

広域地下水流動研究における地下水の 水圧長期モニタリング(2009年度)

Data of Long Term Hydro-pressure Monitoring on Tono Regional Hydrogeological Study Project for Fiscal Year 2009

> 狩野 智之 毛屋 博道 竹内 竜史 Tomoyuki KARINO, Hiromichi KEYA and Ryuji TAKEUCHI

> > 地層処分研究開発部門 東濃地科学研究ユニット

Tono Geoscientific Research Unit Geological Isolation Research and Development Directorate

June 2011

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 7319-1195 茨城県那珂郡東海村白方白根 2 番地 4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2011

広域地下水流動研究における地下水の水圧長期モニタリング(2009年度)

日本原子力研究開発機構 地層処分研究開発部門 東濃地科学研究ユニット

狩野 智之*1, 毛屋 博道*1, 竹内 竜史

(2011年2月1日受理)

独立行政法人日本原子力研究開発機構では、「地層処分技術に関する研究開発」のうち深地層の科学的研究(地層科学研究)の一環として、広域地下水流動研究を実施している。本研究は、広域における地表から地下深部までの地質・地質構造、岩盤の水理や地下水の水質を明らかにするために必要な調査・解析技術などを開発することを目標として、1992年度より調査研究を開始し、2004年度末をもって主な現場調査を終了した。2005年度からは、土岐花崗岩における水理学的・地球化学的な基礎情報の取得及び地下水流動解析結果の妥当性確認のためのデータ取得を目的として、既存の観測設備を用いた表層水理観測及び、既存のボーリング孔を用いた地下水の水圧長期モニタリングを継続している。

本報告書は、2009年度に実施した地下水の水圧長期モニタリングデータを取りまとめたものである。

また、地下水の水圧長期モニタリングデータは DVD-ROM として添付した。

東濃地科学センター (駐在): 〒509-6132 岐阜県瑞浪市明世町山野内 1-64

※1 技術開発協力員

*1 西日本技術開発株式会社

Data of Long Term Hydro-pressure Monitoring on Tono Regional Hydrogeological Study Project for Fiscal Year 2009

Tomoyuki KARINO^{*1}, Hiromichi KEYA^{*1} and Ryuji TAKEUCHI

Tono Geoscientific Research Unit
Geological Isolation Research and Development Directorate, Japan Atomic Energy Agency
Akeyo-cho, Mizunami-shi, Gifu-ken

(Received February 1, 2011)

Japan Atomic Energy Agency (JAEA) has been conducting a wide range of geoscientific research in order to build scientific and technological basis for geological disposal of nuclear wastes. This study aims to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock.

Tono Regional Hydrogeological Study (RHS) project is a one of the geoscientific research programme at TGC.

This project started since April, 1992 and main investigations were finished to March 2004. Since 2005, hydrogeological and hydrochemical monitoring are continued by the existing monitoring system.

This paper describes the results of the long term hydro-pressure monitoring from April, 2009 to March, 2010. And the data is attached in DVD-ROM.

Keywords: Regional Hydrogeological Project, Crystalline Rock, Hydro-Pressure, Long Term Monitoring

[※]1 Collaborating Engineer

^{*1} West Japan Engineering Consultants, INC.

目 次

1. はじめに	1
2. 目的	1
3. 実施場所及び地質概要	2
3.1 実施場所	2
3.2 地質概要	3
4. 観測方法	4
4.1 水圧モニタリング装置の概要	4
4.1.1 MP システム	4
4.1.2 SPMP システム	4
4.2 観測区間	9
4.3 観測データの測定間隔と処理方法	12
4.4 観測結果の整理	
5. 観測結果	15
5.1 研究所用地近傍のボーリング孔	
5.1.1 DH-2 号孔	
5.1.2 DH-15 号孔	
5.2 研究所用地遠方のボーリング孔	
5.2.1 DH-7 号孔	
5.2.2 DH-9 号孔	
5.2.3 DH-11 号孔	
5.2.4 DH-13 号孔	
5.3 まとめ	
6.電子ファイルの様式	24
6.1 データファイルの書式	24
6.1.1 MP システム	24
6.1.2 SPMP システム	25
6.2 フォルダ構造	26
7. まとめ	27
参考文献	27
付録1 パッカー区間の諸元	29
付録 2 各孔における地下水の水圧長期モニタリングの状況	35

CONTENTS

1. Introduction	1
2. Objective of the long term hydro-pressure monitoring	1
3 . Monitoring points and geology	2
3.1 Monitoring points	2
3.2 Geology	3
4 . Procedure of the long term hydro-pressure monitoring	4
4.1 Outline of the hydro-pressure monitoring system	4
4.1.1 MP system	4
4.1.2 SPMP system	4
4.2 Monitoring section	
4.3 Monitoring interval and data conversion	12
4.4 Monitoring result arrangement	13
5. Monitoring result	15
5.1 MIU Construction Site neighborhood borehole	
5.1.1 DH-2	18
5.1.2 DH-15	18
5.2 MIU Construction Site distant place borehole	20
5.2.1 DH-7	20
5.2.2 DH-9	20
5.2.3 DH-11	21
5.2.4 DH-13	22
5.3 Conclusion	23
6 . Style of electronic file	24
6.1 Data form	24
6.1.1 MP system	24
6.1.2 SPMP system	25
6.2 Folder composition	26
7 . Conclusion	27
Reference	27
Appendix 1 Packer section of the long term hydro-pressure monitoring system	m29
Appendix 2 Situation of the long term hydro-pressure monitoring	35

1. はじめに

独立行政法人日本原子力研究開発機構(以下,原子力機構)では,原子力政策大綱 ¹⁾に示されている「深地層の研究施設等を活用して,深地層の科学的研究,地層処分技術の信頼性向上や安全評価手法の高度化等に向けた基盤的な研究開発,安全規制のための研究開発を引き続き着実に進めるべきである」との方針に基づき,「地層処分技術に関する研究開発」のうち深地層の科学的研究(地層科学研究)を進めている。

このうち、広域地下水流動研究は、広域における地表から地下深部までの地質・地質構造、岩盤の水理や地下水の水質を明らかにするために必要な調査・解析技術などを開発することを目標として、1992年度より研究対象とする地下水流動系の涵養域から流出域までを包含する約 10km 四方の領域を対象に調査研究を実施してきており、2004年度末をもって主な現場調査を終了した2²。2005年度からは、土岐花崗岩における水理学的・地球化学的な基礎情報の取得及び地下水流動解析結果の妥当性確認のためのデータ取得を目的として、既存の観測設備を用いた表層水理観測及び、既存のボーリング孔を用いた地下水の水圧長期モニタリングを継続している。

本報告書は、広域地下水流動研究において 2009 年度に取得された地下水の水圧長期モニタリング結果を取りまとめたものである。

また、地下水の水圧長期モニタリングデータは DVD-ROM として添付した。

2. 目的

本報告書は,

- 1) 広域地下水流動研究において取得された地下水の水圧長期モニタリングデータを共有化すること
- 2) データの散逸防止を図ること
- 3) 土岐花崗岩における水理学的・地球化学的な基礎情報の取得及び地下水流動解析結果の妥当性確認のためのデータ取得

を目的として作成した。

3. 実施場所及び地質概要

3.1 実施場所

広域地下水流動研究では、2010年3月末現在,11本のボーリング孔(図3.1-1参照)のうち、DH-2号孔,DH-7号孔,DH-9号孔,DH-11号孔,DH-13号孔及びDH-15号孔の6孔において水圧モニタリング装置(4.1章参照)を設置し、地下水の水圧長期モニタリングを実施している。

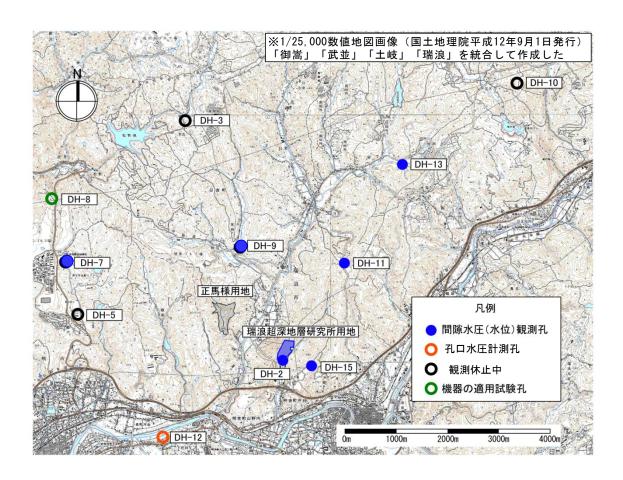


図 3.1-1 ボーリング孔位置図

3.2 地質概要

東濃地域では、白亜紀の花崗岩(土岐花崗岩)が分布し、この土岐花崗岩を基盤として、新第 三紀中新世の堆積岩(瑞浪層群)と、固結度の低い新第三紀鮮新世の砂礫層(瀬戸層群)が分布 する3。

瑞浪層群は、下位より、泥岩・砂岩・礫岩からなり亜炭を挟む土岐夾炭累層、泥岩・砂岩・凝灰岩を主体とする本郷累層、凝灰質の泥岩・砂岩を主体とする明世累層、シルト岩・砂岩を主体とする生俵累層の4累層に区分される。瑞浪超深地層研究所の研究坑道は主として、この地域の基盤をなす土岐花崗岩中に建設されている。また、瑞浪超深地層研究所用地(以下、研究所用地)の北方には、透水異方性(断層面方向に高透水性、断層面に直交する方向に低透水性)を有する東西方向の月吉断層が分布している(図3.2-1参照)。

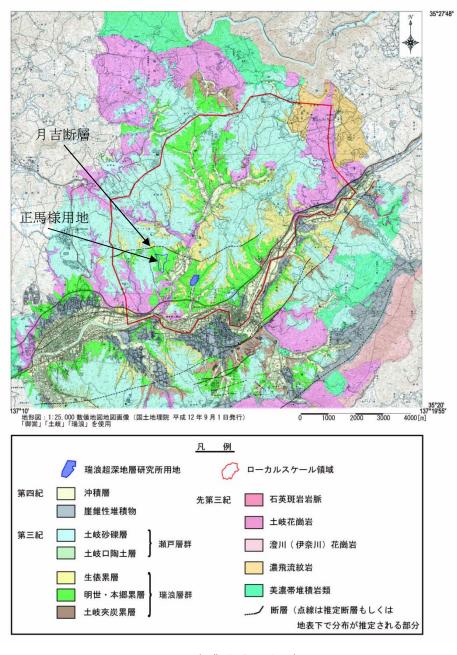


図 3.2-1 東濃地域の地質概要

4. 観測方法

4.1 水圧モニタリング装置の概要

広域地下水流動研究における地下水の水圧長期モニタリングでは、ボーリング孔内にマルチパッカー式の水圧モニタリング装置を設置し、複数の観測区間での地下水の水圧長期モニタリングを実施している。

モニタリング方式は、1)直接水圧観測方式、2)ピエゾ水頭観測方式に大別される。直接水圧観測方式は、パッカーで区切られた観測区間に水圧計を設置することで、観測区間の水圧を直接観測する方式である。一方、ピエゾ水頭観測方式は、パッカーで区切られた観測区間から水管(スタンドパイプ)を立ち上げ、スタンドパイプ内の水位を観測する方式である。

