

高速炉のガンマ発熱計算のための ガンマ断面積ライブラリの整備

Development of Gamma Cross Section Library for Fast Reactor Gamma Heating Calculations

千葉 豪 羽様 平 鈴木 隆之 Go CHIBA, Taira HAZAMA and Takayuki SUZUKI

> FBR プラント工学研究センター FBR Plant Engineering Center

September 2010

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2010

高速炉のガンマ発熱計算のための ガンマ断面積ライブラリの整備

日本原子力研究開発機構 FBR プラント工学研究センター 千葉 豪、羽様 平、鈴木 隆之

(2010年7月14日受理)

高速炉におけるガンマ線による発熱の空間分布を適切に評価するため、ガンマ断面積ライブラ リ UFGLIB. J40 とガンマ線輸送計算のための巨視的ガンマ定数計算ユーティリティを整備した。 UFGLIB.J40 は最新の核データファイル JENDL-4.0 に基づいて作成した。中性子のエネルギー 群数は通常の高速炉中性子輸送計算に用いられる JAERI Fast set-3 の 70 群、ガンマ線のエネル ギー群数は MATXSLIB で実績のある 42 群とした。

巨視的ガンマ定数作成ユーティリティは、高速炉用格子計算コード SLAROM-UF が計算する 微視的実効断面積と UFGLIB.J40 を用いて、ガンマ線輸送計算に必要となる巨視的ガンマ定数を バイナリファイルとして出力する。

整備したガンマ断面積ライブラリ UFGLIB.J40 とユーティリティの検証のため、FCA XI-1 炉 心で測定されたガンマ発熱分布の解析を行い、測定値と計算値が概ね一致することを確認した。

原子力科学研究所(駐在): 〒 319-1195 茨城県那珂郡東海村白方白根 2-4

Development of Gamma Cross Section Library for Fast Reactor Gamma Heating Calculations

Go CHIBA, Taira HAZAMA and Takayuki SUZUKI

FBR Plant Engineering Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received July 14, 2010)

In order to evaluate gamma heating spatial distribution in fast reactors, a gamma cross section library UFGLIB.J40 and an utility to obtain macroscopic gamma constants for gamma-ray transport calculations are developed.

The library UFGLIB.J40 is generated from the latest nuclear data library JENDL-4.0. The energy group structure for neutron is the JAERI fast set-type 70-group structure and that for photon is the MATXSLIB-type 42-group structure.

The macroscopic gamma constant calculation utility generates gamma constants in binary format files from UFGLIB.J40 and the information given in PDS files yielded by a fast reactor lattice code SLAROM-UF.

For verifications of UFGLIB.J40 and the utility, experimental data of gamma heating spatial distribution measured at the FCA XI-1 assembly are analyzed. Good agreement between calculation and experimental values is obtained.

Keywords: Gamma Heating, UFGLIB.J40, JENDL-4.0, FCA XI-1

目 次

1. 序論	1
2. ガンマ発熱計算のための基礎知識	2
2.1 中性子入射のガンマ線生成データ(遅発ガンマ線を除く)	2
2.2 核分裂による遅発ガンマ線	11
2.3 ガンマ線入射の原子反応データ	14
3. ガンマ断面積ライブラリの作成	18
3.1 NJOY コードによる処理	18
3.2 MATXS ファイルからのライブラリの生成	22
3.3 インデックスファイルの整備	23
3.4 核分裂遅発ガンマ線データ	30
4. 巨視的定数計算ユーティリティの作成	31
5. FCA XI-1 に対する検証計算	34
5.1 FCA XI-1 のガンマ発熱分布測定	34
5.2 FCA XI-1 のガンマ発熱分布計算	36
6. 結論	39
謝辞	39
参考文献	40

Contents

1. I	$\operatorname{ntroduction} \cdot \cdot$	1
2. F	oundation of gamma heating calculations	2
2.1	Neutron-induced gamma yield data •••••••••••••••••	2
2.2	Delayed gamma from fission reaction ••••••••••••••••••••••••••••••••••••	11
2.3	Photon-induced atomic reaction data	14
3. I	Development of gamma cross section library •••••••••••••••••••••••••••••••••••	18
3.1	Processing with NJOY ••••••••••••••••••••••••••••••••••••	18
3.2	Library generation from MATXS files ••••••••••••••••	22
3.3	Preparation of an index file ••••••••••••••••••••••••••••••••••••	23
3.4	Fission delayed gamma data	30
4. I	Development of an utility to produce macroscopic gamma constants $~\cdot~\cdot~$	31
5. T	est calculations with the FCA XI-1 data ••••••••••••••••••••••••••••••••••	34
5.1	Gamma heating measurements at FCA XI-1 •••••••••••	34
5.2	Gamma heating calculations for FCA XI-1	36
6. C	Conclusion ••••••••••••••••••••••••••••••••••••	39
Ackn	owledgement ••••••••••••••••••••••••••••••••••••	39
Refer	rences ••••••••••••••••••••••••••••••••••••	40

List of Tables

Table 2.1.1	Photon production data in the ENDF format	2
Table 2.2.1	Irradiation time dependence of emitted delayed gamma energy (unit	:
Me	$P(\mathbf{V})$	11
Table 2.2.2	Total energy of delayed gamma (unit:MeV) $\ldots \ldots \ldots \ldots$	13
Table 2.3.1	Reactions corresponding to the MT index	14
Table 3.1.1	Energy group structure for neutron	19
Table 3.1.2	Energy group structure for gamma	20

List of Figures

Fig. 2.1.1	Gamma yield of Pu-239	5
Fig. 2.1.2	Gamma yield of U-238	5
Fig. 2.1.3	Gamma yield of Fe-56	6
Fig. 2.1.4	Energy-wise gamma yield of Pu-239 (incident energy: $0.82-1.05 \text{MeV}$)	7
Fig. 2.1.5	Energy-wise gamma yield of U-238 (incident energy: $0.82-1.05 \text{MeV}$)	8
Fig. 2.1.6	Energy-wise gamma yield of Fe-56 (incident energy: $0.82-1.05 \text{MeV}$)	8
Fig. 2.1.7	Total gamma energy emitted by Pu-239 neutron reaction	9
Fig. 2.1.8	Total gamma energy emitted by U-238 neutron reaction \ldots .	10
Fig. 2.1.9	Total gamma energy emitted by Fe-56 neutron reaction \ldots	10
Fig. 2.2.1	Prompt and delayed gamma energy spectra	12
Fig. 2.3.1	Gamma reaction cross section of Pu	15
Fig. 2.3.2	Gamma reaction cross section of U $\ldots \ldots \ldots \ldots \ldots \ldots$	15
Fig. 2.3.3	Gamma reaction cross section of Fe	16
Fig. 2.3.4	Energy-differential gamma reaction cross section of U	17
Fig. 2.3.5	Kerma factor of Pu, U and Fe	17
Fig. 5.1.1	Specification of FCA XI-1	35
Fig. 5.2.1	Radial distribution of gamma heating in FCA XI-1	38
Fig. 5.2.2	Axial distribution of gamma heating in FCA XI-1	38

1. 序論

高速炉における発熱は、核分裂により発生する核分裂生成物の運動エネルギーに起因するもの に加えて、中性子と原子核との反応で生成されるガンマ線によるものがある。ガンマ線は中性子 と比較して平均自由行程は小さいものの、ガンマ線源に大きな勾配が生じる位置(例えば燃料と ブランケット境界付近)ではガンマ線の輸送効果が発熱分布に影響するため、その輸送効果を適 切に評価する必要がある。

ガンマ線の輸送を考えるためには、中性子と原子核との反応により生じるガンマ線の数および そのエネルギー、また、ガンマ線と媒質中の原子との相互作用確率を考えなくてはならない。本 検討では、最新の核データファイル JENDL-4.0¹⁾をもとにそれらのデータを記述する多群ライブ ラリを整備するとともに、ガンマ線輸送計算に必要となる媒質依存の巨視的ガンマ定数を計算す るユーティリティを整備する。

2. ガンマ発熱計算のための基礎知識

原子炉内のガンマ線による発熱分布を計算するためにはガンマ線の空間分布を知る必要がある。 ガンマ線の空間分布は、中性子と原子核との反応により生じるガンマ線源を計算し、ガンマ線の 輸送を計算することで得られる。ガンマ線源の計算は、中性子の空間分布と、中性子と原子核と の相互作用を記述するデータを用いて行う。一方、ガンマ線の輸送計算は、ガンマ線と原子との相 互作用を記述するデータを用いて行う。中性子と原子核との相互作用を記述するデータは汎用核 データファイルに与えられている一方、ガンマ線と原子との相互作用を記述するデータは特殊目 的ファイルとして与えられており、その代表的なものとしては「ENDF/B-VI Atomic Data」が 挙げられる¹。

この章では、核データ(原子データ)ファイルにおけるこれらのデータの与えられ方を整理す るとともに、多群形式に処理したものを一部図示する。

2.1 中性子入射のガンマ線生成データ(遅発ガンマ線を除く)

本節では中性子入射によるガンマ線生成データの核データファイルにおける与えられ方につい て説明し、多群形式への処理例を示す。核分裂により発生するガンマ線は、その放出時間の違い から即発ガンマ線と遅発ガンマ線とに分けられるが、遅発ガンマ線についてはデータの与えられ 方がその他と異なるため、次の節にて説明を行うこととする。

中性子入射のガンマ線生成データは、汎用核データファイルのMF=6(二重微分断面積形式)、 もしくはMF=12から15に与えられる。ここではMF=12から15についてのみ説明を行う。

MF=12から15には**Table 2.1.1**に示されるデータが定義される。

File	Description
12	Multiplicities and transition probability arrays
13	Photon production cross sections
14	Photon angular distributions
15	Continuous photon energy spectra

 Table 2.1.1
 Photon production data in the ENDF format

MF=12では、中性子入射核反応により生じるガンマ線数(Multiplicities)もしくは、中性子入射 により励起された原子核が基底状態に戻る際のレベル準位への遷移確率(Transition probabilities) が与えられる。核分裂や捕獲反応に対しては一般に前者の形式で与えられるようである。以下に

¹なお、ガンマ線と原子「核」との相互作用を記述するデータは「Photonuclear Data」として、汎用核データファ イルとは区別される。

JENDL-4.0 に収納されている Pu-239 の MF=12、MT=18(核分裂反応)を示すが、中性子のエネルギー点とガンマ線生成数が対になって並んでいることが分かる。

