

超深地層研究所計画における表層水理観測データ集

-2008年度-

Annual Data Compilation of the Water Balance Observation in the Mizunami Underground Research Laboratory Project (MIU Project)
- For the Fiscal Year 2008 -

武田 匡樹 佐藤 敦也 竹内 竜史 Masaki TAKEDA, Atsuya SATOU and Ryuji TAKEUCHI

> 地層処分研究開発部門 東濃地科学研究ユニット

Tono Geoscientific Research Unit Geological Isolation Research and Development Directorate

February 2012

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 7319-1195 茨城県那珂郡東海村白方白根 2 番地 4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2012

超深地層研究所計画における表層水理観測データ集 -2008 年度 -

日本原子力研究開発機構 地層処分研究開発部門 東濃地科学研究ユニット

武田 匡樹 佐藤 敦也* 竹内 竜史

(2011年5月10日受理)

東濃地科学研究ユニットでは、超深地層研究所計画の一環として、地下水流動解析における上部境界条件を与える岩盤浸透量を水収支解析によって算出すること、水理地質構造モデルのキャリブレーションに必要なデータを取得することおよび研究坑道掘削に伴う浅層地下水環境の変化を把握することを目的として、表層水理観測を実施している。

本観測では雨雪量,蒸発散量算出のための気象要素,河川流量,地下水位および土壌水分を正馬川流域,正馬川上流域,正馬川モデル流域,および瑞浪超深地層研究所用地で観測している。

本報告では、2008 年度の正馬川流域、正馬川モデル流域、および研究所用地で得られた河川流量、雨雪量、気象観測データなどについて、欠測や異常値を示すデータに対して補正・補完を行うとともに、補正・補完前後のデータを取りまとめた。

また、補正・補完前のデータを「観測データセット」、補正・補完後のデータを「補正・補完データセット」としてとりまとめ、DVD-ROM 化した。

東濃地科学センター (駐在): 〒509-6132 岐阜県瑞浪市明世町山野内 1-64

Annual Data Compilation of the Water Balance Observation in the Mizunami Underground Research Laboratory Project (MIU Project)
- For the Fiscal Year 2008-

Masaki TAKEDA, Atsuya SATOU* and Ryuji TAKEUCHI

Tono Geoscientific Research Unit
Geological Isolation Research and Development Directorate
Japan Atomic Energy Agency
Akiyo-cho, Mizunami-shi, Gifu-ken

(Received May 10, 2011)

At the Tono Geoscientific Research Unit, the subsurface water balance observation has been carried out in order to estimate groundwater recharge rate for setting the upper boundary conditions on groundwater flow simulation and to obtain data for the calibration of the hydrogeological model.

In the subsurface water balance observations, meteorological data, river flow rate, groundwater level and soil moisture to estimate precipitation and evapotranspiration have been observed in the Shoba river area, the Shoba river model area and MIU Construction Site.

After missed data and data error in the monitoring data from the fiscal year 2008 were complemented or corrected, the data was compiled in data set.

Both of the observation data and compiled data are included in the data set, and the data set is recorded on DVD-ROM.

Keywords: Mizunami Underground Research Laboratory (MIU) Project, Subsurface Water Balance, Precipitation, Evapotranspiration, River Flow Rate, Groundwater Table, Soil Moisture

^{*} Kumagai Gumi Co., Ltd.

JAEA-Data/Code 2011-007

目次

1.	はじめに1
2.	概要
	2.1 目的
	2.2 観測機器の仕様と諸元2
3.	表層水理観測データ整理方法8
	3.1 観測データセット8
	3.2 補正・補完データセット8
	3.3 補正・補完方法9
4.	観測結果19
	4.1 雨雪量
	4.2 蒸発散量
	4.3 河川流量
	4.4 地下水位
	4.5 土壌水分24
	4.6 岩盤浸透量の算出27
5.	電子ファイルの様式28
	5.1 物理量への変換式28
	5.2 補正・補完箇所の表示31
	5.3 フォルダ構造32
6.	まとめ
参考	考文献

JAEA-Data/Code 2011-007

CONTENTS

1.	Introduction · · · · · 1
2.	Outline of the subsurface water balance observation ······2
	2.1 Purposes · · · · · 2
	2.2 Specifications of the observation equipment ······2
3.	Reduction method of observation data ······8
	3.1 Observation data sets ·····8
	3.2 Correction data sets / Complement data sets ······8
	3.3 Correction/Complement methods ·····9
4.	Observation results · · · · · 19
	4.1 Precipitation
	4.2 Evapotranspiration ······20
	4.3 River flow rate
	4.4 Groundwater table ······22
	4.5 Soil moisture ————————————————————————————————————
	4.6 Estimated recharge rate · · · · · · 27
5.	The style of the electronic file · · · · · 28
	5.1 Conversion type to the quantity of physics28
	5.2 The indication of the Correction/Complement parts · · · · · · 31
	5.3 Folder structure ·······32
6.	Organizations · · · · · 37
Rei	ferences ······38

1. はじめに

東濃地科学研究ユニットでは、超深地層研究所計画 1)の一環として、地下水流動解析において上部境界条件を与える岩盤浸透量を水収支解析によって算出すること、および水理地質構造モデルのキャリブレーションに必要なデータを取得することを目的として、表層水理観測システムを観測流域に設置し、表層水理観測を実施している 2),3)。

表層水理観測データ(以下,観測データ)には、雨雪量データ,河川流量データ,地下水位観測データ,土壌水分観測データおよび蒸発散量算出のための気象観測データがある。これらの観測データに対し、補正・補完を行い、水収支解析を実施することで岩盤浸透量を算出している。

観測データの補正・補完に関しては,1989年度~2000年度の表層水理観測年報 4,2001年度~2003年度の表層水理観測年報 5,および 2004年度~2007年度の表層水理観測年報 6 (以下、観測年報という)において補正・補完方法が整理されている。

本データ集では、上記の観測年報の補正・補完方法に基づき、2008年度の研究所用地、 正馬川流域および正馬川モデル流域の観測データの補正・補完を行った。また、補正・補 完後のデータを示すとともに、水収支解析を実施することで、正馬川流域および正馬川モ デル流域の2008年度の岩盤浸透量を算出した。

なお、本データ集では観測データを「観測データセット」および「補正・補完データセット」として整理し、データの取り扱いや利用の簡便性の向上を図るため、DVD-ROM 化を行った。

2. 概要

2.1 目的

本データ集では、今後、各データの見直しが必要となる可能性を考慮するとともに、補正・補完後のデータから元データである表層水理観測データまで遡れることを目的として、2008年度に表層水理観測で得られた雨雪量、蒸発散量、河川流量、地下水位、土壌水分の整理とデジタル化を行い、観測年報 4^{1,5),6)}に記載された方法に基づき、補正・補完の作業を行う。また、補正・補完を行ったデータを用いた水収支解析を実施することで 2008年度の岩盤浸透量を算出し、これらの結果をとりまとめる。

2.2 観測機器の仕様と諸元

表層水理観測は、観測地点の地形や標高、観測機器周辺の木々等により変化する気象 条件を考慮し、気象観測機器、雨雪量計、河川流量計、地下水位計および土壌水分計を 用いて行っている。

河川流量計は河川流量の変化に対応するため大小2種類のパーシャルとパーシャルの水位を観測するための測水井戸で構成されている。河川流量はパーシャルの水位と流量の関係式から算出している。図 2.1 に河川流量計の設置状況を、図 2.2 にパーシャルの概念図を示す。

観測機器の位置図を図 2.3,観測項目一覧表を表 2.1,表層水理観測機器の仕様と諸元を表 $2.2\sim2.6$ に示す。

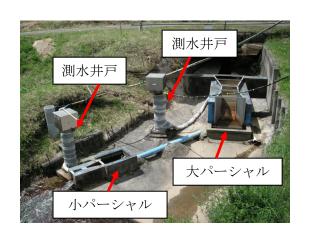


図 2.1 河川流量計の設置状況

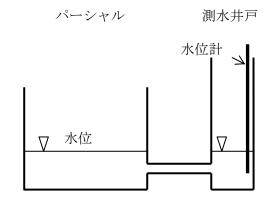
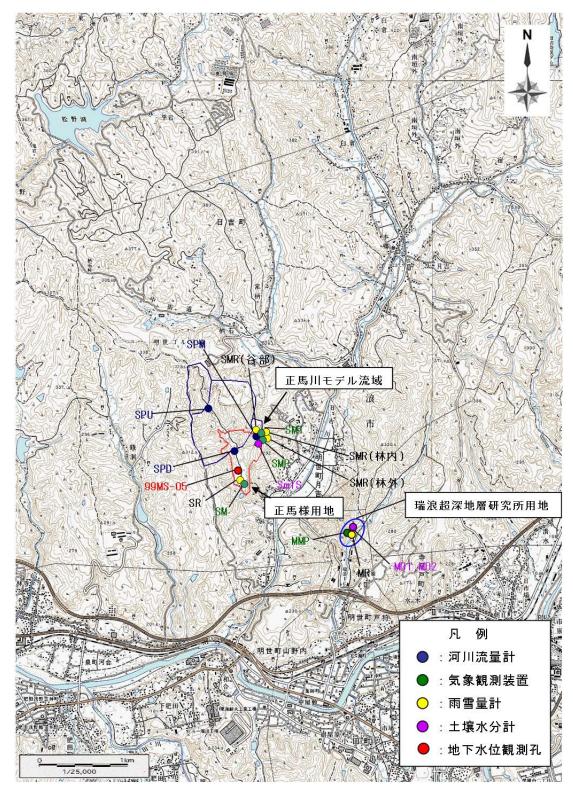



図 2.2 パーシャルによる 水位観測の概念図

国土地理院発行 1/25,000 地形図「土岐」使用

図 2.3 超深地層研究所計画 観測地点位置図 (図中の地点名称は表-2.1~2.6 を参照)

0. 2m, 0. 4m, 0. 6m, 1. 0m, 3. 0m, 5. 0m, 7. 5m, 1 0m, 12. 5m, 15. 0m 0. 2m, 0. 4m, 0. 6m, 1. 0m, 1. 5m, 2. 0m, 3. 0m, 3. 0m, 2. 0m 瑞浪層群明世累層基底礫岩層 Ш0 2m, 0. 4m, 0. 7m, 1. 3m, 2. 瀬戸層群土岐砂礫層 瀬戸層群土岐砂礫層 瑞浪層群明世累層 瑞浪層群明世累層 瑞浪層群明世累層 2m, 0. 4m, 0. 7m 熱流量 業ペミラップ • • 日射量 日照量 蒸発散量 • • 放 数 支 • • • 湿度 • × 2 • • • 観測項目一覧表 • × 2 • • • • × 2 風風風 • • • 土壌水分 • • • 2.1 地下水位 • 表 原三指帽 医有单 正馬川モデル流域タ フ馬川モデル流域タ エ馬川モデル流域林内 正馬川モデル流域林内 正馬川モデル流域林内 面響量計(SMR林内) 正馬川モデル流域林外 面響量計(SMR林外) 正馬川モデル流域林外 面響量計(SMR林外) 正馬川モデル流域谷部 面高量計(SMR林外) 正馬川モデル流域谷部 正馬川モデル流域名部 工壌水分計2 (5深度) 正馬様気象観測装置 (SM) 正 (SM) 正 (SM) 正 (SP) 正 馬川下流河川流量計 (SP) 正 (SP) 研究所用地内気象観測 装置 研究所用地内雨雪量計 土壌水分計1(3深度) 観測装置の名称 SmTP (12深度) SmTS (8深度) 99MS-05 97MS-02 98MS-03 97MS-01 98MS-04 04ME01 下域:1.41 日消:0.84 上消:0.27 . 0. 535 : 0. 155 0.015 浜域恒ケ(夏) 全上 域流 约1.5km **쵠1.5km** 約100m 立坑からの距離 正馬川モデル 流域 1998/12~ **毋究严用地内** 2005/3∼ 正馬榛消域 1989/4~ 設置流域名