広域地下水流動研究では、直接水圧観測方式の水圧モニタリング装置として MP システム 4)、 ピエゾ水頭観測方式の水圧モニタリング装置として SPMP システム 5)を設置している。

MP システムは, DH-2 号孔, DH-7 号孔, DH-9 号孔, DH-11 号孔, 及び DH-13 号孔に設置しており, SPMP システムは DH-15 号孔に設置している。以下に, 各システムの概要を示す。

水	圧モニタリング装	ボー	リング孔			
パッカー	計測方式	水圧モニタリング	ボーリング孔名	数量		
による分類	による分類	装置の名称		小計	合計	
			DH-2号孔			
			DH-7号孔			
マルチパッカー式	直接方式	MPシステム	DH-9号孔	5孔	c 71	
マルナハッカー式			DH-11号孔		6孔	
			DH-13号孔			
	ピエゾ水頭方式	SPMPシステム	DH-15号孔	1孔		

表 4.1-1 水圧モニタリング方式とボーリング孔

4.1.1 MP システム

MP システムは、水圧計を備えた水圧モニタリング専用のプローブを観測区間内の計測ポートに設置することにより、各観測区間の水圧をモニタリングすることができる。また、MP ケーシング内に小型ポンプを設置し採水ポートを開放することで、ポンプによる採水が可能であるとともに、専用の採水プローブ及び採水容器を用いて、観測区間の圧力を保持した状態で地下水を採取することができる。MP システムの概念図を図 4.1.1-1 に、水圧計測プローブの水圧センサーの主な仕様を表 4.1.1-1 に示す。

MP システムによる水圧長期モニタリングでは、水圧計測プローブを継続的に計測ポートに設置し、水圧計測プローブの動作を地上のデータロガーで制御することで、観測間隔の設定、観測データの集録を行っている。データロガーに集録された観測データは携帯電話を用いて瑞浪超深地層研究所(以下、研究所)内のサーバーに保管され、整理されている。MP システムにおけるデータ転送システムの概念図を図 4.1.1-2 に示す。

4.1.2 SPMP システム

SPMP システムは、観測区間から立ち上がった水管(スタンドパイプ)に水圧センサーを挿入し、スタンドパイプ内の水位をモニタリングするシステムである。本システムでは、スタンドパイプ内に専用ポンプを設置することにより、スタンドパイプから採水することも可能である。SPMP システムの概念図を図 4.1.2-1 に、水位計測に用いている水圧センサーの主な仕様を表4.1.2-1 に示す。

SPMP システムによる水圧長期モニタリングでは、水圧センサーを継続的にスタンドパイプ内に設置し、観測間隔の設定、観測データの集録を行っている。データロガーに集録された観測データは携帯電話を用いることで研究所内のサーバーに保管され整理されている。SPMP システムにおけるデータ転送システムの概念図を図 4.1.2-2 に示す。

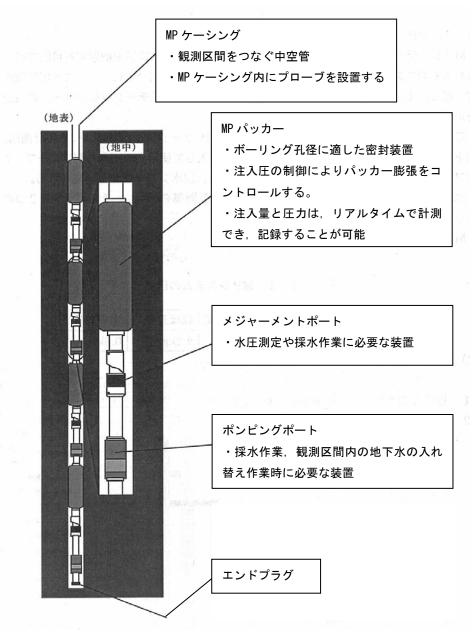


図 4.1.1-1 MP システム概念図

表 4.1.1-1 MP システム水圧計測用圧力センサーの主な仕様

容量	精度
500psi (3,447.5kPa)	
1,000psi (6,895.kPa)	$\pm 0.1\%$ F. S.
2,000psi (13,790kPa)	

※F.S.とはフルスケールの略

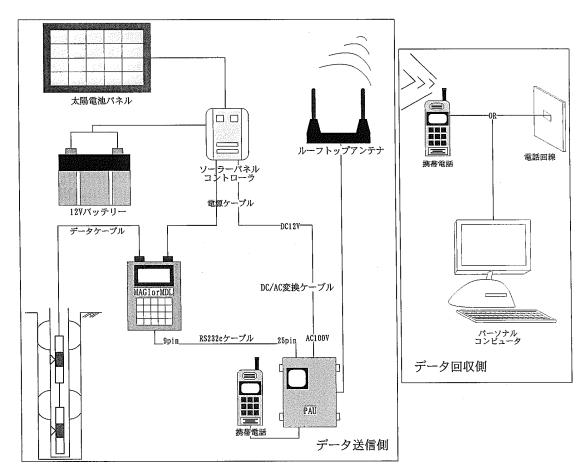


図 4.1.1-2 データ転送システムの概念図(MP システム)

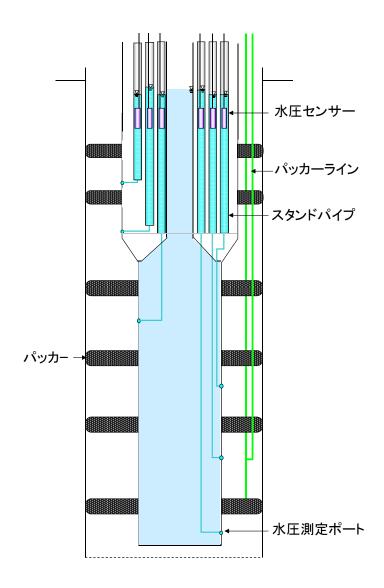


図 4.1.2-1 SPMP システム概念図 (DH-15 号孔の例)

表 4.1.2-1 SPMP システム水圧計測用圧力センサーの主な仕様

容量	精度
700kPa	±0.1%F.S.

※F.S.とはフルスケールの略

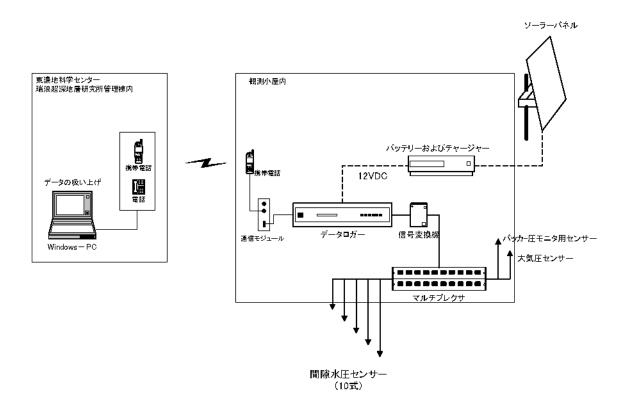


図 4.1.2-2 データ転送システムの概念図 (SPMP システム)

4.2 観測区間

水圧モニタリング装置のパッカーの設置位置は、ボーリング調査の結果(コア観察、ボアホールテレビ、物理検層、水理試験など)に基づき決定されている。このパッカーで挟まれた区間をパッカー区間と呼ぶ。これらのパッカー区間に水圧計測プローブ、もしくは水圧計測用のセンサーを設置した区間を観測区間と呼ぶ。各ボーリング孔の観測区間を表 4.2-1~表 4.2-6 に、パッカー区間の諸元を付録 1 に示す。各ボーリング孔における観測区間の地質は、DH-15 号孔の 1 区間のみ堆積岩であるが、その他についてはいずれも花崗岩である。

表 4.2-1 DH-2 号孔 観測区間一覧表

区間番号		区間深度(m)					区間長	観測区間	地質
区间留 5	G.	L. (-	m)	E.	L. (1	m)	(m)	2009年度	地貝
1	172. 9	\sim	203. 3	20.7	\sim	-9.7	30. 4	0	土岐花崗岩
2	204.3	\sim	218.0	-10.7	\sim	-24. 4	13. 7	_	土岐花崗岩
3	219.0	\sim	243.4	-25. 4	\sim	-49.8	24. 4	_	土岐花崗岩
4	244. 4	\sim	292.0	-50.8	\sim	-98. 4	47. 6	_	土岐花崗岩
5	293.0	\sim	301.1	-99. 4	\sim	-107.5	8. 1	0	土岐花崗岩
6	302. 1	\sim	308.8	-108.5	\sim	-115. 2	6. 7	_	土岐花崗岩
7	309.8	\sim	338. 2	-116.2	\sim	-144.6	28. 4	_	土岐花崗岩
8	339. 2	\sim	356.0	-145.6	\sim	-162.4	16.8	_	土岐花崗岩
9	357.0	\sim	414.0	-163.4	\sim	-220.4	57. 0	\circ	土岐花崗岩
10	415.0	\sim	444. 1	-221.4	\sim	-250.5	29. 1	_	断層(427.6-437.4mgbl)
11	445. 1	\sim	458. 5	-251.5	\sim	-264. 9	13. 4	_	断層(452.2-458.5mgbl)
12	459.5	\sim	501.1	-265. 9	\sim	-307.5	41.6	0	土岐花崗岩

表 4.2-2 DH-7 号孔 観測区間一覧表

区間番号	区間深	度 (m)	区間長	観測区間	地質
区间留 5	G.L. (-m)	E. L. (m)	(m)	2009年度	地貝
1	438.0 ∼ 444.5	-97.8 ∼ -104.3	6. 5	0	土岐花崗岩
2	479.0 ∼ 485.5	-138.8 ∼ -145.3	6. 5	0	土岐花崗岩
3	598.0 ∼ 604.5	$-257.8 \sim -264.3$	6. 5	0	土岐花崗岩
5	660.0 ∼ 666.5	$-319.8 \sim -326.3$	6. 5	0	土岐花崗岩

表 4.2-3 DH-9 観測区間一覧表

DH-9号孔

孔口標高;275.42m

区間番号	区間深度 (m)					区間長	観測区間	地質
区间留力	G. L. ((-m)	E.	L. (m)	(m)	2009年度	地貝
1	0.0 ~	62.0	275. 4	\sim	213. 4	62.0	—	土岐花崗岩
2	62.9 ~	150.7	212. 5	\sim	124. 7	87.8	0	土岐花崗岩
3	151.6 ~	246.8	123.8	\sim	28.6	95. 2	_	土岐花崗岩
4	247.7 ~	330.7	27.7	\sim	-55.3	83.0	_	土岐花崗岩
5	331.6 ∼	392.0	-56. 2	\sim	-116.6	60. 4	0	土岐花崗岩
6	392.9 ∼	501.9	-117.5	\sim	-226.5	109.0	_	土岐花崗岩
7	502.8 ∼	572. 4	-227.4	\sim	-297. 0	69. 6	_	土岐花崗岩
8	573.3 ∼	681.6	-297. 9	\sim	-406. 2	108.3	_	土岐花崗岩
9	682.5 ∼	791.0	-407. 1	\sim	-515.6	108.5	0	土岐花崗岩
10	791.9 ~	894. 5	-516.5	\sim	-619. 1	102.6	_	土岐花崗岩
11	895.4 ~	1030.0	-620.0	\sim	-754.6	134.6	0	土岐花崗岩

