

JAEA-Data/Code 2012-006

Update of JAEA-TDB: Additional Selection of Thermodynamic Data for Solid and Gaseous Phases on Nickel, Selenium, Zirconium, Technetium, Thorium, Uranium, Neptunium Plutonium and Americium, Update of Thermodynamic Data on Iodine, and Some Modifications

Akira KITAMURA, Kenso FUJIWARA, Reisuke DOI and Yasushi YOSHIDA

Geological Isolation Research Unit Geological Isolation Research and Development Directorate

July 2012

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2012

JAEA-Data/Code 2012-006

Update of JAEA-TDB: Additional Selection of Thermodynamic Data for Solid and Gaseous Phases on Nickel, Selenium, Zirconium, Technetium, Thorium, Uranium, Neptunium Plutonium and Americium, Update of Thermodynamic Data on Iodine, and Some Modifications

Akira KITAMURA, Kenso FUJIWARA, Reisuke DOI and Yasushi YOSHIDA*

Geological Isolation Research Unit Geological Isolation Research and Development Directorate Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received March 14, 2012)

We additionally selected thermodynamic data for solid and gaseous phases of nickel, selenium, zirconium, technetium, thorium, uranium, neptunium, plutonium and americium to our thermodynamic database JAEA-TDB for geological disposal of radioactive waste of high-level and TRU wastes. We thermodynamically obtained equiribrium constant from addition and subtraction of Gibbs free energy of formation on nickel, selenium, zirconium, technetium, thorium, uranium, neptunium plutonium and americium, which were selected in the Thermochemical Database Project by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development. Furthermore, we collected and updated thermodynamic data on iodine, changed master species of technetium(IV), and added thermodynamic data on selenium due to improving reliability of the thermodynamic database. We prepared text files of the updated thermodynamic database (JAEA-TDB) for geochemical calculation programs of PHREEQC, EQ3/6 and Geochemist's Workbench. These text files are contained in the attached CD-ROM and will be available on our Website (http://migrationdb.jaea.go.jp/).

Keywords: Geological Disposal, High-level Radioactive Waste, TRU Waste, Thermodynamic Database, Update of JAEA-TDB, Iodine, Geochemical Calculation Programs

^{*} NESI Company Ltd.

JAEA-TDB の更新:ニッケル,セレン,ジルコニウム,テクネチウム,トリウム, ウラン,ネプツニウム,プルトニウムおよびアメリシウムの固相および気相の 熱力学データの追加選定,ヨウ素の熱力学データ更新および選定値の修正

日本原子力研究開発機構

地層処分研究開発部門

地層処分基盤研究開発ユニット

北村 暁,藤原 健壮,土井 玲祐,吉田 泰*

(2012年3月14日受理)

高レベル放射性廃棄物および TRU 廃棄物の地層処分の性能評価に用いるための熱力 学データベース (JAEA-TDB) について、ニッケル、セレン、ジルコニウム、テクネチ ウム、トリウム、ウラン、ネプツニウム、プルトニウムおよびアメリシウムの固相およ び気相に関する熱力学データを追加選定した。選定した熱力学データは、経済協力開発 機構原子力機関による熱化学データベースプロジェクトで採用されたニッケル、セレン、 ジルコニウム、テクネチウム、トリウム、ウラン、ネプツニウム、プルトニウムおよび アメリシウムの Gibbs 標準自由エネルギーの加減算によって得られた平衡定数である。 併せて、熱力学データベースの信頼性向上のために、ヨウ素の熱力学データの収集およ び更新、テクネチウム (IV) の親化学種の変更、およびセレンの熱力学データの追加を 行った。この JAEA-TDB のテキストファイルとして、PHREEQC、EQ3/6、Geochemist's Workbench といった地球化学計算コード用フォーマットを整備した。これらのテキスト ファイルは、本報告書付属の CD-ROM に収納されるとともに、インターネット (http://migrationdb.jaea.go.jp/) でも公開され利用できるようになる予定である。

核燃料サイクル工学研究所(駐在):〒319-1194 茨城県那珂郡東海村村松 4-33

* 株式会社 NESI

Contents

1.	Introd	uction	1
2.	Brief	Summary on Development of JAEA-TDB	3
	2.1	Selection of Thermodynamic Data	3
	2.2	Calculation of Equilibrium Constant from Gibbs Free Energy of Formation	3
3.	Additi	onal Selection or Revision of Thermodynamic data	5
	3.1	Nickel	5
	3.2	Selenium	5
	3.3	Zirconium	8
	3.4	Technetium	8
	3.5	Iodine	11
	3.6	Thorium	16
	3.7	Uranium	17
	3.8	Neptunium	21
	3.9	Plutonium	22
	3.10	Americium	23
	3.11	Auxiliary Data	23
4.	Concl	usions	26
Refe	erences		27
App	endix 1	. Revised Thermodynamic Data Compiled for JAEA-TDB	32
App	endix 2	. Text Files of JAEA-TDB for Geochemical Calculation Programs	65

目 次

1.	緒言		1
2.	JAEA-	-TDB 整備の概要	3
	2.1	熱力学データの選定	3
	2.2	ギブズ標準自由エネルギーを用いた平衡定数の計算	3
3.	熱力学	差データの追加選定および改訂	5
	3.1	ニッケル	5
	3.2	セレン	5
	3.3	ジルコニウム	8
	3.4	テクネチウム	8
	3.5	ヨウ素	11
	3.6	トリウム	16
	3.7	ウラン	17
	3.8	ネプツニウム	21
	3.9	プルトニウム	22
	3.10	アメリシウム	23
	3.11	補足データ	23
4	結言		26
参考	文献…		27
付録	k1 JA	EA-TDB として収録した熱力学データの改訂版	32
付録	z JA	EA-TDB の地球化学計算プログラム用ファイル	65

Content of Tables

Table 1	Additionally selected thermodynamic data of nickel compounds and gaseous	
	species	5
Table 2	Additionally selected thermodynamic data of selenium compounds, gaseous	
	species and some missing aqueous species using selected thermodynamic data	
	by the NEA	6
Table 3	Additionally selected thermodynamic data on selenium using the solubility data	
	by Iida <i>et al</i>	8
Table 4	Additionally selected thermodynamic data of zirconium compounds and gaseous	
	species	9
Table 5	Additionally selected thermodynamic data of technetium compounds and	
	gaseous species	10
Table 6	Selected thermodynamic data on technetium(IV) in the previous version of	
	JAEA-TDB	10
Table 7	Revised thermodynamic data on technetium(IV) in the present version of	
	JAEA-TDB	11
Table 8	Selected thermodynamic data on iodine	13
Table 9	Additionally selected thermodynamic data for thorium aqueous species	16
Table 10	Additionally selected thermodynamic data for thorium compounds and gaseous	
	species	17
Table 11	Additionally selected thermodynamic data for uranium compounds and gaseous	
	species	18
Table 12	Additionally selected thermodynamic data for neptunium compounds and	
	gaseous species	21
Table 13	Additionally selected thermodynamic data for plutonium compounds and	
	gaseous species	22
Table 14	Additionally selected thermodynamic data for americium aqueous species	24
Table 15	Additionally selected thermodynamic data for americium compounds and	
	gaseous species	24
Table 16	Additionally selected auxiliary data for compounds and gaseous species	25

Table A1	.1 Selected equilibrium constants of aqueous species for JAEA-TDB ready to use	
	for the geochemical calculation programs (revised from Table A1 in the previous	
	TDB report)	32
Table A2	Selected equilibrium constants of solid phases for JAEA-TDB ready to use for	
	the geochemical calculation programs (revised from Table A2 in the previous	
	TDB report)	48
Table A3	Correspondence between file name and its corresponding geochemical	
	calculation program	63

1. Introduction

Many radionuclides are contained in high-level radioactive waste (HLW) and are part of TRU waste packages and some of them have long half-lives (more than 10⁴ year). It is necessary to estimate the solubility of the radionuclides in groundwaters and porewaters in an engineered barrier system for performance assessment of geological disposal of HLW and TRU wastes. Thermodynamic data, e.g., the equilibrium constant of solubility limiting solids at standard state (i.e. ionic strength of 0), are needed to estimate the solubility and aqueous species in the groundwater and porewater, and also data are fundamental information to estimating sorption and diffusion behaviors of chemical species on/in engineered barriers and host rocks. Therefore, the most reliable thermodynamic data should be integrated to carry out the reliable performance assessment by an implementation and regulatory organizations.

Japan Atomic Energy Agency (JAEA) has developed the thermodynamic database (JAEA-TDB) for the performance assessment of geological disposal of radioactive waste ^{1,2)}. Main part of the thermodynamic data in JAEA-TDB were selected and estimated by JAEA, however, some part of therm were taken from data selected by the Nuclear Energy Agency (NEA) in the Organisation for Economic Co-operation and Development (OECD) ³⁾ and those selected by Japan Nuclear Cycle Development Institute (JNC; one of the predecessor of JAEA) ⁴⁾. The thermodynamic data were compiled and converted to be available for use of geochemical calculation programs, e.g., PHREEQC ⁵⁾, EQ3/6 ⁶⁾ and Geochemist's Workbench ⁷⁾ (shown in Tables 18 and 19 in the TDB report ¹⁾).

We accepted equilibrium constant values selected by the NEA³⁾ to the previous version of JAEA-TDB. However, the NEA also selects many other thermodynamic data such as the Gibbs free energy of formation for compounds and gaseous species of which equilibrium constant has not been selected. Equibrium constant can be derived from addition and subtraction of the Gibbs free energy of formation thermodynamically. In the present report, we calculated and additionally selected equilibrium constant values for using the Gibbs free energy of formation which the NEA selected from comprehensive point of view. Some equilibrium constant values selected by the NEA for gaseous species were also selected additionally, because it might be important to evaluate distribution of radionuclides in the air in case of a severe accident of nuclear power plant such as the Fukushima Daiichi.

Also we collected and updated thermodynamic data on iodine, which was important to evaluate distribution of radioiodine especially in the air at a severe accident of nuclear power plant. Although we surveyed many literatures and tried to review and select thermodynamic data on iodine, it was difficult to select thermodynamic data due to lack of experimental conditions or continuous quotations within quotations. Therefore, we collected thermodynamic data from some representative handbooks and tables and replaced previous data with the present ones from a comprehensive point of view.

Furthermore, we revised thermodynamic data on selenium and technetium through accepting the latest values from several literatures and modifying master species, respectively.

2. Brief Summary on Development of JAEA-TDB

2.1 Selection of Thermodynamic Data

Selection of thermodynamic data for JAEA-TDB was performed on the basis of the fundamental plan¹), the content of which was briefly described below.

Selection of equilibrium constant of reaction at standard state (K°) was obligatorily performed, and selection of other thermodynamic values on enthalpy, entropy and heat capacity was recommended.

Thermodynamic data for chemical compounds and species for radioelements with naturally occurring elements (e.g., halogen, oxygen, carbon, nitrogen, sulfur, phosphorus) and some organic ligands were selected. Other thermodynamic data which were needed to select were quoted from those called "Auxiliary Data" selected by the NEA³.

Review and selection of thermodynamic values obtained from experimental data should be based on the "TDB-1" guideline by the OECD/NEA⁸⁾. Thermodynamic values or databases selected by the NEA³⁾ and Lothenbach *et al.*⁹⁾, which were based on the "TDB-1" guideline⁸⁾, could be selected to the JAEA-TDB after surveying the latest literature and checking consistency of the value in the database. Otherwise review and selection of thermodynamic values should be performed after surveying the literature to collect proposed thermodynamic data.

Application of chemical analogues and models should be considered to obtain thermodynamic values for some species for which there has been no published experimental data. Some unreliable thermodynamic values, which are important for the performance assessment of geological disposal of radioactive wastes, may be selected as tentative values while specifying their reliability and the needs for the values to be determined.

All thermodynamic values should be standardized at 298.15 K and at zero ionic strength, using the Brønsted-Guggenheim-Scatchard Model (usually called the "specific ion interaction theory (SIT)") ³⁾ for correction of ionic strength.

2.2 Calculation of Equilibrium Constant from Gibbs Free Energy of Formation

Using the Hess's law, change in Gibbs free energy of reaction $(\Delta_r G^{\circ}_m)$ for some arbitrary reaction, e.g.,

$$a \mathbf{A} + b \mathbf{B} \Leftrightarrow c \mathbf{C} + d \mathbf{D},$$
 (1)

where A, B, C and D are substances involving the reaction, and *a*, *b*, *c* and *d* are coefficients of the substances A, B, C and D, respectively,

is expressed using change in Gibbs free energy of formation ($\Delta_f G^{\circ}_{m}(X)$ for species or compound X) as follows:

$$\Delta_{\rm r}G^{\circ}_{\rm m} = c\,\Delta_{\rm f}G^{\circ}_{\rm m}({\rm C}) + d\,\Delta_{\rm f}G^{\circ}_{\rm m}({\rm D}) - a\,\Delta_{\rm f}G^{\circ}_{\rm m}({\rm A}) - b\,\Delta_{\rm f}G^{\circ}_{\rm m}({\rm B})\,.$$
(2)

Logarithm of equilibrium constant at standard state $(\log_{10} K^{\circ})$ is derived from $\Delta_r G^{\circ}_m$ using the following equation:

$$\log_{10} K^{\circ} = -(\log_{10} e / R T) \Delta_{\rm r} G^{\circ}_{\rm m}$$
(3)

where *R* and *T* denote gas constant (J·K⁻¹·mol⁻¹) and absolute temperature (K), respectively. Uncertainty (σ) of $\Delta_r G^{\circ}_m$ and $\log_{10} K^{\circ}$ is obtained from error propagation of $\Delta_f G^{\circ}_m(X)$ as follows:

$$\sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}) = (c \ \sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}({\rm C}))^2 + d \ \sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}({\rm D}))^2 + a \ \sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}({\rm A}))^2 + b \ \sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}({\rm B}))^2)^{1/2}$$
(4)
$$\sigma(\log_{10}K^{\circ}) = -(\log_{10}e / R \ T) \ \sigma(\Delta_{\rm r}G^{\circ}{}_{\rm m}).$$
(5)

The obtained uncertainty of equilibrium constant ($\sigma(\log_{10} K^\circ)$) calculated using reactions (4) and (5) was usually larger than that obtained experimentally. We took smaller values of uncertainty from either experimentally obtained or calculated.

For use with geochemical calculation programs, dissociation reactions are defined for all compounds and gaseous species, i.e., the objective compounds and species are put on left-hand side and aqueous master species of the objective elements are put on right-hand side in their reactions.

3. Additional Selection or Revision of Thermodynamic data

3.1 Nickel

Additionally calculated and selected thermodynamic data on nickel compounds and gaseous species are listed in Table 1. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁰.

reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Ni(g) \Leftrightarrow Ni^{2+} + 2 e^{-1}$	-430.459 ± 8.435	75.413 ± 1.478
$NiF_2(cr) \Leftrightarrow Ni^{2+} + 2 F^{-}$	1.033 ± 8.156	-0.181 ± 1.429
$NiCl_2(cr) \Leftrightarrow Ni^{2+} + 2 Cl^{-}$	-49.464 ± 0.820	8.666 ± 0.144
$NiCl_2 \cdot 2H_2O(cr) \Leftrightarrow Ni^{2+} + 2 Cl^- + 2 H_2O(l)$	-28.105 ± 1.494	4.924 ± 0.262
$NiCl_2 \cdot 4H_2O(cr) \Leftrightarrow Ni^{2+} + 2 Cl^- + 4 H_2O(l)$	-21.821 ± 1.326	3.823 ± 0.232
$NiBr_2(cr) \Leftrightarrow Ni^{2+} + 2 Br^{-}$	-58.065 ± 2.563	10.172 ± 0.449
$NiI_2(cr) \Leftrightarrow Ni^{2+} + 2 I^-$	-54.861 ± 1.205	9.611 ± 0.211
$NiS_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow Ni^{2+} + 2 HS^-$	102.545 ± 8.555	-17.965 ± 1.499
$Ni_3S_2(cr) + 2 H^+ \Leftrightarrow 3 Ni^{2+} + 2 HS^- + 2 e^-$	98.339 ± 5.087	-17.228 ± 0.891
$Ni_9S_8(cr) + 8 H^+ \Leftrightarrow 9 Ni^{2+} + 8 HS^- + 2 e^-$	432.790 ± 20.496	-75.821 ± 3.591
$NiSO_4(cr) \Leftrightarrow Ni^{2+} + SO_4^{2-}$	-27.089 ± 1.800	4.746 ± 0.315
$\alpha\text{-NiSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Ni}^{2+} + \text{SO}_4^{2-} + 6 \text{ H}_2\text{O}(1)$	12.850 ± 1.397	-2.251 ± 0.245
$\beta \text{-NiSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Ni}^{2+} + \text{SO}_4^{2-} + 6 \text{ H}_2\text{O}(1)$	12.298 ± 2.031	-2.155 ± 0.356
$NiAs(cr) + 4 H_2O(l) \Leftrightarrow Ni^{2+} + AsO_4^{3-} + 8 H^+ + 7 e^{-1}$	321.010 ± 6.156	-56.238 ± 1.079
$Ni_5As_2(cr) + 8 H_2O(l) \Leftrightarrow 5 Ni^{2+} + 2 AsO_4^{3-} + 6 H^+ + 20 e^-$	609.173 ± 23.653	-106.722 ± 4.144
$Ni_{11}As_8(cr) + 32 H_2O(l) \Leftrightarrow 11 Ni^{2+} + 8 AsO_4^{3-} + 64 H^+ + 62 e^-$	2613.855 ± 51.471	-457.925 ± 9.017
$Ni_2SiO_4(oliv) + 4 H^+ \Leftrightarrow 2 Ni^{2+} + H_4SiO_4(aq)$	-110.840 ± 5.360	19.418 ± 0.939

Table 1 Additionally selected thermodynamic data of nickel compounds and gaseous species

3.2 Selenium

3.2.1 Additionally Selected Thermodynamic Data from Calculation using the Gibbs Free Energy of Formation

Additionally calculated and selected thermodynamic data on selenium compounds, gaseous species and some missing aqueous species are listed in Table 2. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹¹.

reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Se(mono) + H^+ + 2 e^- \Leftrightarrow HSe^-$	42.190 ± 2.032	-7.391 ± 0.356
$SeO_2(cr) + H_2O(1) \iff SeO_3^{2-} + 2 H^+$	46.545 ± 1.863	-8.154 ± 0.326
$SeO_3(cr) + H_2O(l) \Leftrightarrow SeO_4^{2-} + 2 H^+$	-116.191 ± 2.643	20.356 ± 0.463
$SeCl_4(cr) + 3 H_2O(l) \Leftrightarrow SeO_3^{2-} + 4 Cl^- + 6 H^+$	-89.938 ± 3.608	15.756 ± 0.632
$PbSe(cr) + H^+ \Leftrightarrow HSe^- + Pb^{2+}$	117.169 ± 7.966	-20.527 ± 1.396
α -ZnSe + H ⁺ \Leftrightarrow HSe ⁻ + Zn ²⁺	68.756 ± 4.502	-12.045 ± 0.789
$\alpha\text{-CdSe} + \text{H}^+ \Leftrightarrow \text{HSe}^- + \text{Cd}^{2+}$	106.635 ± 2.888	-18.682 ± 0.506
$CdSeO_3(cr) \Leftrightarrow SeO_3^{2-} + Cd^{2+}$	53.307 ± 6.743	-9.339 ± 1.181
α -HgSe + H ⁺ \Leftrightarrow HSe ⁻ + Hg ²⁺	259.338 ± 4.494	-45.434 ± 0.787
$\alpha\text{-CuSe} + \text{H}^+ \Leftrightarrow \text{HSe}^- + \text{Cu}^{2+}$	145.346 ± 2.615	-25.463 ± 0.458
β -CuSe + H ⁺ \Leftrightarrow HSe ⁻ + Cu ²⁺	143.421 ± 2.615	-25.126 ± 0.458
α -Ag ₂ Se + H ⁺ \Leftrightarrow HSe ⁻ + 2 Ag ⁺	244.563 ± 2.426	-42.845 ± 0.425
$Ni_{0.88}Se(cr) + H^+ + 0.24 e^- \Leftrightarrow HSe^- + 0.88 Ni^{2+}$	72.819 ± 2.680	-12.757 ± 0.470
$NiSe_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow 2 HSe^- + Ni^{2+}$	153.524 ± 8.138	-26.896 ± 1.426
$\text{Co}_{0.84}\text{Se}(\text{cr}) + \text{H}^+ + 0.32 \text{ e}^- \Leftrightarrow \text{HSe}^- + 0.84 \text{ Co}^{2+}$	54.075 ± 6.859	-9.473 ± 1.202
$USe(cr) + H^+ \Leftrightarrow HSe^- + U^{4+} + 2 e^-$	-213.134 ± 18.205	37.339 ± 3.189
$Na_2SeO_3(cr) \Leftrightarrow SeO_3^{2-} + 2 Na^+$	-17.619 ± 2.014	3.087 ± 0.353
$Rb_2SeO_4(cr) \Leftrightarrow SeO_4^{2-} + 2 Rb^+$	-2.403 ± 2.096	0.421 ± 0.367
$Ga_2(SeO_3)_3 \cdot 6H_2O(cr) \Leftrightarrow 3 SeO_3^{2-} + 2 Ga^{3+} + 6 H_2O(l)$	211.198 ± 11.416	-37.000 ± 2.000
$In_2(SeO_3)_3 \cdot 6H_2O(cr) \Leftrightarrow 3 SeO_3^{2-} + 2 In^{3+} + 6 H_2O(l)$	222.614 ± 11.416	-39.000 ± 2.000
$CoSeO_3 \cdot 2H_2O(cr) \Leftrightarrow SeO_3^{2-} + Co^{2+} + 2H_2O(l)$	45.094 ± 2.283	-7.900 ± 0.400
$\text{CoSeO}_4 \cdot 6\text{H}_2\text{O}(\text{cr}) \Leftrightarrow \text{SeO}_4^{2-} + \text{Co}^{2+} + 6 \text{H}_2\text{O}(1)$	10.040 ± 0.245	-1.759 ± 0.043
$\text{FeSeO}_3^+ \Leftrightarrow \text{SeO}_3^{2-} + \text{Fe}^{3+}$	63.645 ± 0.628	-11.150 ± 0.110
$\operatorname{Fe}_{2}(\operatorname{SeO}_{3})_{3} \cdot 6\operatorname{H}_{2}O(\operatorname{cr}) \Leftrightarrow 3 \operatorname{SeO}_{3}^{2-} + 2 \operatorname{Fe}^{3+} + 6 \operatorname{H}_{2}O(1)$	237.340 ± 0.628	-41.580 ± 0.110
$MnSeO_3 \cdot 2H_2O(cr) \Leftrightarrow SeO_3^{2-} + Mn^{2+} + 2H_2O(l)$	43.381 ± 5.708	-7.600 ± 1.000
$Se(g) + H^+ + 2 e^- \Leftrightarrow HSe^-$	-152.456 ± 2.534	26.709 ± 0.444
$Se_2(g) + 2 H^+ + 4 e^- \Leftrightarrow 2 HSe^-$	-5.500 ± 5.044	0.964 ± 0.884
$Se_3(g) + 3 H^+ + 6 e^- \Leftrightarrow 3 HSe^-$	6.864 ± 12.077	-1.203 ± 2.116
$Se_4(g) + 4 H^+ + 8 e^- \Leftrightarrow 4 HSe^-$	62.237 ± 15.661	-10.903 ± 2.744
$\operatorname{Se}_5(g) + 5 \operatorname{H}^+ + 10 \operatorname{e}^- \Leftrightarrow 5 \operatorname{HSe}^-$	128.962 ± 11.404	-22.593 ± 1.998
$\operatorname{Se}_6(g) + 6 \operatorname{H}^+ + 12 \operatorname{e}^- \Leftrightarrow 6 \operatorname{HSe}^-$	177.188 ± 13.083	-31.042 ± 2.292
$\operatorname{Se}_7(g) + 7 \operatorname{H}^+ + 14 \operatorname{e}^- \Leftrightarrow 7 \operatorname{HSe}^-$	211.452 ± 14.988	-37.045 ± 2.626
$Se_8(g) + 8 H^+ + 16 e^- \Leftrightarrow 8 HSe^-$	247.461 ± 16.583	-43.353 ± 2.905
$\operatorname{SeO}(g) + 2 \operatorname{H}_2O(l) \Leftrightarrow \operatorname{SeO}_3^{2-} + 4 \operatorname{H}^+ + 2 \operatorname{e}^-$	81.033 ± 6.462	-14.196 ± 1.132
$\text{SeO}_2(g) + \text{H}_2\text{O}(1) \Leftrightarrow \text{SeO}_3^{2-} + 2 \text{ H}^+$	-10.086 ± 3.138	1.767 ± 0.550
$H_2Se(g) \Leftrightarrow HSe^- + H^+$	28.255 ± 0.291	-4.950 ± 0.051
$SeF_4(g) + 3 H_2O(l) \Leftrightarrow SeO_3^{2-} + 4 F^- + 6 H^+$	-11.515 ± 24.270	2.017 ± 4.252
$SeF_6(g) + 4 H_2O(l) \Leftrightarrow SeO_4^{2-} + 6 F^- + 8 H^+$	-162.618 ± 4.417	28.489 ± 0.774
$SeOF_2(g) + 2 H_2O(l) \Leftrightarrow SeO_3^{2-} + 2 F^- + 4 H^+$	64.260 ± 16.187	-11.258 ± 2.836
$\operatorname{SeCl}_2(g) + 3 \operatorname{H}_2O(l) \Leftrightarrow \operatorname{SeO}_3^{2^2} + 2 \operatorname{Cl}^2 + 6 \operatorname{H}^+ + 2 \operatorname{e}^2$	112.541 ± 4.813	-19.716 ± 0.843
$\operatorname{Se_2Cl_2(g)} + 6 \operatorname{H_2O(l)} \Leftrightarrow 2 \operatorname{SeO_3^{2-}} + 2 \operatorname{Cl^-} + 12 \operatorname{H^+} + 6 \operatorname{e^-}$	470.557 ± 10.606	-82.438 ± 1.858
$SeOCl_2(g) + 2 H_2O(l) \Leftrightarrow SeO_3^{2-} + 2 Cl^- + 4 H^+$	-36.323 ± 3.067	6.363 ± 0.537
$SeBr_2(g) + 3 H_2O(l) \Leftrightarrow SeO_3^{2^2} + 2 Br^2 + 6 H^+ + 2 e^2$	145.911 ± 20.305	-25.562 ± 3.557
$SeS(g) + 3 H_2O(l) \Leftrightarrow SeO_3^{2-} + HS^- + 5 H^+ + 2 e^-$	268.915 ± 7.402	-47.112 ± 1.297

Table 2Additionally selected thermodynamic data of selenium compounds, gaseous speciesand some missing aqueous species using selected thermodynamic data by the NEA ¹¹

reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$CSe(g) + 3 H_2O(1) \Leftrightarrow HSe^- + CO_3^{2-} + 5 H^+ + 2 e^-$	-82.857 ± 9.431	14.516 ± 1.652
$CSe_2(g) + 3 H_2O(1) \Leftrightarrow 2 HSe^- + CO_3^{2-} + 4 H^+$	66.525 ± 8.630	-11.655 ± 1.512
$SiSe(g) + 4 H_2O(l) \Leftrightarrow HSe^- + H_4SiO_4(aq) + 3 H^+ + 2 e^-$	-413.823 ± 10.758	72.498 ± 1.885
$\text{SnSe}(g) + \text{H}^+ \Leftrightarrow \text{HSe}^- + \text{Sn}^{2+}$	-46.014 ± 15.899	8.061 ± 2.785
$PbSe(g) + H^+ \Leftrightarrow HSe^- + Pb^{2+}$	-63.633 ± 8.931	11.148 ± 1.565
$BSe_2(g) + 3 H_2O(1) + e^- \Leftrightarrow 2 HSe^- + B(OH)_3(aq) + H^+$	-302.306 ± 21.276	52.961 ± 3.727
$AlSe(g) + H^+ \Leftrightarrow HSe^- + Al^{3+} + e^-$	-654.605 ± 35.217	114.681 ± 6.170
$\text{SeO}_4^{2-} + \text{Mn}^{2+} \Leftrightarrow \text{MnSeO}_4(aq)$	-13.871 ± 0.285	2.430 ± 0.050
$\text{SeO}_4^{2^-} + \text{Co}^{2^+} \Leftrightarrow \text{CoSeO}_4(\text{aq})$	-15.412 ± 0.285	2.700 ± 0.050

3.2.2 Additionally Selected Thermodynamic Data from Solubility Study

Iida *et al.* conducted a solubility study of selenium at high ionic strength with varing pH under anoxic conditions from oversaturation and undersaturation directions and determined the equilibrium constant at zero ionic strength ($\log_{10} K^{\circ}$) of the following reactions using the Brønsted- Guggenheim-Scatchard Model (usually called "Specific Ion Interaction Theory (SIT)")¹²:

Se(am) + H⁺ + 2 e⁻
$$\Leftrightarrow$$
 HSe⁻ $\log_{10} K^{\circ} = -6.57 \pm 0.15$ (5 < pH < 8) (6)

4 Se(cr) + 2 e⁻
$$\Leftrightarrow$$
 Se₄²⁻ log₁₀ K^o = -16.67 ± 0.03 (9 < pH < 13). (7)

Experimental data obtained from both directions were identical, confirming that equilibrium was attained during the experimental periods. Considering the difference in activity coefficients between the calibration buffers and those of the high ionic strength solutions, they correctly determined pH. After equilibration for all experiments, all the XRD peaks of the solid phase were assigned to Se(cr). Therefore Se(am) and Se(cr) were recognized as candidates of the solubility-limiting solid. At 5 < pH < 8, the value of $\log_{10} K^{\circ}$ for reaction (Se(s) + H⁺ + 2 e⁻ \Leftrightarrow HSe⁻) was higher than the value of $\log_{10} K^{\circ}$ for reaction (Se(cr) + H⁺ + 2 e⁻ \Leftrightarrow HSe⁻) calculated from the existing thermodynamic data ¹¹⁾ of $\Delta_r G^{\circ}_m$ (Se(cr)) and $\Delta_r G^{\circ}_m$ (HSe⁻). They concluded that the solubility-limiting solid was not Se(cr) but Se(am) probably due to the rapid precipitation and slow crystallization kinetics of Se(am). On the other hand, the assumption that the solubility-limiting solid was Se(am) at 9 < pH < 13 led to the overestimation for the value of $\Delta_r G^{\circ}_m$ (Se^{4²}). They mentioned that the crystallization of Se^{4²⁻} at the high-pH region and selected Se(cr) as solubility-limiting solid. $\Delta_t G^{\circ}_m$ (Se^{4²}) determined by them agrees with the existing

thermodynamic data ¹¹⁾ and has a smaller uncertainty.

We concluded the values of $\log_{10} K^{\circ}$ for reaction (6) and (7) are reliable and accepted them for JAEA-TDB. For use of geochemical calculation programs, formation reaction of Se₄²⁻ was defined as follows:

$$4 \operatorname{SeO}_{4}^{2^{2}} + 32 \operatorname{H}^{+} + 26 \operatorname{e}^{-} \Leftrightarrow \operatorname{Se}_{4}^{2^{2}} + 16 \operatorname{H}_{2}O(1) .$$
(8)

Use of $\log_{10} K^{\circ}$ value in reaction (7) and that in the following reactions selected in JAEA-TDB

Se(cr,trigonal) + H⁺ + 2 e⁻
$$\Leftrightarrow$$
 HSe⁻ $\log_{10} K^{\circ} = -7.616 \pm 0.355$ (9)

$$\operatorname{SeO_4^{2-}} + 9 \operatorname{H^+} + 8 \operatorname{e^-} \Leftrightarrow \operatorname{HSe^-} + 4 \operatorname{H_2O}(1) \qquad \log_{10} K^\circ = 81.570 \pm 0.435 ,$$
 (10)

the $\log_{10} K^{\circ}$ of reaction (8) was determined to 340.074 ± 0.562 .

Additionally selected thermodynamic data on selenium using the solubility data by Iida *et al.*¹²⁾ were summarized in Table 3.

Table 3 Additionally selected thermodynamic data on selenium using the solubility data by Iida *et al.* 12

reaction	$\log_{10} K^{\circ}$
$Se(am) + H^+ + 2 e^- \Leftrightarrow HSe^-$	-6.570 ± 0.150
$4 \operatorname{SeO_4^{2-}} + 32 \operatorname{H^+} + 26 \operatorname{e^-} \Leftrightarrow \operatorname{Se_4^{2-}} + 16 \operatorname{H_2O}(l)$	340.074 ± 0.562

3.3 Zirconium

Additionally calculated and selected thermodynamic data on zirconium compounds and gaseous species are listed in Table 4. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹³.

3.4 Technetium

3.4.1 Additionally Selected Thermodynamic Data

Additionally calculated and selected thermodynamic data on technetium compounds and gaseous species are listed in Table 5. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁴.

Reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Zr(cr) \Leftrightarrow Zr^{4+} + 4 e^{-1}$	-528.509 ± 9.227	92.590 ± 1.616
$Zr(g) \Leftrightarrow Zr^{4+} + 4 e^{-1}$	-1095.391 ± 9.333	191.903 ± 1.635
$ZrO(g) + 2 H^+ \Leftrightarrow Zr^{4+} + H_2O(l) + 2 e^-$	-796.225 ± 28.650	139.492 ± 5.019
$ZrO_2(g) + 4 H^+ \Leftrightarrow Zr^{4+} + 2 H_2O(l)$	-704.403 ± 47.938	123.405 ± 8.398
$\operatorname{ZrH}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + \operatorname{H}^{+} + 5 \operatorname{e}^{-}$	-463.823 ± 9.262	81.258 ± 1.623
ε -ZrH ₂ \Leftrightarrow Zr ⁴⁺ + 2 H ⁺ + 6 e ⁻	-404.228 ± 9.382	70.817 ± 1.644
$ZrF(g) \Leftrightarrow Zr^{4+} + F^{-} + 3 e^{-}$	-851.385 ± 9.326	149.155 ± 1.634
$\operatorname{ZrF}_2(g) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{F}^- + 2 \operatorname{e}^-$	-598.786 ± 9.440	104.902 ± 1.654
$\operatorname{ZrF}_3(g) \Leftrightarrow \operatorname{Zr}^{4+} + 3 \operatorname{F}^- + \operatorname{e}^-$	-307.365 ± 9.608	53.848 ± 1.683
$\operatorname{ZrF}_4(g) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{F}^{-}$	-20.023 ± 9.690	3.508 ± 1.698
$\operatorname{ZrCl}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + \operatorname{Cl}^{-} + 3 \operatorname{e}^{-}$	-395.246 ± 9.446	69.244 ± 1.655
$ZrCl(g) \Leftrightarrow Zr^{4+} + Cl^{-} + 3e^{-}$	-860.144 ± 25.321	150.690 ± 4.436
$\operatorname{ZrCl}_2(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{Cl}^- + 2 \operatorname{e}^-$	-294.792 ± 15.962	51.645 ± 2.796
$\operatorname{ZrCl}_2(g) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{Cl}^- + 2 \operatorname{e}^-$	-636.632 ± 21.908	111.532 ± 3.838
$\operatorname{ZrCl}_3(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 3 \operatorname{Cl}^- + \operatorname{e}^-$	-232.418 ± 9.713	40.718 ± 1.702
$\operatorname{ZrCl}_3(g) \Leftrightarrow \operatorname{Zr}^{4+} + 3 \operatorname{Cl}^- + e^-$	-411.589 ± 13.032	72.107 ± 2.283
$\operatorname{ZrCl}_4(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{Cl}^{-}$	-163.227 ± 9.315	28.596 ± 1.632
$\operatorname{ZrCl}_4(g) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{Cl}^{-}$	-216.952 ± 9.287	38.008 ± 1.627
$\operatorname{ZrBr}_4(g) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{Br}^{-}$	-279.240 ± 9.992	48.920 ± 1.750
$ZrI(cr) \Leftrightarrow Zr^{4+} + I^{-} + 3e^{-}$	-429.816 ± 9.306	75.300 ± 1.630
$\operatorname{ZrI}(g) \Leftrightarrow \operatorname{Zr}^{4+} + 1^{-} + 3 e^{-}$	-929.551 ± 14.386	162.849 ± 2.520
$\operatorname{ZrI}_2(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{I}^- + 2 \operatorname{e}^-$	-358.158 ± 13.609	62.746 ± 2.384
$\operatorname{ZrI}_2(\mathbf{g}) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{I}^- + 2 \operatorname{e}^-$	-709.718 ± 18.532	124.337 ± 3.247
$\operatorname{ZrI}_3(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 3 \operatorname{I}^- + \operatorname{e}^-$	-298.101 ± 17.615	52.225 ± 3.086
$\operatorname{ZrI}_3(\mathbf{g}) \Leftrightarrow \operatorname{Zr}^{4+} + 3 \mathbf{I}^- + \mathbf{e}^-$	-497.805 ± 10.213	87.211 ± 1.789
$\operatorname{ZrI}_4(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{I}^{-}$	-254.543 ± 9.957	44.594 ± 1.744
$\operatorname{ZrI}_4(\mathbf{g}) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{I}^{-}$	-329.446 ± 9.963	57.716 ± 1.745
$ZrS_{1.5}(cr) + 1.5 H^+ \Leftrightarrow 1.5 HS^-$	520.472 ± 5.017	-91.182 ± 0.879
$\operatorname{ZrS}_2(\operatorname{cr}) + 2 \operatorname{H}^+ \Leftrightarrow 2 \operatorname{HS}^-$	590.236 ± 12.738	-103.404 ± 2.232
$ZrS_3(cr) + 3 H^+ \Leftrightarrow 3 HS^-$	638.649 ± 7.978	-111.886 ± 1.398
$Zr(SO_3)_2(cr) \Leftrightarrow Zr^{4+} + 2 SO_3^{2-}$	331.417 ± 15.825	-58.061 ± 2.772
$Zr(SO_4)_2(cr) \Leftrightarrow Zr^{4+} + 2 SO_4^{2-}$	-7.063 ± 9.519	1.237 ± 1.668
$Zr(SO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow Zr^{4+} + 2 SO_4^{2-} + 4 H_2O(l)$	43.685 ± 9.626	-7.653 ± 1.686
$ZrN(cr) + 3 H_2O(l) \Leftrightarrow Zr^{4+} + NO_3^- + 6 H^+ + 9 e^-$	413.969 ± 9.441	-72.524 ± 1.654
α -Zr(HPO ₄) ₂ \Leftrightarrow Zr ⁴⁺ + 2 PO ₄ ³⁻ + 2 H ⁺	407.509 ± 24.981	-71.392 ± 4.377
$\operatorname{Zr}(\operatorname{HPO}_{4})_{2} \cdot \operatorname{H}_{2}\operatorname{O}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 2\operatorname{PO}_{4}^{3-} + 2\operatorname{H}^{+} + \operatorname{H}_{2}\operatorname{O}(\operatorname{I})$	377.897 ± 22.434	-66.204 ± 3.930
$\operatorname{ZrC}(\operatorname{cr}) + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Zr}^{4+} + \operatorname{CO}_3^{2-} + 6 \operatorname{H}^+ + 8 \operatorname{e}^-$	-141.513 ± 9.591	24.792 ± 1.680
$Ca_2ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq)$	394.131 ± 18.135	-69.048 ± 3.177
$Ca_{3}ZrSi_{2}O_{9}(cr) + 10 H^{+} \Leftrightarrow 3 Ca^{2+} + Zr^{4+} + 2 H_{4}SiO_{4}(aq) + H_{2}O(l)$	-270.242 ± 14.189	47.344 ± 2.486
$SrZrSi_2O_7(cr) + H_2O(l) + 6 H^+ \Leftrightarrow Sr^{2+} + Zr^{4+} + 2 H_4SiO_4(aq)$	-26.712 ± 10.429	4.680 ± 1.827
$Na_2ZrSiO_5(cr) + 6 H^+ \Leftrightarrow 2 Na^+ + Zr^{4+} + H_4SiO_4(aq) + H_2O(l)$	-73.792 ± 22.060	12.928 ± 3.865
$Na_2ZrSi_2O_7(cr) + H_2O(l) + 6 H^+ \Leftrightarrow 2 Na^+ + Zr^{4+} + 2 H_4SiO_4(aq)$	-18.343 ± 13.817	3.214 ± 2.421
$Na_2ZrSi_3O_9 \cdot 2H_2O(cr) + H_2O(l) + 6 H^+ \Leftrightarrow 2 Na^+ + Zr^{4+} + 3 H_4SiO_4(aq)$	-84.480 ± 22.298	14.800 ± 3.906
$Na_2ZrSi_4O_{11}(cr) + 5 H_2O(1) + 6 H^+ \Leftrightarrow 2 Na^+ + Zr^{4+} + 4 H_4SiO_4(aq)$	83.345 ± 22.508	-14.601 ± 3.943

Table 4 Additionally selected thermodynamic data of zirconium compounds and gaseous species

Reaction	$\Delta_{\rm r}G^{\circ}_{\rm m}({\rm kJ}\cdot{\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Na_2ZrSi_6O_{15} \cdot 3H_2O(cr) + 6 H_2O(l) + 6 H^+ \Leftrightarrow 2 Na^+ + Zr^{4+} + 6 H_4SiO_4(aq)$	-84.985 ± 32.146	14.889 ± 5.632
$Na_4Zr_2Si_3O_{12}(cr) + 2 H^+ \Leftrightarrow 4 Na^+ + 2 Zr^{4+} + 3 H_4SiO_4(aq)$	-84.030 ± 27.477	14.721 ± 4.814
$NaZr_2P_3O_{12}(cr) \Leftrightarrow Na^+ + 2 Zr^{4+} + 3 PO_4^{3-}$	161.524 ± 27.782	-28.298 ± 4.867

Table 5 Additionally selected thermodynamic data of technetium compounds and gaseous species

reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Tc(cr) + 4 H_2O(l) \Leftrightarrow TcO_4 + 8 H^+ + 7 e^-$	311.154 ± 7.618	-54.512 ± 1.335
$Tc(g) + 4 H_2O(l) \Leftrightarrow TcO_4 + 8 H^+ + 7 e^-$	-319.557 ± 26.136	55.984 ± 4.579
$TcO(g) + 3 H_2O(l) \Leftrightarrow TcO_4^- + 6 H^+ + 5 e^-$	-283.480 ± 57.508	49.663 ± 10.075
$TcO_2(cr) + 2 H_2O(l) \Leftrightarrow TcO_4 + 4 H^+ + 3 e^-$	238.724 ± 14.013	-41.822 ± 2.455
$Tc_2O_7(cr) + H_2O(l) \Leftrightarrow 2 TcO_4^- + 2 H^+$	-87.392 ± 21.776	15.310 ± 3.815
$Tc_2O_7(g) + H_2O(l) \Leftrightarrow 2 TcO_4^- + 2 H^+$	-132.852 ± 22.428	23.275 ± 3.929
$Tc_2O_7 \cdot H_2O(s) \Leftrightarrow 2 TcO_4^- + 2 H^+$	-80.512 ± 21.732	14.105 ± 3.807
$TcS(g) + 4 H_2O(l) \Leftrightarrow TcO_4 + HS + 7 H^+ + 5 e^-$	-168.528 ± 65.480	29.525 ± 11.472
$TcC(g) + 7 H_2O(l) \Leftrightarrow TcO_4^- + CO_3^{-2} + 14 H^+ + 11 e^-$	-270.928 ± 40.967	47.464 ± 7.177
$CsTcO_4(cr) \Leftrightarrow TcO_4^- + Cs^+$	20.646 ± 0.268	-3.617 ± 0.047

3.4.2 Change of Master Species of Technetium(IV)

Technetium(IV) monooxo ion (TcO²⁺) was set as a master species of technetium(IV) in the previous version of JAEA-TDB ^{1,2)} as shown in Table 6. However, the Gibbs free energy of formation of TcO²⁺ is shown as a lower limit (> 116.799 kJ·mol⁻¹)¹⁴⁾, hence many $\log_{10} K^{\circ}$ values have not been determined. Therefore we changed master species of technetium(IV) to TcO(OH)₂(aq) based on the recommendation by the NEA ¹⁵⁾. Selected $\log_{10} K^{\circ}$ values in the present version of JAEA-TDB are listed in Table 7.

Table 6 Selected thermodynamic data on technetium(IV) in the previous version of JAEA-TDB $^{1,2)}$

reaction	$\log_{10} K^{\circ}$
$TcO^{2+} + 3 H_2O(l) \Leftrightarrow TcO_4^{2-} + 6 H^+ + 2 e^-$	> -44.214
$TcO^{2+} + 3 H_2O(l) \Leftrightarrow TcO_4^- + 6 H^+ + 3 e^-$	> -33.414
$TcO^{2+} + H_2O(l) \Leftrightarrow TcO(OH)^+ + H^+$	> 0.563
$TcO^{2+} + 2 H_2O(1) \Leftrightarrow TcO(OH)_2(aq) + 2 H^+$	> -4.000
$TcO^{2+} + 3 H_2O(1) \Leftrightarrow TcO(OH)_3^- + 3 H^+$	> -14.900
$TcO^{2^+} + H_2O(l) + CO_3^{2^-} \Leftrightarrow TcCO_3(OH)_2(aq)$	> 15.267

reaction	$\log_{10} K^{\circ}$
$TcO^{2+} + 2 H_2O(l) + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_3^{-} + H^+$	> 6.967
$TcO^{2+} + (cit)^{3-} \Leftrightarrow TcO(cit)^{-}$	11.990
$TcO^{2+} + H^+ + (cit)^{3-} \Leftrightarrow TcOH(cit)(aq)$	14.110
$TcO_2 \cdot 1.6H_2O(s) + 2 H^+ \Leftrightarrow TcO^{2+} + 2.6 H_2O(l)$	< -4.415

Table 7 Revised thermodynamic data on technetium(IV) in the present version of JAEA-TDB

reaction	log ₁	$_0 K^{\circ}$
$TcO_4^- + 6 H^+ + 3 e^- \Leftrightarrow TcO^{2+} + 3 H_2O(1)$	< 33.414	
$TcO(OH)_2(aq) + H^+ \Leftrightarrow TcO(OH)^+ + H_2O(l)$	4.563	± 0.216
$TcO(OH)_2(aq) + 2 H^+ \Leftrightarrow TcO^{2+} + 2 H_2O(l)$	< 4.000	
$TcO(OH)_2(aq) + H_2O(l) \Leftrightarrow TcO(OH)_3^- + H^+$	-10.900	± 0.400
$TcO(OH)_2(aq) + 2 H^+ + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_2(aq) + H_2O(l)$	19.255	± 0.302
$TcO(OH)_2(aq) + H^+ + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_3^{-1}$	10.955	± 0.601
$TcO(OH)_2(aq) + 2 H^+ + (cit)^{3-} \Leftrightarrow TcO(cit)^- + 2 H_2O(1)$	< 15.999	
$TcO(OH)_2(aq) + 3 H^+ + (cit)^{3-} \Leftrightarrow TcOH(cit)(aq) + 2 H_2O(l)$	< 18.110	
$TcO_2 \cdot 1.6H_2O(s) \Leftrightarrow TcO(OH)_2(aq) + 0.6 H_2O(l)$	-8.415	± 0.180

3.5 Iodine

3.5.1 Collection of Thermodynamic Data

Thermodynamic data on iodine were taken from NEA-TDB (auxiliary data)³⁾ and Cross *et al.*¹⁶⁾ in the previous JAEA-TDB tentatively. We surveyed many literatures and tried to review and select thermodynamic data on iodine in accordance with the guideline for JAEA-TDB ^{1,2)}.

As an example of articles reporting thermodynamic data on iodine, Horiguchi and Hagisawa¹⁷⁾ determined the iodine hydrolysis constant by measuring pH of iodine solution as follow,

$$I_2(cr) + H_2O(l) \Leftrightarrow HOI(aq) + H^+ + I^- \quad K^\circ = 4.6 \times 10^{-13} .$$
(11)

They estimated HOI concentrarion to be same as H^+ concentration without considering the following side reaction reported by Eguchi et al,¹⁸⁾

$$3 \text{ HOI} \Leftrightarrow \text{IO}_3^- + 3 \text{ H}^+ + 21^ K^\circ = 3.67 \times 10^{-7}.$$
 (12)

Besides, the activity coefficients of all species were assumed to be unity in the evaluation of the equilibrium constant for equation (11). We judged that the equilibrium constants reported by

Horiguchi and Hagisawa¹⁷⁾ were unreliable due to these problematic points. On the other hand, the equilibrium constant for equation (12) were also unreliable because ionic strength for each sample was unadjusted in the experiment by Eguchi et al.¹⁸⁾

Allen and Keefer¹⁹⁾ determined the equilibrium constant for equation (11) ($K^{\circ} = 5.40 \times 10^{-13}$) and the following equation,

 $I_2(aq) + H_2O(1) \Leftrightarrow H_2OI^+(aq) + I^- \qquad K^\circ < 1 \times 10^{-10}$ (13)

by means of spectrophotometric analyses of aqueous solutions of iodine. However, they did not confirm the existence of HOI(aq) and $H_2OI^+(aq)$. For this reason, we rejected their reported values, too.

It was difficult to select thermodynamic data due to lack of experimental conditions or continuous quotations within quotations. Therefore, for the purpose of making data set more exhaustive we collected thermodynamic data from some representative handbooks and tables(NEA-TDB³⁾, CRC Handbook²⁰⁾, Kagaku Binran²¹⁾ and NBS Tables²²⁾) and replaced previous data with the present ones. NEA-TDB 3) are reliable because only original experimental data were evaluated, not estimates, values from compilations or secondary citations with the emphasis on the scientific reliability. Numerous international experts made contributions to CRC Handbook 20) which guoted data from NIST-JANAF Thermochemical Tables Fourth Edition²³⁾ as well as NBS Tables²²⁾. Thermodynamic data for Se and Po in NBS Tables²²⁾ were introduced for JNC to develop TDB⁴⁾, while Kagaku Binran²¹⁾ has never been adopted in the past TDB development project. For these reasons, we determined priority of data collection in order of NEA-TDB³, CRC Handbook²⁰, NBS Tables²² and Kagaku Binran²¹. The collected data are shown in Table 8, including previously selected data and calculated $\Delta_r G^{\circ}_m$ and $\log_{10} K^{\circ}$ values using equations (2) and (3). The present data on iodine has approximately quardrupled in the number of iodide species from the previous one. We recognize that data without assigning uncertanties quoted from CRC Handbook ²⁰, Kagaku Binran ²¹ and NBS Tables ²²⁾ should be treated as tentative values due to lack of the traceability of data.

3.5.2 Solubility Estimation for Simulated Porewaters

We recalculated distribution of aqueous iodine species for some simulated porewaters determined in the Second Progress Report on Geological Disposal of High-level Radioactive Waste (H12)²⁴⁾. We selected 3 typically simulated porewaters proposed in the "H12" report, which are Fresh-Reducing-High-pH (FRHP), Saline-Reducing-High-pH (SRHP) and Fresh-Oxidizing-High-pH (FOHP) porewaters²⁵⁾, to check evaluated and estimated solubility

Compound/Species	$\Lambda_{\delta}G^{\circ}_{m}$ (k1 mol ⁻¹)	ref	reaction	$\Lambda_{c}G^{\circ}_{m}$ (kI·mol ⁻¹)	log _{io} K°	ref
[(or)		5				
1 ₂ (cr)	D	n				
	-51.724 ± 0.112	б	$I_2(cr) + 2 e^- \Leftrightarrow 2 I^-$	-103.448 ± 0.224	18.123 ± 0.039	ς
I(g)	70.172 ± 0.060	3	$I(g) + e^{-} \Leftrightarrow I^{-}$	-121.896 ± 0.127	21.355 ± 0.022	б
$I_2(g)$	19.323 ± 0.120	ŝ	$I_2(g) + 2 e^{-} \Leftrightarrow 2 I^{-}$	-122.771 ± 0.254	21.508 ± 0.045	present
HI(g)	1.700 ± 0.110	Э	$\mathrm{HI}(\mathbf{g}) \Leftrightarrow \Gamma + \mathrm{H}^+$	-53.424 ± 0.157	9.359 ± 0.028	present
10 ₃ -	-126.338 ± 0.779	ŝ	$I^{-} + 3 H_2O(I) \Leftrightarrow IO_3^{-} + 6 H^{+} + 6 e^{-}$	636.806 ± 0.797	-111.563 ± 0.140	present
HIO ₃ (aq)	-130.836 ± 0.797	ŝ	$IO_{3}^{-} + H^{+} \Leftrightarrow HIO_{3}(aq)$	-4.498 ± 0.166	0.788 ± 0.029	3
Nil ₂ (cr)	-94.36 ± 0.898	10	$NiI_2(cr) \Leftrightarrow 2 I^- + Ni^{2+}$	-54.861 ± 1.205	9.611 ± 0.211	present
β -Ni(IO ₃) ₂	-332.591 ± 1.743	10	β -Ni(IO ₃) ₂ \Leftrightarrow 2 IO ₃ ⁻ + Ni ²⁺	25.287 ± 0.114	-4.430 ± 0.020	10
Ni(IO ₃) ₂ ·2H ₂ O(cr)	-815.133 ±1.832	10	$Ni(IO_3)_2 \cdot 2H_2O(cr) \Leftrightarrow 2 H_2O(I) + 2 IO_3^- + Ni^{2+}$	29.339 ± 0.571	-5.140 ± 0.100	10
ThI ₄ (cr)	- 659.487 ±2.668	ŝ	$ThI_4(cr) \Leftrightarrow 4 I^- + Th^{4+}$	-252.192 ± 5.949	44.182 ± 1.042	present
$ThI_4(g)$	-518.316 ± 5.753	б	$ThI_4(g) \Leftrightarrow 4 \ \Gamma + Th^{4+}$	-393.363 ± 7.834	68.914 ± 1.372	present
ThIO ₃ ³⁺	-854.752 ± 5.385	ŝ	$Th^{4+} + IO_3^- \Leftrightarrow ThIO_3^{3+}$	-23.631 ± 0.571	4.140 ± 0.100	ŝ
$Th(IO_3)_2^{2+}$	-997.243 ± 5.565	ŝ	$Th^{4+} + 2 IO_3^- \Leftrightarrow Th(IO_3)_2^{2+}$	-39.785 ± 0.685	6.970 ± 0.120	3
$Th(IO_3)_3^+$	-1140.134 ± 5.825	ŝ	$Th^{4+} + 3 IO_3^- \Leftrightarrow Th(IO_3)_3^+$	-56.338 ± 0.628	9.870 ± 0.110	3
UI(g)	288.861 ±25.045	14	$UI(g) \Leftrightarrow U^{4+} + \Gamma + 3 e^{-2}$	-870.445 ± 25.107	152.494 ± 4.399	present
$UI_2(g)$	40.341 ± 25.177	14	$\mathrm{UI}_2(\mathrm{g}) \Leftrightarrow \mathrm{U}^{4+} + 2 \ \mathrm{I}^- + 2 \ \mathrm{e}^-$	-673.649 ± 25.240	118.018 ± 4.422	present
$UI_3(cr)$	-466.122 ±4.892	14	$\mathrm{UI}_3(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{3+} + 3 \mathrm{~I}^-$	-165.523 ± 5.227	28.998 ± 0.916	present
$UI_3(g)$	- 198.654 ±25.178	14	$\mathrm{UI}_3(\mathrm{g}) \Leftrightarrow \mathrm{U}^{3+} + 3 \mathrm{~Ir}$	-432.991 ± 25.245	75.856 ± 4.423	present
$UI_4(cr)$	-512.671 ±3.761	14	$\mathrm{UI}_4(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 4 \ \mathrm{I}^-$	-224.085 ± 4.179	39.258 ± 0.732	present
$UI_4(g)$	-369.585 ± 6.210	14	$\mathrm{UI}_4(\mathrm{g}) \Leftrightarrow \mathrm{U}^{4+} + 4 \ \mathrm{\Gamma}$	-367.171 ± 6.471	64.325 ± 1.134	present
UCII ₃ (cr)	-615.789 ± 11.350	14	$UCII_3(cr) \Leftrightarrow U^{4+} + C\Gamma + 3 \Gamma$	-200.460 ± 11.492	35.119 ± 2.013	present
$UCl_2I_2(cr)$	-723.356 ± 11.350	14	$UCl_2I_2(cr) \Leftrightarrow U^{4+} + 2 C\Gamma + 2 \Gamma$	-172.386 ± 11.491	30.201 ± 2.013	present
UCl ₃ I(cr)	- 829.877 ±8.766	14	$UCl_3I(cr) \Leftrightarrow U^{4+} + 3 Cl^{-} + l^{-}$	-145.358 ± 8.950	25.465 ± 1.568	present
$UO_2IO_3^+$	-1090.315 ± 1.917	14	$UO_2^{2^+} + IO_3^- \Leftrightarrow UO_2IO_3^+$	-11.416 ± 0.114	2.000 ± 0.200	14
$UO_2(IO_3)_2(aq)$	-1225.718 ± 2.493	14	$UO_2^{2^+} + 2 IO_3^- \Leftrightarrow UO_2(IO_3)_2(aq)$	-20.492 ± 0.856	3.590 ± 0.150	14
$UO_2(IO_3)_2(cr)$	-1250.206 ± 2.410	14	$UO_2(IO_3)_2(cr) \Leftrightarrow UO_2^{2^+} + 2 IO_3^{-1}$	44.979 ± 0.571	-7.880 ± 0.100	14
NpI^{3+}	-512.498 ± 3.715	14	$Np^{4+} + \Gamma \Leftrightarrow NpI^{3+}$	-8.562 ± 2.283	1.500 ± 0.400	14

Table 8 Selected thermodynamic data on iodine

Compound/Species	$\Delta_{\rm f} G^{\rm o}_{\rm m} ({\rm kJ.mol^{-1}})$	ref.	reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$	ref.
NpI ₃ (cr)	-512.498 ± 3.715	14	$NpI_3(cr) \Leftrightarrow Np^{3+} + 3 I^{-}$	-155.540 ± 6.786	27.249 ± 1.189	present
NpO ₂ IO ₃ (aq)	-1036.957 ± 5.934	14	$NpO_2^+ + IO_3^- \Leftrightarrow NpO_2IO_3(aq)$	-2.854 ± 1.712	0.500 ± 0.300	14
$NpO_2IO_3^+$	-929.126 ± 5.922	14	$NpO_2^{2+} + IO_3^- \Leftrightarrow NpO_2IO_3^+$	-6.850 ± 1.712	1.200 ± 0.300	14
Pul ₃ (cr)	-579.000 ± 4.551	14	$Pul_3(cr) \Leftrightarrow Pu^{3+} + 3 I^{-}$	-155.156 ± 5.296	27.182 ± 0.928	present
$PuI_3(g)$	-366.517 ± 15.655	14	$PuI_3(g) \Leftrightarrow Pu^{3+} + 3 I$	-367.639 ± 15.888	64.407 ± 2.783	present
PuOI(cr)	-776.626 ±20.495	14	$PuOI(cr) + 2 H^+ \Leftrightarrow Pu^{3+} + \Gamma + H_2O(1)$	-91.222 ± 20.671	15.981 ± 3.621	present
Aml ₃ (cr)	-609.451 ± 10.068	14	$AmI_3(cr) \Leftrightarrow Am^{3+} + 3 I^{-}$	-144.419 ± 11.139	25.301 ± 1.952	present
β -Co(IO ₃) ₂	-332.165 ± 1.919	26	β -Co(IO ₃) ₂ \Leftrightarrow 2 IO ₃ ⁻ + Co ²⁺	25.089 ± 0.505	-4.395 ± 0.088	26
$Co(IO_3)_2 \cdot 2H_2O(cr)$	-810.474 ± 2.112	26	$Co(IO_3)_2 \cdot 2H_2O(cr) \Leftrightarrow 2 IO_3 + Co^{2+} + 2 H_2O(I)$	29.118 ± 1.013	-5.101 ± 0.177	26
$I_2(aq)$	16.40	22	$2 \ \Gamma \Leftrightarrow I_2(aq) + 2 \ e^{-2}$	119.848	-20.996	present
I ₃ -	-51.4	22	$3 \Gamma \Leftrightarrow I_3 + 2 e^-$	103.772	-18.180	present
-0I	-38.5	22	$\Gamma + H_2O(l) \Leftrightarrow IO^- + 2 H^+ + 2 e^-$	250.364	-43.862	present
IO(g)	102.5	20	$IO(g) + 2 H^+ + 3 e^- \Leftrightarrow \Gamma + H_2O(I)$	-391.364	68.564	present
IO_4^-	-58.5	22	$\Gamma + 4 H_2O(l) \Leftrightarrow IO_4^- + 8 H^+ + 8 e^-$	941.784	-164.992	present
$1_{2}O^{2-}$	-82.4	22	$2 \text{ I}^{-} + \text{H}_2\text{O}(\textbf{l}) \Leftrightarrow \text{I}_2\text{O}^{2^{-}} + 2 \text{ H}^{+} + 2 \text{ e}^{-}$	258.188	-45.232	present
HI(aq)	-51.57	22	$\Gamma + H^+ \Leftrightarrow HI(aq)$	0.154	-0.027	present
HIO(aq)	-99.1	22	$\Gamma + H_2O(I) \Leftrightarrow HIO(aq) + H^+ + 2 e^-$	189.764	-33.245	present
$\mathrm{H_2OI}^+$	-106.7	22	$\Gamma + H_2O(I) \Leftrightarrow H_2OI^+ + 2 e^-$	182.164	-31.914	present
1 ₂ OH ⁻	-230.1	22	$2 \text{ I}^{-} + \text{H}_2\text{O}(\textbf{l}) \Leftrightarrow \text{I}_2\text{OH}^{-} + \text{H}^{+} + 2 \text{ e}^{-}$	110.488	-19.357	present
IF(g)	-118.51	22	$IF(g) + 2 e^{-} \Leftrightarrow I^{-} + F^{-}$	-214.737	37.620	present
$\operatorname{IF}_{7}(\mathbf{g})$	-818.3	22	$\operatorname{IF}_{7}(\mathbf{g}) + 8 \ \mathbf{e}^{\circ} \Leftrightarrow \Gamma + 7 \ \mathrm{F}^{\circ}$	-1204.085	210.945	present
ICl(g)	-5.46	22	$ICI(g) + 2 e^{-} \Leftrightarrow I^{-} + CI^{-}$	-177.481	31.093	present
ICl(aq)	-17.1	22	$\Gamma + C\Gamma \Leftrightarrow ICl(aq) + 2 e^{-1}$	165.841	-29.054	present
ICl ₂ ⁻	-161.0	22	$I^{-} + 2 CI^{-} \Leftrightarrow ICI_{2}^{-} + 2 e^{-}$	153.158	-26.832	present
ICl ₃ (cr)	-22.29	22	$ICI_3(cr) + 4 e^- \Leftrightarrow \Gamma + 3 CI^-$	-423.085	74.121	present
I ₂ CI ⁻	-116.3	22	$2 \text{ I}^{-} + \text{CI}^{-} \Leftrightarrow \text{I}_2 \text{CI}^{-} + 2 \text{ e}^{-}$	118.365	-20.737	present
IBr(aq)	-4.2	22	$I^{-} + Br^{-} \Leftrightarrow IBr(aq) + 2 e^{-}$	151.374	-26.519	present
IBr(g)	3.69	22	$IBr(g) + 2 e^{-} \Leftrightarrow \Gamma + Br^{-}$	-159.264	27.902	present
IBr ²⁻	-123.0	22	$\Gamma + 2 Br^{2} \Leftrightarrow IBr_{2}^{2} + 2 e^{2}$	136.424	-23.900	present
Brl_{2}^{-}	-110.0	22	$2 I^{-} + Br^{-} \Leftrightarrow Brl_{2}^{-} + 2 e^{-}$	97.298	-17.046	present

Compound/Species	$\Delta_{\rm f} G^{\circ}_{\rm m}$ (kJ.mol ⁻¹)	ref.	reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$	ref.
HBrI ₂ (aq)	-110.0	22	$2 \Gamma + H^+ + Br \Leftrightarrow HBrI_2(aq) + 2 e^-$	97.298	-17.046	present
IBrCl ⁻	-146.4	22	$I' + CI' + Br' \Leftrightarrow IBrCI' + 2 e^-$	140.391	24.595	present
AgI(cr)	-66.2	20	$AgI(cr) \Leftrightarrow \Gamma + Ag^+$	91.572	-16.043	present
AgIO ₃ (cr)	-93.7	20	$AgIO_3(cr) \Leftrightarrow IO_3^- + Ag^+$	44.458	-7.789	present
KI(cr)	-324.9	20	$KI(cr) \Leftrightarrow \Gamma + K^+$	-9.334	1.635	present
KIO ₃ (cr)	-418.4	20	$\mathrm{KIO}_3(\mathrm{cr}) \Leftrightarrow \mathrm{IO}_3^- + \mathrm{K}^+$	9.552	-1.673	present
KIO ₄ (cr)	-361.4	20	$\text{KIO}_4(\text{cr}) + 2 \text{ H}^+ + 2 \text{ e}^- \Leftrightarrow \text{IO}_3^- + \text{K}^+ + \text{H}_2\text{O}(1)$	-284.588	49.857	present
Nal(cr)	-286.1	20	$Nal(cr) \Leftrightarrow \Gamma + Na^+$	-27.577	4.831	present
$NaIO_4(cr)$	-323.0	20	$NaIO_4(cr) + 2 H^+ + 2 e^- \Leftrightarrow IO_3^- + Na^+ + H_2O(I)$	-302.431	52.983	present
CsI(cr)	-340.6	20	$Csl(cr) \Leftrightarrow \Gamma + Cs^+$	-2.580	0.452	present
$BI_3(g)$	20.75	21	$BI_3(g) + 3 H_2O(1) \Leftrightarrow 3 \Gamma + B(OH)_3(aq) + 3 H^+$	-433.770	75.993	present
$Bal_2(cr)$	-597.69	21	$BaI_2(cr) \Leftrightarrow 2 \Gamma + Ba^{2+}$	-63.414	11.110	present
$Cal_2(cr)$	-528.9	21	$CaI_2(cr) \Leftrightarrow 2 \Gamma + Ca^{2+}$	-127.354	22.311	present
$CdI_2(cr)$	-201.38	21	$CdI_2(cr) \Leftrightarrow 2 \Gamma + Cd^{2+}$	20.199	-3.539	present
$Col_2(cr)$	-90.77	21	$Col_2(cr) \Leftrightarrow 2 \Gamma + Co^{2+}$	-67.078	11.751	present
Cul(cr)	-69.5	20	$CuI(cr) \Leftrightarrow \Gamma + Cu^{2+} + e^{-}$	82.816	-14.509	present
$HgI_2(cr)$	-101.7	20	$\mathrm{HgI}_2(\mathrm{cr}) \Leftrightarrow 2 \mathrm{~I^{+}Hg}^{2+}$	162.919	-28.542	present
$Hg_2I_2(cr)$	-111.0	20	$\mathrm{Hg_2I_2(cr)} \Leftrightarrow 2\ \mathrm{I} + \mathrm{Hg_2^{2+}}$	161.119	-28.227	present
Lil(cr)	-270.3	20	$Lil(cr) \Leftrightarrow \Gamma + Li^+$	-74.342	13.024	present
MgI ₂ (cr)	-358.2	20	$MgI_2(cr) \Leftrightarrow 2 \Gamma + Mg^{2+}$	-200.623	35.147	present
NH4I(cr)	-112.5	20	$\rm NH_4I(cr) \Leftrightarrow \Gamma + \rm NH_4^+$	-18.622	3.262	present
$PbI_2(cr)$	-173.6	20	$PbI_2(cr) \Leftrightarrow 2 \Gamma + Pb^{2+}$	45.914	-8.044	present
Rbl(cr)	-328.9	20	$RbI(cr) \Leftrightarrow \Gamma + Rb^+$	-6.833	1.197	present
$Sil_4(cr)$	-191.6	21	$\operatorname{SiI}_4(\operatorname{cr}) + 4 \operatorname{H}_2O(1) \Leftrightarrow 4 \operatorname{\Gamma} + \operatorname{H}_4\operatorname{SiO}_4(\operatorname{aq}) + 4 \operatorname{H}^+$	-374.471	65.604	present
$SrI_2(cr)$	-560.7	21	$\mathrm{Srl}_2(\mathrm{cr}) \Leftrightarrow 2 \ \mathrm{\Gamma} + \mathrm{Sr}^{2+}$	-106.612	18.678	present
Tll(cr)	-125.4	20	$TII(cr) \Leftrightarrow \Gamma + TI^+$	41.276	-7.231	present
$ZnI_2(cr)$	-209.0	20	$\operatorname{Znl}_2(\operatorname{cr}) \Leftrightarrow 2 \ \Gamma + \operatorname{Zn}^{2+}$	-41.651	7.297	present
All ₃ (cr)	-300.8	20	$All_3(cr) \Leftrightarrow 3 \Gamma + Al^{3+}$	-345.879	60.595	present
AsI ₃ (cr)	-59.4	20	$AsI_3(cr) + 4 H_2O(I) \Leftrightarrow 3 \Gamma + AsO_4^{3-} + 8 H^+ + 2 e^{-3}$	204.428	-35.814	present

under various conditions. Solubility-controlling solid phase was set to $I_2(cr)$, which was a typical solid phase of iodine. The geochemical calculation program "PHREEQC" version 2.17 ⁵⁾ was used for calculation.

