
                2.0000 C 2.0000 H
   1.0000 Np
   8.0000 0
  5 species in reaction:
  -1.0000 Np(CO3)2(OH)2--
                           1.0000 Np++++
  2.0000 CO3--
                          2.0000 H20
  -2.0000 H+
**** logK grid [0-25-60-100C @1.0132bar; 150-200-250-300C @Psat-H2O]:
    -16.3870 -16.3870 -16.3870 -16.3870
    -16.3870 -16.3870 -16.3870 -16.3870
* Error 1.210
* Ref. 30
```

Figure 2 Example of JAEA-TDB for EQ3/6 format

3.3 Text File for Geochemist's Workbench

We prepared a text file of JAEA-TDB for the geochemical calculation program "Geochemist's Workbench" using that of JNC-TDB^{1,9}. Equilibrium constants listed in Tables 18 and 19 in the TDB report¹⁾ after correcting errata shown in Table 1 were installed into the Geochemist's Workbench format as shown in the following figure.

Figure 3 Example of JAEA-TDB for Geochemist's Workbench format

4. Conclusions

We carefully prepared the text files of JAEA-TDB available for the geochemical calculation programs of PHREEQC, EQ3/6 and Geochemist's Workbench. Some errata in the first version of text file for PHREEQC were corrected. The prepared files are contained in the attached CD-ROM and will be uploaded onto JAEA's Website (<u>http://migrationdb.jaea.go.jp/</u>).

References

- A. Kitamura, K. Fujiwara, R. Doi, Y. Yoshida, M. Mihara, M. Terashima and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes", JAEA-Data/Code 2009-024 (2010).
- M. Rand, J. Fuger, I. Grenthe, V. Neck and D. Rai: "Chemical thermodynamics of thorium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2008).
- 3. M. Yui, J. Azuma and M. Shibata: "JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system", JNC TN8400 99-070 (1999).
- D. L. Parkhurst and C. A .J. Appelo: "User's guide to phreeqc (version 2) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations", Water-Resources Investigations Report 99-4259 (1999); available from <<u>http://wwwbrr.cr.usgs.gov/projects/GWC coupled/phreeqc/></u> (accessed 2010-06-11).
- T. J. Wolery: "EQ3/6, a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)", Lawrence Livermore National Laboratory, UCRL-MA-110662 PT I (1992).
- 6. RockWare, Inc.: "The Geochemist's Workbench overview", available from <<u>http://www.rockware.com/product/overview.php?id=132</u>> (accessed 2010-06-11).
- H. Wanner: "TDB-1: Guidelines for the review procedure and data selection", Nuclear Energy Agency in Organisation for Economic Co-operation and Development (OECD/NEA) (2000).
- B. Lothenbach, M. Ochs, H. Wanner and M. Yui: "Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nb and Bi in aqueous solution", JNC TN8400 99-011 (1999).
- Y. Yoshida and M. Yui: "JNC thermodynamic data base for geochemical calculation code", JNC TN8400 2003-005 (2003) [in Japanese].
- A. Kitamura, K. Fujiwara and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for trivalent actinoids and samarium", JAEA-Review 2009-047 (2010).
- 11. J. W. Ball and D. K. Nordstrom: "User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters", Open-file Report 91-183 (revised version), U. S.

Geological Survey (2001),

available from <u>http://wwwbrr.cr.usgs.gov/projects/GWC_chemtherm/pubs/wq4fdoc.pdf</u> (accessed 2010-06-18).

- 12. Y. Yoshida and A. Kitamura: "Evaluation of thermodynamic data of aqueous species and compounds for strontium and radium", JAEA-Review 2009-080 (2010) [in Japanese].
- A. Kitamura, A. Kirishima, T. Saito, S. Shibutani, O. Tochiyama and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: selection of thermodynamic data of cobalt and nickel", JAEA-Research 2009-037 (2009) [in Japanese].
- H. Gamsjäger, J. Bugajski, T. Gajda, R. J. Lemire and W. Preis: "Chemical thermodynamics of nickel", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- Å. Olin, B. Noläng, E. G. Osadchii, L.-O. Öhman and E. Rosén: "Chemical thermodynamics of selenium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- P. L. Brown, E. Curti, B. Grambow and C. Ekberg: "Chemical thermodynamics of zirconium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- K. Fujiwara, A. Kitamura and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for tetravalent zirconium", JAEA-Review 2009-058 (2010) [in Japanese].
- M. Altmaier, V. Neck and Th. Fanghänel: "Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl₂ solutions and the formation of ternary Ca-M(IV)-OH complexes", Radiochim. Acta, 96, pp. 541-550 (2008).
- A. J. Bard, R. Parsons, and J. Jordan (eds.): "Standard potentials in aqueous solution", International Union of Pure and Applied Chemistry, Marcel Dekker, Inc., New York, 834p (1985)
- 20. A. Kitamura, A. Kirishima, T. Saito, S. Shibutani and O. Tochiyama: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: selection of thermodynamic data for molybdenum", JAEA-Review, 2010-010 (2010) [in Japanese].
- 21. A. R. Felmy, D. Rai, M. J. Mason and R. W. Fulton: "The aqueous complexation of Nd(III)

with molybdate: The effects of both monomeric molybdate and polymolybdate species", Radiochim.Acta, 69, pp. 177-183 (1995).

- 22. R. Guillaumont, Th. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe and M. H. Rand: "Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2003).
- A. Kitamura and M. Yui: "Reevaluation of Thermodynamic Data for Hydroxide and Hydrolysis Species of Palladium(II) Using the Brønsted-Guggenheim-Scatchard Model", J. Nucl. Sci. Technol., 47(8), pp. 760-770 (2010).
- Y. Yoshida and A. Kitamura: "Evaluation of thermodynamic data of hydroxide and chloride species for lead", JAEA-Review 2009-065 (2010) [in Japanese].
- D. Rai, M. Yui, H. T. Schaef and A. Kitamura,: "Thermodynamic model for BiPO₄(c) and Bi(OH)₃(am) solubility in the aqueous Na⁺-H⁺-H₂PO₄⁻-HPO₄²⁻-PO₄³⁻-OH⁻-Cl⁻-H₂O system", J. Solution Chem., 39, pp. 999-1019 (2010).
- D. Rai, M. Yui, D. A. Moore, G. J. Lumetta, K. M. Rosso, Y. Xia, A. R. Felmy and F. N. Skomurski: "Thermodynamic model for ThO₂(am) solubility in alkaline silica Solutions", J. Solution Chem., 37, pp. 1725-1746 (2008).
- 27. T. Shibutani, S. Shibutani and M. Yui: "Database development of chemical thermodynamics of protactinium for performance assessment of HLW geological disposal system", PNC TN8410 98-052 (1998).
- D. Trubert, C. Le Naour, C. Jaussaud and O. Mrad: "Hydrolysis of protactinium(V). I. Equilibrium constants at 25 °C: A solvent extraction study with TTA in the aqueous system Pa(V)/H₂O/H⁺/ClO₄-", J. Solution Chem., 31(4), pp. 261–277 (2002).
- D. Trubert, C. Le Naour, C. Jaussaud and O. Mrad: "Hydrolysis of protactinium(V). III. Determination of standard thermodynamic data", J. Solution Chem., 32(6), pp. 505-517 (2003).
- 30. M. V. Di Giandomenico, D. Trubert and C. Le Naour: "Sulphate complexation of protactinium(V) at 25 °C", Radiochim. Acta, 95, pp. 617-623 (2007).
- 31. K. Fujiwara, A. Kitamura and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for tetravalent thorium, uranium, neptunium and plutonium", JAEA-Review 2009-059 (2010) [in Japanese].
- 32. W. Hummel, G. Anderegg, L. Rao, I. Puigdomènech and O. Tochiyama: "Chemical

thermodyanmics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).

- R. Smith and A. Martell: "Critical stability constants volume 6: Second supplement", Plenum Press (1989).
- R. Smith and A. Martell: "Critical stability constants volume 3: Other organic ligands", Plenum Press (1977).
- 35. M. Mihara: "Thermodynamic data of compounds and complexes of metal elements with organic ligands for JAEA-TDB", JAEA-Review 2009-060 (2010) [in Japanese].
- D. Rai, D. A. Moore, K. M. Rosso, A. R. Felmy and H. Bolton Jr.: "Environmental mobility of Pu(IV) in the presence of ethylenediaminetetraacetic Acid: Myth or Reality?", J. Solution Chem, 37, pp. 957-986 (2008).
- X. Gaona, V. Montoya, E. Colàs, M. Grivé and L. Duro: "Review of the complexation of tetravalent actinides by ISA and gluconate under alkaline to hyperalkaline conditions", J. Contaminant Hydrol., 102, pp. 217-227 (2008).
- D. Rai, M. Yui, D. A. Moore and L. Rao: "Thermodynamic model for ThO₂(am) solubility in isosaccharinate solutions", J. Solution Chem, 38(12), 1573-1587 (2009).
- R. Doi, A. Kitamura and M. Yui: "JAEA Thermodynamic database for performance assessment of geological disposal of high-level and TRU radioactive wastes: Selection of thermodynamic data of selenium", JAEA-Review 2009-051 (2010) [in Japanese].
- 40. P. L. G. Vlek and W. L. Lindsay: "Thermodynamic stability and solubility of molybdenum minerals in soils", Soil Sci. Soc. Am. J., 41(1), pp. 42-46 (1977).
- 41. C. F. Baes Jr. and R. E. Mesmer: "The hydrolysis of cations", John Wiley and Sons, Inc., New York (1976).

Appendix. Revised Thermodynamic Data Compiled for JAEA-TDB

Table A 1 Selected equilibrium constants of aqueous species for JAEA-TDB ready to use for

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$2 \text{ H}^+ + 2 \text{ e}^- \Leftrightarrow \text{H}_2(\text{aq})$	-3.150	3	
$H_2O(I) \Leftrightarrow H^+ + OH^-$	-14.001 ± 0.015	2	
$2 H_2O(1) \Leftrightarrow O_2(aq) + 4 H^+ + 4 e^-$	-86.080	3	
$\mathrm{Li}^+ + \mathrm{SO}_4^{2-} \Leftrightarrow \mathrm{Li}\mathrm{SO}_4^{}$	0.640	3	
$B(OH)_{3}(aq) \Leftrightarrow H_{2}BO_{3}^{-} + H^{+}$	-9.240	3	
$B(OH)_3(aq) + F \Leftrightarrow BF(OH)_3$	-0.400	3	
$B(OH)_3(aq) + 2 F + H^+ \Leftrightarrow BF_2(OH)_2 + H_2O(1)$	7.628	3	
$B(OH)_3(aq) + 2 H^+ + 3 F^- \Leftrightarrow BF_3OH^- + 2 H_2O(l)$	13.666	3	
$B(OH)_3(aq) + 3 H^+ + 4 F^- \Leftrightarrow BF_4^- + 3 H_2O(l)$	20.274	3	
$CO_3^{2-} + H^+ \Leftrightarrow HCO_3^{-}$	10.329 ± 0.020	2	
$\text{CO}_3^{2-} + 2 \text{ H}^+ \Leftrightarrow \text{CO}_2(\text{aq}) + \text{H}_2\text{O}(1)$	16.683 ± 0.028	2	
$CO_3^{2-} + 10 H^+ + 8 e^- \Leftrightarrow CH_4(aq) + 3 H_2O(l)$	41.071	3	
$CO_3^{2-} + NO_3^{-} + 12 \text{ H}^+ + 10 \text{ e}^- \Leftrightarrow CN^- + 6 \text{ H}_2O(1)$	108.129 ± 0.455	2	
$NO_3^- + 10 H^+ + 8 e^- \Leftrightarrow NH_4^+ + 3 H_2O(l)$	119.134 ± 0.089	2	
$NO_3^{-} + 2 H^+ + 2 e^- \Leftrightarrow NO_2^{-} + H_2O(1)$	27.776 ± 0.075	2, 10	
$3 \text{ NO}_3^- + 18 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{ N}_3^- + 9 \text{ H}_2\text{O}(1)$	254.672 ± 0.418	2	
$3 \text{ NO}_3^- + 19 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{HN}_3(\text{aq}) + 9 \text{ H}_2\text{O}(1)$	259.372 ± 0.382	2	
$NH_4^+ \Leftrightarrow H^+ + NH_3(aq)$	-9.237 ± 0.022	2	
$NH_4^+ + SO_4^{-2} \Leftrightarrow NH_4SO_4^{-1}$	1.052	3	
$F^+ + H \Leftrightarrow HF(aq)$	3.180 ± 0.020	2	
$2 F^{-} + H^{+} \Leftrightarrow HF_{2}^{-}$	3.620 ± 0.122	2	
$Na^+ + CO_3^{2-} \Leftrightarrow NaCO_3^{}$	1.268	3	
$Na^{+} + CO_{3}^{2^{-}} + H^{+} \Leftrightarrow NaHCO_{3}(aq)$	10.080	3	
$Na^+ + SO_4^{2-} \Leftrightarrow NaSO_4^{-}$	0.700 ± 0.050	3, 11	
$Na^+ + H^+ + PO_4^{3-} \Leftrightarrow NaHPO_4^{-1}$	12.636	3	
$Mg^{2+} + H_2O(1) \Leftrightarrow MgOH^+ + H^+$	-11.794	3	
$Mg^{2+} + CO_3^{2-} \Leftrightarrow MgCO_3(aq)$	2.981 ± 0.030	3, 11	
$Mg^{2+} + SO_4^{2-} \Leftrightarrow MgSO_4(aq)$	2.250	3	
$Mg^{2+} + PO_4^{3-} \Leftrightarrow MgPO_4^{-}$	6.589	3	
$Mg^{2+} + H^+ + PO_4^{3-} \Leftrightarrow MgHPO_4(aq)$	15.216	3	
$Mg^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow MgH_2PO_4^+$	21.066	3	
$Mg^{2+} + F \Leftrightarrow MgF^+$	1.820	3	
$Al^{3+} + H_2O(l) \Leftrightarrow AlOH^{2+} + H^+$	-4.990 ± 0.020	3, 11	
$Al^{3+} + 2 H_2O(l) \Leftrightarrow Al(OH)_2^+ + 2 H^+$	-10.100 ± 0.200	3, 11	
$Al^{3+} + 3 H_2O(1) \Leftrightarrow Al(OH)_3(aq) + 3 H^+$	-16.000	3	
$Al^{3+} + 4 H_2O(l) \Leftrightarrow Al(OH)_4^- + 4 H^+$	-23.000	3	
$Al^{3+} + F^- \Leftrightarrow AlF^{2+}$	7.010	3	
$Al^{3+} + 2 F^{-} \Leftrightarrow AlF_{2}^{+}$	12.750	3	
$Al^{3+} + 3 F^{-} \Leftrightarrow AlF_{3}(aq)$	17.020	3	
$Al^{3+} + 4 F^- \Leftrightarrow AlF_4^-$	19.720	3	
$Al^{3+} + SO_4^{2-} \Leftrightarrow AlSO_4^{+}$	3.020	3	
$Al^{3+} + 2 SO_4^{2-} \Leftrightarrow Al(SO_4)_2^{-}$	4.920	3	
$H_4SiO_4(aq) \Leftrightarrow H_2SiO_4^{-2} + 2 H^+$	-23.140 ± 0.090	2	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$H_4SiO_4(aq) \Leftrightarrow H_3SiO_4^- + H^+$	-9.810 ± 0.020	2	
$2 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{4}\operatorname{Si}_{2}\operatorname{O}_{7}^{2^{-}} + \operatorname{H}_{2}\operatorname{O}(1) + 2 \operatorname{H}^{+}$	-19.000 ± 0.300	2	
$2 H_4 SiO_4(aq) \Leftrightarrow H_5 Si_2O_7^- + H_2O(1) + H^+$	-8.100 ± 0.300	2	
$3 H_4SiO_4(aq) \Leftrightarrow H_3Si_3O_9^{3-} + 3 H_2O(1) + 3 H^+$	-28.600 ± 0.300	2	
$3 H_4 SiO_4(aq) \Leftrightarrow H_5 Si_3 O_{10}^{3-} + 2 H_2 O(1) + 3 H^+$	-27.500 ± 0.300	2	
$4 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{4}\operatorname{Si}_{4}\operatorname{O}_{12}^{4^{-}} + 4 \operatorname{H}_{2}\operatorname{O}(1) + 4 \operatorname{H}^{+}$	-36.300 ± 0.500	2	
$4 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{5}\operatorname{Si}_{4}\operatorname{O}_{12}^{3-} + 4 \operatorname{H}_{2}\operatorname{O}(1) + 3 \operatorname{H}^{+}$	-25.500 ± 0.300	2	
$4 \operatorname{H}_4\operatorname{SiO}_4(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{13}\operatorname{Si}_4\operatorname{O}_{16}{}^{3-} + 3 \operatorname{H}^+$	-34.901	3	
$H_4SiO_4(aq) + 4 H^+ + 6 F^- \Leftrightarrow F_6Si^{2-} + 4 H_2O(l)$	30.180	3	
$2 \operatorname{PO_4^{3-}} + 2 \operatorname{H^+} \Leftrightarrow \operatorname{P_2O_7^{4-}} + \operatorname{H_2O}(1)$	21.314 ± 0.890	2	
$PO_4^{3-} + H^+ \Leftrightarrow HPO_4^{2-}$	12.350 ± 0.030	2	
$PO_4^{3-} + 2 H^+ \Leftrightarrow H_2PO_4^{-}$	19.562 ± 0.033	2	
$PO_4^{3-} + 3 H^+ \Leftrightarrow H_3PO_4(aq)$	21.702 ± 0.176	2	
$2 \operatorname{PO_4^{3-}} + 3 \operatorname{H^+} \Leftrightarrow \operatorname{HP_2O_7^{3-}} + \operatorname{H_2O}(I)$	30.714 ± 0.660	2	
$2 \operatorname{PO_4}^{3-} + 4 \operatorname{H}^+ \Leftrightarrow \operatorname{H_2P_2O_7}^{2-} + \operatorname{H_2O}(l)$	37.364 ± 0.652	2	
$2 \operatorname{PO_4}^{3-} + 5 \operatorname{H}^+ \Leftrightarrow \operatorname{H_3P_2O_7}^- + \operatorname{H_2O}(I)$	39.614 ± 0.635	2	
$2 \operatorname{PO_4}^{3-} + 6 \operatorname{H}^+ \Leftrightarrow \operatorname{H_4P_2O_7(aq)} + \operatorname{H_2O(l)}$	40.614 ± 0.391	2	
$HS^- \Leftrightarrow S^{2-} + H^+$	-19.000 ± 2.000	2	
$SO_4^{2-} + 2 H^+ + 2 e^- \Leftrightarrow SO_3^{2-} + H_2O(1)$	-3.397 ± 0.701	2	
$2 \text{ SO}_4^{2-} + 10 \text{ H}^+ + 8 \text{ e}^- \Leftrightarrow \text{S}_2\text{O}_3^{2-} + 5 \text{ H}_2\text{O}(1)$	38.013 ± 1.985	2	
$SO_4^{2-} + 9 H^+ + 8 e^- \Leftrightarrow HS^- + 4 H_2O(1)$	33.692 ± 0.378	2	
$\mathrm{HS}^{-} + \mathrm{H}^{+} \Leftrightarrow \mathrm{H}_{2}\mathrm{S}(\mathrm{aq})$	6.990 ± 0.170	2	
$SO_3^{2-} + H^+ \Leftrightarrow HSO_3^{}$	7.220 ± 0.080	2	
$S_2O_3^{2-} + H^+ \Leftrightarrow HS_2O_3^{}$	1.590 ± 0.150	2	
$0.5 \text{ S}_2 \text{O}_3^{2^-} + 1.5 \text{ H}_2 \text{O}(1) \Leftrightarrow \text{H}_2 \text{SO}_3(\text{aq}) + \text{H}^+ + 2 \text{ e}^-$	-13.344 ± 0.710	2	
$SO_4^{2-} + H^+ \Leftrightarrow HSO_4^{-}$	1.980 ± 0.050	2	
$SO_4^{2-} + CO_3^{2-} + NO_3^{-} + 20 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow SCN^- + 10 \text{ H}_2O(1)$	156.972 ± 0.715	2	
$Cl^{-} + H_2O(l) \Leftrightarrow ClO^{-} + 2 H^{+} + 2 e^{-}$	-57.933 ± 0.170	2	
$\text{Cl}^- + 2 \text{ H}_2\text{O}(\text{l}) \Leftrightarrow \text{ClO}_2^- + 4 \text{ H}^+ + 4 \text{ e}^-$	-107.874 ± 0.709	2	
$\text{Cl}^- + 3 \text{ H}_2\text{O}(\text{l}) \Leftrightarrow \text{ClO}_3^- + 6 \text{ H}^+ + 6 \text{ e}^-$	-146.238 ± 0.236	2	
$Cl^{-} + 4 H_2O(l) \Leftrightarrow ClO_4^{-} + 8 H^{+} + 8 e^{-}$	-187.785 ± 0.108	2	
$Cl^{-} + H_2O(l) \Leftrightarrow HClO(aq) + H^{+} + 2 e^{-}$	-50.513 ± 0.109	2	
$Cl^{-} + 2 H_2O(l) \Leftrightarrow HClO_2(aq) + 3 H^{+} + 4 e^{-}$	-105.913 ± 0.708	2	
$K^{+} + SO_{4}^{2-} \Leftrightarrow KSO_{4}^{-}$	0.850 ± 0.050	3, 11	
$K^+ + H^+ + PO_4^{3-} \Leftrightarrow KHPO_4^{-}$	12.636	3	
$Ca^{2+} + H_2O(l) \Leftrightarrow CaOH^+ + H^+$	-12.850 ± 0.500	12	
$\operatorname{Ca}^{2^+} + \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{CaSO}_4(\operatorname{aq})$	2.309	3	
$Ca^{2+} + PO_4^{3-} \Leftrightarrow CaPO_4^{-}$	6.459	3	
$Ca^{2+} + H^+ + PO_4^{3-} \Leftrightarrow CaHPO_4(aq)$	15.085	3	
$Ca^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow CaH_2PO_4^+$	20.961	3	
$Ca^{2+} + F^- \Leftrightarrow CaF^+$	0.940	3	
$Mn^{2+} + H_2O(1) \Leftrightarrow MnOH^+ + H^+$	-10.590 ± 0.040	3, 11	
$Mn^{2+} + 3 H_2O(1) \Leftrightarrow Mn(OH)_3^- + 3 H^+$	-34.800	3	
$\mathrm{Mn}^{2+} \Leftrightarrow \mathrm{Mn}^{3+} + \mathrm{e}^{-}$	-25.507	3	
$Mn^{2+} + 4 H_2O(1) \Leftrightarrow MnO_4^{2-} + 8 H^+ + 4 e^-$	-118.440	3	
$Mn^{2+} + 4 H_2O(l) \Leftrightarrow MnO_4^- + 8 H^+ + 5 e^-$	-127.824	3	
$Mn^{2+} + F^- \Leftrightarrow MnF^+$	0.850	3	
$Mn^{2+} + Cl^- \Leftrightarrow MnCl^+$	0.607	3	
$Mn^{2+} + 2 Cl^{-} \Leftrightarrow MnCl_2(aq)$	0.041	3	
$Mn^{2+} + 3 Cl^{-} \Leftrightarrow MnCl_{3}^{-}$	-0.305	3	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\mathrm{Mn}^{2+} + 2 \mathrm{NO}_3^- \Leftrightarrow \mathrm{Mn}(\mathrm{NO}_3)_2(\mathrm{aq})$	0.600	3	
$\mathrm{Mn}^{2+} + \mathrm{SO}_4^{-2-} \Leftrightarrow \mathrm{Mn}\mathrm{SO}_4(\mathrm{aq})$	2.260	3	
$\mathrm{Mn}^{2+} + \mathrm{CO}_3^{2-} + \mathrm{H}^+ \Leftrightarrow \mathrm{MnHCO}_3^+$	11.600	3	
$\mathrm{Fe}^{2^+} + \mathrm{H}_2\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{FeOH}^+ + \mathrm{H}^+$	-9.500 ± 0.100	3, 11	