表 4.2-4 DH-11 観測区間一覧表

DH-11号孔

孔口標高;339.883m

区間番号	区間深度(m)					区間長	観測区間	地質
区间留 5	G. L. (-1	Е.	L. (n	1)	(m)	2009年度	地貝	
1	320.9 ∼	390.6	19. 0	\sim	-50.7	69. 7	0	土岐花崗岩
2	391.5 ∼	500.3	-51.6	~	-160.4	108.8	_	土岐花崗岩
3	579.7 ∼	665. 9	-239.8	~	-326.0	86. 2	0	土岐花崗岩
4	715.4 ~	782. 2	-375. 5	\sim	-442.3	66.8	0	土岐花崗岩
5	880.4 ~	980. 1	-540.5	\sim	-640.2	99. 7	0	土岐花崗岩

表 4.2-5 DH-13 観測区間一覧表

DH-13号孔

孔口標高;277.514m

区間番号	区間深		区間長	観測区間	地質
四间笛方	G. L. (-m)	E. L. (m)	(m)	2009年度	地貝
1	183.3 \sim 252.3	94. 2 \sim 25. 2	69. 0	0	土岐花崗岩
2	$324.1 \sim 407.1$	-46.6 ∼ -129.6	83.0	_	土岐花崗岩
3	408.0 ∼ 475.1	$-130.5 \sim -197.6$	67. 1	_	土岐花崗岩
4	476.0 ∼ 546.5	$-198.5 \sim -269.0$	70. 5	0	土岐花崗岩
5	$713.4 \sim 783.9$	-435.9 ∼ -506.4	70. 5	0	土岐花崗岩
6	855.3 ~ 925.9	-577.8 ∼ -648.4	70.6	_	土岐花崗岩
7	992.3 ~ 1015.0	-714.8 ∼ -737.5	22.7	0	土岐花崗岩

表 4.2-6 DH-15 号孔 観測区間一覧表

DH-15号孔

孔口標高;213.23m

区間番号	区間深	度 (m)	区間長	観測区間	地質
应 间留 5	G. L. (-m)	E. L. (m)	(m)	2009年度	地貝
1	164.0 \sim 221.5	49. 2 ∼ -8. 3	57. 5	0	堆積岩(土岐夾炭累層基底礫)
2	224.0 \sim 290.0	-10.8 ~ -76.8	66.0	0	土岐花崗岩
3	291.5 \sim 349.0	-78.3 ∼ -135.8	57. 5	0	土岐花崗岩
4	$350.5 \sim 423.0$	$-137.3 \sim -209.8$	72. 5	0	土岐花崗岩
5	$424.5 \sim 545.0$	-211.3 ∼ -331.8	120.5	0	土岐花崗岩
6	$546.5 \sim 602.0$	-333.3 ∼ -388.8	55. 5	0	土岐花崗岩
7	603.5 \sim 700.0	-390.3 ∼ -486.8	96. 5	0	土岐花崗岩
8	701.5 \sim 861.0	-488.3 ∼ -647.8	159.5	0	土岐花崗岩
9	862.5 \sim 969.0	$-649.3 \sim -755.8$	106. 5	0	土岐花崗岩
10	970.5 \sim 1010.0	$-757.3 \sim -796.8$	39. 5	0	土岐花崗岩

4.3 観測データの測定間隔と処理方法

各ボーリング孔の測定間隔をまとめた一覧表を表 4.3-1 に示す。測定間隔については, DH-11 号孔で 30 分, それ以外のボーリング孔で 5 分としている。

観測データの欠測期間についてはデータの補完は実施せず、欠測データとして扱っている。また、観測装置の不具合が原因と考えられる観測データについても欠測と同様の取扱いとした。

観測データの主な測定項目は、日時、大気圧、地上での気温、観測区間の水圧及び観測区間の水温である。また、各ボーリング孔の観測結果を比較しやすいように全水頭を標高で表した。以下に観測データの処理方法について示す。

全水頭は圧力水頭と位置水頭の和で表わされる(式(1))。また、圧力水頭は水圧を水の単位体積重量で除したものであり、圧力水頭を求める際の水圧は観測区間の水圧の出力値から大気圧補正値と大気圧の積を引いた値となる(式(2))。一般的には、大気圧補正値は地中深くなるにつれて1.0から小さくなると考えられるが、本報告書においては大気圧補正値を1.0と仮定している。また、水の単位体積重量は、9.80665 kN/m³を採用している。

全水頭=圧力水頭 (h) +位置水頭 (z) ·······(1) =
$$(pw-\alpha \times p0)/\gamma w + z$$
 ······(2)

ここに,

pw:観測区間の水圧の出力値(kN/m²)

α:大気圧の補正値,ここでは1.0と仮定した

p0 : 大気圧 (kN/m²)

γw:水の単位体積重量 (kN/m³), 9.80665 を採用

z:位置水頭(EL.m)

表 4.3-1 各ボーリング孔の測定間隔一覧表

ボーリング孔名	測定間隔	観測期間
DH-2	5分	2009/4/1~2010/3/31
DH-7	5分	2009/4/1~2010/3/31
DH-9	5分	2009/4/1~2010/3/31
DH-11	30分	2009/4/1~2010/3/31
DH-13	5分	2009/4/1~2010/3/31
DH-15	5分	2009/4/1~2010/3/31

4.4 観測結果の整理

観測データの整理としては、水圧変化がどのような作業の影響を受けて生じているのかを確認する必要がある。そのため、水圧変化と研究坑道の作業の同定を行っている。水圧変化と研究坑道の作業の同定の方法としては、これまでの研究結果により水圧変化の主な要因が表 4.4-1 に整理できることから、図4.4-1 のフローチャートに従い実施している。以下にフローチャートの説明を示す。

- ①水圧モニタリング装置に起因するものとしては、水圧センサーの異常など、水圧モニタリング装置に 異常が生じたと考えられる場合を指している。実際の事例では、メンテナンス時に水圧センサーの基準値にずれが生じる場合、装置の不具合等により欠測が生じる場合などがあった。
- これらが生じた場合には、不正確な観測データの期間をその要因を記した上で欠測扱いとして整理する。
- ②地球潮汐とは、潮の満ち引きなどと同様に月と太陽の引力により地盤が微小に変化する影響を水圧の変化としてとらえたものである。そのため、水圧センサーの精度にもよるがほぼすべての観測データに影響が生じている。
- この影響を確認する方法としては、潮位の測定結果と比較する方法がある。
- ③気圧変動については、例えば、台風や低気圧の通過に伴い短時間で変動幅が大きい気圧の変化が生じた時に水圧の変化が生じる場合があった。
- このため、台風や低気圧の通過時は前後の水圧データを比較し、その影響を確認する。
- ④地震については、世界的に大きな地震、日本国内で生じた主な地震、及び当地方で生じた地震の 記録を収集し、地震発生前後の水圧変化を比較して地震の影響を整理する。地震に関する水圧変 化には、地震発生後 30 分間程度の間、水圧が上下に微動する変化以外にも地震発生後数日から 数カ月にわたり水圧が上昇または低下するような長期的な変化を生じる場合がある。
- ⑤上記①から④の要因を除外した上で,研究所用地内で建設されている研究坑道内の作業に伴う水 圧変化を抽出し,検討する。

なお、①~⑤の方法を実施しても原因が解明できない水圧の変化が生じている場合がある。この場合には、再び①~⑤に関する情報を 1 回目よりも詳細に見直して同定作業を行う。それでも不明な変化については原因が不明な情報としてそのまま残し、研究坑道の作業でこれまで想定していなかった作業の整理や、表 4.4-1 以外の要因を再検討するための観測データとして用いる。

表 4.4-1 水圧変化の主な要因一覧表

(I)	水圧モニタリング装置	・水圧センサーの水圧値のドリフト
1)	に起因するもの	・モニタリング装置の不具合による異常
2	地球潮汐	・自然変動として常時変化
3	気圧変動	・台風や低気圧の通過に伴う気圧変化
		・地震発生時後約30分間程度に地下水圧が上下に微動 するが、発生前後で地下水圧の違いが生じない変化
4	地震	・地震発生時後約30分間程度に地下水圧が上下に微動 するが、発生前後で地下水圧に違いが生じる変化
		・地震発生時から約数日から数ヵ月に渡り地下水圧が 上昇または低下する変化
		・主立坑,換気立坑及び水平坑道の掘削作業に伴う発破や湧水による変化
(5)	研究坑道における作業	・研究坑道の排水停止、再開による変化
		・研究所用地内及び近隣のボーリング掘削, 水理試験 等による変化

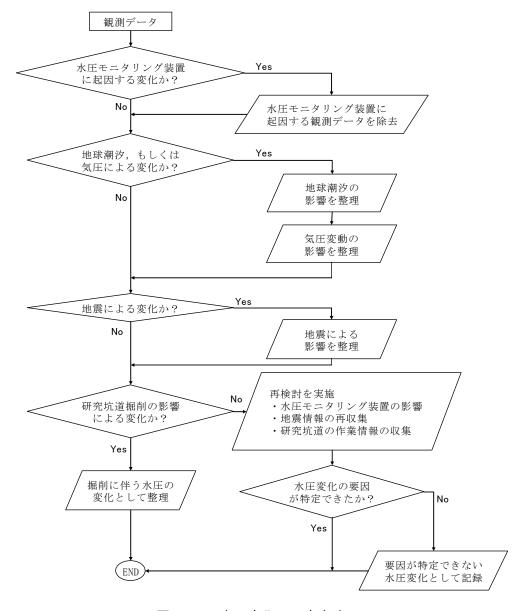


図 4.4-1 水圧変化の同定方法

5. 観測結果

地下水の水圧長期モニタリング結果をまとめ、グラフに整理した。各孔における地下水の水圧 長期モニタリングの状況については付録2に示す。

広域地下水流動研究では、地下水の水圧長期モニタリングを実施しているボーリング孔に研究所用地の近傍に位置するものがあり(DH-2 号孔及び DH-15 号孔、図 3.1-1 参照)、観測結果に研究所用地内の作業の影響が考えられた。また、その他についてもこれを確認するため、研究所用地内の作業についてまとめた。2009 年度の研究坑道及び周辺の作業をまとめた結果を表 5-1 に示す。また、研究所用地内のボーリング孔位置図を図 5-1 に、研究坑道内のボーリング孔位置図を図 5-2 に示す。

