強制冷却超伝導導体の交流損失と
温度マージンの解析法
Analysis Method of AC Loss and Temperature Margin
in Forced Flow Cooled Superconductors

市毛 寿一 村上 陽之 木津 要 吉田 清
Toshikatsu ICHIGE, Haruyuki MURAKAMI, Kaname KIZU and Kiyoshi YOSHIDA

核融合研究開発部門
トカマクシステム技術開発ユニット
Division of Tokamak System Technology
Fusion Research and Development Directorate

December 2010
Japan Atomic Energy Agency
本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。本レポートの入手並びに著作権利用に関するお問い合わせは、下記までにお問い合わせ下さい。
なお、本レポートの全文は日本原子力研究開発機構ホームページ（http://www.jaea.go.jp）より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白板2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2010
強制冷却超伝導導体の交流損失と温度マージンの解析法

日本原子力研究開発機構
核融合研究開発部門
トカマクシステム技術開発ユニット
市毛 寿一※1、村上 陽之、木津 要、吉田 清

(2010年9月16日 受理)

超伝導導体は温度上昇すると、超伝導状態が壊れ常伝導転移し、熱的に暴走して超伝導コイルの機能が維持できなくなる。この現象をクエンチと呼ぶ。超伝導導体を正常に運転するためには、常伝導転移するまでの温度マージンを十分に確保しなければならない。大型のトカマク型核融合装置用超伝導コイルは、電気絶縁特性と機械強度を満足するために、強制冷却型超伝導導体を用いており、その超伝導導体の臨界特性は、電流、磁場および温度に依存して大きく変動するため、超伝導導体の温度マージンを全長にわたって推定するには、交流損失などの発熱を考慮した電磁熱流体解析を行う必要があります。

しかしながらJT-60SAの場合、各コイルの超伝導導体が12 m x 12 m x 8.7 mの空間に分布し、かつ1回の運転間隔の時間が約1800 sであるため、これらの時間と空間の多くの点での交流損失を求めなければならない事が課題となる。そこで、トカマク装置の各コイルの電流から超伝導導体の磁場を求め、その磁場の変動に伴う交流損失を求めて、熱負荷の時空間分布を自動的に求める解析法を考案した。さらに、その結果を熱流体解析の入力に用いて、超伝導導体の温度マージンを全長にわたって算出できる。また、本解析法での交流損失の算出式を検証するため、実際に製作した超伝導導体の交流損失の実測と解析との比較を行った。

本解析法により、導体全長かつ運転の間の超伝導導体の温度マージンを、容易に評価できるため、超伝導導体が正常に動作するように、冷媒の流量などの冷却条件や冷凍機の容量についても設計検討が可能となった。これらより、JT-60SA用超伝導導体の設計研究に大きく貢献できた。
A superconducting coil cannot operate caused by the excess of the temperature of superconductor over the critical temperature and explosive expansion of normal region. This phenomenon is called a quench. It is important to keep enough temperature margin in order to operate superconductor safely. Forced flow cooled superconductors are adopted for the superconducting coils in large tokamak devices to satisfy the requirements about mechanical strength and electrical insulation. The performance of conductor depends on the magnetic field and temperature. In order to estimate the temperature margin of conductor along all cooling pass, the thermo hydraulic analysis should be performed taking account of heat load as AC loss.

AC losses at many points in the space (12 m × 12 m × 8.7 m in JT-60SA) and time variation (about 1800 s per one operational duration) had to be manually calculated. Newly developed analysis method can automatically calculate the space and time distribution of heat load as following. At first, the magnetic fields in the superconductors are derived from the operational currents of coils. Then, AC losses are calculated by the variation of field. The temperature margin along conductor length can be calculated by using the space and time distribution of heat load as input. In order to confirm equations of AC losses, the comparison of analysis results with experimental data was conducted.

Because this analysis method can easily evaluate the temperature margin of the superconductor along the entire cooling pass and during entire operational duration, the cooling condition like mass flow rate could be investigated as the superconductor works normally. Moreover, the design study about cryoplant capacity could be conducted by this method. From these results, this method made a great contribution to the design study of superconductors for JT-60SA.

Keywords: Superconducting Coil, Magnetic Field, AC Loss, Nb$_3$Sn, NbTi, Temperature Margin

※1 Collaborating Engineer
目次

1. はじめに .. 1
 1.1 JT-60SA 超伝導コイルの概要 ... 1
 1.2 交流損失の要因 ... 1
 1.3 解析手法の概要 ... 2

2. 磁場解析 .. 4
 2.1 磁場計算 .. 4
 2.2 プラズマシナリオ .. 5
 2.2.1 入力ファイル ... 6
 2.2.2 出力座標ファイル ... 7
 2.2.3 磁場計算結果ファイル ... 7
 2.3 PF コイルの磁場解析結果 ... 7
 2.4 プラズマによる高速磁場変化 .. 9
 2.4.1 モデル化 ... 9
 2.4.2 ELM ... 10
 2.4.3 Mini collapse .. 13
 2.4.4 RWM 制御 .. 15
 2.4.5 プラズマディスラプション .. 16

3. 交流損失 .. 18
 3.1 交流損出の算出式 ... 18
 3.1.1 ヒステリシス損失(垂直成分)の算出式 ... 18
 3.1.2 ヒステリシス損失(平行成分)の算出式 ... 18
 3.1.3 結合損失(垂直成分)の算出式 .. 18
 3.2 Nb3Sn の臨界電流密度 ... 19
 3.3 NbTi の臨界電流密度 .. 20
 3.4 交流損失の検証 ... 20
 3.5 交流損失の解析 ... 23
 3.5.1 解析結果 .. 23
 3.5.2 RWM 制御による交流損失 .. 25

4. 電磁流体解析による温度マージン .. 26
 4.1 温度マージンの評価結果 .. 26
 4.2 温度マージンの最小値 .. 26
5. まとめ ...32

謝辞...32
参考文献...32

付録 A データリスト..34
付録 B 磁場解析コード...35
付録 C 交流損失計算コード...37
付録 D 電磁熱流体解析コード..39
Contents

1. Introduction .. 1
 1.1 Outline of JT-60SA superconducting coils .. 1
 1.2 Cause of AC loss .. 1
 1.3 Outline of the analysis method .. 2

2. Analysis of magnetic field ... 4
 2.1 Calculation of magnetic field with Coil code .. 4
 2.2 Plasma scenario ... 5
 2.2.1 Input dat file ... 6
 2.2.2 Output position file .. 7
 2.2.3 Result file of magnetic field .. 7
 2.3 Analysis result of magnetic field by the PF coil .. 7
 2.4 High speed change of magnetic field by plasma ... 9
 2.4.1 Modeling .. 9
 2.4.2 ELM .. 10
 2.4.3 Mini collapse ... 13
 2.4.4 RWM control ... 15
 2.4.5 Plasma disruption ... 16

3. Calculation for AC loss ... 18
 3.1 Calculation formula ... 18
 3.1.1 Hysteresis loss (perpendicular) ... 18
 3.1.2 Hysteresis loss (parallel) .. 18
 3.1.3 Coupling loss (perpendicular) ... 18
 3.2 Calculation Jc formula for Nb3Sn ... 19
 3.3 Calculation Jc formula for NbTi ... 20
 3.4 Verification of AC loss .. 20
 3.5 Analysis of AC loss ... 23
 3.5.1 Analysis result .. 23
 3.5.2 AC loss of RWM control .. 25

4. Temperature margin by fluid analysis ... 26
 4.1 Estimation result of temperature margin ... 26
 4.2 Minimum value of temperature margin ... 26
5. Summary ...32

Acknowledgements ..32
References ..32

Appendix A Data list ..34
Appendix B COIL code ..35
Appendix C AC Loss code ...37
Appendix D GANDALF code ...39
1. はじめに

超伝導導体は温度上昇すると、超伝導状態が破壊され常伝導転移し、熱的に暴走してクエンチという現象が起こり、超伝導コイルの機能が維持できない。超伝導導体を正常に運転するには、常伝導転移するまでの分権管理温度から素線温度を引いた値である温度マージンを十分に確保しなければならない。大型のトカマク型核融合装置用超伝導コイルは、電気絶縁特性と機械強度を満足するために、強制冷却型超伝導導体を用いる。その超伝導導体の臨界特性は、電流および磁場、温度に依存して大きく変動するため、超伝導導体の温度マージンを全長にわたって推定するには、交流損失などの外部からの入熱を考慮した熱流体解析を行う必要がある。しかし、解析にはいくつかの異なる計算コードを用いないならばならず、しかもそれらの間でデータを手動でやり取りする手間がかかっていたため、単純な入力データの間違えを起こし易く、さらに、計算と操作を含め膨大な時間を要した。このため計算方法を整理し、計算コードの統合化を行い、これまで手作業で行ってきた多くの作業について自動化を施して計算の高速化及び信頼性の向上をはかった。

1.1 JT-60SA 超伝導コイルの概要

日本原子力研究開発機構の JT-60 のトカマク本体を超伝導化する JT-60SA 計画[1]が、日本と EU 間の共同プロジェクト「幅広いアプローチ」の中の「サテライトトカマク」プロジェクトとして推進することが合意された。JT-60SA は ITER のサテライト装置として、日本と EU とで合同で準備製作し、プラズマ実験を行う計画である。