$\operatorname{Fe}^{2^+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}(OH)_2(\operatorname{aq}) + 2 \operatorname{H}^+$	-20.570 ± 1.000	3, 11	
$\operatorname{Fe}^{2^+} + 3 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}(OH)_3^- + 3 \operatorname{H}^+$	-31.000 ± 1.500	3, 11	
$\mathrm{Fe}^{2^+} + \mathrm{SO}_4^{2^-} \Leftrightarrow \mathrm{Fe}\mathrm{SO}_4(\mathrm{aq})$	2.250	3	
$Fe^{2^+} + 2 HS^- \Leftrightarrow Fe(HS)_2(aq)$	8.864	3	
$Fe^{2+} + 3 HS^{-} \Leftrightarrow Fe(HS)_{3}^{-}$	10.858	3	
$Fe^{2^+} + H^+ + PO_4^{3^-} \Leftrightarrow FeHPO_4(aq)$	15.946	3	
$\operatorname{Fe}^{2^+} + 2 \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{FeH}_2\operatorname{PO}_4^+$	22.253	3	
$Fe^{2+} \Leftrightarrow Fe^{3+} + e^{-}$	-13.032 ± 0.010	3, 11	
$Fe^{3+} + H_2O(1) \Leftrightarrow FeOH^{2+} + H^+$	-2.188 ± 0.020	3, 11	
$Fe^{3+} + 2 H_2O(1) \Leftrightarrow Fe(OH)_2^+ + 2 H^+$	-5.668 ± 0.100	3, 11	
$Fe^{3+} + 3 H_2O(1) \Leftrightarrow Fe(OH)_3(aq) + 3 H^+$	-13.598	3	
$Fe^{3+} + 4 H_2O(1) \Leftrightarrow Fe(OH)_4 + 4 H^+$	-21.598 ± 0.200	3, 11	
$2 \operatorname{Fe}^{3+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}_2(OH)_2^{4+} + 2 \operatorname{H}^+$	-2.946 ± 0.050	3, 11	
$3 \operatorname{Fe}^{3+} + 4 \operatorname{H}_2\mathrm{O}(\mathrm{I}) \Leftrightarrow \operatorname{Fe}_3(\mathrm{OH})_4^{5+} + 4 \operatorname{H}^+$	-6.304 ± 0.100	3, 11	
$Fe^{3+} + Cl^- \Leftrightarrow FeCl^{2+}$	1.482	3	
$\operatorname{Fe}^{3^+} + 2 \operatorname{Cl}^- \Leftrightarrow \operatorname{FeCl}_2^+$	2.132	3	
$Fe^{3+} + 3 Cl^- \Leftrightarrow FeCl_3(aq)$	1.132	3	
$Fe^{3+} + SO_4^{2-} \Leftrightarrow FeSO_4^+$	3.922	3	
$\operatorname{Fe}^{3+} + 2 \operatorname{SO}_4^{2-} \Leftrightarrow \operatorname{Fe}(\operatorname{SO}_4)_2^{-}$	5.422	3	
$Fe^{3+} + H^+ + PO_4^{3-} \Leftrightarrow FeHPO_4^+$	17.772	3	
$\operatorname{Fe}^{3+} + 2 \operatorname{H}^{+} + \operatorname{PO}_{4}^{3-} \Leftrightarrow \operatorname{FeH}_{2}\operatorname{PO}_{4}^{2+}$	24.982	3	
$Fe^{3^+} + F^- \Leftrightarrow FeF^{2^+}$	6.232	3	
$\operatorname{Fe}^{3^+} + 2 \operatorname{F}^- \Leftrightarrow \operatorname{FeF}_2^+$	10.832	3	
$Fe^{3+} + 3 F^- \Leftrightarrow FeF_3(aq)$	14.002	3	
$\mathrm{Co}^{2+} + \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}^{+} + \mathrm{Co}\mathrm{OH}^{+}$	-9.470 ± 0.020	13	
$\operatorname{Co}^{2+} + 2\operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 2\operatorname{H}^+ + \operatorname{Co}(\operatorname{OH})_2(\operatorname{aq})$	-18.000 ± 1.100	13	
$\operatorname{Co}^{2^+} + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 3 \operatorname{H}^+ + \operatorname{Co}(\operatorname{OH})_3^-$	-31.500 ± 0.500	13	
$2 \operatorname{Co}^{2^+} + \operatorname{H}_2\operatorname{O}(l) \Leftrightarrow \operatorname{H}^+ + \operatorname{Co}_2\operatorname{OH}^{3^+}$	-10.548 ± 0.861	13	*
$4 \operatorname{Co}^{2^+} + 4 \operatorname{H_2O}(1) \Leftrightarrow 4 \operatorname{H^+} + \operatorname{Co}_4(\operatorname{OH})_4^{4^+}$	-27.371 ± 0.211	13	*
$\mathrm{Co}^{2+} + \mathrm{F}^{-} \Leftrightarrow \mathrm{CoF}^{+}$	1.470 ± 0.040	13	
$\mathrm{Co}^{2+} + \mathrm{Cl}^{-} \Leftrightarrow \mathrm{Co}\mathrm{Cl}^{+}$	0.810 ± 0.070	13	
$\mathrm{Co}^{2+} + \mathrm{HS}^{2-} \Leftrightarrow \mathrm{CoS}(\mathrm{aq}) + \mathrm{H}^+$	0.600 ± 2.062	13	
$\mathrm{Co}^{2^+} + \mathrm{HS}^- \Leftrightarrow \mathrm{CoHS}^+$	5.141 ± 0.277	13	*
$\operatorname{Co}^{2^+} + \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Co}\operatorname{SO}_4(\operatorname{aq})$	2.200 ± 0.050	13	
$\operatorname{Co}^{2+} + 2 \operatorname{SO}_4^{2-} \Leftrightarrow \operatorname{Co}(\operatorname{SO}_4)_2^{2-}$	2.870 ± 0.050	13	
$Co^{2+} + NO_3^- \Leftrightarrow CoNO_3^+$	-1.020 ± 0.060	13	
$\mathrm{Co}^{2^+} + \mathrm{NH_4}^+ \Leftrightarrow \mathrm{Co}\mathrm{NH_3}^{2^+} + \mathrm{H}^+$	-7.037 ± 0.102	13, 2	
$\operatorname{Co}^{2^+} + 2 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_2^{2^+} + 2 \operatorname{H}^+$	-14.574 ± 0.205	13, 2	
$\operatorname{Co}^{2^+} + 3 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_3^{2^+} + 3 \operatorname{H}^+$	-22.311 ± 0.405	13, 2	
$\operatorname{Co}^{2^+} + 4 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_4^{2^+} + 4 \operatorname{H}^+$	-30.548 ± 0.410	13, 2	
$\operatorname{Co}^{2^+} + 5 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_5^{2^+} + 5 \operatorname{H}^+$	-39.485 ± 0.415	13, 2	
$\operatorname{Co}^{2^+} + 6 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_6^{2^+} + 6 \operatorname{H}^+$	-49.522 ± 0.421	13, 2	
$\operatorname{Co}^{2^+} + \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{CoHPO}_4(\operatorname{aq})$	15.300 ± 0.143	13, 2	
$\operatorname{Co}^{2^+} + 2 \operatorname{H}^+ + 2 \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{CoP}_2 \operatorname{O}_7^{2^-} + \operatorname{H}_2 \operatorname{O}(1)$	29.985 ± 0.966	13, 2	*
$\operatorname{Co}^{2^+} + 3 \operatorname{H}^+ + 2 \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{HCoP}_2\operatorname{O}_7^- + \operatorname{H}_2\operatorname{O}(1)$	35.815 ± 0.737	13, 2	*
$Co^{2+} + H^+ + AsO_4^{3-} \Leftrightarrow CoHAsO_4(aq)$	14.477 ± 1.052	13, 2	*

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\mathrm{Co}^{2^+} + \mathrm{CO}_3^{2^-} \Leftrightarrow \mathrm{Co}\mathrm{CO}_3(\mathrm{aq})$	4.400 ± 0.100	13	
$\mathrm{Co}^{2^+} + \mathrm{H}^+ + \mathrm{CO}_3^{2^-} \Leftrightarrow \mathrm{CoHCO}_3^+$	11.729 ± 0.201	13, 2	
$\text{Co}^{2^+} + 4 \text{ CO}_3^{2^-} + 4 \text{ NO}_3^- + 48 \text{ H}^+ + 40 \text{ e}^- \Leftrightarrow \text{Co}(\text{CN})_4^{2^-} + 24 \text{ H}_2\text{O}(1)$	462.533 ± 1.896	13, 2	*
$\text{Co}^{2^+} + 5 \text{ CO}_3^{2^-} + 5 \text{ NO}_3^- + 60 \text{ H}^+ + 50 \text{ e}^- \Leftrightarrow \text{Co}(\text{CN})_5^{3^-} + 30 \text{ H}_2\text{O}(\text{l})$	568.972 ± 2.442	13, 2	*
$Co^{2^+} + SO_4^{2^-} + CO_3^{2^-} + NO_3^{-} + 20 H^+ + 16 e^- \Leftrightarrow CoSCN^+ + 10 H_2O(1)$	158.762 ± 0.719	13, 2	*
$Co^{2+} + 2 SO_4^{2-} + 2 CO_3^{2-} + 2 NO_3^{-} + 40 H^+ + 32 e^- \Leftrightarrow Co(SCN)_2(aq) + 20 H_2O(l)$	316.609 ± 1.435	13, 2	*
$Co^{2^+} + 3 SO_4^{2^-} + 3 CO_3^{2^-} + 3 NO_3^{-} + 60 H^+ + 48 e^- \Leftrightarrow Co(SCN)_3^- + 30 H_2O(1)$	473.909 ± 2.157	13, 2	*
$Ni^{2+} + H_2O(1) \Leftrightarrow H^+ + NiOH^+$	-9.540 ± 0.140	14	
$Ni^{2+} + 2 H_2O(1) \Leftrightarrow 2 H^+ + Ni(OH)_{2(aq)}$	< -18.029	13	
$Ni^{2+} + 3 H_2O(1) \Leftrightarrow 3 H^+ + Ni(OH)_3^-$	-29.200 ± 1.700	14	
$2 \operatorname{Ni}^{2^+} + \operatorname{H}_2O(l) \Leftrightarrow \operatorname{H}^+ + \operatorname{Ni}_2OH^{3^+}$	-10.600 ± 1.000	14	
$4 \operatorname{Ni}^{2^+} + 4 \operatorname{H}_2O(1) \Leftrightarrow 4 \operatorname{H}^+ + \operatorname{Ni}_4(OH)_4^{4^+}$	-27.520 ± 0.150	14	
$Ni^{2+} + F^- \Leftrightarrow NiF^+$	1.430 ± 0.080	14	
$Ni^{2+} + Cl^- \Leftrightarrow NiCl^+$	0.080 ± 0.600	14	
$Ni^{2+} + HS^{2-} \Leftrightarrow NiS(aq) + H^+$	0.723 ± 2.013	13, 2	*
$Ni^{2+} + HS^- \Leftrightarrow NiHS^+$	5.180 ± 0.200	14	
$Ni^{2+} + SO_4^{2-} \Leftrightarrow NiSO_4(aq)$	2.350 ± 0.030	14	
$Ni^{2+} + 2 SO_4^{2-} \Leftrightarrow Ni(SO_4)_2^{2-}$	2.896 ± 0.002	13	*
$Ni^{2+} + NO_3^- \Leftrightarrow NiNO_3^+$	0.500 ± 1.000	14	
$Ni^{2+} + NH_4^+ \Leftrightarrow NiNH_3^{2+} + H^+$	-7.015 ± 0.065	13, 2	*
$Ni^{2+} + 2 NH_4^+ \Leftrightarrow Ni(NH_3)_2^{2+} + 2 H^+$	-14.542 ± 0.146	13, 2	*
$Ni^{2+} + 3 NH_4^+ \Leftrightarrow Ni(NH_3)_3^{2+} + 3 H^+$	-22.271 ± 0.327	13, 2	*
$Ni^{2+} + 4 NH_4^+ \Leftrightarrow Ni(NH_3)_4^{2+} + 4 H^+$	-30.502 ± 0.318	13, 2	*
$Ni^{2+} + 5 NH_4^+ \Leftrightarrow Ni(NH_3)_5^{2+} + 5 H^+$	-39.437 ± 0.321	13, 2	*
$Ni^{2+} + 6 NH_4^+ \Leftrightarrow Ni(NH_3)_6^{2+} + 6 H^+$	-49.479 ± 0.340	13, 2	*
$Ni^{2+} + H^+ + PO_4^{3-} \Leftrightarrow NiHPO_4(aq)$	15.400 ± 0.095	14, 2	
$Ni^{2+} + 2 H^{+} + 2 PO_4^{3-} \Leftrightarrow NiP_2O_7^{2-} + H_2O(1)$	30.044 ± 0.924	14, 2	
$Ni^{2+} + 3 H^{+} + 2 PO_4^{3-} \Leftrightarrow HNiP_2O_7^{-} + H_2O(1)$	35.854 ± 0.706	14, 2	
$Ni^{2+} + H^+ + AsO_4^{3-} \Leftrightarrow NiHAsO_4(aq)$	14.503 ± 1.037	14, 2	
$Ni^{2+} + CO_3^{2-} \Leftrightarrow NiCO_3(aq)$	4.200 ± 0.400	14	
$Ni^{2+} + H^+ + CO_3^{2-} \Leftrightarrow NiHCO_3^+$	11.746 ± 0.174	13, 2	*
$Ni^{2+} + 4 NO_3^{-} + 4 CO_3^{2-} + 48 H^+ + 40 e^- \Leftrightarrow Ni(CN)_4^{2-} + 24 H_2O(1)$	462.716 ± 1.824	14, 2	
$Ni^{2+} + 5 NO_3^{-} + 5 CO_3^{2-} + 60 H^+ + 50 e^- \Leftrightarrow Ni(CN)_5^{3-} + 30 H_2O(1)$	569.145 ± 2.329	14, 2	
$Ni^{2+} + NO_3^{-} + CO_3^{2-} + SO_4^{2-} + 20 H^+ + 16 e^- \iff NiSCN^+ + 10 H_2O(1)$	158.782 ± 0.716	14, 2	
$Ni^{2+} + 2 NO_3^{-} + 2 CO_3^{2-} + 2 SO_4^{2-} + 40 H^+ + 32 e^- \Leftrightarrow Ni(SCN)_2(aq) + 20 H_2O(l)$	316.634 ± 1.432	14, 2	
$Ni^{2+} + 3 NO_3^{-} + 3 CO_3^{2-} + 3 SO_4^{2-} + 60 H^+ + 48 e^- \Leftrightarrow Ni(SCN)_3^{-} + 30 H_2O(1)$	473.936 ± 2.153	14, 2	
$AsO_4^{3-} + 4 H^+ + 2 e^- \Leftrightarrow AsO_2^- + 2 H_2O(1)$	30.859 ± 0.993	2	
$AsO_4^{3-} + 5 H^+ + 2 e^- \Leftrightarrow HAsO_2(aq) + 2 H_2O(l)$	40.092 ± 0.993	2	
$AsO_4^{3-} + 4 H^+ + 2 e^- \Leftrightarrow H_2AsO_3^- + H_2O(1)$	30.809 ± 0.993	2	
$AsO_4^{3-} + 5 H^+ + 2 e^- \Leftrightarrow H_3AsO_3(aq) + H_2O(l)$	40.024 ± 0.994	2	
$AsO_4^{3-} + H^+ \Leftrightarrow HAsO_4^{2-}$	11.603 ± 0.993	2	
$AsO_4^{3-} + 2 H^+ \Leftrightarrow H_2AsO_4^-$	18.368 ± 0.994	2	
$AsO_4^{3-} + 3 H^+ \Leftrightarrow H_3AsO_4(aq)$	20.630 ± 0.994	2	
$\operatorname{SeO_4}^{2^-} + 8 \operatorname{H}^+ + 8 \operatorname{e}^- \Leftrightarrow \operatorname{Se}^{2^-} + 4 \operatorname{H_2O}(1)$	66.656 ± 0.583	15	
$2 \text{ SeO}_4^{2-} + 16 \text{ H}^+ + 14 \text{ e}^- \Leftrightarrow \overline{\text{Se}_2^{2-}} + 8 \text{ H}_2\text{O}(1)$	158.632 ± 1.213	15	
$3 \text{ SeO}_4^{2-} + 24 \text{ H}^+ + 20 \text{ e}^- \Leftrightarrow \overline{\text{Se}_3^{2-}} + 12 \text{ H}_2\text{O}(1)$	249.934 ± 1.780	15	
$4 \text{ SeO}_4^{2-} + 32 \text{ H}^+ + 26 \text{ e}^- \Leftrightarrow \text{Se}_4^{2-} + 16 \text{ H}_2\text{O}(1)$	339.647 ± 2.356	15	
$\operatorname{SeO_4^{2-}+2} \operatorname{H^++2e^-} \Leftrightarrow \operatorname{SeO_3^{2-}+H_2O(l)}$	28.039 ± 0.397	15	
$\operatorname{SeO_4^{2-}+9}H^+ + 8 e^- \Leftrightarrow \operatorname{HSe^-} + 4 \operatorname{H_2O}(I)$	81.570 ± 0.435	15	
$HSe^- + H^+ \Leftrightarrow H_2Se(aq)$	3.850 ± 0.050	15	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\text{SeO}_3^{2^-} + \text{H}^+ \Leftrightarrow \text{HSeO}_3^-$	8.360 ± 0.230	15	
$\text{SeO}_4^{2^-} + \text{H}^+ \Leftrightarrow \text{HSeO}_4^-$	1.750 ± 0.100	15	
$\operatorname{SeO_3^{2-}} + 2 \operatorname{H^+} \Leftrightarrow \operatorname{H_2SeO_3(aq)}$	11.000 ± 0.269	15	
$2 \text{ SeO}_4^{2-} + 16 \text{ H}^+ + 10 \text{ e}^- + 2 \text{ Cl}^- \Leftrightarrow \text{Se}_2 \text{Cl}_2(\text{aq}) + 8 \text{ H}_2 \text{O}(1)$	140.427 ± 0.904	15	
SeO_4^{2-} + 20 H ⁺ + 16 e ⁻ + CO ₃ ²⁻ + NO ₃ ⁻ \Leftrightarrow SeCN ⁻ + 10 H ₂ O(l)	202.726 ± 0.722	15	
$\text{SeO}_4^{2^-} + 20 \text{ H}^+ + 16 \text{ e}^- + \text{CO}_3^{2^-} + \text{NO}_3^- + \text{TI}^+ \Leftrightarrow \text{TISeCN}(\text{aq}) + 10 \text{ H}_2\text{O}(1)$	204.476 ± 0.778	15	
$\operatorname{SeO}_4^{2^-} + \operatorname{Zn}^{2^+} \Leftrightarrow \operatorname{ZnSeO}_4(\operatorname{aq})$	2.160 ± 0.060	15	
$\text{SeO}_4^{2^-} + 20 \text{ H}^+ + 16 \text{ e}^- + \text{CO}_3^{2^-} + \text{NO}_3^- + \text{Zn}^{2^+} \Leftrightarrow \text{ZnSeCN}^+ + 10 \text{ H}_2\text{O}(1)$	203.936 ± 0.724	15	
$2 \text{ SeO}_4^{2-}+40 \text{ H}^++32 \text{ e}^+2 \text{ CO}_3^{2-}+2 \text{ NO}_3^{-}+\text{Zn}^{2+} \Leftrightarrow \text{Zn}(\text{SeCN}_2(\text{ag})+20 \text{ H}_2\text{O}(1))$	407.133 ± 1.448	15	
$Cd^{2+} + SeO_4^{2-} \Leftrightarrow CdSeO_4(aq)$	2.270 ± 0.060	15	
$SeO_4^{2-} + 20 H^+ + 16 e^- + CO_3^{2-} + NO_3^{-} + Cd^{2+} \Leftrightarrow CdSeCN^+ + 10 H_2O(1)$	204.966 ± 0.724	15	
$2 \operatorname{SeO}_{4}^{2^{-}} + 40 \operatorname{H}^{+} + 32 \operatorname{e}^{-} + 2 \operatorname{CO}_{3}^{2^{+}} + 2 \operatorname{NO}_{3^{-}} + \operatorname{Cd}^{2^{+}} \Leftrightarrow \operatorname{Cd}(\operatorname{SeCN}_{2^{+}}) + 20 \operatorname{H}_{2^{+}}(1)$	408.793 ± 1.449	15	
$3 \text{ SeO}_4^{2^-}+60 \text{ H}^++48 \text{ e}^++3 \text{ CO}_2^{2^-}+3 \text{ NO}_2^++\text{Cd}^{2^+} \Leftrightarrow \text{Cd}(\text{SeCN})_2^++30 \text{ H}_2\text{O}(1)$	611.989 ± 2.176	15	
$\frac{1}{4} \operatorname{SeQ}_{4}^{2^{-}} + 80 \operatorname{H}^{+} + 64 \operatorname{e}^{+} 4 \operatorname{CQ}_{2}^{2^{-}} + 4 \operatorname{NQ}_{2}^{-} + \operatorname{Cd}^{2^{+}} \Leftrightarrow \operatorname{Cd}(\operatorname{SeCN})_{4}^{2^{-}} + 40 \operatorname{H}_{2}\operatorname{O}(1)$	815.505 ± 2.890	15	
$\frac{1}{2} \sec (2^{2^{2}} + 16 \text{ H}^{+} + 16 \text{ e}^{-} + \text{Hg}^{2^{+}} \leftrightarrow \text{Hg}^{2^{2}} \text{ e}^{-2^{2}} + 8 \text{ Hg}^{(1)})$	195.773 ± 1.111	15	
$\frac{2 \operatorname{SeO}_4^{2-} + \operatorname{Ho}^{1-} + \operatorname{Ho}^{1-$	14850 ± 1.011	15	
$\frac{2 \operatorname{Sec}_3^{2-} + \operatorname{Hg}}{2 \operatorname{Sec}_3^{2-} + 40 \operatorname{H}^+ + 32 \operatorname{e}^{-+} 2 \operatorname{CO}_3^{2-} + 2 \operatorname{NO}_3^{} + \operatorname{Hg}^{2+} \Leftrightarrow \operatorname{Hg}(\operatorname{Sec}_3)_{2}(\operatorname{ag}) + 20 \operatorname{H_2O}(1)$	427753 ± 1756	15	
$\frac{2}{3} \sec(2^{2}+60 \text{ H}^{+}+48 \text{ e}^{+}+3 \text{ CO}_{2}^{2}+3 \text{ NO}_{3}^{-}+\text{Hg}^{2+} \leftrightarrow \text{Hg}(\text{SeCN}_{2}+30 \text{ H}_{2}0(1))$	634979 ± 2386	15	
$\frac{55004}{400} + \frac{10000}{1000} + \frac{10000}{1000000000000000000000000000000$	$840\ 205\ \pm\ 2\ 931$	15	
$3 \text{ SeO}_{4}^{2-}+60 \text{ H}^{+}+48 \text{ e}^{+}+3 \text{ CO}_{2}^{2-}+3 \text{ NO}_{4}^{-}+4 \text{ g}^{+} \Leftrightarrow \text{ Ag(SeCN)}_{4}^{2-}+30 \text{ H}_{2}^{-}\text{O(I)}$	670.209 ± 2.991	15	
$S_{2}O_{2}^{2} + Ni^{2+} \leftrightarrow NiS_{2}O_{2}(a_{2})$	2670 ± 0.050	15	
$S_{2}O_{4}^{2} + NI \iff NISCO_{4}(aq)$ $S_{2}O_{4}^{2} + 20 H^{4} + 16 \sigma^{2} + CO_{4}^{2} + NO_{4}^{2} + NS_{2}^{2}CN^{4} + 10 H O(1)$	2.070 ± 0.030	15	
$3 \text{ so } 0^{2} + 20 \text{ II}^{+} + 100^{2} + \text{ cO}_{3}^{-} + \text{ NO}_{3}^{-} + \text{ NI}^{-} \Leftrightarrow \text{ NISECN}^{+} + 10 \text{ H}_{2}^{-} \text{ (I)}$	204.490 ± 0.724	15	
$2 \operatorname{SeO}_4 + 40 \operatorname{H} + 52 \operatorname{e} + 2 \operatorname{CO}_3 + 2 \operatorname{NO}_3 + \operatorname{NI} \iff \operatorname{NI}(\operatorname{SeCN}_2(\operatorname{aq}) + 20 \operatorname{H}_2(0))$	407.093 ± 1.431	15	
$SeO_4 + UO_2 \Leftrightarrow UO_2SeO_4(aq)$	2.740 ± 0.230	15	
$SeO_4 + Mg \Leftrightarrow MgSeO_4(aq)$	2.200 ± 0.200	15	
$\frac{\text{SeO}_4 + \text{Ca}}{\text{O}_4 + \text{Ca}} \Leftrightarrow \text{CaSeO}_4(\text{aq})$	2.000 ± 0.100	2	
$2 \operatorname{Br} \Leftrightarrow \operatorname{Br}_2(\operatorname{aq}) + 2 \operatorname{e}$	-37.240 ± 0.180	2	
$Br + H_2O(1) \Leftrightarrow BrO + 2H + 2e$	$-54.116 \pm 0.2/1$	2	
$Br + 3 H_2O(1) \Leftrightarrow BrO_3 + 6 H + 6 e$	-146.169 ± 0.116	2	
Br + H ₂ O(I) \Leftrightarrow HBrO(aq) + H + 2 e	-45.486 ± 0.269	12	
$\frac{\mathrm{Sr}^{2}}{\mathrm{Sr}^{2}} + \mathrm{H}_{2}\mathrm{O}(1) \Leftrightarrow \mathrm{Sr}\mathrm{OH}^{2} + \mathrm{H}^{2}$	-13.290 ± 0.500	12	
$\frac{\mathrm{Sr}^{2} + \mathrm{SO}_{4}^{2}}{\mathrm{c}} \Leftrightarrow \mathrm{Sr}\mathrm{SO}_{4}(\mathrm{aq})$	1.860 ± 0.030	12	
Sr^{2} + NO_{3} \Leftrightarrow SrNO_{3}	0.800	3	
$\operatorname{Sr}^{4+} + \operatorname{PO}_4^{3+} \Leftrightarrow \operatorname{Sr}\operatorname{PO}_4^{-}$	4.200	3	
$Zr^{+} + H_2O(1) \Leftrightarrow ZrOH^{+} + H^{+}$	0.320 ± 0.220	16	
$Zr + 2 H_2O(1) \Leftrightarrow ZrOH_{2} + 2 H$ $Zr^{4+} + 4 H_2O(1) \Leftrightarrow ZrOH_2(aa) + 4 H^+$	-2.190 ± 1.000	16	
$Zr^{4+} + 6 H_2O(1) \Leftrightarrow Zr(OH)_4(aq)^{-4} + H$	$-29,000 \pm 0.700$	16	
$\frac{2I}{3} \operatorname{Zr}^{4+} + 4 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Zr}_3(OH)_4^{8+} + 4 \operatorname{H}^+$	0.400 ± 0.300	16	
$3 \operatorname{Zr}^{4+} + 9 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Zr}_3(OH)_9^{3+} + 9 \operatorname{H}^+$	12.190 ± 0.080	16	
$4 \operatorname{Zr}^{4+} + 8 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Zr}_4(OH)_8^{8+} + 8 \operatorname{H}^+$	6.520 ± 0.650	16	
$4 \operatorname{Zr}^{4+} + 15 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Zr}_4(\operatorname{OH})_{15}^+ + 15 \operatorname{H}^+$	12.580 ± 0.240	16	
$4 \operatorname{Zr}^{4+}_{4+} + 16 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Zr}_4(OH)_{16}(aq) + 16 \operatorname{H}^+$	8.390 ± 0.800	16	
$Zr^{4+} + F^{-} \Leftrightarrow ZrF^{3+}$	$\frac{10.120 \pm 0.070}{10.550 \pm 0.210}$	16	
$Zr^{+} + 2F \Leftrightarrow ZrF_2^{-}$ $Z_2^{4+} + 2F \Leftrightarrow Z_2F_2^{+}$	$\frac{18.550 \pm 0.310}{24.720 \pm 0.380}$	16	
$\frac{z_1 + z_1 + z_1}{2r^{4+} + 4r^2} \leftrightarrow 2rF_{(aq)}$	$\frac{24.720 \pm 0.380}{30.110 \pm 0.400}$	16	
$Z_{I}^{4+} + 5 F \Leftrightarrow Z_{I}F_{5}^{-}$	34.600 ± 0.420	16	╞──┤
$Zr^{4+} + 6F \Leftrightarrow ZrF_6^{2-}$	38.110 ± 0.430	16	
$Zr^{4+} + Cl^{-} \Leftrightarrow ZrCl^{3+}$	1.590 ± 0.060	16	
$Zr^{4+} + 2 Cl \Leftrightarrow ZrCl_2^{2+}$	2.170 ± 0.240	16	
$Zr^{4+} + 3 Cl^{-} \Leftrightarrow ZrCl_{3}^{+}$	3.000 ± 0.450	17	

.....