表 5-1 研究坑道及び周辺での作業一覧表

立坑深度 4月 5月 6月 7月 8月 8月 7月 8月 7月 8月 7月 8月 7月 8月 70.2~400.2 ← 中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中下上中	2009年 2010年
立坑部堀削 立坑部堀削 300.2~400.2 →備ステージ及びボーリング横坑堀削 400.2~460.2 →備ステージ及びボーリング横坑堀削 300 地下水佐暖測ボーリング孔 (09MI21号孔)堀削 300 地下水佐暖測ボーリング孔 (150 地下水佐暖湖ボーリング孔 (150 地下水佐暖湖ボーリング孔 (150 地下水佐棚湖ボーリング孔 (150 地下水佐棚 (150 地下水 (150 地下が (150 地	
立抗部組削 400.2~400.2 ***	표 의 나
下水水質観測ボーリング孔 300 (09MI20号孔) 掘削 400 (09MI20号孔) 掘削 400 (09MI20号孔) 掘削 400 (09MI20号孔) 上上子工機測ボーリング孔(a,b,c) 掘削 300 (0.2~460.2) (0.2~460	+
#F 下水水質観測ボーリング孔 (09M120号孔) 掘削 300 AISTボーリング孔(09M121号孔) 掘削 3331.2~400.2 立坑部掘削 400.2~460.2 中下水圧観測ボーリング孔(a,b,c)掘削 300 中 a b c た	
AISTボーリング孔(09MI21号孔)掘削 300 地下水水質観測ボーリング孔 150 立坑部掘削 400.2~460.2 も 400 も 4 も 400 も 4 も 400 も 4 も 400 も 4 も 4	
海水 立坑部掘削 本面ステージ及びボーリング和(a,b,c)掘削 300 b a b c 地下水圧観測ボーリング和(a,b,c)掘削 300 b a b c がIZ-1号孔 採水 ・MIZ-1号孔 採水 ・MIZ-1号孔 採水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号孔 様水 ・MIZ-1号子孔 様水 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 様木 ・MIZ-1号子孔 ・MIZ-1号子 ・	
立坑部掘削 予備ステージ及びボーリング機坑掘削 地下水圧観測ボーリング孔(a,b,c)掘削 300 b a b カレグラウト作業 MIZ-1号孔 採水 ・DH-9号孔 採水 ・DH-9号孔 採水 ・DH-9号孔 様水 ・DH-13号孔 様水 ・DH-13号孔	ーリング孔
立つたにいかに対し 予備ステージ及びボーリング視坑掘削 400 b a b a b b a	
予備ステージ及びボーリング機坑掘削 400 b a b a b a b a b a b a b a b a b a b a	1 1 1 1 1 1 1 1 1 1
地下水圧観測ボーリング孔(a, b, c) 掘削 300 b a b a b a b a b a b a b a b a b a b	+
プレグラウト作業	
 	5. L. −420. 8 → 428. 4 h G. L. −445. 6 → −453. 4 h
・MIZ-1号孔 ・DH-9号孔 採水 ・DH-13号孔 ・DH-13号孔 ・M-13号孔 ・M-13号孔	
・DH-9号孔 探水 ・DH-13号孔 探水 ※1 ************************************	+
・DH-13号孔 探水 ※1 ************************************	
内非主治《〈古名记 (AICT) 1. (中国自治)	
※1 AISIホーリングれ : 産業技術総合研究所(AISI)との共同研究において補削しだホーリングれ ※2 地下水圧観測ボーリング孔 a : 09MI17-1号孔 ※3 地下水圧観測ボーリング孔 b : 09MI18号孔 ※4 地下水圧観測ボーリング孔 c : 09MI19号孔	リング孔

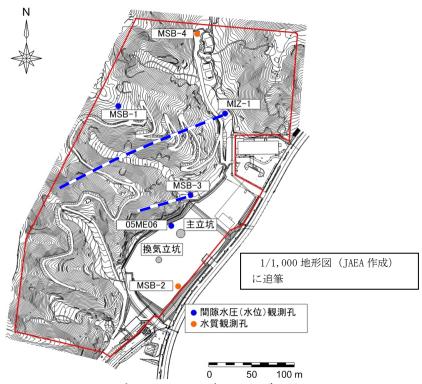


図 5-1 研究所用地内のボーリング孔位置図

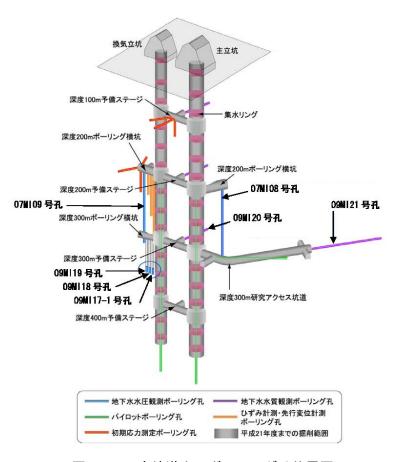


図 5-2 研究坑道内のボーリング孔位置図

5.1 研究所用地近傍のボーリング孔

5.1.1 DH-2 号孔

DH-2 号孔の観測結果を図 5.1.1-1 に示す。DH-2 号孔では No.1, No.5, No.9, No.12 の 4 区間において観測を実施しており,メンテナンス作業に伴う 8 月下旬の数日間の欠測期間を除き,1 年間を通してほぼ継続的な観測データが得られている。

DH-2 号孔では全ての観測区間で概ね同じ全水頭の値を示した。また、立坑掘削などに伴う変化量もほぼ等しく、全ての観測区間で深度 300m 予備ステージで実施した 09MI20 号孔の掘削に伴う全水頭の変化が確認できた。プレグラウトの影響については、換気立坑深度 445.6~453.4m で施したプレグラウトにおいて、それまで低下傾向を示していた全水頭が一時的に上昇し、その後、緩やかな低下が生じた。

地震による影響については、駿河湾を震源とする地震により全水頭の上昇傾向が約 4m程度見られる。それ以外の地震については水圧の変動は生じていないと考えられる。

DH-2 号孔で確認された全水頭の変化は主立坑沿いに分布する低透水性断層の南西側のボーリング孔である MSB-3 号孔の深部(土岐夾炭累層基底部~花崗岩上部), 05ME06 号孔浅部及び 07MI09 号孔とほぼ同じ傾向である(各ボーリング孔の位置は図 5-1, 図 5-2 を参照)。

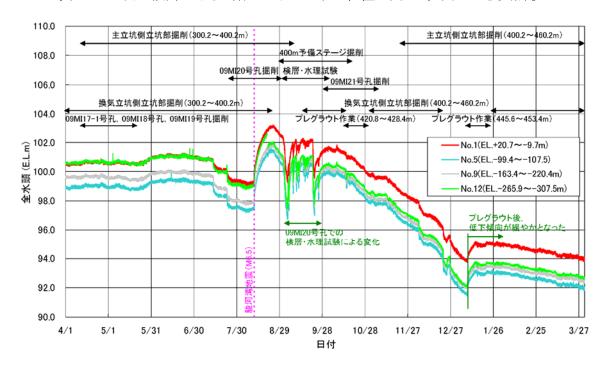


図 5.1.1-1 地下水の水圧長期モニタリング結果 (DH-2 号孔 2009 年度)

5.1.2 DH-15 号孔

DH-15 号孔の観測結果を図 5.1.2-1 に示す。DH-15 号孔では No.1 \sim 10 の 10 区間で観測を実施しており、1 年間を通してほぼ継続的な観測データが得られている。

DH-15 号孔では全ての観測区間で概ね同じ全水頭の値を示した。また、立坑掘削などに伴う変化量もほぼ等しく、深度 300m 研究アクセス坑道で実施した 09MI21 号孔の掘削での湧水の影響と思われる約 2m の全水頭の低下が生じた。また、09MI21 号孔の掘削作業以降も全水頭の低下は継続している。

地震による影響については、駿河湾を震源とする地震に伴い、全水頭が 0.3m 程度上昇している。

DH-15 号孔で確認できる全水頭の変化は主立孔沿いに分布する低透水性断層の北東側のボーリング孔である MSB-1 号孔の深部(土岐夾炭累層基底部~花崗岩上部)と同じ傾向である(ボーリング孔の位置は図 5-1 を参照)。

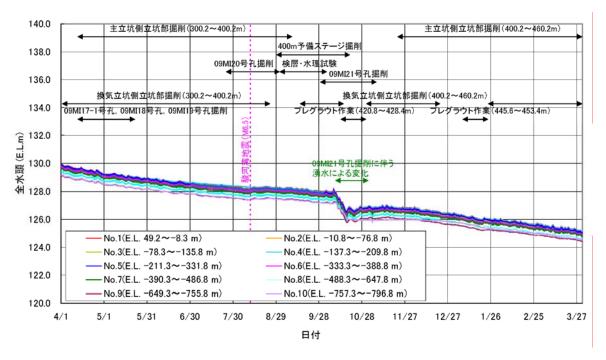


図 5.1.2-1 地下水の水圧長期モニタリング結果 (DH-15 号孔 2009 年度)

5.2 研究所用地遠方のボーリング孔

5.2.1 DH-7 号孔

DH-7号孔の観測結果を図 5.2.1-1 に示す。DH-7号孔では No.1, No.2, No.3, No.5 の 4 区間で観測を実施している。メンテナンス作業に伴い 8 月中旬に数日間の欠測が生じたが、それ以外の期間はほぼ継続的な観測データが得られている。

全水頭の変化を見ると、駿河湾の地震の前は全ての観測区間で全水頭が緩やかな上昇傾向を示しているが、駿河湾の地震後は No.1 の区間で全水頭がほぼ一定の値を示し、No.2, No.3, No.5 の区間では全水頭が低下傾向を示している。駿河湾の地震後の全水頭の低下傾向は No.3, 5 の区間が 9 月まで、No.2 の区間が翌年 2 月まで認められ、低下量についてはいずれも 0.7m 程度である。

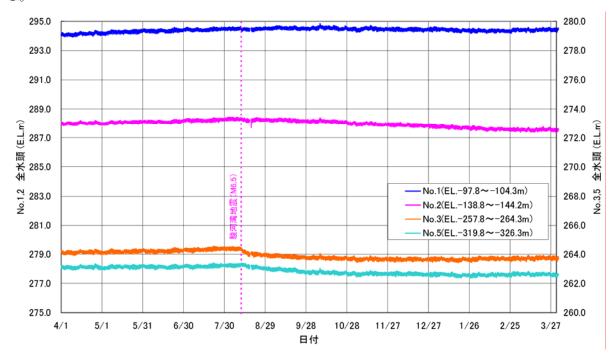


図 5.2.1-1 地下水の水圧長期モニタリング結果 (DH-7 号孔 2009 年度)

5.2.2 DH-9 号孔

DH-9 号孔の観測結果を図 5.2.2-1 に示す。DH-9 号孔では No.2, No.5, No.9, No.11 の 4 区間で観測を実施している。メンテナンス作業に伴う 7 月上旬と,採水作業に伴う 11 月下旬から 12 月中旬にかけて欠測期間が生じているものの,それ以外の期間はほぼ継続的な観測データが得られている。

全水頭の変化を見ると、駿河湾の地震の前は全て観測の区間で全水頭はほぼ一定の値を示しているが、駿河湾の地震後は全ての観測区間で全水頭が低下傾向を示している。駿河湾の地震後の全水頭の低下傾向は No.2 の区間が 9 月まで、No.5、9、11 の区間が 10 月まで認められ、低下量については No.2 が 1.7m 程度、No.5 が 1.3m 程度、No.9 が 0.8m 程度、No.11 が 0.7m 程度である。