Contribution of Γ was 100 % for FRHP and SRHP, while those of Γ and I_2OH^- were 42 % and 29 % (i.e. equivalent to 58 % of isolated iodine), respectively, for FOHP. The obtained results were different from those using the previous thermodynamic data. Although we did not succeed to review and select thermodynamic data on iodine, we believe the present results using more exhaustive data were more realistic than the previous ones.

3.6 Thorium

Some thermodynamic data on thorium aqueous species selected by the NEA ³ shown in Table 9, which were missing in the previous version of JAEA-TDB ^{1,2}, were additionally selected.

Additionally calculated and selected thermodynamic data on thorium compounds and gaseous species are listed in Table 10. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ³).

Table 9 Additionally selected thermodynamic data for thorium aqueous species

Reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Th^{4+} + ClO_3 \Leftrightarrow ThClO_3^{3+}$	-8.847 ± 0.742	1.550 ± 0.130
$Th^{4+} + Br^{-} \Leftrightarrow ThBr^{3+}$	-7.877 ± 0.742	1.380 ± 0.130
$Th^{4+} + BrO_3^- \Leftrightarrow ThBrO_3^{3+}$	-10.845 ± 0.571	1.900 ± 0.100
$\text{Th}^{4+} + \text{IO}_3^- \Leftrightarrow \text{ThIO}_3^{3+}$	-23.631 ± 0.571	4.140 ± 0.100
$\text{Th}^{4+} + 2 \text{ IO}_3^- \Leftrightarrow \text{Th}(\text{IO}_3)_2^{2+}$	-39.785 ± 0.685	6.970 ± 0.120
Th^{4+} + 3 $\text{IO}_3^ \Leftrightarrow$ $\text{Th}(\text{IO}_3)_3^+$	-56.338 ± 0.628	9.870 ± 0.110
$Th^{4+} + N_3^- \Leftrightarrow ThN_3^{3+}$	-25.344 ± 3.653	4.440 ± 0.640
$Th^{4+} + 2 N_3^- \Leftrightarrow Th(N_3)_2^{2+}$	-49.032 ± 3.653	8.590 ± 0.640
$Th^{4+} + SCN^{-} \Leftrightarrow ThSCN^{3+}$	-11.416 ± 2.854	2.000 ± 0.500
$\text{Th}^{4+} + 2 \text{ SCN}^{-} \Leftrightarrow \text{Th}(\text{SCN})_2^{2+}$	-19.407 ± 4.566	3.400 ± 0.800

Reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$Th(cr) \Leftrightarrow Th^{4+} + 4 e^{-1}$	-704.783 ± 5.298	123.472 ± 0.928
$Th(g) \Leftrightarrow Th^{4+} + 4 e^{-}$	-1265.778 ± 8.006	221.753 ± 1.403
$\text{ThO}(g) + 2 \text{ H}^+ \Leftrightarrow \text{Th}^{4+} + \text{H}_2\text{O}(l) + 2 \text{ e}^-$	-890.624 ± 8.006	156.030 ± 1.403
$ThO_2(g) + 4 H^+ \Leftrightarrow Th^{4+} + 2 H_2O(l)$	-716.935 ± 16.314	125.601 ± 2.858
$\text{ThH}_2(\text{cr}) \Leftrightarrow \text{Th}^{4+} + 2 \text{ H}^+ + 6 \text{ e}^-$	-599.315 ± 5.665	104.995 ± 0.992
$\text{ThH}_{3.75}(\text{cr}) \Leftrightarrow \text{Th}^{4+} + 3.75 \text{ H}^{+} + 7.75 \text{ e}^{-}$	-561.906 ± 9.596	98.441 ± 1.681
$\text{ThF}(g) \Leftrightarrow \text{Th}^{4+} + \text{F}^- + 3 \text{ e}^-$	-985.518 ± 16.321	172.654 ± 2.859
$\text{ThF}_2(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 2 \text{ F}^- + 2 \text{ e}^-$	-665.972 ± 20.950	116.673 ± 3.670
$\text{ThF}_3(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 3 \text{ F}^- + e^-$	-389.578 ± 16.318	68.251 ± 2.859
$\text{ThF}_4(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 4 \text{ F}^-$	-111.547 ± 11.837	19.542 ± 2.074
$ThOF(g) + 2 H^+ \Leftrightarrow Th^{4+} + F^- + H_2O(l) + e^-$	-657.260 ± 13.471	115.146 ± 2.360
$ThOF_2(cr) + 2 H^+ \Leftrightarrow Th^{4+} + 2 F^- + H_2O(l)$	84.202 ± 9.652	-14.751 ± 1.691
$\text{ThCl}(g) \Leftrightarrow \text{Th}^{4+} + \text{Cl}^- + 3 \text{ e}^-$	-1051.688 ± 20.998	184.247 ± 3.679
$\text{ThCl}_2(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 2 \text{ Cl}^- + 2 \text{ e}^-$	-775.880 ± 22.827	135.928 ± 3.999
$\text{ThCl}_3(g) \Leftrightarrow \text{Th}^{4+} + 3 \text{ Cl}^- + e^-$	-534.670 ± 25.732	93.670 ± 4.508
β -ThCl ₄ \Leftrightarrow Th ⁴⁺ + 4 Cl ⁻	-137.358 ± 5.677	24.064 ± 0.994
$\text{ThCl}_4(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 4 \text{ Cl}^-$	-306.695 ± 7.511	53.730 ± 1.316
$ThOCl_2(cr) + 2 H^+ \Leftrightarrow Th^{4+} + 2 F^- + H_2O(l)$	-351.405 ± 5.930	61.563 ± 1.039
$\text{ThBr}(g) \Leftrightarrow \text{Th}^{4+} + \text{Br}^- + 3 \text{ e}^-$	-1128.208 ± 20.998	197.652 ± 3.679
$\text{ThBr}_2(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 2 \text{ Br}^- + 2 \text{ e}^-$	-912.456 ± 20.907	159.854 ± 3.663
$ThBr_3(g) \Leftrightarrow Th^{4+} + 3 Br^{-} + e^{-}$	-645.260 ± 16.194	113.044 ± 2.837
β -ThBr ₄ \Leftrightarrow Th ⁴⁺ + 4 Br ⁻	-195.160 ± 5.898	34.190 ± 1.033
$ThBr_4(g) \Leftrightarrow Th^{4+} + 4 Br^{-}$	-351.154 ± 7.733	61.519 ± 1.355
$ThI_4(g) \Leftrightarrow Th^{4+} + 4 I^-$	-393.363 ± 7.834	68.914 ± 1.372
$ThS(cr) + H^+ \Leftrightarrow Th^{4+} + HS^- + 2 e^-$	-300.678 ± 8.429	52.676 ± 1.477
ThN(cr) + 3 H ₂ O(l) \Leftrightarrow Th ⁴⁺ + NO ₃ ⁻ + 6 H ⁺ + 9 e ⁻	249.481 ± 11.335	-43.707 ± 1.986
$Th_3N_4(cr) + 12 H_2O(l) \Leftrightarrow 3 Th^{4+} + 4 NO_3^- + 24 H^+ + 32 e^-$	1488.206 ± 22.380	-260.721 ± 3.921
$Th(NO_3)_4 \cdot 5H_2O(cr) \Leftrightarrow Th^{4+} + 4 \text{ NO}_3 + 5 \text{ H}_2O(l)$	-11.008 ± 6.230	1.929 ± 1.091
$\text{ThC}_{0.97}(\text{cr}) + 2.91 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Th}^{4+} + 0.97 \text{ CO}_3^{2-} + 5.82 \text{ H}^+ + 7.88 \text{ e}^-$	-402.303 ± 8.247	70.480 ± 1.445
$ThC_{1.94}(s) + 5.82 H_2O(l) \Leftrightarrow Th^{4+} + 1.94 CO_3^{2-} + 11.64 H^+ + 11.76 e^-$	-222.049 ± 9.219	38.901 ± 1.615

Table 10 Additionally selected thermodynamic data for thorium compounds and gaseous species

3.7 Uranium

Additionally calculated and selected thermodynamic data on uranium compounds and gaseous species are listed in Table 11. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁴.

It should be noted that thermodynamic data on diuranate (e.g., $Na_2U_2O_7(cr)$) might control uranium(VI) solubility under oxic and highly alkaline conditions ²⁷⁾. These thermodynamic data may be important for performance assessment of radioactive waste, especially for TRU and low-level wastes of which environment will be under oxic and highly

alkaline conditions.

Table 11 Additionally selected thermodynamic data for uranium compounds and gaseous species

Reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$UO(g) + 2 H^+ \Leftrightarrow U^{4+} + H_2O(l) + 2 e^-$	-772.327 ± 10.172	135.305 ± 1.782
$UO_2(g) + 4 H^+ \Leftrightarrow U^{4+} + 2 H_2O(1)$	-523.076 ± 20.114	91.638 ± 3.524
$B-UO_{225} + 4.5 \text{ H}^{+} + 0.5 \text{ e}^{-} \Leftrightarrow U^{4+} + 2.25 \text{ H}_{2}O(1)$	5.658 ± 2.454	-0.991 ± 0.430
$UO_{2,2}(cr) + 4.5 H^{+} + 0.5 e^{-} \Leftrightarrow U^{4+} + 2.25 H_{2}O(1)$	5.700 ± 2.454	-0.999 ± 0.430
β -UO _{2 3333} + 4.6666 H ⁺ + 0.6666 e ⁻ \Leftrightarrow U ⁴⁺ + 2.3333 H ₂ O(1)	-3.607 ± 2.671	0.632 ± 0.468
$UO_{2,6667}(cr) + 5.3334 H^{+} + 1.3334 e^{-} \Leftrightarrow U^{4+} + 2.6667 H_2O(1)$	-39.084 ± 1.943	6.847 ± 0.340
$UO_3(g) + 2 H^+ \Leftrightarrow UO_2^{2+} + H_2O(1)$	-404.930 ± 15.113	70.940 ± 2.648
β -UH ₃ \Leftrightarrow U ³⁺ + 3 H ⁺ + 6 e ⁻	-403.917 ± 1.816	70.763 ± 0.318
$UF(g) \Leftrightarrow U^{4+} + F^{-} + 3 e^{-}$	-734.507 ± 20.110	128.679 ± 3.523
$UF_2(g) \Leftrightarrow U^{4+} + 2 F^- + 2 e^-$	-534.209 ± 25.277	93.589 ± 4.428
$UF_3(cr) \Leftrightarrow U^{3+} + 3 F^{-}$	111.489 ± 5.449	-19.532 ± 0.955
$UF_3(g) \Leftrightarrow U^{3+} + 3 F^{-}$	-258.095 ± 20.408	45.216 ± 3.575
$UF_4(cr) \Leftrightarrow U^{4+} + 4 F^{-}$	167.586 ± 5.332	-29.360 ± 0.934
$UF_4(g) \Leftrightarrow U^{4+} + 4 F^{-}$	-79.101 ± 7.459	13.858 ± 1.307
$UF_4 \cdot 2.5H_2O(cr) \Leftrightarrow U^{4+} + 4 F^- + 2.5 H_2O(l)$	191.480 ± 7.006	-33.546 ± 1.227
α -UF ₅ + 2 H ₂ O(l) \Leftrightarrow UO ₂ ⁺ + 5 F ⁻ + 4 H ⁺	74.332 ± 7.999	-13.022 ± 1.401
β -UF ₅ + 2 H ₂ O(l) \Leftrightarrow UO ₂ ⁺ + 5 F ⁻ + 4 H ⁺	76.239 ± 6.841	-13.356 ± 1.199
$UF_5(g) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 F^- + 4 H^+$	-32.273 ± 15.778	5.654 ± 2.764
$UF_6(g) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 6 F^- + 4 H^+$	-102.969 ± 4.887	18.039 ± 0.856
$U_2F_9(cr) + e^- \Leftrightarrow 2 U^{4+} + 9 F^-$	218.573 ± 18.446	-38.292 ± 3.232
$U_4F_{17}(cr) + e^- \Leftrightarrow 4 U^{4+} + 17 F^-$	558.669 ± 32.988	-97.874 ± 5.779
$UOF_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 F^- + H_2O(l)$	104.081 ± 6.804	-18.234 ± 1.192
$UOF_4(cr) + H_2O(l) \Leftrightarrow UO_2^{2+} + 4 F^- + 2 H^+$	-25.239 ± 5.380	4.422 ± 0.942
$UOF_4(g) + H_2O(l) \Leftrightarrow UO_2^{2^+} + 4 F^- + 2 H^+$	-136.689 ± 20.406	23.947 ± 3.575
$UO_2F_2(cr) \Leftrightarrow UO_2^{2+} + 2 F^-$	41.725 ± 2.584	-7.310 ± 0.453
$UO_2F_2(g) \Leftrightarrow UO_2^{2+} + 2 F^-$	-197.516 ± 10.482	34.603 ± 1.836
$\mathrm{U_2O_3F_6(cr)} + \mathrm{H_2O(l)} \Leftrightarrow 2 \mathrm{~UO_2}^{2+} + 6 \mathrm{~F^-} + 2 \mathrm{~H^+}$	15.630 ± 15.764	-2.738 ± 2.762
$\mathrm{U_3O_5F_8(cr)} + \mathrm{H_2O(l)} \Leftrightarrow 3 \mathrm{~UO_2}^{2+} + 8 \mathrm{~F^-} + 2 \mathrm{~H^+}$	17.438 ± 12.393	-3.055 ± 2.171
$UOFOH(cr) \Leftrightarrow UO_2^{2^+} + F^- + H^+$	102.856 ± 13.084	-18.019 ± 2.292
$UOFOH \cdot 0.5H_2O(cr) \Leftrightarrow UO_2^{2+} + F^- + H^+ + 0.5 H_2O(l)$	105.473 ± 7.219	-18.478 ± 1.265
$UOF_2 \cdot H_2O(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 F^- + 2 H_2O(l)$	107.288 ± 4.712	-18.796 ± 0.825
$UO_2FOH \cdot H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + F^- + 2 H_2O(I)$	13.346 ± 7.732	-2.338 ± 1.355
$UO_2FOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + F^- + 3 H_2O(l)$	15.538 ± 8.616	-2.722 ± 1.510
$UO_2F_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2F^- + 3H_2O(l)$	42.641 ± 7.289	-7.470 ± 1.277
$UCl(g) \Leftrightarrow U^{4+} + Cl^{-} + 3 e^{-}$	-817.022 ± 20.098	143.135 ± 3.521
$\mathrm{UCl}_2(\mathrm{g}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{Cl}^- + 2 \mathrm{e}^-$	-617.670 ± 20.299	108.210 ± 3.556
$UCl_3(cr) \Leftrightarrow U^{3+} + 3 Cl^{-}$	-74.021 ± 2.725	12.968 ± 0.477
$UCl_3(g) \Leftrightarrow U^{3+} + 3 Cl^-$	-348.472 ± 20.305	61.049 ± 3.557
$UCl_4(cr) \Leftrightarrow U^{4+} + 4 Cl^{-}$	-125.123 ± 3.106	21.920 ± 0.544
$\mathrm{UCl}_4(\mathrm{g}) \Leftrightarrow \mathrm{U}^{4+} + 4 \mathrm{Cl}^-$	-265.286 ± 5.273	46.476 ± 0.924

Reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$UCl_5(cr) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 Cl^- + 4 H^+$	-212.711 ± 4.323	37.265 ± 0.757
$\mathrm{UCl}_5(g) + 2 \operatorname{H}_2\mathrm{O}(l) \Leftrightarrow \mathrm{UO_2}^+ + 5 \operatorname{Cl}^- + 4 \operatorname{H}^+$	-293.274 ± 15.187	51.379 ± 2.661
$\mathrm{UCl}_6(\mathrm{cr}) + 2 \mathrm{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{UO_2}^{2^+} + 6 \mathrm{Cl}^- + 4 \mathrm{H}^+$	-328.453 ± 3.579	57.542 ± 0.627
$\mathrm{UCl}_6(g) + 2 \mathrm{H}_2\mathrm{O}(l) \Leftrightarrow \mathrm{UO_2}^{2^+} + 6 \mathrm{Cl}^- + 4 \mathrm{H}^+$	-363.985 ± 5.548	63.767 ± 0.972
$UOCl(cr) + 2 H^+ \Leftrightarrow U^{3+} + Cl^- + H_2O(l)$	-59.176 ± 5.216	10.367 ± 0.914
$UOCl_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 Cl^- + H_2O(l)$	-30.956 ± 3.235	5.423 ± 0.567
$UOCl_3(cr) + H_2O(l) \Leftrightarrow UO_2^+ + 3 Cl^- + 2 H^+$	-71.956 ± 8.571	12.606 ± 1.502
$UO_2Cl(cr) \Leftrightarrow UO_2^+ + Cl^-$	3.015 ± 8.565	-0.528 ± 1.501
$UO_2Cl_2(cr) \Leftrightarrow UO_2^{2^+} + 2 Cl^-$	-69.147 ± 2.192	12.114 ± 0.384
$UO_2Cl_2(g) \Leftrightarrow UO_2^{2+} + 2 Cl^{-}$	-276.001 ± 15.208	48.353 ± 2.664
$\mathrm{U}_{2}\mathrm{O}_{2}\mathrm{Cl}_{5}(\mathrm{cr}) + 2 \mathrm{H}_{2}\mathrm{O}(\mathrm{l}) \Leftrightarrow 2 \mathrm{UO}_{2}^{2^{+}} + 5 \mathrm{Cl}^{-} + 4 \mathrm{H}^{+} + \mathrm{e}^{-}$	-49.601 ± 6.040	8.690 ± 1.058
$(\mathrm{UO}_2)_2\mathrm{Cl}_3(\mathrm{cr}) + \mathrm{e}^- \Leftrightarrow 2 \mathrm{UO}_2^{2^+} + 3 \mathrm{Cl}^-$	-63.998 ± 4.574	11.212 ± 0.801
$U_5O_{12}Cl(cr) + 4 H^+ \Leftrightarrow 5 UO_2^{2+} + Cl^- + 2 H_2O(l) + 5 e^-$	149.699 ± 15.178	-26.226 ± 2.659
$UO_2Cl_2 \cdot H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Cl^- + H_2O(l)$	-47.122 ± 3.714	8.255 ± 0.651
$UO_2CIOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + CI^- + 3 H_2O(1)$	-12.969 ± 4.837	2.272 ± 0.847
$UO_2Cl_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2^+} + 2 Cl^- + 3 H_2O(l)$	-31.789 ± 3.506	5.569 ± 0.614
$UCl_3F(cr) \Leftrightarrow U^{4+} + 3 Cl^- + F^-$	-58.461 ± 5.504	10.242 ± 0.964
$\mathrm{UCl}_2\mathrm{F}_2(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{Cl}^- + 2 \mathrm{F}^-$	20.627 ± 6.030	-3.614 ± 1.056
$\text{UClF}_3(\text{cr}) \Leftrightarrow \text{U}^{4+} + \text{Cl}^- + 3 \text{ F}^-$	100.714 ± 5.832	-17.644 ± 1.022
$UBr(g) \Leftrightarrow U^{4+} + Br^{-} + 3e^{-}$	-833.333 ± 15.131	145.993 ± 2.651
$UBr_2(g) \Leftrightarrow U^{4+} + 2 Br^- + 2 e^-$	-650.664 ± 15.399	113.991 ± 2.698
$UBr_3(cr) \Leftrightarrow U^{3+} + 3 Br^{-}$	-114.825 ± 4.605	20.116 ± 0.807
$UBr_3(g) \Leftrightarrow U^{3+} + 3 Br^{-}$	-379.908 ± 20.580	66.557 ± 3.605
$\text{UBr}_4(\text{cr}) \Leftrightarrow \text{U}^{4+} + 4 \text{ Br}^-$	-177.781 ± 4.015	31.146 ± 0.703
$UBr_4(g) \Leftrightarrow U^{4+} + 4 Br^{-}$	-310.656 ± 5.298	54.424 ± 0.928
$UBr_5(cr) + 2 H_2O(1) \Leftrightarrow UO_2^+ + 5 Br^- + 4 H^+$	-236.683 ± 9.408	41.465 ± 1.648
$UBr_5(g) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 Br^- + 4 H^+$	-337.779 ± 15.418	59.176 ± 2.701
$UOBr_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 Br^- + H_2O(l)$	-45.052 ± 8.591	7.893 ± 1.505
$UOBr_3(cr) + H_2O(l) \Leftrightarrow UO_2^+ + 3 Br^- + 2 H^+$	-133.933 ± 21.412	23.464 ± 3.751
$UO_2Br_2(cr) \Leftrightarrow UO_2^{2^+} + 2 Br^-$	-93.829 ± 2.536	16.438 ± 0.444
$UO_2Br_2 \cdot H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Br^{-} + H_2O(l)$	-68.747 ± 3.081	12.044 ± 0.540
$UO_2BrOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + Br^- + 3 H_2O(l)$	-23.659 ± 4.713	4.145 ± 0.826
$UO_2Br_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Br^{-} + 3 H_2O(l)$	-53.185 ± 5.851	9.318 ± 1.025
$UBr_2Cl(cr) \Leftrightarrow U^{3+} + 2 Br^- + Cl^-$	-101.001 ± 9.938	17.695 ± 1.741
$UBr_3Cl(cr) \Leftrightarrow U^{4+} + 3 Br^{-} + Cl^{-}$	-165.513 ± 9.938	28.996 ± 1.741
$UBrCl_2(cr) \Leftrightarrow U^{3+} + Br^- + 2 Cl^-$	-82.442 ± 9.935	14.443 ± 1.741
$UBr_2Cl_2(cr) \Leftrightarrow U^{4+} + 2 Br^- + 2 Cl^-$	-149.098 ± 9.932	26.121 ± 1.740
$UBrCl_3(cr) \Leftrightarrow U^{4+} + Br^- + 3 Cl^-$	-133.861 ± 9.378	23.451 ± 1.643
$UI(g) \Leftrightarrow U^{4+} + I^{-} + 3 e^{-}$	-870.445 ± 25.107	152.494 ± 4.399
$UI_2(g) \Leftrightarrow U^{4+} + 2 I^- + 2 e^-$	-673.649 ± 25.240	118.018 ± 4.422
$UI_3(cr) \Leftrightarrow U^{3+} + 3 I^-$	-165.523 ± 5.227	28.998 ± 0.916
$UI_3(g) \Leftrightarrow U^{3+} + 3 I^-$	-432.991 ± 25.245	75.856 ± 4.423
$UI_4(cr) \Leftrightarrow U^{4+} + 4 I^-$	-224.085 ± 4.179	39.258 ± 0.732
$UI_4(g) \Leftrightarrow U^{4+} + 4 I^-$	-367.171 ± 6.471	64.325 ± 1.134
$\mathrm{UClI}_3(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + \mathrm{Cl}^- + 3 \mathrm{I}^-$	-200.460 ± 11.492	35.119 ± 2.013
$UCl_2I_2(cr) \Leftrightarrow U^{4+} + 2 Cl^- + 2 I^-$	-172.386 ± 11.491	30.201 ± 2.013
$UCl_3I(cr) \Leftrightarrow U^{4+} + 3 Cl^- + l^-$	-145.358 ± 8.950	25.465 ± 1.568
$US(cr) + H^+ \Leftrightarrow U^{4+} + HS^- + 2 e^-$	-196.688 ± 12.898	34.458 ± 2.260

Reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$US_{1.90}(cr) + 1.9 H^+ \Leftrightarrow U^{4+} + 1.9 HS^- + 0.2 e^-$	2.872 ± 21.356	-0.503 ± 3.741
$US_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 HS^-$	13.867 ± 9.221	-2.429 ± 1.615
$US_3(cr) + 2 H_2O(1) \Leftrightarrow UO_2^{2+} + 3 HS^- + H^+$	95.711 ± 14.215	-16.768 ± 2.490
$U_2S_3(cr) + 3 H^+ \Leftrightarrow 2 U^{3+} + 3 HS^-$	-36.430 ± 67.399	6.382 ± 11.808
$U_3S_5(cr) + 5 H^+ \Leftrightarrow 3 U^{4+} + 5 HS^- + 2 e^-$	-103.289 ± 100.973	18.095 ± 17.690
$UO_2SO_3(cr) \Leftrightarrow UO_2^{2+} + SO_3^{2-}$	90.347 ± 13.461	-15.828 ± 2.358
$U(SO_3)_2(cr) \Leftrightarrow U^{4+} + 2 SO_3^{2-}$	208.022 ± 22.715	-36.444 ± 3.979
$U(SO_4)_2(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-}$	66.653 ± 14.205	-11.677 ± 2.489
$U(OH)_2SO_4(cr) + 2 H^+ \Leftrightarrow U^{4+} + SO_4^{2-} + 2 H_2O(1)$	18.079 ± 3.841	-3.167 ± 0.673
$UO_2SO_4 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 3H_2O(l)$	8.586 ± 2.554	-1.504 ± 0.447
$U(SO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-} + 4 H_2O(l)$	66.882 ± 11.600	-11.717 ± 2.032
$U(SO_4)_2 \cdot 8H_2O(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-} + 8 H_2O(l)$	72.910 ± 16.852	-12.773 ± 2.952
$USe(cr) + H^+ \Leftrightarrow U^{4+} + HSe^- + 2e^-$	-213.134 ± 18.205	37.339 ± 3.189
α -USe ₂ + 2 H ⁺ \Leftrightarrow U ⁴⁺ + 2 HSe ⁻	-15.846 ± 42.232	2.776 ± 7.399
β -USe ₂ + 2 H ⁺ \Leftrightarrow U ⁴⁺ + 2 HSe ⁻	-14.946 ± 42.410	2.618 ± 7.430
$USe_3(cr) + 2 H_2O(1) \Leftrightarrow UO_2^{2+} + 3 HSe^- + H^+$	104.139 ± 42.774	-18.244 ± 7.494
$U_2Se_3(cr) + 3 H^+ \Leftrightarrow 2 U^{3+} + 3 HSe^{-1}$	-101.339 ± 75.334	17.754 ± 13.198
$U_3Se_4(cr) + 4 H^+ \Leftrightarrow 3 U^{4+} + 4 HSe^- + 4 e^-$	-426.936 ± 86.296	74.796 ± 15.118
$U_3Se_5(cr) + 5 H^+ \Leftrightarrow 3 U^{4+} + 5 HSe^- + 2 e^-$	-241.614 ± 114.140	42.329 ± 19.996
$UN(cr) + 3 H_2O(l) \Leftrightarrow U^{4+} + NO_3^- + 6 H^+ + 9 e^-$	335.848 ± 3.509	-58.838 ± 0.615
α -UN _{1.59} + 4.77 H ₂ O(l) \Leftrightarrow U ⁴⁺ + 1.59 NO ₃ ⁻ + 9.54 H ⁺ + 11.95 e ⁻	763.337 ± 5.536	-133.730 ± 0.970
α -UN _{1.73} + 5.19 H ₂ O(I) \Leftrightarrow U ⁴⁺ + 1.73 NO ₃ ⁻ + 10.38 H ⁺ + 12.65 e ⁻	862.976 ± 7.742	-151.186 ± 1.356
$UO_2(NO_3)_2(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-1}$	-68.045 ± 5.996	11.921 ± 1.050
$UO_2(NO_3)_2$ $H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + H_2O(1)$	-48.314 ± 10.701	8.464 ± 1.875
$UO_2(NO_3)_2 \cdot 2H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 2 H_2O(l)$	-27.919 ± 2.785	4.891 ± 0.488
$UO_2(NO_3)_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 3 H_2O(1)$	-20.865 ± 2.761	3.655 ± 0.484
$UO_2(NO_3)_2 \cdot 6H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 6 H_2O(1)$	-12.766 ± 2.533	2.236 ± 0.444
$UP(cr) + 4 H_2O(1) \Leftrightarrow U^{4+} + PO_4^{3-} + 8 H^+ + 9 e^{-1}$	-340.870 ± 11.352	59.718 ± 1.989
$UP_2(cr) + 8 H_2O(1) \Leftrightarrow U^{4+} + 2 PO_4^{3-} + 16 H^+ + 14 e^-$	-389.167 ± 15.462	68.179 ± 2.709
$U_{3}P_{4}(cr) + 16 H_{2}O(1) \Leftrightarrow U^{4+} + 4 PO_{4}^{3-} + 32 H^{+} + 32 e^{-1}$	-1070.869 ± 27.294	187.607 ± 4.782
$UPO_5(cr) + H_2O(1) \Leftrightarrow UO_2^+ + PO_4^{3-} + 2 H^+$	175.341 ± 5.519	-30.718 ± 0.967
$UP_2O_7(cr) + 3 H_2O(1) \Leftrightarrow UO_2^{2+} + 2 PO_4^{3-} + 6 H^+ + 2 e^-$	367.159 ± 6.467	-64.323 ± 1.133
$(UO_2)_2P_2O_7(cr) + H_2O(1) \Leftrightarrow 2 UO_2^{2+} + 2 PO_4^{3-} + 2 H^+$	211.058 ± 8.320	-36.976 ± 1.458
$(UO_2)_3(PO_4)_2(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-}$	207.340 ± 8.193	-36.324 ± 1.435
$U(HPO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow U^{4+} + 2 PO_4^{3-} + 4 H_2O(l) + 2 H^+$	315.051 ± 5.186	-55.194 ± 0.909
$(UO_2)_3(PO_4)_2 \cdot 6H_2O(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-} + 6 H_2O(l)$	281.550 ± 14.724	-49.325 ± 2.580
$UAs(cr) + 4 H_2O(l) \Leftrightarrow U^{4+} + AsO_4^{3-} + 8 H^+ + 9 e^{-1}$	8.248 ± 9.143	-1.445 ± 1.602
$UAs_2(cr) + 8 H_2O(1) \Leftrightarrow U^{4+} + 2 AsO_4^{3-} + 16 H^+ + 14 e^-$	323.330 ± 15.382	-56.645 ± 2.695
$U_3As_4(cr) + 16 H_2O(l) \Leftrightarrow 3 U^{4+} + 4 AsO_4^{3-} + 32 H^+ + 32 e^-$	336.608 ± 24.700	-58.971 ± 4.327
$UO_2(AsO_3)_2(cr) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 2 AsO_4^{3-} + 4 H^+$	169.920 ± 14.542	-29.769 ± 2.548
$(\mathrm{UO}_2)_2\mathrm{As_2O_7(cr)} + \mathrm{H_2O(l)} \Leftrightarrow 2 \mathrm{UO_2}^{2^+} + 2 \mathrm{AsO_4}^{3^-} + 2 \mathrm{H^+}$	165.572 ± 14.853	-29.007 ± 2.602
$(UO_2)_3(AsO_4)_2(cr) \Leftrightarrow 3 UO_2^{2^+} + 2 AsO_4^{3^-}$	156.416 ± 15.359	-27.403 ± 2.691
$UC(cr) + 3 H_2O(l) \Leftrightarrow U^{4+} + CO_3^{2-} + 6 H^+ + 8 e^-$	-247.440 ± 3.505	43.349 ± 0.614
α -UC _{1.94} + 5.82 H ₂ O(l) \Leftrightarrow U ⁴⁺ + 1.94 CO ₃ ²⁻ + 11.64 H ⁺ + 11.76 e ⁻	-86.431 ± 2.856	15.142 ± 0.500
$U_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 U^{4+} + 3 CO_3^{2-} + 18 H^+ + 20 e^{-1}$	-319.843 ± 10.677	56.034 ± 1.871
$USiO_4(cr) + 4 H^+ \Leftrightarrow U^{4+} + H_4SiO_4(aq)$	46.005 ± 4.522	-8.060 ± 0.792
$MgUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2^+} + Mg^{2^+} + 2 H_2O(l)$	-132.605 ± 2.664	23.231 ± 0.467
$CaUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2^+} + Ca^{2^+} + 2 H_2O(l)$	-90.931 ± 3.166	15.930 ± 0.555