JT-60SA 用超伝導マグネット[2]は、Fig. 1-1 に示すようにトロイダル磁場(TF)コイル、中心ソレノイド(CS)及び平衡磁場(EF)コイルから構成される。CS と EF コイルとを合わせてポロイダルフィールド(PF)コイルと言う。TF コイルは、プラズマの閉じ込めの破壊を発生するために、18 個の D 型のコイルから構成される。TF コイルの超伝導導体は NbTi 素線と、ステンレス鋼ジャケットから構成される。CS と EF のモジュールから構成され、ドーナツ型に配置された TF コイルの内側に、縦に積み重ねるように配置する。CS 導体は、Fig. 1-2 に示すように、Nb3Sn 素線と矩形のステンレス鋼のジャケットから構成される。EF コイルは、プラズマ形状制御のために、TF コイルを取り囲むように 6 個配置されている。EF 用導体は、高磁場(6.2T)用の EF-H 導体と、低磁場(4.8T)用の EF-L 導体を分けて使用している。EF 導体は、Fig. 1-3 に示すように、NbTi 素線とステンレス鋼ジャケットから構成される。

1.2 交流損失の要因

JT-60SA 用超伝導導体の交流損失による熱負荷を発生させる要因は、プラズママシンナリオに加えて、プラズマの制御動作を行う真空容器内コイル（常伝導コイル）の電流変化及びプラズマディスラプションによる誘導電流と考えられる。プラズママシンナリオは JT-60SA 装置運転時の CS 導体と EF 導体に流れる標準的な通電パターンである。プラズマの制御動作としては Edge localized mode および Mini collapse という現象の発生に伴って変動するプラズマ位置を制御するための高速位置制御コイル（真空容器内コイルの一つ）に流す電流変化を検討した。ELM は主にプラズマ閉じ込め改善モード(H モード)時に、プラズマが境界付近で局所的に不安定になる現象である。Mini collapse はプラズマ中心付近の圧力が上昇して行く過程でプラズマが不安定となり、一部の高圧プラズマが外へ押し出される現象である。さらにプラズマ不安定性の一つである抵抗性壁モード RWM を制御するためにセクターコイルが真空容器内に設置されて
おり、このコイルに流す電流変化[3]も熱負荷となる。プラズマディスラプションはプラズマが崩壊する現象であり、この時プラズマのまわりの構造物やコイルに誘導電流が流れる。これらの現象により瞬間的に大きな熱負荷が発生する。

1.3 解析手法の概要

JT-60SA 用超伝導導体の設計を行うためには、超伝導導体の電流より発生する磁場を空心コイル電磁計算コードである“COIL”[4]を用いて求め、さらに磁場を用いて「熱負荷」を求め、最後に電磁熱流体解析コード“GANDALF”[5]を用いて温度マージンを中心とする解析データを求める必要がある。JT-60SA 用超伝導導体の交流損失を計算する際の問題点は、各コイルの超伝導導体がそれぞれの空間に分布し、かつ時間的変化もそれぞれのコイルで異なるため、時間と空間の多くの点での交流損失を求めなければならず、さらに交流損失を発生させる事象が多岐に存在するため、交流損失の計算に多くの時間を要していた。そこで計算コード「ACLOSS」を作成し解析の自動化をはかった。これはCoilコードにより計算される大量の磁場ファイルを読み込み、交流損失を高速で計算するものであり、ACLOSSにより出力された磁場と交流損失のデータをそのまま熱流体解析に利用することが可能である。これにより交流損失を簡便に計算することが可能になり、計算時間の大幅な短縮に成功し、JT-60SA 用超伝導導体の設計に大きく貢献した。本解析を用いることで、クエンチを発生させないための導体設計や、万が一クエンチが発生した場合でも、コイルに損傷を与えないような設計が可能になる。また、交流損失のデータや温度マージン解析から得られる流量のデータは液体ヘリウムを生成する冷凍機の出力や容量の設計にも用いられる。

Fig. 1-1 JT-60SA magnet system
Fig. 1-2 Cabie-in-condcuit conductor for JT-60SA CS

Fig. 1-3 Cabie-in-condcuit conductor for JT-60SA EF coils
2. 磁場解析

2.1 磁場計算

出力磁場座標をファイルで指定するため COIL コードにて「acloss」コマンドを利用する[3]。この場合、通常の入力ファイルとは別途に、磁場の出力座標を記述した座標ファイルを用いる。出力座標について Fig. 2-1 に示す。Fig. 2-1 右側は CS や EF カイルなどのコイル断面を表したものであり、Fig. 2-1 左側はコイルの構成要素であるコアタクターである。磁場の出力座標は 2 種類あり、交流損失を算出するための平均磁場、伝導磁場座標と、導体の磁場解析や温度マージン解析に用いる「最大磁場座標」がある。

PF 系(CS, EF)のコイル内の磁場分布は Fig. 1-1 の JT-60SA 用超伝導マグネットの中心に対してトロイダル方向に対称であり、任意の導体断面の平均磁場を計算すればよい。EF1 の座標をグラフにしたもの Fig. 2-2 に示す。EF1 は 12 層のパンケーキからなり、上部がパンケーキ番号 1、下部がパンケーキ番号 12 である。冷媒である SH e の供給はパンケーキ単位で行われるため、交流損失及び後述する温度マージンの解析はパンケーキ単位で行う。

Fig. 2-1 Output position of magnetic field

Fig. 2-2 Output position of EF1 coil
2.2 プラズマシナリオ

JT-60SA のプラズマシナリオ[6]における電流波形について、CS を Fig. 2-3 に、EF を Fig. 2-4 を示す。
-40 s から電流値の上昇を開始し、0 s (IM) のとき CS4 では 20.925 kA になる。0.15 s でプラズマを着火し、13.55 s (SOB) から Flat top と呼ばれる 75 秒間のプラズマ運転に入る。時刻 88.55 s (EOB) でプラズマ運転が終了し、時刻 150 s までに電流値は初期値に戻る。

Fig. 2-3 Coil currents of the CS during operation

Fig. 2-4 Coil currents of the EF during operation
2.2.1 入力ファイル

CS コイルと EF コイルについて、中心座標と寸法をまとめたものを Table 2-1 に示す。入力ファイルの座標と形状からモデル化した PF コイル、真空容器及びプラズマ安定化板を Fig. 2-5 に示す。真空容器とプラズマ安定化板は渦電流の発生源である。Coil コードによるモデル化について、真空容器を 71 個、安定化板を 27 個、プラズマを 995 個に分割した微小な仮想コイルとして扱う。これらの中心座標と寸法については付録 A データリストの B.1 Coil コード入力 dat ファイルに示す。

<table>
<thead>
<tr>
<th>Coil</th>
<th>R(m)</th>
<th>Z(m)</th>
<th>dR(m)</th>
<th>dZ(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>0.822</td>
<td>2.407</td>
<td>0.327</td>
<td>1.574</td>
</tr>
<tr>
<td>CS2</td>
<td>0.822</td>
<td>0.802</td>
<td>0.327</td>
<td>1.574</td>
</tr>
<tr>
<td>CS3</td>
<td>0.822</td>
<td>-0.802</td>
<td>0.327</td>
<td>1.574</td>
</tr>
<tr>
<td>CS4</td>
<td>0.822</td>
<td>-2.407</td>
<td>0.327</td>
<td>1.574</td>
</tr>
<tr>
<td>EF1</td>
<td>5.801</td>
<td>1.179</td>
<td>0.329</td>
<td>0.334</td>
</tr>
<tr>
<td>EF2</td>
<td>4.607</td>
<td>3.171</td>
<td>0.357</td>
<td>0.334</td>
</tr>
<tr>
<td>EF3</td>
<td>1.913</td>
<td>-4.025</td>
<td>0.543</td>
<td>0.428</td>
</tr>
<tr>
<td>EF4</td>
<td>1.913</td>
<td>-4.117</td>
<td>0.543</td>
<td>0.611</td>
</tr>
<tr>
<td>EF5</td>
<td>3.902</td>
<td>-3.722</td>
<td>0.302</td>
<td>0.390</td>
</tr>
<tr>
<td>EF6</td>
<td>5.039</td>
<td>-2.774</td>
<td>0.357</td>
<td>0.390</td>
</tr>
</tbody>
</table>

Fig. 2-5 Position and sizes of CS modules, EF coil, VV and Stabilizer plate
2.2.2 出力座標ファイル
CSはCS1からCS4の4つのモジュールからなり、1モジュールは52層のパンケーキからなる。このパンケーキ毎に中心・最大磁場座標の二つの座標の磁場を求める必要があるため、全体で416のファイルがある。同様にEFコイルでは172のファイルあり、合計で588の座標ファイルがある。ファイルの1例として付録AデータリストのB.2に、EF1のパンケーキ1の出力座標ファイルであるef1p1.optの中心磁場座標を示す。

2.2.3 磁場計算結果ファイル
EF1のパンケーキ1の中心座標の計算結果について、付録AデータリストのB.3に示す。

2.3 PFコイルの磁場解析結果
プラズマシナリオによる磁場解析結果の例として、CS1モジュールの結果を図にしたものについて説明する。磁場が最大となる時刻0.0sの断面磁場分布Fig.2-6に示す。磁場は導体の内側であるターン番号1で大きく、外側であるターン番号11で小さくなり、ターン番号1からターン番号11へ縦方向に分布していることが分かる。最大磁場はターン番号1のパンケーキ番号39の場所で8.776 Tである。

時刻0.0sにおける各パンケーキの導体長さ方向の磁場分布をFig.2-7に示す。距離が4.2mまでがターン番号1であり、磁場が最も高くなっている。この最大磁場は8.776 Tである。距離が長くなるにつれて磁場が低くなって行く様子が分かる。

プラズマシナリオによって得られた磁場解析結果について、各導体の最大磁場となったパンケーキ番号、時刻、最大磁場及び電流値をまとめたものをTable2-2に示す。磁場が最も高くなったのはCS4の8.869 Tであり、このときの電流値は20.925 kAである。EF-LではEF6の3.279 T、EF-HではEF4の4.149 Tが最大磁場となった。なお、COILコード入力ファイル(導体モデルの記述方法、動作電流シナリオなど)や計算方法については付録B「磁場解析コード」及びCOILコードのマニュアルを参照。

Table 2-2 Maximum absolute magnetic field of CS and EF coils during the plasma scenario