9.423900 + 4	2.369990 + 2	1	0	1	0943712	18	1	
0.000000+0	0.000000+0	0	1	1	22943712	18	2	
22	2	0	0	0	0943712	18	3	
1.000000 - 5	8.338900 + 0	5.000000+5	8.338900 + 0	1.000000+6	8.338920 + 0943712	18	4	
2.000000+6	$8.338870 \! + \! 0$	3.000000+6	$8.338890 \! + \! 0$	4.000000+6	$8.338900 \! + \! 0943712$	18	5	
5.000000+6	$8.338890 \! + \! 0$	6.000000+6	$8.338880 \! + \! 0$	7.000000+6	$8.338890 \! + \! 0943712$	18	6	
8.000000+6	$8.338920 \! + \! 0$	9.000000+6	$8.338890 \! + \! 0$	1.000000+7	$8.338900 \! + \! 0943712$	18	7	
1.100000+7	8.338900 + 0	1.200000+7	8.338890 ± 0	1.300000+7	8.338900 + 0943712	18	8	
1.40000 + 7	8.338880 ± 0	1.500000+7	8.338900 ± 0	1.600000+7	$8.338910 \! + \! 0943712$	18	9	
1.700000+7	$8.338910 \! + \! 0$	1.800000+7	8.338890 ± 0	1.900000+7	8.338920 + 0943712	18	10	
2.000000+7	$8.338910\!+\!0$				943712	18	11	
					943712	09	9999	

一方、非弾性散乱反応に対しては後者の形式で与えられるようである。以下に JENDL-4.0 に収納 されている Fe-56 の MF=12、MT=72(離散準位に対する非弾性散乱反応)を示す。

2.605600 + 4 5.545440 + 1	2	2	22	0263112	72	1	
4.298200 + 6 0.000000 + 0	0	0	9	3263112	72	2	
3.122900 + 6 6.600000 - 1	1.000000+0	2.085100 + 6	9.000000 - 2	1.000000 + 0263112	72	3	
8.468000 + 5 $2.500000 - 1$	1.000000+0			263112	72	4	
				263112	09	9999	

この励起準位に対応するエネルギーは 4.2982MeV であるが、その準位からより低いエネルギーの 準位に遷移する確率が与えられている。例えば、3.1229MeV の準位に遷移する確率は 0.660 と定 義されている² 。このような形式でデータが与えられていれば平均の放出ガンマ線数と放出ガン マ線のエネルギーが一意的に決まる。

MF=12 ではガンマ線生成数が定義されるため、ガンマ線生成断面積はそれと中性子入射反応の断面積(MF=3 で定義)との積から計算される。一方、MF=13 ではガンマ線生成断面積の絶対値が与えられる。JENDL-4.0 収納の Pu-239 のファイルでは MF=12 が定義されているため、MF=13 にはデータが無い。

MF=14 では生成ガンマ線の角度分布が定義され、それらは中性子の入射エネルギーに対して、 中性子生成の場合(MF=4)と同様に、ルジャンドル展開係数もしくは確率分布関数として与えら れる。以下に JENDL-4.0 に収納されている Pu-239 の MF=14、MT=18(核分裂反応)を示す。

9.423900+4 $2.369990+2$	1	0	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

一行目、三番目のカードに値「1」が定義されているが、ここは角度分布が等方であるかどうかを 示すフラグであり、この場合は等方であることを意味している。

MF=15 ではガンマ線の連続エネルギースペクトルが定義される。例えば、エネルギーの低い 励起準位への非弾性散乱反応では、放出されるガンマ線のエネルギーは標的核のエネルギー準位 から一意的に決定できる。Pu-239 の場合を例にとると、最も低いエネルギー準位は 7.86keV であ

²この場合、4.2982-3.1229=1.1753MeVのガンマ線が放出される。

るため、この準位から基底状態に戻る際に放出されるガンマ線のエネルギーは 7.86keV となる。 MF=15 では、このように放出ガンマ線のエネルギーが離散的になる場合ではなく、見掛け上連 続のように振る舞うエネルギースペクトルを定義する。従って、MF=15 では、離散準位非弾性 散乱反応については定義されない。

以下に JENDL-4.0 に収納されている Pu-239の MF=15、MT=18(核分裂反応)の一部を示す。

0.000000+0	5.000000+5	0	0	1	21943715	18	25
21	1	0	0	0	0943715	18	26
0.000000+0	8.379340 - 7	7.500000+5	3.382900 - 7	1.250000 + 6	1.733040 - 7943715	18	27
1.750000 + 6	8.593370 - 8	2.250000 + 6	5.302060 - 8	2.750000 + 6	3.129770 - 8943715	18	28
3.250000 + 6	2.070550 - 8	3.750000 + 6	1.462560 - 8	4.250000 + 6	8.545510 - 9943715	18	29
4.750000 + 6	5.858590 - 9	5.250000 + 6	3.171660 - 9	5.750000 + 6	2.208190 - 9943715	18	30
6.250000 + 6	1.244730 - 9	6.750000 + 6	6.52284 - 10	1.025000 + 7	$5.98426\!-\!11943715$	18	31
1.075000 + 7	5.98426 - 11	1.125000 + 7	5.98426 - 11	1.175000 + 7	5.98426 - 11943715	18	32
1.225000 + 7	5.98426 - 11	1.275000 + 7	2.99213 - 11	$1.325000 \!+\! 7$	$0.000000 \! + \! 0943715$	18	33

このデータは 500keV 中性子入射(一行目二番目の数値が該当)の生成ガンマ線エネルギー分布 を示している。

なお、本節冒頭にも述べたが、汎用核データファイルには、核分裂反応から生成するガンマ線 のデータは即発ガンマ線のもののみが格納されており、遅発ガンマ線のデータは含まれていない ことに注意が必要である。

以上の中性子入射ガンマ線生成の核データは、核データ処理コード NJOY²⁾の GROUPR モ ジュールで処理できる。一般的に、粒子輸送計算において中性子とガンマ線のエネルギー群分割 は異なるため、GROUPR では中性子、ガンマ線それぞれに対してエネルギー群構造を指定する ことができる。以下では、JENDL-4.0 のデータを中性子エネルギー群数を 70 として処理した結 果を示す。

Figure 2.1.1 から 2.1.3 に Pu-239、U-238、Fe-56 の各反応に対するガンマ線生成数を示す。

Fig. 2.1.1 Gamma yield of Pu-239

Fig. 2.1.2 Gamma yield of U-238

Fig. 2.1.3 Gamma yield of Fe-56

次に、**Fig. 2.1.4**から**2.1.6**に、0.82MeVから1.05MeVの中性子入射によるガンマ線生成数 を、放出ガンマ線のエネルギー群毎にPu-239、U-238、Fe-56について示す。U-238、Fe-56につ いては、非弾性散乱の第一励起エネルギー(U-238では44.91keV、Fe-56では0.846MeV)に対 応するピークを確認することができる。

Fig. 2.1.4 Energy-wise gamma yield of Pu-239 (incident energy: 0.82-1.05MeV)

Fig. 2.1.5 Energy-wise gamma yield of U-238 (incident energy: 0.82-1.05MeV)

Fig. 2.1.6 Energy-wise gamma yield of Fe-56 (incident energy: 0.82-1.05MeV)

最後に、**Fig. 2.1.7**から **2.1.9**に、生成ガンマ線の全エネルギーを、各反応、中性子入射エネ ルギー群毎に、Pu-239、U-238、Fe-56 について示す。

核分裂反応により生じるガンマ線の全エネルギーでは、入射中性子エネルギーに対する依存性 は小さく、Pu-239、U-238 でそれぞれ 7.46MeV、6.24MeV 程度であった。Sher の評価³⁾ では即発 ガンマ線のエネルギーはそれぞれ 7.76MeV、6.54MeV とされており、両者に 5%弱の差異がある。

捕獲反応により生じるガンマ線の全エネルギーでは、低いエネルギー領域においては入射エネル ギーに対する依存性は小さく、Pu-239、U-238 でそれぞれ 6.51MeV、4.81MeV であった。JENDL-4.0 に与えられている Q 値は Pu-239、U-238 に対してそれぞれ 6.53MeV、4.81MeV となってお り、よく一致している。また、高エネルギーでは入射中性子のエネルギーだけ増加していること が分かる。

Fe-56 では数 MeV 以上のエネルギー領域で捕獲ガンマ線のエネルギーが低下しているが、これは (n,p) 反応、(n,a) 反応等の寄与を捕獲反応として加えていることに起因する。

Fig. 2.1.7 Total gamma energy emitted by Pu-239 neutron reaction

Fig. 2.1.8 Total gamma energy emitted by U-238 neutron reaction

Fig. 2.1.9 Total gamma energy emitted by Fe-56 neutron reaction

2.2 核分裂による遅発ガンマ線

遅発ガンマ線の生成数とエネルギースペクトルは、核分裂生成物の生成量およびガンマ線エネ ルギースペクトルから計算される。なお、核分裂生成物の生成量は核分裂収率、崩壊定数等から 計算される。

ここでは、崩壊データ、ガンマ線スペクトルデータとして JENDL FP Decay Data File 2000⁴⁾ を、核分裂収率として JENDL-4.0 Fission Yield Data Files を用いて、U-235、U-238、Pu-239、 Pu-240、Pu-241 の遅発ガンマ線エネルギースペクトルを計算した。

計算は、プログラム「spectrafinite98」⁵⁾を利用して行った。このプログラムは、指定した長さ の照射時間、冷却時間後の単位時間に放出されるガンマ線エネルギースペクトルを計算する。単 位時間あたり1核分裂が生じると想定されているため、冷却時間をゼロとし、照射時間を平衡状 態に達する程度まで長くとった場合には、核分裂あたりの放出遅発ガンマ線エネルギースペクト ルが計算されることになる。

ここで、照射時間と放出遅発ガンマ線の全エネルギーの関係を U-238、Pu-239 について評価した(冷却時間はゼロ)。結果を Table 2.2.1 に示す。

Table 2.2.1	Irradiation time dependence of emitted delayed gamma energy (unit
MeV)	

Irratiation time (day)	U-238	Pu-239
0.05	$6.5804 \ (0.83^*)$	4.0898(0.77)
0.1	$6.8587 \ (0.87)$	4.3522(0.82)
1.0	$7.3501 \ (0.93)$	4.8049(0.90)
10.0	$7.6157 \ (0.97)$	$5.0715\ (0.95)$
20.0	$7.6852 \ (0.98)$	$5.1395\ (0.96)$
50.0	$7.7597\ (0.98)$	$5.2115\ (0.98)$
100.0	$7.7989\ (0.99)$	5.2492(0.98)
1000.0	7.8481 (1.00)	$5.2983\ (0.99)$
1000000.0	7.8815	5.3355