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. '
$Zr^{4+} + 4 Cl^{-} \Leftrightarrow ZrCl_4$	-1.230 ± 0.500	17	
$Zr^{4+} + SO_4^{2-} \Leftrightarrow ZrSO_4^{2+}$	7.040 ± 0.090	16	
$\operatorname{Zr}^{4+} + 2\operatorname{SO}_4^{2-} \Leftrightarrow \operatorname{Zr}(\operatorname{SO}_4)_2(\operatorname{aq})$	11.540 ± 0.210	16	
$\operatorname{Zr}^{4+} + 3 \operatorname{SO}_4^{2-} \Leftrightarrow \operatorname{Zr}(\operatorname{SO}_4)_3^{2-}$	14.300 ± 0.500	16	
$Zr^{4+} + NO_3 \Leftrightarrow ZrNO_3^{3+}$	1.590 ± 0.080	16	
$Zr^{4+} + 2 NO_3 \Leftrightarrow Zr(NO_3)_2^{2+}$	2.640 ± 0.170	16	
$Zr^{4+} + 3 NO_3 \Leftrightarrow Zr(NO_3)_3^+$	1.040 ± 1.500	17	*
$Zr^{4+} + 4CO_3^{2+} \Leftrightarrow Zr(CO_3)_4^{4+}$	42.900 ± 1.000	16	
$Zr^{4+} + 2 Ca^{2+} + 6 H_2O(1) \Leftrightarrow Ca_2[Zr(OH)_6]^{2+} + 6 H^+$	-22.606 ± 0.313	18	
$Zr^{+} + 3 Ca^{2} + 6 H_2O(1) \Leftrightarrow Ca_3[Zr(OH)_6]^{+} + 6 H^{+}$	-23.206 ± 0.313	18	
$Nb(OH)_5(aq) + H_2O(1) \Leftrightarrow Nb(OH)_6 + H^2$	> -6.758	1	
$MoO_4^2 + 8 H + 3 e^2 \Leftrightarrow Mo^3 + 4 H_2O(1)$	29.390	19	
$MoO_4^{2^-} + H^+ \Leftrightarrow HMoO_4^-$	4.100 ± 0.100	20	
$MoO_4^{2-} + 2 H^+ \Leftrightarrow H_2MoO_4(aq)$	6.700 ± 0.200	20	
$7 \operatorname{MoO_4^{2-}} + 8 \operatorname{H^+} \Leftrightarrow \operatorname{Mo_7O_{24}^{6-}} + 4 \operatorname{H_2O}(l)$	53.000 ± 0.200	20	
$7 \operatorname{MoO_4^{2-}} + 9 \operatorname{H^+} \Leftrightarrow \operatorname{HMo_7O_2^{5-}} + 4 \operatorname{H_2O}(1)$	59.800 ± 0.500	20	
$\mathrm{Sm}^{3+} + 2 \mathrm{MoO_4^{2-}} \Leftrightarrow \mathrm{Sm}(\mathrm{MoO_4})_2^-$	11.200 ± 0.300	21	
$TcO_4^- + e^- \Leftrightarrow TcO_4^{2-}$	-10.800 ± 0.500	22	
$TcO^{2+} + 3 H_2O(1) \Leftrightarrow TcO_4^{2-} + 6 H^+ + 2 e^-$	> -44.214	22	
$TcO^{2+} + 3 H_2O(1) \Leftrightarrow TcO_4 + 6 H^+ + 3 e^-$	>-33.414	22	
$TcO^{2+} + H_2O(1) \Leftrightarrow TcO(OH)^+ + H^+$	> 0.563	1	
$TcO^{2+} + 2 H_2O(1) \Leftrightarrow TcO(OH)_2(aq) + 2 H^+$	> -4.000	22	
$TcO^{2+} + 3 H_2O(1) \Leftrightarrow TcO(OH)_3 + 3 H^+$	> -14.900	1	
$TcO^{2+} + H_2O(1) + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_2(aq)$	> 15.267	1	
$TcO^{2+} + 2 H_2O(1) + CO^{2-} \Leftrightarrow TcCO_2(OH)_2^- + H^+$	> 6.967	1	
$Pd^{2+} + H_2O(1) \Leftrightarrow PdOH^+ + H^+$	-0.650 ± 0.640	23	
$Pd^{2+} + 2 H_2O(1) \Leftrightarrow Pd(OH)_2(aq) + 2 H^+$	-3.110 ± 0.630	23	
$Pd^{2+} + 3 H_2O(1) \Leftrightarrow Pd(OH)_2(uq) + 2 H$	-14200 ± 0.630	23	
$Pd^{2+} + C^{1-} \hookrightarrow PdC^{1+}$	5.031 ± 0.000	1	
$Pd^{2+} + 2 Cl^{-} \hookrightarrow PdCl_{2}(aq)$	$\frac{5.031 \pm 0.200}{8.471 \pm 0.283}$	1	
$Pd^{2+} + 3 Cl^{-} \Leftrightarrow PdCl_{2}(dq)$	10.582 ± 0.346	1	
$Pd^{2+} + 4 Cl^{-} \Leftrightarrow PdCl_{4}^{2-}$	10.002 = 0.000 11.464 ± 0.400	1	
$Pd^{2+} + NO_2 \Leftrightarrow PdNO_2^+$	0.167 ± 0.024	1	*
$Pd^{2+} + 2 N\Omega_{2}^{-} \leftrightarrow Pd(N\Omega_{2})_{2}(aq)$	-0.762 ± 0.039	1	*
$Pd^{2+} + 2 NO^{-} + H O(1) \Leftrightarrow PdOHNO(aa) + H^{+}$	-0.702 ± 0.039	1	*
$Pd^{+2} + 2 Pl^{-2} + H O(1) \Leftrightarrow PdCl OH^{2-} + H^{+}$	-0.050 ± 0.050	8	
$\mathbf{P}\mathbf{d}^{+2} + 2\mathbf{C}\mathbf{l}^{-1} + 2\mathbf{H}\mathbf{C}\mathbf{l} \hookrightarrow \mathbf{P}\mathbf{d}\mathbf{C}\mathbf{l} (\mathbf{O}\mathbf{H}) \stackrel{2^{-}}{\rightarrow} + 2\mathbf{H}^{+}$	2.300	8	
$Pd + 2 Cl + 2 H_2O(l) \Leftrightarrow PdCl_2O(h_2) + 2 H$	-7.000	0	
$Pd^{-} + NH_4 \Leftrightarrow PdNH_3^{-} + H$	0.363	0	
$Pd^{12} + 2 NH_4^+ \Leftrightarrow Pd(NH_3)_2^{2+} + 2 H^+$	0.026	8	
$Pd^{+2} + 3 NH_4^+ \Leftrightarrow Pd(NH_3)_3^{2+} + 3 H^+$	-1.711	8	
$Pd^{+2} + 4 NH_4^+ \Leftrightarrow Pd(NH_3)_4^{2+} + 4 H^+$	-4.148	8	
$\operatorname{Sn}^{2^+} + \operatorname{H}_2O(1) \Leftrightarrow \operatorname{SnOH}^+ + \operatorname{H}^+$	-3.750	8	
$\operatorname{Sn}^{2^+} + 2 \operatorname{H_2O}(1) \Leftrightarrow \operatorname{Sn}(\operatorname{OH})_2(\operatorname{aq}) + 2 \operatorname{H}^+$	-7.710	8	
$\operatorname{Sn}^{2^+} + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Sn}(\operatorname{OH})_3^- + 3 \operatorname{H}^+$	-17.540	8	
$3 \operatorname{Sn}^{2+} + 4 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sn}_3(OH)_4^{2+} + 4 \operatorname{H}^+$	-6.510	8	
$\mathrm{Sn}^{2^+} + \mathrm{Cl}^- \Leftrightarrow \mathrm{Sn}\mathrm{Cl}^+$	1.650	8	
$\operatorname{Sn}^{2^+} + 2 \operatorname{Cl}^- \Leftrightarrow \operatorname{SnCl}_2(\operatorname{aq})$	2.310	8	
$\operatorname{Sn}^{2+} + 3 \operatorname{Cl}^2 \Leftrightarrow \operatorname{SnCl}_3^-$	2.090	8	
$\operatorname{Sn}^{2+} + \operatorname{H}_2O(l) + \operatorname{Cl}^- \Leftrightarrow \operatorname{SnClOH}(\operatorname{aq}) + \operatorname{H}^+$	-2.270	8	
$\mathrm{Sn}^{2+} + \mathrm{F}^{-} \Leftrightarrow \mathrm{SnF}^{+}$	4.460	8	
$\operatorname{Sn}^{2+} + 2 \operatorname{F}^{-} \Leftrightarrow \operatorname{SnF}_2(\operatorname{aq})$	7.740	8	
$\operatorname{Sn}^{2^+} + 3 \operatorname{F}^- \Leftrightarrow \operatorname{SnF_3}^-$	9.610	8	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\operatorname{Sn}^{2^+} + \operatorname{NO}_3^- \Leftrightarrow \operatorname{SnNO}_3^+$	1.250	8	
$\operatorname{Sn}^{2^+} + 2 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_2(\operatorname{aq})$	1.740	8	
$\operatorname{Sn}^{2^+} + 3 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_3^-$	1.370	8	
$\operatorname{Sn}^{2^+} + 4 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_4^{2^-}$	0.300	8	
$\operatorname{Sn}^{2^+} + \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{SnSO}_4(\operatorname{aq})$	2.910	8	
$\operatorname{Sn}^{2^+} + 2 \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Sn}(\operatorname{SO}_4)_2^{2^-}$	2.830	8	
$Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(l)$	5.400	8	
$Sn(OH)_4(aq) + H_2O(l) - H^+ \Leftrightarrow Sn(OH)_5^-$	-7.970	8	
$Sn(OH)_4(aq) + 2 H_2O(1) \Leftrightarrow Sn(OH)_6^{2-} + 2 H^+$	-18.400	8	
$Sn(OH)_4(aq) + 4 H^+ \Leftrightarrow Sn^{4+} + 4 H_2O(l)$	0.400	8	
$Sb(OH)_3(aq) + 3 H^+ \Leftrightarrow Sb^{3+} + 3 H_2O(l)$	-0.730	8	
$Sb(OH)_3(aq) + 2 H^+ \Leftrightarrow SbOH^{2+} + 2 H_2O(l)$	0.830	8	
$Sb(OH)_3(aq) + H^+ \Leftrightarrow Sb(OH)_2^+ + H_2O(l)$	1.300	8	
$Sb(OH)_3(aq) + H_2O(l) \Leftrightarrow Sb(OH)_4^- + H^+$	-11.930	8	
$2 \operatorname{Sb}(OH)_3(\operatorname{aq}) + 2 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{Sb}_2 \operatorname{S4}^{2-} + 6 \operatorname{H}_2 O(1)$	42.530	8	
$2 \operatorname{Sb}(OH)_3(aq) + 3 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{HSb}_2S_4^- + 6 \operatorname{H}_2O(1)$	52.180	8	
$2 \operatorname{Sb}(OH)_3(aq) + 4 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{H}_2\operatorname{Sb}_2\operatorname{S}_4(aq) + 6 \operatorname{H}_2O(1)$	57.000	8	
$2 \operatorname{Sb}(OH)_3(aq) \Leftrightarrow \operatorname{Sb}_2(OH)_6(aq)$	0.080	8	
$Sb(OH)_3(aq) + 3 H^+ + Cl^- \Leftrightarrow SbCl^{2+} + 3 H_2O(l)$	2.780	8	
$Sb(OH)_3(aq) + 3 H^+ + 2 Cl^- \Leftrightarrow SbCl_2^+ + 3 H_2O(l)$	3.270	8	
$Sb(OH)_3(aq) + 3 H^+ + F^- \Leftrightarrow SbF^{2+} + 3 H_2O(1)$	6.480	8	
$Sb(OH)_3(aq) + 3 H^+ + 2 F^- \Leftrightarrow SbF_2^+ + 3 H2O(1)$	12.650	8	
$Sb(OH)_3(aq) + 3 H^+ + 3 F^- \Leftrightarrow SbF_3(aq) + 3 H_2O(1)$	18.360	8	
$Sb(OH)_3(aq) + 2 H_2O(1) \Leftrightarrow Sb(OH)_5(aq) + 2 H^+ + 2 e^-$	-21.840	8	
$Sb(OH)_{5}(aq) + H_{2}O(1) \Leftrightarrow Sb(OH)_{6}^{-} + H^{+}$	-2.720	8	
$12 \text{ Sb}(\text{OH})_5(\text{aq}) + 4 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Sb}_{12}(\text{OH})_{64}^{4-} + 4 \text{ H}^+$	20.340	8	
$12 \text{ Sb(OH)}_{5}(aq) + 5 \text{ H}_{2}O(1) \Leftrightarrow \text{Sb}_{12}(OH)_{65}^{5-} + 5 \text{ H}^{+}$	16.720	8	
$12 \text{ Sb(OH)}_{5}(aq) + 6 \text{ H}_{2}\text{O}(l) \Leftrightarrow \text{Sb}_{12}(\text{OH})_{66}^{-6} + 6 \text{ H}^{+}$	11.890	8	
$12 \text{ Sb}(\text{OH})_5(\text{aq}) + 7 \text{ H}_2\text{O}(\text{I}) \Leftrightarrow \text{Sb}_{12}(\text{OH})_{67}^{-7} + 7 \text{ H}^+$	6.070	8	
$I^{-} + 3 H_2O(I) \Leftrightarrow IO_3^{-} + 6 H^+ + 6 e^-$	-111.563 ± 0.138	2	
$I^{-} + 3 H_2O(I) \Leftrightarrow HIO_3(aq) + 5 H^+ + 6 e^-$	-110.775 ± 0.141	2	
$3 I \Leftrightarrow I_3 + 2 e^-$	-18.300	3	
$I^{-} + H^{+} \Leftrightarrow HI(aq)$	-0.051	3	
$I^{-} + H_2O(I) \Leftrightarrow IO^{-} + 2 H^{+} + 2 e^{-}$	-44.000	3	
$I^{-} + 4 H_2O(I) \Leftrightarrow IO_4^{-} + 8 H^+ + 8 e^-$	-165.000	3	
$2 I^{-} + H_2O(I) \Leftrightarrow I_2O^{2-} + 2 H^{+} + 2 e^{-}$	-45.300	3	
$I^{-} + H_2O(I) \Leftrightarrow HIO(aq) + H^{+} + 2 e^{-}$	-33.300	3	
$I^{-} + H_2O(I) \Leftrightarrow H_2IO^{-}$	-32.100	3	
$2 \Gamma + H_2O(1) \Leftrightarrow HI_2O^- + H^+ + 2 e^-$	-19.400	3	
$2 I^{-} + CI^{-} \Leftrightarrow I_2 CI^{-} + 2 e^{-}$	-20.800	3	
$I^{-} + CI^{-} \Leftrightarrow ICI^{-} + e^{-}$	-29.000	3	
$I^{-} + 2 CI^{-} \Leftrightarrow ICI_{2}^{-} + 2 e^{-}$	-26.900	3	
$2 \Gamma \Leftrightarrow I_2(aq) + 2 e^{-1}$	-18.180	3	
$Ba^{2+} + H_2O(I) \Leftrightarrow BaOH^+ + H^+$	-13.470 ± 0.500	12	
$Ba^{2^+} + SO_4^{2^-} \Leftrightarrow BaSO_4(aq)$	2.720 ± 0.090	12	
$Sm^{3+} + H_2O(l) \Leftrightarrow SmOH^{2+} + H^+$	-7.200 ± 0.500	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{H}_2\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{Sm}(\mathrm{OH})_2^+ + 2 \mathrm{H}^+$	-15.100 ± 0.700	10	
$Sm^{3+} + 3 H_2O(1) \Leftrightarrow Sm(OH)_3(aq) + 3 H^+$	-26.200 ± 0.500	10	
$Sm^{3+} + F^- \Leftrightarrow SmF^{2+}$	3.400 ± 0.400	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{F}^{-} \Leftrightarrow \mathrm{SmF}_{2}^{+}$	5.800 ± 0.200	10	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\mathrm{Sm}^{3+} + \mathrm{Cl}^{-} \Leftrightarrow \mathrm{Sm}\mathrm{Cl}^{2+}$	0.240 ± 0.030	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{SmCl}_{2}^{+}$	-0.740 ± 0.050	10	
$\mathrm{Sm}^{3+} + \mathrm{SO}_4^{2-} \Leftrightarrow \mathrm{SmSO}_4^+$	3.300 ± 0.150	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{SO}_4^{2-} \Leftrightarrow \mathrm{Sm}(\mathrm{SO}_4)_2^{-}$	3.700 ± 0.150	10	
$\text{Sm}^{3+} + 3 \text{ NO}_3^- + 18 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{SmN}_3^{2+} + 9 \text{ H}_2\text{O}(1)$	256.342 ± 0.430	10, 2	
$\mathrm{Sm}^{3+} + \mathrm{NO_2}^- \Leftrightarrow \mathrm{SmNO_2}^{2+}$	2.100 ± 0.200	10	
$\mathrm{Sm}^{3+} + \mathrm{NO_3}^- \Leftrightarrow \mathrm{SmNO_3}^{2+}$	1.330 ± 0.200	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{H}^+ + \mathrm{PO}_4^{3-} \Leftrightarrow \mathrm{SmH}_2\mathrm{PO}_4^{2+}$	22.562 ± 0.501	10, 2	
$\mathrm{Sm}^{3+} + \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{SmCO}_3^+$	8.000 ± 0.400	10	
$\mathrm{Sm}^{3+} + 2 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{Sm}(\mathrm{CO}_3)_2^{-}$	12.900 ± 0.600	10	
$\mathrm{Sm}^{3+} + 3 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{Sm}(\mathrm{CO}_3)_3^{3-}$	15.000 ± 1.000	10	
$\mathrm{Sm}^{3+} + \mathrm{H}^+ + \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{SmHCO}_3^{2+}$	13.429 ± 0.301	10, 2	
$\text{Sm}^{3+} + \text{H}_4 \text{SiO}_4(\text{aq}) \Leftrightarrow \text{SmSiO}(\text{OH})_3^{2+} + \text{H}^+$	-1.680 ± 0.180	10	
$\text{Sm}^{3+} + \text{NO}_3^- + \text{CO}_3^{2-} + \text{SO}_4^{2-} + 20 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{SmSCN}^{2+} + 10 \text{ H}_2\text{O}(1)$	158.272 ± 0.775	10, 2	
$2 \operatorname{Hg}^{2^+} + 2 e^- \Leftrightarrow \operatorname{Hg}_2^{2^+}$	3.889 ± 0.224	2	
$Pb^{2^+} + H_2O(1) \Leftrightarrow PbOH^+ + H^+$	-6.910 ± 0.360	24	
$Pb^{2+} + 2 H_2O(1) \Leftrightarrow Pb(OH)2(aq) + 2 H^+$	-16.110 ± 0.710	24	
$Pb^{2+} + 3 H_2O(1) \Leftrightarrow Pb(OH)_3^+ + 3 H^+$	-26.270 ± 1.180	24	
$Pb^{2+} + 4 H_2O(1) \Leftrightarrow Pb(OH)_3^{2-} + 4 H^+$	-38.780 ± 0.390	24	
$\frac{10^{-1} + H_2 \otimes (1) \Leftrightarrow Pb_2 \otimes (1)}{2 Pb_2^{2+} + H_2 \otimes (1) \Leftrightarrow Pb_2 \otimes (1)} + H^+$	-7 180	8	
$4 \operatorname{Pb}^{2+} + 4 \operatorname{H}_{2}O(1) \Leftrightarrow \operatorname{Pb}_{2}O(1) \Leftrightarrow \operatorname{Pb}_{4}O(1) \to \operatorname{Pb}_{4}O(1) $	-20.630	8	
$3 \text{ Ph}^{2+} + 4 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Ph}_2(\text{OH})^{2+} + 4 \text{ H}^+$	-22 480	8	
$3 \text{ Pb}^{2+} + 5 \text{ H}_2O(1) \hookrightarrow \text{Pb}_3(OH)_4 \to H^+$	-30.720	8	
$6 \text{ Pb}^{2+} + 8 \text{ H} O(1) \Leftrightarrow \text{Pb} (OH)^{4+} + 8 \text{ H}^+$	-42.680	8	
$Pb^{2+} + CO^{2-} \rightarrow PbCO(a_2)$	7 300	8	
$Pb^{2+} + 2 CO^{2-} \hookrightarrow Pb(CO)^{-2}$	10.130	8	
$Pb^{2+} + NO^{-} \leftrightarrow PbNO^{+}$	1 060	8	
$Pb^{2+} + 2 NO^{-} \hookrightarrow Pb(NO) (a_2)$	1.000	8	
$Pb^{2+} + 2 NO_{3} \iff Pb(NO_{3})_{2}(aq)$	0.760	8	
$Pb^{2+} + DO^{-3} + U^{+} \leftrightarrow Pb HDO (ac)$	15.450	8	
$Pb^{2+} + PO^{-3} + 2H^+ \leftrightarrow PbHPDO^+$	21.050	8	
$PO + PO_4 + 2 \Pi \iff PO\Pi_2 PO_4$ $Pb^{2+} + SO^{2-} \iff PbSO(a_2)$	21.030	8	
$PD + SO_4 \iff PDSO_4(aq)$ $PL^{2+} + 2 SO_2^{2-} \iff PL(SO_2)^{2-}$	2.820	8	
$PD + 2 SO_4 \Leftrightarrow PD(SO_4)_2$ $PL^{2+} + 2 LLC^{-} \Leftrightarrow PL(LLC) ()$	2.370	8	
$PD + 2 HS \Leftrightarrow PD(HS)_2(aq)$ $PL^{2+} + 2 HS^{-} \Leftrightarrow PL(HS)^{-}$	12.540	8	
$PD^{-} + 3 HS \Leftrightarrow PD(HS)_{3}$ $PL^{2+} \leftarrow CL^{-} \leftrightarrow PL(CL^{+})$	13.590	0 24	
$Pb^{2+} + Cl \Leftrightarrow PbCl$	1.480 ± 0.100	24	
$Pb^{2} + 2 Cl \Leftrightarrow PbCl_2(aq)$	$2.0/0 \pm 0.1/0$	24	
$Pb^{2} + 3 Cl \Leftrightarrow PbCl_{3}$	1.800 ± 0.320	24	*
$Pb^{2} + 4 Cl \Leftrightarrow PbCl_4^{2}$	1.330 ± 0.830	24	*
$Pb^{2} + F \Leftrightarrow PbF'$	2.270	8	
$Pb^{2+} + 2 F \Leftrightarrow PbF_2(aq)$	3.010	8	
$Pb^{2+} + F^{-} + Cl^{-} \Leftrightarrow PbFCl(aq)$	3.550	8	
$Bi^{3+} + H_2O \Leftrightarrow BiOH^{2+} + H^{+}$	-0.920	8	
$\operatorname{Bi}_{2^+}^{3^+} + 2 \operatorname{H}_2O \Leftrightarrow \operatorname{Bi}(OH)_2^+ + 2 \operatorname{H}^+$	-2.560 ± 1.000	8	
$Bi^{3+} + 3 H_2O \Leftrightarrow Bi(OH)_3(aq) + 3 H^+$	-8.940 ± 0.500	25	
$Bi^{3+} + 4 H_2O \Leftrightarrow Bi(OH)_4 + 4 H^+$	-21.660 ± 0.870	25	
$6 \operatorname{Bi}^{5^+} + 12 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_6(\mathrm{OH})_{12}^{6^+} + 12 \operatorname{H}^+$	1.340	8	
$9 \operatorname{Bi}^{3^+} + 20 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_9(\mathrm{OH})_{20}^{7^+} + 20 \operatorname{H}^+$	-1.360	8	
$9 \operatorname{Bi}^{3+} + 21 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_9(\mathrm{OH})_{21}^{6+} + 21 \operatorname{H}^+$	-3.250	8	
$9 \operatorname{Bi}^{3+} + 22 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_9(\mathrm{OH})_{22}{}^{5+} + 22 \operatorname{H}^+$	-4.860	8	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. *1
$3 \operatorname{Bi}^{3+} + 4 \operatorname{H}_2O \Leftrightarrow \operatorname{Bi}_3(\operatorname{OH})_4^{5+} + 4 \operatorname{H}^+$	-0.800	8	
$\mathrm{Bi}^{3^+} + \mathrm{Cl}^- \Leftrightarrow \mathrm{Bi}\mathrm{Cl}^{2^+}$	3.610 ± 0.180	25	
$\mathrm{Bi}^{3^+} + 2 \mathrm{Cl}^- \Leftrightarrow \mathrm{Bi}\mathrm{Cl}_2^+$	5.560 ± 0.240	25	
$\operatorname{Bi}^{3^+} + 3 \operatorname{Cl}^- \Leftrightarrow \operatorname{BiCl}_3(\operatorname{aq})$	6.980 ± 0.370	25	
$\operatorname{Bi}^{3^+} + 4\operatorname{Cl}^- \Leftrightarrow \operatorname{Bi}\operatorname{Cl}_4^-$	8.040 ± 0.200	25	
Bi^{3+} + 5 Cl^{-} \Leftrightarrow $\mathrm{Bi}\mathrm{Cl}_{5}^{2-}$	7.360 ± 0.370	25	
$Bi^{3+} + PO_4^{3-} \Leftrightarrow BiPO_4(aq)$	≤21.850	25	
$Bi^{3+} + NO_3^- \Leftrightarrow BiNO_3^{2+}$	1.970	8	
$\operatorname{Bi}^{3+} + 2 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Bi}(\operatorname{NO}_3)_2^+$	2.950	8	
$Bi^{3+} + 3 NO_3^- \Leftrightarrow Bi(NO_3)_3(aq)$	3.620	8	
$Bi^{3+} + 4 NO_3 \Leftrightarrow Bi(NO_3)_4$	3.090	8	
$Bi^{3+} + Cl^- + NO_3^- \Leftrightarrow BiClNO_3^+$	5.160	8	
$Bi^{3+} + Cl^{-} + 2 NO_3^{-} \Leftrightarrow BiCl(NO_3)_2(aq)$	5.280	8	
$Bi^{3+} + 2 Cl^{-} + NO_3^{-} \Leftrightarrow BiCl_2NO_3(aq)$	6.860	8	
$Bi^{3+} + 2 Cl^{-} + 2 NO_3^{-} \Leftrightarrow BiCl_2(NO_3)_2^{-}$	5.750	8	
$Bi^{3+} + 3 Cl^{-} + NO_3^{-} \Leftrightarrow BiCl_3NO_3^{-}$	8.090	8	
$Ra^{2+} + H_2O \Leftrightarrow RaOH^+ + H^+$	-13.470 ± 0.500	12	
$Ra^{2+} + SO_4^{2-} \Leftrightarrow RaSO_4(aq)$	2.720 ± 0.090	12	
$Ac^{3+} + H_2O(1) \Leftrightarrow AcOH^{2+} + H^+$	-7.200 ± 0.700	10	*
$Ac^{3+} + 2 H_2O(1) \Leftrightarrow Ac OH_2^+ + 2 H^+$	-15.100 ± 0.900	10	*
$Ac^{3+} + 3 H_2O(1) \Leftrightarrow Ac(OH)_3(aq) + 3 H^+$	-26.200 ± 0.700	10	*
$Ac^{3+} + F^- \Leftrightarrow AcF^{2+}$	3.400 ± 0.600	10	*
$Ac^{3+} + 2F^{-} \Leftrightarrow AcF_{2}^{+}$	5.800 ± 0.400	10	*
$Ac^{3+} + Cl^{-} \Leftrightarrow AcCl^{2+}$	0.240 ± 0.230	10	*
$Ac^{3+} + 2 Cl^{-} \Leftrightarrow AcCl_{2}^{+}$	-0.740 ± 0.250	10	*
$Ac^{3+} + SO_4^{2-} \Leftrightarrow AcSO_4^{+}$	3.300 ± 0.350	10	*