- 4 -

表 2.2 表層水理観測機器の仕様と諸元 気象観測装置

観測点名	地点標高(m)	観測機器名	製造元	型다	地上高(m)	地上高(m) 地上高の基準	観測項目	測定範囲	記録範囲	センサー測定誤差	ロガー記録誤差	測定条件	備考
							10分平均風向		0~540°	±5%以内(風速2m/sの時)	同左		
		風車型風向風速計	㈱池田計器製作所	KE-500P	5.500	5.500 プロペラ中央	10分平均風速	s/m0/~0	2~60m/s	±0.5m/s以内(風速2~10m/s以内)±5%以内(風速	同左		
下馬梯乞參報꾈裝置	216.51	令温計	無池田計器製作所	PT-100S	1.500	中中一十八十 0051	10分平均包温	-20~+40°	-20~+40°	IS 05総(+05%)	+05°		
WS		古世 県	据当田 計 器 数 作 序	HM-100S	2,150	2.150 センキー中中	10分平均相対消車		0~100%	フルスケール(F.S.)の+5%		0~40°C	
		10 + 0 + 0 + 0			1 7	H	瞬間純放射量	kw/m²	-0.4~1.6kw/m²	12%	スケール(F.S.)の±0.5%	-10~+40°C	
		放射收之計	横刈電十機 	H-ZZ1	006.1	ラカンナー国 コーエンナー国	日積算純放射量	-1~4MJ/m³	-1∼4MJ/mੈ	±5%			
	216.16	216.16 蒸発計(蒸発パン)	㈱池田計器製作所	EVP-100、LR- 100S-P	0.350	0.350 受水口	水面蒸発量	0~1000mm	0~1000mm	±1mm	同左		
							10分平均風向	0~360°	0~540°	±3°	同左	-20~+50°C	
		風向風速計(上部)	横河電子機器㈱	A7401-20-00	18.000	18:000 プロペラ中央	10分平均風速	0.4~90m/s	0~20m/s	5m/s以下のとき±0.3m/s、 5m/sを越えたとき±5%	同左		
		気温計(上部)	横河電子機器㈱	E-734-00	18.000	18:000 センサー中央	10分平均気温	-20~+20°	-20~+20°	JIS A級(JIS C1604-1989)	±0.5°C		
		露点計(上部)	横河電子機器㈱	E-771-11	18.000	18:000 センサー中央	10分平均相対温度	-40~+60°C	0~100%	±0.5%F.S.	∓2 %		
1 H H H H H H H H H H H H H H H H H H H		10 + 41	(神田神 / 単二)井			H #	瞬間純放射量	-0.4∼1.6kw/m³	-0.4∼1.6kw/m³	∓2%	スケール(F.S.)の±0.5%	-10~+40°C	
日記ニイナンミタンー CMT	290.60	IX 39 4X X BT	(現) 用工物部体	177	000:71	17.500 センソー国	日積算純放射量	-1∼4MJ/m²	-1∼4MJ/m³	±5%	フルスケール(F.S.)の±0.5%		
I MO							10分平均風向	0~360°	0~540°	±3°	同左		
		風向風速計(下部)	横河電子機器㈱	A7401-20-00	15.500	15.500 プロペラ中央	10分平均風速	0.4∼90m/s	0~20m/s	5m/s以下のとき±0.3m/s、 5m/sを越えたとき±5%	同左		
		気温計(下部)	横河電子機器㈱	E-734-00	15.500	15:500 センサー中央	10分平均気温	-20~+20°	-20~+20°	JIS A級(JIS C1604-1989)	±0.5°C		
		露点計(下部)	横河電子機器㈱	E-771-11	15,500	15:500 センサー中央	10分平均相対湿度	-40~+60°C	0~100%	±0.5%F.S.	±5%		
		熱流計	横河電子機器㈱	H-271	-0.200	-0.200 センサー面	地中熱流量	−0.4~1.6kw/m³	−0.4~1.6kw/mੈ	∓5%	同左	-20∼+120°C	
							10分平均風向	0~360°	0~540°	±3°	同左	−20~+50°C	
		風向風速計	横河電子機器㈱	A7401-20-00	6.000	6.000 プロペラ中央	10分平均風速	0.4~90m/s	0~20m/s	5m/s以下のとき±0.3m/s、 5m/sを越えたとき±5%	同左		
11年 11年	201 72	20172 今于唐代十口年早		1-2199	4600	图一井、井 009	瞬間日射量	0~1.4kw/m³	0~2kw/m²	±5%	フルスケール(F.S.)の±0.5%		
日毛 コトノアルダイーフ SMD	27:167	土人电风机口约引	供用 电丁烷硫化	77.17	4.000	ドノソー国	日積算日射量	ı	0~5MJ/m³	_	フルスケール(F.S.)の±0.5%		
Linio	_	放射収支計	㈱池田計器製作所	SKI-FM	3.900	3.900 センサー面	1時間積算放射収支	−1.25~3.75MJ/m ³	−1.25~3.75MJ/m ³	±3°	同左	-15~+40°C	
		気温計	横河電子機器㈱	E-734-00	9.100	9.100 センサー中央	10分平均気温	−20~+20°	−20 <i>∽</i> +20°	JIS A級 (JIS C1604-1989)	±0.5°C		
		露点計	横河電子機器㈱	E-771-11	1.500	1.500 センサー中央	10分平均相対湿度	-40~+60°C	0~100%	±0.5%F.S.	±5%		
	291.43	291.43 蒸発計(蒸発パン)	横河電子機器㈱	D-211	0.470 上縁	上縁	水面蒸発量	0~100mm	0~100mm	±1mm			
							10分平均風向	0~360°	0~540°	±3°	同左	-20∼+50°C	
		風向風速計	横河電子機器㈱	A7401-20-00	5.300	5.300 プロペラ中央	10分平均風速	0.4~90m/s	0~20m/s	5m/s以下のとき±0.3m/s、 5m/sを越えたとき±5%	同左		
		日照計	横河電子機器㈱	H0621-10	4.350	4.350 センサー面	日積算日照時間	I	0~10時間	フルスケール(F.S.)の±0.5%	同左		
			(料品学 / 山川) 幹	0010	4 250	# 1	瞬間日射量	0~1.4kw/m³	0~2kw/m³	フルスケール(F.S.)の±0.5%	同左		
研究所用地内気象観測装置	363.03	363.03 土へ車ベエロ判別	似州 电丁饭站你	77.17	4.200	E-77-III	日積算日射量	0~5MJ/m²	0~5MJ/m²	フルスケール(F.S.)の±0.5%	同左		
MMP		拉车门女车	年 名 弊 乙 事 引 群	1-221	2 530	里一井、十一里	瞬間純放射量	−0.4~1.6kw/m²	−0.4~1.6kw/m²	±5%	スケール(F.S.)の±0.5%	-10~+40°C	
		ルメッセス	ገጹ/ግ ነዜ ፲ ገ፠ ከድፕሎ	177	0000	E	日積算純放射量	-1∼4MJ/m³	-1∼4MJ/m³	フルスケール(F.S.)の±0.5%	同左		
		気温計	横河電子機器㈱	E-734-00	2.110	2.110 センサー中央	10分平均気温	-50∼+50°	-50~+50°	JIS A級(JIS C1604-1989)	±0.5°C		
		響点計	横河電子機器㈱	E-771-11	1.970	1.970 センサー中央	10分平均湿度		0~100%	±0.5%F.S.	±5%	4	
		熱流計	横河電子機器㈱	H-271	-0.200	-0.200 センサー国	地中熱流量	v/m²	-0.4~1.6kw/m [*]	±5%		-20~+120°C	
	76 235	362 27 茶祭計(茶祭パン)	類別學工學別數	D-211	0.375 上級	一線	大面基条曲	0~100mm	0~100mm	+1mm	回左		

表 2.3 表層水理観測機器の仕様と諸元 雨雪量計

観測点名	地点標高(m)	観測機器名	製造元	型式	地上高(m)	地上高の基準	観測項目	測定範囲	記錄範囲	センサー測定誤差	ロガ一記録誤差	測定条件	備考
正馬様コシニティー雨雪量計 (SR)		216.51 転倒ます型雨雪量計	㈱池田計器製作所	RH-5	0.985	0.985 受水口	事重與	I	1	∓3%	同左	I	测定单位.0.5mm
研究所用地内雨雪量計 (MR)	191.61	191.61 いっ水式転倒ます式雨量計	横河電子機器㈱	B-071-00	1.000	1.000 受水口	車車	I	I	20mm以下のとき±0.5mm以 内、100mm以下の連続した 雨量のとき±3%	同左	I	測定単位.0.5mm
正馬川モデル流域林内 雨雪量計 (SMR林内)	291.02	29102 いっ水式転倒ます式雨量計	横河電子機器㈱	B-071-00	2.485	2.485 受水口	事長與	ı	0~29999mm	20mm以下のとき±0.5mm以 内、100mm以下の連続した 雨量のとき±3%	同左	I	測定単位.0.5mm
正馬川モデル流域林外 雨雪量計 (SMR林外)	292.19	292.19 いつ水式転倒ます式雨量計	横河電子機器㈱	B-071-00	2.475	2.475 受水口	事事	I	1	20mm以下のとき±0.5mm以 内、100mm以下の連続した 雨量のとき±3%	同左	I	測定単位.0.5mm
正馬川モデル流域谷部 雨雪量計 (SMR谷部)	264.84	264.84 いっ水式転倒ます式雨量計	横河電子機器㈱	B-071-00	0.445	0.445 受水口	曹重嶼	I	I	20mm以下のとき±0.5mm以 内、100mm以下の連続した 雨量のとき±3%	同左	I	測定単位.0.5mm