<table>
<thead>
<tr>
<th>Coil No.</th>
<th>Pancake No.</th>
<th>Time</th>
<th>Bmax</th>
<th>I</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>39</td>
<td>0.00</td>
<td>IM</td>
<td>8.766</td>
<td>20.537</td>
</tr>
<tr>
<td>CS2</td>
<td>27</td>
<td>0.00</td>
<td>IM</td>
<td>8.662</td>
<td>19.506</td>
</tr>
<tr>
<td>CS3</td>
<td>28</td>
<td>0.00</td>
<td>IM</td>
<td>8.653</td>
<td>19.453</td>
</tr>
<tr>
<td>CS4</td>
<td>14</td>
<td>0.00</td>
<td>IM</td>
<td>8.869</td>
<td>20.925</td>
</tr>
<tr>
<td>EF1</td>
<td>7</td>
<td>88.55</td>
<td>EOB</td>
<td>2.884</td>
<td>-17.740</td>
</tr>
<tr>
<td>EF2</td>
<td>8</td>
<td>13.55</td>
<td>SOB</td>
<td>1.040</td>
<td>-4.385</td>
</tr>
<tr>
<td>EF3</td>
<td>6</td>
<td>0.00</td>
<td>IM</td>
<td>4.149</td>
<td>16.548</td>
</tr>
<tr>
<td>EF4</td>
<td>13</td>
<td>88.55</td>
<td>EOB</td>
<td>3.621</td>
<td>11.681</td>
</tr>
<tr>
<td>EF5</td>
<td>1</td>
<td>88.55</td>
<td>EOB</td>
<td>1.527</td>
<td>6.130</td>
</tr>
<tr>
<td>EF6</td>
<td>8</td>
<td>88.55</td>
<td>EOB</td>
<td>3.279</td>
<td>-17.37</td>
</tr>
</tbody>
</table>
Fig. 2-6 Magnetic field distributions at 0.0 s (IM) on CS1 module

Fig. 2-7 Magnetic field distributions along conductor at 0.0 s on CS1 module
2.4 プラズマによる高速磁場変化

ELM、Mini collapse および RWM 制御のモデル化、解析条件および通電電流について説明する。

2.4.1 モデル化

ELM と Mini collapse の解析に使用した PF コイル、拘束位置制御コイル、真空容器、安定化板及びプラズマを Fig. 2-8 に示す。真空容器を 90 個、安定化板を 30 個、プラズマを 6 個のコイルとしてモデル化した。RWM 制御による熱負荷解析のモデルを Fig. 2-9 に示す。セクターコイル(Sector coil 1～3)は 60 度ごとに配置されるため、対称性を考慮し 30 度モデルを用いた。厚みについて、真空容器は 36mm、安定化板は 20mm である。セクターコイルは 100mm 角の矩形である。プラズマディスラプションのモデル化は真空容器を 59 個、安定化板を 14 個、プラズマを 30 個でモデル化した。

Fig. 2-8 Analysis model of ELM and Mini collapse
2.4.2 ELM

ELMの初期条件をTable 2-3に示す。解析に用いた条件については次のように仮定した。Type-I ELMであるフラットトップ中継続的に起こる。10 Hzで粒子等の吐き出しが起こり、0.1 sで元の状態に戻る。現象一回あたりのパラメータ変動は、δβp(3)=0.05βp(3)とする仮定で計算した。

ELMによるCSの通電電流の変化分dIをFig. 2-10に、EFコイルの通電電流の変化分dIをFig. 2-11に示す。フラットトップ中ELMは継続して生じているので、これに応答する高速位置制御コイルによる波形が見える。さらに、超伝導コイルの電流は、真空容器などの構造物の渦電流の減衰によって、時間ともにある一定値に漸近して行く。磁場解析の結果として、CS2のパンケーキ番号52のdB/dtをFig. 2-12に、EF4のパンケーキ番号1のdB/dtをFig. 2-13に示す。

Table 2-3 Initial plasma condition of ELM and Mini collapse

<table>
<thead>
<tr>
<th>Ip (MA)</th>
<th>5.5</th>
<th>Zcur (m)</th>
<th>0.034</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>0.83</td>
<td>q95</td>
<td>2.7</td>
</tr>
<tr>
<td>li</td>
<td>0.71</td>
<td>Te (keV)</td>
<td>9.1</td>
</tr>
<tr>
<td>κ</td>
<td>1.86</td>
<td>Zeff</td>
<td>2</td>
</tr>
<tr>
<td>a (m)</td>
<td>1.14</td>
<td>Ne (m⁻³)</td>
<td>5x10¹⁹</td>
</tr>
<tr>
<td>Rcur (m)</td>
<td>2.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2-10 Current finite difference of CS coils by ELM

Fig. 2-11 Current finite difference of EF coils by ELM
Fig. 2-12 Magnetic field of CS2 Pancake No 52 by ELM

Fig. 2-13 Magnetic field of EF4 Pancake No 1 by ELM
2.4.3 Mini collapse

Mini collapse の条件を Table 2-3 に示す。初期条件は ELM と共通である。解析に用いた条件については次のように仮定した。フラットトップ中に単発的に生じる。現象一回あたりのパラメータ変動は、δθ_p=0.2θ_pとする。時定数 1.0 s で元の状態に回復する。以上の仮定に基づいて計算した。CS の通電電流の変化分 dl を Fig. 2-14 に、EF コイルの通電電流の変化分 dl を Fig. 2-15 に示す。約 6.0 s 後にプラズマ電流は現状に復帰していることがわかる。磁場解析の結果として、CS2 のパンケーキ番号 52 の dB / dt を Fig. 2-16 に、EF4 のパンケーキ番号 1 の dB / dt を Fig. 2-17 に示す。
Fig. 2-16 Magnetic field of CS2 Pancake No 52 by Mini collapse

Fig. 2-17 Magnetic field of EF4 Pancake No 1 by Mini collapse
2.4.4 RWM制御

RWM制御による磁場変化の解析条件をTable 2-4に示す。セクターコイルの材料は銅、真空容器と安定化板の材料はSUS316Lの物性値を用いた。通電条件について、Fig. 2-9に示す3個のセクターコイルに同位相の正弦波で20 kAを与える。本解析では、最大熱負荷を見積もりために、dB/dtが最大になる周波数を見出す必要がある。そこで1, 10, 100 Hzの周波数で磁場解析を実施した。解析結果をFig. 2-18に示す。10 Hzのとき磁場変動が最大になることが明らかになった。またEF1に加わる磁場変動が最も大きく7.32 x 10^{-3} T/sであることが判明した。

Table 2-4 Calculation parameters of RWM control

<table>
<thead>
<tr>
<th>Model</th>
<th>Material</th>
<th>Magnetic permeability</th>
<th>Electrical resistivity (Ω・m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector coil</td>
<td>Cu</td>
<td>1.0</td>
<td>2.10E-08</td>
</tr>
<tr>
<td>Vacuum vessel</td>
<td>SS316L</td>
<td>1.0</td>
<td>7.50E-07</td>
</tr>
<tr>
<td>Stabilizer</td>
<td>SS316L</td>
<td>1.0</td>
<td>7.50E-07</td>
</tr>
<tr>
<td>PF coil</td>
<td>Air</td>
<td>1.0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Fig. 2-18 Magnetic filed average data of PF coil by ANSYS](image)
2.4.5 プラズマディスラプション

プラズマディスラプションによるCSの通電電流の変化分 dI をFig. 2-19 に、EF コイルの変化分 dI を Fig. 2-20 に示す。ここではプラズマは 4 ms 定置消滅するとしている。CS2 のパンケーキ 38 のターン 11 の磁場解析結果を Fig. 2-21 に示す。磁場の変化分はモデル最外層のターン番号 11 で大きくなる。EF1 のパンケーキ 16 のターン 1 の磁場解析結果を Fig. 2-22 に示す。磁場の変化分はモデル最内層のターン番号 1 で大きくなる。

![Fig. 2-19 Current finite difference of CS during Plasma disruption](image1)

![Fig. 2-20 Current finite difference of EF coils during Plasma disruption](image2)
Fig. 2-21 Magnetic field of CS2 Pancake No 38 turn No 11 during Plasma disruption

Fig. 2-22 Magnetic field of EF1 Pancake No 16 turn No 1 during Plasma disruption
3. 交流損失

3.1 交流損出の算出式

3.1.1 ヒステリシス損失(垂直成分)の算出式

\[
Q_h^\perp = \frac{2}{3\pi} D_{\text{eff}} \left(1 + \frac{I_t^2}{I_c^2} \right) \int J_c^\perp dB
\]

\[
Q_h^\perp: \text{ Hysteresis loss perpendicular component of AC loss} \]
\[
D_{\text{eff}}: \text{ Effective filament diameter} \]
\[
I_t: \text{ Transport current} \]
\[
I_c: \text{ Critical current} \]
\[
J_c^\perp: \text{ The non copper critical current density of perpendicular component} \]
\[
B: \text{ The ambient magnetic flux density (magnetic field)} \]

3.1.2 ヒステリシス損失(平行成分)の算出式

\[
Q_h^\parallel = \frac{1}{6} D_{\text{eff}} \int J_c^\parallel dB \]

\[
= \frac{1}{6} D_{\text{eff}} \alpha \int J_c^\perp dB \]

\[
\alpha = \frac{J_c^\parallel}{J_c^\perp} \]

\[
Q_h^\parallel: \text{ Hysteresis loss parallel component of AC loss} \]
\[
D_{\text{eff}}: \text{ Effective filament diameter} \]
\[
J_c^\parallel: \text{ The non copper critical current density of parallel component} \]
\[
J_c^\perp: \text{ The non copper critical current density of perpendicular component} \]
\[
B: \text{ The ambient magnetic flux density (magnetic field)} \]