Reaction	$\Delta_{\rm r} G^{\circ}_{\rm m} ({\rm kJ} \cdot {\rm mol}^{-1})$	$\log_{10} K^{\circ}$
$\alpha - SrUO_4 + 4 H^+ \Leftrightarrow UO_2^{2+} + Sr^{2+} + 2 H_2O(I)$	-109.340 ± 3.394	19.155 ± 0.595
$BaUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + Ba^{2+} + 2 H_2O(l)$	-100.682 ± 4.608	17.639 ± 0.807
$Ba_{3}UO_{6}(cr) + 8 H^{+} \Leftrightarrow UO_{2}^{2+} + 3 Ba^{2+} + 4 H_{2}O(l)$	-529.128 ± 12.151	92.699 ± 2.129
$BaU_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^{2+} + Ba^{2+} + 3 H_2O(1)$	-122.085 ± 7.998	21.388 ± 1.401
$Ba_2U_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^+ + 2 Ba^{2+} + 3 H_2O(l)$	-201.759 ± 9.946	35.346 ± 1.742
$\text{Li}_2\text{UO}_4(\text{cr}) + 4 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2+} + 2 \text{ Li}^+ + 2 \text{ H}_2\text{O}(1)$	-159.477 ± 2.831	27.939 ± 0.496
$NaUO_3(cr) + 2 H^+ \Leftrightarrow UO_2^+ + Na^+ + H_2O(l)$	-47.619 ± 10.154	8.342 ± 1.779
$\alpha \text{-Na}_2\text{UO}_4 + 4 \text{ H}^+ \Leftrightarrow \text{UO}_2^{2+} + 2 \text{ Na}^+ + 2 \text{ H}_2\text{O}(1)$	-171.434 ± 3.923	30.034 ± 0.687
$Na_3UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^+ + 3 Na^+ + 2 H_2O(l)$	-321.251 ± 8.198	56.280 ± 1.436
$Na_2U_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^{2+} + 2 Na^+ + 3 H_2O(1)$	-128.974 ± 5.327	22.595 ± 0.933
$K_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 K^+ + 2 H_2O(l)$	-193.352 ± 3.696	33.874 ± 0.648
$Rb_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 Rb^+ + 2 H_2O(l)$	-194.708 ± 3.703	34.111 ± 0.649
$Cs_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 Cs^+ + 2 H_2O(l)$	-204.373 ± 2.392	35.804 ± 0.419
$\mathrm{Cs_2U_2O_7(cr)} + 6 \mathrm{H^+} \Leftrightarrow 2 \mathrm{UO_2}^{2+} + 2 \mathrm{Cs^+} + 3 \mathrm{H_2O(l)}$	-176.553 ± 10.652	30.931 ± 1.866
$Cs_2U_4O_{12}(cr) + 8 H^+ \Leftrightarrow 4 UO_2^{2^+} + 2 Cs^+ + 4 H_2O(1) + 2 e^-$	-90.618 ± 7.948	15.875 ± 1.392
$Na_4UO_2(CO_3)_3(cr) \Leftrightarrow UO_2^{2^+} + 4 Na^+ + 3 CO_3^{2^-}$	155.143 ± 3.166	-27.180 ± 0.555

3.8 Neptunium

Additionally calculated and selected thermodynamic data on neptunium compounds and gaseous species are listed in Table 12. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁴).

 Table 12
 Additionally selected thermodynamic data for neptunium compounds and gaseous species

reaction	$\Delta_{\rm r} G^{\circ}{}_{ m m}$	$\log_{10} K^{\circ}$
$Np(cr) \Leftrightarrow Np^{4+} + 4 e^{-1}$	-491.774 ± 5.586	86.155 ± 0.979
$Np(g) \Leftrightarrow Np^{4+} + 4 e^{-1}$	-912.969 ± 6.345	159.944 ± 1.112
$NpO_2(cr) + 4 H^+ \Leftrightarrow Np^{4+} + 2 H_2O(l)$	55.677 ± 6.126	-9.754 ± 1.073
$Np_2O_5(cr) + 2 H^+ \Leftrightarrow 2 NpO_2^+ + H_2O(l)$	-21.096 ± 15.898	3.696 ± 2.785
$NpO_2(OH)_2(cr) + 2 H^+ \Leftrightarrow NpO_2^{2+} + 2 H_2O(l)$	-31.219 ± 8.514	5.469 ± 1.492
$NpF(g) \Leftrightarrow Np^{4+} + F^- + 3 e^-$	-663.737 ± 25.671	116.281 ± 4.497
$NpF_2(g) \Leftrightarrow Np^{4+} + 2 F^- + 2 e^-$	-464.689 ± 30.693	81.410 ± 5.377
$NpF_3(cr) \Leftrightarrow Np^{3+} + 3 F^{-}$	103.066 ± 10.284	-18.056 ± 1.802
$NpF_3(g) \Leftrightarrow Np^{3+} + 3 F^{-}$	-249.634 ± 25.892	43.734 ± 4.536
$NpF_4(cr) \Leftrightarrow Np^{4+} + 4 F^{-}$	165.931 ± 17.215	-29.070 ± 3.016
$NpF_4(g) \Leftrightarrow Np^{4+} + 4 F^{-}$	-82.579 ± 23.061	14.467 ± 4.040
$NpF_5(cr) + 2 H_2O(l) \Leftrightarrow NpO_2^+ + 5 F^- + 4 H^+$	-6.670 ± 26.243	1.169 ± 4.598
$NpF_6(cr) + 2 H_2O(l) \Leftrightarrow NpO_2^{2+} + 6 F^- + 4 H^+$	-168.925 ± 21.186	29.594 ± 3.712
$NpF_6(g) + 2 H_2O(l) \Leftrightarrow NpO_2^{2+} + 6 F^- + 4 H^+$	-173.272 ± 21.186	30.356 ± 3.712
$NpCl_3(cr) \Leftrightarrow Np^{3+} + 3 Cl^{-}$	-76.706 ± 6.538	13.438 ± 1.145
$NpCl_3(g) \Leftrightarrow Np^{3+} + 3 Cl^{-}$	-324.160 ± 12.222	56.790 ± 2.141
$NpCl_4(cr) \Leftrightarrow Np^{4+} + 4 Cl^{-}$	-121.080 ± 6.357	21.212 ± 1.114

reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m}$	$\log_{10} K^{\circ}$
$NpCl_4(g) \Leftrightarrow Np^{4+} + 4 Cl^{-}$	-251.592 ± 7.844	44.077 ± 1.374
NpOCl ₂ (cr) + 2 H ⁺ \Leftrightarrow Np ⁴⁺ + 2 Cl ⁻ + H ₂ O(l)	-30.703 ± 9.876	5.379 ± 1.730
$NpBr_3(cr) \Leftrightarrow Np^{3+} + 3 Br^{-}$	-118.895 ± 6.824	20.829 ± 1.195
$NpBr_4(cr) \Leftrightarrow Np^{4+} + 4 Br^{-}$	-169.331 ± 6.623	29.665 ± 1.160
NpOBr ₂ (cr) + 2 H ⁺ \Leftrightarrow Np ⁴⁺ + 2 Br ⁻ + H ₂ O(l)	-29.681 ± 12.401	5.200 ± 2.173
$NpI_3(cr) \Leftrightarrow Np^{3+} + 3 I^-$	-155.540 ± 6.786	27.249 ± 1.189
NpN(cr) + 3 H ₂ O(l) \Leftrightarrow Np ⁴⁺ + NO ₃ ⁻ + 6 H ⁺ + 9 e ⁻	389.295 ± 11.474	-68.201 ± 2.010
$NpO_2(NO_3)_2 \cdot 6H_2O(cr) \Leftrightarrow NpO_2^{2+} + 2 NO_3^{-} + 6 H_2O(l)$	-12.298 ± 7.953	2.155 ± 1.393
$NpC_{0.91}(cr) + 2.73 H_2O(1) \Leftrightarrow Np^{4+} + 0.91 CO_3^{2-} + 5.46 H^+ + 7.64 e^-$	-248.747 ± 11.485	43.578 ± 2.012
$Np_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 Np^{4+} + 3 CO_3^{2-} + 18 H^+ + 20 e^-$	-240.561 ± 22.452	42.144 ± 3.933
$Na_3NpF_8(cr) + e^- \Leftrightarrow 3 Na^+ + Np^{4+} + 8 F^-$	-8.578 ± 22.712	1.503 ± 3.979
$K_4NpO_2(CO_3)_3(s) \Leftrightarrow 4 K^+ + NpO_2^{2+} + 3 CO_3^{2-}$	150.716 ± 9.565	-26.404 ± 1.676
$Cs_2NpCl_6(cr) \Leftrightarrow 2 Cs^+ + Np^{4+} + 6 Cl^-$	-28.949 ± 7.521	5.072 ± 1.318
$Cs_2NpBr_6(cr) \Leftrightarrow 2 Cs^+ + Np^{4+} + 6 Br^-$	-77.665 ± 6.814	13.606 ± 1.194

3.9 Plutonium

Additionally calculated and selected thermodynamic data on plutonium compounds and gaseous species are listed in Table 13. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁴.

 Table 13
 Additionally selected thermodynamic data for plutonium compounds and gaseous species

reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m}$	$\log_{10} K^{\circ}$
$Pu(cr) \Leftrightarrow Pu^{4+} + 4 e^{-1}$	-477.988 ± 2.705	83.739 ± 0.474
$Pu(g) \Leftrightarrow Pu^{4+} + 4 e^{-}$	-790.403 ± 4.046	138.472 ± 0.709
$PuO_{1.61}(bcc) + 3.22 \text{ H}^+ \Leftrightarrow Pu^{4+} + 1.61 \text{ H}_2O(1) + 0.78 \text{ e}^-$	-25.012 ± 10.469	4.382 ± 1.834
$PuO_2(cr) + 4 H^+ \Leftrightarrow Pu^{4+} + 2 H_2O(l)$	45.845 ± 2.896	-8.032 ± 0.507
$Pu_2O_3(cr) + 6 H^+ \Leftrightarrow 2 Pu^{3+} + 3 H_2O(l)$	-289.013 ± 11.366	50.633 ± 1.991
$Pu(OH)_{3}(cr) + 3 H^{+} \Leftrightarrow Pu^{3+} + 3 H_{2}O(l)$	-90.186 ± 9.370	15.800 ± 1.641
$PuF(g) \Leftrightarrow Pu^{4+} + F^{-} + 3 e^{-}$	-618.544 ± 10.491	108.364 ± 1.838
$PuF_2(g) \Leftrightarrow Pu^{4+} + 2 F^- + 2 e^-$	-414.883 ± 7.360	72.684 ± 1.289
$PuF_3(cr) \Leftrightarrow Pu^{3+} + 3 F^{-}$	93.816 ± 5.029	-16.436 ± 0.881
$PuF_3(g) \Leftrightarrow Pu^{3+} + 3 F^{-}$	-262.472 ± 5.846	45.983 ± 1.024
$PuF_4(cr) \Leftrightarrow Pu^{4+} + 4 F^{-}$	152.661 ± 20.373	-26.745 ± 3.569
$PuF_4(g) \Leftrightarrow Pu^{4+} + 4 F^{-}$	-86.206 ± 22.537	15.103 ± 3.948
$PuF_{6}(cr) + 2 H_{2}O(l) \Leftrightarrow PuO_{2}^{2+} + 6 F^{-} + 4 H^{+}$	-247.355 ± 20.789	43.334 ± 3.642
$PuF_{6}(g) + 2 H_{2}O(l) \Leftrightarrow PuO_{2}^{2+} + 6 F^{-} + 4 H^{+}$	-252.147 ± 20.721	44.174 ± 3.630
$PuOF(cr) + 2 H^+ \Leftrightarrow Pu^{3+} + F^- + H_2O(l)$	-6.076 ± 20.412	1.064 ± 3.576
$PuCl_3(cr) \Leftrightarrow Pu^{3+} + 3 Cl^{-}$	-80.829 ± 3.383	14.161 ± 0.593
$PuCl_3(g) \Leftrightarrow Pu^{3+} + 3 Cl^{-}$	-331.336 ± 4.505	58.047 ± 0.789
$PuCl_4(cr) \Leftrightarrow Pu^{4+} + 4 Cl^{-}$	-123.488 ± 6.440	21.634 ± 1.128

reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m}$	$\log_{10} K^{\circ}$
$PuCl_4(g) \Leftrightarrow Pu^{4+} + 4 Cl^{-}$	-238.173 ± 10.793	41.726 ± 1.891
$PuOCl(cr) + 2 H^+ \Leftrightarrow Pu^{3+} + Cl^- + H_2O(l)$	-64.932 ± 3.315	11.376 ± 0.581
$PuCl_3 \cdot 6H_2O(cr) \Leftrightarrow Pu^{3+} + 3 Cl^- + 6 H_2O(l)$	-30.128 ± 3.755	5.278 ± 0.658
$PuBr_3(cr) \Leftrightarrow Pu^{3+} + 3 Br^{-}$	-123.210 ± 3.841	21.585 ± 0.673
$PuBr_3(g) \Leftrightarrow Pu^{3+} + 3 Br^{-}$	-360.726 ± 15.892	63.196 ± 2.784
$PuOBr(cr) + 2 H^{+} \Leftrightarrow Pu^{3+} + Br^{-} + H_{2}O(l)$	-81.620 ± 8.956	14.299 ± 1.569
$PuI_3(cr) \Leftrightarrow Pu^{3+} + 3 I^-$	-155.156 ± 5.296	27.182 ± 0.928
$PuI_3(g) \Leftrightarrow Pu^{3+} + 3 I^{-}$	-367.639 ± 15.888	64.407 ± 2.783
$PuOI(cr) + 2 H^+ \Leftrightarrow Pu^{3+} + I^- + H_2O(I)$	-91.222 ± 20.671	15.981 ± 3.621
$PuN(cr) + 3 H_2O(l) \Leftrightarrow Pu^{4+} + NO_3^- + 6 H^+ + 9 e^-$	396.357 ± 3.743	-69.438 ± 0.656
$PuP(cr) + 4 H_2O(l) \Leftrightarrow Pu^{4+} + PO_4^{3-} + 8 H^+ + 9 e^{-1}$	-241.162 ± 21.310	42.250 ± 3.733
$PuPO_4(s, hyd) \Leftrightarrow Pu^{3+} + PO_4^{3-}$	140.418 ± 6.346	-24.600 ± 1.112
$PuAs(cr) + 4 H_2O(l) \Leftrightarrow Pu^{4+} + AsO_4^{3-} + 8 H^+ + 9 e^{-1}$	63.625 ± 20.685	-11.147 ± 3.624
$PuC_{0.84}(cr) + 2.52 H_2O(l) \Leftrightarrow Pu^{4+} + 0.84 CO_3^{2-} + 5.04 H^+ + 7.36 e^-$	-274.004 ± 8.478	48.003 ± 1.485
$Pu_3C_2(cr) + 6 H_2O(l) \Leftrightarrow 3 Pu^{4+} + 2 CO_3^{2-} + 12 H^+ + 20 e^-$	-943.447 ± 31.133	165.284 ± 5.454
$Pu_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 Pu^{4+} + 3 CO_3^{2-} + 18 H^+ + 20 e^-$	-248.902 ± 17.625	43.605 ± 3.088
$Cs_2PuCl_6(cr) \Leftrightarrow 2 Cs^+ + Pu^{4+} + 6 Cl^-$	-9.959 ± 7.353	1.745 ± 1.288
$Cs_3PuCl_6(cr) \Leftrightarrow 3 Cs^+ + Pu^{3+} + 6 Cl^-$	-32.609 ± 10.019	5.713 ± 1.755
$CsPu_2Cl_7(cr) \Leftrightarrow Cs^+ + 2 Pu^{3+} + 7 Cl^-$	-132.824 ± 7.601	23.270 ± 1.332
$Cs_2PuBr_6(cr) \Leftrightarrow 2 Cs^+ + Pu^{4+} + 6 Br^-$	-49.674 ± 6.877	8.702 ± 1.205
$Cs_2NaPuCl_6(cr) \Leftrightarrow Na^+ + 2 Cs^+ + Pu^{3+} + 6 Cl^-$	-67.655 ± 5.979	11.853 ± 1.047

3.10 Americium

We focused selection of thermodynamic data on only americium(III) in the previous version of JAEA-TDB^{1,2)}. We additionally selected those on americium with other redox states shown in Table 14 selected by the NEA¹⁴⁾.

Additionally calculated and selected thermodynamic data on americium compounds and gaseous species are listed in Table 15. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ¹⁴). Although the chemical similarity among trivalent samarium, actinium, plutonium, americium and curium was applied, selected values in Table 14 and Table 15 were not transferred to the other trivalent elements because most of the reactions contained a redox reaction which was not applicable to the other trivalent elements. Applicability of the chemical similarity should be further discussed.

3.11 Auxiliary Data

Additionally calculated and selected auxiliary data on compounds and gaseous species are listed in Table 16. Selected the Gibbs free energy of formation ($\Delta_f G^{\circ}_m$) are listed elsewhere ³).

reaction	$\Delta_{\rm r} G^{\circ}{}_{ m m}$	$\log_{10} K^{\circ}$
$Am^{3+} + e^- \Leftrightarrow Am^{2+}$	221.920 ± 14.476	-38.878 ± 2.536
$Am^{3+} \Leftrightarrow Am^{4+} + e^{-}$	252.340 ± 9.908	-44.208 ± 1.736
$\operatorname{Am}^{4+} + 5 \operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{Am}(\operatorname{CO}_3)_5^{6-}$	-224.369 ± 11.919	39.308 ± 2.088
$Am^{3+} + 2 H_2O(1) \Leftrightarrow AmO_2^+ + 4 H^+ + 2 e^-$	333.182 ± 7.820	-58.371 ± 1.370
$AmO_2^+ + CO_3^{2-} \Leftrightarrow AmO_2CO_3^-$	-29.111 ± 2.854	5.100 ± 0.500 *
$AmO_2^+ + 2 CO_3^{2-} \Leftrightarrow AmO_2(CO_3)_2^{3-}$	-38.244 ± 4.566	$6.700 \pm 0.800 \ ^{*}$
$\operatorname{AmO}_2^+ + 3 \operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{AmO}_2(\operatorname{CO}_3)_3^{5-}$	-29.111 ± 5.708	5.100 ± 1.000 *
$Am^{3+} + 2 H_2O(l) \Leftrightarrow AmO_2^{2+} + 4 H^+ + 3 e^-$	487.177 ± 7.435	-85.349 ± 1.303
$\operatorname{AmO}_2^{2^+} + 3 \operatorname{CO}_3^{2^-} \Leftrightarrow \operatorname{AmO}_2(\operatorname{CO}_3)_3^{4^-}$	-108.330 ± 10.874	18.978 ± 1.905

 Table 14
 Additionally selected thermodynamic data for americium aqueous species

*Taken from $\log_{10} K^{\circ}$ of the same chemical formula as neptunium.

Table 15	Additionally	selected	thermodynamic	data	for	americium	compounds	and	gaseous
species									

reaction	$\Delta_{\rm r} G^{\circ}{}_{\rm m}$	$\log_{10} K^{\circ}$
$AmO_2OH(am) + H^+ \Leftrightarrow AmO_2^+ + H_2O(l)$	-30.253 ± 2.854	5.300 ± 0.500 *
$NaAmO_2CO_3(s) \Leftrightarrow AmO_2^+ + CO_3^{2-} + Na^+$	62.218 ± 2.283	-10.900 ± 0.400 *
$Am(cr) \Leftrightarrow Am^{3+} + 3 e^{-}$	-598.698 ± 4.755	104.887 ± 0.833
$Am(g) \Leftrightarrow Am^{3+} + 3 e^{-}$	-841.010 ± 5.021	147.338 ± 0.880
$AmO_2(cr) + 4 H^+ \Leftrightarrow Am^{4+} + 2 H_2O(l)$	57.045 ± 9.685	-9.994 ± 1.697
$Am_2O_3(cr) + 6 H^+ \Leftrightarrow 2 Am^{3+} + 3 H_2O(l)$	-303.367 ± 12.613	53.147 ± 2.210
$AmH_2(cr) \Leftrightarrow Am^{2+} + 2 H^+$	-242.119 ± 21.419	42.417 ± 3.752
$AmF_3(cr) \Leftrightarrow Am^{3+} + 3 F^{-}$	76.498 ± 15.049	-13.402 ± 2.636
$AmF_3(g) \Leftrightarrow Am^{3+} + 3 F^-$	-295.469 ± 17.555	51.764 ± 3.076
$AmF_4(cr) \Leftrightarrow Am^{4+} + 4 F^{-}$	160.053 ± 19.449	-28.040 ± 3.407
$\operatorname{AmCl}_3(\operatorname{cr}) \Leftrightarrow \operatorname{Am}^{3+} + 3 \operatorname{Cl}^{-}$	-87.244 ± 5.289	15.284 ± 0.927
$AmBr_3(cr) \Leftrightarrow Am^{3+} + 3 Br^{-}$	-136.574 ± 8.254	23.927 ± 1.446
$AmOCl(cr) + 2 H^+ \Leftrightarrow Am^{3+} + Cl^- + H_2O(l)$	-70.003 ± 8.238	12.264 ± 1.443
$AmOBr(cr) + 2 H^+ \Leftrightarrow Am^{3+} + Br^- + H_2O(l)$	-91.203 ± 10.889	15.978 ± 1.908
$AmI_3(cr) \Leftrightarrow Am^{3+} + 3 I^{-}$	-144.419 ± 11.139	25.301 ± 1.952
$Am_2C_3(cr) + 9 H_2O(1) \Leftrightarrow 2 Am^{3+} + 8 H^+ + 8 e^- + 3 CO_3^{2-}$	-490.773 ± 43.508	85.979 ± 7.622
$Cs_2NaAmCl_6(cr) \Leftrightarrow Am^{3+} + 2 Cs^+ + Na^+ + 6 Cl^-$	-71.714 ± 6.922	12.564 ± 1.213

^{*}Taken from $\log_{10} K^{\circ}$ of the same chemical formula as neptunium.

reaction	$\Delta_{ m r} G^{\circ}{}_{ m m}$	$\log_{10} K^{\circ}$
$Br_2(l) + 2 e^- \Leftrightarrow 2 Br^-$	-207.700 ± 0.334	36.387 ± 0.059
$\mathrm{As_4O_6(g)} + 10~\mathrm{H_2O(l)} \Leftrightarrow 4~\mathrm{AsO_4^{3-}} + 20~\mathrm{H^+} + 8~\mathrm{e^-}$	870.676 ± 22.736	-152.535 ± 3.983
$CO_3^{2-} + NO_3^{-} + 13 \text{ H}^+ + 10 \text{ e}^- \Leftrightarrow \text{HCN}(aq) + 6 \text{ H}_2O(l)$	-669.778 ± 2.593	117.339 ± 0.454
$HCN(g) + 6 H_2O(l) \Leftrightarrow CO_3^{2-} + NO_3^{-} + 13 H^+ + 10 e^{-1}$	664.629 ± 2.576	-116.437 ± 0.451
$Pb(g) \Leftrightarrow Pb^{2+} + 2 e^{-}$	-186.470 ± 0.898	32.668 ± 0.157
$Al(cr) \Leftrightarrow Al^{3+} + 3 e^{-}$	-491.507 ± 3.338	86.108 ± 0.585
$Al(g) \Leftrightarrow Al^{3+} + 3 e^{-}$	-780.883 ± 5.210	136.804 ± 0.913
$Al_2O_3(corundum) + 6 H^+ \Leftrightarrow 2 Al^{3+} + 3 H_2O(l)$	-112.177 ± 6.803	19.652 ± 1.192
$AlF_3(cr) \Leftrightarrow Al^{3+} + 3 F^{-}$	95.020 ± 4.143	-16.647 ± 0.726
$Zn(cr) \Leftrightarrow Zn^{2+} + 2 e^{-}$	-147.203 ± 0.254	25.789 ± 0.044
$\operatorname{Zn}(g) \Leftrightarrow \operatorname{Zn}^{2^+} + 2 e^-$	-242.016 ± 0.476	42.399 ± 0.083
$ZnO(cr) + 2 H^+ \Leftrightarrow Zn^{2+} + H_2O(l)$	-63.864 ± 0.394	11.188 ± 0.069
$Cd(cr) \Leftrightarrow Cd^{2+} + 2 e^{-}$	-77.733 ± 0.750	13.618 ± 0.131
$Cd(g) \Leftrightarrow Cd^{2+} + 2 e^{-}$	-154.963 ± 0.778	27.148 ± 0.136
$CdO(cr) + 2 H^+ \Leftrightarrow Cd^{2+} + H_2O(l)$	-86.212 ± 0.963	15.104 ± 0.169
$CdSO_4 \cdot 2.667H_2O(cr) \Leftrightarrow Cd^{2+} + SO_4^{2-} + 2.667H_2O(l)$	10.770 ± 1.185	-1.887 ± 0.208
$\mathrm{Hg}(\mathrm{g}) \Leftrightarrow \mathrm{Hg}^{2^+} + 2 \mathrm{e}^{-1}$	132.825 ± 0.318	-23.270 ± 0.056
$\mathrm{Hg}(\mathrm{I}) \Leftrightarrow \mathrm{Hg}^{2+} + 2 \mathrm{e}^{-1}$	164.667 ± 0.313	-28.848 ± 0.055
$\mathrm{Hg}_{2}\mathrm{Cl}_{2}(\mathrm{cr}) \Leftrightarrow 2 \mathrm{Hg}^{2+} + 2 \mathrm{e}^{-} + 2 \mathrm{Cl}^{-}$	277.625 ± 0.818	-48.638 ± 0.143
$\mathrm{Hg}_2\mathrm{SO}_4(\mathrm{cr}) \Leftrightarrow 2 \mathrm{Hg}^{2+} + \mathrm{SO}_4^{-2-} + 2 \mathrm{e}^{-1}$	211.110 ± 0.858	-36.985 ± 0.150
HgO(montroydite,red) + 2 H ⁺ \Leftrightarrow Hg ²⁺ + H ₂ O(l)	-13.950 ± 0.351	2.444 ± 0.062
$Cu(cr) \Leftrightarrow Cu^{2+} + 2 e^{-1}$	65.040 ± 1.557	-11.394 ± 0.273
$Cu(g) \Leftrightarrow Cu^{2+} + 2 e^{-}$	-232.632 ± 1.966	40.755 ± 0.344
$CuSO_4(cr) \Leftrightarrow Cu^{2+} + SO_4^{2-}$	-16.779 ± 2.013	2.940 ± 0.353
$Ag(cr) \Leftrightarrow Ag^+ + e^-$	77.096 ± 0.156	-13.507 ± 0.027
$Ag(g) \Leftrightarrow Ag^+ + e^-$	-168.911 ± 0.817	29.592 ± 0.143
$AgCl(cr) \Leftrightarrow Ag^+ + Cl^-$	55.644 ± 0.218	-9.748 ± 0.038
$Mg(cr) \Leftrightarrow Mg^{2+} + 2 e^{-}$	-455.375 ± 1.335	79.778 ± 0.234
$Mg(g) \Leftrightarrow Mg^{2+} + 2 e^{-}$	-567.896 ± 1.557	99.491 ± 0.273
$\operatorname{CaCl}(g) \Leftrightarrow \operatorname{Ca}^{2+} + \operatorname{Cl}^{-} + e^{-}$	-554.236 ± 5.111	97.097 ± 0.895
$CaF(g) \Leftrightarrow Ca^{2+} + F^{-} + e^{-}$	-532.211 ± 5.257	93.239 ± 0.921
$\operatorname{SrCl}_2(\operatorname{cr}) \Leftrightarrow \operatorname{Sr}^{2+} + 2 \operatorname{Cl}^{-}$	-41.324 ± 1.084	7.240 ± 0.190
$Ba(g) \Leftrightarrow Ba^{2+} + 2 e^{-}$	-710.508 ± 5.633	124.475 ± 0.987
$BaCl_2(cr) \Leftrightarrow Ba^{2+} + 2 Cl^{-}$	-13.137 ± 3.611	2.301 ± 0.633
$BaF(g) \Leftrightarrow Ba^{2+} + F^{-} + e^{-}$	-489.610 ± 7.218	85.775 ± 1.265
$Li(cr) \Leftrightarrow Li^+ + e^-$	-292.918 ± 0.109	51.317 ± 0.019
$Li(g) \Leftrightarrow Li^+ + e^-$	-419.522 ± 1.008	73.497 ± 0.177
$NaCl(cr) \Leftrightarrow Na^+ + Cl^-$	-8.949 ± 0.211	1.568 ± 0.037
$NaF(cr) \Leftrightarrow Na^+ + F^-$	2.851 ± 0.992	-0.499 ± 0.174
$Rb(cr) \Leftrightarrow Rb^+ + e^-$	-284.009 ± 0.153	49.756 ± 0.027
$Rb(g) \Leftrightarrow Rb^+ + e^-$	-337.087 ± 0.819	59.055 ± 0.144
$CsBr(cr) \Leftrightarrow Cs^+ + Br^-$	-4.135 ± 0.638	0.724 ± 0.112
$CsCl(cr) \Leftrightarrow Cs^+ + Cl^-$	-8.866 ± 0.586	1.553 ± 0.103

 Table 16
 Additionally selected auxiliary data for compounds and gaseous species

4. Conclusions

We calculated additionally selected many equilibrium constant values using Gibbs free energy values of formation selected by the NEA. We also selected additional thermodynamic data on selenium, collected thermodynamic data on iodine and revised some thermodynamic data using the latest information. We carefully prepared the text files of JAEA-TDB available for the geochemical calculation programs of PHREEQC, EQ3/6 and Geochemist's Workbench. The prepared files are contained in the attached CD-ROM and will be uploaded onto JAEA's Website (<u>http://migrationdb.jaea.go.jp/</u>).