* Ratio to value after 1000000 days

放出遅発ガンマ線のエネルギーが平衡状態に達するのはおよそ 1000 日程度であるが、10 日照 射後であっても放出エネルギーは平衡状態のものと比べて 3%低い程度であることが分かる。

プログラム Spectrafinite98は、各核分裂性核種について 209 群の遅発ガンマ線エネルギースペク トルを計算する(この計算では、各核分裂生成物のガンマ線エネルギースペクトルとして JENDL FP Decay Data File を 209 群に処理したもの⁵⁾を利用している)。次章で作成するライブラリの ガンマ線のエネルギー群数は 42 なので、得られた 209 群のスペクトルを、各群内でそのスペクト ルを平坦と仮定し(単位エネルギーあたり)、42 群構造に変換した。

なお、入射中性子のエネルギーにより核分裂収率は異なるので、遅発ガンマ線のエネルギース

ペクトルは入射中性子のエネルギーに依存する。ここでは高速中性子入射の核分裂収率のデータ を用いた。

Figure 2.2.1 に Pu-239 の即発および遅発ガンマ線のエネルギースペクトルを示す(即発ガンマ線の入射中性子エネルギーは 0.82-1.05MeV)。遅発ガンマ線のエネルギースペクトルにおいて数 10keV 付近に小さいピークが観察されるが、これはいくつかの核分裂生成物のガンマ線スペクトルに起因するものである³。

Fig. 2.2.1 Prompt and delayed gamma energy spectra

また、遅発ガンマ線の総和エネルギーについて、Sher の文献値と比較したものを Table 2.2.2 に示す。両者は概ね一致していることを確認できる。

³遅発ガンマ線は核分裂生成物核種のベータ崩壊後に放出される。ベータ崩壊後のエネルギー準位が全体的に高い 場合には、放出されるガンマ線のエネルギースペクトルは連続的になり、あるエネルギーでピークを持つ分布となる。 一方、ベータ崩壊後のエネルギー準位が全体的に低い場合には、エネルギーが低いレベル準位に対応したガンマ線の 寄与が大きく現れることになり、スペクトルが離散的な分布を示す場合がある。また、レベル準位で既知なものは限 定されていることから、離散的なスペクトルは比較的低いエネルギー領域に限定される。

Present Sher U-235 6.40 $6.33{\pm}0.05$ U-238 7.88 $8.02{\pm}0.07$ 5.34Pu-239 $5.17{\pm}0.06$ Pu-240 5.84 $6.31{\pm}0.75$ Pu-2416.34 $6.40{\pm}0.09$

 Table 2.2.2
 Total energy of delayed gamma (unit:MeV)

2.3 ガンマ線入射の原子反応データ

ガンマ線と原子との相互作用として、(1)光電効果(photoelectric effect)、(2)電子対生成(electron pair production)、(3)非干渉性散乱(コンプトン散乱、incoherent scattering)、(4)干渉性 散乱(トムソン散乱、coherent scattering)、が挙げられる⁶⁾。光電効果ではガンマ線は消滅し電 子が生成される。従って、ガンマ線は吸収されると考える。電子対生成は閾エネルギー1.022MeV で発生する。電子対生成の結果、ガンマ線は吸収され、電子と陽電子が発生するが、これらはすぐ に光子になる。従って、電子対生成ではガンマ線が吸収され、0.511MeVの二つの光子が生成する と考える。非干渉性散乱、干渉性散乱はともに散乱反応であるが、干渉性散乱ではエネルギーは失 われない。なお、非干渉性散乱は散乱関数(scattering function)、干渉性散乱は様態因子(form factor)で記述される。

以上のガンマ線入射の原子反応データは、ENDF フォーマットの MF=23、27 で与えられる。 MF=23 は「smooth photon interaction cross sections」を、MF=27 は「atomic form functions or scattering functions」を、それぞれ定義する。また、ガンマ線入射の原子反応データにおいて MT 番号が意味するものを Table 2.3.1 に示す。

 Table 2.3.1
 Reactions corresponding to the MT index

MT	Description
501	Total
502	Coherent elastic
504	Incoherent elastic
516	Pair production
522	Photoelectric effect

ガンマ線入射の原子反応データは、原子が対象となるため、原子核データのように同位体毎に データは与えられず、各原子に対してひとつのデータが与えられる。

処理はNJOYのGAMINRモジュールで行う。以下、JENDL-4.0の原子光子データファイル⁴を ガンマ線エネルギーを 42 群として処理した結果について示す。

Figure 2.3.1から **2.3.3**に、Pu、U、Feの各反応断面積を示す。電子対生成が 1.022MeV の 閾値反応であること、低エネルギー領域では吸収反応が支配的となること、吸収反応は常に干渉 性散乱反応よりも大きい断面積となることが分かる。従って、ガンマ線の輸送効果が現れるのは 主に高エネルギー領域であること、ガンマ線の輸送に及ぼす干渉性散乱の影響は小さいことが予 想される。なお、原子数が近い U と Pu の反応断面積はほぼ同一である。

⁴ENDF/B-VII.0 のファイルと同一。

Fig. 2.3.1 Gamma reaction cross section of Pu

Fig. 2.3.2 Gamma reaction cross section of U

Fig. 2.3.3 Gamma reaction cross section of Fe

次に、**Fig. 2.3.4** に、6MeV から 6.5MeV のガンマ線入射の反応断面積の二次光子エネルギー 分布を U について示す。電子対生成では 0.511MeV にピークが見られること、干渉性散乱ではエ ネルギーが失われないことを確認できる。

なお、二次光子の角度分布については、電子対生成は等方であり、干渉性散乱は強い前方性を 有する。

また最後に、**Fig. 2.3.5** に、Kerma 因子を Pu、U、Fe について示す。「Kerma」は Kinetics energy released in matter の略語であり、この場合は単位フルーエンスの光子を物質に入射した ときに物質に付与されるエネルギーの量を表す。

Fig. 2.3.4 Energy-differential gamma reaction cross section of U

Fig. 2.3.5 Kerma factor of Pu, U and Fe

3. ガンマ断面積ライブラリの作成

本章では、中性子によるガンマ線生成多群行列、およびガンマ線と原子との反応の多群断面積 (行列を含む)を定義する多群ライブラリを作成する。ライブラリの作成は、はじめに NJOY コー ドにより MATXS 形式のファイルを作成し、その後、MATXS ファイルから必要なデータを抽出 して独自フォーマットのライブラリを生成する、という流れで行う。

ライブラリ作成核種は JENDL-4.0 に含まれる全 406 核種とした¹。 なお、作成するライブラリは「UFGLIB.J40」と呼称する。

3.1 NJOY コードによる処理

以下に、NJOY コードによる処理条件を述べる。

- 処理には NJOY99.304 を用いる。
- 縮約時の荷重関数は、中性子に対しては JFS-3-J3.2R⁷⁾ 作成の際に利用した原型炉級高速 炉の内側炉心の衝突密度スペクトル、ガンマ線に対しては GAMINR モジュールの IWT=3 (「1/e+rolloffs」)とする。
- ガンマ線入射の散乱断面積に対する最大のルジャンドル展開次数は6とする。

ライブラリの群構造は、中性子については JAERI Fast set-3⁷⁾の 70 群構造、ガンマ線については MATXSLIB⁸⁾の 42 群構造とした。群構造を **Table 3.1.1、3.1.2** に示す。

¹以下の核種にはガンマ線生成数データが格納されていない:Ar-40、Ba、Cl-35、-37、Ga-69、-71、I-127、-129、-131、La-138、-139、Pr-141、-143、Ra、Rh、Ru(-105 以外)、Sb(-126 以外)、Sc-45、Tc-99、Te(-132 以外)

70 群	Upper energy	70 群	Upper energy		
library	boundary	library	boundary		
1	1.000000E+07	36	1.584603E+03		
2	7.788007E+06	37	1.234090E+03		
3	6.065305E+06	38	9.611101E+02		
4	4.723664E+06	39	7.485132E+02		
5	3.678793E+06	40	5.829426E+02		
6	2.865046E+06	41	4.539961E+02		
7	2.231300E+06	42	3.535725E+02		
8	1.737738E+06	43	2.753623E+02		
9	1.353351E+06	44	2.144524E+02		
10	1.053990E+06	45	1.670157E+02		
11	8.208482E+05	46	1.300719E+02		
12	6.392772E+05	47	1.013001E+02		
13	4.978696E+05	48	7.889259E+01		
14	3.877412E+05	49	6.144161E+01		
15	3.019731E+05	50	4.785077E+01		
16	2.351769E+05	51	3.726621E+01		
17	1.831559E+05	52	2.902295E+01		
18	1.426419E+05	53	2.260309E+01		
19	1.110896E+05	54	1.760330E+01		
20	8.651663E+04	55	1.370947E+01		
21	6.737919E+04	56	1.067694E+01		
22	5.247496E+04	57	8.315210E+00		
23	4.086754E+04	58	6.475892E+00		
24	3.182767E+04	59	5.043429E+00		
25	2.478741E+04	60	3.927826E+00		
26	1.930445E+04	61	3.058993E+00		
27	1.503432E+04	62	2.382346E+00		
28	1.170874E+04	63	1.855372E+00		
29	9.118773E+03	64	1.444965E+00		
30	7.101707E+03	65	1.125340E+00		
31	5.530813E+03	66	8.764153E-01		
32	4.307398E+03	67	6.825529E-01		
33	3.354605E+03	68	5.315727E-01		
34	2.612569E+03	69	4.139892E-01		
35	2.034671E+03	70	3.224151E-01		

Table 3.1.1 Energy group structure for neutron

下限:0.00001

42 群	Upper energy	42 群	Upper energy	
library	boundary	library	boundary	
1	5.000000E+07	23	1.330000E+06	
2	3.000000E+07	24	1.000000E+06	
3	2.000000E+07	25	8.000000E+05	
4	1.400000E+07	26	7.000000E+05	
5	1.200000E+07	27	6.000000E+05	
6	1.000000E+07	28	5.120000E+05	
7	8.000000E+06	29	5.100000E+05	
8	7.500000E+06	30	4.500000E+05	
9	7.000000E+06	31	4.000000E+05	
10	6.500000E+06	32	3.000000E+05	
11	6.000000E+06	33	2.000000E+05	
12	5.500000E+06	34	1.500000E+05	
13	5.000000E+06	35	1.000000E+05	
14	4.500000E+06	36	7.500000E+04	
15	4.000000E+06	37	7.000000E+04	
16	3.500000E+06	38	6.000000E+04	
17	3.000000E+06	39	4.500000E+04	
18	2.500000E+06	40	3.000000E+04	
19	2.000000E+06	41	2.000000E+04	
20	1.660000E+06	42	1.000000E+04	
21	1.500000E+06	下限值	1.000000E+03	
22	1.340000E+06			