3.1.3 結合損失(垂直成分)の算出式

\[
Q_c^\perp = \frac{2}{n\mu_0} \left[(\Delta B)^2 + 2m\tau_c \Delta B^\perp (\exp(-\eta) - 1) - \frac{m^2\tau_c^2}{2} (\exp(-2\eta) - 1) \right] \]

\[
\eta = \frac{\Delta t}{\tau_c} \]
ただし、磁場ごとに次式により \(J_0 \) を更新

\[
J_0 = \frac{\Delta B^\perp}{\Delta t} - \left(\frac{\Delta B^\perp}{\Delta t} - J_0 \right) \cdot \exp(-\eta)
\]

\(Q \perp \): Coupling loss perpendicular component of AC loss
\(\triangle B^\perp \): The ambient magnetic finite difference of perpendicular component
\(\mu_0 \): Permeability of vacuum
\(\tau_c \): Coupling time constant
\(\Delta t \): Time interval
\(J_0 \): Coupling current

3.2 Nb₃Sn の臨界電流密度

\[
J_c(B,T,\varepsilon) = C(\varepsilon) \cdot (B_{c2}(T,\varepsilon))^{1/2} \cdot (1-t^2)^2 \cdot b^{1/2} \cdot (1-b^2)
\]

\[
C(\varepsilon) = C_0 (1 - a \cdot |\varepsilon|^{1.7})^{1/2}
\]

\(a = 900 \) for \(\varepsilon < 0 \), \(a = 1250 \) for \(\varepsilon > 0 \)

\[
B_{c2}(T,\varepsilon) = B_{c20}(\varepsilon) \cdot (1-t^2) \cdot [1 - 0.31 t^2 \cdot (1 - 1.77 \ln(t))]
\]

\[
B_{c20}(\varepsilon) = B_{c20m} \cdot (1 - a \cdot |\varepsilon|^{1.7})
\]

\[
t = \frac{T}{T_c0(\varepsilon)}
\]

\[
T_{c0}(\varepsilon) = T_{c0m} \cdot (1 - a \cdot |\varepsilon|^{1.7})^{1/3}
\]

\[
b = \frac{B}{B_{c2}(T,\varepsilon)}
\]

ただし、
\(J_c \): The non copper critical current density at 0.1μV/cm
\(B \): The ambient magnetic flux density (magnetic field)
\(T \): The ambient temperature
\(\varepsilon \): The total longitudinal strain of the Nb₃Sn filaments in the strand
\(C_0 \): A coefficient independent of temperature, field, and strain
\(B_{c20m} \): Values of \(B_{c20} \) at zero intrinsic strain
\(T_{c0m} \): Values of \(T_{c0} \) at zero intrinsic strain
3.3 NbTiの臨界電流密度

IcBT試験で測定されたIcからNbTi素線のフィッティングパラメータより最小二乗法を用いて求める。

\[
I_c = \frac{C_0}{B} b^n \left(1 - b\right)^p \left(1 - t^n\right)^q
\]

\[
t = \frac{T}{T_{c0}}
\]

\[
b = \frac{B}{B_{c2}(T)}
\]

\[
B_{c2}(T) = B_{c20} \left(1 - t^n\right)
\]

3.4 交流損失の検証

交流損失計算式の検証にあたり、短尺の NbTi 導体サンプルを用いて交流損失測定試験を実施した。長さは 499 mm のサンプル導体を二本、計 99.8 mm の導体を用いて試験を行った。導体サンプルの交流損失は熱量法で測定した。導体サンプルを Fig. 3-1 に、測定装置[14]の概略を Fig. 3-2 に示す。

導体は液体ヘリウム(LHe)中で極低温に冷却されており、ダイポール型マグネットを用いてサンプルの軸に垂直な外部磁場を印加する。交流損失により発生したヘリウムガス(GHe)は、装置上部にある FRP 製の筒に集められ、筒内にある液面計で GHe の量を測定する。また、較正用の抵抗ヒーターとサンプルと同位置に設置しており、ヒーターと交流損失によるガス量を比較することで交流損失を定量化した。本マグネットの試験領域における磁場精度は -0%、+3%であり、均一に磁場が加えられていると仮定し解析を行った。

外部磁場波形は Fig. 3-3 に示すような片振り台形波を用いており、最大磁場△B、磁場掃引速度△B/τpを変化させ交流損失を測定した。フラットトップ τfは導体の結合時定数に比べ十分大きい 3 sとした。交流損失解析結果と試験結果の比較を Fig. 3-4 に示す。これらの結果より、解析結果と試験結果は非常によく一致しており、本解析手法の妥当性が示された。最大磁場△B、磁場掃引速度△B/τpおよび試験・解析結果の詳細を Table 3-1 に示す。磁界 0.780 T, 0.975 T, 1.250 T の誤差(%)の平均はそれぞれ、2.3%, 3.2%, 5.6%であり、交流損失の解析は10%以下の精度を持つことが確認できた。
Fig. 3-1 Sample of NbTi conductor

Fig. 3-2 AC loss measuring equipments
Fig. 3-3 Input magnetic field parameter

Fig. 3-4 AC loss between analysis and experimental results
Table 3-1 Error between analysis and experimental results

<table>
<thead>
<tr>
<th>B (T)</th>
<th>dB/dt (T/s)</th>
<th>Analysis (J)</th>
<th>Experiment (J)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.780</td>
<td>0.086</td>
<td>9.63</td>
<td>9.46</td>
<td>1.8%</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>11.24</td>
<td>10.45</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>0.136</td>
<td>12.91</td>
<td>12.95</td>
<td>-0.3%</td>
</tr>
<tr>
<td></td>
<td>0.159</td>
<td>14.37</td>
<td>14.94</td>
<td>-3.8%</td>
</tr>
<tr>
<td></td>
<td>0.193</td>
<td>16.56</td>
<td>16.93</td>
<td>-2.2%</td>
</tr>
<tr>
<td></td>
<td>0.227</td>
<td>18.72</td>
<td>19.17</td>
<td>-2.3%</td>
</tr>
<tr>
<td></td>
<td>0.244</td>
<td>19.78</td>
<td>19.67</td>
<td>0.6%</td>
</tr>
<tr>
<td></td>
<td>0.261</td>
<td>20.80</td>
<td>21.16</td>
<td>-1.7%</td>
</tr>
<tr>
<td></td>
<td>0.290</td>
<td>22.62</td>
<td>22.40</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td>0.318</td>
<td>24.34</td>
<td>23.90</td>
<td>1.8%</td>
</tr>
<tr>
<td>0.975</td>
<td>0.086</td>
<td>11.75</td>
<td>11.20</td>
<td>4.9%</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>13.77</td>
<td>13.70</td>
<td>0.5%</td>
</tr>
<tr>
<td></td>
<td>0.136</td>
<td>15.88</td>
<td>16.18</td>
<td>-1.9%</td>
</tr>
<tr>
<td></td>
<td>0.159</td>
<td>17.70</td>
<td>18.92</td>
<td>-6.4%</td>
</tr>
<tr>
<td></td>
<td>0.193</td>
<td>20.48</td>
<td>21.66</td>
<td>-5.4%</td>
</tr>
<tr>
<td></td>
<td>0.227</td>
<td>23.20</td>
<td>23.15</td>
<td>0.2%</td>
</tr>
<tr>
<td>1.250</td>
<td>0.086</td>
<td>14.63</td>
<td>14.68</td>
<td>-0.3%</td>
</tr>
<tr>
<td></td>
<td>0.111</td>
<td>17.23</td>
<td>18.42</td>
<td>-6.5%</td>
</tr>
<tr>
<td></td>
<td>0.136</td>
<td>19.95</td>
<td>22.16</td>
<td>-10.0%</td>
</tr>
</tbody>
</table>

3.5 交流損失の解析

JT-60SA 用超伝導導体の交流損失による熱負荷を発生させる要因としてここでは、プラズマシナリオ、プラズマディスラプション、ELM、Mini collapse 及び RWM 制御を考慮している。また交流損失以外の熱負荷として、プラズマから放出される中性子による核発熱も考えられるが、計算方法が異なるため、イタリアの ENEA 研究所で解析したデータを用いる[15]。

3.5.1 解析結果

各導体の各パンケーキについて Coil コードを用いた磁場計算を行い、得られた計算結果より、さらに交流損失計算コードを用いて PF コイルの各パンケーキについて交流損失計算を行った。解析例として、プラズマシナリオを基に計算した CS1 の各パンケーキの交流損失を Fig. 3-5 に示す。プラズマシナリオによる CS1 の交流損失の合計は 217.0 kJ であり、CS1 の上部に位置するパンケーキ番号 1 の交流損失が最も大きい。

プラズマシナリオによる交流損失および同様の方法で計算した他の熱負荷をまとめたもの Table 3-2 に示す。プラズマシナリオによる交流損失が最も高く、1462.2 kJ である。

なお、交流損失計算コードの具体的な説明については、付録 C 交流損失計算コードに示す。
Fig. 3-5 AC loss energy on each pancake of CS1