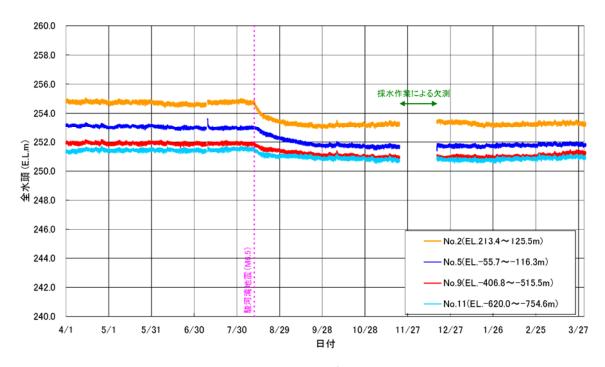


図 5.2.2-1 地下水の水圧長期モニタリング結果 (DH-9 号孔 2009 年度)

5.2.3 DH-11 号孔

DH-11 号孔の観測結果を図 5.2.3-1 に示す。DH-11 号孔では No.1, No.3, No.4, No.5 の 4 区間で観測を実施している。メンテナンス作業に伴い 7 月下旬に欠測期間が生じているものの,それ以外の期間はほぼ継続的な観測データが得られている。

全水頭の変化を見ると、No.1、No.3、No.4 の区間は年間を通して全水頭はほぼ一定の値を示している。No.5 の区間では、駿河湾の地震後の8月下旬から翌年1月にかけて全水頭の緩やかな上昇傾向が認められる。全水頭の上昇量は0.5m程度である。

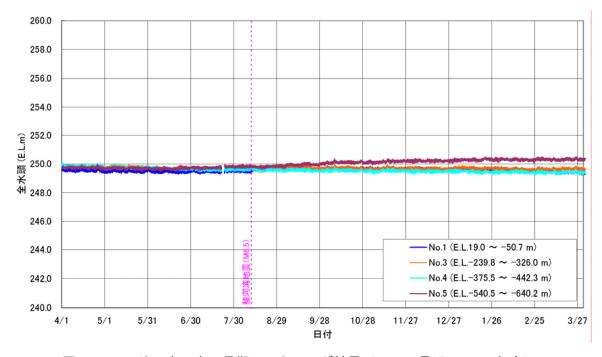


図 5.2.3-1 地下水の水圧長期モニタリング結果 (DH-11 号孔 2009 年度)

5.2.4 DH-13 号孔

DH-13 号孔の観測結果を図 5.2.4-1 に示す。DH-13 号孔では No.1, No.4, No.5, No.7 の 4 区間で観測を実施している。メンテナンス作業に伴う 7 月上旬と,採水作業に伴う 11 月下旬から 12 月中旬にかけて欠測期間が生じているものの,それ以外の期間はほぼ継続的な観測データが得られている。

全水頭の変化を見ると、全ての観測区間で駿河湾の地震の前には大きな全水頭の変化はなく、ほぼ一定の傾向を示しているが(7月上旬の変化は水圧計測プローブの交換によるもの)、駿河湾の地震後は全ての観測区間で全水頭が低下している。駿河湾の地震後の全水頭の低下は、No.1、4、5の区間は地震発生から約1ヶ月間、No.7の区間は地震発生から数日間認められ、低下量はNo.1、4、5の区間が0.8m程度、No.7の区間が0.1m程度である。

なお、DH-13 号孔では、メンテナンス作業に伴う水圧計測プローブの交換において、交換前後で約 0.8m の全水頭の差が生じている。ただし、水圧計測プローブの精度誤差が約 1m 程度であることを考慮すると、交換前後の差は誤差範囲内であることを確認している。

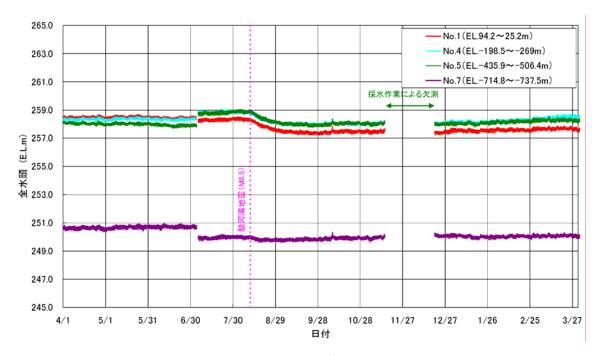


図 5.2.4-1 地下水の水圧長期モニタリング結果 (DH-13 号孔 2009 年度)

5.3 まとめ

(1) 研究所用地近傍のボーリング孔

DH-2 号孔では、研究坑道内の深度 300m 予備ステージで実施した 09MI20 号孔の掘削に伴う全水頭の変化が確認できた。DH-2 号孔で確認された全水頭の変化は主立坑沿いに分布する低透水性断層の南西側のボーリング孔である MSB-3 号孔の深部(土岐夾炭累層基底部~花崗岩上部)、05ME06 号孔浅部及び 07MI09 号孔とほぼ同じ傾向である。

また、DH-15 号孔では、深度 300m 研究アクセス坑道で実施した 09MI21 号孔の掘削での湧水の影響と思われる約 2m の全水頭の低下が生じた。DH-15 号孔で確認できる全水頭の変化は主立孔沿いに分布する低透水性断層の北東側のボーリング孔である MSB-1 号孔の深部(土岐夾炭累層基底部~花崗岩上部)と同じ傾向である。

地震による影響については、駿河湾を震源とする地震後に全水頭の上昇が DH-2 号孔で 4m程度, DH-15 号では 0.3m 程度確認された。

(2) 研究所用地遠方のボーリング孔

研究所用地遠方の DH-7 号孔, DH-9 号孔, DH-11 号孔及び DH-13 号孔では, 研究坑道内の掘削に伴う全水頭の変化は見られなかった。

地震による影響については、駿河湾を震源とする地震後に全水頭の上昇が DH-11 号孔で 0.5m 程度確認された。また、DH-7 号孔、DH-9 号孔及び DH-13 号孔では、駿河湾を震源とする地震後に全水頭の低下が $0.1m\sim1.7m$ 程度確認された。

6. 電子ファイルの様式

地下水の水圧長期モニタリングデータは電子ファイルとしてまとめている。以下にその電子ファイルの様式について示す。なお、各データは、Microsoft 社製 EXCEL 形式で保存した。

6.1 データファイルの書式

6.1.1 MP システム

MP システムのデータ (表 6.1.1-1 の水圧モニタリング孔のデータ) は,集録日時と観測区間の圧力及び温度で構成されている(表 6.1.1-2 参照)。これらのデータから 4.3 章にまとめたように圧力を変換し,全水頭で表示している。各孔でのパッカー区間の諸元は付録 1 に示す。

表 6.1.1-1 水圧モニタリング孔の一覧

分類	ボーリング孔名
広域	DH-2 号孔, DH-7 号孔, DH-9 号孔, DH-11 号孔, DH-13 号孔

表 6.1.1-2 データファイルの書式 (MP システム)

																観測	区間情報など※
	日時	大	気	No.1	区間	No.2	区間	No.3	区間								
		压力	担由	圧力.											全水頭		/
※ヘッダー		الكثار	1.111.7.2	الآثة	11111./.又					٨		ı			$\overline{}$		
_	1	Y	١	4	V)	1	١,	<u> </u>	γ	\mathcal{I}					
ſ																	⊁
	T11.5			DDD 4	DDD 4			DDD 0		000 4 000			N 4/41		N 0/T		
\prec		PRB-0 I PRES.		PRB-1 PRES.		PRB-2 PRES.				PRB-4 PRB PRES. TEM		5 PRB-5 5 TEMP.	No.1(Akeyo + Hongo F, main) Water Level	No.2(Hongo F, basal cgl) Water Level	No.3(Toki Lig-bg F, main) Water Level	No.4(Toki Lig-bg F, basal cgl) Water Level	No.5(Toki Granite, weathered) Water Level
_		(Kpa)	(C)	(Kpa)	(C)	(Kpa)	(C)		(C)		C) (Kpa		(Flm)	(F.L.m)	(FLm)	(Flm)	(Flm)
<u>t</u> :	ンサー深度(mbgl)	03.03		007040	0. 30	1010.05		5050.00			50105		-101.4	-142.4	-261.3	-277.8	
_	2009/4/1 0:00 2009/4/1 0:05		7.22	3976.13 3976.19	21.72	4318.05 4317.98	22.39 22.43	5250.32 5250.32	24.74 24.74		5848.5 5848.5		294.0928543 294.0989726	287.959 287.952	264.124 264.124		263.128 263.128
	2009/4/1 0:10		7.13		21.68	4317.65	22.39	5250.32	24.74		5848.1		294.0989726	287.918	264.124		263.087
	2009/4/1 0:15	97.66	7.11	3976.13	21.72	4318.45	22.39	5250.71	24.78		5848.6		294.0938741	288.001	264.165		263.137
	2009/4/1 0:20		7.09		21.68		22.43	5250.3	24.78		5848.1		294.0999924	287.953	264.123		263.088
	2009/4/1 0:25		7.08		21.72		22.43		24.74		5848.5		294.0948938	287.913	264.126		263.130
	2009/4/1 0:30 2009/4/1 0:35		7.08		21.68 21.68	4317.98 4317.58	22.43 22.43	5250.72 5250.3	24.74 24.78		5848.6 5848.5		294.1010121 294.0612431	287.954 287.914	264.167 264.125		263.138 263.131
	2009/4/1 0:40			3976.19	21.68		22.43		24.74		5848.6		294.0012431	287.962	264.127		263.131
	2009/4/1 0:45			3975.79	21.68	4318.45	22.39	5250.3	24.78		5848.5		294.0622629	288.004	264.126		263.132
	2009/4/1 0:50	97.63	7.13	3975.79	21.68	4318.45	22.39	5250.71	24.78		5848.5	25.99	294.0622629	288.004	264.168		263.132
	2009/4/1 0:55				21.72		22.39	5249.91	24.74		5848.9		294.0561446	288.004	264.086		263.173
	2009/4/1 1:00		7.15		21.72		22.39	5250.32	24.74		5848.1		294.0969332	288.004	264.128		263.091
	2009/4/1 1:05 2009/4/1 1:10			3975.73 3976.19	21.72	4318.45 4318.45	22.39 22.39	5250.32 5250.3	24.74 24.78		5848.1 5848.1		294.0571643 294.1061106	288.005 288.007	264.129 264.129		263.092 263.094
	2009/4/1 1:10				21.68		22.39		24.78		5848.5		294.1061106	287.966	264.131		263.094
	2009/4/1 1:20				21.68	4318.05	22.39	5250.32	24.74		5848.1		294.1071304	287.967	264.132		263.095
	2009/4/1 1:25				21.72		22.39	5250.32	24.74		5848.5		294.1010121	287.967	264.132		263.136
	2009/4/1 1:30			3975.73	21.72		22.39		24.74		5848.2		294.0602234	288.008	264.132		263.103
	2009/4/1 1:35		7.37		21.72		22.39		24.78		5848.2		294.1010121	288.008	264.172		263.103
	2009/4/1 1:40 2009/4/1 1:45			3975.33 3975.73	21.72		22.43 22.39	5249.91 5249.91	24.74 24.74		5848.2 5848.5		294.0194348 294.0612431	287.960 287.968	264.090 264.091		263.103
	2009/4/1 1:45		7.44		21.72		22.43		24.74		5848.1		294.0622629	288.044	264.134		263.137 263.097
	2009/4/1 1:55			3976.19	21.68	4317.98	22.43		24.74		5848.4		294.1081501	287.961	264.174		263.130
	2009/4/1 2:00				21.72		22.39		24.74		5848.5		294.0224939	287.970	264.135		263.139
	2009/4/1 2:05	97.55	7.56	3976.13	21.72	4317.98	22.43	5250.32	24.74		5848.6		294.1050909	287.964	264.136		263.148
	2009/4/1 2:10		7.58		21.72		22.39	5250.71	24.78		5848.2		294.065322	288.013	264.177		263.108
	2009/4/1 2:15		7.58		21.68		22.43	5250.71	24.78		5848.1		294.1142684	287.967	264.179		263.102
	2009/4/1 2:20 2009/4/1 2:25		7.55 7.49	3975.73 3976.13	21.72		22.43 22.39	5250.32 5249.91	24.74 24.74		5848.5 5848.1		294.0673614 294.1091698	287.926 288.016	264.139 264.099		263.143 263.103
	2009/4/1 2:30			3976.19	21.68		22.39		24.74		5848.1		294.1152881	288.016	264.140		263.103
	2009/4/1 2:35				21.72		22.43	5250.32	24.74		5848.1		294.0694009	287.969	264.141		263.104
	2009/4/1 2:40	97.5	7.29	3976.19	21.68	4318.05	22.39	5250.32	24.74		5847.7	25.99	294.1163078	287.976	264.141		263.063
	2009/4/1 2:45		7.2	3976.13	21.72		22.39		24.74		5848.5		294.1101895	287.936	264.141		263.145
	2009/4/1 2:50				21.72		22.43		24.74		5848.5		294.0694009	287.969	264.182		263.145
	2009/4/1 2:55	97.49	7.09	3975.79	21.68	4317.98	22.43	5250.71	24.78		5848.5	5 25.99	294.0765389	287.970	264.182		263.146