Table 3.1.2 Energy group structure for gamma

以下に、MATXS 形式のファイルを得るための NJOY の入力例を示す。この例では、中性子入 射の核データファイルが論理機番 20 に、原子光子データファイルが論理機番 30 に、それぞれ対 応している。なお、核データファイルが共鳴パラメータを含んでいない場合にはこの入力では処 理が失敗するので、その場合は中性子入射核データファイルの処理において RECONR モジュー ルを動作させない入力を用いた。

```
moder
  20 - 21
 reconr
  -21 - 22
       'pendf_tape_for_Pu-240__form_jendl33 '/
 $MAT 0/
  1.000E - 03/
  0/
 broadr
  -21 -22 -23
 $MAT 1 0 0 0
  1.000E-03 -1.000E+05/
                        300 /
  0/
  moder
  30 -31
  reconr
  -31 - 32
  'pendf_tape_for_Pu-240__form_jendl33'/
 $MAT2_0
  1.000 E - 03/
  0/
  gaminr
     -31 - 32 \quad 0 \quad -33/
 $MAT2 10 3 6 1 /
    '42-group_photon__94-Pu' /
  -1 \ 0 /
 0/
  groupr
    -21 \ -23
                                                                      0 -24 /
$MAT 1 10 1 0 1 1 1 /
    '_94-Pu-240__JENDL-3.3_with_njoy99' /
                          300 /
                          1.0e10 /
                   70
         5.0434 \pm +00 \quad 6.4759 \pm +00 \quad 8.3152 \pm +00 \quad 1.0677 \pm +01 \quad 1.3709 \pm +01 \quad 1.7603 \pm +01 \quad 1.76
         4.5400 \pm +02 \quad 5.8294 \pm +02 \quad 7.4851 \pm +02 \quad 9.6111 \pm +02 \quad 1.2341 \pm +03 \quad 1.5846 \pm +03
                                                                                                   2.0347E+03
         9.1188E+03
         4.0868E+04 5.2475E+04 6.7379E+04 8.6517E+04 1.1109E+05 1.4264E+05
         1.8316E+05 2.3518E+05 3.0197E+05 3.8774E+05
                                                                                                                                                                                                                                                                                                                                                                                                       4.9787E+05 6.3928E+05
         8.2085E+05
                                                                                                       1.0540E+06
                                                                                                                                                                                                                                                                                                           1.7377E+06
                                                                                                                                                                                                        1.3534E+06
                                                                                                                                                                                                                                                                                                                                                                                                           2.2313E+06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            2.8650E+06
         3.6788E+06 4.7237E+06 6.0653E+06
                                                                                                                                                                                                                                                                                                    7.7880E+06 1.0000E+07
  0.0 0.0 0.0 0.0
                                                                                                                                                         1 \ 5094 \ 5094
                                                                                                                                                                                                                                                                                 2
   1.000000E-05\ 2.145509E-14\ 1.189207E-05\ 2.628056E-14\ 1.354256E-05\ 3.059939E-14
  1.645755\pm -05 \hspace{0.1in} 3.844413\pm -14 \hspace{0.1in} 2.000000\pm -05 \hspace{0.1in} 4.830001\pm -14 \hspace{0.1in} 2.378414\pm -05 \hspace{0.1in} 5.916317\pm -14 \hspace{0.1in} 2.378414\pm -0.5 \hspace{0.1in} 5.910\pm -0.5 \hspace{0.1in} 3.910\pm 
                   ... weight function data ...
  1.901501\pm +07 \hspace{0.1in} 3.393224\pm -13 \hspace{0.1in} 1.918526\pm +07 \hspace{0.1in} 3.114723\pm -13 \hspace{0.1in} 1.930221\pm +07 \hspace{0.1in} 2.938059\pm -13 \hspace{0.1in} 1.930221\pm -13 \hspace{0.1i
  1.944349E + 07 \ 2.739239E - 13 \ 1.951452E + 07 \ 2.644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/2644932E - 13 \ 2.000000E + 07 \ 2.000356E - 13/264494444444 \ 2.00000E + 07 \ 2.0000E + 07 \ 2.00000E + 07 \ 2.00000E + 07 \ 2.0000E + 07 \ 2.00000E + 07 \ 2.0000E + 07 \ 2.000E + 07 \ 2.0000E + 07 \ 2.000E + 07 
 3 /
  6 /
  16 /
  0/
```

```
0/
matxsr
-24 -33 90 /
0 '_jaeri_&_saei'/
2 3 1 1/
'70-g_matxs_library'/
'n''g' /
70 42 /
'nscat''ng' 'gscat' /
1 1 2 /
1 2 2 /
'$1' $MAT $MAT2 /
stop
```

3.2 MATXS ファイルからのライブラリの生成

MATXS 形式のファイルには中性子と原子核との各反応断面積が収納される。一方、今回作成す るガンマ断面積ライブラリは高速炉用格子計算コード SLAROM-UF⁹⁾ との併用を想定しており、 中性子と原子核との反応断面積は SLAROM-UF 側で計算するため、その類のデータを UFGLIB に収納する必要はなく、各反応毎に生成するガンマ線の数とエネルギースペクトルのみが必要と なる。そこで、MATXS 形式のファイルから必要なデータを抽出し、UFGLIB を生成するユーティ リティ(Fortran プログラム)「txt2bin.f」を作成した。

以下に txt2bin.f の使用例を示す。

#

```
#
pro/txt2bin ./ Processing/MATXS/U238 bin.j4/U0238J40 > list.j4/U238
```

ロードモジュールの後に続く引数は、一つ目が処理を行う MATXS ファイルに、二つ目が処理後 に生成される UFGLIB のファイル(バイナリ形式)に対応する。また、標準出力には処理結果が 表示される。この例から分かるように、UFGLIB は核種毎に個別のファイルとなる。

UFGLIB.J40のフォーマットは以下の通りである。

File name : XXYYYZJ40

(XX は原子名、YYY は質量数、Z は基底状態の場合は0、準基底状態の場合は1となる)。

$$\begin{split} & \text{leng, leng, ne, ng, mtn, mtg, mtg1, ((kss(n,j), kgv(n,j), (psec(n,i,j), i=kss(n,j), kgv(n,j)), n=1, ne), j=1, mtn),} \\ & ((gsec(i,j), i=1, ng), j=1, mtg), ((mmm(j), (lss(i,j), lgv(i,j), (gsec1(i,i1,m,j), i1=lss(i,j), lgv(i,j)), i=1, ng), m=1, mmm(j)), j=1, mtg1) \end{split}$$

leng : ライブラリ長 (words) ne : 中性子群数 (=70) ng: ガンマ線群数 (=42)

mtn:中性子入射ガンマ線生成データ反応数 (=5)

mtg: ガンマ線断面積データ反応数(=7)

mtg1: ガンマ線行列データ反応数(=3)

psec(n,i,j):入射中性子n群、放出ガンマ線i群、j反応のガンマ線生成数

j=1: (n,2n), 2: (n,f), 3: (n,g)+(n,p)+(n,d)+(n,a), 4: (n,n'), 5: non-elastic kss(n,j): j反応の中性子n群のガンマ線生成数の上限群数 kgv(n,j): j反応の中性子n群のガンマ線生成数の下限群数

gsec(i,j): ガンマ線i 群、j 反応のガンマ線断面積

j=1:荷重関数、2:全断面積、3:干涉性散乱、4:非干涉性散乱、

j=5: 電子対生成、 6: 吸収、7: Kerma 因子(eV·barns)

gsec1(i,i1,m,j): ガンマ線のルジャンドルm次、j反応、i群からi1 群への散乱行列

j=1: 干渉性散乱、2: 非干渉性散乱、3: 電子対生成 mmm(j): j 反応のガンマ線散乱行列の最大ルジャンドル次数 lss(i,j): j 反応の i 群からのガンマ線散乱行列の上限群数 lgv(i,j): j 反応の i 群からのガンマ線散乱行列の下限群数

また、UFGLIBにはガンマ線のエネルギー群構造を格納するためのファイル「G-ENERGY」が ある。G-ENERGY ファイルはユーティリティ(Fortran プログラム)「makegeng.f」により生成 される。このユーティリティでは適当な MATXS ファイルを論理機番1で読み込み、論理機番2 に G-ENERGY ファイルを出力する。G-ENERGY ファイルのフォーマットは以下の通りである。

File name : G-ENERGY

leng, leng, (eg(i), i=1, leng-1)

leng: ライブラリ長(words) eg: ガンマ線群境界エネルギー(降順)

3.3 インデックスファイルの整備

UFGLIB.J40 は核種毎に個別のバイナリファイルとして定義される。このバイナリファイルと 核種 ID(JAERI Fast set-3 のもの)を対応させるために、以下に示すインデックスファイルを整 備した。一行目が収納核種数を示し、二行目以降がデータとなる。各行は核種 ID とバイナリファ イル名で構成されており、3つ目から5つ目の数字は未使用である。

⁴⁰⁶ 1 H00010J40 2 H00020J40 1 1 1 1 1 1 1

2	203	He0030J40	1	1	1
2	204	He0040J40	0	1	1
3	306	Li0060J40	1	1	1
3	307	Li0070J40	1	1	1
	4	Be0090J40	1	1	1
1	105	B00100J40	1	1	1
1	15	B00110J40	1	1	1
	6	C00000 I40	1	1	1
1	147	N00140140	1	1	1
1		N00140340	1	1	1
1	197	N00150J40	1	1	1
	8	O00160J40	1	1	1
	9	F00190J40	1	1	1
	11	Na0230J40	1	1	1
1	124	Mg0240J40	1	1	1
1	125	Mg0250J40	1	1	1
1	126	Mg0260J40	1	1	1
	13	A10270J40	1	1	1
1	148	Si0280140	1	1	1
1	140	Si0200140	1	1	1
1	149	S10290J40	1	1	1
1	140	S10300J40	1	1	1
	15	P00310J40	1	1	1
]	62	S00320J40	1	1	1
1	163	S00330J40	1	1	1
1	164	S00340J40	1	1	1
1	166	S00360J40	1	1	1
1	175	C10350J40	0	1	1
1	77	C10370.I40	0	1	1
1	180	A r0400 I40	0	1	1
1	100	K00300140	1	1	1
1	100	K00390340	1	1	1
1	190	K00400J40	1	1	1
1	191	K00410J40	1	1	1
4	200	Ca0400J40	1	1	1
2	202	Ca0420J40	1	1	1
2	201	Ca0430J40	1	1	1
2	205	Ca0440J40	1	1	1
2	206	Ca0460J40	1	1	1
5	208	Ca0480.I40	1	1	1
5	215	Sc0450.140	0	1	1
-	210	T;0460 I40	1	1	1
4	220	T10400J40	1	1	1
4	221	T10470J40	1	1	1
4	228	T10480J40	1	1	1
2	229	T10490J40	1	1	1
2	220	Ti0500J40	1	1	1
2	230	V00500J40	1	1	1
2	231	V00510J40	1	1	1
2	240	Cr0500J40	1	1	1
2	242	Cr0520J40	1	1	1
5	243	Cr0530.140	1	1	1
5	244	Cr0540 I40	1	1	1
-	211	Mp0550140	1	1	1
ç	20	E-0540140	1	1	1
4	204	Fe0540J40	1	1	1
2	266	Fe0560J40	1	1	1
2	267	Fe0570J40	1	1	1
2	268	Fe0580J40	1	1	1
2	269	Fe0590J40	1	1	1
2	279	Co0590J40	1	1	1
2	288	Ni0580J40	1	1	1
5	289	Ni0590.I40	1	1	1
5	280	Ni0600140	1	1	1
-	200	N;0610140	1	1	1
4	-01 -01	N;0620140	1 1	1 1	1
4	20Z	N:0020J40	1	1	1
2	284	IN10040J40	1	1	1
2	293	Cu0630J40	1	1	1
2	295	Cu0650J40	1	1	1
5	304	Zn0640J40	1	1	1
3	305	Zn0650J40	1	1	1
3	306	Zn0660J40	1	1	1
5	307	Zn0670J40	1	1	1