表 2.4 表層水理観測機器の仕様と諸元 河川流量計

観測点名	消域画 14 積(km²)	地点標高 (m)	観測機器名	製造元	型式	水位計型式即	取水口高さ (mm)	観測項目	パーシャル天端 木位計 高さ(mm) 測定範囲	な計を範囲	センサー 測定誤差	流量換算式(Q:I/min)	測定条件	備考
1 年二十次河三次書社500	0 525	100100	L5ftパーシャルフリューム	(株池田計器製作所 ■)	PF-15型	LR-101WPS-P	15 3	測水井戸水位:H(mm)	240 0 ~ 0	~1m	±1mm	Q=1.541 × H ² 1.538	_10~20°C	
75 TO 1 1 7 JULY 11 JU	00.0	221.00	2inパーシャルフリューム	(株池田計器製作所)	-7ad -⊼a	LR-101WPS-P	1 1	測水井戸水位:H(mm)	232 0~	~1m ±	±1mm	$Q=0.096 \times 60 \times (H/10)^{\circ}1.55$	_10~20°C	
1 日日 一次河田 次日 11日	0 1 55	6 00 636	Jinパーシャルフリューム	㈱池田計器製作所	——aā	LR-101WPS-P	15 ;	測水井戸水位:H(mm)	·~0 299 0 ~·	→1m +	±1mm	$Q=0.466 \times 60 \times (H/10)^{2}.1.53$	−10~20°C	
1111111111111111111111111111111111111		233.00	linパーシャルフリューム	(株池田計器製作所)	盃IJd	LR-101WPS-P	2 2	測水井戸水位:H(mm)	232 0~	0~1m ±	±1mm	Q=2.88 × (H/10) ^1.55	−10~20°C	
	Π	261.83	Jinパーシャルフリューム	横河電子機器㈱		W-4481-11-00	9	測水井戸水位:H(mm)	e45 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0	~1m ±	±2mm	Q=0.825 × H ² 1.53	-5~40°C	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8100	261.50	inパーシャルフリューム	横河電子機器㈱		W-4481-11-00	8	測水井戸水位:H(mm)	230 0~	~1m ±	±2mm	Q=0.0809 × H ² 1.55	-5~40°C	
モノルル&ペリバル 単計 コドバ	200		古甲状状曲	担 学 同 年 日 年	EMD104W	ı	ı	(3/1)福音樂川島		0 -	3.1~0.3m/秒の時、スパンの±1%	1	J ₀ 09~06-	
			16 705 JIL 35 B	Ϋ́							0.3~1.0m/炒の群、スパンの+		000-07	

表 2.5 表層水理観測機器の仕様と諸元 地下水位計

設置流域等	観測点名	地点標画 (m)	観測機器名	製造元	本本	通に部囲(m)	センサー制定誤差	管頭標高 井(m) (m)	井戸底深度 (G.Lm)	掘削孔径 (mm)	井戸孔径 (mm)	ストレーナ 上部深 展(G.Lm)	ストレーナ区間長 (m)	観測対象地層名	備考
	97MS-01	292.80	大気開放型地下:	㈱池田計器製作所	13	0~10	±1cm	293.05	20.00	116(86)	20	18.00	7	決層群明世累層	
## ## H	97MS-02	292.97	大気開放型地下水位計	㈱池田計器製作所	ELP-120	0~10	±1cm	293.12	17.00	116	20	15.30	1.5	瀬戸層群土岐砂礫層	
もこととが	98MS-03	292.15	大気開放型地下水位計	横河電子機器㈱	W-431-00	0~10	±1cm	292.25	30.00	116(86)	20	28.00	2	瑞浪層群明世累層	
	98MS-04	285.21	大気開放型地下水位計	横河電子機器㈱		0~10	±1cm	285.21	9.00	116	20	7.15	1.5	[戸層群土岐砂礫層	
	99MS-05	220.81	大気開放型地下水位計	横河電子機器㈱	١	0~10	±1cm	222.31	45.00	116(86)	20	28.85	99.9	瑞浪層群明世累層基底礫岩層	
正馬様用地内	AI-7	223.47	水压式水位計	横河電子機器㈱	W-431-01	0~50	±0.1%(FS)	223.64	87.00	100	94	82.70	丁 8.7	:岐挟炭累層基底部	
	AI-10	223.77	水压式水位計	横河電子機器㈱	W-431-01	0~50	±0.1%(FS)	223.65	96.75	100	94	89.70	9	花崗岩風化部	
研究所用地内	04ME01	192.71	Level TROLL	In-Situ Inc	Level TROLL500	09~0	±1%	192.64	47.00	99	99	00'9	點 14	浪層群明世累層	

表 2.6 表層水理観測機器の仕様と諸元 土壌水分計

设置流域等	観測点名	地点標高(m)	観測機器名	製造元	産み	測定範囲(cmH ₂ O)	センサー測定誤差 センサー設置数	ナー設置数	センサー設置深度(m)	観測対象地層名	備考
# # #	SmTP	292.31	土壌水分計	サンケイ理化㈱	SK-5500E	-1000~1000	± 3 cmH $_2$ O	12深度 0.2 0.	12深度 0.2 0.4 0.6 1.0 1.5 2.0 3.0 5.0 7.5 10.0 12.5 15.0	瀬戸層群土岐砂礫層	
76r 71/	SmTS	283.79	土壌水分計	サンケイ理化㈱	SK-5500E	$-1000 \sim 1000$	O ₂ Hm2€∓	8深度 0.2 0.	8深度 0.2 0.4 0.6 1.0 1.5 2.0 3.0 5.0	瀬戸層群土岐砂礫層	
± ±	MD1	194.42	土壌水分計	サンケイ理化㈱	SK-5500E	-1000~1000	O ₂ Hm2∈∓	3深度 0.2 0.	2 0.4 0.7	瀬戸層群土岐砂礫層	
7	MD2	195.63	土壌水分計	サンケイ理化㈱	SK-5500E	-1000~1000	O ² Hwo£∓	5深度 0.2 0.	0.2 0.4 0.7 1.3 2.0	瀬戸層群土岐砂礫層	

3. 表層水理観測データ整理方法

3.1 観測データセット

表層水理観測データセットは、各観測機器(センサー)の観測間隔ごとに得られた 電圧データと物理量データで構成されている。

電圧データは各センサーからデータロガーへ送られ、データロガーの IC カード等に記録されている。物理量データは各センサーに設定されている変換式を用いて、電圧データから変換している。また、研究所用地の水位計については、センサーの水面までのかぶりから水深のデータを記録しており、この水深のデータから地下水位に換算している。

3.2 補正・補完データセット

機器の故障、観測条件の変化またはメンテナンス時の作業等によって、表層水理観測データには欠測や異常値が生じる。よって、水収支解析によって算出される岩盤浸透量の品質を確保するためには、観測データ毎に適切な補正・補完方法を選択し、補正・補完を実施する必要がある。補正・補完のどちらを選択するかは、観測データの特性および欠測や異常値の期間によって異なる。例えば、河川流量のように、瞬間値のスケールで補正が行える場合と、雨雪量のように、瞬間値での補正が不可能なため、日データのスケールで補完を行う場合がある。補正・補完の定義および選択した補正・補完方法の詳細は次項に示す。各観測データに補正・補完を実施し、整理した結果が補正・補完データセットとなる。

3.3 補正·補完方法

(1) 補正・補完

本データ集では補正・補完を以下のように定義する。

① 補正

観測データの明らかな異常値や欠測を前後の確からしいデータ、メンテナンス作業の記録等から補い正すことを補正と定義する。河川流量計のパーシャルフリューム測水井戸の水位、転倒ます式雨雪量計の転倒回数、地下水位計の水面からの深度 (水位)、土壌水分計の水頭等が補正の対象である。

2 補完

欠測や異常値が長期間に渡って観測されているため補正が不可能な場合,あるいは気象観測データのように観測データが短期間で大きく変動する場合に対して,他の観測データとの相関性に基づき,計算によって欠測や異常値を補うことを補完と定義する。補完に用いる補完式または補完方法は観測データの特性によって異なる。例えば,気象観測データや雨雪量のデータに関しては,観測地点毎のばらつきが大きいため,観測データの瞬間値で比較すると相関性は極めて悪い。しかし,日積算,または日平均データで比較すると相関性が良くなるため,これらのデータの補完は,日データの時間スケールで実施した。また,河川流量計の観測データ(測水井戸の水位データ)に関しては,他の河川流量計の観測データと比較しようとしても,それぞれの流域で流出特性が異なるため,相関性に関する理論的根拠が薄い。しかし,降雨と河川流出との関係は流出解析で検討することができるため,流出解析の手法の一つであるタンクモデルのを用いることによって,河川流量計の観測データを補完した。

(2) 補正の方法

各観測データに対して補正可能かどうかを検討するためには、観測データの時間変動に連続性があるかを確認することが必要となる。以下に、観測項目毎の補正方法を示す。

① 気象観測装置

気象観測データは、不規則に変化することから、欠測前後の値から観測データを 推定することは困難である。よって、補正は実施せず、欠測についてはそのまま とし、明らかな異常値は削除するにとどめた。

② 雨雪量計

転倒ます式雨雪量計の観測データは、転倒ますの転倒回数で測定する。雨雪量計による欠測の原因としては、データロガーの停止によって転倒回数が計測されないこと、枯葉等により雨雪量計内部で目詰まりをおこし、転倒せず計測されないことが挙げられる。観測データの欠測や異常値は、メンテナンス記録および他の雨雪量計データとの比較によって確認した。

③ 河川流量計

河川流量計の測水井戸水位の欠測は,欠測期間中に降雨がない場合,前後のデータを端点とした線形補正 (Y=aX+b) を実施した。

また、メンテナンス時の実測水位と観測データに機械の持つ誤差以上の差異が長期間認められた場合は、実測水位に合うように観測データに定数を加減算した。加減算した観測地点および期間を表 3.1~3.6 に示す。

④ 地下水位計

地下水位は,降雨状況等の気象要因によって変化することから,欠測前後の値から観測データを推定することは困難である。よって,全ての欠測についてそのままとした。また記録時の誤作動による異常値など,明らかな異常値は削除するにとどめた。

⑤ 土壌水分計

地下水位と同様、欠測前後の値から観測データを推定することは困難である。 よって、全ての欠測についてそのままとした。

表 3.1 正馬川モデル流域河川流量計 SPM 大パーシャル

期間	補正量
2008/4/1~2008/6/20	欠測
2008/7/6~	雷による欠測

表 3.2 正馬川モデル流域河川流量計 SPM 小パーシャル

期間	補正量
2008/7/6~	雷による欠測

表 3.3 正馬川上流河川流量計 SPU 大パーシャル

期	間	補正量
	系統的な誤	差は無し

表 3.4 正馬川上流河川流量計 SPU 小パーシャル

期	間	補正量
	系統的な誤	差は無し

表 3.5 正馬川下流河川流量計 SPD 大パーシャル

期間	補正量
2009/1/6~2009/3/9	42mm 加える

表 3.6 正馬川下流河川流量計 SPD 小パーシャル

期	間	補正量
	系統的な誤	差は無し

(3) 補完の方法

補完可能な観測項目とみなすには、観測地点間の相関性に基づき、欠測・異常値が 長期にわたる期間に対して、観測データの日変動および時間変動が計算式を用いて再 現可能であるとする理論的根拠が必要となる。以下に、補完の方法を示すとともに、 表 3.7 に理論的根拠と補完の有効性について示す。

① **気象観測装置**·雨雪量計

気象・雨雪量データは、瞬間値で比較すると場所によるばらつきが大きく、他の 観測地点データとの相関性は極めて低い。しかし、日データで比較すると相関性が 高くなることから、気象・雨雪量データの補完は、日単位で実施した。

② 河川流量計

雨雪量と河川流出の関係は流出解析によって検討可能である。よって, 測定限界を超えたデータや, 降雨を含む期間の欠測に関しては, 雨雪量から流出量を解析する方法であるタンクモデルを用いて補完を行った。

③ 地下水位計·土壌水分計

地下水位・土壌水分データは、計算による推定が困難であることと、観測地点間 の相関性が低いことから、補完は実施しない。

表 3.7 観測項目の観測データ変動の理論的根拠と補完の有効性

観測項目	相関性と観測データ変動の理論的根拠	補完の 有効性
気象観測 (風向・風速・気温・湿 度・全天日射・純放射) 雨雪量	観測値の日平均や日積算値は、広域を日単位で変化する気象に よって変動することから、日単位での観測地点間の相関性は高い。	〇 (日データ)
河川流量(水位)	河川流量は、流域特有の流出特性に支配されるため、時間単位での再現性は高い。推定にはタンクモデルなどを用いる。	〇 (時間データ)
地下水位	これらの観測値は、不規則に変化する降雨や、不均質性かつ、 非線形に変化する土壌の水分特性によって変わることから、計	×
土壌水分	算による再現性や地点間の相関性は低い。	