※全水頭のヘッダー部分については、凡例として使用しており、各観測区間の情報を記載 堆積岩では地層区分など、花崗岩では観測区間の深度による表記を行っている。

6.1.2 SPMP システム

SPMP システムのデータ(DH-15 号孔のデータ)は、集録日時、地上での気圧、観測区間の圧力、バッテリー電圧及び地上での気温で構成されている(表 6.1.2-1 参照)。これらのデータから圧力を換算し、全水頭で表示している。パッカー区間の諸元は付録 1 に示す。

表 6.1.2-1 データファイルの書式 (SPMP システム)

	大気		圧力	,	ベッテリ	一 大気			
目時	red I	No.1 区間	No.2 区間	No.3 区間	電圧	温度		全水頭	
※ヘッダー	,,	110.1 区间	110.2 四周	110.5 区间	FE/11	11111/72			
	$ \leftarrow$	-	$\overline{}$	$\overline{}$	\sim		·		
, , ,	tmosphere	INTERVAL-1	INTERVAL-2	INTERVAL-3	Battery	Tempareture	No.1(E.L. 49.2∼−8.3 m)	No.2(E.L10.8~-76.8 m)	No.3(E.L78.3~-135.8 m)
	Pa	kPa①		kPa③		°C	(E.L.m)	(E.L.m)	(E.L.m)
2009/4/1 0:00	99.0044	163.4		162.46	12.18	9.45			129.7913096
2009/4/1 0:05	98.9969	163.4		162.46	12.18	9.41			129.7913096
2009/4/1 0:10	98.9927	163.41	162.93	162.46	12.17	9.36			129.7913096
2009/4/1 0:15 2009/4/1 0:20	98.9935 98.9951	163.41 163.38	162.94 162.91	162.47 162.46	12.17 12.17	9.32 9.28			129.7923293 129.7913096
2009/4/1 0:20	98.9906	163.38		162.45	12.17	9.28			129.7913096
2009/4/1 0:20	98.9822	163.39		162.45	12.17	9.24			129.7902899
2009/4/1 0:35	98.9787	163.39		162.45	12.17	9.13			129.7902899
2009/4/1 0:33	98.9785	163.4		162.46	12.17	9.09			129.7902899
2009/4/1 0:45	98.9732	163.4		162.46	12.17	9.04			129.7913096
2009/4/1 0:50	98.9622	163.39		162.45	12.16	9			129.7902899
2009/4/1 0:55	98.9696	163.39		162.45	12.16	8.96			129.7902899
2009/4/1 1:00	98.9617	163.39		162.45	12.15	8.94			129.7902899
2009/4/1 1:05	98.9589	163.39		162.46	12.15	8.89			129.7913096
2009/4/1 1:10	98.9423	163.4		162.45	12.15	8.85			129.7902899
2009/4/1 1:15	98.9329	163.41	162.93	162.46	12.15	8.81			129.7913096
2009/4/1 1:20	98.935	163.4		162.45	12.15	8.77			129.7902899
2009/4/1 1:25	98.9403	163.39	162.91	162.45	12.15	8.74	129.8861432	129.8371968	129.7902899
2009/4/1 1:30	98.9361	163.4	162.92	162.45	12.15	8.7	129.8871629	129.8382165	129.7902899
2009/4/1 1:35	98.9312	163.41	162.93	162.46	12.14	8.66	129.8881826	129.8392363	129.7913096
2009/4/1 1:40	98.9271	163.41	162.93	162.46	12.14	8.64	129.8881826	129.8392363	129.7913096
2009/4/1 1:45	98.9242	163.4		162.46	12.14	8.59	129.8871629	129.8382165	129.7913096
2009/4/1 1:50	98.9253	163.39	162.91	162.45	12.13	8.57		129.8371968	129.7902899
2009/4/1 1:55	98.918	163.38		162.44	12.13	8.53			129.7892702
2009/4/1 2:00	98.9061	163.39		162.44	12.13	8.51			129.7892702
2009/4/1 2:05	98.895	163.39		162.45	12.13	8.49			129.7902899
2009/4/1 2:10	98.8806	163.39		162.44	12.13	8.47			129.7892702
2009/4/1 2:15	98.8632	163.39		162.43	12.13	8.45			129.7882504
2009/4/1 2:20	98.851	163.41	162.91	162.45	12.12	8.43			129.7902899
2009/4/1 2:25	98.8432	163.42		162.45	12.12	8.41			129.7902899
2009/4/1 2:30	98.8428	163.39		162.45	12.12	8.39			129.7902899
2009/4/1 2:35	98.8402	163.42		162.45	12.12	8.37			129.7902899
2009/4/1 2:40	98.84	163.43		162.45	12.11	8.35		129.8392363	129.7902899
2009/4/1 2:45	98.834	163.42		162.45	12.11	8.32			129.7902899
2009/4/1 2:50	98.8384	163.42		162.45	12.11	8.3			129.7902899
2009/4/1 2:55 2009/4/1 3:00	98.83 98.8273	163.42 163.42		162.45 162.45	12.11 12.11	8.28 8.26			129.7902899 129.7902899
2009/4/1 3:00	98.8273	163.42		162.45	12.11	8.20 8.24		129.8392363	129.7902899
2009/4/1 3:03	98.8063	163.44		162.45	12.11	8.22			129.7902899
2009/4/1 3:10	98.8066	163.44		162.45	12.11	8.22			129.7902899
2009/4/1 3:19	98.8079	163.45		162.47	12.09	8.2			129.7923293
2009/4/1 3:25	98.8034	163.46		162.48	12.09	8.18			129.7923293
2009/4/1 3:30	98,7993	163.42		162.47	12.09	8.15			129.7923293
2009/4/1 3:35	98.7875	163.45		162.47	12.09	8.13			129.7923293
2009/4/1 3:40	98.7894	163.44		162.47	12.09	8.11			129.7923293
2009/4/1 3:45	00.,001		. 02.01			5.11	. 20.0012110	. 20.0 10200	
	98,7865	163.44	162.94	162.47	12.09	8.09	129.8912418	129.840256	129.7923293

6.2 フォルダ構造

それぞれの電子ファイルを収録しているフォルダ構造を以下に示す。

¥地下水の水圧長期モニタリングデータ集(広域)

DH-2

• DH-2_2009_all_data.xls

DH-7

• DH-7_2009_all_data.xls

DH-9

• DH-9_2009_all_data.xls

DH-11

• DH-11_2009_all_data.xls

DH-13

• DH-13_2009_all_data.xls

DH-15

 $\bullet \ DH\text{-}15_2009_all_data.xls$

7. まとめ

2009年度の地下水の水圧長期モニタリングデータについて整理した。また、整理したデータを電子ファイルとして取りまとめた。

今後も定期的にデータを取りまとめ、データの共有化を図るとともに、地下水流動解析結果の 妥当性確認のためのデータ取得に役立てる予定である。

参考文献

- 1) 原子力委員会: "原子力政策大綱" (2005).
- 2) 核燃料サイクル開発機構: "広域地下水流動研究年度報告書(平成 16 年度)", 核燃料サイクル開発機構, JNC TN7400 2005-013 (2005).
- 3) 糸魚川淳二: "瑞浪地域の地質", 瑞浪市化石博物館専報, No1, pp.1-50(1980).
- 4) Westbay Instruments Inc 現 Schlumberger company, http://www.westbay.com/
- 5) SOLEXPERTS AG, http://www.solexperts.com/

This is a blank page.

付録 1

パッカー区間の諸元

This is a blank page.

(1) MP システム

付録 1-1 各孔でのパッカー区間の装置構成(DH-2号孔)

211 2 . 3 10										11.日际同日	L. L. (III <i>)</i> ,	190.00
パッカー		区間深	美度 (m)			メシ゛ャメントホ゜・	小設置深度	水圧セン	サー深度	ボンビングボート設置深度		地質
区間番号	G. L.	(-m)	I	E. L. (1	m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	
0	0.0	~ 171.9	193.6	~	21. 7	ı	-	_	ı	-	_	堆積岩(土岐夾 炭累層基底礫)
1	172.9 ~	~ 203.3	20.7	~	-9.7	176.0	17. 6	176. 2	17. 4		_	土岐花崗岩
2	204.3 ~	~ 218.0	-10.7	~	-24. 4	204.8	-11. 2	-	-	1	_	土岐花崗岩
3	219.0 ~	~ 243.4	-25. 4	~	-49.8	218.6	-25. 0	_	_	-	_	土岐花崗岩
4	244.4 ~	~ 292.0	-50.8	~	-98. 4	245. 9	-52. 3	-	_	1	_	土岐花崗岩
5	293.0 ~	~ 301.1	-99. 4	~	-107.5	295. 6	-102.0	295. 8	-102. 2	-	_	土岐花崗岩
6	302.1 ~	~ 308.8	-108.5	~	-115. 2	303. 4	-109.8	_	-	305. 1	-111.5	土岐花崗岩
7	309.8 ~	~ 338.2	-116. 2	~	-144.6	311.4	-117.8	_	-	313.0	-119. 4	土岐花崗岩
8	339.2 ~	~ 356.0	-145.6	~	-162.4	340. 4	-146.8	_	-	-	_	土岐花崗岩
9	357.0 ~	~ 414.0	-163.4	~	-220. 4	359.6	-166.0	359.8	-166. 2	-	_	土岐花崗岩
10	415.0 ~	~ 444. 1	-221.4	~	-250.5	417. 4	-223.8	_	-	419.0	-225. 4	断層 (427.6-437.4mgb1)
11	445.1 ~	~ 458.5	-251.5	~	-264. 9	447. 4	-253.8	_	_	_	_	断層 (452. 2-458. 5mgb1)
12	459.5 ~	~ 501.1	-265.9	\sim	-307. 5	461.7	-268. 1	461.9	-268.3	_	_	土岐花崗岩