308	Zn0680J40	1	1	1
300	Zn0700J40	1	1	1
319	Ga0690J40	0	1	1
311	Ga0710J40	0	1	1
320	Ge0700J40	0	1	1
322	Ge0720J40	0	1	1
323	Ge0730J40	Õ	1	1
324	Ge0740140	0	1	1
326	Ce0760140	0	1	1
320 325	A =0750 J40	0	1	1
333	ASU750J40	0	1	1
344	Se0740J40	0	1	1
346	Se0760J40	0	1	1
347	Se0770J40	0	1	1
348	Se0780J40	0	1	1
349	Se0790J40	0	1	1
340	Se0800J40	0	1	1
342	Se0820J40	0	1	1
359	Br0790J40	0	1	1
351	Br0810J40	Õ	1	1
368	Kr0780140	0	1	1
260	K n 0 0 0 1 4 0	0	1	1
300	Kn0820140	0	1	1
302	Kr0820J40	0	1	1
363	Kr0830J40	0	1	1
364	Kr0840J40	0	1	1
365	Kr0850J40	0	1	1
366	Kr0860J40	0	1	1
375	Rb0850J40	0	1	1
376	Rb0860J40	0	1	1
377	Rb0870J40	0	1	1
384	Sr0840J40	0	1	1
386	Sr0860J40	0	1	1
387	Sr0870J40	Õ	1	1
388	Sr0880140	0	1	1
380	Sr0890140	0	1	1
200	S10090340	0	1	1
300	Sr0900J40	0	1	1
399	100890340	0	1	1
390	Y00900J40	0	1	1
391	Y00910J40	0	1	1
400	Zr0900J40	1	1	1
401	Zr0910J40	1	1	1
402	Zr0920J40	1	1	1
403	Zr0930J40	0	1	1
404	Zr0940J40	1	1	1
405	Zr0950J40	0	1	1
406	Zr0960J40	1	1	1
413	Nb0930J40	1	1	1
414	Nb0940.140	0	1	1
115	Nb0950140	0	1	1
410	Mo0020140	1	1	1
422	M_00920340	1	1	1
424	M-0050140	1	1	1
425	M00950J40	1	1	1
426	Mo0960J40	1	1	1
427	Mo0970J40	1	1	1
428	Mo0980J40	1	1	1
429	Mo0990J40	0	1	1
420	Mo1000J40	1	1	1
439	Tc0990J40	0	1	1
446	Ru0960J40	0	1	1
448	Ru0980J40	0	1	1
449	Ru0990J40	0	1	1
440	Ru1000J40	0	1	1
441	Bu1010.I40	õ	1	1
449	Bu1020140	Ő	- 1	1
444	Ru1020340	0	1	1
443	D 1040 I 40	0	1	1
444	Nu1040J40	0	1	1
447	Ru1050J40	U	1	1
445	Ru1060J40	0	1	1
453	Rh1030J40	0	1	1

455	Rh1050J40	0	1	1
462	Pd1020J40	0	1	1
464	Pd1040J40	0	1	1
465	Pd1050J40	0	1	1
466	Pd1060J40	0	1	1
467	Pd1070J40	0	1	1
468	Pd1080J40	0	1	1
460	Pd1100140	0	1	1
477	A g1070 I40	1	1	1
470	A =1000 I 40	1	1	1
479	Ag1090J40	1	1	1
470	Ag1101J40	0	1	1
471	Ag1110J40	0	1	1
486	Cd1060J40	1	1	1
488	Cd1080J40	1	1	1
480	Cd1100J40	1	1	1
481	Cd1110J40	1	1	1
482	Cd1120J40	1	1	1
483	Cd1130J40	1	1	1
484	Cd1140J40	1	1	1
485	Cd1160.I40	1	1	1
100	In1130 I/0	0	1	1
405	In1150540	0	1	1
495	111130J40	0	1	1
492	Sn1120J40	0	1	1
494	Sn1140J40	0	1	1
505	Sn1150J40	0	1	1
501	Sn1160J40	0	1	1
507	Sn1170J40	0	1	1
508	Sn1180J40	0	1	1
509	Sn1190J40	0	1	1
500	Sn1200.I40	0	1	1
502	Sn1200010	0	1	1
502	Sm1220340	0	1	1
505	SII1230J40	0	1	1
504	Sn1240J40	0	1	1
506	Sn1260J40	0	1	1
511	Sb1210J40	0	1	1
513	Sb1230J40	0	1	1
514	Sb1240J40	0	1	1
515	Sb1250J40	0	1	1
516	Sb1260J40	0	1	1
520	Te1200.I40	0	1	1
522	Te1220110	0	1	1
522	$T_{0}1220340$ $T_{0}1220140$	0	1	1
525	T 1040 I 40	0	1	1
524	Te1240J40	0	1	1
525	Te1250J40	0	1	1
526	Te1260J40	0	1	1
527	Te1271J40	0	1	1
528	Te1280J40	0	1	1
529	Te1291J40	0	1	1
533	Te1300J40	0	1	1
532	Te1320J40	0	1	1
537	101270.140	0	1	1
530	101200140	0	1	1
530	101200140	0	1	1
530	101210140	0	1	1
551	101310J40	0	1	1
535	101350J40	0	1	1
534	Xe1240J40	0	1	1
536	Xe1260J40	0	1	1
548	Xe1280J40	0	1	1
549	Xe1290J40	0	1	1
540	Xe1300J40	0	1	1
541	Xe1310J40	0	1	1
542	Xe1320J40	0	1	1
543	Xe1330J40	0	1	1
544	Xe1340140	Ő	- 1	1
5/5	Xo1350140	0	1	1
040 E4C	AC1300J40 V.1260J40	0	1	1
040	Ae130UJ4U	0	1	1
553	Cs1330J40	U	1	1
554	Cs1340J40	0	1	1

555	Cs1350J40	0	1	1
556	Cs1360J40	0	1	1
557	Cs1370J40	0	1	1
560	Ba1300 I40	0	1	1
560	Da1000040	0	1	1
502	Da1320J40	0	1	1
564	Ba1340J40	0	1	1
565	Ba1350J40	0	1	1
566	Ba1360J40	0	1	1
567	Ba1370J40	0	1	1
568	Ba1380 I40	0	1	1
500	Da1000040	0	1	1
509	Ba1400J40	0	1	1
578	La1380J40	0	1	1
579	La1390J40	0	1	1
570	La1400J40	0	1	1
580	Ce1400J40	0	1	1
581	Ce1410 I40	0	- 1	1
5001	$C_{01410540}$	0	1	1
502	Ce1420J40	0	1	1
583	Ce1430J40	0	1	1
584	Ce1440J40	0	1	1
591	Pr1410J40	0	1	1
593	Pr1430J40	0	1	1
602	Nd1420J40	0	1	1
603	Nd1430140	0	- 1	1
CO 4	Nu1430340	0	1	1
604	Nd1440J40	0	1	1
605	Nd1450J40	0	1	1
606	Nd1460J40	0	1	1
607	Nd1470J40	0	1	1
608	Nd1480J40	0	1	1
600	Nd1500J40	0	1	1
617	Pm1470.I40	0	1	1
618	Pm1480140	0	1	1
610	Dm 1480J40	0	1	1
010	PIII1461J40	0	1	1
619	Pm1490J40	0	1	1
611	Pm1510J40	0	1	1
625	Sm1440J40	0	1	1
627	Sm1470J40	0	1	1
628	Sm1480J40	0	1	1
629	Sm1490.I40	0	1	1
620	Sm1500 I40	0	1	1
691	Sm1510140	0	1	1
021	Sm1510J40	0	1	1
622	Sm1520J40	0	1	1
623	Sm1530J40	0	1	1
624	Sm1540J40	0	1	1
631	Eu1510J40	1	1	1
632	Eu1520.I40	0	1	1
633	$E_{11520140}$	1	1	1
000	Eu1530340	1	1	1
034	Eu1540J40	0	1	1
635	Eu1550J40	0	1	1
636	Eu1560J40	0	1	1
637	Eu1570J40	0	1	1
642	Gd1520J40	0	1	1
643	Gd1530.I40	0	1	1
644	Cd1540140	0	1	1
044	Gu1540540	0	1	1
645	Gd1550J40	0	1	1
646	Gd1560J40	0	1	1
647	Gd1570J40	0	1	1
648	Gd1580J40	0	1	1
640	Gd1600J40	0	1	1
659	Tb1590J40	0	1	1
650	Tb1500.I40	ů 0	1	- 1
665	Dv1540140	0	1	1
660	Dy1540340	0	1	1
000	Dy1000J40	0	1	1
668	Dy1580J40	0	1	1
669	Dy1590J40	0	1	1
660	Dy1600J40	0	1	1
661	Dy1610J40	0	1	1
662	Dy1620J40	0	1	1
663	Dv1630.140	ů 0	1	1
000	-,1000010	0	1	1