(4) 補完式の設定

気象観測・雨雪量データの相関式,および流域毎の河川流量を補完するためのタンクモデル⁷⁾の諸元を以下に示す。

① 気象観測データの相関式

2007 年度までは、観測年報 4^{1,5),6)}および日本工営(2000) ⁸⁾で報告されている相 関式および観測データを基に気象観測装置間の相関関係(相関係数・相関式)を算 出していた。

2008年度においては、東濃鉱山気象観測が2008年2月に観測終了となったこと、2008年7月6日の雷によりモデル流域気象観測装置が障害をうけたことで、これまでの相関関係を用いることができなくなった。よって日本工営(2000) 8 および観測年報 4 ,5,6}に加え、2007年3月~2008年3月までのデータ(以後、2007年度相関式)を用いて、相関式の再検討を行い、「日本工営(2000) 8 →観測年報 4 ,5,6}→2007年度相関式」の順で補完を行った。各観測地点における相関係数と相関式は表 3.8~3.9 のとおりである。

表 3.8 2008 年度気象観測データ相関式(研究所用地および気象観測装置)

欠測観測点(Y)	観測要素	名称等	補完観測点(X)	相関式	相関係数
研究所用地内	風速	日本工営	モデル流域タワー SMT(上)	Y=0.57X+0.10	0.57
気象観測装置		観測年報	正馬川モデル流域ポール SMP	Y=0.89X+0.28	0.55
MMP	気 温	日本工営	正馬様気象観測装置 SM	Y=1.00X+0.71	1.00
		観測年報	東濃鉱山気象観測装置 TMP	Y=1.00X+0.15	1.00
	湿 度	日本工営	正馬川モデル流域ポール SMP	Y=0.77X+21.36	0.95
		観測年報	東濃鉱山気象観測装置 TMP	Y=0.81X+12.95	0.94
		2007年度	モデル流域タワー SMT(上)	Y=0.77X+18.91	0.91
	純放射量	日本工営	東濃鉱山気象観測装置 TMP	Y=1.02X+1.04	0.87
		観測年報	モデル流域タワー SMT(上)	Y=0.68X-0.14	0.86
	日日射量	日本工営	東濃鉱山気象観測装置 TMP	Y=0.93X+2.37	0.91
		観測年報	正馬川モデル流域ポール SMP	Y=0.99X+2.06	0.90
		2007年度	名古屋アメダス	Y=0.86X+0.07	0.89
正馬様	風速	日本工営	モデル流域タワー SMT(上)	Y=(X-0.66)/1.03	0.69
気象観測装置		観測年報	東濃鉱山気象観測装置 TMP	Y=0.40X-0.03	0.69
SM	気 温	日本工営	東濃鉱山気象観測装置 TMP	Y=1.00X-0.36	0.99
		観測年報	正馬川モデル流域ポール SMP	Y=(X-0.96)/0.97	0.99
	湿度	日本工営	東濃鉱山気象観測装置 TMP	Y=0.70X+26.13	0.90
		観測年報	正馬川モデル流域ポール SMP	Y=0.66X+30.43	0.88

※灰色枠は採用相関式

表 3.9 2008 年度気象観測データ相関式(モデル流域気象観測装置)

欠測観測点(Y)	観測要素	名称等	補完観測点(X)	相関式	相関係数
モデル流域タワー	風速	日本工営	恵那(気象庁)	Y=1.16X-0.27	0.60
SMT	(上)	観測年報	正馬様気象観測装置 SM	Y=1.03X+0.66	0.69
		2007年度相関式	正馬様気象観測装置 SM	Y=0.63X+0.08	0.70
	気 温	日本工営	多治見(気象庁)	Y=1.05X+0.78	0.99
	(上)	観測年報			
		2007年度相関式	研究所用地気象観測装置 MMP	Y=1.04X-0.25	1.00
	湿度	日本工営	名古屋(気象庁)	Y=0.89X+3.22	0.80
		観測年報			
	(上)	2007年度相関式	研究所用地気象観測装置 MMP	Y=0.75X+19.46	0.80
	純放射量	日本工営			
		観測年報			
		2007年度相関式	研究所用地気象観測装置 MMP	Y=0.60X+1.41	0.71
	風速	日本工営	恵那(気象庁)	Y=1.16X-0.27	0.60
	(下)	観測年報	正馬様気象観測装置 SM	Y=1.06X+0.23	0.67
		2007年度相関式	正馬様気象観測装置 SM	Y=0.75X+0.26	0.77
	気 温	日本工営	多治見(気象庁)	Y=1.05X+0.78	0.99
	(下)	観測年報		***************************************	
		2007年度相関式	研究所用地気象観測装置 MMP	Y=1.02X-0.36	1.00
	湿 度	日本工営	名古屋(気象庁)	Y=0.89X+3.22	0.80
	(下)	観測年報		***************************************	
		2007年度相関式	研究所用地気象観測装置 MMP	Y=0.76X+20.54	0.93
モデル流域ポール	風速	日本工営	多治見(気象庁)	Y=0.55X-0.21	0.31
SMP		観測年報	正馬様気象観測装置 SM	Y=0.61X+0.27	0.52
		2007年度相関式	正馬様気象観測装置 SM	Y=0.83X+0.42	0.57
	気 温	日本工営	多治見(気象庁)	Y=1.05X+0.75	0.99
		観測年報		***************************************	
		2007年度相関式	研究所用地気象観測装置 MMP	Y=1.02X-0.20	0.99
	湿 度	日本工営	名古屋(気象庁)	Y=0.89X+5.5	0.81
		観測年報			
		2007年度相関式	研究所用地気象観測装置 MMP	Y=0.79X+18.04	0.94
	純放射量	日本工営			
		観測年報			
		2007年度相関式	研究所用地気象観測装置 MMP	Y=1.18X+1.33	0.82
	全天日射量	日本工営			
		観測年報	名古屋(気象庁)	Y=0.81X-0.94	0.85
		2007年度相関式	研究所用地気象観測装置 MMP	Y=0.98X+1.76	0.87

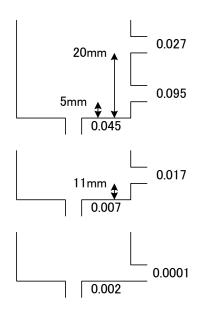
※空白は該当する相関式なし ※灰色枠は採用相関式

② 雨雪量データの相関式

雨雪量計間の相関関係(相関係数・相関式)は、日本工営(2000)⁸)、観測年報^{4),5),6} および 2007 年度の観測データを基に算出した。欠測・異常値を確認した結果から算出した各年度の相関係数と相関式を表 3.10 に示す。日本工営(2000)⁸ の相関式は補完観測点の雨雪量が認められない場合でも、欠測観測点では雨雪量が認められる相関式であるため、今回は観測年報の相関式を採用した。

表 3.10 2008 年度各観測地点における相関係数と相関式(雨雪量計)

欠測観測点(Y)	名称等	補完観測点(X)	相関式	相関係数
研究所用地内雨雪量計MR	日本工営	正馬様コミュニティー雨雪量計 SR	Y=1.07X	0.93
TEUT 70 74	日本工営	柄石峠(気象庁)	Y=1.20X+1.41	0.8
正馬川モデル流域 SMR林内	観測年報	正馬様コミュニティー雨雪量計 SR	Y=0.55X	0.78
OWN (AAP)	2007年度	多治見(気象庁)	Y=1.38X	0.85
TEUT 70 74	日本工営	柄石峠(気象庁)	Y=0.96X+0.81	0.88
┃ 正馬川モデル流域 SMR林外	観測年報	正馬様コミュニティー雨雪量計 SR	Y=1.02X	0.99
SWI (447)	2007年度	正馬様コミュニティー雨雪量計 SR	Y=0.98X	0.93
- F.III	日本工営	柄石峠(気象庁)	Y=0.94X+1.09	0.82
正馬川モデル流域 SMR谷部	観測年報	正馬様コミュニティー雨雪量計 SR	Y=0.96X	0.98
Sivil (Ar II)	2007年度	正馬様コミュニティー雨雪量計 SR	Y=0.85X	0.86


※灰色枠は採用相関式

③ タンクモデルの諸元

河川流量の補完は、既存研究において求められたタンクモデル ⁷⁾を用いた。各流域におけるタンクモデルの諸元を以下に示す。

1) 正馬川流域河川流量計 SPD のタンクモデル

正馬川流域のタンクモデルは、小林ほか(1996)²⁾における諸元を用いた。 正馬川流域タンクモデルの諸元を図 3.1 に示す。

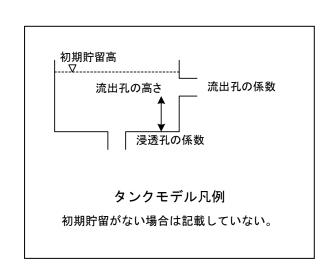


図 3.1 タンクモデルの諸元(正馬川流域)

2) 正馬川上流域河川流量計 SPU のタンクモデル

正馬川上流域のタンクモデルは、小林ほか (1996) ²⁾における諸元を用いた。 正馬川流域タンクモデルの諸元を図 3.2 に示す。

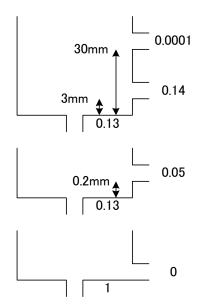


図 3.2 タンクモデルの諸元(正馬川上流域)

3) 正馬川モデル流域河川流量計 SPM のタンクモデル

正馬川モデル流域のタンクモデルは、観測年報における諸元を用いた。正馬川モデル流域タンクモデルの諸元を図 3.3 に示す。

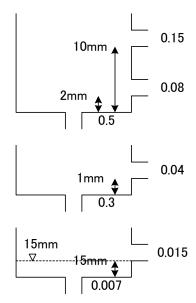


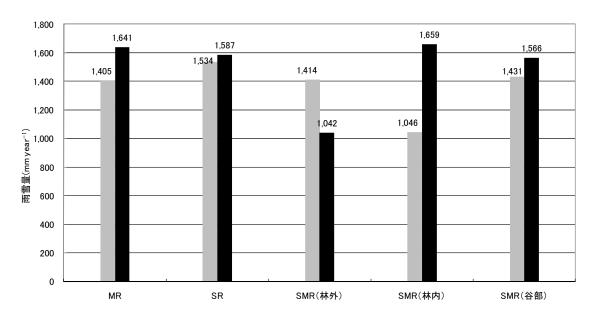
図 3.3 タンクモデルの諸元(正馬川モデル流域)

(5) 補完の実施

(4)において検討した補完式を用いて、気象観測、雨雪量および河川流量データの補完を実施した。表 3.11 に補完の実施条件を示す。

河川流量においては欠測期間中に降水がない場合は欠測前後のデータを用いて1次式もしくは2次式で補完を行う。また、欠測期間中に降水がある場合または測定限界を超える出水がある場合は、タンクモデルを用いて補完を行う。

表 3.11 補完の実施条件


観測	要素	条 件	補完方法		
左	日平均值	2 時間以上の欠測			
気象観測	日積算値 1回以上の欠測(ただし, 欠測		相関関係		
	口恨开吧	前後の積算値が線形的に変化			
雨雪	皇	している場合は除く)			
		2時間以上の欠測かつ欠測期	タンクモデル		
河川流量		間中における降水あり	ダンクモテル		
		欠測期間中における降水なし	1次式もしくは2次式		