References

- A. Kitamura, K. Fujiwara, R. Doi, Y. Yoshida, M. Mihara, M. Terashima and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level radioactive and TRU wastes", JAEA-Data/Code 2009-024 (2010).
- A. Kitamura and Y. Yoshida: "Preparation of Text Files of JAEA-TDB for Geochemical Calculation Programs", JAEA-Data/Code 2010-011 (2010).
- 3. M. Rand, J. Fuger, I. Grenthe, V. Neck and D. Rai: "Chemical thermodynamics of thorium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2008).
- 4. M. Yui, J. Azuma and M. Shibata: "JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system", JNC TN8400 99-070 (1999).
- D. L. Parkhurst and C. A .J. Appelo: "User's guide to phreeqc (version 2) A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations", Water-Resources Investigations Report 99-4259 (1999); available from <<u>http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/</u>> (accessed 2012-06-22).
- T. J. Wolery: "EQ3/6, a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)", Lawrence Livermore National Laboratory, UCRL-MA-110662 PT I (1992).
- Aqueous Solutions LLC.: "The Geochemist's Workbench", available from <(accessed 2012-06-22)">http://www.gwb.com/> (accessed 2012-06-22).
- H. Wanner: "TDB-1: Guidelines for the review procedure and data selection", Nuclear Energy Agency in Organisation for Economic Co-operation and Development (OECD/NEA) (2000).
- B. Lothenbach, M. Ochs, H. Wanner and M. Yui: "Thermodynamic data for the speciation and solubility of Pd, Pb, Sn, Sb, Nb and Bi in aqueous solution", JNC TN8400 99-011 (1999).
- H. Gamsjäger, J. Bugajski, T. Gajda, R. J. Lemire and W. Preis: "Chemical thermodynamics of nickel", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- Å. Olin, B. Noläng, E. G. Osadchii, L.-O. Öhman and E. Rosén: "Chemical thermodynamics of selenium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- 12. Y. Iida, T. Yamaguchi, T. Tanaka and S. Nakayama: "Solubility of selenium at high ionic

strength under anoxic conditions", J. Nucl. Sci. Technol., 47(5), pp. 431 – 438 (2010).

- P. L. Brown, E. Curti, B. Grambow and C. Ekberg: "Chemical thermodynamics of zirconium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- R. Guillaumont, Th. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe and M. H. Rand: "Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium", Organisation for Economic Co-operation and Development, Elsevier B. V. (2003).
- J. A. Rard, M. H. Rand, G. Anderegg and H. Wanner: "Chemical thermodynamics of technetium", Organisation for Economic Co-operation and Development, Elsevier B. V. (1999).
- J. E. Cross, F. T. Ewart and C. J. Tweed: "Thermodynamic modelling with application to nuclear waste processing and disposal", AERE-R 12324 (1987).
- G. Horiguchi and H. Hagisawa: "Hydrolysis of iodine", Bull. Inst. Phys. Chem. Research, 22, pp.661-664(1943) [in Japanese].
- W. Eguchi, M. Adachi and M. Yoneda: "Dependency of partition equilibrium of iodine between air and aqueous solution containing sodium hydroxide upon temperature and concentration", J. Chem. Eng. Jpn. 6, No. 5, pp. 389-396(1973).
- T. L. Allen and R. M. Keefer: "The formation of hypoiodous acid and hydrated iodine cation by the hydrolysis of iodine", Journal of American Chemical Society, 77, pp. 2957-2960 (1955).
- 20. D. R. Lide: "CRC handbook of chemistry and physics 88th edition", CRC Press (2008).
- 21. The Chemical Society of Japan: "Kagaku binran basic edition revised version 5" Maruzen Publishing Co., Ltd (2004) [in Japanese].
- D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall: "The NBS tables of chemical thermodynamic properties Selected values for inorganic and C₁ and C₂ organic substances in SI units", J. Phys. Chem. Ref. Data, 11, Suppl. 2 (1982).
- M. W. Chase: "NIST-JANAF thermochemical tables fourth edition", J. Phys. Chem. Ref. Data, Monogragh 9 (1998).
- Japan Nuclear Cycle Development Institute: "H12: Project to establish the scientific and technical basis for HLW disposal in Japan – 2nd progress report on research and development of geological disposal of HLW", JNC TN1410 2000-001 – 2000-004 (2000).
- 25. M.Yui, H. Sasamoto and R. C. Arthur: "Groundwater evolution modeling for the second progress performance assessment (PA) report", JNC TN8400 99-030 (1999).
- 26. A. Kitamura, A. Kirishima, T. Saito, S. Shibutani, O. Tochiyama and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: selection of thermodynamic data of cobalt and nickel", JAEA-Research 2009-037 (2009) [in Japanese].
- 27. T. Yamamura, A. Kitamura, A. Fukui, S. Nishikawa, T. Yamamoto and H. Moriyama: "Solubility of U(VI) in highly basic solutions", Radiochim. Acta, 83, pp. 139 – 146 (1998).
- A. Kitamura, K. Fujiwara and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for trivalent actinoids and samarium", JAEA-Review 2009-047 (2010).
- J. W. Ball and D. K. Nordstrom: "User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters", Open-file Report 91-183 (revised version), U. S. Geological Survey (2001),

available from <<u>http://wwwbrr.cr.usgs.gov/projects/GWC_chemtherm/pubs/wq4fdoc.pdf</u>> (accessed 2012-06-22).

- 30. Y. Yoshida and A. Kitamura: "Evaluation of thermodynamic data of aqueous species and compounds for strontium and radium", JAEA-Review 2009-080 (2010) [in Japanese].
- 31. A. Kitamura, A. Kirishima, T. Saito, S. Shibutani, O. Tochiyama and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: selection of thermodynamic data of cobalt and nickel", JAEA-Research 2009-037 (2009) [in Japanese].
- 32. K. Fujiwara, A. Kitamura and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for tetravalent zirconium", JAEA-Review 2009-058 (2010) [in Japanese].
- M. Altmaier, V. Neck and Th. Fanghänel: "Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl₂ solutions and the formation of ternary Ca-M(IV)-OH complexes", Radiochim. Acta, 96, pp. 541 – 550 (2008).
- A. J. Bard, R. Parsons, and J. Jordan (eds.): "Standard potentials in aqueous solution", International Union of Pure and Applied Chemistry, Marcel Dekker, Inc., New York, 834p

(1985)

- 35. A. Kitamura, A. Kirishima, T. Saito, S. Shibutani and O. Tochiyama: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: selection of thermodynamic data for molybdenum", JAEA-Review, 2010-010 (2010) [in Japanese].
- A. R. Felmy, D. Rai, M. J. Mason and R. W. Fulton: "The aqueous complexation of Nd(III) with molybdate: The effects of both monomeric molybdate and polymolybdate species", Radiochim.Acta, 69, pp. 177 183 (1995).
- A. Kitamura and M. Yui: "Reevaluation of Thermodynamic Data for Hydroxide and Hydrolysis Species of Palladium(II) Using the Brønsted-Guggenheim-Scatchard Model", J. Nucl. Sci. Technol., 47(8), pp. 760 – 770 (2010).
- Y. Yoshida and A. Kitamura: "Evaluation of thermodynamic data of hydroxide and chloride species for lead", JAEA-Review 2009-065 (2010) [in Japanese].
- 39. D. Rai, M. Yui, H. T. Schaef and A. Kitamura,: "Thermodynamic model for BiPO₄(c) and Bi(OH)₃(am) solubility in the aqueous Na⁺-H⁺-H₂PO₄⁻-HPO₄²⁻ -PO₄³⁻-OH⁻-Cl⁻-H₂O system", J. Solution Chem., 39, pp. 999 1019 (2010).
- D. Rai, M. Yui, D. A. Moore, G. J. Lumetta, K. M. Rosso, Y. Xia, A. R. Felmy and F. N. Skomurski: "Thermodynamic model for ThO₂(am) solubility in alkaline silica Solutions", J. Solution Chem., 37, pp. 1725 1746 (2008).
- T. Shibutani, S. Shibutani and M. Yui: "Database development of chemical thermodynamics of protactinium for performance assessment of HLW geological disposal system", PNC TN8410 98-052 (1998).
- D. Trubert, C. Le Naour, C. Jaussaud and O. Mrad: "Hydrolysis of protactinium(V). I. Equilibrium constants at 25 °C: A solvent extraction study with TTA in the aqueous system Pa(V)/H₂O/H⁺/ClO₄-", J. Solution Chem., 31(4), pp. 261 277 (2002).
- D. Trubert, C. Le Naour, C. Jaussaud and O. Mrad: "Hydrolysis of protactinium(V). III. Determination of standard thermodynamic data", J. Solution Chem., 32(6), pp. 505 – 517 (2003).
- M. V. Di Giandomenico, D. Trubert and C. Le Naour: "Sulphate complexation of protactinium(V) at 25 °C", Radiochim. Acta, 95, pp. 617 – 623 (2007).
- 45. K. Fujiwara, A. Kitamura and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU wastes: Refinement of thermodynamic data for tetravalent thorium, uranium, neptunium and plutonium",

JAEA-Review 2009-059 (2010) [in Japanese].

- 46. W. Hummel, G. Anderegg, L. Rao, I. Puigdomènech and O. Tochiyama: "Chemical thermodyanmics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands", Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
- 47. R. Smith and A. Martell: "Critical stability constants volume 6: Second supplement", Plenum Press (1989).
- 48. R. Smith and A. Martell: "Critical stability constants volume 3: Other organic ligands", Plenum Press (1977).
- 49. M. Mihara: "Thermodynamic data of compounds and complexes of metal elements with organic ligands for JAEA-TDB", JAEA-Review 2009-060 (2010) [in Japanese].
- D. Rai, D. A. Moore, K. M. Rosso, A. R. Felmy and H. Bolton Jr.: "Environmental mobility of Pu(IV) in the presence of ethylenediaminetetraacetic Acid: Myth or Reality?", J. Solution Chem, 37, pp. 957 – 986 (2008).
- X. Gaona, V. Montoya, E. Colàs, M. Grivé and L. Duro: "Review of the complexation of tetravalent actinides by ISA and gluconate under alkaline to hyperalkaline conditions", J. Contaminant Hydrol., 102, pp. 217 – 227 (2008).
- D. Rai, M. Yui, D. A. Moore and L. Rao: "Thermodynamic model for ThO₂(am) solubility in isosaccharinate solutions", J. Solution Chem, 38(12), pp. 1573 – 1587 (2009).
- 53. R. Doi, A. Kitamura and M. Yui: "JAEA Thermodynamic database for performance assessment of geological disposal of high-level and TRU radioactive wastes: Selection of thermodynamic data of selenium", JAEA-Review 2009-051 (2010) [in Japanese].
- P. L. G. Vlek and W. L. Lindsay: "Thermodynamic stability and solubility of molybdenum minerals in soils", Soil Sci. Soc. Am. J., 41(1), pp. 42 – 46 (1977).
- C. F. Baes Jr. and R. E. Mesmer: "The hydrolysis of cations", John Wiley and Sons, Inc., New York (1976).

Appendix 1. Revised Thermodynamic Data Compiled for JAEA-TDB

Selected equilibrium constants for JAEA-TDB are shown in Table A1 and Table A2.

Table A1 Selected equilibrium constants of aqueous species for JAEA-TDB ready to use for the geochemical calculation programs (revised from Table A1 in the previous TDB report ²⁾) Reactions and $\log_{10} K^{\circ}$ values written with bold letters are additionally selected or revised in the present report.