Table 3-2 AC loss of PF coil

<table>
<thead>
<tr>
<th>Event</th>
<th>Coil</th>
<th>Plasma scenario</th>
<th>ELM</th>
<th>Mini collapse</th>
<th>RWM control</th>
<th>Nuclear heating</th>
<th>Plasma disruption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS1</td>
<td>217.0</td>
<td>18.7</td>
<td>26.9</td>
<td>10.3</td>
<td>3.4</td>
<td>13.4</td>
<td></td>
</tr>
<tr>
<td>CS2</td>
<td>266.1</td>
<td>35.1</td>
<td>32.8</td>
<td>6.1</td>
<td>8.4</td>
<td>75.6</td>
<td></td>
</tr>
<tr>
<td>CS3</td>
<td>271.1</td>
<td>36.7</td>
<td>21.9</td>
<td>6.2</td>
<td>8.4</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>CS4</td>
<td>228.9</td>
<td>23.9</td>
<td>26.6</td>
<td>10.2</td>
<td>3.4</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>EF1</td>
<td>93.2</td>
<td>1.3</td>
<td>1.6</td>
<td>27.1</td>
<td>99.8</td>
<td>32.8</td>
<td></td>
</tr>
<tr>
<td>EF2</td>
<td>19.1</td>
<td>4.4</td>
<td>6.1</td>
<td>4.7</td>
<td>39.5</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td>EF3</td>
<td>91.5</td>
<td>4.5</td>
<td>16.7</td>
<td>2.9</td>
<td>15.3</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>EF4</td>
<td>116.1</td>
<td>7.3</td>
<td>51.0</td>
<td>3.8</td>
<td>16.1</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>EF5</td>
<td>35.5</td>
<td>1.8</td>
<td>3.5</td>
<td>2.0</td>
<td>47.7</td>
<td>4.3</td>
<td></td>
</tr>
<tr>
<td>EF6</td>
<td>123.7</td>
<td>2.3</td>
<td>9.7</td>
<td>9.1</td>
<td>68.9</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1462.2</td>
<td>136.0</td>
<td>196.9</td>
<td>82.5</td>
<td>310.8</td>
<td>237.8</td>
<td></td>
</tr>
</tbody>
</table>
3.5.2 RWM 制御による交流損失

RWM 制御による交流損失について、磁場の値及び dB / dt が最大になる EF1(Fig. 2-18) による、周波数依存性を Fig. 3-6 に示す。1 Hz が最大になる。これは 1 Hz のように低い周波数域の場合、真空容器や安定化板に磁場が浸透するのに対して、100 Hz のように高い周波数域の場合、磁場が真空容器等を通過するもののこれらのシールドされる効果で磁場が減衰するためである。 Flat top を 100 秒で計算した場合の交流損失(kJ)を Fig. 3-7 に示す。10 Hz の 27.1kJ が最大になる。

![Fig. 3-6 AC loss per one cycle on EF1 coil of RWM control](image1)

![Fig. 3-7 AC loss on EF1 coil during flat top of RWM control](image2)
4. 電磁熱流体解析による温度マージン

電磁熱流体解析コード GANDALF [16] を用い、温度マージンの解析を行う。GANDALF コードでは、導体を構成する素線、ジャケットおよび液体ヘリウム間の熱のやりとりを通じて温度マージンを求めることができる。解析には、交流損失解析までに得られた各導体各パンケーキの電流、磁場および交流損失の時間と空間分布が必要である。

4.1 温度マージンの評価結果

プラズマシナリオを用いて温度マージン解析を実施した。CS の温度マージンの解析結果をまとめたものを Table 4-1 に示す。温度マージンが最も厳しくなったのは CS2 の 1.137 K である。そこで解析結果の例として、CS2 の電流、磁場、熱負荷の入力データ分布及び解析結果である温度マージン、素線温度、ヘリウム圧力の分布及び出口付近のヘリウム温度を次ページ以降の Fig. 4-1 から Fig. 4-9 に示し、図の説明を以下に示す。

(1) Fig. 4-1 は CS2 のプラズマシナリオの運転電流である。-40 s から電流値の上昇を開始し、0 s では 20kA になる。プラズマ着火後 (SOB), 75 秒間のプラズマ運転に入り、88.55 s で EOB, その後 150 s までに電流値は初期値に戻る。

(2) Fig. 4-2 は温度マージンが最小となる冷媒入口から 58.08 m における磁場の時間分布である。0 s (IM) で 8.646 T, 88.55 s (EOB) で 7.36 T である。CS の冷媒はモジュール外側から導入して 1 パンケーキ分流れの後に内側で別のパンケーキに流れて出口に至るため、流路長が 2 パンケーキ分となる。モジュール内側にあたる 58.08 m では、磁場が高くなり、温度マージンが低くなる。

(3) Fig. 4-3 は距離 58.08 m における素線への熱負荷であり、5 種類 (プラズマシナリオ、核発熱、RWM 制御、Mini collapse 及び ELM) の熱負荷を合算した値が Heat load である。nuclear heating による熱負荷を除き、これらすべてを交流損失計算コードで求める。

(4) Fig. 4-4 は距離 58.08 m における温度マージンの時間分布である。88.55 s (EOB) の時温度マージンが最小となり 1.137 K である。Fig. 4-5 は温度マージンの距離分布である。

(5) Fig. 4-6 は距離 58.08 m における素線温度の時間分布である。88.55 s (EOB) で素線温度が最大となり、7.375 K である。

(6) Fig. 4-7 は素線温度の距離分布であり、初期温度は 4.4 K である。88.55 s (EOB) で素線温度が最大となり、7.442 K まで上昇する。

(7) Fig. 4-8 はヘリウム圧力の距離分布である。88.55 s (EOB) の圧力が最大となり、0.723 MPa である。初期入り口圧力は 0.6 MPa で固定である。

(8) Fig. 4-9 は導体出口におけるヘリウム温度の時間分布である。流量 5 g/s の場合、ヘリウムが抜けきるまでに 710 s 要することがわかる。

4.2 温度マージンの最小値

温度マージンの最小値は BD や EOB に存在する。EOB は時刻が決定しているのに対して、BD については時刻に幅があるため、解析を行わなければ温度マージンが最小になる時刻を決定できない。このため、以下の手順を行うことで温度マージンの最小値を決定する。

(1) 温度マージンが最小になると想定する時刻である BD や EOB での 1 パンケーキ内の温度マージン距離分布を調べる。

(2) (1) の結果で温度マージンが最小になった位置(距離)の温度マージン時間分布を調べる。
(3) (2)で更新した温度マージンが最小になった時刻の温度マージン距離分布を調べる。
(4) (3)で更新した温度マージンが最小になった位置(距離)の温度マージン時間分布を調べる。
(5) (3)と(4)の作業を最小温度マージンの差が 0.01 K 以内になる程度まで繰り返し、温度マージンが最小になる時刻と位置(距離)を決定する。
(6) 決定した最小温度マージンの時刻と位置(距離)についての電流、磁場、素線温度などのデータを調査し、結果をまとめめる。

なお、解析の詳細については、GANDALF のマニュアル[16]、付録 A データリストの D.1 から D.10 よび付録 D に GANDALF の使用例を示す。

Table 4-1 Minimum Tcs margin of the CS by 080616LN55 by Matsukawa_scenario

| CS | Pancake No | nt (ms) | Mass flow (g/s) | Time (s) | Location (m) | I (kA) | |B| (T) | Tcs margin (K) | T strand (K) |
|----|------------|---------|-----------------|----------|--------------|--------|--------|----------------|--------------|
| 1 | 39-40 | 100 | 5.0 | 0.004 (BD) | 60.307 | 20.480 | 8.747 | 2.161 | 5.129 |
| | | | | 88.55 (EOB) | 57.558 | -7.846 | 4.012 | 4.676 | 7.420 |
| 2 | 37-38 | 100 | 5.0 | 0.004 (BD) | 60.353 | 19.454 | 8.628 | 2.420 | 5.094 |
| | | | | 88.55 (EOB) | 58.080 | -19.400 | 7.360 | 1.137 | 7.357 |
| 3 | 19-20 | 100 | 5.0 | 0.004 (BD) | 60.353 | 19.402 | 8.626 | 2.428 | 5.094 |
| | | | | 88.55 (EOB) | 58.171 | -18.690 | 7.242 | 1.170 | 7.493 |
| 4 | 13-14 | 100 | 5.0 | 0.004 (BD) | 60.307 | 20.867 | 8.849 | 2.018 | 5.141 |
| | | | | 88.55 (EOB) | 57.831 | -13.230 | 5.529 | 2.576 | 7.910 |

Fig. 4-1 Operating current of CS2 time operation
Fig. 4-2 Magnetic field at Pancake No. 37-38 on CS2 time operation

Fig. 4-3 Heat load at Pancake No. 37-38 on CS2 time operation
Fig. 4-4 Temperature margin at Pancake No. 37-38 on CS2 time operation

Fig. 4-5 Temperature margin distributions of CS2 Pancake No. 37-38
Fig. 4-6 Strand temperature at Pancake No. 37-38 on CS2 time operation

Fig. 4-7 Strand temperature distributions of CS2 Pancake No. 37-38
Fig. 4-8 Helium pressure distributions of CS2 Pancake No. 37-38

Fig. 4-9 Outlet temperature at Pancake No. 37-38 on CS2 time operation
5. まとめ

強制冷却超伝導導体の交流損失と温度マージンの解析法の開発によって以下の成果を得た。

(1) 本解析法が確立する前、プラズマシナリオのみによるEF1の各パンケーキの交流損失を計算する場合、2ヶ月以上という膨大な時間を費やしていた作業が1日で行えるようになった。

(2) 複数存在していたソースコードを一つのプログラムにまとめ、磁場解析コード「Coil」から得られる磁場データの抽出、計算式の計算方法を高速で行えるように改良し解析の省力化を行った。

(3) 超伝導線の設計変更や計算式の更迭、計算量の増大に対処するための改良や処理の高速化を施すことにより、プラズマシナリオ、プラズマディスラプション、制御動作などの様々な事象により発生する超伝導導体の交流損失を効率良く計算し、温度マージンの解析を容易にした。

(4) 超伝導導体の温度マージンを求めるために、冷媒の流量などのヘリウム冷凍機の冷却条件の検討を広いパラメータで可能となり、JT-60SA超伝導コイルや周辺機器の設計に大きく貢献できた。

謝辞

本報告書をまとめるにあたり、JT-60SAの開発に携わっている多くの方々、特に森ユニット長、土屋研究主幹、武智研究副主幹ならびにJT-60超伝導システム開発グループに所属する方々に敬意を表するとともに、ご意見、援助を頂いた関係各位に感謝の意を表します。