$Ac^{3+} + 2 SO_4^{2-} \Leftrightarrow Ac(SO_4)_2^{-}$	3.700 ± 0.350	10	*
$Ac^{3+} + 3 NO_3^{-} + 18 H^+ + 16 e^- \Leftrightarrow AcN_3^{2+} + 9 H_2O(1)$	256.342 ± 0.515	10, 2	*
$Ac^{3+} + NO_2^{-} \Leftrightarrow AcNO_2^{2+}$	2.100 ± 0.400	10	*
$Ac^{3+} + NO_3^- \Leftrightarrow AcNO_3^{2+}$	1.330 ± 0.400	10	*
$Ac^{3+} + 2H^{+} + PO_4^{3-} \Leftrightarrow AcH_2PO_4^{2+}$	22.562 ± 0.701	10, 2	*
$Ac^{3+} + CO_3^{2-} \Leftrightarrow AcCO_3^+$	8.000 ± 0.600	10	*
$Ac^{3+} + 2CO_3^{2-} \Leftrightarrow Ac(CO_3)_2^{-}$	12.900 ± 0.800	10	*
$\operatorname{Ac}^{3+} + 3 \operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{Ac}(\operatorname{CO}_1)_3^{3-}$	15.000 ± 1.200	10	*
$Ac^{3+} + H^+ + CO_3^{2-} \Leftrightarrow AcHCO_3^{2+}$	13.429 ± 0.500	10.2	*
$Ac^{3+} + H_4SiO_4(aq) \Leftrightarrow AcSiO(OH)_3^{2+} + H^+$	-1.680 ± 0.380	10	*
$Ac^{3+} + NQ_{2}^{-} + CQ_{2}^{2-} + SQ_{4}^{2-} + 20 H^{+} + 16 e^{-} \Leftrightarrow AcSCN^{2+} + 10 H_{2}O(1)$	158.272 ± 0.872	10.2	*
$Th^{4+} + H_2O(1) \Leftrightarrow ThOH^{3+} + H^+$	-2.500 ± 0.500	2	
$Th^{4+} + 2 H_2O(1) \Leftrightarrow Th(OH)_2^{2+} + 2 H^+$	-6.200 ± 0.500	2	
$Th^{4+} + 4 H_2O(1) \Leftrightarrow Th(OH)_4(aq) + 4 H^+$	-17.400 ± 0.700	2	
$\frac{1}{2} \operatorname{Th}^{4+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Th}_2(OH)_2^{6+} + 2 \operatorname{H}^+$	-5.900 ± 0.500	2	
$\frac{2}{2} \operatorname{Th}^{4+} + 3 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Th}_2(OH)_2^{5+} + 3 \operatorname{H}^+$	-6.800 ± 0.200	2	
$\frac{1}{4} \operatorname{Th}^{4+} + 8 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Th}_4(OH)_{\circ}^{8+} + 8 \operatorname{H}^+$	-20.400 ± 0.400	2	
$4 \text{ Th}^{4+} + 12 \text{ H}_2\text{O(I)} \Leftrightarrow \text{Th}_4\text{(OH)}_{12}^{4+} + 12 \text{ H}^+$	-26.600 ± 0.200	2	╞──┤
$6 \text{ Th}^{4+} + 14 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Th}_6(\text{OH})_{14}^{10+} + 14 \text{ H}^+$	-36.800 ± 1.200	2	
$6 \text{ Th}^{4+} + 15 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Th}_6(\text{OH})_{15}^{9+} + 15 \text{ H}^+$	-36.800 ± 1.500	2	$\mid \mid \mid$
$Th^{4+} + F^- \Leftrightarrow ThF^{3+}$	8.870 ± 0.150	2	\vdash
$Th^{4+} + 2 F^- \Leftrightarrow ThF_2^{2+}$	15.630 ± 0.230	2	\parallel
$Th^{4+} + 3 F^- \Leftrightarrow ThF_3^+$	20.670 ± 0.160	2	
$Th^{4+} + 4 F \Leftrightarrow ThF_4(aq)$	25.580 ± 0.180	2	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Th^{4+} + Cl^- \Leftrightarrow ThCl^{3+}$	1.700 ± 0.100	2	
$Th^{4+} + SO_4^{2-} \Leftrightarrow ThSO_4^{2+}$	6.170 ± 0.320	2	
$Th^{4+} + 2 SO_4^{2-} \Leftrightarrow Th(SO_4)_2(aq)$	9.690 ± 0.270	2	
$Th^{4+} + 3 SO_4^{2-} \Leftrightarrow Th(SO_4)_3^{2-}$	10.748 ± 0.076	2	
$Th^{4+} + NO_3^- \Leftrightarrow ThNO_3^{3+}$	1.300 ± 0.200	2	
$Th^{4+} + 2 NO_3 \Leftrightarrow Th(NO_3)_2^{2+}$	2.300 ± 0.400	2	
$Th^{4+} + 2 H^+ + PO_4^{3-} \Leftrightarrow ThH_2PO_4^{3+}$	25.152 ± 0.365	2	
$Th^{4+} + 3 H^+ + PO_4^{3-} \Leftrightarrow ThH_3PO_4^{4+}$	23.592 ± 0.356	2	
$Th^{4+} + 4H^{+} + 2PO_{4}^{3-} \Leftrightarrow Th(H_{2}PO_{4})_{2}^{2+}$	49.604 ± 0.476	2	
$Th^{4+} + 5H^{+} + 2PO_4^{3-} \Leftrightarrow Th(H_2PO_4)(H_2PO_4)^{3+}$	48.824 ± 0.476	2	
$Th^{4+} + 5 C\Omega_2^{2-} \Leftrightarrow Th(C\Omega_2) e^{6-}$	31000 ± 0700	2	
$\frac{11}{1000000000000000000000000000000000$	8.798 ± 0.501	2	
$\frac{11}{10} + 2 \cos^3 + 2 \sin^2(1) \Leftrightarrow \operatorname{Th}(\operatorname{CO}_3)_2(\operatorname{OH})_2^2 + 2 \sin^2(1)$	21.599 ± 0.501	2	
$\frac{11}{10} + 4 CO_3 + H_2O(1) \Leftrightarrow Th(CO_3)_4O(1) + H$ $Tb^{4+} + CO_2^{2+} + 4 H_2O(1) \Leftrightarrow Th(CO_3)_4O(1) + H$	-15.605 ± 0.603	2	
$\frac{11}{11} + \frac{1}{12} + \frac{1}{12}$	-15.005 ± 0.005	10	
$\frac{111}{11} + 5 H_4 SIO_4(aq) + 5 H_2 O(1) \Leftrightarrow 111(OH)_3(H_3 SIO_4)_3 + 6 H$	-27.800 ± 0.700	10	
$\frac{1}{10} + 8 H_2 O(1) + 4 Ca \Leftrightarrow Ca_4 [1n(OH)_8] + 8 H$	-62.708 ± 0.908	20	
$Pa + H_2O(1) \Leftrightarrow PaOH^+ + H$	0.840	27	
$\frac{Pa^{+} + 2 H_2 O(I) \Leftrightarrow Pa(OH)_2^{+} + 2 H}{Pa^{+} + 2 H_2 O(I) \Leftrightarrow Pa(OH)_2^{+} + 2 H}$	-0.020	27	
$\frac{Pa^{+} + 3 H_2O(1) \Leftrightarrow Pa(OH)_3 + 3 H}{Pa^{-} + 3 H^2}$	-1.500	27	
$PaOOH^{2+} + 2 H_2O(1) \Leftrightarrow PaO(OH)_3(aq) + 2 H^{-1}$	-5.460	27	
$PaOOH^{2+} + H_2O(1) \Leftrightarrow PaO(OH)_2^+ + H^+$	-1.240 ± 0.020	28, 29	
$PaOOH^{2+} + 3 H_2O(1) \Leftrightarrow Pa(OH)_5(aq) + 2 H^+$	-8.270 ± 0.151	28, 29	
$PaOOH^{2+} + CI^{-} \Leftrightarrow PaOOHCI^{+}$	1.922 ± 0.020	1	
$PaOOH^{2+} + SO_4^{2+} + H^+ \Leftrightarrow PaOSO_4^{+} + H_2O(1)$	3.890 ± 0.180	30	
$PaOOH^{2+} + 2 SO_4^{2-} + H^+ \Leftrightarrow PaO(SO_4)_2^- + H_2O(l)$	7.000 ± 0.200	30	
$PaOOH^{2^+} + 3 SO_4^{2^-} + H^+ \Leftrightarrow PaO(SO_4)_3^{3^-} + H_2O(I)$	8.590 ± 0.230	30	
$Pa^{4+} + 2 H_2O(1) \Leftrightarrow PaOOH^{2+} + e^{-} + 3 H^+$	1.860	27	
$U^{4+} + e^{-} \Leftrightarrow U^{3+}$	-9.353 ± 0.070	22	
$\mathrm{U}^{4+} + \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{UOH}^{3+} + \mathrm{H}^{+}$	-0.290 ± 0.310	31	
$\mathrm{U}^{4+} + 2 \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{U}(\mathrm{OH})_{2}^{2+} + 2 \mathrm{H}^{+}$	-1.780 ± 0.210	31	
U^{4+} + 3 H ₂ O(l) \Leftrightarrow U(OH) ₃ ⁺ + 3 H ⁺	-5.150 ± 0.210	31	
$U^{4+} + 4 H_2O(l) \Leftrightarrow U(OH)_4(aq) + 4 H^+$	-10.800 ± 1.400	31	
$U^{4+} + F \Leftrightarrow UF^{3+}$	9.420 ± 0.510	22	
$U^{4+} + 2 F^- \Leftrightarrow UF_2^{2+}$	16.560 ± 0.710	22	
$U^{4+} + 3 F^- \Leftrightarrow UF_3^+$	21.890 ± 0.830	22	
$U^{4+} + 4 F^- \Leftrightarrow UF_4$	26.340 ± 0.960	22	
$U^{4+} + 5 F^- \Leftrightarrow UF_5^-$	27.730 ± 0.740	22	
U^{4+} + 6 F ⁻ \Leftrightarrow UF ₆ ²⁻	29.800 ± 0.700	22	
$U^{4+} + Cl^{-} \Leftrightarrow UCl^{3+}$	1.720 ± 0.130	22	
$U^{4+} + Br^- \Leftrightarrow UBr^{3+}$	1.460 ± 0.200	22	
$U^{4+} + I^{-} \leftrightarrow UI^{3+}$	1.100 = 0.200 1.250 ± 0.300	22	
$\frac{1}{10^{4+} + \text{SO}^{2-}} \hookrightarrow \text{USO}^{2+}$	6.580 ± 0.190	22	
$\frac{U^{4+} + 2SO_4^{2-} \leftrightarrow U(SO_1)}{U^{4+} + 2SO_2^{2-} \leftrightarrow U(SO_1)}$	0.500 ± 0.190 10.510 ± 0.200	22	
$\frac{1}{10^{4+1} + 10^{-2} \leftrightarrow 100^{-3+1}}$	10.510 ± 0.200	22	
$11^{4+} + 2 \text{ NO}^{-} \rightarrow 11(\text{NO}^{-})^{2+}$	1.770 ± 0.130 2 300 ± 0.250	22	
$\frac{U^{4+1} + 2 NO_3}{U^{4+1} + 4 CO_2^2} \leftrightarrow \frac{U(CO_3)_2}{U^{4+1}}$	2.300 ± 0.330	22	
$\frac{ 0 ^{2}}{ 1 ^{4+1}} + 5 CO^{2+1} + U(CO)^{6}$	33.120 ± 0.934	22	
$\frac{ U ^{4} + 2 CO_{3}^{-}}{ U ^{4} + 2 CO_{3}^{-}} \Leftrightarrow U(CO_{3})_{5}^{-}$	31.500 ± 1.000	21	
$\frac{ U ^{2} + 2 CO_{3}^{2} + 2 H_{2}O(1) \Leftrightarrow U(CO_{3})_{2}(OH)_{2}^{2} + 2 H_{2}^{2}}{ U ^{4} + 2 O_{2}^{2} + 2 O_{2$	$13.55 / \pm 1.000$	31	
$\frac{U^{+} + SO_{4}^{-} + CO_{3}^{-} + NO_{3} + 20 \text{ H}^{+} + 16 \text{ e}^{-} \Leftrightarrow \text{USCN}^{3} + 10 \text{ H}_{2}O(1)}{100000000000000000000000000000000000$	159.942 ± 0.718	22	
$U^{++} + 2 \text{ SO}_4^{-+} + 2 \text{ CO}_3^{-+} + 2 \text{ NO}_3^{-+} + 40 \text{ H}^+ + 32 \text{ e}^- \Leftrightarrow U(\text{SCN}_2^{-+} + 20 \text{ H}_2\text{O}(1)$	318.204 ± 1.441	22	

.

Reaction	$\log_{10} K^{\circ}$	ref	t v ^{*1}
$U^{4+} + 2 H_2 \Omega(l) \Leftrightarrow U \Omega_2^+ + 4 H^+ + e^-$	-7.554 ± 0.047	22	L. V.
$\frac{1}{100^{+}} + 300^{-2} \Leftrightarrow 100(00^{+})^{5}$	6.950 ± 0.360	22	
$\frac{U^{4+} + 2 H_2 O(1)}{U^{4+} + 2 H_2 O(1)} \Leftrightarrow UO_2^{2+} + 4 H^+ + 2 e^{-1}$	-9.038 ± 0.041	22	
$\frac{1}{10000000000000000000000000000000000$	-5.250 ± 0.240	22	
$\frac{UO_2^{2+} + 2H_2O(1) \leftrightarrow UO_2O(1) + 2H^+}{UO_2^{2+} + 2H_2O(1) \leftrightarrow UO_2O(1) + 2H^+}$	-12150 ± 0.070	22	
$\frac{1002^{2}}{1002^{2+}} + 3 H_2O(1) \Leftrightarrow \frac{1002}{1002^{2+}} + 3 H^+$	-20.250 ± 0.420	22	
$\frac{1}{10000000000000000000000000000000000$	-32400 ± 0.680	22	
$2 IIO^{2+} + H_2O(1) \Leftrightarrow OO_2(OH)_4^+ + H^+$	-32.400 ± 0.000	22	
$2 UO_2^{2+} + 2 H_2O(1) \Leftrightarrow (UO_2)_2OH^{-+} H^{+}$	-5.620 ± 0.040	22	
$2 UO_2^{+} + 2 H_2O(1) \Leftrightarrow (UO_2)_2OH_2^{+} + 2 H_2^{+}$	$-11,900 \pm 0.040$	22	
$3 \text{ UO}_2^{+} + 5 \text{ H}_2(1) \Leftrightarrow (\text{UO}_2)_3(\text{OH}_1^{+} + 4 \text{ H}_2^{+})$	-11.500 ± 0.300	22	
$3 UO_2^{+} + 3 H_2O(1) \Leftrightarrow (UO_2)_3(OH)_5^{-} + 3 H_2O(1) \Leftrightarrow (UO_2)_3(OH)_5^{-} + 7 H^+$	-15.350 ± 0.120 32 200 ± 0.800	22	
$3 UO_2^{+} + 7 H_2O(1) \Leftrightarrow (UO_2)_3(OH)_7^{+} + 7 H_2O(1) $	-32.200 ± 0.800	22	
$4 00_2 + 7 H_2 0(1) \Leftrightarrow (00_2)_4 (0H)_7 + 7 H$	-21.900 ± 1.000	22	
$UO_2^{2+} + F \Leftrightarrow UO_2F$	3.100 ± 0.000	22	
$\frac{UO_2^2 + 2F}{UO_2^2 + 2F} \Leftrightarrow \frac{UO_2F_2(aq)}{UO_2F_2(aq)}$	8.830 ± 0.080	22	
$\frac{UO_2}{1} + 3F \Leftrightarrow UO_2F_3$	10.900 ± 0.100	22	
$UO_2^{-1} + 4F \Leftrightarrow UO_2F_4^{-1}$	11.840 ± 0.110	22	
$UO_2^{2+} + CI \Leftrightarrow UO_2CI$	0.170 ± 0.020	22	
$\frac{1002^{-1} + 2 \text{ Cl}}{1002^{-1} + 2 \text{ Cl}} \Leftrightarrow \frac{1002(12)(12)}{1002^{-1} + 1002}$	-1.100 ± 0.400	22	
$\frac{UO_2^{2+} + CI + 3H_2O(I)}{UO_2CIO_3^{2+} + 6H^2 + 6e}$	$-145./38 \pm 0.246$	22	
$\frac{UO_2^{2+} + Br}{2} \Leftrightarrow \frac{UO_2Br}{2}$	0.220 ± 0.020	22	
$\frac{UO_2^{2+} + Br^2 + 3}{12}H_2O(1) \Leftrightarrow \frac{UO_2BrO_3^{+} + 6}{12}H_2O(1) $	-145.539 ± 0.141	22	
$UO_2^{2'} + I^2 + 3 H_2O(I) \Leftrightarrow UO_2IO_3^{+} + 6 H^{+} + 6 e^2$	-109.563 ± 0.139	22	
$UO_2^{2'} + 2\Gamma + 6H_2O(1) \Leftrightarrow UO_2(IO_3)_2(aq) + 12H' + 12e^{-2}$	-219.536 ± 0.314	22	
$\frac{\mathrm{UO}_2^{21} + \mathrm{SO}_3^{22}}{\mathrm{CO}_2 \mathrm{SO}_3(\mathrm{aq})}$	6.600 ± 0.600	22	
$\frac{UO_2^{2+} + S_2O_3^{2-} \Leftrightarrow UO_2S_2O_3(aq)}{2}$	2.800 ± 0.300	22	
$UO_2^{2+} + SO_4^{2-} \Leftrightarrow UO_2SO_4(aq)$	3.150 ± 0.020	22	
$UO_2^{2+} + 2 SO_4^{2-} \Leftrightarrow UO_2(SO_4)_2^{2-}$	4.140 ± 0.070	22	
$UO_2^{2+} + 3 SO_4^{2-} \Leftrightarrow UO_2(SO_4)_3^{4-}$	3.020 ± 0.380	22	
$UO_2^{2+} + 3 NO_3^{-} + 18 H^+ + 16 e^- \Leftrightarrow UO_2N_3^{-+} + 9 H_2O(I)$	257.252 ± 0.428	22	
$UO_2^{2+} + 6 NO_3^{-} + 36 H^+ + 32 e^- \Leftrightarrow UO_2(N_3)_2(aq) + 18 H_2O(l)$	513.674 ± 0.867	22	
$UO_2^{2^+} + 9 NO_3^- + 54 H^+ + 48 e^- \Leftrightarrow UO_2(N_3)_3^- + 27 H_2O(1)$	769.756 ± 1.273	22	
$UO_2^{2^+} + 12 NO_3^- + 72 H^+ + 64 e^- \Leftrightarrow UO_2(N_3)_4^{2^-} + 36 H_2O(I)$	1023.608 ± 1.689	22	
$UO_2^{2+} + NO_3^- \Leftrightarrow UO_2NO_3^+$	0.300 ± 0.150	22	
$UO_2^{2+} + PO_4^{3-} \Leftrightarrow UO_2PO_4^{-}$	13.230 ± 0.150	22	
$UO_2^{2^+} + H^+ + PO_4^{3^-} \Leftrightarrow UO_2HPO_4(aq)$	19.590 ± 0.262	22	
$UO_2^{2^+} + 2 H^+ + PO_4^{3^-} \Leftrightarrow UO_2H_2PO_4^+$	20.682 ± 0.068	22	
$UO_2^{2+} + 3 H^+ + PO_4^{3-} \Leftrightarrow UO_2H_3PO_4^{2+}$	22.462 ± 0.231	22	
$UO_2^{2+} + 4 H^+ + 2 PO_4^{3-} \Leftrightarrow UO_2(H_2PO_4)_2(aq)$	44.044 ± 0.369	22	
$UO_2^{2+} + 5 H^+ + 2 PO_4^{3-} \Leftrightarrow UO_2(H_2PO_4)(H_3PO_4)^+$	45.054 ± 0.369	22	
$UO_2^{2+} + AsO_4^{3-} + H^+ \Leftrightarrow UO_2HAsO_4(aq)$	18.760 ± 0.310	22	
$UO_2^{2+} + AsO_4^{3-} + 2 H^+ \Leftrightarrow UO_2H_2AsO_4^+$	21.960 ± 0.240	22	
$\mathrm{UO}_{2}^{2+} + 2 \operatorname{AsO}_{4}^{3-} + 4 \operatorname{H}^{+} \Leftrightarrow \mathrm{UO}_{2}(\mathrm{H}_{2}\mathrm{AsO}_{4})_{2}(\mathrm{aq})$	41.530 ± 0.200	22	
$UO_2^{2+} + CO_3^{2-} \Leftrightarrow UO_2CO_3(aq)$	9.940 ± 0.030	22	
$\mathrm{UO}_2^{2^+} + 2 \mathrm{CO}_3^{2^-} \Leftrightarrow \mathrm{UO}_2(\mathrm{CO}_3)_2^{2^-}$	16.610 ± 0.090	22	
$UO_2^{2+} + 3 CO_3^{2-} \Leftrightarrow UO_2(CO_3)_3^{4-}$	21.840 ± 0.040	22	
$3 \text{ UO}_2^{2^+} + 6 \overline{\text{CO}_3^{2^-}} \Leftrightarrow (\text{UO}_2)_3(\text{CO}_3)_6^{6^-}$	54.000 ± 1.000	22	
$2 \operatorname{UO}_{2}^{2^{+}} + \operatorname{CO}_{3}^{2^{-}} + 3 \operatorname{H}_{2}O(1) \Leftrightarrow (\operatorname{UO}_{2})_{2}\operatorname{CO}_{3}(OH)_{3}^{-} + 3 \operatorname{H}^{+}$	-0.855 ± 0.501	22	
$3 \text{ UO}_2^{2^+} + \text{CO}_3^{2^-} + 3 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_3\text{O}(\text{OH})_2(\text{HCO}_3)^+ + 3 \text{ H}^+$	0.655 ± 0.501	22	
$11 \text{ UO}_{2}^{2^{+}} + 6 \text{ CO}_{3}^{2^{-}} + 12 \text{ H}_{2} \overline{\text{O}(\text{I})} \Leftrightarrow (\text{UO}_{2})_{11} (\text{CO}_{3})_{6} (\text{OH})_{12}^{2^{-}} + 12 \text{ H}^{+}$	36.430 ± 2.011	22	

$UO_2^{2+} + CO_3^{2-} + F^- \Leftrightarrow UO_2CO_3F^-$	13.750 ± 0.090	22	
$UO_2^{2+} + CO_3^{2-} + 2 F \Leftrightarrow UO_2CO_3F_2^{2-}$	15.570 ± 0.140	22	
$UO_2^{2+} + CO_3^{2-} + 3 F^- \Leftrightarrow UO_2CO_3F_3^{3-}$	16.380 ± 0.110	22	
$UO_2^{2^+} + SO_4^{2^-} + CO_3^{2^-} + NO_3^{-} + 20 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow UO_2SCN^+ + 10 \text{ H}_2O(1)$	158.372 ± 0.751	22	
$UO_2^{2^+}+2 SO_4^{2^-}+2 CO_3^{2^-}+2 NO_3^{-}+40 H^++32 e^- \Leftrightarrow UO_2(SCN)_2(aq)+20 H_2O(l)$	315.184 ± 1.532	22	
$UO_2^{2+} + 3 SO_4^{2-} + 3 CO_3^{2-} + 3 NO_3^{-} + 60 H^+ + 48 e^- \Leftrightarrow UO_2(SCN)_3^- + 30 H_2O(1)$	473.016 ± 2.203	22	
$UO_2^{2+} + H_4SiO_4(aq) \Leftrightarrow UO_2SiO(OH)_3^+ + H^+$	-1.840 ± 0.100	22	
$UO_2^{2+} + PuO_2^{2+-} + 6 CO_3^{2-} \Leftrightarrow (UO_2)_2 PuO_2(CO_3)_6^{6-}$	53.480 ± 1.395	22	
$UO_2^{2+} + NpO_2^{2+} + 6 CO_3^{2-} \Leftrightarrow (UO_2)_2 NpO_2 (CO_3)_6^{6-}$	54.053 ± 3.336	22	
$Np^{4+} + e^- \Leftrightarrow Np^{3+}$	3.695 ± 0.169	22	
$Np^{4+} + 3 CO_3^{2-} + e^- \Leftrightarrow Np(CO_3)_3^{3-}$	20.279 ± 2.385	31, 22	
$Np^{3+} + H_2O(1) \Leftrightarrow NpOH^{2+} + H^+$	-6.800 ± 0.300	22	
$Np^{4+} + H_2O(1) \Leftrightarrow NpOH^{3+} + H^+$	-0.090 ± 0.300	31	
$Np^{4+} + 2 H_2O(1) \Leftrightarrow Np(OH)_2^{2+} + 2 H^+$	-0.870 ± 0.150	31	
$Np^{4+} + 3 H_2O(1) \Leftrightarrow Np(OH)_3^+ + 3 H^+$	-4.300 ± 0.300	31	
$Np^{4+} + 4 H_2O(1) \Leftrightarrow Np(OH)_4(aq) + 4 H^+$	-9.600 ± 1.100	31	
$Np^{4+} + F^- \Leftrightarrow NpF^{3+}$	8.960 ± 0.140	22	
$Np^{4+} + 2 F^{-} \Leftrightarrow NpF_2^{2+}$	15.700 ± 0.300	22	
$Np^{4+} + Cl \Leftrightarrow NpCl^{3+}$	1.500 ± 0.300	22	
$Np^{4+} + I^- \Leftrightarrow NpI^{3+}$	1.500 ± 0.400	22	
$Np^{4+} + SO_4^{2-} \Leftrightarrow NpSO_4^{2+}$	6.850 ± 0.158	22	
$Np^{4+} + 2 SO_4^{2-} \Leftrightarrow Np(SO_4)_2(aq)$	11.050 ± 0.269	22	
$Np^{4+} + NO_3 \Leftrightarrow NpNO_3^{3+}$	1.900 ± 0.150	22	
$Np^{4+} + 4 CO_3^{2-} \Leftrightarrow Np(CO_3)_4^{4-}$	37.610 ± 0.686	31, 22	
$Np^{4+} + 5 CO_3^{2-} \Leftrightarrow Np(CO_3)_5^{6-}$	36.540 ± 0.748	31, 22	
$Np^{4+} + 2 CO_3^{2-} + 2 H_2O(1) \Leftrightarrow Np(CO_3)_2(OH)_2^{2-} + H^+$	16.387 ± 1.210	31	
$Np^{4+} + SO_4^{2-} + CO_3^{2-} + NO_3^{-} + 20 H^+ + 16 e^- \Rightarrow NpSCN^{3+} + 10 H_2O(1)$	159.972 ± 0.775	22	
$Np^{4+} + 2 SO_4^{2-} + 2 CO_3^{2-} + 2 NO_3^{-} + 40 H^+ + 32 e^- \Leftrightarrow Np(SCN)_2^{2+} + 20 H_2O(1)$	318.044 ± 1.515	22	
$Np^{4+} + 3 SO_4^{2-} + 3 CO_3^{2-} + 3 NO_3^{-} + 60 H^+ + 48 e^- \Leftrightarrow Np(SCN)_3^+ + 30 H_2O(1)$	475.716 ± 2.203	22	
$Np^{4+} + 2 H_2O(1) \Leftrightarrow NpO_2^+ + 4 H^+ + e^-$	-10.212 ± 1.389	22	
$NpO_2^+ + H_2O(1) \Leftrightarrow NpO_2OH(aq) + H^+$	-11.300 ± 0.700	22	
$NpO_2^+ + 2 H_2O(1) \Leftrightarrow NpO_2(OH)_2^- + 2 H^+$	-23.600 ± 0.500	22	
$NpO_2^+ + F^- \Leftrightarrow NpO_2F(aq)$	1.200 ± 0.300	22	
$NpO_2^+ + I^- + 3 H_2O(1) \Leftrightarrow NpO_2IO_3(aq) + 6 H^+ + 6 e^-$	-111.063 ± 0.330	22	
$NpO_2^+ + SO_4^{2-} \Leftrightarrow NpO_2SO_4^-$	0.440 ± 0.270	22	
$NpO_2^+ + H^+ + PO_4^{3-} \Leftrightarrow NpO_2HPO_4^-$	15.300 ± 0.104	22	
$NpO_2^+ + CO_3^{2-} \Leftrightarrow NpO_2CO_3^-$	4.962 ± 0.061	22	
$NpO_2^+ + 2 CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_2^{3-}$	6.534 ± 0.103	22	
$NpO_2^+ + 3 CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_3^{5-}$	5.500 ± 0.151	22	
$3 \text{ NpO}_2^+ + 6 \text{ CO}_3^{2-} \Leftrightarrow (\text{NpO}_2)_3(\text{CO}_3)_6^{6-} + 3 \text{ e}^{-1}$	-8.492 ± 1.458	22	
$NpO_2^+ + 2 CO_3^{2-} + H_2O(1) \Leftrightarrow NpO_2(CO_3)_2OH^{4-} + H^+$	-5.306 ± 1.174	22	
$Np^{4+} + 2 H_2O(l) \Leftrightarrow NpO_2^{2+} + 4 H^+ + 2 e^-$	-29.803 ± 1.388	22	
$NpO_2^{2^+} + H_2O(1) \Leftrightarrow NpO_2OH^+ + H^+$	-5.100 ± 0.400	22	
$2 \text{ NpO}_2^{2^+} + 2 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{NpO}_2)_2(\text{OH})_2^{2^+} + 2 \text{ H}^+$	-6.270 ± 0.210	22	
$3 \text{ NpO}_2^{2+} + 5 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{NpO}_2)_3(\text{OH})_5^+ + 5 \text{ H}^+$	-17.120 ± 0.220	22	
$NpO_2^{2^+} + F \Leftrightarrow NpO_2F^+$	4.570 ± 0.070	22	
$NpO_2^{2+} + 2 F^- \Leftrightarrow NpO_2F_2(aq)$	7.600 ± 0.080	22	
$NpO_2^{2+} + Cl^- \Leftrightarrow NpO_2Cl^+$	0.400 ± 0.170	22	
$NpO_2^{2^+} + I^- + 3 H_2O(1) \Leftrightarrow NpO_2IO_3^+ + 6 H^+ + 6 e^-$	-110363 ± 0330	22	
	110.505 = 0.550	22	

 $\log_{10} K^{\circ}$

ref.