付録 1-2 各孔でのパッカー区間の装置構成(DH-7 号孔)

DH-7号孔 孔口標高 E. L. (m); 340.19

パッカー					メシ゛ャメントホ゜・	小設置深度	水圧セン	サー深度 ポンピングポート設置深度		地質		
区間番号	G. L. (-	-m)	Е	. L. (1	n)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	地 貝
1	438.0 ∼	444.5	-97.8	\sim	-104. 3	441.4	-101.2	441.6	-101. 4	442. 9	-102.7	土岐花崗岩
2	479.0 ~	485.5	-138.8	~	-145. 3	482. 4	-142.2	482.6	-142. 4	483. 9	-143. 7	土岐花崗岩
3	560.5 ∼	567.0	-220.3	~	-226. 8	563.8	-223.6	_	-	565. 3	-225. 1	土岐花崗岩
4	598.0 ∼	604.5	-257.8	~	-264. 3	601.3	-261.1	601. 5	-261. 3	602.8	-262.6	土岐花崗岩
5	614.5 ~	621.0	-274.3	\sim	-280.8	617.8	-277.6	_	-	619.3	-279. 1	土岐花崗岩
6	660.0 ~	666.5	-319.8	\sim	-326. 3	663.3	-323. 1	663. 5	-323.3	664.8	-324.6	土岐花崗岩
7	735.5 ~	742.0	-395.3	\sim	-401.8	738. 7	-398.5	_	_	740. 2	-400.0	土岐花崗岩
8	819.0 ~	825.5	-478.8	\sim	-485.3	822. 1	-481.9	_	_	823. 6	-483.4	土岐花崗岩
9	833.5 ~	840.0	-493.3	\sim	-499.8	836.6	-496. 4	_	_	838. 1	-497. 9	土岐花崗岩
10	857.0 ~	863.5	-516.8	~	-523.3	860. 1	-519.9	_	_	861.6	-521.4	土岐花崗岩
11	880.0 ~	886.5	-539.8	~	-546. 3	883.1	-542. 9	_	-	884. 6	-544. 4	土岐花崗岩
12	900.0 ~	906.5	-559.8	~	-566. 3	903. 1	-562. 9	_	_	904. 6	-564. 4	土岐花崗岩
13	964.5 ~	971.5	-624.3	\sim	-631.3	967. 5	-627.3	_	-	969. 0	-628.8	土岐花崗岩
14	995.5 ~	1002.0	-655.3	~	-661.8	998. 5	-658.3	_	-	1000.0	-659.8	土岐花崗岩

付録 1-3 各孔でのパッカー区間の装置構成(DH-9 号孔)

DH-9号孔 孔口標高 E.L. (m); 275.42

パッカー		区間深	K度 (m)			メシ゛ャメントホ゜	- 計設置深度	水圧センサー深度		ポンピングポート設置深度		地質
区間番号	G. L.	(-m)	H	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	地 貝
1	0.0	~ 62.0	275.4	\sim	213. 4	_	_	_	_	_	_	土岐花崗岩
2	62.9	~ 150.7	212.5	~	124. 7	66. 4	209. 0	66. 6	208.8	69. 6	205.8	土岐花崗岩
3	151.6	~ 246.8	123.8	~	28.6	155. 1	120.3	_	-	158. 2	117. 2	土岐花崗岩
4	247.7	~ 330.7	27.7	~	-55. 3	251. 2	24. 2	_	1	-	_	土岐花崗岩
5	331.6	~ 392.0	-56. 2	~	-116.6	335. 1	-59. 7	335. 3	-59. 9	_	_	土岐花崗岩
6	392.9	~ 501.9	-117.5	~	-226. 5	396.6	-121.2	_	-	399. 7	-124. 3	土岐花崗岩
7	502.8	~ 572.4	-227.4	~	-297.0	506.3	-230.9	_	_	_		土岐花崗岩
8	573.3	~ 681.6	-297.9	~	-406. 2	576.8	-301.4	_	_	579. 9	-304. 5	土岐花崗岩
9	682.5	~ 791.0	-407.1	~	-515. 6	686.0	-410.6	686. 2	-410.8	689. 1	-413. 7	土岐花崗岩
10	791.9	~ 894.5	-516.5	~	-619. 1	795. 4	-520.0	_	1	798. 6	-523. 2	土岐花崗岩
11	895.4	~ 1030.0	-620.0	~	-754.6	898. 9	-623.5	899. 1	-623. 7	902. 0	-626. 6	土岐花崗岩

付録 1-4 各孔でのパッカー区間の装置構成(DH-11 号孔)

DH-11号孔

孔口標高 E.L.(m); 339.88

パッカー		区間深	度 (m)			メシ゛ャメントホ゜・	一設置深度	水圧セン	サー深度	ポンピングポート設置深度		地質
区間番号	G. L. (-	m)	E	. L. (n	1)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	70 A
1	0.0 ~	110.4	339. 9	~	229. 5	-	_	_	1	_	_	_
2	111.3 ~	220.4	228.6	\sim	119.5	112. 4	227.5	_	1	_	_	_
3	221.3 ~	320.0	118.6	\sim	19.9	222. 3	117.6	_	1	_	_	_
4	320.9 ∼	390.6	19.0	\sim	-50.7	321.5	18.4	321.7	18. 2	_	_	土岐花崗岩
5	391.5 ∼	500.3	-51.6	~	-160.4	392. 1	-52. 2	_	-	_	_	土岐花崗岩
6	501.2 ∼	578.8	-161.3	~	-238.9	501.8	-161. 9	_	-	504. 9	-165.0	土岐花崗岩
7	579.7 ∼	665.9	-239.8	\sim	-326.0	580. 3	-240. 4	580. 5	-240.6	583. 4	-243. 5	土岐花崗岩
8	666.8 ~	714.5	-326. 9	\sim	-374.6	667. 4	-327. 5	_	1	_	_	土岐花崗岩
9	715.4 ~	782. 2	-375.5	\sim	-442.3	716. 0	-376. 1	716. 2	-376. 3	719. 1	-379. 2	土岐花崗岩
10	783.1 ∼	879.5	-443. 2	\sim	-539.6	783. 7	-443. 8	_	1	786. 8	-446. 9	土岐花崗岩
11	880.4 ~	980.1	-540.5	~	-640.2	881.0	-541. 1	881.2	-541. 3	_	_	土岐花崗岩
12	981.0 ∼	1012.0	-641.1	~	-672. 1	981.6	-641. 7	_	_	_	_	土岐花崗岩

付録 1-5 各孔でのパッカー区間の装置構成(DH-13 号孔)

DH-13号孔

孔口標高 E.L.(m); 277.51

											D. D. (III) ,	
パッカー		区間深	美度 (m)			メシ゛ャメントホ゜	ト設置深度	水圧セン	サー深度	ポンピングポ	─ト設置深度	地質
区間番号	G. L. (-	-m)	H	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	G. L. (-m)	E. L. (m)	70 %
1	0.0 ~	55. 1	277.5	~	222. 5	1	_	_	_	_	_	1
2	56.1 ∼	110.9	221.5	~	166.6	59. 5	218. 0	_	_	_	_	ı
3	111.8 ~	182. 4	165. 7	~	95. 1	112.0	165. 5	_	_	_	_	ı
4	183.3 ∼	252. 3	94. 2	~	25. 2	183. 5	94. 0	183. 7	93.8	186. 4	91.1	土岐花崗岩
5	253.2 ∼	323. 2	24. 3	~	-45. 7	253. 4	24. 1	_	_	_	_	土岐花崗岩
6	324.1 ∼	407.1	-46. 6	~	-129.6	324. 3	-46.8	_	_	327.3	-49.8	土岐花崗岩
7	408.0 ∼	475.1	-130.5	~	-197.6	408. 2	-130.7	_	_	_	_	土岐花崗岩
8	476.0 ∼	546. 5	-198.5	~	-269.0	476. 2	-198.7	476. 4	-198. 9	479. 2	-201.7	土岐花崗岩
9	547.4 ∼	617. 5	-269.9	~	-340.0	547.6	-270. 1	_	_	_	_	土岐花崗岩
10	618.4 ~	712. 5	-340.9	~	-435.0	618.6	-341.1	_	_	_	_	土岐花崗岩
11	713.4 ~	783. 9	-435.9	~	-506.4	713.6	-436. 1	713. 8	-436. 3	716. 5	-439.0	土岐花崗岩
12	784.8 ∼	854. 4	-507.3	\sim	-576. 9	785. 0	-507.5	_	_	_	_	土岐花崗岩
13	855.3 ∼	925. 9	-577.8	\sim	-648. 4	855. 5	-578.0	_	_	_	_	土岐花崗岩
14	926.8 ∼	991.4	-649.3	\sim	-713.9	927.0	-649.5	_	_	_	_	土岐花崗岩
15	992.3 ∼	1015.0	-714.8	~	-737.5	994.0	-716.5	994. 2	-716. 7	997.0	-719.5	土岐花崗岩

(2) SPMP システム

付録 1-6 各孔でのパッカー区間の装置構成(DH-15 号孔)

DH-15号孔 孔口標高 E.L.(m); 213.23 パッカー 区間番号 区間深度 (m) 水圧センサー深度 E.L.(m) 地 質 G.L. (-m)堆積岩(土岐夾炭 164.0 \sim 221.5 113. 225 49.2-8.3 累層基底礫) 2 224.0 ~ 290.0 -10.8 -76. 8 113. 225 土岐花崗岩 3 291.5 ~ 349.0 -78.3 -135.8 113. 225 土岐花崗岩 350.5 ∼ 423.0 -137.3 \sim -209.8 113.225土岐花崗岩 113. 225 5 424.5 \sim 545.0 -211.3 \sim -331.8 土岐花崗岩 546.5 $\sim \overline{602.0}$ 113.225土岐花崗岩 6 -333.3 ∼ -388.8 603.5 \sim 700.0 -390.3 ∼ -486.8 113. 225 土岐花崗岩 7 701.5 ~ 861.0 -488. 3 ~ −647. 8 113. 225 8 土岐花崗岩 -755. 8 113. 225 862.5 \sim 969.0 -649.3 土岐花崗岩 9 ~ 1010.0 10 970.5 -757.3 -796. 8 113. 225 土岐花崗岩

This is a blank page.

付録2

各孔における地下水の水圧長期モニタリングの状況

This is a blank page.