参考文献

付録A データリスト

付録Aでは、本書で扱った磁場解析と交流損失解析及びTcsマージン解析について、プラズマシナリオを用いて行った場合のインプットファイルをまとめたものである。
いずれのファイルとデータも本体に添付されているため、解析コードを実際に動作させて、出力ファイルを確認することができる。以下にファイルリストを示す。

<table>
<thead>
<tr>
<th>章</th>
<th>項目</th>
<th>ファイルとデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Coilコード入力datファイル</td>
<td>Coil_code_input.dat</td>
</tr>
<tr>
<td>B.2</td>
<td>EF1のパンケーキ番号1の中心座標ファイル</td>
<td>ef1p1.opt</td>
</tr>
<tr>
<td>B.3</td>
<td>EF1パンケーキ番号1中心座標時刻0sの結果</td>
<td>ef1p1003.dat</td>
</tr>
<tr>
<td>C.1</td>
<td>EF1のシナリオによる電流値入力ファイル</td>
<td>AC_Iop.dat</td>
</tr>
<tr>
<td>C.2</td>
<td>交流損失計算パラメータ入力ファイル</td>
<td>AC.dat</td>
</tr>
<tr>
<td>C.3</td>
<td>磁場編集結果ファイル</td>
<td>B_ef1p1.dat</td>
</tr>
<tr>
<td>C.4</td>
<td>交流損失結果ファイル</td>
<td>AC_ef1p1.dat</td>
</tr>
<tr>
<td>D.1</td>
<td>Gandalf入力変数の記述</td>
<td>gandalf.input</td>
</tr>
<tr>
<td>D.2</td>
<td>解析機能の各種設定</td>
<td>gandalf_usr.input</td>
</tr>
<tr>
<td>D.3</td>
<td>動作電流の定義</td>
<td>usr_iop.dat</td>
</tr>
<tr>
<td>D.4</td>
<td>磁場を定義</td>
<td>usr_b.dat</td>
</tr>
<tr>
<td>D.5</td>
<td>外部熱フラックスを定義</td>
<td>usr_acloss.dat</td>
</tr>
<tr>
<td>D.6</td>
<td>熱伝導率係数パラメータの定義</td>
<td>usr_htc.dat</td>
</tr>
<tr>
<td>D.7</td>
<td>超伝導線パラメータの定義</td>
<td>usr_scp.dat</td>
</tr>
<tr>
<td>D.8</td>
<td>計算タイムステップを定義</td>
<td>usr_time.dat</td>
</tr>
<tr>
<td>D.9</td>
<td>計算結果の出力を定義</td>
<td>usr_output.dat</td>
</tr>
<tr>
<td>D.10</td>
<td>出力データのpost処理</td>
<td>post.txt</td>
</tr>
</tbody>
</table>
付録B 磁場解析コード

磁場解析コード「Coil」の使用例について説明する。Coil コードで「acloss」コマンドを利用する場合で磁場解析を行う場合、通常のインプットファイルと磁場座標ファイルが必要である。

B.1 入力ファイル「Coil_code_input.dat」

通常のインプットファイル及びその説明を Table B-1 に示す。データリスト B.1「Coil_code_input.dat」に入力ファイルを示す。

Table B-1 入力ファイルの記述例

<table>
<thead>
<tr>
<th>データ</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF_coil</td>
<td>TF コイルのモデル</td>
</tr>
<tr>
<td>#Reference:JT60SA-G-000097-2.pdf</td>
<td>参照図面名</td>
</tr>
<tr>
<td>TCOIL 1 W 0.335 0.138 M -1.85 D 18 12 NT 72</td>
<td>参照図面を基に座標(r,z)と寸法(長さ、角度)を入力。最新版を用いること</td>
</tr>
<tr>
<td>ARC C 1.55 0.00 R 53.5 D 8</td>
<td></td>
</tr>
<tr>
<td>ARC C 2.43 1.19 R 2.40 A 53.9 90 D 9</td>
<td></td>
</tr>
<tr>
<td>ARC C 2.43 2.37 R 1.22 A 90 180 D 9</td>
<td></td>
</tr>
<tr>
<td>BAR S 1.21 2.37 E 1.21 0.00 D 4</td>
<td></td>
</tr>
<tr>
<td>BAR S 1.21 0.00 E 1.21 -2.37 D 4</td>
<td></td>
</tr>
<tr>
<td>ARC C 2.43 -2.37 R 1.22 A 180 270 D 9</td>
<td></td>
</tr>
<tr>
<td>ARC C 2.43 -1.19 R 2.40 A 270 306.48 D 9</td>
<td></td>
</tr>
<tr>
<td>End</td>
<td></td>
</tr>
<tr>
<td>tfco 17 no 1 1 d 20</td>
<td>TCOIL の1番から1番を20度間隔で17個コピー</td>
</tr>
<tr>
<td>#PF_Coils</td>
<td>CS,EF コイル及び Plasma のモデル</td>
</tr>
<tr>
<td>#Reference:080328_PF_coil_spec.xls</td>
<td>参照ファイル名</td>
</tr>
<tr>
<td>pcoil 1 r 0.822 z 2.381 w 0.318 1.555 m 0 d 8 15 90 nt 556 #cs1</td>
<td>参照ファイルを基に値を入力</td>
</tr>
<tr>
<td>pcoil 2 r 0.822 z 0.791 w 0.318 1.555 m 0 d 8 15 90 nt 556 #cs2</td>
<td></td>
</tr>
<tr>
<td>pcoil 3 r 0.822 z -0.791 w 0.318 1.555 m 0 d 8 15 90 nt 556 #cs3</td>
<td></td>
</tr>
<tr>
<td>pcoil 4 r 0.822 z -2.381 w 0.318 1.555 m 0 d 8 15 90 nt 556 #cs4</td>
<td></td>
</tr>
<tr>
<td>pcoil 5 r 5.801 z 1.179 w 0.320 0.326 m 0 d 12 10 140 nt 142 #EF1</td>
<td></td>
</tr>
<tr>
<td>pcoil 6 r 5.801 z -2.381 w 0.320 0.326 m 0 d 12 10 120 nt 154 #EF2</td>
<td></td>
</tr>
<tr>
<td>Pcoil 11~238 Plasma, Vacuum vessel, Stabilizer</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
<tr>
<td>set nocrt</td>
<td>通常のコンソール表示 off</td>
</tr>
<tr>
<td>set nolist</td>
<td>通常のファイル出力 off</td>
</tr>
<tr>
<td>acloss p 1 in ###.opt out ###</td>
<td>ACLOSS コマンド *</td>
</tr>
<tr>
<td>#Reference:080331LN550A01-try02_scenario.xls</td>
<td>参照シナリオファイル名</td>
</tr>
<tr>
<td>#Time CS1 CS2 CS3 CS4 EF1 EF2 EF3 EF4 EF5 EF6 plasma</td>
<td>シナリオファイルの電流値(A)に各コイルのTurn*Pancake数から欠ターンを引いた総巻数を乗じた電流値(MA)にする</td>
</tr>
<tr>
<td>-40.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00</td>
<td></td>
</tr>
<tr>
<td>0.00 11.06 11.06 11.06 11.06 0.24 -0.17 4.84 5.86 -0.83 0.44 0.00</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>set crt</td>
<td>通常のコンソール表示 on</td>
</tr>
<tr>
<td>set list</td>
<td>通常のファイル出力 on</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
</tbody>
</table>

※交流損失算出用磁場データの出力コマンド。交流損失算出用となっているが、最大磁場計算にも用いる。入力時刻の各コイル電流シナリオと入力座標ファイルより磁場ファイルを出力する。
B.2 入力ファイル「ef1p1.opt」

磁場座標ファイル及び説明を Table B-2 に示す。入力座標ファイルは最大磁場座標と中心磁場座標の 2 種類がある。最大磁場座標は最大経験磁場計算や Gandalf 解析に用い、ジャケット内の超伝導線の最外部の中心側である。中心磁場座標は交流損失の算出に用い、ジャケットの中心である。EF1 のパンケーキ番号 1 の中心磁場座標をデータリスト B.2「ef1p1.opt」に示す。

<table>
<thead>
<tr>
<th>#nc</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5.65058</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.67798</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.70538</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.73279</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.76019</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.78759</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.81500</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.84240</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.86980</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.89721</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.92461</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
<tr>
<td>5</td>
<td>5.95201</td>
<td>0.00000</td>
<td>1.33212</td>
</tr>
</tbody>
</table>

B.3 出力ファイル「ef1p1003.dat」

Coil コードによる計算結果及びその説明を Table B-3 に示す。計算結果は入力ファイルの時刻毎に出力される。データリスト B.3 に出力ファイルを示す。

<table>
<thead>
<tr>
<th># COIL ACLOSS mode</th>
</tr>
</thead>
<tbody>
<tr>
<td># Data set No. 3, time: 0.00000</td>
</tr>
<tr>
<td># x, y, z, Bx, By, Bz,</td>
</tr>
<tr>
<td>5.651 0.000 1.332 0.150 -0.311 0.120 0.365 -0.093 0.353 AC</td>
</tr>
<tr>
<td>5.678 0.000 1.332 0.170 -0.278 0.098 0.341 -0.067 0.334</td>
</tr>
<tr>
<td>5.705 0.000 1.332 0.185 -0.250 0.073 0.319 -0.039 0.317</td>
</tr>
<tr>
<td>5.733 0.000 1.332 0.194 -0.225 0.048 0.301 -0.013 0.301 Bperp = SQRT(Bx^2+Bz^2)</td>
</tr>
<tr>
<td>5.760 0.000 1.332 0.200 -0.203 0.023 0.286 0.012 0.286 Bpara = By</td>
</tr>
<tr>
<td>5.788 0.000 1.332 0.203 -0.183 -0.001 0.273 0.036 0.271</td>
</tr>
<tr>
<td>5.815 0.000 1.332 0.202 -0.166 -0.025 0.263 0.060 0.256</td>
</tr>
<tr>
<td>5.842 0.000 1.332 0.199 -0.150 -0.049 0.254 0.083 0.240</td>
</tr>
<tr>
<td>5.870 0.000 1.332 0.193 -0.136 -0.074 0.247 0.106 0.223</td>
</tr>
<tr>
<td>5.897 0.000 1.332 0.183 -0.124 -0.099 0.242 0.129 0.204</td>
</tr>
<tr>
<td>5.925 0.000 1.332 0.168 -0.112 -0.124 0.237 0.151 0.183</td>
</tr>
<tr>
<td>5.952 0.000 1.332 0.147 -0.102 -0.147 0.231 0.170 0.157</td>
</tr>
</tbody>
</table>