t.v.

Reaction

-1P = 2 = -24 + (1 - 1P = 2)(-24)2		
$NpO_2^{2^+} + H^+ + PO_4^{3^-} \Leftrightarrow NpO_2HPO_4(aq)$	18.550 ± 0.701	22
$NpO_2^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow NpO_2H_2PO_4^+$	22.882 ± 0.501	22
$NpO_2^{2^+} + 2 H^+ + 2 PO_4^{3^-} \Leftrightarrow NpO_2(HPO_4)_2^{2^-}$	34.200 ± 1.001	22
$NpO_2^{2^+} + CO_3^{2^-} \Leftrightarrow NpO_2CO_3(aq)$	9.320 ± 0.610	22
$NpO_2^{2+} + 2 CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_2^{2-}$	16.516 ± 0.729	22
$NpO_2^{2^+} + 3 CO_3^{2^-} \Leftrightarrow NpO_2(CO_3)_3^{4^-}$	19.371 ± 1.972	22
$NpO_2^{2^+} + CO_3^{2^-} + 3 H_2O(1) \Leftrightarrow (NpO_2)_2 CO_3 (OH)_3^-$	2.867 ± 4.254	22
$Pu^{4+} + e^- \Leftrightarrow Pu^{3+}$	17.694 ± 0.668	22
$Pu^{3+} + H_2O(1) \Leftrightarrow PuOH^{2+} + H^+$	-7.200 ± 0.500	10
$Pu^{3+} + 2 H_2O(1) \Leftrightarrow Pu(OH)_2^+ + 2 H^+$	-15.100 ± 0.700	10
$Pu^{3+} + 3 H_2O(1) \Leftrightarrow Pu(OH)_3(aq) + 3 H^+$	-26.200 ± 0.500	10
$Pu^{3+} + F^- \Leftrightarrow PuF^{2+}$	3.400 ± 0.400	10
$Pu^{3+} + 2 F \Leftrightarrow PuF_2^+$	5.800 ± 0.200	10
$Pu^{3+} + Cl^- \Leftrightarrow PuCl^{2+}$	0.240 ± 0.030	10
$Pu^{3+} + 2 Cl^{-} \Leftrightarrow PuCl_{2}^{+}$	-0.740 ± 0.050	10
$Pu^{3+} + SO_4^{2-} \Leftrightarrow PuSO_4^+$	3.300 ± 0.150	10
$Pu^{3+} + 2 SO_4^{2-} \Leftrightarrow Pu(SO_4)_2^{-}$	3.700 ± 0.150	10
$Pu^{3+} + 3 NO_3^{-} + 18 H^+ + 16 e^- \Leftrightarrow PuN_3^{2+} + 9 H_2O(1)$	256.342 ± 0.430	10, 2
$Pu^{3+} + NO_2^- \Leftrightarrow PuNO_2^{2+}$	2.100 ± 0.200	10
$Pu^{3+} + NO_3^- \Leftrightarrow PuNO_3^{2+}$	1.330 ± 0.200	10
$Pu^{3+} + 2 H^{+} + PO_4^{3-} \Leftrightarrow PuH_2PO_4^{2+}$	22.562 ± 0.501	10, 2
$Pu^{3+} + CO_3^{2-} \Leftrightarrow PuCO_3^+$	8.000 ± 0.400	10
$Pu^{3+} + 2 CO_3^{2-} \Leftrightarrow Pu(CO_3)_2^{-}$	12.900 ± 0.600	10
$Pu^{3+} + 3 CO_3^{2-} \Leftrightarrow Pu(CO_3)_3^{3-}$	15.000 ± 1.000	10
$Pu^{3+} + H^+ + CO_3^{2-} \Leftrightarrow PuHCO_3^{2+}$	13.429 ± 0.301	10, 2
$Pu^{3+} + H_4SiO_4(aq) \Leftrightarrow PuSiO(OH)_3^{2+} + H^+$	-1.680 ± 0.180	10
$Pu^{3+} + NO_3^{-} + CO_3^{2-} + SO_4^{2-} + 20 H^+ + 16 e^- \Leftrightarrow PuSCN^{2+} + 10 H_2O(l)$	158.272 ± 0.775	10, 2
$Pu^{4+} + H_2O(l) \Leftrightarrow PuOH^{3+} + H^+$	0.000 ± 0.200	31
Pu^{4+} + 2 H ₂ O(l) ⇔ $Pu(OH)_2^{2+}$ + 2 H ⁺	-1.200 ± 0.600	31
$Pu^{4+} + 3 H_2O(1) \Leftrightarrow Pu(OH)_3^+ + 3 H^+$	-3.100 ± 0.900	31
$Pu^{4+} + 4 H_2O(l) \Leftrightarrow Pu(OH)_4(aq) + 4 H^+$	-8.500 ± 0.500	31
$Pu^{4+} + F^- \Leftrightarrow PuF^{3+}$	8.840 ± 0.100	22
$Pu^{4+} + 2 F \Leftrightarrow PuF_2^{2+}$	15.700 ± 0.200	22
$Pu^{4+} + Cl^{-} \Leftrightarrow PuCl^{3+}$	1.800 ± 0.300	22
$Pu^{4+} + Br^{-} \Leftrightarrow PuBr^{3+}$	1.600 ± 0.300	22
$Pu^{4+} + SO_4^{2-} \Leftrightarrow PuSO_4^{2+}$	6.890 ± 0.226	22
$Pu^{4+} + 2 SO_4^{2-} \Leftrightarrow Pu(SO_4)_2(aq)$	11.140 ± 0.335	22
$Pu^{4+} + NO_3^- \Leftrightarrow PuNO_3^{3+}$	1.950 ± 0.150	22
$Pu^{4+} + 3 H^+ + PO_4^{3-} \Leftrightarrow PuH_3PO_4^{4+}$	24.102 ± 0.348	22
$Pu^{4+} + 4 CO_3^{2-} \Leftrightarrow Pu(CO_3)_4^{4-}$	37.000 ± 1.100	22
$Pu^{4+} + 5 CO_3^{2-} \Leftrightarrow Pu(CO_3)_5^{6-}$	35.650 ± 1.130	22
$Pu^{4+} + 2 CO_3^{2-} + 2 H_2O(1) \Leftrightarrow Pu(CO_3)_2(OH)_2^{2-} + 2 H^+$	19.177 ± 1.250	31

 $\log_{10} K^{\circ}$

 4.700 ± 0.100

ref.

22

22

22

22 22

22

22

22

 -17.453 ± 0.691

 5.120 ± 0.140

 5.025 ± 0.920

 -33.272 ± 0.697

 $\textbf{-5.500} \pm 0.500$

 -13.200 ± 1.500

≤ -9.730

t.v.

Reaction

 $Pu^{4+} + 2 H_2O(1) \Leftrightarrow PuO_2^+ + 4 H^+ + e^-$

 $PuO_2^+ + H_2O(1) \Leftrightarrow PuO_2OH(aq) + H^+$

 $Pu^{4+} + 2 H_2O(1) \Leftrightarrow PuO_2^{2+} + 4 H^+ + 2 e^-$

 $PuO_2^{2+} + 2 H_2O(1) \Leftrightarrow PuO_2OH_2(aq) + 2 H^+$

 $PuO_2^+ + CO_3^{2-} \Leftrightarrow PuO_2CO_3^-$

 $PuO_2^+ + 3 CO_3^{2-} \Leftrightarrow PuO_2(CO_3)_3^{5-}$

 $PuO_2^{2^+} + H_2O(l) \Leftrightarrow PuO_2OH^+ + H^+$

 $NpO_2^{2^+} + 2 SO_4^{2^-} \Leftrightarrow NpO_2(SO_4)_2^{2^-}$

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$2 \operatorname{PuO}_2^{2^+} + 2 \operatorname{H}_2O(1) \Leftrightarrow (\operatorname{PuO}_2)_2(OH)_2^{2^+} + 2 \operatorname{H}^+$	-7.500 ± 1.000	22	
$PuO_2^{2^+} + F^- \Leftrightarrow PuO_2F^+$	4.560 ± 0.200	22	
$PuO_2^{2^+} + 2 F \Leftrightarrow PuO_2F_2(aq)$	7.250 ± 0.450	22	
$PuO_2^{2^+} + Cl^- \Leftrightarrow PuO_2Cl^+$	0.230 ± 0.030	22	
$PuO_2^{2^+} + 2 Cl^- \Leftrightarrow PuO_2Cl_2(aq)$	-1.150 ± 0.300	22	
$PuO_2^{2^+} + SO_4^{2^-} \Leftrightarrow PuO_2SO_4(aq)$	3.380 ± 0.200	22	
$PuO_2^{2^+} + 2 SO_4^{2^-} \Leftrightarrow PuO_2(SO_4)_2^{2^-}$	4.400 ± 0.200	22	
$PuO_2^{2^+} + CO_3^{2^-} \Leftrightarrow PuO_2CO_3(aq)$	9.500 ± 0.500	22	
$PuO_2^{2^+} + 2 CO_3^{2^-} \Leftrightarrow PuO_2(CO_3)_2^{2^-}$	14.700 ± 0.500	22	
$PuO_2^{2+} + 3 CO_3^{2-} \Leftrightarrow PuO_2(CO_3)_3^{4-}$	18.000 ± 0.500	22	
$Am^{3+} + H_2O(1) \Leftrightarrow AmOH^{2+} + H^+$	-7.200 ± 0.500	22	
$Am^{3+} + 2 H_2O(1) \Leftrightarrow Am(OH)_2^+ + 2 H^+$	-15.100 ± 0.700	22	
$Am^{3+} + 3 H_2O(1) \Leftrightarrow Am(OH)_3(aq) + 3 H^+$	-26.200 ± 0.500	22	
$Am^{3+} + F^- \Leftrightarrow AmF^{2+}$	3.400 ± 0.400	22	
$Am^{3+} + 2F \Leftrightarrow AmF_2^+$	5.800 ± 0.200	22	
$Am^{3+} + Cl^- \Leftrightarrow AmCl^{2+}$	0.240 ± 0.030	22	
$Am^{3+} + 2 Cl^{-} \Leftrightarrow AmCl_{2}^{+}$	-0.740 ± 0.050	22	
$Am^{3+} + SO_4^{2-} \Leftrightarrow AmSO_4^+$	3.300 ± 0.150	22	
$Am^{3+} + 2 SO_4^{2-} \Leftrightarrow Am(SO_4)_2^{-}$	3.700 ± 0.150	22	
$Am^{3+} + 3 NO_2^{-} + 18 H^{+} + 16 e^{-} \Leftrightarrow AmN_2^{2+} + 9 H_2O(1)$	256.342 ± 0.430	22	
$Am^{3+} + NQ_2^{-} \Leftrightarrow AmNQ_2^{2+}$	2.100 ± 0.200	22	
$Am^{3+} + NO_2^{-} \Leftrightarrow AmNO_2^{2+}$	1330 ± 0200	22	
$Am^{3+} + 2 H^{+} + PQ^{3-} \Leftrightarrow AmH_{2}PQ^{2+}$	22.562 ± 0.501	22	
$Am^{3+} + CO_2^{2-} \Leftrightarrow AmCO_2^+$	8000 ± 0400	22	
$Am^{3+} + 2 CO_2^{2-} \Leftrightarrow Am(CO_2)_2^{}$	$12,900 \pm 0.600$	22	
$Am^{3+} + 3 CO_2^{2-} \Leftrightarrow Am(CO_3)_2^{3-}$	15000 ± 1000	22	
$Am^{3+} + H^{+} + CO_{2}^{2-} \Leftrightarrow AmHCO_{2}^{2+}$	13.000 = 1.000 13.429 ± 0.301	22	
$\Delta m^{3+} + H \cdot SiO_{4}(aa) \hookrightarrow \Delta mSiO(OH)_{2}^{2+} + H^{+}$	-1.680 ± 0.180	22	
$\Delta m^{3+} + N\Omega_{2}^{-+} + C\Omega_{2}^{-+} + S\Omega_{2}^{} + 20 H^{+} + 16 e^{-} \hookrightarrow \Delta m SCN^{2+} + 10 H_{2}O(1)$	158.272 ± 0.775	22	
$Cm^{3+} + HO(1) \hookrightarrow CmOH^{2+} + H^{+}$	-7.200 ± 0.500	10	
$Cm^{3+} + 2 H_{2}O(1) \Leftrightarrow Cm(OH)^{+} + 2 H^{+}$	-15100 ± 0.700	10	
$\operatorname{Cm}^{3+} + 3 \operatorname{H}_{2}O(1) \hookrightarrow \operatorname{Cm}(OH)_{2} + 2 \operatorname{H}^{+}$	$-26\ 200\pm 0\ 500$	10	
$Cm^{3+} + F - CmF^{2+}$	-20.200 ± 0.300 3400 ± 0.400	10	
$Cm^{3+} + 2F - CmE^+$	5.400 ± 0.400 5.800 ± 0.200	10	
$Cm^{3+} + Cl^{-} \Leftrightarrow CmCl^{2+}$	0.240 ± 0.030	10	
$Cm^{3+} + 2Cl^{-} \hookrightarrow CmCl^{+}$	0.240 ± 0.050	10	
$Cm^{3+} + SO^{2-} \Rightarrow CmSO^{+}$	-0.740 ± 0.030 3 300 ± 0.150	10	
$Cm^{3+} + 2SO_4^{2-} \Leftrightarrow Cm(SO_4)^{-1}$	3.300 ± 0.130 3.700 ± 0.150	10	
$Cm^{3+} + 2 NO^{-} + 18 H^{+} + 16 a^{-} \leftrightarrow CmN^{2+} + 0 H O(1)$	3.700 ± 0.130 256 342 ± 0.430	10 2	
$Cm^{3+} + NO_3^{-} \leftrightarrow CmNO_2^{+}$	230.342 ± 0.430 2.100 ± 0.200	10, 2	
$Cm^{3+} + NO_2 \Leftrightarrow CmNO_2^{+}$	2.100 ± 0.200 1 330 ± 0 200	10	
$Cm^{3+} + 2 U^{+} + DO^{3-} \leftrightarrow CmU DO^{2+}$	1.550 ± 0.200	10 2	
$\operatorname{Cm}^{3+} + \operatorname{CO}^{2-} \leftrightarrow \operatorname{Cm}^{2-} \Theta^{+}$	22.302 ± 0.301 8 000 ± 0.400	10, 2	
$Cm^{3+} + 2CO^{2-} \leftrightarrow Cm(CO)^{-}$	0.000 ± 0.400	10	
$Cm^{3+} + 2 CO_3 \iff Cm(CO_3)_2$	12.900 ± 0.000	10	
$Cm^{3+} + U^{+} + CO^{2-} \leftrightarrow CmUCO^{2+}$	13.000 ± 1.000	10 2	
$C_{11} + H + C_{13} \Leftrightarrow C_{11} + C_{13}$	13.429 ± 0.301	10, 2	
$\Box_{\text{H}} = \Pi_{4} SIU_{4}(aq) \Leftrightarrow \Box_{\text{H}} SIU_{4}(UH)_{3}^{-} + H$	-1.080 ± 0.180	10	
$\begin{array}{c} \text{CIII} & \pm \text{INO}_3 + \text{CO}_3 + \text{SO}_4 + 20 \text{ H} + 16 \text{ C} \Leftrightarrow \text{CIIISCN}^{-1} \pm 10 \text{ H}_2\text{O}(1) \\ \text{III}^{+} \pm \text{av}^{2} \text{ to IIav}^{-1} \end{array}$	$130.2/2 \pm 0.7/3$	10, 2	
$\frac{\Pi + 0x}{2} \Leftrightarrow \frac{\Pi 0x}{1}$	4.250 ± 0.010	32	
$ 2 \Pi + 0x \Leftrightarrow H_2 0x(aq)$	5.650 ± 0.032	32	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Ni^{2^+} + ox^{2^-} \Leftrightarrow Ni(ox)(aq)$	5.190 ± 0.040	32	
$Ni^{2^+} + 2 ox^{2^-} \Leftrightarrow Ni(ox)_2^{2^-}$	7.640 ± 0.070	32	
$Am^{3+} + ox^{2-} \Leftrightarrow Am(ox)^+$	6.510 ± 0.150	32	
$\operatorname{Am}^{3+} + 2 \operatorname{ox}^{2-} \Leftrightarrow \operatorname{Am}(\operatorname{ox})_2^{-}$	10.710 ± 0.200	32	
$\operatorname{Am}^{3+} + 3 \operatorname{ox}^{2-} \Leftrightarrow \operatorname{Am}(\operatorname{ox})_3^{3-}$	13.000 ± 1.000	32	
$NpO_2^+ + ox^{2-} \Leftrightarrow NpO_2ox^-$	3.900 ± 0.100	32	
$NpO_2^+ + 2 ox^{2-} \Leftrightarrow NpO_2(ox)_2^{3-}$	5.800 ± 0.200	32	
$UO_2^{2^+} + ox^{2^-} \Leftrightarrow UO_2 ox(aq)$	7.130 ± 0.160	32	
$UO_2^{2^+} + 2 \text{ ox}^{2^-} \Leftrightarrow UO_2(\text{ox})_2^{2^-}$	11.650 ± 0.150	32	
$UO_2^{2^+} + 3 \text{ ox}^{2^-} \Leftrightarrow UO_2(\text{ox})_3^{4^-}$	13.800 ± 1.500	32	
$Mg^{2+} + ox^{2-} \Leftrightarrow Mg(ox)(aq)$	3.560 ± 0.040	32	
$Mg^{2+} + 2 ox^{2-} \Leftrightarrow Mg(ox)_2^{2-}$	5.170 ± 0.080	32	
$Ca^{2+} + ox^{2-} \Leftrightarrow Ca(ox)(aq)$	3.190 ± 0.060	32	
$Ca^{2+} + 2 ox^{2-} \Leftrightarrow Ca(ox)^{2-}$	4.020 ± 0.199	32	
$\operatorname{cit}^{3-} + \operatorname{H}^+ \Leftrightarrow \operatorname{Heit}^{2-}$	6.360 ± 0.020	32	
$\operatorname{cit}^{3-} + 2 \operatorname{H}^{+} \Leftrightarrow \operatorname{H_2cit}^{-}$	11.140 ± 0.022	32	
$\operatorname{cit}^{3-} + 3 \operatorname{H}^{+} \Leftrightarrow \operatorname{H_3cit}(aq)$	14.270 ± 0.024	32	
$Ni^{2+} + cit^{3-} \Leftrightarrow Ni(cit)^{-}$	6.760 ± 0.080	32	
$Ni^{2+} + 2 cit^{3-} \Leftrightarrow Ni(cit)_2^{4-}$	8.500 ± 0.400	32	
$Ni^{2+} + H^+ + cit^{3-} \Leftrightarrow Ni(Hcit)(ag)$	10.520 ± 0.102	32	
$Ni^{2+} + 2 H^+ + cit^{3-} \Leftrightarrow Ni(H_2cit)^+$	13.190 ± 0.251	32	
$Am^{3+} + cit^{3-} \Leftrightarrow Am(cit)(ag)$	8.550 ± 0.200	32	
$Am^{3+} + 2 cit^{3-} \Leftrightarrow Am(cit)_2^{3-}$	13.900 ± 1.000	32	
$Am^{3+} + H^+ + cit^{3-} \Leftrightarrow Am(Hcit)^+$	12.860 ± 1.000	32	
$Am^{3+} + 2H^+ + 2cit^{3-} \Leftrightarrow Am(Hcit)_2^-$	23.520 ± 1.001	32	
$NpO_2^+ + cit^{3-} \Leftrightarrow NpO_2cit^{2-}$	3.680 ± 0.050	32	
$UO_2^{2^+} + cit^{3^-} \Leftrightarrow UO_2cit^{-1}$	8.960 ± 0.170	32	
$2 UO_2^{2+} + 2 cit^{3-} \Leftrightarrow (UO_2)_2 (cit)_2^{2-}$	21.300 ± 0.500	32	
$UO_2^{2^+} + H^+ + cit^{3^-} \Leftrightarrow UO_2(Hcit)(ag)$	11.360 ± 1.000	32	
$Mg^{2+} + cit^{3-} \Leftrightarrow Mg(cit)^{-}$	4.810 ± 0.030	32	
$Mg^{2+} + H^+ + cit^{3-} \Leftrightarrow Mg(Hcit)(ag)$	8.960 ± 0.073	32	
$Mg^{2+} + 2 H^+ + cit^{3-} \Leftrightarrow Mg(H_2cit)^+$	12.450 ± 0.162	32	
$Ca^{2+} + cit^{3-} \Leftrightarrow Ca(cit)^{-}$	4.800 ± 0.030	32	
$Ca^{2+} + H^+ + cit^{3-} \Leftrightarrow Ca(Hcit)(aq)$	9.280 ± 0.073	32	
$Ca^{2+} + 2H^+ + cit^{3-} \Leftrightarrow Ca(H_2cit)^+$	12.670 ± 0.162	32	
$edta^{4-} + H^+ \Leftrightarrow Hedta^{3-}$	11.240 ± 0.030	32	
$edta^{4-} + 2H^+ \Leftrightarrow H_{2}edta^{2-}$	18.040 ± 0.036	32	
$edta^{4-} + 3 H^{+} \Leftrightarrow H_2edta^{-}$	21.190 ± 0.041	32	
$edta^{4-} + 4 H^{+} \Leftrightarrow H_{4}edta(aq)$	23.420 ± 0.065	32	
edta ⁴⁻ + 5 H ⁺ \Leftrightarrow H _c edta ⁺	24.720 ± 0.119	32	
edta ⁴⁻ + 6 H ⁺ \Leftrightarrow H _c edta ²⁺	24.220 ± 0.233	32	
$Ni^{2+} + edta^4 \Leftrightarrow Ni(edta)^{2-}$	20.540 ± 0.130	32	
$Ni^{2+} + edta^{4-} + H^+ \Leftrightarrow Ni(Hedta)^-$	24.200 ± 0.206	32	
$Am^{3+} + edta^{4-} \Leftrightarrow Am(edta)^{-}$	19.670 ± 0.110	32	
$Am^{3+} + edta^{4-} + H^+ \Leftrightarrow Am(Hedta)(aq)$	21.840 ± 0.273	32	
$Pu^{3+} + edta^{4-} \Leftrightarrow Pu(edta)^{-}$	20.180 ± 0.370	32	
$Pu^{3+} + edta^{4-} + H^+ \Leftrightarrow Pu(Hedta)(ag)$	22.020 ± 0.454	32	
$Np^{4+} + edta^4 \Leftrightarrow Np(edta)(aq)$	31.200 ± 0.600	32	
$NpO_2^+ + edta^4 \Leftrightarrow NpO_2edta^{3-}$	9.230 ± 0.130	32	
$NpO_2^+ + edta^4 + H^+ \Leftrightarrow NpO_2(Hedta)^2$	17.060 ± 0.114	32	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$NpO_2^+ + edta^4 + 2 H^+ \Leftrightarrow NpO_2(H_2edta)^-$	22.510 ± 0.145	32	
$U^{4+} + edta^{4-} \Leftrightarrow Uedta(aq)$	29.500 ± 0.200	32	
$\mathrm{UO_2}^{2+} + \mathrm{edta}^{4-} \Leftrightarrow \mathrm{UO_2}\mathrm{edta}^{2-}$	13.700 ± 0.200	32	
$2 \text{ UO}_2^{2^+} + \text{edta}^{4^-} \Leftrightarrow (\text{UO}_2)_2 \text{edta}(\text{aq})$	20.600 ± 0.400	32	
$UO_2^{2^+} + edta^{4^-} + H^+ \Leftrightarrow UO_2(Hdta)^-$	19.610 ± 0.104	32	
$Mg^{2+} + edta^{4-} \Leftrightarrow Mg(edta)^{2-}$	10.900 ± 0.100	32	
$Mg^{2+} + edta^{4-} + H^+ \Leftrightarrow Mg(Hedta)^-$	15.400 ± 0.224	32	
$Ca^{2+} + edta^{4-} \Leftrightarrow Ca(edta)^{2-}$	12.690 ± 0.060	32	
$Ca^{2+} + edta^{4-} + H^+ \Leftrightarrow Ca(Hedta)^{-}$	16.230 ± 0.108	32	
$Na^+ + edta^{4-} \Leftrightarrow Na(edta)^{3-}$	2.800 ± 0.200	32	
$K^+ + \text{edta}^{4-} \Leftrightarrow \text{Na(edta)}^{3-}$	1.800 ± 0.300	32	
$H^+ + isa^- \Leftrightarrow Hisa(aq)$	4.000 ± 0.500	32	
$Ca^{2+} + isa^{-} \Leftrightarrow Ca(isa)^{+}$	1.700 ± 0.300	32	
$Na^+ + (ox)^{2-} \Leftrightarrow Na(ox)^{-}$	1.000	33	*
$K^+ + (ox)^2 \Leftrightarrow K(ox)^-$	0.900	33	*
$\operatorname{Sr}^{2^+} + (\operatorname{ox})^{2^-} \Leftrightarrow \operatorname{Sr}(\operatorname{ox})$	2.330	34	*
$Sr^{2^+} + 2(ox)^{2^-} \Leftrightarrow Sr(ox)^{2^-}$	2.980	34	*
$\operatorname{Ra}^{2+} + (\operatorname{ox})^{2-} \Leftrightarrow \operatorname{Ra}(\operatorname{ox})$	2.780	35	*
$Ra^{2+} + 2 (ox)^{2-} \Leftrightarrow Ra(ox)^{2-}$	3.440	35	*
$Fe^{2+} + (ox)^{2-} \Leftrightarrow Fe(ox)$	4.130	34	*
$\frac{Fe^{2+} + 2(\alpha x)^2}{Fe^{2+} + 2(\alpha x)^2} \Leftrightarrow \frac{Fe(\alpha x)^2}{Fe(\alpha x)^2}$	6 2 3 0	34	*
$\frac{10^{2}}{(10^{2} + 10^{2})^{2}} \Leftrightarrow Co(0x)$	4 720	34	*
$\frac{\cos^{2}}{\cos^{2}} + 2(\cos^{2})^{2} \Leftrightarrow \cos(\cos^{2})^{2}$	7 000	34	*
$\frac{\cos^{-1} 2 (\cos^{2})}{\cosh^{2}} \approx \frac{\cos(\cos^{2})}{\cosh^{2}}$	4 910	34	*
$\frac{10^{12} + 2(0x)}{Ph + 2(0x)^{2^{2}}} \Leftrightarrow Ph(0x)^{2^{2}}$	6 760	34	*
$\frac{10^{+2} (\text{ox})^{+} \Rightarrow 10(\text{ox})_{2}}{(\text{ox})^{2}} \Rightarrow 10(\text{ox})_{2}}$	7 720	34	*
$A_{1}^{3+} + 2(\alpha x)^{2-} \Leftrightarrow A_{1}(\alpha x)^{-}$	13 200	34	*
$\frac{1}{\lambda} \frac{1}{\lambda^{3}} + \frac{2}{\lambda^{3}} \frac{(\alpha x)^{2}}{(\alpha x)^{2}} \leftrightarrow \frac{1}{\lambda^{3}} \frac{(\alpha x)^{2}}{(\alpha x)^{3}}$	16.740	34	*
$\frac{7r^{4+} + (\alpha x)^{2-}}{7r^{4+} + (\alpha x)^{2-}} \leftrightarrow \frac{7r(\alpha x)^{2+}}{7r^{4+}}$	10.520	35	*
$Zr^{4+} + 2(\alpha r)^2 \Leftrightarrow Zr(\alpha r)$	18.150	35	*
$T_{\alpha} O^{2+} + (\alpha x)^{2-} \Leftrightarrow T_{\alpha} O(\alpha x)$	9 500	35	*
$T_{CO}Q^{2+} + 2 (\alpha x)^{2-} \Leftrightarrow T_{CO}(\alpha x)^{2-}$	16.210	35	*
$Sm^{3+} + (ox)^{2-} \Leftrightarrow Sm(ox)^{+}$	6 300	35	*
$\operatorname{Sm}^{3+} + 2 (\operatorname{ox})^{2-} \Leftrightarrow \operatorname{Sm}(\operatorname{ox})^{-}$	10.130	35	*
$\sin^{3+} + (\alpha x)^2 \leftrightarrow \Delta c(\alpha x)^+$	5 650	34	*
$Ac^{3+} + 2(\alpha x)^2 \leftrightarrow Ac(\alpha x)^2$	8 800	34	*
$\frac{AC}{Cm^{3+}} + \frac{(\alpha x)^2}{Cm^{(\alpha x)}} \Leftrightarrow \frac{Cm(\alpha x)^4}{Cm^{(\alpha x)}}$	6 540	34	*
$Cm^{3+} + 2(\alpha x)^{2-} \Leftrightarrow Cm(\alpha x)^{-}$	10 570	34	*