4. 観測結果

4.1 雨雪量

雨雪量は,正馬様コミュニティー雨雪量計(SR),正馬川モデル流域雨雪量計(SMR)の3ヶ所(林内,林外,谷部)および研究所用地(MR)の計5ヶ所で観測している。図4.1に,上記5ヶ所の2008年度の雨雪量と,各観測地点の観測開始から2007年度までの年度ごとの雨雪量の平均値を示す。

2008年度は、SMR(林外)以外の全観測点で観測開始から2007年度までの年間雨雪量の平均より多い雨雪量が観測された。なお2008年度のSMR(林外)は多雨時期に機器内で落ち葉などによる目詰まりが生じたため、少ない値となっている可能性が考えられる。

■観測開始から2007年度までの年度ごとの雨雪量の平均

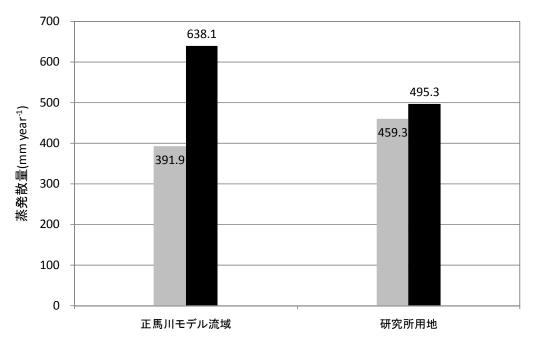

■2008年度の雨雪量

図 4.1 流域別雨雪量

4.2 蒸発散量

蒸発散量を算出するために必要な気象観測要素は正馬川モデル流域ポール(SMP)および研究所用地(MMP)で観測している。蒸発散量の推定法には、ソーンスウエイト法、ハーモン法など様々な種類があるが、本データ集では、最も近似的な値が得られるとされているペンマン法により算出された可能蒸発散量に蒸発散比 0.7 を乗じて蒸発散量を推定している 9,10 。図 4.2 に 2008 年度の蒸発散量を示す。

図 4.2 よりモデル流域 (SMP) および研究所用地 (MMP) ともに 2008 年度は 2007 年度までの年度ごとの蒸発散量の平均より大きい値となった。

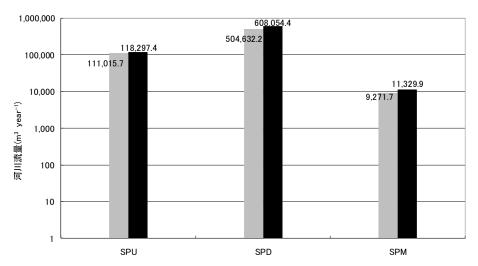

- 観測開始から2007年度までの年度ごとの蒸発散量の平均
- 2008年度の蒸発散量

図 4.2 正馬川モデル流域の蒸発散量

4.3 河川流量

河川流量観測は、正馬川上流 (SPU)、正馬川下流 (SPD) および正馬川モデル流域 (SPM) の計 3 箇所において実施している。2008 年度の流域ごとの河川流量を図 4.3 に、流域ごとの河川流出高 (河川流量を流域面積で除したもの) を図 4.4 に示す。

2008年度は河川流量,河川流出高とも2007年度までの年度ごとの河川流量,河川流量高の平均より多い値が観測された。

- ■観測開始から2007年度までの年度ごとの河川流量の平均
- ■2008年度の河川流量

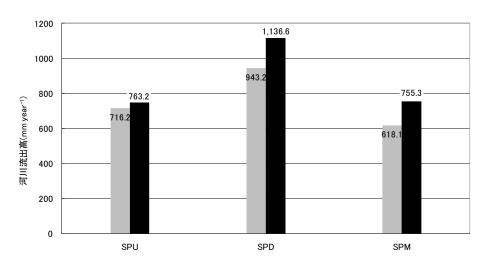


図 4.3 流域別河川流量

- ■観測開始から2007年度までの年度ごとの河川流出高の平均
- ■2008年度の河川流出高

図 4.4 流域別河川流出高

4.4 地下水位

地下水位は、正馬川流域(3 孔:99MS-05, AI-7,10)、正馬川モデル流域(4 孔:97MS-01,02,98MS-03,04)および研究所用地(1 孔:04ME01)の計8孔で観測を実施している。正馬川流域の地下水位変動を図4.5、正馬川モデル流域の地下水位変動を図4.6および研究所用地の地下水位変動を図4.7に示す。また、表層の地下水位は雨雪量の影響をうけると考えられることから、雨雪量の観測結果も同時に示す。

図 4.5 より, 99MS-05 および AI-7, 10 の地下水位は雨雪量に対する変動が小さいことが確認できる。

図 4.6 より 97MS-01, 02 および 98MS-03, 04 では 6 月,8 月に雨雪量の影響と考えられる水位変動が確認できる。なお,2008 年 11 月 29 日から 2009 年 1 月 4 日まで正馬川モデル流域のテレメータシステムの故障によりデータが未取得となっている。また,97MS-01 については乾季の時期等で水位が下がると,センサーと水位のかぶりがなくなるため計測できない時期がある。

図 4.7 より 04ME01 では年間を通して雨雪量の変動が確認できる。

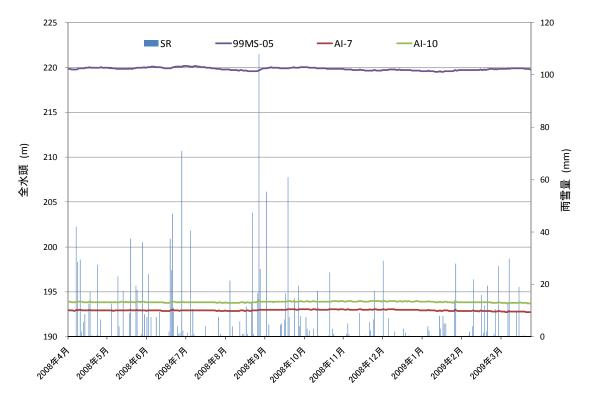


図 4.5 正馬川流域地下水位変動

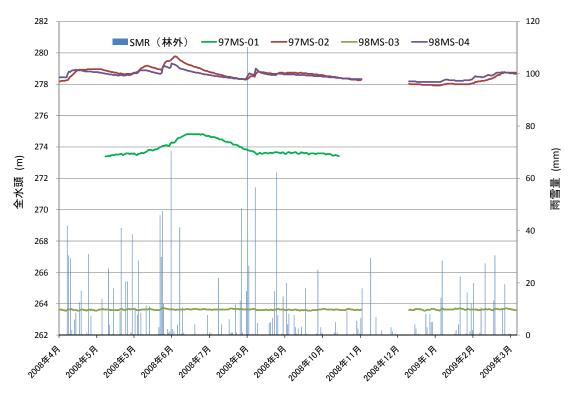


図 4.6 モデル流域地下水位変動

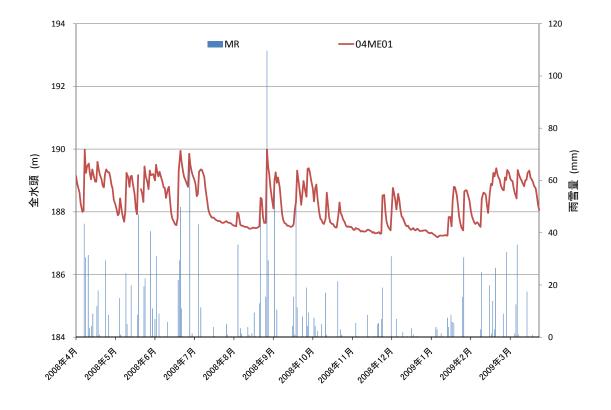


図 4.7 研究所用地地下水位変動

4.5 土壌水分

土壌水分は正馬川モデル流域の尾根部(SmTP)と斜面中腹(SmTS)で観測をし、研究所用地では MD1 と MD2 の 2 か所の観測地点で観測を行っている。表 $4.1\sim4.4$ に観測機器の設置深度と標高を示す。図 4.8 と図 4.9 に $SmTP \cdot SmTS$ の月ごとの観測結果を正馬川モデル流域の雨雪量 SMR(林外)と併せて、図 4.10 と図 4.11 に MD1 と MD2 の月ごとの観測結果を研究所用地の雨雪量 MR と併せて示す。

SmTP と SmTS は機器の異常により SmTP で 20cm, 60cm の 2 深度, SmTS は 500cm 以外の 7 深度を観測対象としている。なお、SmTP は 2008/5/16 14:50~ 2009/3/3 13:00 の期間で欠測となり、SmTS は 2008/7/6~2009/3/3 の期間で欠測となっている。また図 4.8~4.11 に示す土壌水分のデータは全水頭を標高換算して表示する。

全観測地点において、雨雪量による水位変動は確認できなかった。

表 4.1 SmTP 測定深度

深度(cm)	標高(m)
地表	292.31
20	292.11
60	291.71

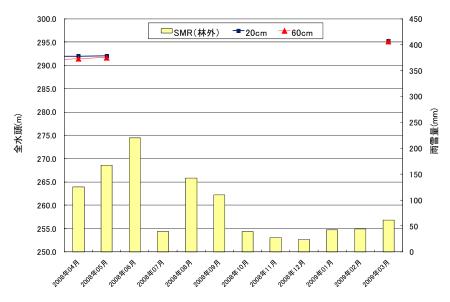


図 4.8 SmTP 水位標高

表 4.2 SmTS 測定深度

深度(cm)	標高(m)
地表	283.79
20	283.59
40	283.39
60	283.19
100	282.79
150	282.29
200	281.79
300	280 79

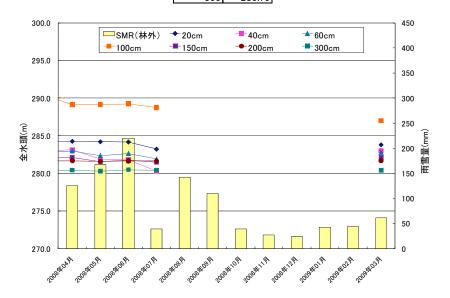


図 4.9 SmTS 水位標高

表 4.3 MD1 測定深度

深度(cm)	標高(m)
地表	292.31
20	292.11
60	291.71

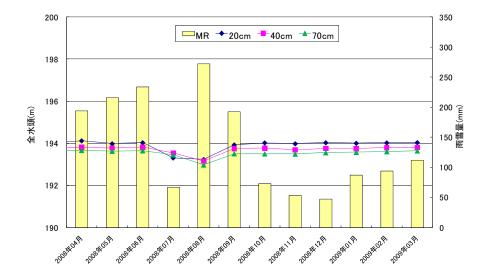


図 4.10 MD 1 全水頭

表 4.4 MD2 測定深度

深度(cm)	標高(m)
20	195.42
40	195.23
70	195.95
130	194.32
200	193.59

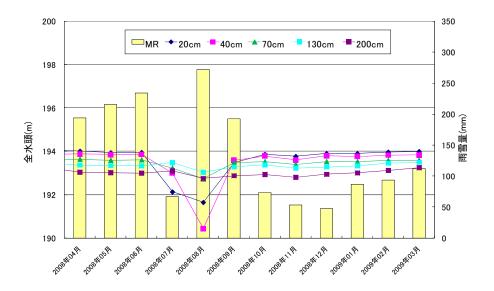


図 4.11 MD2 全水頭

4.6 岩盤浸透量の算出

2008年度の観測結果において、補正・補完実施後のデータを用いて実施した水収支解析結果を表 4.5 に示す。2007年度までの各要素(雨雪量、蒸発散量、河川流出高)の組合せは宮原ほか(2002)11)に従い算出していたが、東濃鉱山気象観測装置が 2008年2月に観測を終了していることから、2008年度の岩盤浸透量の算出に用いる蒸発散量は研究所用地気象観測装置のデータを用いて算出した。流域ごとの水収支解析に使用した各要素の観測地点の組み合わせを表 4.6 に示す。