出力時間
AC ロスの計算には磁場の平行成分と垂直成分が必要。
Bperp = SQRT(Bx^2+Bz^2)
Bpara = By
付録C 交流損失計算コード

C.1 プログラムの使用法

ACLOSS コードは Windows のオペレーティング・システムと、それらのバージョン(XP/vista)で起動する。
ACLOSS コードはインストールの必要がないため、実行ファイル及び入力ファイルがあれば即座に計算が可能である。交流損失計算コードの利用方法について以下に示す。

操作手順は以下の通り。
① coil code により出力された磁場ファイルを用意
② 入力ファイル「AC_param.dat」にパラメータを入力
③ 入力ファイル「AC_Iop.dat」に電流値を入力 ＊指数表記 5 桁で入力
④ 実行ファイル「acloss.exe」を実行
⑤ 解析結果として出力ファイル「B_XX_pxx.dat」と「AC_XX_pxx.dat」が生成される
ただし、XX : cs または ef, xx : パンケーキナンバー
「B_XX_pxx.dat」は Coil code により出力された磁場計算結果を一つのファイルに編集したものである。
「AC_XX_pxx.dat」は交流損失の計算結果である。

C.2 入力ファイルと出力ファイル

入力ファイルである AC_Iop.dat と AC_param.dat の記述例及び説明を Table C-1, C-2 に示す。データリスト C.1, C.2 それぞれのインプットファイルを、出力ファイルである B_ef1p1.dat 及び AC_ef1p1.dat をデータリスト C.3, C.4 に示す。

Table C-1 AC_Iop.dat

<table>
<thead>
<tr>
<th>ACloss</th>
<th>Iop file</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td></td>
<td>時間及び電流値</td>
</tr>
<tr>
<td>-4.00000E+01</td>
<td>0.00000E+00</td>
<td></td>
</tr>
<tr>
<td>-1.00000E+00</td>
<td>1.35929E+03</td>
<td></td>
</tr>
<tr>
<td>0.00000E+00</td>
<td>1.35929E+03</td>
<td></td>
</tr>
<tr>
<td>2.50000E-02</td>
<td>1.10878E+03</td>
<td></td>
</tr>
<tr>
<td>5.00000E-02</td>
<td>1.04029E+03</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table C-2 AC_param.dat

<table>
<thead>
<tr>
<th>#1 file parameter</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>&File_param</td>
<td>ファイル設定用パラメータ</td>
</tr>
<tr>
<td>strCoil</td>
<td>ef, コイルの種類 cs または ef</td>
</tr>
<tr>
<td>strCoil_Num</td>
<td>1, コイル番号</td>
</tr>
<tr>
<td>intPanc_Num</td>
<td>1, パンケーキ番号</td>
</tr>
<tr>
<td>intTurn_Num</td>
<td>12, ターン数</td>
</tr>
<tr>
<td>intFile_Num</td>
<td>36, 磁場の読み込みファイル数</td>
</tr>
<tr>
<td>strFile_Fig</td>
<td>4, ファイル番号付け桁数</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#2 ACloss parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>&ACloss_param</td>
</tr>
<tr>
<td>Top</td>
</tr>
<tr>
<td>Dstr</td>
</tr>
<tr>
<td>Fcnc</td>
</tr>
<tr>
<td>nsc</td>
</tr>
<tr>
<td>AnonCu</td>
</tr>
<tr>
<td>Astr</td>
</tr>
<tr>
<td>AScCu</td>
</tr>
<tr>
<td>c0zero</td>
</tr>
<tr>
<td>Deff</td>
</tr>
<tr>
<td>alpha</td>
</tr>
<tr>
<td>ntau</td>
</tr>
<tr>
<td>Bc20m</td>
</tr>
<tr>
<td>Tc0m</td>
</tr>
<tr>
<td>c1_CS</td>
</tr>
<tr>
<td>epsilon</td>
</tr>
<tr>
<td>Bc20</td>
</tr>
<tr>
<td>Tc0</td>
</tr>
<tr>
<td>pbot</td>
</tr>
<tr>
<td>qbot</td>
</tr>
<tr>
<td>rbot</td>
</tr>
<tr>
<td>nnn</td>
</tr>
<tr>
<td>Ic5T42K</td>
</tr>
</tbody>
</table>

&END
付録D 電磁熱流体解析コード

電磁熱流体解析コード「GANDALF」の使用例について説明する。GANDALF 解析で用いる入力ファイルについて、概要を Table D-1 に示す。作成した Input ファイルと同一フォルダ内で gandalf.exe を実行することにより、gandalf.output(計算結果の ASC II 出力)及び gandalf.store(計算結果の BINARY 出力、post処理に必須)の二つのファイルが生成される。インプットファイルの例を D.1 から D.9 に示す。さらにデータリスト D.1 から D.9 にインプットファイルを示す。また D.10 にポスト処理の例を示し、データリスト D.10 にファイルを示す。詳細については GANDALF のマニュアルを参照[15]。

Table D-1 Explanations of gandalf input file

<table>
<thead>
<tr>
<th>入力ファイル名</th>
<th>概要</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>gandalf.input</td>
<td>Gandalf 入力変数の記述</td>
<td>導体パラメータなどを入力</td>
</tr>
<tr>
<td>gandalf_usr.input</td>
<td>解析機能の各種設定</td>
<td>超伝導コイルの種類指定</td>
</tr>
<tr>
<td></td>
<td></td>
<td>導体両端のバイブ、ジョイント設定</td>
</tr>
<tr>
<td></td>
<td></td>
<td>入力ファイル名の定義</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Time step, iteration 機能の制御</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Strand のブロンズの取り扱い</td>
</tr>
<tr>
<td></td>
<td></td>
<td>結果出力制御</td>
</tr>
<tr>
<td>usr_iop.dat</td>
<td>動作電流の定義</td>
<td>單位は A(アンペア)で入力</td>
</tr>
<tr>
<td>usr_b.dat</td>
<td>磁場を定義</td>
<td>時間・空間分布で記述</td>
</tr>
<tr>
<td>usr_acloss.dat</td>
<td>外部熱入熱を定義</td>
<td>時間・空間分布で記述</td>
</tr>
<tr>
<td></td>
<td></td>
<td>acloss.exe より生成される AC ファイルに、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nuclear heating, RWM, ELM, Mini</td>
</tr>
<tr>
<td></td>
<td></td>
<td>collapse などの外部熱負荷を加えたものを追加して作成</td>
</tr>
<tr>
<td>usr_htc.dat</td>
<td>熱伝達率係数パラメータの定義</td>
<td>Hole-Bundle 間の熱伝達係数算出に用いるパラメータを定義する</td>
</tr>
<tr>
<td>usr_scp.dat</td>
<td>超伝導線パラメータの定義</td>
<td>Tc, Bc2, C0 の入力</td>
</tr>
<tr>
<td>usr_time.dat</td>
<td>計算タイムステップを定義</td>
<td>計算経過時間と時間間隔の上限を記述</td>
</tr>
<tr>
<td></td>
<td></td>
<td>し、ある時刻について詳細な解析を行う場合、ある時刻の前後の時刻を含め、タイムステップを段階的に細かくする必要がある</td>
</tr>
<tr>
<td>usr_output.dat</td>
<td>計算結果の出力を定義</td>
<td>計算結果の BINARY 出力時間を定義し、</td>
</tr>
<tr>
<td></td>
<td></td>
<td>計算経過時間及び出力時間間隔の上限を記述</td>
</tr>
</tbody>
</table>
D.1 gandalf.input

<table>
<thead>
<tr>
<th>Title here</th>
</tr>
</thead>
<tbody>
<tr>
<td>&INDATA</td>
</tr>
</tbody>
</table>

ICBFUN	0,
ASC	5.64799E-05,
AST	1.12960E-04,
AJK	4.24324E-04,
AIN	1.26296E-04,
ISC	-32,
IST	-1,
IJK	-13,
IIN	-22,
E0	1.00000E-05,
NPOWER	7,
RRR	1.00000E+02,
ICHFUN	0,
AHEB	9.21575E-05,
AHEH	6.36173E-05,
DHB	4.70672E-04,
DHH	9.00000E-03,
PHTC	6.95549E-01,
PHTCJ	6.59734E-03,
PHTJ	5.93761E-02,
PHTHB	2.82743E-02,
PERFOR	3.00000E-01,
EPSLON	-7.30000E-03,
IOP0	0.00000E+00,
IOPFUN	-1,
IBIFUN	-1,
INITIAL	2,
PREINL	6.00000E+05,
TEMINL	4.40000E+00,
MDTINL	5.00000E-03,
IQFUN	-1,
NELEMS	5000,
XLENGT	1.13616E+02,
ITYMSH	0,
METHOD	0,
TEND	1.84000E+03,
STPMIN	1.00000E-07,
STPMAX	1.00000E-01,
PSTEP	1.00000E+01,
GSTEP	1.00000E+01,
IRESTA	0,
ISTORP	1,
MONITR	0,