		1	41
Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$2 H^+ + 2 e^- \Leftrightarrow H_2(aq)$	-3.150	4	
$H_2O(1) \Leftrightarrow H^+ + OH^-$	-14.001 ± 0.015	3	
$2 H_2O(l) \Leftrightarrow O_2(aq) + 4 H^+ + 4 e^-$	-86.080	4	
$Li^+ + SO_4^{-2} \Leftrightarrow LiSO_4^{-1}$	0.640	4	
$B(OH)_3(aq) \Leftrightarrow H_2BO_3^- + H^+$	-9.240	4	
$B(OH)_3(aq) + F \Leftrightarrow BF(OH)_3$	-0.400	4	
$B(OH)_3(aq) + 2 F^- + H^+ \Leftrightarrow BF_2(OH)_2^- + H_2O(I)$	7.628	4	
$B(OH)_{3}(aq) + 2 H^{+} + 3 F^{-} \Leftrightarrow BF_{3}OH^{-} + 2 H_{2}O(l)$	13.666	4	
$B(OH)_3(aq) + 3 H^+ + 4 F^- \Leftrightarrow BF_4^- + 3 H_2O(1)$	20.274	4	
$CO_3^{2-} + H^+ \Leftrightarrow HCO_3^{-}$	10.329 ± 0.020	3	
$CO_3^{2^2} + 2 H^+ \Leftrightarrow CO_2(aq) + H_2O(l)$	16.683 ± 0.028	3	
$CO_3^{2^2} + 10 H^+ + 8 e^- \Leftrightarrow CH_4(aq) + 3 H_2O(l)$	41.071	4	
$CO_3^{2^-} + NO_3^{-} + 12 \text{ H}^+ + 10 \text{ e}^- \Leftrightarrow CN^- + 6 \text{ H}_2O(1)$	108.129 ± 0.455	3	
$CO_3^{2^-} + NO_3^{-} + 13 \text{ H}^+ + 10 \text{ e}^- \Leftrightarrow \text{HCN}(\text{aq}) + 6 \text{ H}_2O(1)$	117.339 ± 0.454	present	
$NO_3^- + 10 H^+ + 8 e^- \Leftrightarrow NH_4^+ + 3 H_2O(1)$	119.134 ± 0.089	3	
$NO_3^- + 2 H^+ + 2 e^- \Leftrightarrow NO_2^- + H_2O(l)$	27.776 ± 0.075	3, 28	
$NO_2^- + H^+ \Leftrightarrow HNO_2(aq)$	3.210 ± 0.160	3	
$3 \text{ NO}_3^- + 18 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{ N}_3^- + 9 \text{ H}_2\text{O}(1)$	254.672 ± 0.418	3	
$3 \text{ NO}_3^- + 19 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{HN}_3(\text{aq}) + 9 \text{ H}_2\text{O}(1)$	259.372 ± 0.382	3	
$NH_4^+ \Leftrightarrow H^+ + NH_3(aq)$	-9.237 ± 0.022	3	
$\rm NH_4^+ + SO_4^{-2} \Leftrightarrow \rm NH_4SO_4^-$	1.052	4	
$F^+ + H^- \Leftrightarrow HF(aq)$	3.180 ± 0.020	3	
$2 \text{ F}^- + \text{H}^+ \Leftrightarrow \text{HF}_2^-$	3.620 ± 0.122	3	
$Na^{+} + CO_{3}^{2^{-}} \Leftrightarrow NaCO_{3}^{-}$	1.268	4	
$Na^{+} + CO_{3}^{2-} + H^{+} \Leftrightarrow NaHCO_{3}(aq)$	10.080	4	
$Na^{+} + SO_4^{-2} \Leftrightarrow NaSO_4^{-1}$	0.700 ± 0.050	4, 29	
$Na^{+} + H^{+} + PO_4^{3-} \Leftrightarrow NaHPO_4^{-}$	12.636	4	
$Mg^{2+} + H_2O(1) \Leftrightarrow MgOH^+ + H^+$	-11.794	4	
$Mg^{2+} + CO_3^{2-} \Leftrightarrow MgCO_3(aq)$	2.981 ± 0.030	4, 29	
$Mg^{2+} + SO_4^{2-} \Leftrightarrow MgSO_4(aq)$	2.250	4	
$Mg^{2+} + PO_4^{3-} \Leftrightarrow MgPO_4^{-}$	6.589	4	
$Mg^{2+} + H^+ + PO_4^{3-} \Leftrightarrow MgHPO_4(aq)$	15.216	4	
$Mg^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow MgH_2PO_4^+$	21.066	4	
$Mg^{2+} + F \Leftrightarrow MgF^+$	1.820	4	
$Al^{3+} + H_2O(l) \Leftrightarrow AlOH^{2+} + H^+$	-4.990 ± 0.020	4, 29	
$Al^{3+} + 2 H_2O(1) \Leftrightarrow Al(OH)_2^+ + 2 H^+$	-10.100 ± 0.200	4, 29	
$Al^{3+} + 3 H_2O(l) \Leftrightarrow Al(OH)_3(aq) + 3 H^+$	-16.000	4	
$Al^{3+} + 4 H_2O(l) \Leftrightarrow Al(OH)_4 + 4 H^+$	-23.000	4	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Al^{3+} + F^- \Leftrightarrow AlF^{2+}$	7.010	4	
$Al^{3+} + 2 F^{-} \Leftrightarrow AlF_{2}^{+}$	12.750	4	
$AI^{3+} + 3 F^{-} \Leftrightarrow AIF_{3}(aq)$	17.020	4	
$Al^{3+} + 4 F^- \Leftrightarrow AlF_4^-$	19.720	4	
$Al^{3+} + SO_4^{2-} \Leftrightarrow AlSO_4^+$	3.020	4	
$Al^{3+} + 2 SO_4^{2-} \Leftrightarrow Al(SO_4)_2^{-}$	4.920	4	
$H_4SiO_4(aq) \Leftrightarrow H_2SiO_4^{2-} + 2 H^+$	-23.140 ± 0.090	3	
$H_4SiO_4(aq) \Leftrightarrow H_3SiO_4^- + H^+$	-9.810 ± 0.020	3	
$2 H_4 SiO_4(aq) \Leftrightarrow H_4 Si_2 O_7^{2-} + H_2 O(1) + 2 H^+$	-19.000 ± 0.300	3	
$2 H_4 SiO_4(aq) \Leftrightarrow H_5 Si_2O_7 + H_2O(1) + H^+$	-8.100 ± 0.300	3	
$3 \text{ H}_4 \text{SiO}_4(\text{aq}) \Leftrightarrow \text{H}_3 \text{Si}_3 \text{O}_9^{3-} + 3 \text{ H}_2 \text{O}(1) + 3 \text{ H}^+$	-28.600 ± 0.300	3	
$3 H_4 SiO_4(aq) \Leftrightarrow H_5 Si_3 O_{10}^{3-} + 2 H_2 O(1) + 3 H^+$	-27.500 ± 0.300	3	
$4 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{4}\operatorname{Si}_{4}\operatorname{O}_{12}^{4-} + 4 \operatorname{H}_{2}\operatorname{O}(\operatorname{l}) + 4 \operatorname{H}^{+}$	-36.300 ± 0.500	3	
$4 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{5}\operatorname{Si}_{4}\operatorname{O}_{12}^{3-} + 4 \operatorname{H}_{2}\operatorname{O}(1) + 3 \operatorname{H}^{+}$	-25.500 ± 0.300	3	
$4 \operatorname{H}_{4}\operatorname{SiO}_{4}(\operatorname{aq}) \Leftrightarrow \operatorname{H}_{13}\operatorname{Si}_{4}\operatorname{O}_{16}^{3-} + 3 \operatorname{H}^{+}$	-34.901	4	
$H_4SiO_4(aq) + 4 H^+ + 6 F^- \Leftrightarrow F_6Si^{2-} + 4 H_2O(l)$	30.180	4	
$2 \operatorname{PO}_4^{3-} + 2 \operatorname{H}^+ \Leftrightarrow \operatorname{P_2O_7^{4-}} + \operatorname{H_2O}(1)$	21.314 ± 0.890	3	
$PO_4^{3-} + H^+ \Leftrightarrow HPO_4^{2-}$	12.350 ± 0.030	3	
$PO_4^{3-} + 2 H^+ \Leftrightarrow H_2PO_4^{-}$	19.562 ± 0.033	3	
$PO_4^{3-} + 3 H^+ \Leftrightarrow H_3PO_4(aq)$	21.702 ± 0.176	3	
$2 \operatorname{PO_4^{3-}} + 3 \operatorname{H^+} \Leftrightarrow \operatorname{HP_2O_7^{3-}} + \operatorname{H_2O(l)}$	30.714 ± 0.660	3	
$2 \operatorname{PO_4^{3-}} + 4 \operatorname{H^+} \Leftrightarrow \operatorname{H_2P_2O_7^{2-}} + \operatorname{H_2O(1)}$	37.364 ± 0.652	3	
$2 \text{ PO}_4^{3} + 5 \text{ H}^+ \Leftrightarrow \text{H}_3\text{P}_2\text{O}_7^- + \text{H}_2\text{O}(1)$	39.614 ± 0.635	3	
$2 PO_4^{3-} + 6 H^+ \Leftrightarrow H_4 P_2 O_7(aq) + H_2 O(1)$	40.614 ± 0.391	3	
$HS^{-} \Leftrightarrow S^{2^{-}} + H^{+}$	-19.000 ± 2.000	3	
$SO_4^{2-} + 2 H^+ + 2 e^- \Leftrightarrow SO_3^{2-} + H_2O(1)$	-3.397 ± 0.701	3	
$2 \text{ SO}_4^{2^-} + 10 \text{ H}^+ + 8 \text{ e}^- \Leftrightarrow \text{S}_2\text{O}_3^{2^-} + 5 \text{ H}_2\text{O}(1)$	38.013 ± 1.985	3	
$SO_4^{2^-} + 9 H^+ + 8 e^- \Leftrightarrow HS^- + 4 H_2O(1)$	33.692 ± 0.378	3	
$HS^{-} + H^{+} \Leftrightarrow H_2S(aq)$	6.990 ± 0.170	3	
$SO_3^{2-} + H^+ \Leftrightarrow HSO_3^-$	7.220 ± 0.080	3	
$S_2O_3^2 + H^+ \Leftrightarrow HS_2O_3^-$	1.590 ± 0.150	3	
$0.5 \text{ S}_2\text{O}_3^{2^-} + 1.5 \text{ H}_2\text{O}(1) \Leftrightarrow \text{ H}_2\text{SO}_3(\text{aq}) + \text{H}^+ + 2 \text{ e}^-$	-13.344 ± 0.710	3	
$SO_4^{2-} + H^+ \Leftrightarrow HSO_4^{-}$	1.980 ± 0.050	3	
$SO_4^{2-} + CO_3^{2-} + NO_3^{-} + 20 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow SCN^- + 10 \text{ H}_2O(1)$	156.972 ± 0.715	3	
$Cl^{-} + H_2O(l) \Leftrightarrow ClO^{-} + 2 H^{+} + 2 e^{-}$	-57.933 ± 0.170	3	
$Cl^{-} + 2 H_2O(l) \Leftrightarrow ClO_2^{-} + 4 H^+ + 4 e^{-}$	-107.874 ± 0.709	3	
$Cl^{-} + 3 H_2O(l) \Leftrightarrow ClO_3^{-} + 6 H^{+} + 6 e^{-}$	-146.238 ± 0.236	3	
$Cl^{-} + 4 H_2O(l) \Leftrightarrow ClO_4^{-} + 8 H^+ + 8 e^{-}$	-187.785 ± 0.108	3	
$Cl^{-} + H_2O(l) \Leftrightarrow HClO(aq) + H^{+} + 2 e^{-}$	-50.513 ± 0.109	3	
$Cl^{-} + 2 H_2O(l) \Leftrightarrow HClO_2(aq) + 3 H^{+} + 4 e^{-}$	-105.913 ± 0.708	3	
$K^+ + SO_4^{-2} \Leftrightarrow KSO_4^{-1}$	0.850 ± 0.050	4, 29	
$K^+ + H^+ + PO_4^{3-} \Leftrightarrow KHPO_4^{-}$	12.636	4	
$Ca^{2+} + H_2O(1) \Leftrightarrow CaOH^+ + H^+$	-12.850 ± 0.500	30	
$Ca^{2+} + SO_4^{2-} \Leftrightarrow CaSO_4(aq)$	2.309	4	
$\operatorname{Ca}^{2^+} + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{CaPO}_4^{-}$	6.459	4	
$Ca^{2+} + H^{+} + PO_4^{3-} \Leftrightarrow CaHPO_4(aq)$	15.085	4	
$Ca^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow CaH_2PO_4^+$	20.961	4	
$Ca^{2^+} + F^- \Leftrightarrow CaF^+$	0.940	4	
$Mn^{2+} + H_2O(l) \Leftrightarrow MnOH^+ + H^+$	-10.590 ± 0.040	4, 29	
$Mn^{2+} + 3 H_2O(1) \Leftrightarrow Mn(OH)_3 + 3 H^+$	-34.800	4	
$Mn^{2+} \Leftrightarrow Mn^{3+} + e^{-}$	-25.507	4	
$Mn^{2+} + 4 H_2O(1) \Leftrightarrow MnO_4^{2-} + 8 H^+ + 4 e^-$	-118.440	4	
$Mn^{2+} + 4 H_2O(l) \Leftrightarrow MnO_4^- + 8 H^+ + 5 e^-$	-127.824	4	
$Mn^{2+} + F \Leftrightarrow MnF^{+}$	0.850	4	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Mn^{2+} + Cl^- \Leftrightarrow MnCl^+$	0.607	4	
$Mn^{2+} + 2 Cl^- \Leftrightarrow MnCl_2(aq)$	0.041	4	
$Mn^{2+} + 3 Cl^- \Leftrightarrow MnCl_3^-$	-0.305	4	
$Mn^{2+} + 2 NO_3 \Leftrightarrow Mn(NO_3)_2(aq)$	0.600	4	
$Mn^{2+} + SO_4^{2-} \Leftrightarrow MnSO_4(aq)$	2.260	4	
$Mn^{2+} + CO_3^{2-} + H^+ \Leftrightarrow MnHCO_3^+$	11.600	4	
$Fe^{2^+} + H_2O(l) \Leftrightarrow FeOH^+ + H^+$	-9.500 ± 0.100	4, 29	
$\operatorname{Fe}^{2^+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}(OH)_2(\operatorname{aq}) + 2 \operatorname{H}^+$	-20.570 ± 1.000	4, 29	
$\operatorname{Fe}^{2^+} + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Fe}(\operatorname{OH})_3^- + 3 \operatorname{H}^+$	-31.000 ± 1.500	4, 29	
$Fe^{2^+} + SO_4^{2^-} \Leftrightarrow FeSO_4(aq)$	2.250	4	
$Fe^{2^+} + 2 HS^- \Leftrightarrow Fe(HS)_2(aq)$	8.864	4	
$Fe^{2^+} + 3 HS^- \Leftrightarrow Fe(HS)_3^-$	10.858	4	
$\operatorname{Fe}^{2^+} + \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{FeHPO}_4(\operatorname{aq})$	15.946	4	
$\operatorname{Fe}^{2^+} + 2 \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{FeH}_2\operatorname{PO}_4^+$	22.253	4	
$Fe^{2+} \Leftrightarrow Fe^{3+} + e^{-}$	-13.032 ± 0.010	4, 29	
$Fe^{3+} + H_2O(1) \Leftrightarrow FeOH^{2+} + H^+$	-2.188 ± 0.020	4, 29	
$\operatorname{Fe}^{3^+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Fe}(OH)_2^+ + 2 \operatorname{H}^+$	-5.668 ± 0.100	4, 29	
$Fe^{3+} + 3 H_2O(1) \Leftrightarrow Fe(OH)_3(aq) + 3 H^+$	-13.598	4	
$\operatorname{Fe}^{3^+} + 4 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Fe}(\operatorname{OH})_4^- + 4 \operatorname{H}^+$	-21.598 ± 0.200	4, 29	
$2 \operatorname{Fe}^{3+} + 2 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Fe}_2(\operatorname{OH})_2^{4+} + 2 \operatorname{H}^+$	-2.946 ± 0.050	4, 29	
$3 \operatorname{Fe}^{3+} + 4 \operatorname{H}_2\mathrm{O}(1) \Leftrightarrow \operatorname{Fe}_3(\mathrm{OH})_4^{5+} + 4 \operatorname{H}^+$	-6.304 ± 0.100	4, 29	
$Fe^{3^+} + Cl^- \Leftrightarrow FeCl^{2^+}$	1.482	4	
$\operatorname{Fe}^{3^+} + 2 \operatorname{Cl}^{-} \Leftrightarrow \operatorname{FeCl}_2^+$	2.132	4	
$Fe^{3+} + 3 Cl^- \Leftrightarrow FeCl_3(aq)$	1.132	4	
$Fe^{3+} + SO_4^{2-} \Leftrightarrow FeSO_4^+$	3.922	4	
$\operatorname{Fe}^{3^+} + 2 \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Fe}(\operatorname{SO}_4)_2^{-^-}$	5.422	4	
$Fe^{3+} + H^+ + PO_4^{3-} \Leftrightarrow FeHPO_4^+$	17.772	4	
$\operatorname{Fe}^{3^+} + 2 \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{FeH}_2\operatorname{PO}_4^{2^+}$	24.982	4	
$Fe^{3^+} + F^- \Leftrightarrow FeF^{2^+}$	6.232	4	
$Fe^{3^+} + 2F \Leftrightarrow FeF_2^+$	10.832	4	
$Fe^{3+} + 3 F^- \Leftrightarrow FeF_3(aq)$	14.002	4	
$\mathrm{Co}^{2+} + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}^+ + \mathrm{Co}\mathrm{OH}^+$	-9.470 ± 0.020	31	
$\operatorname{Co}^{2+} + 2\operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 2\operatorname{H}^+ + \operatorname{Co}(\operatorname{OH})_2(\operatorname{aq})$	-18.000 ± 1.100	31	
$\operatorname{Co}^{2+} + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 3 \operatorname{H}^+ + \operatorname{Co}(\operatorname{OH})_3^-$	-31.500 ± 0.500	31	
$2 \operatorname{Co}^{2^+} + \operatorname{H}_2O(1) \Leftrightarrow \operatorname{H}^+ + \operatorname{Co}_2O\mathrm{H}^{3^+}$	-10.548 ± 0.861	31	*
$4 \operatorname{Co}^{2^+} + 4 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 4 \operatorname{H}^+ + \operatorname{Co}_4(\operatorname{OH})_4^{4^+}$	-27.371 ± 0.211	31	*
$\mathrm{Co}^{2^+} + \mathrm{F}^- \Leftrightarrow \mathrm{CoF}^+$	1.470 ± 0.040	31	
$\mathrm{Co}^{2^+} + \mathrm{Cl}^- \Leftrightarrow \mathrm{Co}\mathrm{Cl}^+$	0.810 ± 0.070	31	
$\mathrm{Co}^{2^+} + \mathrm{HS}^{2^-} \Leftrightarrow \mathrm{CoS}(\mathrm{aq}) + \mathrm{H}^+$	0.600 ± 2.062	31	
$\mathrm{Co}^{2^+} + \mathrm{HS}^- \Leftrightarrow \mathrm{CoHS}^+$	5.141 ± 0.277	31	*
$\operatorname{Co}^{2^+} + \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{CoSO}_4(\operatorname{aq})$	2.200 ± 0.050	31	
$\operatorname{Co}^{2^+} + 2 \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Co}(\operatorname{SO}_4)_2^{2^-}$	2.870 ± 0.050	31	
$\mathrm{Co}^{2^+} + \mathrm{NO}_3^- \Leftrightarrow \mathrm{Co}\mathrm{NO}_3^+$	-1.020 ± 0.060	31	
$\mathrm{Co}^{2+} + \mathrm{NH}_{4}^{+} \Leftrightarrow \mathrm{Co}\mathrm{NH}_{3}^{2+} + \mathrm{H}^{+}$	-7.037 ± 0.102	31, 3	
$\operatorname{Co}^{2^+} + 2 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_2^{2^+} + 2 \operatorname{H}^+$	-14.574 ± 0.205	31, 3	
$\operatorname{Co}^{2^+} + 3 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_3^{2^+} + 3 \operatorname{H}^+$	-22.311 ± 0.405	31, 3	
$\operatorname{Co}^{2^+} + 4 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_4^{2^+} + 4 \operatorname{H}^+$	-30.548 ± 0.410	31, 3	
$\operatorname{Co}^{2^+} + 5 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_5^{2^+} + 5 \operatorname{H}^+$	-39.485 ± 0.415	31, 3	
$\operatorname{Co}^{2^+} + 6 \operatorname{NH}_4^+ \Leftrightarrow \operatorname{Co}(\operatorname{NH}_3)_6^{2^+} + 6 \operatorname{H}^+$	-49.522 ± 0.421	31, 3	
$\operatorname{Co}^{2^+} + \operatorname{H}^+ + \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{CoHPO}_4(\operatorname{aq})$	15.300 ± 0.143	31, 3	
$\operatorname{Co}^{2^+} + 2 \operatorname{H}^+ + 2 \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{CoP}_2 \operatorname{O}_7^{2^-} + \operatorname{H}_2 \operatorname{O}(1)$	29.985 ± 0.966	31, 3	*
$\operatorname{Co}^{2^+} + 3 \operatorname{H}^+ + 2 \operatorname{PO}_4^{3^-} \Leftrightarrow \operatorname{HCoP}_2\operatorname{O}_7^- + \operatorname{H}_2\operatorname{O}(1)$	35.815 ± 0.737	31, 3	*
$\operatorname{Co}^{2^+} + \operatorname{H}^+ + \operatorname{AsO}_4^{3^-} \Leftrightarrow \operatorname{CoHAsO}_4(\operatorname{aq})$	14.477 ± 1.052	31, 3	*
$\operatorname{Co}^{2^+} + \operatorname{CO}_3^{2^-} \Leftrightarrow \operatorname{Co}\operatorname{CO}_3(\operatorname{aq})$	4.400 ± 0.100	31	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\text{Co}^{2^+} + \text{H}^+ + \text{CO}_3^{2^-} \Leftrightarrow \text{CoHCO}_3^+$	11.729 ± 0.201	31, 3	
$\text{Co}^{2^+} + 4 \text{ CO}_3^{2^-} + 4 \text{ NO}_3^- + 48 \text{ H}^+ + 40 \text{ e}^- \Leftrightarrow \text{Co}(\text{CN})_4^{2^-} + 24 \text{ H}_2\text{O}(1)$	462.533 ± 1.896	31, 3	*
$\text{Co}^{2^+} + 5 \text{ CO}_3^{2^-} + 5 \text{ NO}_3^- + 60 \text{ H}^+ + 50 \text{ e}^- \Leftrightarrow \text{Co}(\text{CN})_5^{3^-} + 30 \text{ H}_2\text{O}(1)$	568.972 ± 2.442	31, 3	*
$\text{Co}^{2^+} + \text{SO}_4^{2^-} + \text{CO}_3^{2^-} + \text{NO}_3^{-^+} + 20 \text{ H}^+ + 16 \text{ e}^- \Leftrightarrow \text{CoSCN}^+ + 10 \text{ H}_2\text{O}(1)$	158.762 ± 0.719	31, 3	*
$Co^{2^+} + 2 SO_4^{2^-} + 2 CO_3^{2^-} + 2 NO_3^{-} + 40 H^+ + 32 e^- \Leftrightarrow Co(SCN)_2(aq) + 20 H_2O(l)$	316.609 ± 1.435	31, 3	*
$\text{Co}^{2^+} + 3 \text{ SO}_4^{2^-} + 3 \text{ CO}_3^{2^-} + 3 \text{ NO}_3^- + 60 \text{ H}^+ + 48 \text{ e}^- \Leftrightarrow \text{Co}(\text{SCN})_3^- + 30 \text{ H}_2\text{O}(1)$	473.909 ± 2.157	31, 3	*
$\mathrm{Ni}^{2^+} + \mathrm{H}_2\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{H}^+ + \mathrm{Ni}\mathrm{OH}^+$	-9.540 ± 0.140	10	
$\operatorname{Ni}^{2^+} + 2\operatorname{H}_2\operatorname{O}(1) \Leftrightarrow 2\operatorname{H}^+ + \operatorname{Ni}(\operatorname{OH})_{2(aq)}$	< -18.029	10	
$Ni^{2^+} + 3 H_2O(1) \Leftrightarrow 3 H^+ + Ni(OH)_3^-$	-29.200 ± 1.700	10	
$2 \operatorname{Ni}^{2+} + \operatorname{H}_2O(1) \Leftrightarrow \operatorname{H}^+ + \operatorname{Ni}_2O\operatorname{H}^{3+}$	-10.600 ± 1.000	10	
$4 \operatorname{Ni}^{2+} + 4 \operatorname{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow 4 \operatorname{H}^+ + \operatorname{Ni}_4(\mathrm{OH})_4^{4+}$	-27.520 ± 0.150	10	
$Ni^{2^+} + F^- \Leftrightarrow NiF^+$	1.430 ± 0.080	10	
$Ni^{2^+} + Cl^- \Leftrightarrow NiCl^+$	0.080 ± 0.600	10	
$Ni^{2^+} + HS^{2^-} \Leftrightarrow NiS(aq) + H^+$	0.723 ± 2.013	31, 3	*
$Ni^{2^+} + HS^- \Leftrightarrow NiHS^+$	5.180 ± 0.200	10	
$Ni^{2^+} + SO_4^{2^-} \Leftrightarrow NiSO_4(aq)$	2.350 ± 0.030	10	
$\operatorname{Ni}^{2^+} + 2 \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Ni}(\operatorname{SO}_4)_2^{2^-}$	2.896 ± 0.002	10	*
$Ni^{2+} + NO_3^- \Leftrightarrow NiNO_3^+$	0.500 ± 1.000	10	
$Ni^{2^+} + NH_4^+ \Leftrightarrow NiNH_3^{2^+} + H^+$	-7.015 ± 0.065	31, 3	*
$Ni^{2+} + 2 NH_4^+ \Leftrightarrow Ni(NH_3)_2^{2+} + 2 H^+$	-14.542 ± 0.146	31, 3	*
$Ni^{2^+} + 3 NH_4^+ \Leftrightarrow Ni(NH_3)_3^{2^+} + 3 H^+$	-22.271 ± 0.327	31, 3	*
$Ni^{2^+} + 4 NH_4^+ \Leftrightarrow Ni(NH_3)_4^{2^+} + 4 H^+$	-30.502 ± 0.318	31, 3	*
$Ni^{2+} + 5 NH_4^+ \Leftrightarrow Ni(NH_3)_5^{2+} + 5 H^+$	-39.437 ± 0.321	31, 3	*
$\mathrm{Ni}^{2^+} + 6 \mathrm{NH}_4^+ \Leftrightarrow \mathrm{Ni}(\mathrm{NH}_3)_6^{2^+} + 6 \mathrm{H}^+$	-49.479 ± 0.340	31, 3	*
$Ni^{2+} + H^+ + PO_4^{3-} \Leftrightarrow NiHPO_4(aq)$	15.400 ± 0.095	10, 3	
$Ni^{2^+} + 2 H^+ + 2 PO_4^{3^-} \Leftrightarrow NiP_2O_7^{2^-} + H_2O(1)$	30.044 ± 0.924	10, 3	
$Ni^{2^+} + 3 H^+ + 2 PO_4^{3^-} \Leftrightarrow HNiP_2O_7^- + H_2O(1)$	35.854 ± 0.706	10, 3	
$Ni^{2^+} + H^+ + AsO_4^{3^-} \Leftrightarrow NiHAsO_4(aq)$	14.503 ± 1.037	10, 3	
$Ni^{2+} + CO_3^{2-} \Leftrightarrow NiCO_3(aq)$	4.200 ± 0.400	10	
$Ni^{2^+} + H^+ + CO_3^{2^-} \Leftrightarrow NiHCO_3^+$	11.746 ± 0.174	31, 3	*
$Ni^{2^+} + 4 NO_3 + 4 CO_3^{2^-} + 48 H^+ + 40 e^- \Leftrightarrow Ni(CN)_4^{2^-} + 24 H_2O(1)$	462.716 ± 1.824	10, 3	
$Ni^{2^+} + 5 NO_3^- + 5 CO_3^{2^-} + 60 H^+ + 50 e^- \Leftrightarrow Ni(CN)_5^{3^-} + 30 H_2O(1)$	569.145 ± 2.329	10, 3	
$Ni^{2^+} + NO_3^- + CO_3^{2^-} + SO_4^{2^-} + 20 H^+ + 16 e^- \Leftrightarrow NiSCN^+ + 10 H_2O(1)$	158.782 ± 0.716	10, 3	
$Ni^{2^+} + 2 NO_3^- + 2 CO_3^{2^-} + 2 SO_4^{2^-} + 40 H^+ + 32 e^- \Leftrightarrow Ni(SCN)_2(aq) + 20 H_2O(l)$	316.634 ± 1.432	10, 3	
$Ni^{2^+} + 3 NO_3^- + 3 CO_3^{2^-} + 3 SO_4^{2^-} + 60 H^+ + 48 e^- \Leftrightarrow Ni(SCN)_3^- + 30 H_2O(1)$	473.936 ± 2.153	10, 3	
$AsO_4^{3-} + 4 H^+ + 2 e \Leftrightarrow AsO_2^- + 2 H_2O(l)$	30.859 ± 0.993	3	
$AsO_4^{3-} + 5 H^+ + 2 e^- \Leftrightarrow HAsO_2(aq) + 2 H_2O(l)$	40.092 ± 0.993	3	
$AsO_4^{3} + 4 H^+ + 2 e \Leftrightarrow H_2AsO_3 + H_2O(l)$	30.809 ± 0.993	3	
$AsO_4^{3-} + 5 H^+ + 2 e^- \Leftrightarrow H_3AsO_3(aq) + H_2O(l)$	40.024 ± 0.994	3	
$AsO_4^{3-} + H^+ \Leftrightarrow HAsO_4^{2-}$	11.603 ± 0.993	3	
$AsO_4^{3-} + 2 H^+ \Leftrightarrow H_2AsO_4^{-}$	18.368 ± 0.994	3	
$AsO_4^{3-} + 3 H^+ \Leftrightarrow H_3AsO_4(aq)$	20.630 ± 0.994	3	
$2 \operatorname{SeO}_4^{2^-} + 16 \operatorname{H}^+ + 14 \operatorname{e}^- \Leftrightarrow \operatorname{Se}_2^{2^-} + 8 \operatorname{H}_2O(1)$	158.632 ± 1.213	11	
$3 \text{ SeO}_4^{2-} + 24 \text{ H}^+ + 20 \text{ e}^- \Leftrightarrow \text{Se}_3^{2-} + 12 \text{ H}_2\text{O}(1)$	249.934 ± 1.780	11	
$4 \text{ SeO}_4^{2-} + 32 \text{ H}^+ + 26 \text{ e}^- \Leftrightarrow \text{Se}_4^{-2-} + 16 \text{ H}_2\text{O}(\text{I})$	340.074 ± 0.562	11, present	
$\operatorname{SeO}_4^{2^-} + 2 \operatorname{H}^+ + 2 \operatorname{e}^- \Leftrightarrow \operatorname{SeO}_3^{2^-} + \operatorname{H}_2O(1)$	28.039 ± 0.397	11	
$\operatorname{SeO}_4^{2^-} + 9 \operatorname{H}^+ + 8 \operatorname{e}^- \Leftrightarrow \operatorname{HSe}^- + 4 \operatorname{H}_2O(1)$	81.570 ± 0.435	11	
$HSe^{-} + H^{+} \Leftrightarrow H_2Se(aq)$	3.850 ± 0.050	11	
$HSe^{-} \Leftrightarrow Se^{2^{-}} + H^{+}$	-14.914 ± 0.634	present	
$\text{SeO}_3^2 + \text{H}^+ \Leftrightarrow \text{HSeO}_3^-$	8.360 ± 0.230	11	
$\text{SeO}_4^{2-} + \text{H}^+ \Leftrightarrow \text{HSeO}_4^{}$	1.750 ± 0.100	11	
$\operatorname{SeO}_3^{2^*} + 2 \operatorname{H}^+ \Leftrightarrow \operatorname{H}_2 \operatorname{SeO}_3(\operatorname{aq})$	11.000 ± 0.269	11	
$2 \operatorname{SeO}_{4}^{2^{2}} + 16 \operatorname{H}^{+} + 10 \operatorname{e}^{-} + 2 \operatorname{Cl}^{-} \Leftrightarrow \operatorname{Se_2Cl_2}(\operatorname{aq}) + 8 \operatorname{H_2O}(\operatorname{l})$	140.427 ± 0.904	11	
$SeO_4^{2-} + 20 H^+ + 16 e^- + CO_3^{2-} + NO_3^- \Leftrightarrow SeCN^- + 10 H_2O(1)$	202.726 ± 0.722	11	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
SeO_4^{2-} + 20 H ⁺ + 16 e ⁻ + CO ₃ ²⁻ + NO ₃ ⁻ + Tl ⁺ \Leftrightarrow TlSeCN(aq) + 10 H ₂ O(l)	204.476 ± 0.778	11	
$\text{SeO}_4^{2^-} + \text{Zn}^{2^+} \Leftrightarrow \text{ZnSeO}_4(\text{aq})$	2.160 ± 0.060	11	
$\text{SeO}_4^{2^-} + 20 \text{ H}^+ + 16 \text{ e}^- + \text{CO}_3^{2^-} + \text{NO}_3^- + \text{Zn}^{2^+} \Leftrightarrow \text{ZnSeCN}^+ + 10 \text{ H}_2\text{O}(1)$	203.936 ± 0.724	11	
$2 \text{ SeO}_4^{2^-} + 40 \text{ H}^+ + 32 \text{ e}^- + 2 \text{ CO}_3^{2^-} + 2 \text{ NO}_3^{-+} + \text{Zn}^{2^+} \Leftrightarrow \text{Zn}(\text{SeCN})_2(\text{aq}) + 20 \text{ H}_2\text{O}(\text{l})$	407.133 ± 1.448	11	
$Cd^{2+} + SeO_4^{2-} \Leftrightarrow CdSeO_4(aq)$	2.270 ± 0.060	11	
$\text{SeO}_4^{2^-} + 20 \text{ H}^+ + 16 \text{ e}^- + \text{CO}_3^{2^-} + \text{NO}_3^- + \text{Cd}^{2^+} \Leftrightarrow \text{CdSeCN}^+ + 10 \text{ H}_2\text{O}(1)$	204.966 ± 0.724	11	
$2 \text{ SeO}_4^{2^-}+40 \text{ H}^++32 \text{ e}^-+2 \text{ CO}_3^{2^-}+2 \text{ NO}_3^{-+}+\text{Cd}^{2^+} \Leftrightarrow \text{Cd}(\text{SeCN})_2(\text{aq})+20 \text{ H}_2O(1)$	408.793 ± 1.449	11	
$3 \text{ SeO}_4^{2^+}+60 \text{ H}^++48 \text{ e}^+3 \text{ CO}_3^{2^+}+3 \text{ NO}_3^-+\text{Cd}^{2^+} \Leftrightarrow \text{Cd}(\text{SeCN})_3^-+30 \text{ H}_2\text{O}(1)$	611.989 ± 2.176	11	
$4 \text{ SeO}_4^{2^-}+80 \text{ H}^++64 \text{ e}^-+4 \text{ CO}_3^{2^-}+4 \text{ NO}_3^-+\text{Cd}^{2^+} \Leftrightarrow \text{Cd}(\text{SeCN})_4^{2^-}+40 \text{ H}_2\text{O}(1)$	815.505 ± 2.890	11	
$2 \text{ SeO}_4^{2-} + 16 \text{ H}^+ + 16 \text{ e}^- + \text{Hg}^{2+} \Leftrightarrow \text{HgSe}_2^{2-} + 8 \text{ H}_2\text{O}(1)$	195.773 ± 1.111	11	
$2 \operatorname{SeO}_3^{2^-} + \operatorname{Hg}^{2^+} \Leftrightarrow \operatorname{Hg}(\operatorname{SeO}_3)_2^{2^-}$	14.850 ± 1.011	11	
$2 \operatorname{SeO_4^{2-}+40} \operatorname{H^++32} \operatorname{e^++2} \operatorname{CO_3^{2-}+2} \operatorname{NO_3^{-}+Hg}^{2+} \Leftrightarrow \operatorname{Hg}(\operatorname{SeCN}_2(\operatorname{aq})+20 \operatorname{H_2O}(1))$	427.753 ± 1.756	11	
$3 \text{ SeO}_4^{2^-}+60 \text{ H}^++48 \text{ e}^++3 \text{ CO}_3^{2^-}+3 \text{ NO}_3^{-+}+\text{Hg}^{2^+} \Leftrightarrow \text{Hg}(\text{SeCN})_3^{-+}+30 \text{ H}_2\text{O}(1)$	634.979 ± 2.386	11	
$4 \text{ SeO}_4^{2^-}+80 \text{ H}^++64 \text{ e}^-+4 \text{ CO}_3^{2^-}+4 \text{ NO}_3^-+\text{Hg}^{2^+} \Leftrightarrow \text{Hg}(\text{SeCN})_4^{2^-}+40 \text{ H}_2\text{O}(1)$	840.205 ± 2.931	11	
$3 \text{ SeO}_4^2 + 60 \text{ H}^+ + 48 \text{ e}^+ 3 \text{ CO}_3^2 + 3 \text{ NO}_3^- + \text{Ag}^+ \Leftrightarrow \text{Ag}(\text{SeCN})_3^2 + 30 \text{ H}_2\text{O}(1)$	622.029 ± 2.187	11	
$\operatorname{SeO}_4^{2^-} + \operatorname{Ni}^{2^+} \Leftrightarrow \operatorname{Ni}\operatorname{SeO}_4(\operatorname{ag})$	2.670 ± 0.050	11	
$SeO_4^{2-} + 20 H^+ + 16 e^- + CO_2^{2-} + NO_2^{-} + Ni^{2+} \Leftrightarrow NiSeCN^+ + 10 H_2O(1)$	204.496 ± 0.724	11	
$2 \operatorname{SeO}_{4}^{2-}+40 \operatorname{H}^{+}+32 \operatorname{e}^{-}+2 \operatorname{CO}_{3}^{2-}+2 \operatorname{NO}_{3}^{-}+\operatorname{Ni}^{2+} \Leftrightarrow \operatorname{Ni}(\operatorname{SeCN}_{2}(\operatorname{ag})+20 \operatorname{H}_{2}O(1))$	407.693 ± 1.451	11	
$\operatorname{SeO}_{4}^{2^{-}} + \operatorname{UO}_{2}^{2^{+}} \Leftrightarrow \operatorname{UO}_{2}\operatorname{SeO}_{4}(\operatorname{ag})$	2.740 ± 0.250	11	
$\frac{\operatorname{SeO}_4^{2-} + \operatorname{Mg}^{2+}}{\operatorname{SeO}_4^{2-} + \operatorname{Mg}^{2+}} \Leftrightarrow \operatorname{MgSeO}_4(\operatorname{ag})$	2.200 ± 0.200	11	
$\frac{8}{3} \sec (2^{2} + Ca^{2^{+}} \Leftrightarrow Ca \sec (4a))$	2.000 ± 0.100	11	
$\frac{5004}{5004} + \frac{100000}{50000} + 1000000000000000000000000000000000000$	2.430 ± 0.050	11	
$\frac{\sec(4)^2}{\sec(4)^2} + \cos(4)$	2.700 ± 0.050	11	
$2 \operatorname{Br} \Leftrightarrow \operatorname{Br}_{4}(\operatorname{aq}) + 2 \operatorname{e}^{-1}$	-37.246 ± 0.180	3	
$\frac{2 \text{ Br} \leftrightarrow \text{Br}_2(\text{uc}) + 2 \text{ c}}{\text{Br}^- + \text{H}_2(\text{u}) \leftrightarrow \text{Br}^- + 2 \text{ H}^+ + 2 \text{ e}^-}$	$-54 116 \pm 0.271$	3	
$Br + 3 H_2O(1) \Leftrightarrow BrO + 2 H + 2 C$ $Br + 3 H_2O(1) \Leftrightarrow BrO_2 + 6 H^+ + 6 e^-$	-146169 ± 0.116	3	
$\frac{BI^{-} + BI^{-}_{2}O(1) \Leftrightarrow BIO_{3}^{-} + O(1)}{Br^{-} + H_{2}O(1) \Leftrightarrow HBrO(ag) + H^{+} + 2e^{-}}$	-45486 ± 0.269	3	
$Sr^{2+} + H_2O(1) \Leftrightarrow SrOH^+ + H^+$	-13.100 ± 0.209	30	
$\frac{Sr^{2+} + SQ^{2-}}{Sr^{2+} + SQ^{2-}} \Leftrightarrow SrSQ_{(aq)}$	13.290 ± 0.030 1 860 + 0 030	30	
$Sr^{2+} + NO_2^- \Leftrightarrow SrNO_2^+$	0.800	4	
$\operatorname{Sr}^{2+} + \operatorname{PO}^{3-} \hookrightarrow \operatorname{SrPO}^{-}$	4 200	4	
$Zr^{4+} + H_{O}(1) \Leftrightarrow ZrOH^{3+} + H^{+}$	0.320 ± 0.220	13	
$2r^{4+} + 2H_2O(1) \Leftrightarrow 2rOH_2^{2+} + 2H^+$	0.920 ± 0.220	13	
$Zr^{4+} + 4H_2O(1) \Leftrightarrow Zr(OH)_2 + 2H$ $Zr^{4+} + 4H_2O(1) \Leftrightarrow Zr(OH)_4(aq) + 4H^+$	-2.190 ± 1.000	13	
$Zr^{4+} + 6H_2O(1) \Leftrightarrow Zr(OH)_4^{2-} + 6H^+$	$-29,000 \pm 0.700$	13	
$3 \operatorname{Zr}^{4+} + 4 \operatorname{H}_2(0) \rightleftharpoons \operatorname{Zr}_2(0H)_6^{8+} + 4 \operatorname{H}^+$	0.400 ± 0.300	13	
$\frac{3 Zr^{4+} + 9 H_2O(1)}{3 Zr^{4+} + 9 H_2O(1)} \Leftrightarrow Zr_3(OH)_4^{3+} + 9 H^+$	$12 190 \pm 0.080$	13	
$\frac{3 \Sigma r^{4} + 9 \Pi_2 O(1)}{4 Z r^{4+} + 8 H_2 O(1)} \Leftrightarrow Z r_4 (OH)_6^{8+} + 8 H^+$	6520 ± 0.650	13	
$4 \operatorname{Zr}^{4+} + 15 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Zr}_4(OH)_8^+ + 15 \operatorname{H}^+$	12580 ± 0.030	13	
$4 Z_1^{4} + 15 H_2^{0}(1) \Leftrightarrow Z_1^{4}(0H)_{15} + 15 H_1^{4}$	$\frac{12.300 \pm 0.210}{8.390 \pm 0.800}$	13	
$7r^{4+}$ + $10r^{2}$ $2r^{4+}$ + $10r^{2}$ $2r^{3+}$	10.120 ± 0.070	13	
$2r^{4+} + 2r^{-} \leftrightarrow 2r^{2+}$	10.120 ± 0.070 18 550 ± 0.310	13	
$\frac{Z_1}{Z_1^{4+} + 3} \stackrel{\text{Li}}{\to} \frac{Z_1}{Z_1^{2+}}$	13.330 ± 0.310 24 720 ± 0.380	13	
$Z_{1}^{4+} + 4 E^{-} \leftrightarrow Z_{1}E^{-} (ag)$	24.720 ± 0.330 30.110 ± 0.400	13	
$Z_{I}^{4+} + 5 E^{-} \leftrightarrow Z_{I}E^{-}$	34.600 ± 0.400	13	
$Z_{1}^{4+} + 6 \Gamma^{-} \leftrightarrow Z_{1}\Gamma_{5}^{2-}$	34.000 ± 0.420 38.110 ± 0.430	13	
$Z_{1} \neq 0 \Gamma \iff Z_{1}\Gamma_{6}$ $7r^{4+} + C^{1-} \iff 7rC^{3+}$	38.110 ± 0.430	13	
$Z_{r}^{4+} + 2C_{r}^{1-} \leftrightarrow Z_{r}^{r}C_{r}^{1-} 2^{+}$	1.390 ± 0.000 2 170 ± 0.240	13	
$\frac{21}{7r^{4+}} + 2 Cl^{+} \leftrightarrow \frac{7rCl^{+}}{7r^{2}}$	2.170 ± 0.240 3.000 ± 0.450	22	
$\frac{21}{7r^{4+}} + 4 Cl^2 \leftrightarrow 7rCl (ac)$	5.000 ± 0.430 1 220 ± 0.500	32	
$Z_{I} + + C_{I} \hookrightarrow Z_{I} C_{I}(aq)$ $Z_{r}^{4+} + S_{O}^{2-} \hookrightarrow Z_{r} S_{O}^{2+}$	-1.230 ± 0.300 7 040 ± 0.000	12	
$\frac{21}{7e^{4+}} + 2 \sum \frac{2}{2e} + \frac{2}{2e} \frac{2}{e^{2-}} + \frac{2}{2e} \frac{2}{e^{2-}$	11.540 ± 0.090	13	
$L_{1} = 2 \text{ SO}_{4} \iff L_{1}(\text{SO}_{4})_{2}(\text{d}_{1})$ $T_{2}^{4+} + 2 \text{ SO}_{2}^{2-} \implies T_{2}(\text{SO}_{1})^{2-}$	11.340 ± 0.210	13	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14.300 ± 0.300	13	
$L_1 \rightarrow INO_3 \Leftrightarrow LIINO_3$	1.390 ± 0.080	13	