表 4.5 水収支解析結果

		Py Ey Ry Gy			Ry			у						
観測年度	正馬様 ぶュニティ 雨雪量計	東濃鉱山雨雪量計	研究所用 地内 雨雪量計 MR	正馬川 モデル 流域 尾根部	東濃鉱山 気象観測 装置	研究所 用地 気象観測 装置MMP	正馬川 流域 SPD	正馬川 上流域	正馬川 下流域	正馬川 モデル 流域	正馬川 流域 SPD	正馬川 上流域	正馬川 下流域	正馬川 モデル 流域
1990年度	1535	1528	_	_	562	_	975	662	1102	_	-2	308	-129	_
1991年度	1890	1814	_	_	515	_	1347	937	1514	-	28	401	-139	_
1992年度	1342	1178	_	_	592	_	734	557	805	1	16	110	-56	_
1993年度	1655	1616	_	-	478	_	1196	805	1356	1	-18	353	-178	_
1994年度	1042	1030	_	_	550	_	453	389	478	-	40	97	14	_
1995年度	1573	1446	_	_	484	_	932	734	1012	-	158	292	77	_
1996年度	1284	1315	_	-	513	_	700	543	764	1	71	244	7	_
1997年度	1743	1870	_	-	486	_	1220	957	1328	-	36	363	-71	_
1998年度	1989	2093	_	_	532	_	1410	1072	1547	_	47	437	-90	_
1999年度	1521	1640	_	1498	503	_	932	745	1009	710	86	332	9	285
2000年度	1522	1377	_	1459	477	_	896	658	994	606	148	315	51	376
2001年度	1384	1391	_	1468	515	_	703	549	766	466	166	324	103	487
2002年度	1317	1373	_	1415	461	_	658	473	734	402	198	411	122	552
2003年度	1883	2018	_	1958	375	_	1310	999	1437	1007	198	577	71	576
2004年度	1947	1997	_	2054	416	_	1277	998	1390	1017	254	558	140	621
2005年度	1168	1252	1283	1321	414	427	616	480	671	329	139	316	84	579
2006年度	1440	1374	1587	1520	460	425	894	674	984	648	86	273	-4	411
2007年度	1384	1358	1345	1554	483	491	726	554	796	374	174	333	104	696
2008年度	1587	_	1641	1659	-	495	1137	763	1289	755	-45	356	-197	409
2007年度 までの平均	1534	1537	1405	1583	490	447	943	710	994	618	101	336	50	475

Pv: 年度降水量 (雨雪量計設置地点の年度総降水量)

Ey:年度実蒸発散量(ペンマン法)

Ry:年度河川流出高 ※

Gy:年度岩盤浸透量 (Gy=Py-Ey-Ry) 「一」:観測機器設置前 単位:mm

※年度河川流出高の算出方法は以下の通り

正馬川流域 = (SPD 年度総流出量)/(正馬川流域面積)

正馬川上流域= (SPU 年度総流出量) / (正馬川上流流域面積)

正馬川下流域= (SPD 年度総流出量-SPU 年度総流出量) / (正馬川流域面積-正馬川上流流域面積)

表 4.6 水収支解析に使用した雨雪量・河川流出高・蒸発散量の観測地点の組み合わせ 7)

流域名	雨雪量 (Py)	蒸発散量(Ey) (ペンマン法)	河川流出高 (Ry)
正馬川流域	正馬様コミュニティー	研究所用地気象観測装置	SPD
正馬川上流域	正馬様コミュニティー	研究所用地気象観測装置	SPD
正馬川下流域	正馬様コミュニティー	研究所用地気象観測装置	SPD-SPU
正馬川モデル流域	正馬川モデル流域尾根部	研究所用地気象観測装置	SPM

5. 電子ファイルの様式

「観測データセット」と「補正・補完データセット」の電子ファイルの様式について、 以下に示す。なお、各データセットは、Microsoft 社製 EXCEL 形式で保存した。

5.1 物理量への変換式

観測データセットには電圧値で得られたデータを物理値に変換する変換式が組込まれている。表 $5.1\sim5.5$ に各観測機器の変換式を示す。

河川流量については表 5.4 に示す優先順位に従い変換式を選択し、流量への変換を行った。

表 5.1 物理量変換式 気象観測装置

観測点名	観測名	変換式	
		風向(deg)	Y=540X
 正馬様気象観測装置	風車型風向風速計	風速(m sec ⁻¹)	Y=60X
	気温計 (℃)		Y=100X-50
SM	湿度計(%)		Y=100X
	蒸発計(mm)		Y=1000X
	 風車型風向風速計(上部)	風向(deg)	Y=4X
	風華至風问風及訊(工即)	風速(m sec ⁻¹)	Y=108X
	気温計(上部)(℃)		Y=20X-50
	露点計(上部)(%)		Y=20X
 正馬川モデル流域タワー	 放射収支計	瞬間(kW m²)	Y=0.4X-0.4
ISMT		積算(MJ m²)	Y=X-1
	風向風速計(下部)	風向(deg)	Y=4X
	風问風迷計(下部)	風速(m sec ⁻¹)	Y=108X
	気温計(下部)(°C)		Y=20X-50
	露点計(下部)(%)	Y=20X	
	熱流計	Y=0.4X-0.4	
	 風向風速計	風向(deg)	Y=4X
	風門風迷計	風速(m sec ⁻¹)	Y=108X
	全天電気式日射計	瞬間(kW m²)	Y=0.4X
 正馬川モデル流域ポール	土入电以八口剂司	積算(MJ m²)	Y=X
ISMP	放射収支計	瞬間(kW m²)	Y=0.4X-0.4
		積算(MJ m²)	Y=X−1
	気温計(℃)	Y=20X-50	
	露点計(%)	Y=20X	
	蒸発計(mm)	Y=20X	
	 風向風速計	風向(deg)	Y=4X
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	風速(m sec ⁻¹)	Y=108X
研究所用地内気象観測装置	 全天電気式日射計	瞬間(kW m²)	Y=0.4X
	エハモスハロ31日	積算(MJ m²)	Y=X
MMP	 放射収支計	瞬間(kW m²)	Y=0.4X-0.4
		積算(MJ m²)	Y=X-1
	気温計(°C)		Y=20X-50
	露点計(%)		Y=20X

X:電圧値 Y:物理値

表 5.2 物理量変換式 雨雪量計

						迴
変換式	Y=0.5X	Y=0.5X	Y=0.5X	Y=0.5X	Y=0.5X	X:電圧値 Y:物理値
観測点名	正馬様コミュニティー雨雪量計 (SR)(mm)	正馬川モデル流域林内雨雪量計 (SMR林内)(mm)	:馬川モデル流域林外雨雪量計 (SMR林外)(mm)	正馬川モデル流域谷部雨雪量計 (SMR谷部)(mm)	研究所用地内雨雪量計 (MR) (mm)	

表 5.3 物理量変換式 地下水位計

范署达特	部割より	センサーケジリ	センサー設置深度(Y2)	管頭標高(Y ₃)	水位(Y)	* ##
以巨小场子	既別点白	変換式	(m)	(m)	(m)	馬力
	97MS-01	Y ₁ =2.5X-2.5	19.700	293.050	$Y=Y_3-Y_2+Y_1$	
华州 二世 十三世 十二	97MS-02	Y ₁ =2.5X-2.5	16.500	293.120	$Y=Y_3-Y_2+Y_1$	
吊瓶三トトケ湾 奏	98MS-03	Y ₁ =2X	30.100	292.250	$Y=Y_3-Y_2+Y_1$	
	98MS-04	Y ₁ =2X	8.380	285.210	$Y=Y_3-Y_2+Y_1$	
	99MS-05	Y ₁ =2X	8.500	222.310	$Y=Y_3-Y_2+Y_1$	
+ + + +	AI-7	Y ₁ =4X	32.900	223.470	$Y=Y_3-Y_2+Y_1$	
片语体无名之	4	\ \ - \ \	29.830	223.770	$Y=Y_3-Y_2+Y_1$	
	AI_10	11-47	32.830	223.770	$Y=Y_3-Y_2+Y_1$	2008/1/18よりセンサー設置深度変更
研究所用她内	04ME01	Y=X	15.049	192.638	Y=Y ₂ -Y ₂ +Y ₁	

表 5.4 物理量変換式 河川流量計

4 T IOL UT	47 E1 WHICLES	# *	# ** + \1 - · 8 \ II +	原	河川流量(m³ min-1)変換式	換式	† ‡
魏河 正名	凯测 概态名	小位(mm)炎換式	流重(m_min_)炎換式	優先順位	条件式	真値	重 化
100年四次三次光十三里上	1.5ftパーシャルフリューム	Y ₁ ' =250X-250	$Y_1=1.541(Y_1^{'1.538}/1000)$	1	$0.5 \ge Y_2 > 0.006$	Y=Y ₂	
にあれてががれれば、単計のとし	2inパーシャルフリューム	$Y_2' = 250X - 250$	$Y_2=5.76 (Y_2'/10)^{1.55}/1000$	7	Y ₁ >0.5	Y=Y ₁	
100年回来三点张二三里上	カーェリフルケンプューム	Y ₁ '=1000X	$Y_1=27.96(Y_1'/10)^{1.53}/1000$	Į.	$0.2 \ge Y_2$	$Y=Y_2$	
にあぶればがによるよう	1inパーシャルフリューム	$Y_2' = 1000X$	$Y_2=2.88 (Y_2' / 10)^{1.55} / 1000$	2	Y ₁ >0.2	Y=Y ₁	
	カーェリフルケンプューム	Y ₁ '=200X	$Y_1=0.825Y_1^{1,1.53}/1000$	Į.	0.015>Y ₃	Y=Y ₃	SPMは流量が少な
正馬川モデル流域河川流量計SPM Tinパーシャルフリュ	1inパーシャルフリューム	Y_2 =200X	$Y_2=0.0809Y_2^{'}$, $^{1.55}/1000$	2	0.298>Y ₂ >0.015	$Y=Y_2$	いため電磁流量計
	電磁流量計	Y ₃ ' =6X	$Y_3=Y_3'/1000$	3	Y ₁ >0.298	Y=Y ₁	でも測定

表 5.5 物理量変換式 土壌水分計

177 177 188	4 1 1 1 1 1 1 1	4
設置流域等	観測点名	変換式
节	SmTP	Y=500X
正馬川モアル流域	SmTS	Y=500X
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MD1	Y=500X
听光 別用地內	MD2	Y=500X
		X:電圧値 Y:物理値