$\operatorname{Chi}^{+} + 2 (\operatorname{ox})^{2} \Leftrightarrow \operatorname{Chi}(\operatorname{ox})_{2}^{2+}$	10.570	34	*
$\operatorname{Th}^{4+} + 2 \operatorname{(ov)}^{2-} \Leftrightarrow \operatorname{Th}(\operatorname{ov})$	20,200	34	*
$\operatorname{Th}^{4+} + 2 \operatorname{(ox)}^{2-} \Leftrightarrow \operatorname{Th}(\operatorname{ox})^{2-}$	26.200	34	*
$\lim_{x \to 0} + 5 (0x) \iff \lim_{x \to 0} (0x)_3$	10.340	35	*
$Pu + (0x) \Leftrightarrow Pu(0x)$ $Pu^{4+} + 2(cu)^{2-} \leftrightarrow Pu(cu)(cu)$	17.800	35	*
$Pu + 2 (0x) \Leftrightarrow Pu(0x)_2(aq)$ $U^{4+} + (ax)^{2+} \Leftrightarrow U(ax)^{2+}$	17.800	35	*
$ \bigcup_{i=1}^{i} + (0x) \Leftrightarrow \bigcup_{i=1}^{i} (0x) $	17,500	35	*
$\bigcup_{k=1}^{k+1} + (2k)^{2} \Leftrightarrow \bigcup_{k=1}^{k+1} (2k)^{2+1} $	17.300	35	*
$\frac{\ln p}{\ln t} \neq 0 \text{ (0x)} \Leftrightarrow \ln p(0x)$ $\frac{\ln 4^{4} + 2}{\ln t} (2\pi)^{2-1} \leftrightarrow \ln t(2\pi) (2\pi)$	10.290	35	*
$\frac{np}{r} \neq 2 \text{ (0x) } \iff \frac{np(0x)_2(aq)}{r}$ $\frac{p_1(0x)_2^2}{r} \Rightarrow \frac{p_2(0x)_2(aq)}{r}$	7 250	35	*
$r u O_2 \rightarrow (0x) \iff r u O_2(0x) (dq)$ $P u O_2^{2+} + 2 (ax)^{2-} \iff P u O_2(ax)^{2-}$	11.230	35	*
$ruO_2 = \tau 2 (0X) \Leftrightarrow PuO_2(0X)_2$ $N_2^+ + (z; \Delta^2 + \omega) N_2(z; \Delta^2 + \omega)$	11.940	24	 *
$Na + (CII)^{2} \Leftrightarrow Na(CII)^{2}$	1.340	54	Ŷ

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$K^+ + (cit)^{3-} \Leftrightarrow K(cit)^{2-}$	1.230	34	*
$\mathrm{Sr}^{2^+} + (\mathrm{cit})^{3^-} \Leftrightarrow \mathrm{Sr}(\mathrm{cit})^{-1}$	4.110	34	*
$\mathrm{Sr}^{2^+} + \mathrm{H}^+ + (\mathrm{cit})^{3^-} \Leftrightarrow \mathrm{SrH}(\mathrm{cit})(\mathrm{aq})$	9.080	35	*
$\operatorname{Ra}^{2+} + (\operatorname{cit})^{3-} \Leftrightarrow \operatorname{Ra}(\operatorname{cit})^{-}$	3.590	35	*
$\operatorname{Ra}^{2+} + \operatorname{H}^{+} + (\operatorname{cit})^3 \Leftrightarrow \operatorname{Ra}(\operatorname{H}(\operatorname{cit})(\operatorname{aq}))$	9.000	35	*
$Fe^{2+} + (cit)^{3-} \Leftrightarrow Fe(cit)^{-}$	5.690	34	*
$Fe^{2^+} + H^+ + (cit)^{3^-} \Leftrightarrow FeH(cit)(aq)$	9.870	34	*
$\operatorname{Co}^{2^+} + (\operatorname{cit})^3 \Leftrightarrow \operatorname{Co}(\operatorname{cit})^-$	6.290	34	*
$Co^{2^+} + H^+ + (cit)^{3^-} \Leftrightarrow CoH(cit)(ag)$	10.270	34	*
$Pb^{2+} + (cit)^{3-} \Leftrightarrow Pb(cit)^{-}$	5.700	34	*
$Pb^{2^+} + 2 (cit)^{3^-} \Leftrightarrow Pb(cit)^{4^-}$	9.910	34	*
$Pb^{2^+} + 3 (cit)^{3^-} \Leftrightarrow Pb(cit)_2^{7^-}$	4.550	34	*
$Pb^{2+} + H^+ + (cit)^{3-} \Leftrightarrow PbH(cit)(aq)$	10.410	34	*
$A^{1^{3+}} + (cit)^{3-} \Leftrightarrow A^{1}(cit)$	9.910	33	*
$Al^{3+} + 2(\operatorname{cit})^{3-} \Leftrightarrow Al(\operatorname{cit})^{3-}$	14 120	33	*
$Al^{3+} + H^{+} + (cit)^{3-} \Leftrightarrow AlH(cit)^{+}$	12.860	33	*
$Zr^{4+} + (ct)^3 \Leftrightarrow Zr(ct)^+$	13 270	35	*
$Zr^{4+} + H^+ + (cit)^3 \leftrightarrow ZrH(cit)^{2+}$	14 880	35	*
$\frac{2r}{\text{Te}\Omega^{2+} + (\text{eit})^3} \Leftrightarrow \text{Te}\Omega(\text{eit})^2$	11 990	35	*
$T_{\rm CO}^{2+} + H^+ + ({\rm cit})^3 \Leftrightarrow {\rm TcOH}({\rm cit})({\rm ag})$	14 110	35	*
$\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}$	7 990	35	*
$Sm^{3+} + H^{+} + (cit)^{3-} \hookrightarrow SmH(cit)^{+}$	11.670	35	*
$\Delta a^{3+} + (ait)^{3-} \leftrightarrow \Delta c(ait)(aa)$	7 990	35	*
$Ac^{3+} + U^+ + (ait)^3 \leftrightarrow AcU(ait)^+$	11.670	35	*
$Ac + H + (cit)^{3} \Leftrightarrow Ach(cit)$ $Cm^{3+} + (cit)^{3-} \Leftrightarrow Cm(cit)(co)$	7 000	35	*
$\operatorname{Cm}^{3+} + \operatorname{U}^{+} + (\operatorname{cit})^{3-} \Leftrightarrow \operatorname{Cm}^{1}(\operatorname{cit})^{+}$	11.670	35	*
$\lim_{t \to 0} + \Pi + (\operatorname{cit}) \Leftrightarrow \operatorname{CinH}(\operatorname{cit})$ $\lim_{t \to 0} + \Pi + (\operatorname{cit})^{3-} \Leftrightarrow \operatorname{Div}(\operatorname{cit})(\operatorname{cit})$	7 000	35	*
$Pu^{3+} + U^{+} + (a^{3+})^{3-} \leftrightarrow Pu^{-1} U(a^{3+})^{3-}$	11.670	35	*
$\operatorname{Pu}^{+} + \operatorname{Pu}^{+} + (\operatorname{ci}^{+})^{+} \leftrightarrow \operatorname{Pu}^{+} (\operatorname{ci}^{+})^{+}$	11.070	35	*
$\frac{1}{10} + (CII) \Leftrightarrow \frac{1}{10} (CII)$ $\frac{1}{10} + \frac{1}{10} (CII)$ $\frac{1}{10} + \frac{1}{10} (CII)$	11.290	35	*
$\frac{1}{10} + H + (cn) \Leftrightarrow 1nH(cn)$ $\frac{4}{10} + (cn)^{3} \leftrightarrow P_{10}(cn)^{4}$	13.080	35	*
$Pu + (Cn) \Leftrightarrow Pu(Cn)$ $Pu^{4+} + U^{+} + (a^{2+})^{3-} \Leftrightarrow Pu^{-1}U(a^{2+})^{2+}$	13.040	35	*
$PU + H + (CII) \Leftrightarrow PUH(CII)$ $U^{4+} + (CII)^{3+} \leftrightarrow U(CII)^{4+}$	12.840	35	*
$ \bigcup_{i=1}^{n+1} (\operatorname{cit}_{i})^{2} \hookrightarrow \operatorname{LHI}(\operatorname{cit}_{i})^{2+1} $	12.840	35	*
$U + H + (cit)^{2} \Leftrightarrow UH(cit)$	12.020	35	*
$Np^{+} + (cl)^{+} \Leftrightarrow Np(cl)$	12.980	35	*
Np + H + (cl) \Leftrightarrow NpH(cl)	14.710	35	*
$NpO_2 + H + (cit)^2 \Leftrightarrow NpH(cit)$	9.920	25	*
$PuO_2^{-1} + (cit)^{\circ} \Leftrightarrow PuO_2(cit)$	9.180	25	*
$\frac{PuO_2^{-2} + H^{+} + (ctt)^{-2} \Leftrightarrow PuO_2H(ctt)(aq)}{PuO_2^{-2} + (ctt)^{-2} \oplus (ctt)^{-2}}$	12.400	22	* *
$Sr^2 + (edta)^2 \Leftrightarrow Sr(edta)^2$	10.460	22	* *
$Sr^{2+} + H^{+} + (edta)^{*} \Leftrightarrow SrH(edta)$	14.820	22	*
$Fe^{2} + (edta)^{+} \Leftrightarrow Fe(edta)^{2}$	16.020	33	*
$\frac{1}{100} + H + (\text{edta})^{-1} \Leftrightarrow \text{FeH}(\text{edta})^{-1}$	19.250	35	*
$Co^{-1} + (edta)^{-1} \Leftrightarrow Co(edta)^{-1}$	18.170	35	*
$Co^{-1} + H^{-1} + (edta)^{-1} \Leftrightarrow CoH(edta)^{-1}$	21.600	33	*
$\operatorname{Co}^{-1} + 2 \operatorname{H}^{+} + (\operatorname{edta})^{+} \Leftrightarrow \operatorname{CoH}_2(\operatorname{edta})(\operatorname{aq})$	23.570	33	*
$Pb^{2+} + (edta)^{4+} \Leftrightarrow Pb(edta)^{2-}$	19.680	33	*
$Pb^{2^{+}} + H^{+} + (edta)^{4^{-}} \Leftrightarrow PbH(edta)^{-}$	22.610	33	*
$Pb^{2+} + 2 H^+ + (edta)^{4+} \Leftrightarrow PbH_2(edta)(aq)$	24.570	33	*
$Pb^{2+} + 3 H^+ + (edta)^{4-} \Leftrightarrow PbH_3(edta)^+$	25.770	33	*

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Th^{4+} + (edta)^{4-} \Leftrightarrow Th(edta)(aq)$	26.630	33	*
$Th^{4+} + H^+ + (edta)^{4-} \Leftrightarrow ThH(edta)^+$	28.610	33	*
$Pu^{4+} + (edta)^{4-} + H_2O \Leftrightarrow PuOH(edta)^{-} + H^{+}$	24.200	36	*
$Pu^{4+} + (edta)^{4-} + 2 H_2O \Leftrightarrow Pu(OH)_2(edta)^{2-} + 2 H^+$	19.220	36	*
$Pu^{4+} + (edta)^{4-} + 3 H_2O \Leftrightarrow Pu(OH)_3(edta)^{3-} + 3 H^+$	9.710	36	*
$Mg^{2+} + (isa)^{-} \Leftrightarrow Mg(isa)^{+}$	0.600	35	*
$\mathrm{Sr}^{2^+} + (\mathrm{isa})^- \Leftrightarrow \mathrm{Sr}(\mathrm{isa})^+$	0.910	35	*
$\operatorname{Fe}^{2^+} + (\operatorname{isa})^- \Leftrightarrow \operatorname{Fe}(\operatorname{isa})^+$	0.940	35	*
$Ni^{2+} + (isa)^{-} \Leftrightarrow Ni(isa)^{+}$	2.200	37	*
$Pb^{2^+} + (isa)^- \Leftrightarrow Pb(isa)^+$	2.440	35	*
$Am^{3+} + 3 H_2O(1) + (isa)^- \Leftrightarrow Am(OH)_3(isa)^- + 3 H^+$	-47.700	37	*
$Pu^{4+} + 4 H_2O(l) + (isa)^- \Leftrightarrow Pu(OH)_4(isa)^- + 4 H^+$	-12.300	37	*
$Pu^{4+} + 4 H_2O(1) + 2 (isa)^- ⇔ Pu(OH)_4(isa)_2^{2-} + 4 H^+$	-8.100	37	*
$Np^{4+} + 4 H_2O(1) + (isa)^- \Leftrightarrow Np(OH)_4(isa)^- + 4 H^+$	-13.660	37	*
$Np^{4+} + 4 H_2O(1) + 2 (isa)^- \Leftrightarrow Np(OH)_4(isa)_2^{2-} + 4 H^+$	-11.800	37	*
$\mathrm{U}^{4+} + 4 \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) + (\mathrm{isa})^{-} \Leftrightarrow \mathrm{U}(\mathrm{OH})_{4}(\mathrm{isa})^{-} + 4 \mathrm{H}^{+}$	-17.600	37	*
$\mathrm{U}^{4+} + 4 \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) + 2(\mathrm{isa})^{-} \Leftrightarrow \mathrm{U}(\mathrm{OH})_{4}(\mathrm{isa})_{2}^{2-} + 4 \mathrm{H}^{+}$	-15.700	37	*
$Th^{4+} + H_2O(1) + (isa)^- \Leftrightarrow ThOH(isa)^{2+} + H^+$	-6.200	38	*
$Th^{4+} + 3 H_2O(1) + 2 (isa)^- \Leftrightarrow Th(OH)_3(isa)_2^- + 3 H^+$	-70.300	38	*
$Th^{4+} + 4 H_2O(1) + 2 (isa)^- \Leftrightarrow Th(OH)_4(isa)_2^{2-} + 4 H^+$	-105.900	38	*

*1 Tentative values.

Desetion	$1 \sim V^{0}$	f	4 - · *1
Reaction $\Pi(\alpha) \leftrightarrow \Pi^{+} + \alpha^{-}$	$10g_{10} \text{ A}^{-1}$	rei.	ι.ν.
$\begin{array}{c} \mathbf{n}(\mathbf{g}) \Leftrightarrow \mathbf{n}^{+} \mathbf{t}^{*} \\ \mathbf{H}(\mathbf{g}) \Leftrightarrow 2^{+} \mathbf{H}^{+} + 2^{-} \end{array}$	33.012 ± 0.001	$\frac{2}{23}$	
$H_2(g) \hookrightarrow 2H + 2e$	1.400 ± 0.010	2, 5	
$\frac{\Pi_2 O(g) \leftrightarrow \Pi_2 O(l)}{D(ar) + 2 \Pi O(l) \leftrightarrow D(O(l) (ar) + 2 \Pi^{\dagger} + 2 a^{-1})$	1.499 ± 0.010	2	+
$B(c1) + 3 H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3 H + 3 e$	43.173 ± 0.143	2	+
$B(g) + 3 H_2O(I) \Leftrightarrow B(OH)_3(aq) + 3 H_1 + 3 e$	130.430 ± 0.888	2	
$\frac{B_2O_3(cr) + 3 H_2O(1) \Leftrightarrow 2 B(OH)_3(aq)}{B(OH)_3(aq)}$	5.745 ± 0.379	2	+
$B(OH)_3(CT) \Leftrightarrow B(OH)_3(aq)$	-0.070 ± 0.203	2	-
$\frac{BF_3(g) + 3H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3F + 3H}{G(-) + 2H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3F + 3H}$	-2.976 ± 0.416	2	
$C(cr) + 3 H_2O(1) \Leftrightarrow CO_3^2 + 6 H^2 + 4 e$	-32.151 ± 0.069	2	
$\frac{C(g) + 3H_2O(1) \Leftrightarrow CO_3^2 + 6H^2 + 4e}{CO_3^2 + 6H^2 + 4e}$	85.44/±0.105	2	-
$\frac{\text{CO}(g) + 2 \text{ H}_2\text{O}(l) \Leftrightarrow \text{CO}_3^{2^2} + 4 \text{ H}^2 + 2 \text{ e}^2}{2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2$	-14.637 ± 0.075	2	
$CO_2(g) + H_2O(l) \Leftrightarrow CO_3^2 + 2 H'$	-18.155 ± 0.035	2	
$CH_4(g) + 3 H_2O(1) \Leftrightarrow CO_3^{2^*} + 10 H' + 8 e^{-1}$	-43.931	1	
$N(g) + 3 H_2O(l) \Leftrightarrow NO_3 + 6 H + 5 e^{-1}$	-25.418 ± 0.102	2	
$N_2(g) + 6 H_2O(l) \Leftrightarrow 2 NO_3 + 12 H^+ + 10 e^-$	-210.449 ± 0.105	2	
$NH_3(g) + 3 H_2O(1) \Leftrightarrow NO_3^- + 9 H^+ + 8 e^-$	-108.099 ± 0.096	2	
$O(g) + 2 H^+ + 2 e^- \Leftrightarrow H_2O(l)$	82.144 ± 0.019	2	
$O_2(g) + 4 H^+ + 4 e^- \Leftrightarrow 2 H_2O(l)$	83.090 ± 0.010	2	
$F(g) + e^- \Leftrightarrow F^-$	60.231 ± 0.132	2	
$F_2(g) + 2 e^- \Leftrightarrow 2 F^-$	98.641 ± 0.171	2	
$\operatorname{HF}(g) \Leftrightarrow \operatorname{F}^{-} + \operatorname{H}^{+}$	1.073 ± 0.172	2	
$Na(cr) \Leftrightarrow Na^+ + e^-$	45.892 ± 0.017	2	
$Na(g) \Leftrightarrow Na^+ + e^-$	59.375 ± 0.124	2	
$\frac{Na_2AI_{14}SI_{22}O_{60}(OH)_{12}(montmorillonite, Na) + 16 H_2O(I) + 44 H^3}{\Leftrightarrow 2 Na^4 + 14 AI^{34} + 22 H_4SiO_4(aq)}$	58.540	3	
$NaAl_{3}Si_{3}O_{10}(OH)_{2}(plagioclase) + 10 H^{+} \Leftrightarrow Na^{+} + 3 Al^{3+} + 3 H_{4}SiO_{4}(aq)$	18.870	3	
$NaAlSi_{3}O_{8}(albite) + 4 H_{2}O(1) + 4 H^{+} \Leftrightarrow Na^{+} + Al^{3+} + 3 H_{4}SiO_{4}(aq)$	3.540	3	
$\frac{Mg_{26}Fe_{8}AI_{20}Si_{24}O_{80}(OH)_{64}(clinochlore) + 128 H^{T}}{\Leftrightarrow 26 Mg^{2+} + 20 AI^{3+} + 24 H_{4}SiO_{4}(aq) + 8 Fe^{2+} + 48 H_{2}O(l)}$	447.610	3	
$Mg_{2}Si_{2}O_{6}(s) + 2 H_{2}O(l) + 4 H^{+} \Leftrightarrow 2 Mg^{2+} + 2 H_{4}SiO_{4}(aq)$	23.260	3	
$Mg_{3}Si_{4}O_{10}(OH)_{2}(talc) + 4 H_{2}O(l) + 6 H^{+} \Leftrightarrow 3 Mg^{2+} + 4 H_{4}SiO_{4}(aq)$	20.600 ± 2.000	3, 11	
$\begin{array}{l} Mg_{40}Al_{16}Si_{24}O_{80}(OH)_{64}(clinochlore,Mg-rich) + 128 \text{ H}^{+} \\ \Leftrightarrow 40 \text{ Mg}^{2^{+}} + 16 \text{ Al}^{3^{+}} + 24 \text{ H}_{4}SiO_{4}(aq) + 48 \text{ H}_{2}O(l) \end{array}$	546.830	3	
$Mg_{4}Si_{6}O_{9}(OH)_{14}(sepiolite) + H_{2}O(I) + 8 H^{+} \Leftrightarrow 4 Mg^{2+} + 6 H_{4}SiO_{4}(aq)$	32.830	3	
$ \begin{array}{l} Mg_8Fe_{26}Al_{25}Si_{20}O_{80}(OH)_{64}(clinochlore,Fe-rich) + 144 \text{ H}^+ + e^- \\ \Leftrightarrow 8 Mg^{2+} + 25 \text{ Al}^{3+} + 20 \text{ H}_4SiO_4(aq) + 26 \text{ Fe}^{2+} + 64 \text{ H}_2O(l) \end{array} $	178.370	3	
$\begin{array}{l} MgAl_{14}Si_{22}O_{60}(OH)_{12}(montmorillonite,Mg) + 16 H_2O(I) + 44 H^+ \\ \Leftrightarrow Mg^{2+} + 14 Al^{3+} + 22 H_4SiO_4(aq) \end{array}$	57.040	3	
$MgFe_2O_4(magnesio-ferrite) + 8 H^+ + 2 e^- \Leftrightarrow Mg^{2+} + 2 Fe^{2+} + 4 H_2O(l)$	42.820	3	
$MgO(periclase) + 2 H^{+} \Leftrightarrow Mg^{2+} + H_{2}O(l)$	21.580	3	
$Al(OH)_{3}(gibbsite) + 3 H^{+} \Leftrightarrow Al^{3+} + 3 H_{2}O(l)$	8.770	3	
$Al_2SiO_4(OH)_2(topaz,O) + 6 H^+ \Leftrightarrow 2 Al^{3+} + H_4SiO_4(aq) + 2 H_2O(l)$	12.810	3	
$Al_2Si_2O_5(OH)_4(\text{kaolinite}) \ 6 \ \text{H}^+ \Leftrightarrow + 2 \ \text{H}_4SiO_4(aq) + 2 \ \text{Al}^{3+} + \text{H}_2O(l)$	9.080	3	
SiO_2 (chalcedony) + 2 H ₂ O(l) \Leftrightarrow H ₄ SiO ₄ (aq)	-3.490	3	
$SiO_2(quartz) + 2 H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-3.780	3	
$SiO_2(silica-gel) + 2 H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-2.700	3	
$SiO_2 \cdot H_2O(silica-glass) + H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-3.020	3	
$SiO_2(am) + 2 H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-2.710	3	

Table A 2Selected equilibrium constants of solid phases for JAEA-TDB ready to use for the
geochemical calculation programs (revised from Table 19 in the TDB report 1)

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\mathrm{Si}(\mathrm{cr}) + 4 \mathrm{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_4\mathrm{SiO}_4(\mathrm{aq}) + 4 \mathrm{H}^+ + 4 \mathrm{e}^-$	62.924 ± 0.205	2	
$\mathrm{Si}(\mathrm{g}) + 4 \mathrm{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_4\mathrm{SiO}_4(\mathrm{aq}) + 4 \mathrm{H}^+ + 4 \mathrm{e}^-$	133.969 ± 1.416	2	
$SiO_2(\alpha$ -quartz) + 2 H ₂ O(l) \Leftrightarrow H ₄ SiO ₄ (aq)	-4.000 ± 0.268	2	
$\mathrm{SiF}_4(\mathrm{g}) + 4 \mathrm{H}_2\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}_4\mathrm{SiO}_4(\mathrm{aq}) + 4 \mathrm{F}^- + 4 \mathrm{H}^+$	-15.330 ± 0.545	2	
$P(am) + 4 H_2O(l) \Leftrightarrow PO_4^{3-} + 8 H^+ + 5 e^-$	13.478 ± 0.276	2	
$P(cr) + 4 H_2O(l) \Leftrightarrow PO_4^{3-} + 8 H^+ + 5 e^-$	13.478 ± 0.276	2	
$P(g) + 4 H_2O(l) \Leftrightarrow PO_4^{3-} + 8 H^+ + 5 e^-$	62.548 ± 0.328	2	
$P_2(g) + 8 H_2O(1) \Leftrightarrow 2 PO_4^{3-} + 16 H^+ + 10 e^-$	45.082 ± 0.526	2	
$P_4(g) + 16 H_2O(1) \Leftrightarrow 4 PO_4^{3-} + 32 H^+ + 20 e^-$	58.189 ± 0.558	2	
$S(cr) + 4 H_2O(1) \Leftrightarrow SO_4^{2-} + 8 H^+ + 6 e^-$	-35.836 ± 0.075	2	
$S(g) + 4 H_2O(l) \Leftrightarrow SO_4^{2-} + 8 H^+ + 6 e^-$	5.629 ± 0.079	2	
$S_2(g) + 8 H_2O(1) \Leftrightarrow 2 SO_4^{2-} + 16 H^+ + 12 e^-$	-57.713 ± 0.118	2	
$SO_2(g) + 2 H_2O(l) \Leftrightarrow SO_4^{2-} + 4 H^+ + 2 e^-$	-5.321 ± 0.082	2	
$H_2S(g) + 4 H_2O(l) \Leftrightarrow SO_4^{2-} + 10 H^+ + 8 e^-$	-41.695 ± 0.115	2	
$Cl(g) + e^{-} \Leftrightarrow Cl^{-}$	41.437 ± 0.021	2	
$\operatorname{Cl}_2(g) + 2 e^- \Leftrightarrow 2 \operatorname{Cl}^-$	45.976 ± 0.029	2	
$HCl(g) \Leftrightarrow Cl^- + H^+$	6.293 ± 0.027	2	
$K(cr) \Leftrightarrow K^+ + e^-$	49.493 ± 0.020	2	
$K(g) \Leftrightarrow K^+ + e^-$	60.089 ± 0.142	2	
$KAl_2(AlSi_3O_{10})(OH)_2(muscovite) + H^+ \Leftrightarrow 3Al^{3+} + 3H_4SiO_4(aq) + K^+$	14.600	3	
$\frac{1}{K_2AI_{10}Si_{14}O_{40}(OH)_8(illite,idealized2) + 8 H_2O(l) + 32 H^+}{\Leftrightarrow 10 Al^{3^+} + 14 H_4SiO_4(ag) + 2 K^+}$	28.540	3	
$K_2AI_{14}Si_{22}O_{60}(OH)_{12}(montmorillonite,K) + 16 H_2O(1) + 44 H^+$ $\Leftrightarrow 14 AI^{3+} + 22 H_4SiO_4(aq) + 2 K^+$	57.510	3	
$KAl_3(SO_4)_2(OH)_6(alunite) + 6 H^+ \Leftrightarrow 3 Al^{3+} + 2 SO_4^{2-} + K^+ + 6 H_2O(1)$	1.610	3	
$KAlSi_{3}O_{8}(microcline) + 4 H_{2}O(1) + 4 H^{+} \Leftrightarrow Al^{3+} + 3 H_{4}SiO_{4}(aq) + K^{+}$	1.780	3	
$KAlSi_{3}O_{8}(orthoclase) + 4 H_{2}O(l) + 4 H^{+} \Leftrightarrow Al^{3+} + 3 H_{4}SiO_{4}(aq) + K^{+}$	0.860	3	