各孔における地下水の水圧長期モニタリングの状況一覧表(2009/4/1~2010/3/31) 付録 2-1

孔名	観測区間	異常なし	メンテナンス	異常値等	データ欠損	引き抜き再設置	備考
		$2009/4/1 \sim 2009/8/19$					
DH-2	No. $1\sim12$					2009/8/20	
		$2009/8/21 \sim 2010/3/31$					
DH-15	No. $1 \sim 10$	$2009/4/1\sim2010/3/31$					
		$2009/4/1 \sim 2009/8/16$					
DH-7	No. $1 \sim 3, 5$					2009/8/17	
		2009/8/18~2010/3/31					
		2009/4/1~2009/7/7					
						2009/7/8	
6-HQ	No. 2, 5, 9, 11	$2009/7/9\sim2009/11/20$					
					$2009/11/21 \sim 2009/12/17$		採水作業に伴う欠測
		$2009/12/18 \sim 2010/3/31$					
		$2009/4/1\sim2009/7/20$					
DH-11	No. 1, $3\sim 5$					$2009/7/21\sim2009/7/23$	
		$2009/7/24\sim2010/3/31$					
		$2009/4/1\sim2009/7/3$					
						2009/7/4~2009/7/5	
DH-13	No. 1, 4, 5, 7	$2009/7/6\sim2009/11/13$					
					$2009/11/14 \sim 2009/12/19$		採水作業に伴う欠測
		$2009/12/20\sim 2010/3/31$					

This is a blank page.

国際単位系(SI)

表 1. SI 基本単位

基本量	SI 基本単位							
本半里	名称	記号						
長 さ	メートル	m						
質 量	キログラム	kg						
時 間	秒	s						
電 流	アンペア	A						
熱力学温度	ケルビン	K						
物質量	モル	mol						
光 度	カンデラ	cd						

表2. 基本単位を用いて表されるSI組立単位の例

組立量	SI 基本単位	SI 基本単位		
和立里	名称	記号		
面	積 平方メートル	m^2		
体	積 立法メートル	m^3		
速 さ , 速	度メートル毎秒	m/s		
加速	度メートル毎秒毎秒	m/s^2		
波	数 毎メートル	m ⁻¹		
密度, 質量密	度キログラム毎立方メートル	kg/m ³		
面 積 密	度キログラム毎平方メートル	kg/m ²		
比 体	積 立方メートル毎キログラム	m³/kg		
電 流 密	度アンペア毎平方メートル	A/m ²		
磁界の強	さアンペア毎メートル	A/m		
量濃度 ^(a) ,濃	度 モル毎立方メートル	mol/m ³		
質 量 濃	度キログラム毎立法メートル	kg/m ³		
輝	度 カンデラ毎平方メートル	cd/m ²		
屈 折 率	(b) (数字の) 1	1		
比 透 磁 率	(b) (数字の) 1	1		

- (a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度
- (albatine concentration) ともよばれる。 (substance concentration) ともよばれる。 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

組立量	衣 3.	固有の名称と記さ	アじ衣さ		
Y				SI 組立単位	
平 面 角 ラジアン ^(b) rad 1 (b) m/m m²m² m²	組立量	夕新	和品	他のSI単位による	SI基本単位による
立 体 角 ステラジアン(b) sr ^(c) Hz			記り	表し方	表し方
周 波 数				1 (в)	
カ			sr ^(c)	1 ^(b)	
正 カ , 応 カ パスカル	周 波 数	ヘルツ ^(d)	Hz		s^{-1}
エネルギー, 仕事、熱量ジュール	力	ニュートン	N		m kg s ⁻²
仕事率,工率,放射東ワット で C	圧 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
電 荷 ,電 気 量 クーロン	エネルギー, 仕事, 熱量	ジュール	J	N m	m ² kg s ⁻²
電位差(電圧),起電力ボルト	仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
静 電 容 量 ファラド F C/V $m^2 kg^{-1} s^4 A^2$ 電 気 抵 抗 オーム Ω V/A $m^2 kg s^3 A^2$ $m^2 kg s^2 A^1$ $m^2 kg s^2 A^2$ $m^2 kg s^2$	電 荷 , 電 気 量	クーロン	C		s A
電 気 抵 抗 オーム Ω V/A $m^2 kg s^3 A^2$ $m^2 kg s^2 A^{1}$ $m^2 kg s^2 A^{2}$ $m^2 $	電位差(電圧),起電力	ボルト	V	W/A	m ² kg s ⁻³ A ⁻¹
コ ン ダ ク タ ン ス ジーメンス	静 電 容 量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
磁 東 ウエーバ Wb Vs $m^2 \log s^2 A^{-1}$		オーム	Ω	V/A	m ² kg s ⁻³ A ⁻²
磁 東 密 度テスラ T Wb/m² $kg s^2 A^{ 1}$ $A 2 2 4 2 2$	コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
イ ン ダ ク タ ン ス へンリー せ ル シ ウ ス 温 度 セルシウス度 $^{(e)}$ し $^{(e)}$ に	磁東	ウエーバ	Wb	Vs	m ² kg s ⁻² A ⁻¹
セルシウス度 ^(c)		テスラ	Т	Wb/m ²	$kg s^{-2} A^{-1}$
光 東ルーメン lm lx cd sr(c) lm/m² cd m² cd sr(c) lm/m² 照 ルクス lx lm/m² lm² cd sr(c) lm/m² s² cd		1 * /		Wb/A	m ² kg s ⁻² A ⁻²
照 度 ルクス lx lm/m² m² cd s¹ wクレル (d) Bq lm/m² graght http://www.scales.com/s² cd s¹ wow.scales.com/s² cd s¹ wow.scales.com/s² cd s¹ wow.scales.com/s² cd s² wow.scales.com/s²		セルシウス度 ^(e)	$^{\circ}$ C		K
放射性核種の放射能 (f) ペクレル (d) Bq gy gy線量, 比エネルギー分与, カーマ gy J/kg m² s² 2			lm	cd sr ^(c)	
吸収線量, 比エネルギー分与, カーマ 幼島半場長 周河線最半長 五頃			lx	lm/m ²	
吸収線量, 比エネルギー分与, カーマ 場景平景 周辺線景平景 五頃	放射性核種の放射能 (f)	ベクレル ^(d)	Bq		s^{-1}
組長半長 国辺線長半長 大向		ガレイ	Gv	.I/kα	m ² a ⁻²
線量当量,周辺線量当量,方向 2 2 2		, ,	Gy	o/kg	III 8
	線量当量, 周辺線量当量, 方向	シーベルト ^(g)	Sv	J/kg	m ² s ⁻²
性線量当量,個人線量当量 ジーベルト *** SV J/Rg m s	性線量当量,個人線量当量	シーベルト、。	۵V	o/Kg	m s
酸素 活性 カタール kat s ⁻¹ mol mol mol mol mol mol mol mol mol		-			

- 酸素活性|カタール kat | s¹mol (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはやコヒーレントではない。
 (b) ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
 (e) 池外学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している(d) へルソは周頻現象についてのみ、ペクレルは放射性接種の統計的過程についてのみ使用される。(d) セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの単位の大きなは同である。したがって、温度差や温度間隔を表す数値はとちらの単位で表しても同じである。(f) 放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。(g) 単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表 4 単位の由に固有の名称と記号を含むSI組立単位の例

表 4 . 単位 0)中に固有の名称と記号を含		立の例
	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘 度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
力のモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 力	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m ²	kg s ⁻³
熱容量,エントロピー		J/K	m ² kg s ⁻² K ⁻¹
比熱容量,比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^2 s^{-2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
	クーロン毎立方メートル	C/m ³	m ⁻³ sA
	クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	m ⁻³ kg ⁻¹ s ⁴ A ²
透磁率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	m ² kg s ⁻² mol ⁻¹
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	m ² kg s ⁻² K ⁻¹ mol ⁻¹
照射線量 (X線及びγ線)	クーロン毎キログラム	C/kg	kg⁻¹sA
吸 収 線 量 率	グレイ毎秒	Gy/s	$m^2 s^{-3}$
放射 強 度	ワット毎ステラジアン	W/sr	m ⁴ m ⁻² kg s ⁻³ =m ² kg s
放射輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

	表 5. SI 接頭語									
ľ	乗数	接頭語	記号	乗数	接頭語	記号				
	10^{24}	ヨ タ	Y	10 ⁻¹	デ シ	d				
	10^{21}	ゼタ	Z	10 ⁻²	センチ	c				
	10^{18}	エクサ	E	10 ⁻³	ミリ	m				
	10^{15}	ペタ	P	10 ⁻⁶	マイクロ	μ				
	10^{12}	テラ	Т	10-9	ナーノ	n				
	10^{9}	ギガ	G	10-12	ピコ	р				
	10^{6}	メガ	M	10 ⁻¹⁵	フェムト	f				
	10^{3}	丰 口	k	10 ⁻¹⁸	アト	a				
	10^{2}	ヘクト	h	10 ⁻²¹	ゼプト	z				
	10^1	デカ	da	10^{-24}	ヨクト	у				

表6. SIに属さないが、SIと併用される単位						
名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
目	d	1 d=24 h=86 400 s				
度	۰	1°=(п/180) rad				
分	,	1'=(1/60)°=(п/10800) rad				
秒	"	1"=(1/60)'=(п/648000) rad				
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²				
リットル	L, l	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³				
トン	t	1t=10 ³ kg				

表7. SIに属さないが、SIと併用される単位で、SI単位で

名称				記号	SI 単位で表される数値				
電	子 オ	ベル	ト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J				
ダ	ル	卜	ン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg				
統-	一原子	質量单	单位	u	1u=1 Da				
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m				

表8. SIに属さないが、SIと併用されるその他の単位 記号 SI 単位で表される数値 名称 1 bar=0.1MPa=100kPa=10⁵Pa bar 水銀柱ミリメートル nmHg 1mmHg=133.322Pa オングストローム $1 \text{ Å=0.1nm=100pm=10}^{-10} \text{m}$ Å 海 里 1 M=1852m Μ $1 b=100 \text{fm}^2=(10^{-12} \text{cm})2=10^{-28} \text{m}^2$ バ b kn 1 kn=(1852/3600)m/s ネ Np SI単位との数値的な関係は、 対数量の定義に依存。 11 В ル dB -

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値
エルグ	erg	1 erg=10 ⁻⁷ J
ダ イ ン	dyn	1 dyn=10 ⁻⁵ N
ポアズ	P	1 P=1 dyn s cm ⁻² =0.1Pa s
ストークス	St	1 St =1cm ² s ⁻¹ =10 ⁻⁴ m ² s ⁻¹
スチルブ	sb	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²
フ ォ ト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx
ガル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²
マクスウェル	Mx	1 Mx = 1G cm ² =10 ⁻⁸ Wb
ガ ウ ス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T
エルステッド ^(c)	Oe	1 Oe ≙ (10³/4π)A m ⁻¹

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」は対応関係を示すものである。

表10 SIに届さないその他の単位の例

	表10. SIに属さないその他の単位の例							
名称 記号					記号	SI 単位で表される数値		
牛	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
ν	ン	卜	ゲ	ン	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$		
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy		
ν				ム	rem	1 rem=1 cSv=10 ⁻² Sv		
ガ		ン		7	γ	1 γ =1 nT=10-9T		
フ	x		ル	3		1フェルミ=1 fm=10-15m		
メー	ートル	系	カラ:	ット		1メートル系カラット = 200 mg = 2×10-4kg		
卜				ル	Torr	1 Torr = (101 325/760) Pa		
標	準	大	気	圧	atm	1 atm = 101 325 Pa		
力	口		IJ	ı	cal	1cal=4.1858J(「15℃」カロリー),4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)		
3	ク		U	ン		1 u =1um=10 ⁻⁶ m		