$\begin{array}{ccccc} 2.640 = 0.170 & 13 \\ 7.4^{rh} = 3.NO_{1} \leftrightarrow 2.7(NO_{1})_{1}^{2rh} & 1000 & 1.50 & 1.50 \\ 2.4^{rh} + 4.CO_{2}^{-1} \leftrightarrow 2.7(NO_{1})_{1}^{4rh} & 42.900 = 1.000 & 13 \\ 7.4^{rh} + 2.Cu^{2} + 6.H_{0}(1) \leftrightarrow Cu_{2}[Zn(OH_{0})_{1}^{2h} + 6.H^{1} & -2.2606 = 0.313 & 33 \\ 7.4^{rh} + 3.Cu^{2} + 6.H_{0}(1) \leftrightarrow Cu_{2}[Zn(OH_{0})_{1}^{2h} + 6.H^{1} & -2.32.06 = 0.313 & 33 \\ NO(H_{0}(u_{2}) \approx 1.H^{-2} + 3.Cu^{2h} - 6.H_{0}(1) \leftrightarrow Cu_{2}[Zn(OH_{0})_{1}^{2h} + 6.H^{1} & -2.32.06 = 0.313 & 33 \\ NO(D_{1})^{2s} \approx 1.H^{-2} \approx 1.000 + NIO(H_{0})^{4} + H^{2} & -2.758 & 1 \\ MO_{0}^{-2} \approx 1.H^{-2} \approx 1.000 + NIO(H_{0})^{4} + H^{2} & -2.758 & 1 \\ MO_{0}^{-2} \approx 1.H^{-2} \approx 1.0400 + 4.H_{0}(0) & 53 & 0.000 + 2.000 & 35 \\ NOO_{2}^{-2} + 1.H^{-2} \approx 1.0400 + 4.H_{0}(0) & 53 & 0.000 + 2.000 & 35 \\ NOO_{2}^{-2} + 1.H^{-2} \approx 1.0400 + 4.H_{0}(0) & 59.300 + 0.500 & 35 \\ NOO_{2}^{-2} + 1.H^{-2} \approx 1.0400 + 2.H^{-2} + 4.H_{0}(0) & 59.300 + 0.500 & 14 \\ 1.CO_{1}^{+2} + 6.M_{0}O_{2}^{-2} + 4.H_{0}(0) & 4.36.54 + 0.216 & 0.500 & 14 \\ 1.CO_{1}^{+1} + 6.H^{-2} + 5.CO^{2} + 3.H_{0}(0) & 4.36.54 + 0.216 & 0.500 & 14 \\ 1.CO_{1}^{+1} + 6.H^{-2} + 5.CO^{2} + 2.H_{0}(0) & 4.46.55 + 0.216 & 0.500 & 14 \\ 1.CO_{1}^{+1} + 1.00 + 1.000 & 1.000 & 0.0000 & 0.000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.00000 & 0.0000 & 0.0000 & 0.0$	Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\operatorname{Zr}^{4+} + 2 \operatorname{NO}_3 \Leftrightarrow \operatorname{Zr}(\operatorname{NO}_3)_2^{2+}$	2.640 ± 0.170	13	
$\begin{array}{ccccc} 24^{*+} 2 \mathrm{Ce}_{3}^{+} \approx 2 \mathrm{Ce}_{3}^{+} \mathrm$	$Zr^{4+} + 3 NO_3 \iff Zr(NO_3)_3^+$	1.040 ± 1.500	32	*
$Z^{4^+} + 2Ca^{3^+} \in H_2(0) \Leftrightarrow Ca_1[Z(0H)_0]^{1^+} \in H^+$ -22.006 ± 0.313 33 $Z^{4^+} + 3Ca^{3^+} \in H_2(0) \Leftrightarrow Ca_1[Z(0H)_0]^{1^+} \in H^+$ -2.3 2.06 ± 0.313 33 $MOO1^2 + H^- + 3C \Leftrightarrow MO^{1^+} + 4 H_2(0)$ 29.390 35 $MOO_1^2 + H^- + 3C \Leftrightarrow MO^{1^+} + 4 H_2(0)$ 29.390 35 $MOO_1^2 + H^- + 3H \Leftrightarrow O_1^{1^+} + 4 H_2(0)$ 53.000 ± 0.200 35 $MOO_1^2 + H^- \Leftrightarrow MOO_{1^+} + H_2(0)$ 59.800 ± 0.500 35 $S^{10} = 2 MOO_1^{2^+} + 2 H^+ \Leftrightarrow MOO_{1}^{1^+} + 4 H_2(0)$ 59.800 ± 0.500 35 $S^{10} = 2 MOO_1^{2^+} + 8 H^+ \Rightarrow Co_0 OM_1^{1^+} + H_2(0)$ 45.63 ± 0.216 present $TCO_1 + 6 H^+ + 3C \Leftrightarrow CO^{2^+} + 3 H_2(0)$ < 3.800 ± 0.500	$\operatorname{Zr}^{4+} + 4\operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{Zr}(\operatorname{CO}_3)_4^{4-}$	42.900 ± 1.000	13	
$\lambda^{th} > 12 G^{2} + 6 H_2 (0) \odot Ca_2 (Z(0) H_2)^{th} + H^{th} > 20 (20 ± 0.313) 33 Nb(OH)_(aq) + H_2 (0) \odot Nb(OH_2 + H^{th}) > 26.758 1 MoO_4^{-1} + 8 H^{-1} - 5 \odot M^{00^{-1}} + 4 H_2 (0) 29.390 35 MoO_4^{-1} + 8 H^{-1} - 5 \odot M^{00^{-1}} + 4 H_2 (0) 53.000 ± 0.200 35 TMOO_4^{-2} + 9 H^{-1} - 5 H_MO_0 (aq) 67.00 ± 0.200 35 TMOO_4^{-2} + 9 H^{-1} - 5 H_MO_0 (ag) 53.000 ± 0.200 35 TMOO_4^{-2} + 9 H^{-1} - 5 H_MO_0 (ag) 11.200 ± 0.300 36 TCO(-1) 4 G^{-1} S Sm(MOO_0 / s^{-1}) 11.200 ± 0.300 36 TCO(H) 4 H^{-1} S^{-1} CO^{-2} + 3 H_0(0) 4.503 ± 0.216 present TCO(OH) 4 (ag) + H^{-1} \hookrightarrow TCO^{-2} + 3 H_0(0) 4.503 ± 0.216 present TCO(OH) 4 (ag) + H^{-1} \hookrightarrow TCO^{-2} + 3 H_0(0) 4.600 present TCO(OH) 4 (ag) + H^{-1} \odot TCO_3 (OH)_{1/2} (ag) + H_2 O() 19.255 \pm 0.302 present TCO(OH) 4 (ag) + 2 H^{-1} H^{-1} 0.0^{-1} 0.53 \pm 0.501 present 17.600 H_1 (ag) + 2 H^{-1} 0.0^{-2} 0.530 3.7 Pd^{2} + 1 H_0 O_1 O^{-1} D^{-1} H^{-1} 0.0^{-1} 0.025 0.036 0.1 1 $	$\operatorname{Zr}^{4+} + 2\operatorname{Ca}^{2+} + 6\operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Ca}_2[\operatorname{Zr}(\operatorname{OH})_6]^{2+} + 6\operatorname{H}^+$	-22.606 ± 0.313	33	
$\begin{split} & \text{Nt}(OH_{14}\text{ca}) + H_{2}(O) & \sim \text{Nt}(OH_{16}^{-} + \text{H}^{-}) & 2 > 5788 & 1 \\ & \text{MoO}_{1}^{2} + \text{H} & \leftarrow \text{MtOO}_{1}^{-} & \text{H} + H_{2}(OH) & 29 300 & 35 \\ & \text{MOO}_{1}^{2} + \text{H} & \leftarrow \text{MtOO}_{1}^{-} & \text{H} + \text{H} + \text{MtOO}_{1}^{-} & \text{H} + H$	$\operatorname{Zr}^{4+} + 3\operatorname{Ca}^{2+} + 6\operatorname{H}_2\operatorname{O}(1) \Leftrightarrow \operatorname{Ca}_3[\operatorname{Zr}(\operatorname{OH})_6]^{4+} + 6\operatorname{H}^+$	-23.206 ± 0.313	33	
$\begin{split} & MoQ_{*}^{2} + 8 \ H^{*} 3 \ e^{\phi} Mo^{1}_{*} 4 \ H_{2}O() & 29 \ 390 & 35 \\ & MoQ_{*}^{2} + 11^{*} \odot HMoQ_{*}^{*} & 4 \ H_{2}O() & 53 \ 000 \ + 0.200 & 35 \\ \hline MoQ_{*}^{2} + 2 \ H^{*} \odot H_{0}O_{2}O_{*}^{+} 4 \ H_{2}O() & 53 \ 000 \ + 0.200 & 35 \\ \hline MoQ_{*}^{2} + 9 \ H^{*} \odot HMoQ_{2}O_{2}^{+} + 4 \ H_{2}O() & 53 \ 000 \ + 0.200 & 36 \\ \hline MoQ_{*}^{2} + 9 \ H^{*} \odot HMoQ_{2}O_{2}^{+} & 4 \ H_{2}O() & 53 \ 000 \ + 0.200 & 36 \\ \hline MoQ_{*}^{2} + 9 \ H^{*} \odot HMoQ_{2}O_{2}^{+} & 4 \ H_{2}O() & 430 \ 0 \ 45 \\ \hline TeO(H)_{1}(ag) + H^{*} \odot TeO_{2}^{+} + 3 \ H_{2}O() & 4563 \ \pm 0.216 \\ \hline TeO(H)_{1}(ag) + H^{*} \odot TeO(OH)_{1}^{+} H_{1}O() & 4563 \ \pm 0.216 \\ \hline TeO(OH)_{1}(ag) + H^{*} \odot TeO(OH)_{1}^{+} H^{*} & -10.900 \ \pm 0.400 \\ \hline present \\ TeO(OH)_{1}(ag) + H^{*} + CO_{2}^{+} \simeq TeO_{2}O(H)_{2}(ag) + H_{2}O() & 19.255 \ \pm 0.302 \\ \hline TeO(OH)_{1}(ag) + H^{*} + CO_{2}^{+} \simeq TeO_{2}O(H)_{2}(ag) + H_{2}O() \\ \hline TeO(OH)_{1}(ag) + H^{*} + CO_{2}^{+} \simeq TeO_{2}O(H)_{2}(ag) + H_{2}O() \\ \hline TeO(OH)_{1}(ag) + H^{*} + CO_{2}^{+} \simeq TeO_{2}O(H)_{2}(ag) + H_{2}O() & 19.255 \ \pm 0.302 \\ \hline Present \\ TeO(OH)_{1}(ag) + H^{*} + CO_{2}^{+} \simeq TeCO_{3}(OH)_{2}(ag) + H_{2}O() \\ \hline TeO(OH)_{2}(ag) + H^{*} + CO_{2}^{+} \simeq TeCO_{3}(OH)_{2}(ag) + H_{2}O() & 19.255 \ \pm 0.601 \\ \hline Present \\ TeO(OH)_{2}(ag) + H^{*} + CO_{2}^{+} \simeq TeCO_{3}(OH)_{2}(ag) + H_{2}O() & 10.255 \ \pm 0.400 \ 37 \\ Pd^{+} + 10 \ 0.450 \ 0.403 \ 37 \\ Pd^{+} + 2 \ H_{2}O() \Rightarrow PdO(H)_{1}(ag) + 2 \ H^{*} & 1.1200 \ \pm 0.600 \ 37 \\ Pd^{+} + 2 \ CC \Rightarrow PdC_{1}(ag) & 10 \ EC \ EC \ EC \ EC \ AC_{1}(ag) & 10 \ EC \ EC \ AC_{1}(ag) \ BC \ AC_{1}($	$Nb(OH)_5(aq) + H_2O(l) \Leftrightarrow Nb(OH)_6^- + H^+$	> -6.758	1	
$\begin{split} & \text{MoQ}_{1}^{2} + \text{H}^{*} \Leftrightarrow \text{HMoQ}_{1}^{2} & \text{H}^{*} \oplus \text{H}_{0}(\text{log}) & \text{for } 0 \\ & fo$	$MoO_4^{2-} + 8 H^+ + 3 e^- \Leftrightarrow Mo^{3+} + 4 H_2O(1)$	29.390	35	
$\begin{split} & \text{MoQ}_{2}^{3} + 2 \text{ H} \hookrightarrow \text{H}_{3}\text{Mo}_{4}(a) & \text{f} \text{H}_{3}\text{O}(1) & \text{f} \text{S} 3 000 \pm 0.200 & 35 \\ & 7 \text{ MoQ}_{2}^{3} + 8 \text{ H} \hookrightarrow \text{Mo}_{0,2}^{a} + 4 \text{ H}_{5}\text{O}(1) & \text{f} \text{S} 3 000 \pm 0.500 & 35 \\ & \text{S} \text{S} \text{m}^{3} + 2 \text{ MO}_{0,2}^{2} \oplus \text{S} \text{H}^{3} \oplus \text{O}_{2}\text{O}^{3} & \text{H}_{1}\text{O}(1) & \text{S} 3 800 \pm 0.500 & 14 \\ & \text{TOQ}_{1}^{*} + 6 \text{ H}^{*} - 3 \text{C} \oplus \text{TOQ}_{2}^{*} & \text{H}_{2}\text{O}(1) & \text{c} \text{3} 3 \text{A} \text{H} & \text{present} \\ & \text{TO}_{0}^{*} + 6 \text{ H}^{*} - 3 \text{C} \oplus \text{TO}_{2}^{3} & \text{H}_{2}\text{O}(1) & \text{c} \text{3} 3 \text{A} \text{H} & \text{present} \\ & \text{TO}_{0}^{*} + 6 \text{ H}^{*} + 3 \text{ c} \oplus \text{TO}_{1}^{2^{*}} + 1 \text{H}_{0}\text{O}(1) & \text{c} \text{3} 3 \text{A} \text{H} & \text{present} \\ & \text{TOO(H)}_{1}(a) + H^{*} + 1 \text{CO}_{1}^{*} \oplus \text{TCO}(\text{O}(H)_{1}^{*} \text{H}^{*}) & \text{-10.000} \pm 0.400 & \text{present} \\ & \text{TOO(H)}_{1}(a) + H^{*} + \text{CO}_{2}^{*} \oplus \text{TCO}_{0}(\text{O}(H)_{2}(a) + H_{2}\text{O}(1) & 19.255 \pm 0.302 & \text{present} \\ & \text{TOO(H)}_{1}(a) + 1 H^{*} + \text{CO}_{2}^{*} \oplus \text{TCO}_{0}(\text{O}(H)_{2}(a) + H_{2}\text{O}(1) & 19.255 \pm 0.302 & 10 \\ & \text{present} \\ & \text{TOO(H)}_{1}(a) + 1 H^{*} + \text{CO}_{2}^{*} \oplus \text{TCO}_{0}(\text{O}(H)_{2}(a) + H_{2}\text{O}(1) & 19.255 \pm 0.302 & 11 \\ & \text{present} \\ & \text{TOO(H)}_{1}(a) + 1 H^{*} + \text{CO}_{2}^{*} \oplus \text{TCO}_{0}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.110 \pm 0.630 & 37 \\ & \text{present} \\ & \text{TOO(H)}_{1}(a) + 1 H^{*} + \text{CO}_{2}^{*} \oplus \text{TCO}_{0}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.110 \pm 0.630 & 37 \\ & \text{present} \\ & \text{Pd}^{2^{*}} + 2 \text{ H}_{0}(1) \oplus \text{Pd}(\text{O}(H)_{2}(a) + 2 \text{ H}^{*} & -3.110 \pm 0.630 & 37 \\ & \text{Pd}^{2^{*}} + 2 \text{ H}_{0}(1) \oplus \text{Pd}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.110 \pm 0.630 & 37 \\ & \text{Pd}^{2^{*}} + 3 \text{ H}_{0}(1) \oplus \text{Pd}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.110 \pm 0.630 & 37 \\ & \text{Pd}^{2^{*}} + 3 \text{ H}_{0}(1) \oplus \text{Pd}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.10 \pm 0.630 & 11 \\ & \text{Pd}^{2^{*}} + 3 \text{ H}_{0}(1) \oplus \text{Pd}(\text{O}(H)_{2}(a) + 1 H^{*} & -3.10 \pm 0.630 & 11 \\ & \text{Pd}^{2^{*}} + 3 \text{ H}_{0}(1) \oplus \text{Pd}(\text{Pd}(h)_{2}(a) + 1 H^{*} & -3.10 \pm 0.630 & 11 \\ & \text{Pd}^{2^{*}} + 3 \text{ H}_{1}(0) \oplus \text{Pd}(\text{H}(h)_{2}(a) + 1 H^{*} & -3.10 & 0.630 & 11 \\ & \text$	$MoO_4^{2^-} + H^+ \Leftrightarrow HMoO_4^-$	4.100 ± 0.100	35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$MoO_4^{2-} + 2 H^+ \Leftrightarrow H_2MoO_4(aq)$	6.700 ± 0.200	35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$7 \text{ MoO}_4^{2^-} + 8 \text{ H}^+ \Leftrightarrow \text{Mo}_7\text{O}_{24}^{6^-} + 4 \text{ H}_2\text{O}(1)$	53.000 ± 0.200	35	
$\begin{split} & m^{3+} 2 \ MoQ_{*}^{2} \Leftrightarrow Sm(MoQ_{1})_{*}^{-} & 11200 \pm 0.300 & 14 \\ & TcQ_{*} + c^{*} \ominus TcQ_{*}^{2} & -10.800 \pm 0.500 & 14 \\ & TcQ_{*} + 01^{*} + 3c \Leftrightarrow TcQ_{*}^{2} + 3 \ H_{2}O(1) & <3.3.14 & present \\ \hline TcQ(OH)_{1}(aq) + 1^{*} \Leftrightarrow TcQ^{5+} + 2 \ H_{2}O(1) & <4.000 & present \\ \hline TcO(OH)_{1}(aq) + 1^{*} \leftrightarrow TcQ^{5+} + 2 \ H_{2}O(1) & <4.000 & present \\ \hline TcO(OH)_{1}(aq) + 2 \ H^{*} \Leftrightarrow TcQ_{*}^{2} + 2 \ H_{2}O(1) & 19.255 \pm 0.302 & present \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Leftrightarrow TcCQ_{4}(OH)_{*} + 10 & 0.055 \pm 0.601 & present \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Leftrightarrow TcCQ_{4}(OH)_{*} & 0.055 \pm 0.601 & present \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Leftrightarrow TcCQ_{4}(OH)_{*} & 0.055 \pm 0.601 & present \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Leftrightarrow TcCQ_{4}(OH)_{*} & 0.050 \pm 0.640 & 37 \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Rightarrow TcCQ_{4}(OH)_{*} & 0.010 & 0.000 & 1 \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Rightarrow TcCQ_{4}(OH)_{*} & 0.010 & 0.000 & 1 \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Rightarrow TcCQ_{4}(OH)_{*} & 0.010 & 0.000 & 1 \\ \hline TcO(OH)_{1}(aq) + 1^{*} + CQ_{*}^{2} \Rightarrow TCQ_{4}(OH)_{*} & 0.010 & 0.000 & 1 \\ \hline TcO(OH)_{1}(aq) + 0.010 & present \\ \hline TcO(OH)_{1}(aq) + 0.000 & 1 \\ \hline TcO(OH)_{1}(aq) + 0.0000 & 1 \\ \hline TcO(OH)_{1}(aq) + 0.$	$7 \operatorname{MoO_4^{2-}} + 9 \operatorname{H^+} \Leftrightarrow \operatorname{HMo_7O_{24}^{5-}} + 4 \operatorname{H_2O}(1)$	59.800 ± 0.500	35	
$\begin{split} & \begin{tabular}{l l l l l l l l l l l l l l l l l l l $	$\text{Sm}^{3+} + 2 \text{ MoO}_4^{2-} \Leftrightarrow \text{Sm}(\text{MoO}_4)_2^{-}$	11.200 ± 0.300	36	
TeO, $+ 6 \text{ II}^* + 3 e \oplus \text{TeO}^{2+} + 3 [Q(I)]$ <33.414 present TCO(DH)_(aq) + LT \oplus TCO(DH), $+ 1I_0(I)$ 4.563 ± 0.216 present TCO(OH)_(aq) + LT \oplus TCO(OH), $+ 1I_1^*$ -10.900 ± 0.400 present TCO(OH)_(aq) + L (\oplus TCO(OH), $+ 1I_1^*$ -10.900 ± 0.400 present TCO(OH)_(aq) + L (\oplus TCO_2 \oplus TCO_3(OH)_(a) + H_0(I) 19.255 ± 0.601 present TCO(OH)_(aq) + I' + CO_2^+ \oplus TCO_3(OH)_(a) + H_0(I) 19.255 ± 0.601 present Rd ² + 1 H_0(I) \oplus PdOH + H ⁺ -0.650 ± 0.640 37 Rd ² + 2 H_0(I) \oplus PdOH (\oplus A H ⁺ -3.110 ± 0.630 37 Rd ² + 2 H_0(I) \oplus PdOH (\oplus A H ⁺ -14.200 ± 0.630 37 Rd ² + 2 H_0(I) \oplus PdOH (\oplus A H ⁺ -14.200 ± 0.630 37 Rd ² + 2 C \oplus PdCI_2(aq) 8.471 ± 0.283 1 Pd ²⁺ + 2 C \oplus PdCI_2 10.582 ± 0.346 1 Rd ²⁺ + 1 C \oplus PdCI_2 10.464 ± 0.400 1 Pd ²⁺ + 2 NO_1 \oplus PdOHNO_3(aq) + H ⁺ -0.650 ± 0.036 1 Pd ²⁺ + 2 NO_1 \oplus PdOHO_1), ePdOHNO_3(aq) + H ⁺ -0.650 ± 0.036 1 Pd ²⁺ + 2 NO_1 \oplus PdOHNO_3(aq) + H ⁺ -0.650 ± 0.036	$TcO_4^- + e^- \Leftrightarrow TcO_4^{-2}^-$	-10.800 ± 0.500	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO_4^- + 6 H^+ + 3 e^- \Leftrightarrow TcO^{2+} + 3 H_2O(I)$	< 33.414	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO(OH)_2(aq) + H^+ \Leftrightarrow TcO(OH)^+ + H_2O(l)$	4.563 ± 0.216	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO(OH)_2(aq) + 2 H^+ \Leftrightarrow TcO^{2+} + 2 H_2O(l)$	< 4.000	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO(OH)_2(aq) + H_2O(I) \Leftrightarrow TcO(OH)_3 + H^+$	-10.900 ± 0.400	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO(OH)_2(aq) + 2 H^+ + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_2(aq) + H_2O(I)$	19.255 ± 0.302	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TcO(OH)_2(aq) + H^+ + CO_3^{2-} \Leftrightarrow TcCO_3(OH)_3^{-1}$	10.955 ± 0.601	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + H_2O(1) \Leftrightarrow PdOH^+ + H^+$	-0.650 ± 0.640	37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + 2 H_2O(1) \Leftrightarrow Pd(OH)_2(aq) + 2 H^+$	-3.110 ± 0.630	37	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + 3 H_2O(1) \Leftrightarrow Pd(OH)_3^- + 3 H^+$	-14.200 ± 0.630	37	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Pd^{2+} + Cl^- \Leftrightarrow PdCl^+$	5.031 ± 0.200	1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Pd^{2+} + 2 Cl^{-} \Leftrightarrow PdCl_2(aq)$	8.471 ± 0.283	1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Pd^{2+} + 3 Cl^{-} \Leftrightarrow PdCl_{3}^{-}$	10.582 ± 0.346	1	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Pd^{2+} + 4 Cl^{2} \Leftrightarrow PdCl_{4}^{2-}$	11.464 ± 0.400	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + NO_3 \Leftrightarrow PdNO_3^+$	0.167 ± 0.024	1	*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + 2 NO_3 \Leftrightarrow Pd(NO_3)_2(aq)$	-0.762 ± 0.039	1	*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{2+} + 2 NO_3^{-} + H_2O(1) \Leftrightarrow PdOHNO_3(aq) + H^+$	-0.650 ± 0.036	1	*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{+2} + 3 Cl^{-} + H_2O(1) \Leftrightarrow PdCl_3OH^{2-} + H^{+}$	2.500	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{+2} + 2 Cl^{-} + 2 H_2O(1) \Leftrightarrow PdCl_2(OH)_2^{2-} + 2 H^+$	-7.000	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{+2} + NH_4^+ \Leftrightarrow PdNH_3^{2+} + H^+$	0.363	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{+2} + 2 NH_4^+ \Leftrightarrow Pd(NH_3)_2^{2+} + 2 H^+$	0.026	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pd^{+2} + 3 NH_4^+ \Leftrightarrow Pd(NH_3)_3^{2+} + 3 H^+$	-1.711	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Pd^{+2} + 4 NH_4^+ \Leftrightarrow Pd(NH_3)_4^{2+} + 4 H^+$	-4.148	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Sn}^{2+} + \operatorname{H}_2O(1) \Leftrightarrow \operatorname{SnOH}^+ + \operatorname{H}^+$	-3.750	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Sn}^{2^+} + 2 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sn}(OH)_2(aq) + 2 \operatorname{H}^+$	-7.710	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Sn}^{2^+} + 3 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sn}(OH)_3^- + 3 \operatorname{H}^+$	-17.540	9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3 \operatorname{Sn}^{2+} + 4 \operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sn}_3(OH)_4^{2+} + 4 \operatorname{H}^+$	-6.510	9	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Sn}^{2+} + \operatorname{Cl}^{-} \Leftrightarrow \operatorname{SnCl}^{+}$	1.650	9	
$Sn^{2+} + 3 Cl^{-} \Leftrightarrow SnCl_{2}^{-}$ 2.090 9 $Sn^{2+} + H_2O(l) + Cl^{-} \Leftrightarrow SnClOH(aq) + H^+$ -2.270 9 $Sn^{2+} + F^{-} \Leftrightarrow SnF^+$ 4.460 9 $Sn^{2+} + F^{-} \Leftrightarrow SnF_2(aq)$ 7.740 9 $Sn^{2+} + 2 F^{-} \Leftrightarrow SnF_2(aq)$ 7.740 9 $Sn^{2+} + 3 F^{-} \Leftrightarrow SnF_3^{-}$ 9.610 9 $Sn^{2+} + NO_3^{-} \Leftrightarrow SnNO_3^{+}$ 1.250 9 $Sn^{2+} + 2 NO_3^{-} \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3^{-} \Leftrightarrow Sn(NO_3)_2(aq)$ 1.370 9 $Sn^{2+} + 4 NO_3^{-} \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^{-} \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 9	$\operatorname{Sn}^{2+} + 2 \operatorname{Cl}^{-} \Leftrightarrow \operatorname{SnCl}_2(\operatorname{aq})$	2.310	9	
$Sn^{2+} + H_2O(1) + C1^- \Leftrightarrow SnClOH(aq) + H^+$ -2.270 9 $Sn^{2+} + F^- \Leftrightarrow SnF^+$ 4.460 9 $Sn^{2+} + 2F^- \Leftrightarrow SnF_2(aq)$ 7.740 9 $Sn^{2+} + 3F^- \Leftrightarrow SnF_3^-$ 9.610 9 $Sn^{2+} + NO_3^- \Leftrightarrow SnNO_3^+$ 1.250 9 $Sn^{2+} + 2NO_3^- \Leftrightarrow SnNO_3^+$ 1.250 9 $Sn^{2+} + 2NO_3^- \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3NO_3^- \Leftrightarrow Sn(NO_3)_2(aq)$ 1.370 9 $Sn^{2+} + 3NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn(OH)_4(aq) + 4H^+ + 2e^- \Leftrightarrow Sn^{2+} + 4H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_0(1) = H^+ \Leftrightarrow Sn(OH)_5$ -7.970 9	$\operatorname{Sn}^{2^+} + 3 \operatorname{Cl}^2 \Leftrightarrow \operatorname{SnCl}_3^-$	2.090	9	
$Sn^{2+} + F^{-} \Leftrightarrow SnF^{+}$ 4.460 9 $Sn^{2+} + 2 F^{-} \Leftrightarrow SnF_2(aq)$ 7.740 9 $Sn^{2+} + 3 F^{-} \Leftrightarrow SnF_3^{-}$ 9.610 9 $Sn^{2+} + NO_3^{-} \Leftrightarrow SnNO_3^{+}$ 1.250 9 $Sn^{2+} + 2 NO_3^{-} \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 2 NO_3^{-} \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3^{-} \Leftrightarrow Sn(NO_3)_2(aq)$ 1.370 9 $Sn^{2+} + 3 NO_3^{-} \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + 3 NO_3^{-} \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + 3 NO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^{-} \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_0(I) = H^+ \hookrightarrow Sn(OH)_5$ -7.970 9	$\operatorname{Sn}^{2+} + \operatorname{H}_2O(1) + \operatorname{Cl}^2 \Leftrightarrow \operatorname{SnClOH}(\operatorname{ag}) + \operatorname{H}^+$	-2.270	9	
$Sn^{2+} + 2 F \Leftrightarrow SnF_2(aq)$ 7.740 9 $Sn^{2+} + 3 F \Leftrightarrow SnF_3$ 9.610 9 $Sn^{2+} + NO_3 \Leftrightarrow SnNO_3^+$ 1.250 9 $Sn^{2+} + 2 NO_3 \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 2 NO_3 \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3 \Leftrightarrow Sn(NO_3)_3$ 1.370 9 $Sn^{2+} + 3 NO_3 \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + 4 NO_3 \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^+ \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_0(1) = H^+ \Leftrightarrow Sn(OH)_5$ -7.970 9	$\operatorname{Sn}^{2^+} + \operatorname{F}^- \Leftrightarrow \operatorname{SnF}^+$	4.460	9	
$Sn^{2+} + 3 F \Leftrightarrow SnF_3^-$ 9.610 9 $Sn^{2+} + NO_3^- \Leftrightarrow SnNO_3^+$ 1.250 9 $Sn^{2+} + 2 NO_3^- \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_3^-$ 1.370 9 $Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_3^-$ 0.300 9 $Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + 4 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow Sn(SO_4)_2^{2-}$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^+ \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_0(1) = H^+ \Leftrightarrow Sn(OH)_2^-$ -7.970 9	$\operatorname{Sn}^{2+} + 2 \operatorname{F}^{-} \Leftrightarrow \operatorname{SnF}_2(\operatorname{aq})$	7.740	9	
$Sn^{2+} + NO_3^- \Leftrightarrow SnNO_3^+$ 1.250 9 $Sn^{2+} + 2 NO_3^- \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_3^-$ 1.370 9 $Sn^{2+} + 4 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2} \Leftrightarrow Sn(SO_4)_2^{2-}$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^+ \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^+$ -7.970 9	$\operatorname{Sn}^{2^+} + 3 \operatorname{F}^- \Leftrightarrow \operatorname{SnF_3^-}$	9.610	9	
$Sn^{2+} + 2 NO_3^- \Leftrightarrow Sn(NO_3)_2(aq)$ 1.740 9 $Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_3^-$ 1.370 9 $Sn^{2+} + 4 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^-$ -7.970 9	$\operatorname{Sn}^{2+} + \operatorname{NO}_3^- \Leftrightarrow \operatorname{SnNO}_3^+$	1.250	9	
$Sn^{2+} + 3 NO_3^- \Leftrightarrow Sn(NO_3)_3^-$ 1.370 9 $Sn^{2+} + 4 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{2-} \Leftrightarrow Sn(SO_4)_2^{2-}$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^-$ -7.970 9	$\operatorname{Sn}^{2+} + 2 \operatorname{NO}_3 \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_2(\operatorname{aq})$	1.740	9	
$Sn^{2+} + 4 NO_3^- \Leftrightarrow Sn(NO_3)_4^{2-}$ 0.300 9 $Sn^{2+} + SO_4^{-2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{-2-} \Leftrightarrow Sn(SO_4)_2^{-2-}$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^-$ -7.970 9	$\operatorname{Sn}^{2+} + 3 \operatorname{NO}_3 \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_3$	1.370	9	
$Sn^{2+} + SO_4^{2-} \Leftrightarrow SnSO_4(aq)$ 2.910 9 $Sn^{2+} + 2 SO_4^{2-} \Leftrightarrow Sn(SO_4)_2^{2-}$ 2.830 9 $Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1)$ 5.400 9 $Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^-$ -7.970 9	$\operatorname{Sn}^{2^+} + 4 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Sn}(\operatorname{NO}_3)_4^{2^-}$	0.300	9	
$\begin{array}{c c} Sn^{2+} + 2 SO_4^{2-} \Leftrightarrow Sn(SO_4)_2^{2-} & 2.830 & 9 \\ Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1) & 5.400 & 9 \\ Sn(OH)_4(aq) + H_2O(1) = H^+ \Leftrightarrow Sn(OH)_2^{} & -7 970 & 9 \\ \end{array}$	$\operatorname{Sn}^{2^+} + \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{SnSO}_4(\operatorname{aq})$	2.910	9	
$\frac{\text{Sn}(\text{OH})_4(\text{aq}) + 4 \text{ H}^+ + 2 \text{ e}^- \Leftrightarrow \text{Sn}^{2+} + 4 \text{ H}_2\text{O}(1)}{\text{Sn}(\text{OH})_4(\text{aq}) + \text{H}_2\text{O}(1) - \text{H}^+ \Leftrightarrow \text{Sn}(\text{OH})_4(\text{aq})} = \frac{1}{2} \frac$	$\operatorname{Sn}^{2^+} + 2 \operatorname{SO}_4^{2^-} \Leftrightarrow \operatorname{Sn}(\operatorname{SO}_4)_2^{2^-}$	2.830	9	
$Sn(OH)_{*}(aq) + H_{2}O(I) - H^{+} \Leftrightarrow Sn(OH)_{*}^{-1}$ -7.970 9	$Sn(OH)_4(aq) + 4 H^+ + 2 e^- \Leftrightarrow Sn^{2+} + 4 H_2O(1)$	5.400	9	
$\operatorname{Sh}(\operatorname{Sh}(\operatorname{Sh}(\operatorname{Sh}))) \to \operatorname{Sh}(\operatorname{Sh}(\operatorname{Sh}))$	$Sn(OH)_4(aq) + H_2O(l) - H^+ \Leftrightarrow Sn(OH)_5$	-7.970	9	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Sn(OH)_4(aq) + 2 H_2O(l) \Leftrightarrow Sn(OH)_6^{2-} + 2 H^+$	-18.400	9	
$Sn(OH)_4(aq) + 4 H^+ \Leftrightarrow Sn^{4+} + 4 H_2O(l)$	0.400	9	
$Sb(OH)_3(aq) + 3 H^+ \Leftrightarrow Sb^{3+} + 3 H_2O(1)$	-0.730	9	
$Sb(OH)_3(aq) + 2 H^+ \Leftrightarrow SbOH^{2+} + 2 H_2O(1)$	0.830	9	
$Sb(OH)_3(aq) + H^+ \Leftrightarrow Sb(OH)_2^+ + H_2O(1)$	1.300	9	
$Sb(OH)_3(aq) + H_2O(1) \Leftrightarrow Sb(OH)_4 + H^+$	-11.930	9	
$2 \operatorname{Sb}(OH)_3(\operatorname{aq}) + 2 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{Sb}_2 \operatorname{Sd}_4^{2-} + 6 \operatorname{H}_2O(1)$	42.530	9	
$2 \operatorname{Sb}(OH)_3(aq) + 3 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{HSb}_2S_4^- + 6 \operatorname{H}_2O(1)$	52.180	9	
$2 \operatorname{Sb}(OH)_3(aq) + 4 \operatorname{H}^+ + 4 \operatorname{HS}^- \Leftrightarrow \operatorname{H}_2\operatorname{Sb}_2\operatorname{S}_4(aq) + 6 \operatorname{H}_2O(1)$	57.000	9	
$2 \operatorname{Sb}(OH)_3(aq) \Leftrightarrow \operatorname{Sb}_2(OH)_6(aq)$	0.080	9	
$Sb(OH)_3(aq) + 3 H^+ + Cl^- \Leftrightarrow SbCl^{2+} + 3 H_2O(1)$	2.780	9	
$Sb(OH)_3(aq) + 3 H^+ + 2 Cl^- \Leftrightarrow SbCl_2^+ + 3 H_2O(1)$	3.270	9	
$Sb(OH)_3(ag) + 3 H^+ + F^- \Leftrightarrow SbF^{2+} + 3 H_2O(1)$	6.480	9	
$Sb(OH)_3(ag) + 3 H^+ + 2 F^- \Leftrightarrow SbF_2^+ + 3 H2O(1)$	12.650	9	
$Sb(OH)_3(ag) + 3 H^+ + 3 F^- \Leftrightarrow SbF_3(ag) + 3 H_2O(1)$	18.360	9	
$Sb(OH)_3(aq) + 2 H_2O(1) \Leftrightarrow Sb(OH)_5(aq) + 2 H^+ + 2 e^-$	-21.840	9	
$Sb(OH)_{5}(ag) + H_{2}O(1) \Leftrightarrow Sb(OH)_{6}^{-} + H^{+}$	-2.720	9	
$\frac{12 \text{ Sb}(\text{OH})_{\text{s}}(\text{aq}) + 4 \text{ H}_2\text{O}(\text{I}) \Leftrightarrow \text{Sb}_{12}(\text{OH})_{\text{s}4}^{4-} + 4 \text{ H}^+}{12 \text{ Sb}(\text{OH})_{\text{s}4}(\text{I}) \oplus \text{Sb}_{12}(\text{OH})_{\text{s}4}^{4-} + 4 \text{ H}^+}$	20.340	9	
$\frac{12}{12} \frac{\text{Sb}(\text{OH})_{\text{s}}(\text{aq}) + 5}{12} \frac{\text{H}_2\text{O}(1)}{12} \Leftrightarrow \frac{\text{Sb}_{12}(\text{OH})_{\text{s}^5}}{12} + 5 \text{H}^+$	16.720	9	
$\frac{12}{12} \operatorname{Sb}(\operatorname{OH})_{\mathfrak{s}}(\operatorname{ad}) + 6 \operatorname{H}_{2}(\mathfrak{O}) \Leftrightarrow \operatorname{Sb}_{12}(\operatorname{OH})_{\mathfrak{s}}^{6} + 6 \operatorname{H}^{+}$	11 890	9	
$\frac{12}{12} \frac{\text{Sb}(\text{OH})_{\text{s}}(\text{aq}) + 7 \text{H}_2\text{O}(1) \Leftrightarrow \frac{\text{Sb}_{12}(\text{OH})_{66}}{12} + 7 \text{H}_2^{-7} + 7 \text{H}_2^{+}}$	6.070	9	-
$I = 3 H_2 O(I) \Leftrightarrow IO_2^- + 6 H^+ + 6 e^-$	-111563 ± 0.138	present	
$10^{-} + H^{+} \Leftrightarrow HIO_{2}(an)$	0.788 ± 0.029	3	-
$2\Gamma \Leftrightarrow J_2(a_0) + 2e^{-1}$	-20.996	present	*
$3\Gamma \leftrightarrow L^+ 2e^-$	-18,180	present	*
$\Gamma + H_{2}O(1) \Leftrightarrow IO^{-} + 2H^{+} + 2e^{-}$	-43.862	nresent	*
$\Gamma + 4 H_2 O(1) \Leftrightarrow IO_1^{-1} + 8 H^{+} + 8 e^{-1}$	-164.992	present	*
$\frac{1}{2} \frac{1}{1} + \frac{1}{12} \frac{1}{2} \frac{1}{10} + \frac{1}{10} \frac{1}{10} + \frac{1}{10} \frac{1}{10} + \frac{1}{10} \frac{1}{10} \frac{1}{10} + \frac{1}{10} \frac{1}{10} \frac{1}{10} + \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} + \frac{1}{10} \frac{1}{10}$	-45.232	present	*
$\Gamma + H^+ \Leftrightarrow HI(an)$	-0.027	present	*
$I^{-} + H^{-} \leftrightarrow HIO(a_{0}) + H^{+} + 2 e^{-}$	-33.245	present	*
$\Gamma + H_2O(I) \Leftrightarrow H_1O(I^+ + 2e^-)$	-31.914	present	*
$\frac{1}{2} + H_2O(1) \Leftrightarrow H_2O(1) \leftrightarrow H_2O(1)$	-19.357	present	*
$\Gamma + 2 C \Box \Leftrightarrow I C \Box + 2 e^{-1}$	-26.832	present	*
$\frac{1}{2} \stackrel{\text{\tiny C}}{\Gamma} + C \stackrel{\text{\tiny C}}{\hookrightarrow} \stackrel{\text{\tiny C}}{I_2} \stackrel{\text{\tiny C}}{\Gamma} + 2 \stackrel{\text{\tiny C}}{\bullet}$	-20.737	present	*
$I^{-} + Br^{-} \Leftrightarrow IBr(a_0) + 2e^{-}$	-26.519	present	*
$\Gamma + 2 \operatorname{Br} \Leftrightarrow \operatorname{IBr}_{2} + 2 \operatorname{e}^{-1}$	-23.900	present	*
$\frac{1}{2} \frac{1}{1} + \frac{1}{2} \frac{1}{1} + \frac{1}{2} $	-17.046	present	*
$2\Gamma + H^{+} + Rr^{-} \Leftrightarrow HBrL(aq) + 2e^{-}$	-17.046	present	*
$I + CI + Br' \Leftrightarrow IBrCI + 2e^{-1}$	-24.595	present	*
$Ba^{2+} + H_2O(1) \Leftrightarrow BaOH^+ + H^+$	-13.470 ± 0.500	30	
$Ba^{2+} + SO_4^{2-} \Leftrightarrow BaSO_4(aq)$	2.720 ± 0.090	30	
$\frac{2u^{2}}{Sm^{3+}} + H_{2}O(1) \Leftrightarrow SmOH^{2+} + H^{+}$	-7.200 ± 0.500	28	
$\frac{\operatorname{Sm}^{3+} + 2\operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sm}(OH)_2^+ + 2\operatorname{H}^+}{\operatorname{Sm}^{3+} + 2\operatorname{H}_2O(1) \Leftrightarrow \operatorname{Sm}(OH)_2^+ + 2\operatorname{H}^+}$	-15100 ± 0.700	28	
$\frac{\operatorname{Sm}^{3+} + 2\operatorname{H}_2 O(1) \Leftrightarrow \operatorname{Sm}(OH)_2 + 2\operatorname{H}^4}{\operatorname{Sm}^{3+} + 3\operatorname{H}_2 O(1) \Leftrightarrow \operatorname{Sm}(OH)_2(a_0) + 3\operatorname{H}^4}$	-26200 ± 0.500	28	
$\frac{\operatorname{Sm}^{2} + \operatorname{Sm}^{2}}{\operatorname{Sm}^{2^{+}}} + F \leftrightarrow \operatorname{Sm}^{2^{+}}$	3400 ± 0400	28	
$\operatorname{Sm}^{3+} + 2 \operatorname{F} \Leftrightarrow \operatorname{Sm}^{+}$	5.100 = 0.100 5.800 ± 0.200	28	
$\frac{\operatorname{Sm}^{2} + 21}{\operatorname{Sm}^{3^{+}} + \operatorname{Cl}^{-} \Leftrightarrow \operatorname{Sm}^{2^{+}}}$	0.240 ± 0.030	28	
$\frac{\operatorname{Sm}^{3+} + 2 \operatorname{Cl}^{+}}{\operatorname{Sm}^{3+} + 2 \operatorname{Cl}^{+}} \xrightarrow{\mathrm{Sm}^{1+}} $	-0.740 ± 0.050	28	
$Sm^{3+} + SO_{12}^{-2} \hookrightarrow SmSO_{1}^{+}$	3300 ± 0.000	28	
$\operatorname{Sm}^{3+} + 2 \operatorname{SO}^{2-} \hookrightarrow \operatorname{Sm}(\operatorname{SO}_{2})^{-}$	3.300 ± 0.130 3.700 + 0.150	20	
$Sm^{3+} + 3 NO_{2}^{-} + 18 H^{+} + 16 e^{-} \leftrightarrow SmN_{2}^{-2+} + 9 H_{2}O(1)$	256342 ± 0.130	28	
$Sm^{3+} + NO_{2} - SmNO_{2}^{2+}$	230.342 ± 0.430 2 100 + 0 200	20	
$Sm^{3+} + NO_2 \hookrightarrow SmNO_2^{2+}$	1330 ± 0.200	20	
$\operatorname{Sm}^{3+} + 2 \operatorname{H}^{+} + \operatorname{PO}_{4}^{3-} \Leftrightarrow \operatorname{SmH}_{2}\operatorname{PO}_{4}^{2+}$	22.562 + 0.501	28	
\sim	0 01		