664	Dy1640J40	0	1	1
682	Er1620J40	1	1	1
684	Er1640J40	1	1	1
686	Er1660J40	1	1	1
687	Er1670J40	1	1	1
688	Er1680J40	1	1	1
680	Er1700.I40	1	1	1
699	Tm1690 I40	1	1	1
708	Vb1680140	1	1	1
700	1 b1080340	1	1	1
700	Y D1700J40	1	1	1
701	Y b1710J40	1	1	1
702	Yb1720J40	1	1	1
703	Yb1730J40	1	1	1
704	Yb1740J40	1	1	1
706	Yb1760J40	1	1	1
724	Hf1740J40	1	1	1
726	Hf1760J40	1	1	1
727	Hf1770.I40	1	1	1
728	Hf1780 I/0	1	1	1
720	Hf1700 I40	1	1	1
729	1111790340	1	1	1
720	H11800J40	1	1	1
721	Hf1810J40	1	1	1
722	Hf1820J40	1	1	1
731	Ta1810J40	1	1	1
740	W01800J40	1	1	1
742	W01820J40	1	1	1
743	W01830J40	1	1	1
744	W01840J40	1	1	1
746	W01860J40	1	1	1
764	Os1840 I40	1	1	1
766	Oc1860 140	1	1	1
767	Os1870140	1	1	1
701	Os1870J40	1	1	1
708	Os1880J40	1	1	1
769	Os1890J40	1	1	1
760	Os1900J40	1	1	1
762	Os1920J40	1	1	1
797	Au1970J40	1	1	1
806	Hg1960J40	1	1	1
808	Hg1980J40	1	1	1
809	Hg1990J40	1	1	1
800	Hg2000J40	1	1	1
801	Hg2010J40	1	1	1
802	Hg2020J40	1	1	1
804	Hg2040.140	- 1	1	1
824	Pb2040140	1	1	1
826	Pb2060140	1	1	1
820	Db2000J40	1	1	1
021	P D2070J40	1	1	1
828	PD2080J40	1	1	1
839	B12090J40	1	1	1
883	Ra2230J40	0	1	1
880	Ra2240J40	0	1	1
885	Ra2250J40	0	1	1
886	Ra2260J40	0	1	1
895	Ac2250J40	0	1	1
896	Ac2260J40	0	1	1
897	Ac2270J40	0	1	1
907	Th2270.I40	Ő	1	1
908	Th2280140	Ő	1	1
000	Th2200040	0	1	1
909	Th 2200 I 40	0	1	1
900 001	1 II 2 3 U U J 4 U Th 9 2 1 0 I 4 0	U	1	1
901	1 II 2310J40	0	1	1
902	1 n2320J40	0	1	1
903	Th2330J40	0	1	1
904	Th2340J40	0	1	1
919	Pa2290J40	0	1	1
910	Pa2300J40	0	1	1
911	Pa2310J40	0	1	1
912	Pa2320J40	0	1	1

913	Pa2330J40	0	1	1
920	U02300J40	0	1	1
921	U02310J40	0	1	1
922	U02320J40	0	1	1
923	U02330J40	0	1	1
924	U02340J40	0	1	1
021	U02350 I40	1	1	1
026	U02350340	0	1	1
027	U02200340	0	1	1
921	002370340	1	1	1
928	U02380J40	1	1	1
934	Np2340J40	0	1	1
935	Np2350J40	0	1	1
936	Np2360J40	0	1	1
937	Np2370J40	0	1	1
938	Np2380J40	0	1	1
939	Np2390J40	0	1	1
946	Pu2360J40	0	1	1
947	Pu2370J40	0	1	1
948	Pu2380140	Õ	1	1
040	Du2300340	1	1	1
949	D-2400140	1	1	1
940	Pu2400J40	0	1	1
941	Pu2410J40	0	1	1
942	Pu2420J40	0	1	1
944	Pu2440J40	0	1	1
945	Pu2460J40	0	1	1
956	Am2400J40	0	1	1
951	Am2410J40	0	1	1
952	Am2420J40	0	1	1
950	Am2421J40	0	1	1
953	Am2430.140	Õ	1	1
054	Am2440140	0	1	1
954	Am2440340	0	1	1
955	Am2441J40	0	1	1
959	Cm2400J40	0	1	1
961	Cm2410J40	0	1	1
962	Cm2420J40	0	1	1
963	Cm2430J40	0	1	1
964	Cm2440J40	0	1	1
965	Cm2450J40	0	1	1
966	Cm2460J40	0	1	1
967	Cm2470J40	0	1	1
968	Cm2480J40	0	1	1
969	Cm2490.I40	0	1	1
960	Cm2500140	Õ	1	1
075	Bk2450 I40	0	1	1
975	DK2430340 DI-2460140	0	1	1
970	Dk2400J40	0	1	1
977	BK2470J40	0	1	1
978	Bk2480J40	0	1	1
979	Bk2490J40	0	1	1
970	Bk2500J40	0	1	1
986	Cf2460J40	0	1	1
988	Cf2480J40	0	1	1
989	Cf2490J40	0	1	1
980	Cf2500J40	0	1	1
981	Cf2510J40	0	1	1
982	Cf2520.I40	0	1	1
083	Cf2530140	0	1	1
900	Cf2540140	0	1	1
904	C12540540	0	1	1
991		0	1	1
992	Es2520J40	U	1	1
993	Es2530J40	0	1	1
994	Es2540J40	0	1	1
990	Es2541J40	0	1	1
995	Es2550J40	0	1	1
999	Fm2550J40	0	1	1

3.4 核分裂遅発ガンマ線データ

核分裂による遅発ガンマ線データとしては、前章で述べたプログラム spectrafinite98 で計算したものを用いる。

一般的に、原子炉の出力計算に用いられる発熱定数(核分裂あたりの発熱エネルギー)には遅 発ガンマ線の全エネルギーが含まれている。従って、それとの整合性の観点から、遅発ガンマ線 は全て炉内で放出されると考えたほうが都合がよい。そこで、遅発ガンマ線のエネルギースペク トルは照射時間を無限相当(冷却時間はゼロ)として計算することとした²(なお、後述する巨 視的ガンマ定数計算プログラムでは、遅発ガンマ線の寄与割合を設定することが可能である)。

遅発ガンマ線のスペクトルデータは「dgsp」という名のテキストファイルで定義し、各核種に ついてのバイナリファイル、G-ENERGY ファイルと同じディレクトリに保存する。

²これは、核分裂により「瞬時に」全ての遅発ガンマ線が発生することを意味する。しかし厳密には、その核分裂反応が起こったのと同時間に発生した以前の核分裂による遅発ガンマ線をその核分裂反応から発生したと見做しているということである。これは原子炉の定常運転を想定しているという前提のもとでの運用である。

4. 巨視的定数計算ユーティリティの作成

前章で、ガンマ線源の計算、ガンマ線の輸送計算に必要となるデータを格納したライブラリ UFGLIB を作成した。一方、実際の原子炉のガンマ線輸送計算を行う際には、原子炉の媒質に応 じて決まる「巨視的な」データを用いたほうが便利である。

例えば、ある媒質について、核種 i の数密度を N_i 、その g 群の実効捕獲断面積を $\sigma_{g,i}$ 、それに より生成される m 群のガンマ線数を $y_{g \to m,i}$ 、そして g 群の中性子束を ϕ_g とする。この場合、媒 質中の m 群のガンマ線源 S_m は以下の式で計算される。

$$S_m = \sum_i \sum_g N_i y_{g \to m,i} \sigma_{g,i} \phi_g = \sum_g Y_{g \to m} \phi_g \tag{4.1}$$

すなわちガンマ線源の計算では媒質依存のYgm のみが必要となる。

今回整備するシステムでは、N、σは高速炉用格子計算コード SLAROM-UF の計算結果を用 い、y として UFGLIB のデータを用いる。従って、このシステムでは、共鳴自己遮蔽効果の取り 扱いという観点で通常の高速炉核特性解析と整合のとれる方法でガンマ線源を計算することがで きる。

以上の媒質依存の巨視的なガンマ線生成行列、散乱行列等(これらを巨視的ガンマ定数と呼称 する)を計算するためのユーティリティ(Fortran プログラム)「rscn.f」を作成した。

以下に rscn.f の実行例を示す。

./pro/rscn ./Index.j40.txt < rscn.in > out

引数には UFGLIB のインデックスファイルを指定する。また、論理機番5には入力ファイルが対応する。入力ファイルの例を以下に示す。

1 行目では SLAROM-UF コードの出力ファイル(PDS ファイル)が存在するディレクトリを 指定する。なお、PDS ファイルとしては、SB、SC メンバが必要である。

2行目では UFGLIB が存在するディレクトリを指定する。

3行目では rscn.f が計算した巨視的ガンマ定数を出力するディレクトリを指定する。出力ファ イルの名称は、PDS ファイル名に「GG」が付加されたものとなる。この例では SLAROM-UF の PDS ファイルが存在するディレクトリに出力ファイルが保存されることになる。

4行目では処理する媒質数を指定し、5行目以降では処理を行うSLAROM-UFの出力PDSファイルのメンバー名を処理する媒質数だけ指定する。

最終行では、遅発ガンマ線に乗ずる因子を指定する。この例では無限時間照射のガンマ線の7 割を考慮することになる。

ユーティリティrscn.fが出力する巨視的ガンマ定数を記述するファイルのフォーマットは以下の 通りである。

File name: XXXXXXGG (XXXXXX は SLAROM-UF の PDS メンバー名)

- leng, leng, ne, ng, mtn, mtg, mtg1, ((kss(n,j), kgv(n,j), kgv(n,j), kgv(n,j), kgv(n,j), kgv(n,j), kgv(n,j))
- (psec(n,i,j), i=kss(n,j), kgv(n,j)), n=1, ne), j=1, mtn),
- ((gsec(i,j), i=1, ng), j=1, mtg), ((mmm(j), (lss(i,j), lgv(i,j), lgv(i,j),

(gsec1(i,i1,m,j), i1=lss(i,j), lgv(i,j)), i=1, ng), m=1, mmm(j)), j=1, mtg1)

- leng: ライブラリ長 (words)
- ne:中性子群数(=70)
- ng: ガンマ線群数 (=42)
- mtn:中性子入射ガンマ線生成データ反応数(=5)
- mtg: ガンマ線断面積データ反応数(=7)
- mtg1: ガンマ線行列データ反応数(=3)
- psec(n,i,j):入射中性子n群、放出ガンマ線i群、j反応のガンマ線生成数

j=1: (n,2n), 2: (n,f), 3: (n,g)+(n,p)+(n,d)+(n,a), 4: (n,n'), 5: non-elastic kss(n,j): j反応の中性子 n 群のガンマ線生成数の上限群数 kgv(n,j): j反応の中性子 n 群のガンマ線生成数の下限群数 gsec(i,j): ガンマ線 i 群、j反応のガンマ線輸送断面積

j=1:荷重関数、2:全断面積、3:干涉性散乱、4:非干涉性散乱、

j=5: 電子対生成、 6: 吸収、7: Kerma 因子 (eV·barns·cm⁻³)

gsec1(i,i1,m,j): ガンマ線のルジャンドルm次、j反応、i群からi1群への散乱行列

j=1: 干渉性散乱、2: 非干渉性散乱、3: 電子対生成 mmm(j): j反応のガンマ線散乱行列の最大ルジャンドル次数 lss(i,j): j反応のi群からのガンマ線散乱行列の上限群数 lgv(i,j): j反応のi群からのガンマ線散乱行列の下限群数 なお、UFGLIB は天然同位体のデータを含んでいない。従って、SLAROM-UF で実効断面積 を計算する際には、天然同位体のライブラリを使用してはならないことに注意が必要である。