&END
D.2 gandalf_usr.input

# Coil Type	コイルの種類を指定
# change friction factor	Friction factor や自重による He 壓力の補正に影響
# 10:JT-60 EF1 with center channel 9-7	
# 11:JT-60 CS with center channel 9-7	
&COTYPE	
COFLAG = 11,	
&END	

# I/O File Names	入力変数ファイル名
&FNAME	ASCII 出力ファイル名
INFILE = 'gandalf.input',	
OUFILE = 'gandalf.output',	BINARY ファイル名
STFILE = 'gandalf.store',	
&END	

# Extended Geometry	コイルの両端に追加する
# PIPFLG=1 : Pipe is added at inlet and outlet	パイプとジョイントの形状や熱交換係数
# JNTFLG=1 : Joint is added at inlet and outlet	
&EXGEOM	パイプのフラグ
PIPFLG = 0,	
JNTFLG = 0,	ジョイントのフラグ
&END	

# External Data Tables	外部データファイル
&UDTDEF	外部熱フラックスデータのフラグ
EXQFL2 = 1,	外部热フラックスデータのファイル名
USREQ2 = 'usr_acloss.dat',	磁場分布データのフラグ
FLDFLG = 1,	磁場分布データのファイル名
USRFLD = 'usr_b.dat',	動作電流のフラグ
IOPFLG = 1,	動作電流データファイル名
USRIOP = 'usr_iop.dat',	Hole-Bundle 間の熱伝達率係数パラメータのフラグ
HTCFLG = 1,	Hole-Bundle 間の熱伝達率係数パラメータのファイル名
USRHTC = 'usr_htc.dat',	超伝導パラメータのフラグ
SCPFLG = 1,	超伝導パラメータファイル名
USRSCP = 'usr_scp.dat',	
&END	

# Calculation Control	計算制御
&CALCON	タイムステップと Iteration 計算のパラメータ
TIMFLG = 1,	タイムステップ上限値データのフラグ
USRTIM = 'usr_time.dat',	タイムステップ上限値データのファイル名
ITRFLG = 0,	Iteration 計算フラグ
MAXITR = 100,	最大 Iteration 回数
ITFILE = 'gandalf.iter',	Iteration 計算の履歴出力
CONCON = 0.01,	収束条件
THRESH = 1.0,	Quench 判定用のジュール発熱しきい値
INRATE = 0.2,	Recvoer の場合の外部熱フラックス増加率
D.3 usr_iop.dat

動作電流を定義、計算経過時間と電流値を記述

Coil コード入力ファイルの各コイルの入力電流(MA)をターンとパンケーキ数(欠ターンを考慮)及び1.0E+6の積で割った値(A)の時間経過となる。
例(CS2 の 39.0sの場合): 10.846(MA)/556/1000000=19506(A)

D.3 usr_iop.dat

動作電流を定義、計算経過時間と電流値を記述

Coil コード入力ファイルの各コイルの入力電流(MA)をターンとパンケーキ数(欠ターンを考慮)及び1.0E+6の積で割った値(A)の時間経過となる。
例(CS2 の 39.0sの場合): 10.846(MA)/556/1000000=19506(A)
動作電流ファイル

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

D.4 usr_b.dat
磁場を定義、時間・空間分布で記述
acloss.exeより生成される磁場ファイルのBより作成。最大磁場座標で計算した磁場を用いる。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>

D.5 usr_acloss.dat (usr_heat2.dat)
外部熱フラックスを定義、時間・空間分布で記述、導体の全体的な入熱で利用
acloss.exeより生成されるACファイルより作成。平均磁場座標で計算した磁場を用いる。
シナリオによる交流損失以外の交流損失を追加して作成する。

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
</tr>
</tbody>
</table>

D.6 usr_htc.dat
Hole-Bundle間の熱伝達係数算出に用いるパラメータを定義

exths.ini
TW : PIPE WALL THICKNESS (MATERIAL ASSUMED IS STAINLESS STEEL)
TB : BUNDLE RADIAL THICKNESS
FHE: HELIUM VOID FRACTION
&EXTHST
TW =1.0E-3,
TB = 6.00E-3,
FHE = 0.34,
D.7 usr scp.dat
超伝導パラメータを定義

&EXTSCP
 TC0M = 9.2,
 BC20M = 14.5,
 C0 = 6.8725E10,
/

D.8 usr_time.dat

タイムステップの上限を定義
計算経過時間と時間間隔の上限を記述

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>1.00000</td>
<td>時間分布数</td>
</tr>
<tr>
<td></td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.10000</td>
<td></td>
</tr>
<tr>
<td>39.90000</td>
<td>0.01000</td>
<td></td>
</tr>
</tbody>
</table>

D.9 usr_output.dat

計算結果の BINARY 出力時間を定義
計算経過時間と出力時間間隔の上限を記述

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>30.0000</td>
<td>時間分布数</td>
</tr>
<tr>
<td></td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>39.0000</td>
<td>0.1000</td>
<td></td>
</tr>
<tr>
<td>39.9000</td>
<td>0.01000</td>
<td></td>
</tr>
</tbody>
</table>

D.10 出力データの post 処理

`gandalf_post.exe` を用いて温度や流量などの時間・空間分布を BINARY 出力の `gandalf.store` より抽出する。post 処理を実行するコマンドが記述されたファイルを準備する(詳細はマニュアル参照)。

`gandalf_post.exe` を実行し、コマンドプロンプトが開くため、「

`gandalf.store`」

「`post.txt`」(post 処理を実行するコマンドが記述されたファイル。ファイル名は任意でも可)と入力することで、

出力ファイルを「`gldp.table`」を吐き出す。

主に `Tcs` マージン最小値の調査を行い、その時刻及び位置(距離)の電流、磁場、素線温度の値などのデータも調べる。出力データの post 処理にコマンドファイルの記述例を示す。
ファイル名:post.txt

<table>
<thead>
<tr>
<th>list</th>
<th>post on</th>
<th>tabl</th>
</tr>
</thead>
<tbody>
<tr>
<td>hist</td>
<td>curr</td>
<td></td>
</tr>
<tr>
<td>hist</td>
<td>t_ma</td>
<td>X 58.08</td>
</tr>
<tr>
<td>hist</td>
<td>t_co</td>
<td>X 58.08</td>
</tr>
<tr>
<td>hist</td>
<td>T_he</td>
<td>X 113.615</td>
</tr>
<tr>
<td>hist</td>
<td>b</td>
<td>X 224.0</td>
</tr>
<tr>
<td>dist</td>
<td>t_ma</td>
<td>time 3</td>
</tr>
<tr>
<td>dist</td>
<td>t_co</td>
<td>time 3</td>
</tr>
<tr>
<td>dist</td>
<td>b</td>
<td>time 3</td>
</tr>
<tr>
<td>dist</td>
<td>pres</td>
<td>time 3</td>
</tr>
</tbody>
</table>

Note

電流の時間分布
距離 58.08m の Tcs マージン時間分布
距離 58.08m の素線温度時間分布
距離 113.615m のヘリウム温度時間分布
距離 58.08m の磁場時間分布

＊出力時間数: 出力時間
40.0s, 40.004s 及び 43.55s の Tcs マージン空間(距離)分布
40.0s, 40.004s 及び 43.55s の素線温度空間(距離)分布
40.0s, 40.004s 及び 43.55s の磁場空間(距離)分布
40.0s, 40.004s 及び 43.55s のヘリウム圧力空間(距離)分布
This is a blank page.
<table>
<thead>
<tr>
<th>変数</th>
<th>略語</th>
<th>名称</th>
<th>単位</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>熱力温度</td>
<td>セルシウス</td>
<td>°C</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>物質</td>
<td>キログラム</td>
<td>kg</td>
<td>mol</td>
<td></td>
</tr>
<tr>
<td>光度</td>
<td>ケンドラー</td>
<td>cd</td>
<td>cd</td>
<td></td>
</tr>
<tr>
<td>粘度</td>
<td>パascal秒</td>
<td>Pa·s</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>吸収線量</td>
<td>グレイ</td>
<td>Gy</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>速度</td>
<td>メートル毎秒</td>
<td>m/s</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>加速度</td>
<td>メートル毎秒毎秒</td>
<td>m/s²</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>関数</td>
<td>体積</td>
<td>m³</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>簡単量</td>
<td>體積</td>
<td>m³</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>磁束密度</td>
<td>タンデラ</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>熱伝導率</td>
<td>カルチャー</td>
<td>W/m·K</td>
<td>W/m·K</td>
<td></td>
</tr>
<tr>
<td>体積エネルギー</td>
<td>ジュール</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>体積エネルギー密度</td>
<td>ジュール／立方メートル</td>
<td>J/m³</td>
<td>J/m³</td>
<td></td>
</tr>
<tr>
<td>真空吸収</td>
<td>ジュール／メートル秒</td>
<td>J/m²</td>
<td>J/m²</td>
<td></td>
</tr>
<tr>
<td>照射応力</td>
<td>ウニット</td>
<td>Pa</td>
<td>Pa</td>
<td></td>
</tr>
<tr>
<td>照射強度</td>
<td>ウニット</td>
<td>W/m²</td>
<td>W/m²</td>
<td></td>
</tr>
<tr>
<td>比電気抵抗</td>
<td>オーム</td>
<td>Ω</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td>表面電流</td>
<td>クロノメル</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>透磁率</td>
<td>エンサストラム</td>
<td>H/m</td>
<td>H/m</td>
<td></td>
</tr>
</tbody>
</table>

(a) SI系基準单位の記号を持つ単位と組み合わせて使用できる。SI系基準単位の記号を持つ単位はこれと並べて記載する。
(b) 単位表の測定学ではステラジアンという名称と記号srを用いるが、SI系の規則に従って、測光学ではステラジアンという名称と記号srを用いる。