$KFe_3AISi_3O_{10}(OH)_2(annite) + 10 H^+ \Leftrightarrow Al^{3+} + 3 H_4SiO_4(aq) + K^+ + 3 Fe^{2+}$	22.330	3	
$\frac{\text{K}_{3}\text{MgAl}_{9}\text{Si}_{14}\text{O}_{40}(\text{OH})_{8}(\text{illite,idealized}) + 8 \text{ H}_{2}\text{O}(\text{I}) + 32 \text{ H}^{+}}{\Leftrightarrow \text{Mg}^{2+} + 9 \text{ Al}^{3+} + 14 \text{ H}_{4}\text{SiO}_{4}(\text{ag}) + 3 \text{ K}^{+}}$	67.150	3	
$KMg_3AlSi_3O_{10}(OH)_2(phlogopite)+10 H^+ \Leftrightarrow 3 Mg^{2+}+Al^{3+}+3 H_4SiO_4(aq)+K^+$	36.330	3	
$KAlSi_3O_8(feldspar,K) + 4 H_2O(l) + 4 H^+ \Leftrightarrow 3 H_4SiO_4(aq) + K^+ + Al^{3+}$	0.0832	3	
$Ca(cr) \Leftrightarrow Ca^{2+} + 2e^{-}$	96.847 ± 0.184	2	
$Ca(g) \Leftrightarrow Ca^{2+} + 2e^{-}$	122.078 ± 0.232	2	
$CaO(cr) + 2 H^+ \Leftrightarrow Ca^{2+} + H_2O(1)$	32.699 ± 0.244	2	
$CaCO_3(calcite) \Leftrightarrow Ca^{2^+} + CO_3^{2^-}$	-8.460 ± 0.010	12	
$CaCO_2(aragonite) \Leftrightarrow Ca^{2+} + CO_2^{2-}$	-8.340 ± 0.020	3, 11	
$CaMg(CO_2)_2(dolomite) \Leftrightarrow Ca^{2+} + Mg^{2+} + 2CO_2^{2-}$	-17.090	3	
$CaSO_4 : 2H_2O(gvpsum) \Leftrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O(1)$	-4.600 ± 0.020	3.11	
$CaSO_4(anhvdrite) \Leftrightarrow Ca^{2+} + SO_4^{2-}$	-4.380	3	
$Ca_{\epsilon}(PO_{4})_{2}(OH)(hydroxyanatite) + H^{+} \Leftrightarrow H_{2}O(1) + 3 PO_{4}^{3-} + 5 Ca^{2+}$	-40 470	3	
$CaF_2(\text{fluorite}) \Leftrightarrow Ca^{2^+} + 2 \text{ F}^-$	-10.960	3	
$Ca_{2}Al_{2}(SiO_{4})_{2}OH(clinozoisite)+13 H^{+} \leftrightarrow 3 Al^{3+}+3 H_{2}SiO_{4}(a_{0})+2 Ca^{2+} H_{2}O(1)$	43 610	3	
$Ca_{2}Al_{2}Fe(SiO_{4})(Si_{2}O_{7})OOH(epidote) + 13 H^{+} + e^{-}$ $\Leftrightarrow 2 Al_{3}^{3+} + 3 H_{2}SiO_{4}(aq) + 2 Ca_{2}^{2+} + Fe_{2}^{2+} + H_{2}O(1)$	45.430	3	
$\frac{1}{Ca_2Mg_sSi_sO_{22}(OH)_2(tremolite)+8H_2O(1)+14H^+ \Leftrightarrow 5M\sigma^{2+}+8H_4SiO_4(a\sigma)+2Ca^{2+}}$	57.700	3	
$C_{a_2} F_{e_3}(SiO_4)_2(and radite) + 12 H^+ + 2 e^- \Leftrightarrow 3 H_2 SiO_4(an) + 3 Ca^{2+} + 2 Fe^{2+}$	55.100	3	
$CaAl_{14}Si_{22}O_{60}(OH)_{12} \text{ (montmorillonite,Ca)} + 16 H_2O(l) + 44 H^+$ $\Leftrightarrow 14 \text{ A}l^{3+} + 22 \text{ H.SiO}(aa) + Ca^{2+}$	41.880	3	
$\frac{14 \text{ Km}^{2} + 22 \text{ H}_{3}\text{Si}_{2}\text{O}_{4}(\text{aq}) + \text{Ca}}{\text{CaAl}_{2}\text{Si}_{2}\text{O}_{8}(\text{anorthite hexagonal}) + 8 \text{ H}^{+} \Leftrightarrow 2 \text{ Al}^{3+} + 2 \text{ H}_{3}\text{Si}_{2}\text{O}_{4}(\text{aq}) + \text{Ca}^{2+}}$	26.700	3	
CaAl ₂ Si ₂ O ₈ (anorthite,triclinic) + 8 H ⁺ \Leftrightarrow 2 Al ³⁺ + 2 H ₄ SiO ₄ (aq) + Ca ²⁺	26.370	3	
2 2 - 0(···································			1

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$CaO(s) + 2 H^+ \Leftrightarrow Ca^{2+} + H_2O(l)$	32.700	3	
$MnO_2(birnessite-type) + 2 e^- + 4 H^+ \Leftrightarrow Mn^{2+} + 2 H_2O(l)$	43.597	3	
$MnOOH(manganite) + e^{-} + 3 H^{+} \Leftrightarrow Mn^{2+} + 2 H_2O(1)$	25.267	3	
$MnCO_3(rhodochrosite) \Leftrightarrow CO_3^{2-} + Mn^{2+}$	-10.540	3	
$MnO_2(pyrolusite) + 4 H^+ + 2 e^- \Leftrightarrow Mn^{2+} + 2 H_2O(1)$	41.550	3	
$MnS(alabandite) + 4 H_2O(1) \Leftrightarrow SO_4^{2-} + Mn^{2+} + 8 H^+ + 8 e^-$	-34.110	3	
$Fe(OH)_{3}(s) + 3 H^{+} \Leftrightarrow Fe^{3+} + 3 H_{2}O(1)$	4.890	3	
$FeCO_3(siderite) \Leftrightarrow Fe^{2+} + CO_3^{2-}$	-10.570	3	
$Fe_2O_3(hematite) + 6 H^+ + 2 e^- \Leftrightarrow 2 Fe^{2+} + 3 H_2O(1)$	22.400	3	
$FeS(mackinawite) + 4 H_2O(1) \Leftrightarrow Fe^{2+} + SO_4^{2-} + H^+ + 8 e^{-1}$	-38.323	3	
$\operatorname{FeS}(s) + 4 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}^{2^+} + \operatorname{SO}_4^{2^-} + 8 \operatorname{H}^+ + 8 \operatorname{e}^-$	-37.603	3	
$Fe_3(PO_4)_2 \cdot 8H_2O$ (vivianite) $\Leftrightarrow 3 Fe^{2+} + 2 PO_4^{3-} + 8 H_2O(1)$	-36.000	3, 11	
$Fe_2Si_2O_6(s) + 2 H_2O(1) + 4 H^+ \Leftrightarrow 2 H_4SiO_4(aq) + 2 Fe^{2+}$	10.600	3	
$Fe_{3}Al_{2}(SiO_{4})_{3}(almandine) + 12 H^{+} \Leftrightarrow 2 Al^{3+} + 3 H_{4}SiO_{4}(aq) + 3 Fe^{2+}$	33.410	3	
$Fe_3O_4(magnetite) + 8 H^+ + 2 e^- \Leftrightarrow 3 Fe^{2+} + 4 H_2O(l)$	30.650	3	
$Fe_7S_8(pyrrhotite) + 32 H_2O(1) \Leftrightarrow 8 SO_4^{-2} + 7 Fe^{2+} + 64 H^+ + 62 e^{-1}$	-321.280	3	
$\operatorname{FeCl}_2(\operatorname{lawrencite}) \Leftrightarrow 2 \operatorname{Cl}^- + \operatorname{Fe}^{2+}$	6.820	3	
$FeCl_3(molysite) + e^- \Leftrightarrow 3 Cl^- + Fe^{2+}$	24.560	3	
FeOOH(goethite) + 3 H ⁺ + e ⁻ \Leftrightarrow Fe ²⁺ + 2 H ₂ O(l)	11.290	3	
$\operatorname{FeS}_{2}(\operatorname{pyrite}) + 8 \operatorname{H}_{2}O(1) \Leftrightarrow 2 \operatorname{SO}_{4}^{2^{-}} + \operatorname{Fe}^{2^{+}} + 16 \operatorname{H}^{+} + 14 \operatorname{e}^{-}$	-85.950	3	
$FeSiO_{3}(ferrosilite) + H_{2}O(1) + 2 H^{+} \Leftrightarrow Fe^{2+} + H_{4}SiO_{4}(aq)$	7.420	3	
$Fe_{3}Si_{2}O_{5}(OH)_{4}(greenalite) + 6 H^{+} \Leftrightarrow 3 Fe^{2+} + 2 H_{4}SiO_{4}(aq) + H_{2}O(l)$	22.590	3	
$Fe_2SiO_4(fayalite) + 4 H^+ \Leftrightarrow 2 Fe^{2+} + H_4SiO_4(aq)$	19.050	3	
$\operatorname{Co}(\operatorname{cr}) \Leftrightarrow \operatorname{Co}^{2^+} + 2 \operatorname{e}^{-1}$	9.530 ± 0.175	13	
$CoO(cr) + 2 H^+ \Leftrightarrow Co^{2+} + H_2O(l)$	12.399 ± 0.326	13	*
$\beta \text{-Co(OH)}_2 + 2 \text{ H}^+ \Leftrightarrow \text{Co}^{2+} + 2 \text{ H}_2\text{O}(1)$	12.430 ± 0.170	13	
$\operatorname{CoCl}_2 \cdot 6\operatorname{H}_2O(\operatorname{cr}) \Leftrightarrow 2 \operatorname{Co}^{2^+} + 2 \operatorname{Cl}^- + 6 \operatorname{H}_2O(1)$	3.037 ± 0.018	13	*
$\beta \text{-Co(IO}_{3})_2 + 12 \text{ H}^+ + 12 \text{ e}^- \Leftrightarrow \text{Co}^{2+} + 2 \text{ I}^- + 6 \text{ H}_2\text{O}(1)$	218.731 ± 0.293	13	*
$Co(IO_3)_2 \cdot 2H_2O(cr) + 12 H^+ + 12 e^- \Leftrightarrow Co^{2+} + 8 H_2O(1) + 2 I^-$	218.025 ± 0.328	13	*
α -CoS + H ⁺ \Leftrightarrow Co ²⁺ + HS ⁻	-7.440 ± 0.120	13	
β -CoS + H ⁺ \Leftrightarrow Co ²⁺ + HS ⁻	-11.100 ± 1.700	13	
$\alpha \text{-CoSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Co}^{2+} + 6 \text{H}_2\text{O}(1) + \text{SO}_4^{2-}$	-2.229 ± 0.279	13	*
$\beta \text{-CoSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Co}^{2+} + 6\text{H}_2\text{O}(1) + \text{SO}_4^{2-}$	-2.124 ± 0.467	13	*
$CoSO_4 \cdot 7H_2O(cr) \Leftrightarrow Co^{2+} + 7H_2O(l) + SO_4^{2-}$	-2.245 ± 0.058	13	
$Co_3(AsO_3)_2(cr,hyd) + 2 H_2O(1) + 4 e^- \Leftrightarrow 3 Co^{2+} + 4 H^+ + 2 AsO_4^{3-}$	-51.640 ± 2.012	13	*
$\operatorname{Co}_{3}(\operatorname{AsO}_{4})_{2} \cdot \operatorname{8H}_{2}\operatorname{O}(\operatorname{cr}) \Leftrightarrow \operatorname{3}\operatorname{Co}^{2+} + \operatorname{2}\operatorname{AsO}_{4}^{3-} + \operatorname{8}\operatorname{H}_{2}\operatorname{O}(\operatorname{1})$	-27.929 ± 0.883	13	*
$CoCO_3(cr) \Leftrightarrow Co^{2+} + CO_3^{2-}$	-11.027 ± 0.098	13	*
$CoCO_3 \cdot 5.5H_2O(cr) \Leftrightarrow Co^{2+} + CO_3^{2-} + 5.5H_2O(l)$	-7.577 ± 0.049	13	*
$\operatorname{Ni}(\operatorname{cr}) \Leftrightarrow \operatorname{Ni}^{2+} + 2 \operatorname{e}^{-}$	8.019 ± 0.135	14	
$NiO(cr) + 2 H^+ \Leftrightarrow Ni^{2+} + H_2O(l)$	12.483 ± 0.154	13	*
β -Ni(OH) ₂ + 2 H ⁺ \Leftrightarrow Ni ²⁺ + 2 H ₂ O(l)	11.029 ± 0.280	13	*
$NiCl_2 \cdot 6H_2O(cr) \Leftrightarrow 2 Ni^{2+} + 2 Cl^- + 6 H_2O(l)$	3.045 ± 0.014	14	
β -Ni(IO ₃) ₂ + 12 H ⁺ + 12 e ⁻ \Leftrightarrow Ni ²⁺ + 2 I ⁻ + 6 H ₂ O(l)	218.696 ± 0.277	14	
$Ni(IO_3)_2 \cdot 2H_2O(cr) + 12 H^+ + 12 e^- \Leftrightarrow Ni^{2+} + 8 H_2O(1) + 2 I^-$	217.986 ± 0.294	14	
$\alpha - \text{NiS} + \text{H}^+ \Leftrightarrow \text{Ni}^{2+} + \text{HS}^-$	-9.508 ± 0.464	13	*
β -NiS + H ⁺ \Leftrightarrow Ni ²⁺ + HS ⁻	-10.128 ± 0.464	13	*
$NiSO_4 \cdot 7H_2O(cr) \Leftrightarrow Ni^{2+} + 7 H_2O(l) + SO_4^{2-}$	-2.267 ± 0.019	14	
$Ni_3(AsO_3)_2(cr,hyd) + 2 H_2O(1) + 4 e^- \Leftrightarrow 3 Ni^{2+} + 4 H^+ + 2 HAsO_4^{3-}$	-51.484 ± 2.106	14	
$Ni_{3}(AsO_{4})_{2} \cdot 8H_{2}O(cr) \Leftrightarrow 3 Ni^{2+} + 2 AsO_{4}^{3-} + 8 H_{2}O(1)$	-28.100 ± 0.500	14	
$NiCO_3(cr) \Leftrightarrow Ni^{2+} + CO_3^{2-}$	-10.995 ± 0.183	14	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$NiCO_3 \cdot 5.5H_2O(cr) \Leftrightarrow Ni^{2+} + CO_3^{2-} + 5.5 H_2O(l)$	-7.525 ± 0.106	14	
$As(cr) + 4 H_2O(l) \Leftrightarrow AsO_4^{3-} + 8 H^+ + 5 e^-$	-52.592 ± 0.703	2	
$As_2O_5(cr) + 3 H_2O(l) \Leftrightarrow 2 AsO_4^{3} + 6 H^+$	-34.539 ± 1.986	2	
$As_4O_6(cubic) + 10 H_2O(1) \Leftrightarrow AsO_4^{3-} + 8 H^+ + 5 e^-$	-162.999 ± 3.973	2	
$As_4O_6(monoclinic) + 10 H_2O(l) \Leftrightarrow AsO_4^{3-} + 8 H^+ + 5 e^-$	-163.273 ± 3.974	2	
$Se(cr,trigonal) + H^+ + 2 e^- \Leftrightarrow HSe^-$	-7.616 ± 0.355	15	
$PbSeO_3(cr) \Leftrightarrow Pb^{2+} + SeO_3^{2-}$	-12.500 ± 1.000	15	
$PbSeO_4(cr) \Leftrightarrow Pb^{2+} + SeO_4^{2-}$	-6.900 ± 0.250	15	
$\text{Tl}_2\text{SeO}_4(\text{cr}) \Leftrightarrow 2 \text{Tl}^+ + \text{SeO}_4^{2-}$	-3.900 ± 0.150	15	
$ZnSeO_4 \cdot 6H_2O(cr) \Leftrightarrow Zn^{2+} + 6H_2O(1) + SeO_4^{2-}$	-1.538 ± 0.068	15	
$Cd(SeCN)_2(cr)+20 H_2O(1) \Leftrightarrow Cd^{2+}+2 SeO_4^{2-}+40 H^++32 e^-+2 CO_3^{2-}+2 NO_3^{-}$	-411.153 ± 1.528	15	
$Ag_2SeO_3(cr) \Leftrightarrow 2 Ag^+ + SeO_3^{2-}$	-15.800 ± 0.300	15	
$Ag_2SeO_4(cr) \Leftrightarrow 2 Ag^+ + SeO_4^{2-}$	-7.860 ± 0.500	15	
$AgSeCN(cr) + 10 H_2O(1) \Leftrightarrow SeO_4^{2-} + 20 H^+ + 16 e^- + CO_3^{2-} + NO_3^- + Ag^+$	-216.724 ± 0.883	15	
$NiSeO_3 \cdot 2H_2O(cr) \Leftrightarrow Ni^{2+} + 2 H_2O(1) + SeO_3^{2-}$	-5.800 ± 1.000	15	
$NiSeO_4 \cdot 6H_2O(cr) \Leftrightarrow Ni^{2+} + 6 H_2O(1) + SeO_4^{2-}$	-1.381 ± 0.045	15	
$CuSeO_4 \cdot 5H_2O(cr) \Leftrightarrow Cu^{2+} + 5H_2O(l) + SeO_4^{2-}$	-2.440 ± 0.200	15	
$MgSeO_{3} \cdot 6H_{2}O(cr) \Leftrightarrow Mg^{2+} + 6 H_{2}O(l) + SeO_{3}^{2-}$	-5.820 ± 0.250	15	
$MgSeO_{4} \cdot 6H_{2}O(cr) \Leftrightarrow Mg^{2+} + 6 H_{2}O(l) + SeO_{4}^{2-}$	-1.133 ± 0.044	15	
$CaSeO_{3} \cdot H_{2}O(cr) \Leftrightarrow Ca^{2+} + H_{2}O(l) + SeO_{3}^{2-}$	-6.400 ± 0.250	15	
$CaSeO_4 \cdot 2H_2O(cr) \Leftrightarrow Ca^{2+} + 2 H_2O(l) + SeO_4^{2-}$	-2.680 ± 0.250	15	
$SrSeO_3(cr) \Leftrightarrow Sr^{2+} + SeO_3^{2-}$	-6.300 ± 0.500	15	
$BaSeO_3(cr) \Leftrightarrow Ba^{2+} + SeO_3^{2-}$	-6.500 ± 0.250	15	
$BaSeO_4(cr) \Leftrightarrow Ba^{2+} + SeO_4^{2-}$	-7.560 ± 0.100	15	
$NH_4HSe(cr) + 7 H_2O(1) \Leftrightarrow SeO_4^{-2} + NO_3^{-1} + 19 H^+ + 16 e^-$	-198.643 ± 0.973	15	
$(\mathrm{NH}_4)_2\mathrm{SeO}_4(\mathrm{cr}) \Leftrightarrow 2 \mathrm{NH}_4^+ + \mathrm{SeO}_4^{-2-2}$	0.911 ± 0.065	15	
$Li_2SeO_4 \cdot H_2O(cr) \Leftrightarrow 2 Li^+ + H_2O(l) + SeO_4^{-2}$	1.762 ± 0.065	15	
$Na_{2}SeO_{4} \cdot 10H_{2}O(cr) \Leftrightarrow 2 Na^{+} + 10H_{2}O(l) + SeO_{4}^{2}$	-0.681 ± 0.087	15	
$K_2SeO_4(cr) \Leftrightarrow 2 K^+ + SeO_4^{-2-}$	0.904 ± 0.065	15	
$Cs_2SeO_4(cr) \Leftrightarrow 2 Cs^+ + SeO_4^{2-}$	0.636 ± 0.065	15	
$FeSe_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow Fe^{2+} + 2 HSe^-$	-17.220 ± 2.754	39	*
β -Fe _{1.04} Se + H ⁺ \Leftrightarrow 1.04 Fe ²⁺ + HSe ⁻ + 0.08 e ⁻	-3.503 ± 0.870	39	*
γ -Fe ₃ Se ₄ + 4 H ⁺ + 2 e ⁻ \Leftrightarrow 3 Fe ²⁺ + 4 HSe ⁻	-25.908 ± 5.547	39	*
α -Fe ₇ Se ₈ + 8 H ⁺ + 2 e ⁻ \Leftrightarrow 7 Fe ²⁺ + 8 HSe ⁻	-36.274 ± 5.175	39	*
$HgSeO_{3}(cr) \Leftrightarrow Hg^{2+} + SeO_{3}^{2-}$	-16.200 ± 1.000	15	
$\mathrm{Hg}_{2}\mathrm{SeO}_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{Hg}_{2}^{2+} + \mathrm{SeO}_{3}^{2-}$	-15.200 ± 1.000	15	
$Br(g) + e^{-} \Leftrightarrow Br^{-}$	32.626 ± 0.037	2	
$Br_2(g) + 2 e^- \Leftrightarrow 2 Br^-$	36.931 ± 0.048	2	
$HBr(g) \Leftrightarrow Br^- + H^+$	8.845 ± 0.041	2	
$Sr(cr) \Leftrightarrow Sr^{2+} + 2e^{-1}$	98.784 ± 0.137	2	
$SrO(cr) + 2 H^+ \Leftrightarrow Sr^{2+} + H_2O(l)$	42.233 ± 0.211	2	
$SrCO_3(strontianite) \Leftrightarrow Sr^{2+} + CO_3^{2-}$	-9.250 ± 0.010	12	
$SrSO_4$ (celestite) \Leftrightarrow $Sr^{2^+} + SO_4^{2^-}$	-6.620 ± 0.020	12	
$\operatorname{Sr}_3(\operatorname{PO}_4)_2(s) \Leftrightarrow 3 \operatorname{Sr}^{2+} + 2 \operatorname{PO}_4^{3-}$	-27.800	3	
$SrHPO_4(s) \Leftrightarrow Sr^{2+} + PO_4^{3-} + H^+$	-19.310	3	
$Sr(OH)_2(s) \Leftrightarrow Sr^{2+} + 2 H_2O(1) - 2 H^+$	24.980	3	
$Sr(NO_3)_2(cr) \Leftrightarrow Sr^{2+} + 2 NO_3^{-}$	0.404 ± 0.268	2	
$ZrO_2(mono) + 4 H^+ \Leftrightarrow Zr^{4+} + 2 H_2O(1)$	-7.000 ± 1.600	16	
$Zr(OH)_4(am, fresh) + 4 H^+ \Leftrightarrow Zr^{4+} + 4 H_2O(l)$	-3.240 ± 0.100	16	
β -ZrF ₄ \Leftrightarrow Zr ⁴⁺ + 4 F ⁻	-31.830 ± 0.408	16	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Zr(SO_4)_2 \bullet 9H_2O(cr) \Leftrightarrow Zr^{4+} + 9H_2O(1) + 2SO_4^{2-}$	-11.250 ± 0.096	16	
$\operatorname{ZrSiO}_4(\operatorname{cr}) + 4 \operatorname{H}^+ \Leftrightarrow \operatorname{Zr}^{4+} + \operatorname{H}_4\operatorname{SiO}_4(\operatorname{aq})$	-14.623 ± 1.718	16	
$\frac{Nb_2O_5(s) + 7 H_2O \Leftrightarrow 2 Nb(OH)_6 + 2 H}{Nb_2O_5(s) + 7 H_2O \Leftrightarrow 2 Nb(OH)_6 + 2 H}$	-28.913 ± 0.507	10	
$Mo(metal) + 4 H_2O(1) \Leftrightarrow MoO_4^2 + 8 H + 6 e$	-19.280	19	
$MoO_2(cr) + 2 H_2O(1) \Leftrightarrow MoO_4^{2^+} + 4 H^+ + 2 e^-$	-29.570	19	
$PbMoO_4(cr) \Leftrightarrow MoO_4^{2^+} + Pb^{2^+}$	-12.980 ± 0.050	40	
$CaMoO_4(cr) \Leftrightarrow MoO_4^{2^-} + Ca^{2^+}$	-7.950 ± 0.050	19	
$\operatorname{Sm}_2(\operatorname{MoO}_4)_3$: $xH_2O(\operatorname{cr}) \Leftrightarrow 3 \operatorname{MoO}_4^{2^2} + 2 \operatorname{Sm}^{3^+}$	-26.100 ± 0.300	21	
$\mathrm{NH}_{4}\mathrm{TcO}_{4}(\mathrm{cr}) \Leftrightarrow \mathrm{TcO}_{4}^{-} + \mathrm{NH}_{4}^{+}$	-0.910 ± 0.070	22	
$TITcO_4(cr) \Leftrightarrow TcO_4^- + Tl^+$	-5.320 ± 0.120	22	
$AgTcO_4(cr) \Leftrightarrow TcO_4^- + Ag^+$	-3.270 ± 0.130	22	
$NaTcO_4 \cdot 4H_2O(s) \Leftrightarrow TcO_4 \cdot 4H_2O(l) + Na^+$	0.790 ± 0.040	22	
$\mathrm{KTcO}_4(\mathrm{cr}) \Leftrightarrow \mathrm{TcO}_4^- + \mathrm{K}^+$	-2.288 ± 0.026	22	
$TcO_2 \cdot 1.6H_2O(s) + 2 H^+ \Leftrightarrow TcO^{2+} + 2.6 H_2O(l)$	< -4.415	1	
$TcO_2 \cdot 1.6H_2O(s) + 0.4 H_2O(l) \Leftrightarrow TcO_4 + 4 H^+ + 3 e^-$	-37.829 ± 0.609	22	
$Pd(cr) \Leftrightarrow Pd^{2+} + 2 e^{-}$	-32.860	8	
$Pd(s) \Leftrightarrow Pd^{2+} + 2 e^{-1}$	-29.570 ± 1.120	23	
$Pd(OH)_{2}(s) + 2 H^{+} \Leftrightarrow Pd^{2+} + 2 H_{2}O(l)$	-4.120 ± 0.630	23	
$Sn(cr) + 4 H_2O(l) \Leftrightarrow Sn(OH)_4(aq) + 4 H^+ + 4 e^-$	-0.770	8	
$Sn(OH)_2(s) + 2 H_2O(1) \Leftrightarrow Sn(OH)_4(aq) + 2 H^+ + 2 e^-$	-2.580	8	
$SnO(cr) + 3 H_2O(1) \Leftrightarrow Sn(OH)_4(aq) + 2 H^+ + 2 e^-$	-2.990	8	
$SnClOH(s) + 3 H_2O(1) \Leftrightarrow Sn(OH)_4(aq) + 3 H^+ + Cl^- + 2 e^-$	-7.820	8	
$SnO_2(am) + 2 H_2O(1) \Leftrightarrow Sn(OH)_4(aq)$	-7.460	8	
$SnO_2(cassiterite) + 2 H_2O(1) \Leftrightarrow Sn(OH)_4(ag)$	-8.000	8	
$I(g) + e^- \Leftrightarrow I^-$	21.355 ± 0.022	2	
$I_2(cr) + 2e^- \Leftrightarrow 2I^-$	18.123 ± 0.028	2	
$I_2(g) + 2e^- \Leftrightarrow 2I^-$	21.508 ± 0.035	2	
$HI(\mathfrak{g}) \hookrightarrow I^{+} H^{+}$	9.359 ± 0.028	2	
$Sh(cr) + 3 H_0(1) \Leftrightarrow Sh(OH)(ar) + 3 H^+ + 3 e^-$	-11 990	8	
Sb ₂ O ₂ (valentinite) + 3 H ₂ O(1) \Leftrightarrow 2 Sb(OH) ₂ (aq)	-8 720	8	
Sb ₂ S ₃ (the lemme) + $3 H_2O(1) \Leftrightarrow 2 Sb(OH)_3(uq)$ Sb ₂ S ₃ (stipnite) + $18 H_2O(1) \Leftrightarrow 2 Sb(OH)_3(uq) + 3 SO(2^2 + 30 H^+ + 24 e^-)$	-156 219	8	
$Sb_2O_3(storne) + 5H_2O(1) \Leftrightarrow 2Sb(OH)_3(aq) + 5Sb_4 + 5SH + 2FC$	-7 400	8	
$C_{s}(cr) \simeq C_{s}^{+} + e^{-1}$	51.061 ± 0.094	2	
$C_{2}(c_{1}) \Leftrightarrow C_{2}^{+} + e^{-1}$	59.742 ± 0.200	2	
$C_{S}(g) \Leftrightarrow C_{S}^{-1} \in C_{S}^{-1} \oplus C_{S}^{+} \oplus NO^{-1}$	0.410	2	
$C_{2} O(c) + 2 U^{+} \leftrightarrow 2 C_{2}^{+} + U O(1)$	-0.410 80 800	3	
$C_{2}O(I) + 2 II \Leftrightarrow 2 C_{2} + II_{2}O(I)$ $C_{2}O(I) + U^{\dagger} \Leftrightarrow C_{2} + II_{2}O(I)$	27.420	3	
$C_{2} SO(c) \leftrightarrow 2 O_{2}^{+} + SO^{2}$	0.870	3	