5. FCA XI-1に対する検証計算

前章までに述べた UFGLIB.J40 と巨視的ガンマ定数作成ユーティリティの検証のため、FCA XI-1 炉心で測定されたガンマ線発熱分布の計算を行った。

5.1 FCA XI-1 のガンマ発熱分布測定

FCA XI-1 炉心では5種類の熱蛍光線量計(TLD)を用いたガンマ線発熱分布測定が実施された^{10,11)}。FCA XI-1 炉心は大型高速炉の内側炉心を模擬した体系であり、その炉心はテスト領域と体系を臨界に維持するためのドライバー領域とから成る。炉心の断面図を Fig. 5.1.1 に示す。 ガンマ線発熱分布は炉心の径方向および軸方向に対して測定された。

文献¹⁰⁾には、炉心中心での²³⁷Np原子1個当りの核分裂率で規格化されたガンマ発熱に対す る測定値とともに、格子の均質数密度、炉心の体系情報等、計算に必要な情報が与えられている。 今回の検証計算ではそれらを用いた。

なお、測定値には中性子による熱蛍光量への寄与が含まれているが、計算ではその点を考慮して いない。文献¹⁰⁾によると、その寄与は炉心領域で10-20%程度あると考えられるとのことである。

Fig. 5.1.1 Specification of FCA XI-1

5.2 FCA XI-1のガンマ発熱分布計算

以下、ガンマ発熱分布の具体的な計算方法について述べる。

はじめに、各格子の(中性子入射)実効断面積を、SLAROM-UF コードと JENDL-4.0 に基づ く UFLIB.J40(基本炉定数は 70 群、超微細群定数は使用せず)を用いて計算した。その後、ユー ティリティrcsn.f を用いて、SLAROM-UF が出力した PDS ファイルと UFGLIB.J40 から媒質依 存の巨視的ガンマ定数を計算した。なお、遅発ガンマ線の寄与であるが、文献¹⁰⁾ には「本測定に おける冷却時間は約 20 分で、これは無限照射或は無限冷却時に放出される FP からの全ガンマエ ネルギー¹ の約 70%が放出された時間に対応する」という記述があった(p.27)ため、無限照射 の 7 割を考慮することとした²。

ユーティリティrcsn.fは標準出力に計算結果を表示する。以下に、テスト領域のT1セルに対する標準出力を示す。

ND	ND(DEN) LIB-NAME GAMMA ENERGY PER REACTION [MeV]							
			(n, 2n)	(n, fp)	(cap)	(n,n')	(non-e)	(n,fd)
$949 \ 5.$	22800E - 04	Pu2390J40	7.32E-01	7.41E+00	6.55E+00	2.55E - 01	0.00E+00	3.74E+00
$940 \ 4.$	61000E-05	Pu2400J40	5.74E - 01	6.98E+00	5.30E+00	$3.01 \mathrm{E}{-01}$	0.00E+00	4.08E+00
941 4.	33000E - 06	Pu2410J40	7.60E - 01	7.59E+00	6.37E+00	4.43E-01	0.00E+00	4.42E+00
$925 \ 3.$	16000E-05	U02350J40	7.87E-01	6.95E+00	6.61E+00	4.27E - 01	0.00E+00	4.47E+00
928 9.	30700E - 03	U02380J40	6.69E - 01	6.19E+00	4.89E+00	4.31E-01	0.00E+00	5.48E+00
8 1.	54000E-02	O00160J40	0.00E + 00	0.00E + 00	6.36E - 01	5.65E+00	0.00E+00	0.00E+00
$11 \ 7.$	65600E-03	Na0230J40	0.00E + 00	0.00E+00	6.50E+00	6.76E - 01	0.00E+00	0.00E+00
$13 \ 1.$	15900E-03	Al0270J40	0.00E + 00	0.00E+00	6.98E+00	1.47E+00	2.74E - 01	0.00E+00
240 1.	39605E-04	Cr0500J40	0.00E + 00	0.00E+00	8.82E+00	1.16E+00	0.00E+00	0.00E + 00
$242 \ 2.$	69214E-03	Cr0520J40	0.00E + 00	0.00E+00	7.97E+00	2.06E+00	0.00E+00	0.00E + 00
$243 \ 3.$	05267E-04	Cr0530J40	7.33E - 02	0.00E+00	9.72E+00	1.40E+00	0.00E+00	0.00E+00
$244 \ 7.$	59875E - 05	Cr0540J40	1.00E-02	0.00E+00	6.35E+00	1.26E+00	0.00E+00	0.00E+00
$264 \ 6.$	91288E - 04	Fe0540J40	0.00E+00	0.00E+00	7.41E+00	2.01E+00	0.00E+00	0.00E+00
266 1.	08517E-02	Fe0560J40	0.00E+00	0.00E+00	7.75E+00	1.48E+00	0.00E+00	0.00E+00
267 2.	50614E - 04	Fe0570J40	2.15E - 01	0.00E+00	9.95E+00	1.20E - 01	0.00E+00	0.00E + 00
268 3.	33521E-05	Fe0580J40	0.00E + 00	0.00E + 00	6.61E + 00	1.62E+00	0.00E+00	0.00E + 00
288 9.	77584E-04	Ni0580J40	0.00E + 00	0.00E + 00	7.14E+00	2.09E+00	0.00E+00	0.00E + 00
280 3.	76564E - 04	Ni0600J40	0.00E + 00	0.00E + 00	7.72E+00	2.18E+00	0.00E+00	0.00E + 00
281 1.	63690E-05	Ni0610J40	9.02E - 02	0.00E+00	1.06E+01	4.08E - 01	0.00E+00	0.00E + 00
282 5.	21914E - 05	Ni0620J40	0.00E + 00	0.00E + 00	6.87E + 00	1.84E+00	0.00E+00	0.00E + 00
284 1.	32916E - 05	Ni0640J40	8.76E - 02	0.00E+00	6.16E+00	2.12E+00	0.00E+00	0.00E+00
5.477	0.00.01.0		(a)					
RATI	O OF GAMM	A-ENERGY OR	IGIN					
	(r	n,2n)(n,fp)((cap) (n,n)(non-e)(n,fd)			
949	0.3585 (`0	0.000 0.540	0.182 0.00)6`0.000´Ò	.272)			
940	0.0088 ((0.000 0.258	0.567 0.02	24 0.000 0	.151)			
941	0.0044 ((0.000 0.564	0.102 0.00	5 0.000 0	.329)			
925	0.0249 (0	0.000 0.509	0.155 0.00	0 0.000 0	.328)			
928	0.5095 ((0.000 0.080	0.712 0.13	88 0.000 0	.070)			
8	0.0007 ((0.000 0.000	0.204 0.79	6 0.000 0	.000 Ĵ			
11	0.0118 ((0.000 0.000	0.225 0.77	5 0.000 0	.000 Ĵ			
13	0.0019 ((0.000 0.000	0.331 0.55	53 0.116 0	.000 Ĵ			
240	0.0016 ((0.000 0.000	0.816 0.18	34 0.000 0	.000 ý			
242	0.0097 ((0.000 0.000	0.432 0.56	8 0.000 0	.000 Ĵ			
243	0.0036 ((0.000 0.000	0.749 0.25	51 0.000 0	.000 Ĵ			
244	0.0003 (0	0.000 0.000	0.168 0.83	32 0.000 0	.000 ý			
264	0.0044 ((0.000 0.000	0.776 0.22	24 0.000 0	.000 ý			
	(/			

¹無限照射と無限冷却の意味は全く同じである。無限冷却と言っているのは、核分裂が起こった場合に、放出される (時間依存の)遅発ガンマ線エネルギーについて、核分裂発生時点から無限時間までの時間積分をとるということであ り、全ガンマエネルギーに対応する。

²この実験では、有限時間内でのガンマ線照射量(の時間積分)が測定されており、有限時間中に起こった核分裂反応からどの程度の割合の遅発ガンマ線が測定中に放出されたかを知る必要がある。

266	0.0467 (0.000	0.000	0.442	0.558	0.000	0.000)
267	0.0024 (0.000	0.000	0.690	0.310	0.000	0.000)
268	0.0002 (0.000	0.000	0.568	0.432	0.000	0.000)
288	0.0072 (0.000	0.000	0.812	0.188	0.000	0.000)
280	0.0024 (0.000	0.000	0.683	0.317	0.000	0.000)
281	0.0005 (0.000	0.000	0.876	0.124	0.000	0.000)
282	0.0004 (0.000	0.000	0.721	0.279	0.000	0.000)
284	0.0001 (0.000	0.000	0.539	0.461	0.000	0.000)

ユーティリティrcsn.f は媒質依存の巨視的なガンマ定数を計算するが、SLAROM-UF が生成し た PDS ファイルに収納されている B1 近似で計算された中性子東エネルギースペクトルを用いて、 各核種、各反応あたりに生成するガンマ線の平均エネルギー、媒質で発生するガンマ発熱量に対 する核種、反応毎の寄与割合も併せて計算し、標準出力として表示する。この例では、Pu-239 の 即発ガンマ線、捕獲ガンマ線、遅発ガンマ線の平均エネルギーがそれぞれ 7.41MeV、6.55MeV、 3.74MeV であり、また Pu-239 から発生するガンマ線の全ガンマ線発熱に対する寄与が 35.85%、 その 54%が即発ガンマ線によるもの、27%が遅発ガンマ線によるものとなっている³。

媒質依存の巨視的ガンマ定数を計算した後、ガンマ線空間分布の計算を行う。ここでの計算は 全て原子力機構で開発中の中性子輸送計算コードシステム CBG¹²⁾ により行った。はじめに、70 群中性子輸送計算(P0S4)を行い、得られた中性子束と巨視的ガンマ生成数よりガンマ線源を計 算した。その後、42 群ガンマ線輸送計算(P0S4)を行い、得られたガンマ線束に Kerma 因子を 乗じてガンマ線発熱分布を計算した。中性子輸送計算では1ドロワあたり X、Y 方向について各々 1空間メッシュとしたが、ガンマ線輸送計算では全断面積が大きいことから1ドロワあたり4メッ シュとした⁴。なお、ガンマ線輸送計算を P3S8 で別途行い、P0S4 計算値と有意な差異がないこ とを確認した。