5.2 補正・補完箇所の表示

補正・補完データセットには、補正または補完を実施した場所について、色を変更して表示した。表 5.6 および 5.7 に補正・補完箇所の表示方法の例を示す。

(1) 補正箇所

補正を実施した箇所は, 赤字で表示した。

(2) 補完箇所

補完を実施した箇所は、青字で表示した。

日時 水位[mm](赤字は補正値) 換算流量[m³min⁻¹] SPD換算流量[m³min⁻¹] SPD 1.5ft SPD 2in SPD 1.5ft SPD 2in (青字は補完値) 2009/2/1 0:00 176.50 225.25 4.398 0.72 4.398 2009/2/1 0:10 224.75 4.379 0.717 4.379 2009/2/1 0:20 175.75 0.712 223.75 4.37 4.37 2009/2/1 0:30 176.50 224 4.398 0.713 4.398 2009/2/1 0:40 175.7 224.25 4.37 0.715 4.37 2009/2/1 0:50 174.50 225.25 4.322 0.72 4.322 2009/2/1 1:00 174.50 223.5 4.322 0.711 4.322 2009/2/1 1:10 223.25 4.312 0.71 4.312 2009/2/1 1:20 173.50 0.711 4.284 223.5 4.284 2009/2/1 1:30 173.00 224 4.265 0.713 4.265 2009/2/1 1:40 173.00 224 4.265 0.713 4.265 2009/2/1 1:50 172.75 225 4.256 0.718 4.256 222.75 2009/2/1 2:00 172.00 4.227 0.707 4.227

表 5.6 補正箇所の表示方法の例

表 5.7 補完箇所の表示方法の例

	水位[mm](<mark>赤</mark>	字は補正値)	換算流量	·[m³min ⁻¹]	SPD換算流量[m³min ⁻¹]
日時	SPD 1.5ft	SPD 2in	SPD 1.5ft	SPD 2in	(青字は補完値)
2008/6/19 21:20	39.75	174	0.444	0.482	0.482
2008/6/19 21:30	40.00	178.5	0.449	0.502	0.484
2008/6/19 21:40	40.50	177	0.457	0.495	0.495
2008/6/19 21:50	41.50	178.5	0.475	0.502	0.484
2008/6/19 22:00	41.25	180.5	0.47	0.51	0.484
2008/6/19 22:10	36.00	151.5	0.381	0.389	0.389
2008/6/19 22:20	40.25	171.5	0.453	0.472	0.472
2008/6/19 22:30	40.50	179.25	0.457	0.505	0.431
2008/6/19 22:40	41.25	179.5	0.47	0.506	0.431
2008/6/19 22:50	40.50	178.5	0.457	0.502	0.431
2008/6/19 23:00	41.50	178.75	0.475	0.503	0.431
2008/6/19 23:10	41.50	178.25	0.475	0.501	0.497
2008/6/19 23:20	41.75	180.75	0.479	0.512	0.497
2008/6/19 23:30	40.50	180.75	0.457	0.512	0.497
2008/6/19 23:40	41.50	178.25	0.475	0.501	0.497
2008/6/19 23:50	41.50	179.25	0.475	0.505	0.497
2008/6/20 0:00	41.00	179.75	0.466	0.507	0.497
2008/6/20 0:10	41.25	180	0.47	0.508	0.552
2008/6/20 0:20	41.25	180	0.47	0.508	0.552
2008/6/20 0:30	41	182	0.466	0.517	0.552
2008/6/20 0:40	42.5	186.75	0.492	0.538	0.552

5.3 フォルダ構造

「観測データセット」および「補正・補完データセット」のフォルダ構造を以下に示す。

(1) 観測データセット

観測データセットでは各観測項目で 10 分ごとの電圧データで回収したものを物理量データに変換している。地下水位についてはセンサーかぶりに変換をし、河川流量については水位(mm)に変換している。研究所用地の地下水位 (04ME-01) は 1 時間ごとのデータを回収している。表 5.8 に観測データセットのファイル例を示すとともに、DVD-ROM 内の観測データセットのフォルダ構造を以下に示す。

¥observed data set (観測データセットのフォルダ)

observed data set 2008

正馬川モデル流域

雨雪量計(内,外,谷)

河川流量計 SPM (地下水位 97MS-01.02, 98MS-03.04 含む)

気象観測装置 SMP

気象観測装置 SMT

正馬川上流域

河川流量計 SPU

正馬川流域

河川流量計 SPD

正馬様コミュニティー

正馬様気象観測装置

研究所用地

研究所用地気象観測装置

地下水位

地下水位計 99MS-05

地下水位計 AI-7,10

地下水位計 04ME-01

土壤水分

土壌水分計 SmTP

土壤水分計 SmTS

土壤水分計 MD1

土壤水分計 MD2

表 5.8 観測データセットのファイル例

		電圧データ			物理データ	
時間	林内雨量	林外雨量	谷部雨量	林内雨量	林外雨量	谷部雨量
h社[日]	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
2008/4/1 0:00	0	0	0	0	0	0
2008/4/1 0:10	0	0	0	0	0	0
2008/4/1 0:20	0	0	0	0	0	0
2008/4/1 0:30	0	0	0	0	0	0
2008/4/1 0:40	0	0	0	0	0	0
2008/4/1 0:50	0	0	0	0	0	0
2008/4/1 1:00	0	0	0	0	0	0
2008/4/1 1:10	0	0	0	0	0	0
2008/4/1 1:20	0	0	0	0	0	0
2008/4/1 1:30	0	0	0	0	0	0
2008/4/1 1:40	0	0	0	0	0	0
2008/4/1 1:50	0	0	0	0	0	0
2008/4/1 2:00	0	0	0	0	0	0

(2) 補正・補完データセット

補正・補完データセットは観測データセットで変換された物理量データを雨雪量、気象観測および河川流量は日データ・月間データとしてまとめ、地下水位および土壌水分は時間データ・日データとしてまとめた。地下水位についてはセンサーかぶりから水位(m)にまとめた。河川流量については水位(mm)から河川流量($m^3 \min^{-1}$)および河川流出高($mm year^{-1}$)とまとめた。補正・補完データセットのファイル例を表 5.9 に示すとともに、DVD-ROM 内の補正・補完データセットのフォルダ構造を以下に示す。

¥completed data set (補正・補完データセットのフォルダ) completed data set2008

正馬川モデル流域

雨雪量計

河川流量計 SPM

気象観測装置 SMP

気象観測装置 SMT

正馬川上流域

河川流量計 SPU

正馬川流域

河川流量計 SPD

正馬様コミュニティー

雨雪量計 SR

正馬様気象観測装置

研究所用地

雨雪量計 MR

研究所用地気象観測装置

地下水位

地下水位計 97MS-01.02

地下水位計 98MS-03.04

地下水位計 99MS-05

地下水位計 AI-7,10

地下水位計 04ME-01

土壌水分

土壤水分計 SmTP

土壤水分計 SmTS

土壤水分計 MD1

土壤水分計 MD2

表 5.9 補正・補完データセットのファイル例

正馬川·	モデル流域	積算降水量	Ē
時間	林内雨量	林外雨量	谷部雨量
1441111	(mm)	(mm)	(mm)
2008/4/1 0:00	0	0	0
2008/4/1 0:10	0	0	0
2008/4/1 0:20	0	0	0
2008/4/1 0:30	0	0	0
2008/4/1 0:40	0	0	0
2008/4/1 0:50	0	0	0
2008/4/1 1:00	0	0	0
2008/4/1 1:10	0	0	0
2008/4/1 1:20	0	0	0
2008/4/1 1:30	0	0	0
2008/4/1 1:40	0	0	0
2008/4/1 1:50	0	0	0
2008/4/1 2:00	0	0	0
2008/4/1 2:10	0	0	0
2008/4/1 2:20	0	0	0
2008/4/1 2:30	0	0	0
2008/4/1 2:40	0	0	0
2008/4/1 2:50	0	0	0
2008/4/1 3:00	0	0	0
2008/4/1 3:10	0	0	0
2008/4/1 3:20	0	0	0
2008/4/1 3:30	0	0	0
2008/4/1 3:40	0	0	0
2008/4/1 3:50	0	0	0
2008/4/1 4:00	0	0	0
2008/4/1 4:10	0	0	0
2008/4/1 4:20	0	0	0
2008/4/1 4:30	0	0	0
2008/4/1 4:40	0	0	0
2008/4/1 4:50	0	0	0

正馬	川モデル流	域 日降水	
日付	林内雨量	林外雨量	谷部雨量
П	(mm)	(mm)	(mm)
2008/4/1	0.0	0.0	0.0
2008/4/2	0.0	0.0	0.0
2008/4/3	0.0	0.0	0.0
2008/4/4	0.0	0.0	0.0
2008/4/5	0.0	0.0	0.0
2008/4/6	0.0	0.0	0.0
2008/4/7	26.5	42.0	47.5
2008/4/8	13.5	30.5	34.5
2008/4/9	0.0	0.5	0.0
2008/4/10	25.0	29.5	36.0
2008/4/11	2.0	2.0	3.0
2008/4/12	0.0	0.0	0.0
2008/4/13	4.0	6.0	6.0
2008/4/14	6.5	8.5	12.0
2008/4/15	0.0	0.0	0.0
2008/4/16	0.0	0.0	0.0
2008/4/17	6.5	12.5	14.0
2008/4/18	14.5	17.0	23.0
2008/4/19	0.0	0.5	0.5
2008/4/20	0.5	0.5	0.5
2008/4/21	0.0	0.0	0.0
2008/4/22	0.0	0.0	0.0
2008/4/23	0.0	1.0	0.5
2008/4/24	21.0	31.0	34.5
2008/4/25	0.0	0.0	0.0
2008/4/26	5.5	7.5	9.5
2008/4/27	0.0	0.0	0.0
2008/4/28	0.0	0.0	0.0
2008/4/29	0.0	0.0	0.0
2008/4/30	0.0	0.0	0.0

		月降水量
林内雨量	林外雨量	谷部雨量
(mm)	(mm)	(mm)
125.5	189.0	221.5

6. まとめ

2008年度の表層水理観測データについて,可能な範囲で追跡可能性を確保しながら,観測年報 4¹⁵6)において行ってきた整理手法を利用し補正・補完を行って整理した。

2008 年度の補正補完後のデータを用いた水収支解析により正馬川全域,正馬川上流域,正馬川下流域および正馬川モデル流域の2008 年度の岩盤浸透量を算出した。なお,東濃鉱山での気象観測が2008年2月に終了したため,水収支解析に用いる蒸発散量は研究所用地の気象観測より得た値を使用した。各流域の岩盤浸透量は正馬川全域で-45mm,正馬川上流域で356mm,正馬川下流域で-198mm,正馬川モデル流域で-208mmとなった。

今後も表層水理観測を継続し、データの蓄積を図るとともに、補正・補完後のデータを 用いた水収支解析を実施することで、各流域の岩盤浸透量を算出する予定である。

参考文献

- 1) 核燃料サイクル開発機構: "超深地層研究所 地層科学研究基本計画", JNC TN7410 2001-018 (2002).
- 2) 小林公一, 中野勝志, 小出 馨: "表層水理観測システムによる水収支の算定 岐阜県東濃鉱山におけるケーススタディーー", 動燃技報, №97, pp.145-150 (1996).
- 3) 核燃料サイクル開発機構: "正馬様洞における表層水理定数観測システムの設置", サイクル機構契約業務報告, JNC TJ7440 98-006 (1999).
- 4) 核燃料サイクル開発機構: "1989~2000 年度 表層水理観測年報 (データ集)" JNC TN7450 2002-002 (2002).
- 5) 核燃料サイクル開発機構: "超深地層研究所計画における表層水理観測年報-2001~2003 年度(データ集)" JNC TN7450 2005-004 (2005).
- 6) 日本原子力研究開発機構: "超深地層研究所計画における表層水理観測データ集-2004~2007 年度-" JAEA-Date/Code 2009-028.
- 7) 菅原正巳:"流出解析法", 共立出版(1972).
- 8) 日本工営: "東濃鉱山及び正馬川流域等の気象観測データと他機関観測データの対比と整理", JNC TJ7440 2000-012 (2000)
- 9) 建設省河川局監修: "地下水調査および観測指針(案)", 山海堂, (1993).
- 10) 山内大祐, 宮原智哉, 竹内真司, 小田川信哉: "超深地層研究所計画用地周辺の水収支観測結果", サイクル機構技報, No.9, pp.103-114 (2000).
- 11) 宮原智哉, 稲葉薫, 三枝博光, 竹内真司: "広域地下水流動研究実施領域における水 収支観測結果と地下水流動スケールの検討", サイクル機構技報, № 16, pp.137-148(2002).