$Cs_2SO_4(S) \Leftrightarrow 2CS^+ SO_4$	0.870	2	
$Cs_2CO_3(s) \Leftrightarrow 2Cs^{-1}+CO_3^{-1}$	10.070	3	
$Ba(cr) \Leftrightarrow Ba^{2^{+}} + 2 e$	97.697 ± 0.452	2	
$BaO(cr) + 2 H^{+} \Leftrightarrow Ba^{-1} + H_2O(I)$	$48.0/3 \pm 0.632$	10	
$BaCO_3$ (witherite) $\Leftrightarrow Ba^{2+} + CO_3^{2+}$	-8.540 ± 0.030	12	
$BaSO_4(barite) \Leftrightarrow Ba^{2^+} + SO_4^{2^-}$	-10.050 ± 0.050	12	
$Sm(OH)_3(am) + 3 H^+ \Leftrightarrow Sm^{3+} + 3 H_2O(1)$	16.900 ± 0.800	10	
$Sm(OH)_3(cr) + 3 H^+ \Leftrightarrow Sm^{3+} + 3 H_2O(1)$	15.600 ± 0.600	10	
$\operatorname{Sm}_2(\operatorname{CO}_3)_3(\operatorname{am}) \Leftrightarrow 2 \operatorname{Sm}^{3^+} + 3 \operatorname{CO}_3^{2^-}$	-33.400 ± 2.200	10	
$SmCO_{3}OH(am) + H^{+} \Leftrightarrow Sm^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	10	
$SmCO_{3}OH \bullet 0.5H_{2}O(cr) + H^{+} \Leftrightarrow Sm^{3+} + CO_{3}^{2-} + 1.5 H_{2}O(l)$	-8.399 ± 0.500	10	
$NaSm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Sm^{3+} + 2 CO_3^{2-} + 5 H_2O(l) + Na^+$	-21.000 ± 0.500	10	
$SmPO_4(am,hydr) \Leftrightarrow Sm^{3+} + PO_4^{3-}$	-24.790 ± 0.600	10	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Pb(cr) \Leftrightarrow Pb^{2+} + 2e^{-}$	4.250	8	
$PbO(red, litharge) + 2 H^{+} \Leftrightarrow Pb^{2+} + H_2O(l)$	12.680	8	
PbO(yellow,massicot) + 2 $H^+ \Leftrightarrow Pb^{2+} + H_2O(I)$	12.960	8	
$Pb(OH)_{2}(am) + 2 H^{+} \Leftrightarrow Pb^{2+} + 2 H_{2}O(l)$	13.050	8	
$PbSO_4(anglesite) \Leftrightarrow Pb^{2+} + SO_4^{2-}$	-7.810	8	
$PbCl_2(s) \Leftrightarrow Pb^{2+} + 2 Cl^{-}$	-4.810	8	
$PbClOH(cr) + H^{+} \Leftrightarrow Pb^{2+} + Cl^{-} + H_{2}O(l)$	0.620	8	
$PbF_2(s) \Leftrightarrow Pb^{2+} + 2 F^{-}$	-7.520	8	
$PbFCl(matlockite) \Leftrightarrow Pb^{2+} + F^{-} + Cl^{-}$	-8.820	8	
$PbCO_3(cerrusite) \Leftrightarrow Pb^{2+} + CO_3^{2-}$	-13.230	8	
$Pb_3(CO_3)_2(OH)_2(hydrocerrusite) + 2 H^+ \Leftrightarrow 3 Pb^{2+} + 2 CO_3^{-2} + 2 H_2O(1)$	-17.640	8	
$Pb_{10}(CO_3)_6(OH)_6(plumbonacrite) + 8 H^+ \Leftrightarrow 10 Pb^{2+} + 6 CO_3^{2-} + 7 H_2O(1)$	-41.210	8	
$PbOHNO_3(cr) + H^+ \Leftrightarrow Pb^{2+} + NO_3^- + H_2O(1)$	2.940	8	
$PbHPO_4(s) \Leftrightarrow Pb^{2+} + PO_4^{3-} + H^+$	-23.780	8	
$Pb(H_2PO_4)_2(s) \Leftrightarrow Pb^{2+} + 2PO_4^{3-} + 4H^+$	-48.940	8	
$Pb_3(PO)_4(s) \Leftrightarrow 3 Pb^{2+} + 2 PO_4^{3-}$	-44.400	8	
$Pb_4(PO_4)_2O(s) + 2 H^+ \Leftrightarrow 4 Pb^{2+} + 2 PO_4^{3-} + H_2O(1)$	-37.090	8	
$Pb_5(PO_4)_3OH(hvdroxyl pyromorphite) + H^+ \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{3-} + H_2O(1)$	-62.800	8	
$Pb_5(PO_4)_3Cl(chloro pyromorphite) \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{-3-} + Cl^{-1}$	-84.400	8	
$Pb_5(PO_4)_3F(fluoro pyromorphite) \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{3-} + F^{-}$	-71.600	8	
$PbS(galena) + 4 H_2O(1) \Leftrightarrow Pb^{2+} + SO_4^{2-} + 8 H^+ + 8 e^{-1}$	-45.863	8	
$PbO_2(s) + 4 H^+ + 2 e^- \Leftrightarrow Pb^{2+} + 2 H_2O(1)$	48.980	8	
$Pb_2Q_4(s) + 8 H^+ + 2 e^- \Leftrightarrow 3 Pb^{2+} + 4 H_2Q(l)$	70.980	8	
$Bi(OH)_{2}(am) + 3 H^{+} \Leftrightarrow Bi^{3+} + 3 H_{2}O(I)$	31.501 ± 0.927	25	
$0.5 \alpha - Bi_2O_2(c) + 3 H^+ \Leftrightarrow Bi^{3+} + 1.5 H_2O(l)$	31.501 ± 0.927	25	
$BiPO_4(c) \Leftrightarrow Bi^{3+} + PO_4^{3-}$	-30.350 ± 0.540	25	
$Bi(cr) \Leftrightarrow Bi^{3+} + 3e^{-1}$	-16.740	8	
$BiOCl(s) + 2 H^+ \Leftrightarrow Bi^{3+} + H_2O + Cl^-$	-8.470	8	
$(BiO)_2CO_2(cr) + 4 H^+ \Leftrightarrow 2 Bi^{3+} + 2 H_2O + CO_2^{2-}$	-14.270	8	
$(BiO)_4(OH)_2CO_3(cr) + 10 H^+ \Leftrightarrow 4 Bi^{3+} + 6 H_2O + CO_3^{2-}$	-8.680	8	
$\frac{(210)_{4}(011)_{2}(03)_{2}(03)_{3}(01)}{\text{BiONO}_{2}(s) + 2 \text{ H}^{+} \Leftrightarrow \text{Bi}^{3+} + \text{H}_{2}\text{O} + \text{NO}_{2}^{-}$	-2.750	8	
$\frac{P_0(OH)_4(s) + 4 H^+ \Leftrightarrow P_0^{4+} + 4 H_2O(1)}{P_0(OH)_4(s) + 4 H^+ \Leftrightarrow P_0^{4+} + 4 H_2O(1)}$	19.520	3	
$\frac{\operatorname{Re}(\operatorname{Cr})}{\operatorname{Re}(\operatorname{Cr})} \Leftrightarrow \operatorname{Re}^{2^{+}} + \operatorname{SO}^{2^{-}}$	-10.050 ± 0.390	12	
$\operatorname{RaCO}_{4}(\operatorname{cr}) \Leftrightarrow \operatorname{Ra}^{2+} + \operatorname{CO}_{2}^{2-}$	-8.540 ± 0.200	12	
$Ac(OH)_2(am) + 3 H^+ \Leftrightarrow Ac^{3+} + 3 H_2O(1)$	16900 ± 4800	10	*
$A_{C_2}(C_{O_2})_2(am) \Leftrightarrow 2 A_C^{3+} + 3 C_{O_2}^{2-}$	-33400 ± 5100	10	*
$A_{c}CO_{2}OH(am) + H^{+} \Leftrightarrow A_{c}^{3+} + CO_{2}^{2-} + H_{2}O(1)$	-6.199 + 5.000	10	*
$Ac^{PO}(am hydr) \Leftrightarrow Ac^{3+} + PO^{3-}$	-24790 + 4600	10	*
The $O_4(\operatorname{uni},\operatorname{hydr}) \Leftrightarrow \operatorname{He}^{-1} O_4^{-1}$ The $O_4(\operatorname{uni},\operatorname{hydr}) \Leftrightarrow \operatorname{He}^{+1} O_4^{-1}$	9304 ± 0.900	2	
ThO ₂ (am, aged) + 4 H ⁺ \Leftrightarrow Th ⁴⁺ + 2 H ₂ O(1)	8 504 + 0 900	2	
$\frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{1$	1.765 ± 1.113	2	
$ThE_4(cr, hvd) + 4 H^+ \leftrightarrow Th^{4+} + 4 HE(aq)$	-19110 ± 0400	2	
Th(SQ ₄)•9H ₂ O(cr) \Leftrightarrow Th ⁴⁺ + 9 H ₂ O(l) + 2 SQ ²⁻	-11250 ± 0.096	2	
$\operatorname{Na}_{2}\operatorname{Th}(\operatorname{CO}_{2})_{c} \bullet 12\operatorname{H}_{2} O(\operatorname{cr}) \Leftrightarrow \operatorname{Th}^{4+} + 5\operatorname{CO}_{2}^{2+} + 12\operatorname{H}_{2} O(1) + 6\operatorname{Na}^{+}$	-42.200 ± 0.000	2	
$PaO_{2}(cr) + 4 H^{+} \Leftrightarrow Pa^{4+} + 2 H_{2}O(1)$	0.600	41	
$PaCL(s) \leftrightarrow Pa^{4+} + 4 Cl^{-1}$	24 010	27	
$Pa_0 O_c(cr) + 2 e^{-1} + 10 H^+ \leftrightarrow 2 Pa^{4+} + 5 H_0 O(1)$	-8 720	27	
$PaCl_{c}(r) - e^{-c} \rightarrow Pa^{4+} + 5 Cl^{-1}$	32.850	27	
$UO_{2}(am) + 4 H^{+} \Leftrightarrow U^{4+} + 2 H_{2}O(1)$	2.304 + 1.000	31	
$UO_2(cr) + 4 H^+ \Leftrightarrow U^{4+} + 2 H_2O(1)$	-4.852 ± 0.365	22	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\alpha - UO_3 + 2 H^+ \Leftrightarrow UO_2^{2+} + H_2O(I)$	9.524 ± 0.401	22	
$\beta \text{-UO}_3 + 2 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2+} + \text{H}_2\text{O}(1)$	8.302 ± 0.382	22	
$\gamma \text{-UO}_3 + 2 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2+} + \text{H}_2\text{O}(1)$	7.700 ± 0.372	22	
$\alpha \text{-UO}_3 \cdot 0.9 \text{H}_2\text{O}(\text{cr}) + 2 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2^+} + 1.9 \text{ H}_2\text{O}(1)$	5.003 ± 0.529	22	
$UO_3 \cdot 2H_2O(cr) + 2 H^+ \Leftrightarrow UO_2^{2+} + 3 H_2O(l)$	4.812 ± 0.428	22	
$\beta \text{-UO}_2(\text{OH})_2 + 4 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2^+} + 2 \text{ H}_2\text{O}(1)$	4.931 ± 0.435	22	
$\mathrm{U(OH)_2SO_4(cr)} + 2 \mathrm{H^+} \Leftrightarrow \mathrm{U^{4+}} + 2 \mathrm{H_2O(l)} + \mathrm{SO_4^{2-}}$	-3.168 ± 0.500	22	
$\mathrm{U}(\mathrm{HPO}_{4})_{2} \bullet 4\mathrm{H}_{2}\mathrm{O}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{PO}_{4}^{3-} + 2 \mathrm{H}^{+} + 4 \mathrm{H}_{2}\mathrm{O}(\mathrm{I})$	-55.194 ± 0.383	22	
$UF_6(cr) + 2 H_2O(1) \Leftrightarrow UO_2^{2+} + 6 F^- + 4 H^+$	17.204 ± 0.853	22	
$UO_2(IO_3)_2(cr) + 12 H^+ + 12 e^- \Leftrightarrow UO_2^{2+} + 2 I^- + 6 H_2O(l)$	215.246 ± 0.294	22	
$UO_2SO_4(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-}$	1.889 ± 0.560	22	
$UO_2SO_4 \bullet 2.5H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 2.5 H_2O(l)$	-1.589 ± 0.019	22	
$UO_2SO_4 \bullet 3.5H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 3.5 H_2O(l)$	-1.585 ± 0.019	22	
$UO_2HPO_4 \cdot 4H_2O(cr) + 2 H^+ \Leftrightarrow UO_2^{2^+} + PO_4^{3^-} + H^+ + 4 H_2O(l)$	-24.202 ± 0.198	22	
$(UO_2)_3(PO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-} + 4 H_2O(l)$	-48.364 ± 0.462	22	
$UO_2CO_3(cr) \Leftrightarrow UO_2^{2+} + CO_3^{2-}$	-14.760 ± 0.020	22	
$CaU_6O_{19} \cdot 11H_2O(cr) + 14 H^+ \Leftrightarrow 6 UO_2^{2+} + Ca^{2+} + 18 H_2O(l)$	-40.500 ± 1.600	22	
$Na_4UO_2(CO_3)_3(cr) \Leftrightarrow UO_2^{2+} + 3 CO_3^{2-} + 4 Na^+$	-27.180 ± 0.165	22	
$K_2U_6O_{19} \cdot 11H_2O(cr) + 14 H^+ \Leftrightarrow 6 UO_2^{2+} + 2 K^+ + 18 H_2O(l)$	-37.100 ± 0.540	22	
$NpO_2(am) + 4 H^+ \Leftrightarrow Np^{4+} + 2 H_2O(l)$	0.604 ± 1.000	31	
NpO ₂ OH(am, aged) + H ⁺ \Leftrightarrow NpO ₂ ⁺ + H ₂ O(l)	4.700 ± 0.500	22	
NpO ₂ OH(am, fresh) + H ⁺ \Leftrightarrow NpO ₂ ⁺ + H ₂ O(l)	5.300 ± 0.200	22	
$Na_3NpO_2(CO_3)_2(cr) \Leftrightarrow NpO_2^+ + 2 CO_3^{2-} + 3 Na^+$	-14.220 ± 0.500	22	
$NaNpO_2CO_3 \cdot 3.5H_2O(cr) \Leftrightarrow NpO_2^+ + CO_3^{2-} + 3.5H_2O + Na^+$	-11.000 ± 0.240	22	
$KNpO_2CO_3(s) \Leftrightarrow NpO_2^+ + CO_3^{2-} + K^+$	-13.150 ± 0.190	22	
$K_3NpO_2(CO_3)_2(s) \Leftrightarrow NpO_2^+ + 2CO_3^{2-} + 3K^+$	-15.460 ± 0.160	22	
$NpO_3 \cdot H_2O(cr) + 2 H^+ \Leftrightarrow NpO_2^{2+} + 2 H_2O(l)$	5.470 ± 0.400	22	
$NpO_2CO_3(s) \Leftrightarrow NpO_2^{2+} + CO_3^{2-}$	-14.596 ± 0.469	22	
$(NH_4)_4NpO_2(CO_3)_3(s) + e^- \Leftrightarrow NpO_2^+ + 3 CO_3^{2-} + 4 NH_4^+$	-7.223 ± 0.346	22	
$K_4NpO_2(CO_3)_3(s) + e^- \Leftrightarrow NpO_2^+ + 3 CO_3^{-2-} + 4 K^+$	-6.813 ± 0.894	22	
$Pu(OH)_3(am) + 3 H^+ \Leftrightarrow Pu^{3+} + 3 H_2O(1)$	16.900 ± 0.800	10	
$PuCO_{3}OH(am) + H^{+} \Leftrightarrow Pu^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	10	
$PuCO_{3}OH \cdot 0.5H_{2}O(cr) + H^{+} \Leftrightarrow Pu^{3+} + CO_{3}^{2-} + 1.5 H_{2}O(l)$	-8.399 ± 0.500	10	
$Pu(OH)_3(cr) + 3 H^+ \Leftrightarrow Pu^{3+} + 3 H_2O(1)$	15.600 ± 0.600	10	
$Pu_2(CO_3)_3(am) \Leftrightarrow 2 Pu^{3+} + 3 CO_3^{2-}$	-33.400 ± 2.200	10	
$PuPO_4(am,hydr) \Leftrightarrow Pu^{3+} + PO_4^{3-}$	-24.790 ± 0.600	10	
$PuO_2(am) + 4 H^+ \Leftrightarrow Pu^{4+} + 2 H_2O(1)$	-2.326 ± 0.520	22	
$PuO_2OH(am) + H^+ \Leftrightarrow PuO_2^+ + H_2O(1)$	5.000 ± 0.500	22	
$PuO_2(OH)_2 H_2O(cr) + 2 H^+ \Leftrightarrow PuO_2^{2+} + 3 H_2O(1)$	5.500 ± 1.000	22	
$Pu(HPO_4)_2(am) \Leftrightarrow Pu^{4+} + 2 H^+ + 2 PO_4^{3-}$	5.750 ± 0.514	22	
$PuO_2CO_3(s) \Leftrightarrow PuO_2^{2+} + CO_3^{2-}$	-14.650 ± 0.470	22	
$Am(OH)_3(am) + 3 H^+ \Leftrightarrow Am^{3+} + 3 H_2O(1)$	16.900 ± 0.800	22	
$Am(OH)_3(cr) + 3 H^+ \Leftrightarrow Am^{3+} + 3 H_2O(1)$	15.600 ± 0.600	22	
$Am_2(CO_3)_3(am) \Leftrightarrow 2 Am^{3+} + 3 CO_3^{2-}$	-33.400 ± 2.200	22	
$AmCO_3OH(am) + H^+ \Leftrightarrow Am^{3+} + CO_3^{2-} + H_2O(l)$	-6.199 ± 1.000	22	
AmCO ₃ OH•0.5H ₂ O(cr) + H ⁺ \Leftrightarrow Am ³⁺ + CO ₃ ²⁻ + 1.5 H ₂ O(l)	-8.399 ± 0.500	22	
$NaAm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Am^{3+} + 2 CO_3^{2-} + 5 H_2O(1) + Na^+$	-21.000 ± 0.500	22	
$AmPO_4(am,hydr) \Leftrightarrow Am^{3+} + PO_4^{3-}$	-24.790 ± 0.600	22	
$Cm(OH)_3(am) + 3 H^+ \Leftrightarrow Cm^{3+} + 3 H_2O(l)$	16.900 ± 0.800	10	
$Cm(OH)_{3}(cr) + 3 H^{+} \Leftrightarrow Cm^{3+} + 3 H_{2}O(l)$	15.600 ± 0.600	10	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$\operatorname{Cm}_2(\operatorname{CO}_3)_3(\operatorname{am}) \Leftrightarrow 2 \operatorname{Cm}^{3+} + 3 \operatorname{CO}_3^{2-}$	-33.400 ± 2.200	10	
$CmCO_{3}OH(am) + H^{+} \Leftrightarrow Cm^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	10	
$CmCO_{3}OH \bullet 0.5H_{2}O(cr) + H^{+} \Leftrightarrow Cm^{3+} + CO_{3}^{2-} + 1.5 H_{2}O(l)$	-8.399 ± 0.500	10	
$NaCm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Cm^{3+} + 2 CO_3^{2-} + 5 H_2O(1) + Na^+$	-21.000 ± 0.500	10	
$CmPO_4(am,hydr) \Leftrightarrow Cm^{3+} + PO_4^{3-}$	-24.790 ± 0.600	10	
$UO_2 ox \cdot 3H_2 O(cr) \Leftrightarrow UO_2^{2+} + ox^{2-} + 3 H_2 O(l)$	-8.930 ± 0.314	32	
$Ca(ox) \cdot H_2O(cr) \Leftrightarrow Ca^{2+} + H_2O(l) + ox^{2-}$	-8.730 ± 0.060	32	
$Ca(ox) \cdot 2H_2O(cr) \Leftrightarrow Ca^{2+} + 2 H_2O(l) + ox^{2-}$	-8.300 ± 0.060	32	
$Ca(ox) \cdot 3H_2O(cr) \Leftrightarrow Ca^{2+} + 3 \cdot H_2O(1) + ox^{2-}$	-8.190 ± 0.040	32	
$H_3 cit(cr) \Leftrightarrow cit^{3-} + 3 H^+$	-13.041 ± 0.500	32	
$H_3 \operatorname{cit} H_2 O(\operatorname{cr}) \Leftrightarrow \operatorname{cit}^{3-} + 3 H^+ + H_2 O(I)$	-12.950 ± 0.024	32	
$Ca_{3}(cit)_{2} \cdot 4H_{2}O(cr) \Leftrightarrow 3 Ca^{2+} 4 H_{2}O(l) + 2 cit^{3-}$	-17.900 ± 0.100	32	
H_4 edta(cr) \Leftrightarrow edta ⁴⁻ + 4 H^+	-27.220 ± 0.201	32	
$Ca(isa)_2(cr) \Leftrightarrow Ca^{2+} + 2 isa^{-}$	-6.400 ± 0.200	32	

*1 Tentative values.

This is a blank page.

表 1. SI 基本単位			
甘大昌	SI 基本ì	単位	
盔半里	名称	記号	
長さ	メートル	m	
質 量	キログラム	kg	
時 間	秒	s	
電 流	アンペア	А	
熱力学温度	ケルビン	Κ	
物質量	モル	mol	
光度	カンデラ	cd	

表2. 基本単位を用いて表されるSI組立単位の例				
SI 基本単位				
和立里	名称	記号		
面 積平	方メートル	m^2		
体 積立	法メートル	m^3		
速さ,速度メ	ートル毎秒	m/s		
加速度メ	ートル毎秒毎秒	m/s^2		
波 数每	メートル	m ⁻¹		
密度,質量密度キ	ログラム毎立方メートル	kg/m ³		
面積密度キ	ログラム毎平方メートル	kg/m ²		
比 体 積立	方メートル毎キログラム	m ³ /kg		
電流密度ア	ンペア毎平方メートル	A/m^2		
磁界の強さア	ンペア毎メートル	A/m		
量 濃 度 ^(a) , 濃 度 モ	ル毎立方メートル	mol/m ³		
質量濃度キ	ログラム毎立法メートル	kg/m ³		
輝 度力	ンデラ毎平方メートル	cd/m^2		
屈 折 率 ^(b) (数字の) 1	1		
比透磁率(b)	数字の) 1	1		
(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度				
(substance concentration) kt. FITA Z				

(substance concentration)ともよばれる。
 (b)これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚	5.37 v (b)	red	1 (b)	m/m
	() / / / / / / (b)	(c)	1 1 (b)	2/ 2
		sr II-	1	m m -1
同 仮 多		пг		S .
カ	ニュートン	N		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量 比エネルギー分与				
カーマ	グレイ	Gy	J/kg	m ² s ²
線量当量,周辺線量当量,方向	2 × 2 2 (g)	C	T/la a	2 -2
性線量当量,個人線量当量		SV	J/Kg	ms
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(カタール) kat [s¹mol]
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周崩現象についてのみ、ペシレルは抜焼性核種の統計的過程についてのみ使用される。
 (a)やレシウス度はケルビンの特別な名称で、セルシウス温度度を表すために使用される。
 (d)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (d)かけ性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	[組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量,エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酸素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ e ⁻¹ mol

表 5. SI 接頭語							
乗数	接頭語	記号	乗数	接頭語	記号		
10^{24}	э 9	Y	10 ⁻¹	デシ	d		
10^{21}	ゼタ	Z	10 ⁻²	センチ	с		
10^{18}	エクサ	E	10 ⁻³	ミリ	m		
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ		
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n		
10^{9}	ギガ	G	10^{-12}	ピコ	р		
10^{6}	メガ	M	10^{-15}	フェムト	f		
10^{3}	+ 1	k	10 ⁻¹⁸	アト	а		
10^{2}	ヘクト	h	10^{-21}	ゼプト	z		
10^{1}	デカ	da	10 ⁻²⁴	ヨクト	v		

表6.SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	٥	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1t=10^{3}$ kg		

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される奴値が美歌的に待られるもの					
名称 記				記号	SI 単位で表される数値
電	子 >	ボル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg
統-	一原子	質量単	单位	u	1u=1 Da
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m

表8.SIに属さないが、SIと併用されるその他の単位

	名称			SI 単位で表される数値		
バ	-	N	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa		
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa		
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m		
海		里	М	1 M=1852m		
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²		
1	ッ	ŀ	kn	1 kn=(1852/3600)m/s		
ネ	-	パ	Np	の形法はいかおはない		
ベ		N	В	31単位との数値的な関係は、 対数量の定義に依存。		
デ	ジベ	N	dB -			

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{ m}^{\cdot 2}$		
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx		
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ^{·1}		
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」				

は対応関係を示すものである。

		表	(10.	SIに 属	禹さないその他の単位の例
	名称			記号	SI 単位で表される数値
キ	ユ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	ン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ			K	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		\sim	7	γ	1 γ =1 nT=10-9T
フ	I.	N	"		1フェルミ=1 fm=10-15m
メー	-トル	系カラ	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ			ル	Torr	1 Torr = (101 325/760) Pa
標	進	大気	圧	atm	1 atm = 101 325 Pa
力	П	IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)
3	カ	17	~		$1 = 1 = 10^{-6}$ m

この印刷物は再生紙を使用しています