計算結果を Fig. 5.2.1 と 5.2.2 に示す。測定誤差が大きいこと、計算での不確かさが大きいこと(中性子による熱蛍光量の寄与を無視している点、計算で格子の非均質性を無視している点⁵ 等)を考えると、計算値と測定値との一致は概ね良好であると結論づけて良い。

³使用している中性子束エネルギースペクトルが B1 近似によるものであるため、ブランケット格子等では実際のものと異なる可能性がある。

⁴空間差分化は、中性子輸送計算ではダイヤモンド差分近似、ガンマ線輸送計算では重み付きダイヤモンド差分近 似を用いた。ガンマ線輸送計算に重み付きダイヤモンド差分近似を用いたのは、通常のダイヤモンド差分近似だと解 (発熱分布)が振動する現象が見られたためである。

⁵文献¹⁰⁾(の付録2)では、Pu 板に隣接する模擬物質板(TLD が設置された Na 板も含む)における吸収線量は 他の位置の模擬物質板でのそれよりも約 40%大きいことが実験的に確認されている。

Fig. 5.2.1 Radial distribution of gamma heating in FCA XI-1

Fig. 5.2.2 Axial distribution of gamma heating in FCA XI-1

6. 結論

高速炉におけるガンマ線による発熱分布を適切に評価するため、ガンマ断面積ライブラリUFGLIB.J40 とガンマ線輸送計算のための巨視的ガンマ定数計算ユーティリティを整備した。

UFGLIB.J40 は最新の核データファイル JENDL-4.0 に基づいて作成した。中性子のエネルギー 群数は通常の高速炉中性子輸送計算に用いられる JAERI Fast set-3 の 70 群、ガンマ線のエネル ギー群数は MATXSLIB で実績のある 42 群とした。

巨視的ガンマ定数作成ユーティリティは、高速炉用格子計算コード SLAROM-UF が計算する 微視的実効断面積と UFGLIB を用いて、ガンマ線輸送計算に必要となる巨視的ガンマ定数をバイ ナリファイルとして出力する。

整備したガンマ断面積ライブラリ UFGLIB とユーティリティの検証のため、FCA XI-1 炉心で 測定されたガンマ発熱分布の解析を行い、測定値と計算値が概ね一致することを確認した。

謝辞

NJOY の入力、各種ユーティリティの雛型の作成は伊藤忠テクノソリューションズの齋藤邦義 氏により行っていただきました。清水建設の小迫和明氏には、ガンマ発熱計算についてご教示を いただくとともに、JENDL-4.0 の NJOY による処理において大変有益なご助言をいただきまし た。また、原子力基礎工学研究部門・核データ評価研究グループの片倉純一氏には、遅発ガンマ 線のエネルギースペクトルの計算についてのご教示をいただくとともに、本報告書に対して有益 なコメントをいただきました。ここに深い謝意を表します。

参考文献

- K.Shibata, et al., "JENDL-4.0: a new library for innovative nuclear energy system," Proc. of Int. Conf. on Nuclear Data for Science and Technology, ND2010, Jeju Island, Korea (2010).
- R.E.MacFarlane, D.W.Muir, *The NJOY Nuclear Data Processing System*, version 91, LA-12740-M, Los Alamos National Laboratory (1994).
- 3) R.Sher, "Fission-energy release for 16 fissioning nuclides," *Proc. Conf. on Nucl. Data Evaluation Method and Procedures*, BNL (1980).
- 4) J. Katakura, *et al.*, "JENDL FP Decay Data File 2000," JAERI 1343, Japan Atomic Energy Research Institute (2001).
- 5) 片倉、私信、(2009).
- 6) Y. Nagaya, et al., "MVP/GMVP II: General purpose Monte Carlo codes for neutron and photon transport calculations based on continuous energy and multigroup methods," JAERI 1348 (2005).
- 7) 千葉、他、「高速炉用炉定数セット JFS-3-J3.2 の改訂」、日本原子力学会和文論文誌、1[4], 335 (2002).
- K. Kosako, et al., "The Libraries FSXLIB and MATXSLIB Based on JENDL-3.3," JAERI-Data/Code 2003-011 (2003).
- 9) T. Hazama, *et al.*, "SLAROM-UF: Ultra Fine Group Cell Calculation Code for Fast Reactor - Version 20090113 -," JAEA-Review 2009-003 (2009).
- 10) 岡嶋、他、「FCA XI-1 集合体におけるガンマ線発熱分布の測定と解析」、JAERI-M 84-144 (1984).
- S. Okajima, et al., "Measurement of gamma-ray heating with thermoluminescense dosimeters including Sr₂SiO₄ and Ba₂SiO₄," J. Nucl. Sci. Technol., **22**[1], pp.70-73 (1985).
- 12) 千葉、「中性子輸送計算システム CBG による小林ベンチマーク問題の計算」、JAEA-Research 2009-012 (2009).

表 1. SI 基本単位					
甘大昌	SI 基本単位				
巫平里	名称	記号			
長さ	メートル	m			
質 量	キログラム	kg			
時 間	秒	s			
電 流	アンペア	А			
熱力学温度	ケルビン	Κ			
物質量	モル	mol			
光 度	カンデラ	cd			

表2.基本単位を用いて表されるSI	組立単位の例
_{知 고 문} SI 基本	5単位
和立重 名称	記号
面 積平方メートル	m ²
体 積 立法メートル	m ³
速 さ , 速 度 メートル毎秒	m/s
加速 度メートル毎秒毎秒	m/s^2
波 数 毎メートル	m ^{·1}
密度, 質量密度キログラム毎立方メ	ートル kg/m ³
面 積 密 度キログラム毎平方メ	$- \vdash \nu = kg/m^2$
比体積 立方メートル毎キロ	グラム m ³ /kg
電 流 密 度 アンペア毎平方メ・	$- h \mu A/m^2$
磁界の強さアンペア毎メート	ル A/m
量濃度(a),濃度モル毎立方メート	$\nu mol/m^3$
質量濃度 キログラム毎立法メ	ートル kg/m ³
輝 度 カンデラ毎平方メ・	ートル cd/m ²
屈折率()(数字の)1	1
比 透 磁 率 (b) (数字の) 1	1

(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度(substance concentration)ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 組立里位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚 面 催	ラジア、(b)	rad	1 ^(b)	m/m
· 监	マテラジア、(b)	cm ^(c)	1 (b)	m^{2/m^2}
	(d)	H ₇	1	·1
л Ц »	ニュートン	N		m lra o ⁻²
	パフカル	Do	N1/2	111 Kg S
		га	IN/m	m kg s
エネルキー、仕事、烈量	シュール	1	N m	m² kg s²
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	C		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{-3} A^{-2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^{\cdot 2} A^{\cdot 1}$
磁束密度	テスラ	Т	Wb/m ²	$\text{kg s}^{-2} \text{A}^{-1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	セルシウス度 ^(e)	°C		K
光 束	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m^2	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量、比エネルギー分与、	Hir. 1		7.0	9 -9
カーマ	2 2 1	Gy	J/kg	mĩsĩ
線量当量,周辺線量当量,方向	(a)	~		9.9
性線量当量,個人線量当量	シーベルト(g)	Sv	J/kg	m ² s ²
酸素活性	カタール	kat		s ^{'1} mol

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
 (c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ベクレルは放射性抜種の統計的過程についてのみ使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス温度で表すために使用される。
 (f)数単位を種の大きさは同一である。したがって、温度差や温度問隔を表す数値はとちらの単位で表しても同じである。
 (f)数単性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘质	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	$m^2 kg s^2$
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$
熱流密度,放射照度	ワット毎平方メートル	W/m ²	kg s ⁻³
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{-2}$
熱伝導率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m^2	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透 磁 率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー,モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^{2} kg s^{2} K^{1} mol^{1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{-3}$
放射 強度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

表 5. SI 接頭語					
乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	э 9	Y	10^{-1}	デシ	d
10^{21}	ゼタ	Z	10^{-2}	センチ	с
10^{18}	エクサ	Е	10^{-3}	ミリ	m
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ
10^{12}	テラ	Т	10^{-9}	ナーノ	n
10^{9}	ギガ	G	10^{-12}	ピョ	р
10^{6}	メガ	М	10^{-15}	フェムト	f
10^{3}	キロ	k	10^{-18}	アト	а
10^{2}	ヘクト	h	10^{-21}	ゼプト	z
10^{1}	デ カ	da	10^{-24}	ヨクト	У

表6.SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	۰	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1t=10^{3}$ kg		

_

表7.	SIに属さないが、	SIと併用される単位で、	SI単位で
	まとわて粉は	ぶ 中 瞬時 ほう や て そ の	

衣される剱旭が夫破的に待られるもの				
名称	記号	SI 単位で表される数値		
電子ボルト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J		
ダルトン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg		
統一原子質量単位	u	1u=1 Da		
天 文 単 位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m		

	表8.SI	こ属さ	きないが	、SIと併用されるその他の単位
	名称		記号	SI 単位で表される数値
バ	1	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海		里	М	1 M=1852m
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s
ネ	-	パ	Np	ar送佐1 本教/学佐志明/511
ベ		ル	В	▶ 51 単位との 叙 値的 な 阕徐 は 、 対 数 量の 定 義 に 依 存.
デ	ジベ	N	dB -	

表9. 固有の名称をもつCGS組立単位				
名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd} \text{ cm}^{-2} = 10^4 \text{ cd} \text{ m}^{-2}$		
フォト	ph	1 ph=1cd sr cm ^{-2} 10 ⁴ lx		
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{-2} = 10^{-2} \text{ ms}^{-2}$		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ⁻¹		

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」 は対応関係を示すものである。

			表	£10.	SIに 属	属さないその他の単位の例
	:	名利	尓		記号	SI 単位で表される数値
+	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
ν	ン	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy
ν				L	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		$\boldsymbol{\mathcal{V}}$		7	γ	1 γ =1 nT=10-9T
フ	I.		N	11		1フェルミ=1 fm=10-15m
メ	ートル	/系	カラ:	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ				N	Torr	1 Torr = (101 325/760) Pa
標	準	大	気	圧	atm	1 atm = 101 325 Pa
カ			IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)
Ξ	ク		П	ン	μ	$1 \text{ u} = 1 \text{ um} = 10^{-6} \text{ m}$

この印刷物は再生紙を使用しています