国際単位系(SI)

表 1. SI 基本単位

基本量	SI 基本i	単位
本半里	名称	記号
長 さ	メートル	m
質 量	キログラム	kg
時 間	秒	s
電 流	アンペア	A
熱力学温度	ケルビン	K
物質量	モル	mol
光 度	カンデラ	cd

表2. 基本単位を用いて表されるSI組立単位の例

組立量	SI 基本単位	
和立里	名称	記号
面	積 平方メートル	m^2
体	積 立法メートル	m^3
速 さ , 速	度メートル毎秒	m/s
加速	度メートル毎秒毎秒	m/s^2
波	数 毎メートル	m ⁻¹
密度, 質量密	度キログラム毎立方メートル	kg/m ³
面 積 密	度キログラム毎平方メートル	kg/m ²
比 体	積 立方メートル毎キログラム	m³/kg
電 流 密	度アンペア毎平方メートル	A/m ²
磁界の強	さアンペア毎メートル	A/m
量濃度 ^(a) ,濃	度 モル毎立方メートル	mol/m ³
質 量 濃	度キログラム毎立法メートル	kg/m ³
輝	度 カンデラ毎平方メートル	cd/m ²
屈 折 率	(b) (数字の) 1	1
比 透 磁 率	(b) (数字の) 1	1

- (a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度
- (albatine concentration) ともよばれる。 (substance concentration) ともよばれる。 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

組立量	衣 3.	固有の名称と記さ	アじ衣さ		
Y				SI 組立単位	
平 面 角 ラジアン ^(b) rad 1 (b) m/m m²m² m²	組立量	夕新	和品	他のSI単位による	SI基本単位による
立 体 角 ステラジアン(b) sr ^(c) Hz			記り	表し方	表し方
周 波 数				1 (в)	
カ			sr ^(c)	1 ^(b)	
正 カ , 応 カ パスカル	周 波 数	ヘルツ ^(d)	Hz		s^{-1}
エネルギー, 仕事、熱量ジュール	力	ニュートン	N		m kg s ⁻²
仕事率,工率,放射東ワット で C	圧 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
電 荷 ,電 気 量 クーロン	エネルギー, 仕事, 熱量	ジュール	J	N m	m ² kg s ⁻²
電位差(電圧),起電力ボルト	仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
静 電 容 量 ファラド F C/V $m^2 kg^{-1} s^4 A^2$ 電 気 抵 抗 オーム Ω V/A $m^2 kg s^3 A^2$ $m^2 kg s^2 A^1$ $m^2 kg s^2 A^2$ $m^2 kg s^2$	電 荷 , 電 気 量	クーロン	C		s A
電 気 抵 抗 オーム Ω V/A $m^2 kg s^3 A^2$ $m^2 kg s^2 A^{1}$ $m^2 kg s^2 A^{2}$ $m^2 $	電位差(電圧),起電力	ボルト	V	W/A	m ² kg s ⁻³ A ⁻¹
コ ン ダ ク タ ン ス ジーメンス	静 電 容 量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
磁 東 ウエーバ Wb Vs $m^2 \log s^2 A^{-1}$		オーム	Ω	V/A	m ² kg s ⁻³ A ⁻²
磁 東 密 度テスラ T Wb/m² $kg s^2 A^{ 1}$ $A 2 2 4 2 2$	コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
イ ン ダ ク タ ン ス へンリー せ ル シ ウ ス 温 度 セルシウス度 $^{(e)}$ し $^{(e)}$ に	磁東	ウエーバ	Wb	Vs	m ² kg s ⁻² A ⁻¹
セルシウス度 ^(c)		テスラ	Т	Wb/m ²	$kg s^{\cdot 2} A^{\cdot 1}$
光 東ルーメン lm lx cd sr(c) lm/m² cd m² cd sr(c) lm/m² 照 ルクス lx lm/m² lm² cd sr(c) lm/m² s² cd		1 * /		Wb/A	m ² kg s ⁻² A ⁻²
照 度 ルクス lx lm/m² m² cd s¹ wクレル (d) Bq lm/m² graght http://www.scales.com/s² cd s¹ wow.scales.com/s² cd s¹ wow.scales.com/s² cd s¹ wow.scales.com/s² cd s² wow.scales.com/s²		セルシウス度 ^(e)	$^{\circ}$ C		K
放射性核種の放射能 (f) ペクレル (d) Bq g収線量, 比エネルギー分与, カーマ ab By B B III 線長 H B III k B II k B			lm	cd sr ^(c)	
吸収線量, 比エネルギー分与, カーマ 幼島半場長 周河線最半長 五頃			lx	lm/m ²	
吸収線量, 比エネルギー分与, カーマ 場景平景 周辺線景平景 五頃	放射性核種の放射能 (f)	ベクレル ^(d)	Bq		s^{-1}
組長半長 国辺線長半長 大向		ガレイ	Gv	.I/kα	m ² a ⁻²
線量当量,周辺線量当量,方向 2 2 2		, ,	Gy	o/kg	III 8
	線量当量, 周辺線量当量, 方向	シーベルト ^(g)	Sv	J/kg	m ² s ⁻²
性線量当量,個人線量当量 ジーベルト *** SV J/Rg m s	性線量当量,個人線量当量	シーベルト、。	۵V	o/Kg	m s
酸素 活性 カタール kat s ⁻¹ mol mol mol mol mol mol mol mol mol		-			

- 酸素活性|カタール kat | s¹mol (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはやコヒーレントではない。
 (b) ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
 (e) 池外学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している(d) へルソは周頻現象についてのみ、ペクレルは放射性接種の統計的過程についてのみ使用される。(d) セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの単位の大きなは同である。したがって、温度差や温度間隔を表す数値はとちらの単位で表しても同じである。(f) 放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。(g) 単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表 4 単位の由に固有の名称と記号を含むSI組立単位の例

表 4 . 単位 0)中に固有の名称と記号を含		立の例
	S.	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
力のモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 力	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m ²	kg s ⁻³
熱容量,エントロピー		J/K	m ² kg s ⁻² K ⁻¹
比熱容量,比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^2 s^{-2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
	クーロン毎立方メートル	C/m ³	m ⁻³ sA
	クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	m ⁻³ kg ⁻¹ s ⁴ A ²
透磁率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	m ² kg s ⁻² mol ⁻¹
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	m ² kg s ⁻² K ⁻¹ mol ⁻¹
照射線量 (X線及びγ線)	クーロン毎キログラム	C/kg	kg⁻¹sA
吸 収 線 量 率	グレイ毎秒	Gy/s	$m^2 s^{-3}$
放射 強 度	ワット毎ステラジアン	W/sr	m ⁴ m ⁻² kg s ⁻³ =m ² kg s
放射輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

	表 5. SI 接頭語									
ľ	乗数	接頭語	記号	乗数	接頭語	記号				
	10^{24}	ヨ タ	Y	10 ⁻¹	デ シ	d				
	10^{21}	ゼタ	Z	10 ⁻²	センチ	c				
	10^{18}	エクサ	E	10 ⁻³	ミリ	m				
	10^{15}	ペタ	P	10 ⁻⁶	マイクロ	μ				
	10^{12}	テラ	Т	10-9	ナーノ	n				
	10^{9}	ギガ	G	10-12	ピコ	р				
	10^{6}	メガ	M	10 ⁻¹⁵	フェムト	f				
	10^{3}	丰 口	k	10 ⁻¹⁸	アト	a				
	10^{2}	ヘクト	h	10 ⁻²¹	ゼプト	z				
	10^1	デカ	da	10^{-24}	ヨクト	у				

表6. SIに属さないが、SIと併用される単位					
名称	記号	SI 単位による値			
分	min	1 min=60s			
時	h	1h =60 min=3600 s			
目	d	1 d=24 h=86 400 s			
度	۰	1°=(п/180) rad			
分	,	1'=(1/60)°=(п/10800) rad			
秒	"	1"=(1/60)'=(п/648000) rad			
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²			
リットル	L, l	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³			
トン	t	1t=10 ³ kg			

表7. SIに属さないが、SIと併用される単位で、SI単位で

	衣される数値が美験的に待られるもの							
名称				記号	SI 単位で表される数値			
電	子力	ベル	ト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J			
ダ	ル	卜	ン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg			
統-	一原子	質量单	单位	u	1u=1 Da			
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m			

表8. SIに属さないが、SIと併用されるその他の単位 記号 SI 単位で表される数値 名称 1 bar=0.1MPa=100kPa=10⁵Pa bar 水銀柱ミリメートル nmHg 1mmHg=133.322Pa オングストローム $1 \text{ Å=0.1nm=100pm=10}^{-10} \text{m}$ Å 海 里 1 M=1852m Μ $1 b=100 \text{fm}^2=(10^{-12} \text{cm})2=10^{-28} \text{m}^2$ バ b kn 1 kn=(1852/3600)m/s ネ Np SI単位との数値的な関係は、 対数量の定義に依存。 11 В ル dB -

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値
エルグ	erg	1 erg=10 ⁻⁷ J
ダ イ ン	dyn	1 dyn=10 ⁻⁵ N
ポアズ	P	1 P=1 dyn s cm ⁻² =0.1Pa s
ストークス	St	$1 \text{ St} = 1 \text{cm}^2 \text{ s}^{-1} = 10^{-4} \text{m}^2 \text{ s}^{-1}$
スチルブ	sb	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²
フ ォ ト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx
ガル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²
マクスウェル	Mx	1 Mx = 1G cm ² =10 ⁻⁸ Wb
ガ ウ ス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T
エルステッド ^(c)	Oe	1 Oe ≙ (10³/4π)A m ⁻¹

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」は対応関係を示すものである。

表10 SIに届さないその他の単位の例

	 						
	2	名利	ķ		記号	SI 単位で表される数値	
牛	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq	
ν	ン	卜	ゲ	ン	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$	
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy	
ν				ム	rem	1 rem=1 cSv=10 ⁻² Sv	
ガ		ン		7	γ	1 γ =1 nT=10-9T	
フ	x		ル	3		1フェルミ=1 fm=10-15m	
メー	ートル	系	カラ:	ット		1メートル系カラット = 200 mg = 2×10-4kg	
卜				ル	Torr	1 Torr = (101 325/760) Pa	
標	準	大	気	圧	atm	1 atm = 101 325 Pa	
力	口		IJ	ı	cal	1cal=4.1858J(「15℃」カロリー),4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)	
3	ク		U	ン		1 u =1um=10 ⁻⁶ m	