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\mathrm{Sm}^{3+} + \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{SmCO}_3^+$	8.000 ± 0.400	28	
$\operatorname{Sm}^{3+} + 2 \operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{Sm}(\operatorname{CO}_3)_2^{-}$	12.900 ± 0.600	28	
$\mathrm{Sm}^{3+} + 3 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{Sm}(\mathrm{CO}_3)_3^{3-}$	15.000 ± 1.000	28	
$\mathrm{Sm}^{3+} + \mathrm{H}^{+} + \mathrm{CO}_{3}^{2-} \Leftrightarrow \mathrm{SmHCO}_{3}^{2+}$	13.429 ± 0.301	28	
$\mathrm{Sm}^{3+} + \mathrm{H}_4\mathrm{SiO}_4(\mathrm{aq}) \Leftrightarrow \mathrm{Sm}\mathrm{SiO}(\mathrm{OH})_3^{2+} + \mathrm{H}^+$	-1.680 ± 0.180	28	
$Sm^{3+} + NO_3^{-} + CO_3^{2-} + SO_4^{2-} + 20 H^+ + 16 e^- \Leftrightarrow SmSCN^{2+} + 10 H_2O(1)$	158.272 ± 0.775	28	
$2 \text{ Hg}^{2+} + 2 \text{ e}^{-} \Leftrightarrow \text{Hg}_{2}^{2+}$	3.889 ± 0.224	3	
$Pb^{2+} + H_2O(1) \Leftrightarrow PbOH^+ + H^+$	-6.910 ± 0.360	38	
$Pb^{2+} + 2 H_2O(1) \Leftrightarrow Pb(OH)2(aq) + 2 H^+$	-16.110 ± 0.710	38	
$Pb^{2+} + 3 H_2O(1) \Leftrightarrow Pb(OH)_3^- + 3 H^+$	-26.270 ± 1.180	38	
$Pb^{2+} + 4 H_2O(1) \Leftrightarrow Pb(OH)_4^{2-} + 4 H^+$	-38.780 ± 0.390	38	
$2 \text{ Pb}^{2+} + \text{H}_2O(1) \Leftrightarrow \text{Pb}_2OH^{3+} + H^+$	-7.180	9	
$\frac{1}{4 \text{ Pb}^{2+} + 4 \text{ H}_2\text{O}(1)} \Leftrightarrow \text{Pb}_4(\text{OH})_4^{4+} + 4 \text{ H}^+$	-20.630	9	
$3 \text{Pb}^{2+} + 4 \text{H}_2\text{O}(1) \Leftrightarrow \text{Pb}_3(\text{OH})_4^{2+} + 4 \text{H}^+$	-22.480	9	
$3 \text{ Pb}^{2+} + 5 \text{ H}_2\text{O(1)} \Leftrightarrow \text{Pb}_2(\text{OH})_{\epsilon}^+ + 5 \text{ H}^+$	-30.720	9	
$\frac{6 \operatorname{Pb}^{2+} + 8 \operatorname{H}_2\mathrm{O}(1) \Leftrightarrow \operatorname{Pb}_3(\mathrm{OH})^{4+} + 8 \operatorname{H}^+}{6 \operatorname{Pb}^{2+} + 8 \operatorname{H}_2\mathrm{O}(1) \Leftrightarrow \operatorname{Pb}_4(\mathrm{OH})^{4+} + 8 \operatorname{H}^+}$	-42.680	9	
$Ph^{2+} + C\Omega^{2-} \Leftrightarrow PhC\Omega_{2}(a)$	7 300	9	
$\frac{10}{Pb^{2+}} + 2 C\Omega^{2-} \Leftrightarrow Pb(C\Omega)^{-2}$	10.130	9	
$Pb^{2+} + NO^{-} \Leftrightarrow PbNO^{+}$	1 060	9	
$Db^{2+} + 2 NO^{-} \leftrightarrow Db(NO)$ (ag)	1.000	0	
$PO^{-1} \neq 2 \text{ NO}_3 \iff PO(\text{NO}_3)_2(\text{aq})$ $Pb^{2+} \neq 2 \text{ NO}^{-1} \iff Pb(\text{NO}_3)_2^{-1}$	0.760	9	
$Pb^{2+} + PO^{-3} + U^{+} \leftrightarrow PbUPO(\alpha_{2})$	15.450	9	
$PD + PO_4 + PO_4 + PO_4(aq)$ $Pb^{2+} + PO^{-3} + 2 U^+ \leftrightarrow Pb U PO^+$	21.050	9	
$PU^{2+} + SO^{2-} \leftrightarrow PUSO(ar)$	21.030	9	
$Pb + SO_4 \Leftrightarrow PbSO_4(aq)$ $Pl^{2+} + 2 SO^{2-} \leftrightarrow Pl(SO)^{2-}$	2.820	9	
$\frac{PO^{-} + 2 SO_{4}^{-} \Leftrightarrow PO(SO_{4})_{2}^{-}}{D!^{2+} + 2 HO^{-} \leftrightarrow D! (HO) ()}$	2.370	9	
$\frac{Pb^{-} + 2 HS}{Pb(HS)_2(aq)}$	12.340	9	
$\frac{PO^{-} + 3 HS}{PO(HS)_{3}}$	13.590	9	
$Pb^{-} + CI \Leftrightarrow PbCI$	1.480 ± 0.100	38	
$Pb^{-} + 2 Cl \Leftrightarrow PbCl_2(aq)$	2.070 ± 0.170	38	
$Pb^{2} + 3 Cl \Leftrightarrow PbCl_{3}$	1.800 ± 0.320	38	
$Pb^{2} + 4 Cl \Leftrightarrow PbCl_{4}^{2}$	1.330 ± 0.830	38	Ť
$Pb^{-} + F \Leftrightarrow PbF$	2.270	9	
$Pb^{2+} + 2F \Leftrightarrow PbF_2(aq)$	3.010	9	
$Pb^{2^{+}} + F^{-} + C\Gamma \Leftrightarrow PbFCl(aq)$	3.550	9	
$Bi^{3+} + H_2O \Leftrightarrow BiOH^{2+} + H^{+}$	-0.920	9	
$\operatorname{Bi}_{2^+}^{3^+} + 2 \operatorname{H}_2 O \Leftrightarrow \operatorname{Bi}(OH)_2^+ + 2 \operatorname{H}^+$	-2.560 ± 1.000	9	
$Bi^{3+} + 3 H_2O \Leftrightarrow Bi(OH)_3(aq) + 3 H^+$	-8.940 ± 0.500	39	
$Bi^{3+} + 4 H_2O \Leftrightarrow Bi(OH)_4^- + 4 H^+$	-21.660 ± 0.870	39	
$6 \operatorname{Bi}^{2^{+}} + 12 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_6(\mathrm{OH})_{12}^{0^{+}} + 12 \operatorname{H}^{+}$	1.340	9	
$9 \operatorname{Bi}^{3^{+}} + 20 \operatorname{H}_2O \Leftrightarrow \operatorname{Bi}_9(OH)_{20}^{7^{+}} + 20 \operatorname{H}^{+}$	-1.360	9	
$9 \operatorname{Bi}^{3^{+}} + 21 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_9(\mathrm{OH})_{21}^{6^{+}} + 21 \operatorname{H}^+$	-3.250	9	
$9 \operatorname{Bi}^{3+} + 22 \operatorname{H}_2 O \Leftrightarrow \operatorname{Bi}_9(OH)_{22}^{5+} + 22 \operatorname{H}^+$	-4.860	9	
$3 \operatorname{Bi}^{3+} + 4 \operatorname{H}_2\mathrm{O} \Leftrightarrow \operatorname{Bi}_3(\mathrm{OH})_4^{5+} + 4 \operatorname{H}^+$	-0.800	9	
$\mathrm{Bi}^{3+} + \mathrm{Cl}^- \Leftrightarrow \mathrm{Bi}\mathrm{Cl}^{2+}$	3.610 ± 0.180	39	
$\operatorname{Bi}^{3+} + 2\operatorname{Cl}^{-} \Leftrightarrow \operatorname{Bi}\operatorname{Cl}_{2}^{+}$	5.560 ± 0.240	39	
$\operatorname{Bi}^{3+} + 3\operatorname{Cl}^{-} \Leftrightarrow \operatorname{BiCl}_{3}(\operatorname{aq})$	6.980 ± 0.370	39	
$Bi^{3+} + 4 Cl^- \Leftrightarrow BiCl_4^-$	8.040 ± 0.200	39	
$\mathrm{Bi}^{3+} + 5 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{Bi}\mathrm{Cl}_{5}^{2-}$	7.360 ± 0.370	39	
$Bi^{3+} + PO_4^{3-} \Leftrightarrow BiPO_4(aq)$	≤ 21.850	39	
$Bi^{3+} + NO_3 \Leftrightarrow BiNO_3^{2+}$	1.970	9	
$\operatorname{Bi}^{3^+} + 2 \operatorname{NO}_3^- \Leftrightarrow \operatorname{Bi}(\operatorname{NO}_3)_2^+$	2.950	9	
$Bi^{3+} + 3 NO_3^- \Leftrightarrow Bi(NO_3)_3(aq)$	3.620	9	
$Bi^{3+} + 4 NO_3 \Leftrightarrow Bi(NO_3)_4$	3.090	9	
$Bi^{3+} + Cl^{-} + NO_{3}^{-} \Leftrightarrow BiClNO_{3}^{+}$	5.160	9	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Bi^{3+} + Cl^{-} + 2 NO_3^{-} \Leftrightarrow BiCl(NO_3)_2(aq)$	5.280	9	
$Bi^{3+} + 2 Cl^{-} + NO_3^{-} \Leftrightarrow BiCl_2NO_3(aq)$	6.860	9	
$\operatorname{Bi}^{3^+} + 2\operatorname{Cl}^- + 2\operatorname{NO}_3^- \Leftrightarrow \operatorname{Bi}\operatorname{Cl}_2(\operatorname{NO}_3)_2^-$	5.750	9	
$Bi^{3+} + 3 Cl^{-} + NO_3^{-} \Leftrightarrow BiCl_3NO_3^{-}$	8.090	9	
$Ra^{2+} + H_2O \Leftrightarrow RaOH^+ + H^+$	-13.470 ± 0.500	30	
$\operatorname{Ra}^{2+} + \operatorname{SO}_4^{2-} \Leftrightarrow \operatorname{RaSO}_4(\operatorname{aq})$	2.720 ± 0.090	30	
$Ac^{3+} + H_2O(1) \Leftrightarrow AcOH^{2+} + H^+$	-7.200 ± 0.700	28	*
$Ac^{3+} + 2 H_2O(1) \Leftrightarrow Ac OH)_2^+ + 2 H^+$	-15.100 ± 0.900	28	*
$Ac^{3+} + 3 H_2O(1) \Leftrightarrow Ac(OH)_3(aq) + 3 H^+$	-26.200 ± 0.700	28	*
$Ac^{3+} + F \Leftrightarrow AcF^{2+}$	3.400 ± 0.600	28	*
$Ac^{3+} + 2F^{-} \Leftrightarrow AcF_{2}^{+}$	5.800 ± 0.400	28	*
$Ac^{3+} + Cl^{-} \Leftrightarrow AcCl^{2+}$	0.240 ± 0.230	28	*
$Ac^{3+} + 2 Cl^{-} \Leftrightarrow AcCl_{2}^{+}$	-0.740 ± 0.250	28	*
$Ac^{3+} + SO_4^{2-} \Leftrightarrow AcSO_4^{+}$	3.300 ± 0.350	28	*
$Ac^{3+} + 2 SO_4^{2-} \Leftrightarrow Ac(SO_4)_2^{-}$	3.700 ± 0.350	28	*
$Ac^{3+} + 3 NO_3^{-} + 18 H^+ + 16 e^- \Leftrightarrow AcN_3^{2+} + 9 H_2O(1)$	256.342 ± 0.515	28, 3	*
$Ac^{3+} + NO_2 \Leftrightarrow AcNO_2^{2+}$	2.100 ± 0.400	28	*
$Ac^{3+} + NQ_2^{-} \Leftrightarrow AcNQ_2^{2+}$	1.330 ± 0.400	28	*
$Ac^{3+} + 2H^{+} + PO^{3-} \Leftrightarrow AcH_{2}PO^{2+}$	22.562 ± 0.701	28.3	*
$\frac{Ac^{3+} + Co^{2-} \Leftrightarrow AcCO^{+}}{Ac^{3+} + Co^{2-} \Leftrightarrow AcCO^{+}}$	8000 ± 0.600	28	*
$\frac{Ac^{3+} + 2CO_3^2}{Ac^{3+} + 2CO_2^2} \Leftrightarrow Ac(CO_2)^{-2}$	12900 ± 0.800	28	*
$\frac{Ac^{3+}+3CO_{3}^{2-}}{\Delta c^{3+}+3CO_{2}^{2-}} \hookrightarrow \frac{Ac(CO_{3})}{\Delta c^{3-}}$	12.900 ± 0.000 15.000 ± 1.200	28	*
$\Delta c^{3+} + H^+ + C C c^{2-} \Leftrightarrow \Delta c H C C c^{2+}$	13.000 ± 1.200 13.429 ± 0.500	28.3	*
$\Delta c^{3+} + H \cdot SiO_{(ad)} \hookrightarrow \Delta cSiO(OH)_{a}^{2+} + H^{+}$	-1.680 ± 0.380	28	*
$Ac^{3+} + NO^{-} + CO^{2-} + SO^{2-} + 20 H^{+} + 16 e^{-} \leftrightarrow AcSCN^{2+} + 10 H_{2}O(1)$	158272 ± 0.872	28 3	*
$Th^{4+} + H O(1) \Leftrightarrow ThOH^{3+} + H^+$	-2.500 ± 0.500	3	
$Th^{4+} + 2 H_{-}O(1) \Leftrightarrow Th(OH)^{2+} + 2 H^{+}$	-2.300 ± 0.300	3	
$Th^{4+} + 4 H O(1) \Leftrightarrow Th(OH) (ag) + 4 H^{+}$	-17.400 ± 0.300	3	
$\frac{11}{2} \operatorname{Th}^{4+} + 2 \operatorname{H}^{(1)} \hookrightarrow \operatorname{Th}^{(01)}(\operatorname{CH}^{6+} + 2 \operatorname{H}^{+})$	-17.400 ± 0.700	3	
$2 \operatorname{Th}^{4+} + 2 \operatorname{H}_{2}O(1) \Leftrightarrow \operatorname{Th}_{2}O(1)_{2}^{-+} + 2 \operatorname{H}^{+}$	-6.800 ± 0.300	3	
$4 \operatorname{Th}^{4+} + 9 \operatorname{H} O(1) \Leftrightarrow \operatorname{Th} (OH)^{8+} + 9 \operatorname{H}^{+}$	-0.300 ± 0.200 20.400 ± 0.400	3	
$4 \text{ III} + 6 \text{ II}_2 \text{ O(I)} \Leftrightarrow \text{ III}_4 \text{ O(I)}_8 + 6 \text{ II}$ $4 \text{ Tb}^{4+} + 12 \text{ H} \text{ O(I)} \Leftrightarrow \text{Tb} \text{ (OH)} + 12 \text{ H}^+$	-26.400 ± 0.400	3	
$4 \text{ III} + 12 \text{ II}_2 \text{O}(1) \Leftrightarrow \text{III}_4 \text{O}(1)_{12} + 12 \text{ II}$ $6 \text{ Th}^{4+} + 14 \text{ H} \text{ O}(1) \Leftrightarrow \text{Th} (\text{OH})^{-10+} + 14 \text{ H}^+$	-20.000 ± 0.200 36 800 + 1 200	3	
$\begin{array}{c} 0 \text{ III} & + 14 \text{ H}_2\text{O}(1) \Leftrightarrow \text{III}_6(\text{O}\text{II})_{14} & + 14 \text{ H}_2\\ 6 \text{ Th}^{4+} + 15 \text{ H} \text{ O}(1) \Leftrightarrow \text{Th} (\text{O}\text{H}) \stackrel{9+}{\rightarrow} + 15 \text{ H}^+ \end{array}$	-30.800 ± 1.200 36 800 + 1 500	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-30.800 ± 1.300 8 870 ± 0.150	3	
$111 + \Gamma \Leftrightarrow 111\Gamma$ $TL^{4+} + 2 \Gamma^{-} \Leftrightarrow TL\Gamma^{2+}$	8.870 ± 0.130 15.620 ± 0.220	2	
$111 + 2 \Gamma \Leftrightarrow 111\Gamma_2$ $TL^{4+} + 2 \Gamma \Leftrightarrow TL\Gamma^{+}$	13.030 ± 0.230	2	
$111 + 5 F \Leftrightarrow 111F_3$ $Th^{4+} + 4 F^- \Leftrightarrow ThF(a_2)$	20.070 ± 0.100 25.580 ± 0.180	2	
$111 + 4 \downarrow \hookrightarrow 111^{4}(aq)$ $TL^{4+} \cup OL \hookrightarrow TL^{3+}$	23.380 ± 0.180 1 700 ± 0.100	2	
$Th^{4+} + Ch \Rightarrow ThCh$	1.700 ± 0.100	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.330 ± 0.130 1 200 + 0.120	2	
$111 \pm Df \Leftrightarrow 11Df$ $Th^{4+} = DrO^{-} \Leftrightarrow ThDrO^{-3+}$	1.300 ± 0.130 1 000 ± 0 100	2	-
$TL^{4+} \downarrow D^{-} \leftrightarrow TLD^{3+}$	1.700 ± 0.100	2	
$1n^{+} + 10_{3} \Leftrightarrow 1n10_{3}$	4.140 ± 0.100	2	
$1n + 210_3 \Leftrightarrow 1n(10_3)_2$	6.970 ± 0.120	2	
$1n + 3IU_3 \Leftrightarrow 1n(IU_3)_3$ $TL^{4+} + SO^{2-} \Leftrightarrow TLSO^{2+}$	$9.8/0 \pm 0.110$	2	
$111 \pm 5U_4 \Leftrightarrow 1115U_4$ $Th^{4+} + 2 SO^{2-} \leftrightarrow Th(SO_1) (c_2)$	$0.1/0 \pm 0.320$	2	
$111 \pm 2.50_4 \Leftrightarrow 11(50_4)_2(aq)$ $TL^{4+} + 2.50^{-2-} \leftrightarrow TL(50_4)^{-2-}$	$9.090 \pm 0.2/0$	3	
$\frac{111}{7} + 3 \text{ SU}_4 \Leftrightarrow 11(\text{SU}_4)_3$	$10./48 \pm 0.0/6$	3	
$1n + N_3 \Leftrightarrow 1nN_3$ $TU 4t + 2N + TU (N + 2t)$	4.440 ± 0.640	3	
$\frac{1}{1} \frac{1}{1} + \frac{1}{2} \frac{1}{1} $	8.590 ± 0.640	3	
$\frac{10^{\circ} + NO_3 \Leftrightarrow 10NO_3^{\circ}}{714^{\circ} + 2NO_3^{\circ} + 71000^{\circ}}$	1.300 ± 0.200	3	
$\frac{11n^2 + 2NO_3}{2} \Leftrightarrow \frac{11n(NO_3)2^2}{2}$	2.300 ± 0.400	3	
$\frac{11n^2 + 2H^2 + PO_4^2}{2T^2} \Leftrightarrow \frac{11h_2PO_4^2}{2T^2}$	25.152 ± 0.365	3	
$[Th^{+} + 3 H] + PO_4^{-} \Leftrightarrow ThH_3PO_4^{+}$	23.592 ± 0.356	3	

Ē

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Deastion	log V°	rof	* • • *1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	The function $The function function for the function$	$10g_{10}$ K 40.604 ± 0.476	2	ι.ν.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Th}^{4+} + 5 \operatorname{H}^{+} + 2 \operatorname{PO}_{4} \iff \operatorname{Th}(\operatorname{H}_{2}\operatorname{PO}_{4})_{2}$ $\operatorname{Th}^{4+} + 5 \operatorname{H}^{+} + 2 \operatorname{PO}_{4}^{3-} \iff \operatorname{Th}(\operatorname{H}_{2}\operatorname{PO}_{4})_{2}$	49.004 ± 0.470	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Th^{4+} + 5 CO^{2-} \leftrightarrow Th(CO)^{6-}$	40.024 ± 0.470 21.000 ± 0.700	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Th^{4+} + 2 CO_3^{2-} + 2 H O(1) \leftrightarrow Th(CO_3) (OH)^{2-} + 2 H^{+}$	31.000 ± 0.700 9.709 ± 0.501	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Th}^{4+} + 4 \operatorname{CO}^{2-} + \operatorname{H}^{0}(1) \Leftrightarrow \operatorname{Th}(\operatorname{CO}^{3})_{2}(\operatorname{OH})_{2}^{-} + 2 \operatorname{H}^{+}$	3.798 ± 0.301	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$TII + 4 CO_3 + T_2O(1) \Leftrightarrow TI(CO_3)_4OT + T$ $TL^{4+} + CO_2^{-2-} + 4 U(O(1)) \Leftrightarrow TLCO_2(OU)^{-2-} + 4 U^+$	21.399 ± 0.300	3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$III + CO_3 + 4H_2O(I) \Leftrightarrow IIICO_3(OH)_4 + 4H$ $III_4^+ + SON^- \leftrightarrow III_5ON^{3+}$	-13.003 ± 0.003	2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Th^{4+} + 2 SCN^{-} \leftrightarrow Th(SCN)^{2+}$	2.000 ± 0.500	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Th^{4+} + 2 USO \Leftrightarrow Th(SON)_2$ $Th^{4+} + 2 USO (a_2) + 2 UO(1) \Leftrightarrow Th(OU) (USO)^{2-} + 6 U^{+}$	3.400 ± 0.800	22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Th^{4+} + 8 H O(1) + 4 Co^{2+} \leftrightarrow Co [Th(OH)_3(H_3SHO_4)_3] + 0 H$	-27.800 ± 0.700	40	
$\begin{aligned} \mathbf{r}_{a}^{a} + \mathbf{r}_{b}^{a}(\mathbf{r}_{b}) & \Rightarrow \mathbf{r}_{b}^{a}(\mathbf{r}_{b}) + \mathbf{r}_{b}^{a}(\mathbf{r}_{b}) & \Rightarrow r$	$\ln + \delta \Pi_2 O(I) + 4 \operatorname{Ca} \Leftrightarrow \operatorname{Ca}_4[\operatorname{III}(O\Pi)_8] + \delta \Pi$ $\operatorname{Pr}^{4+}_4 + \operatorname{II}_2 O(I) \Leftrightarrow \operatorname{Pr}_2 O(I)^{3+}_4 + \operatorname{II}^+_4$	-02.708 ± 0.908	40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pa + H_2 \cup (I) \Leftrightarrow Pa \cup H + H$ $Pa^{4+} + 2 \cup (I) \Leftrightarrow Pa \cup (I) \stackrel{2+}{\leftrightarrow} + 2 \cup I^+$	0.020	41	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pa + 2 H_2O(I) \Leftrightarrow Pa(OH)_2 + 2 H$ $Pa^{4+} + 2 H_2O(I) \Leftrightarrow P_2(OH)^{+} + 2 H^{+}$	-0.020	41	
$\begin{aligned} & \text{rad} O(h^+ + 2 H_2 O(h) \Leftrightarrow \text{rad} O(H_2) (\text{a} h) + 2 H^- & -5 460 & 41 \\ & -5 460 & 41 & -5 420 & 40.20 & 42, 43 \\ & \text{PaOOH}^2 + \text{IN}(h) \Leftrightarrow \text{PaO(OH}_2) + 1 H^- & -1 24 0 0.20 & 42, 43 \\ & \text{PaOOH}^2 + \text{SO}(h) \Leftrightarrow \text{PaO(OH}_2) + 1 H^- & -1 22 \pm 0.20 & 1 \\ & \text{PaOOH}^2 + \text{SO}(h) \Leftrightarrow \text{PaO(OH}_2) + 1 H^- & -1 922 \pm 0.20 & 1 \\ & \text{PaOOH}^2 + \text{SO}(h) \leftrightarrow \text{PaOSO}_1^+ + H^- & \text{PaOSO}_1^+ + H_0 (h) & -7 000 \pm 0.200 & 44 \\ & \text{PaOOH}^2 + 2 \text{SO}_2^2 + 1 H^- \Rightarrow \text{PaO(SO}_0)_2^+ + H_0 (h) & -7 000 \pm 0.200 & 44 \\ & \text{PaOOH}^2 + 3 \text{SO}_2^2 + 1 H^- \Rightarrow \text{PaO(SO}_0)_2^+ + H_0 (h) & -8 590 \pm 0.230 & 44 \\ & \text{PaOOH}^2^+ + 2 \text{SO}_2^2 + 1 \oplus^+ \Rightarrow \text{PaO(SO}_0)_2^+ + H_0 (h) & -9 353 \pm 0.070 & 1 4 \\ & \text{U}^4 + e \oplus^{1/2} & -9 353 \pm 0.070 & 1 4 \\ & \text{U}^4 + e \oplus^{1/2} & -9 353 \pm 0.070 & 1 4 \\ & \text{U}^4 + e \oplus^{1/2} & -9 353 \pm 0.070 & 1 4 \\ & \text{U}^4 + 1 \oplus^{1/2} \oplus 0.100 \text{H}_2^{+1} + 2 \text{H}_2^+ (h) & -1.780 \pm 0.210 & 45 \\ & \text{U}^{++} + e \oplus^{1/2} & -1.780 \pm 0.210 & 45 \\ & \text{U}^{++} + 2 \text{H}_2 (h) \oplus \text{U(OH)}_2^{++} + 2 \text{H}_2^+ & -1.780 \pm 0.210 & 45 \\ & \text{U}^{++} + 2 \text{H}_2 (h) \oplus \text{U(OH)}_4 (a) + 4 \text{H}^+ & -1.0800 \pm 1.400 & 45 \\ & \text{U}^{++} + e \oplus^{1/2} & -1.780 \pm 0.301 & 14 \\ & \text{U}^{++} + e \oplus^{1/2} & -1.780 \pm 0.301 & 14 \\ & \text{U}^{++} + 4 \oplus^{1/2} \oplus 1.7 & -1.780 \pm 0.301 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} & 21.890 \pm 0.830 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} & 21.890 \pm 0.830 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} & 21.890 \pm 0.830 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} \oplus 1.7 & -1.720 \pm 0.130 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} & 1.720 \pm 0.130 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} \oplus 1.7 & -1.720 \pm 0.130 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} \oplus 1.7 & -1.720 \pm 0.130 & 14 \\ & \text{U}^{++} + 6 \oplus^{1/2} \oplus 1.6 \oplus^{1/2} \oplus$	$Pa + 3 H_2O(I) \Leftrightarrow Pa(OH)_3 + 3 H$ $P_2O(I)^{2+} + 2 H_2O(I) \Leftrightarrow P_2O(OH) () + 2 H^{+}$	-1.500	41	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$PaOOH^{2} + 2 H_{2}O(1) \Leftrightarrow PaO(OH)_{3}(aq) + 2 H$	-5.460	41	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$PaOOH^{2} + H_{2}O(1) \Leftrightarrow PaO(OH)_{2} + H$	-1.240 ± 0.020	42, 43	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$PaOOH^{2+} + 3 H_2O(1) \Leftrightarrow Pa(OH)_5(aq) + 2 H^2$	-8.270 ± 0.151	42, 43	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$PaOOH^{2+} + CI \Leftrightarrow PaOOHCI^{2}$	1.922 ± 0.020	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$PaOOH^{2+} + SO_4^{2-} + H^* \Leftrightarrow PaOSO_4^{+} + H_2O(1)$	3.890 ± 0.180	44	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$PaOOH^{2} + 2 SO_{4}^{2} + H^{2} \Leftrightarrow PaO(SO_{4})_{2} + H_{2}O(I)$	7.000 ± 0.200	44	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$PaOOH^{2} + 3 SO_{4}^{2} + H \Leftrightarrow PaO(SO_{4})_{3}^{3} + H_{2}O(1)$	8.590 ± 0.230	44	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Pa^{++} + 2 H_2O(1) \Leftrightarrow PaOOH^{-+} + e^{+} 3 H^{+}$	1.860	41	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\bigcup^{+} + e \Leftrightarrow \bigcup^{+}$	-9.353 ± 0.070	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$U^{+} + H_2O(I) \Leftrightarrow UOH^{+} + H^{+}$	-0.290 ± 0.310	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{+} + 2 H_2O(l) \Leftrightarrow U(OH)_2^{2+} + 2 H'$	-1.780 ± 0.210	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 3 H_2O(1) \Leftrightarrow U(OH)_3^+ + 3 H^+$	-5.150 ± 0.210	45	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$U^{4+} + 4 H_2O(1) \Leftrightarrow U(OH)_4(aq) + 4 H^+$	-10.800 ± 1.400	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + F^{-} \Leftrightarrow UF^{5+}$	9.420 ± 0.510	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$U^{+} + 2 F \Leftrightarrow UF_2^{-}$	16.560 ± 0.710	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$U^{4+} + 3 F^{-} \Leftrightarrow UF_{3}^{+}$	21.890 ± 0.830	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$U^{+} + 4 F^{-} \Leftrightarrow UF_{4}$	26.340 ± 0.960	14	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$U^{4+} + 5 F^{-} \Leftrightarrow UF_{5-}$	27.730 ± 0.740	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 6 F \Leftrightarrow UF_6^{2-}$	29.800 ± 0.700	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4^+} + Cl^- \Leftrightarrow UCl^{3^+}$	1.720 ± 0.130	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + Br^- \Leftrightarrow UBr^{3+}$	1.460 ± 0.200	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4^+} + I^- \Leftrightarrow UI^{3^+}$	1.250 ± 0.300	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + SO_4^{-2-} \Leftrightarrow USO_4^{-2+}$	6.580 ± 0.190	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 2 SO_4^{2-} \Leftrightarrow U(SO_4)_2(aq)$	10.510 ± 0.200	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + NO_3^- \Leftrightarrow UNO_3^{3+}$	1.470 ± 0.130	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 2 \operatorname{NO}_3 \Leftrightarrow U(\operatorname{NO}_3)_2^{2+}$	2.300 ± 0.350	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 4 \operatorname{CO}_3^{2-} \Leftrightarrow U(\operatorname{CO}_3)_4^{4-}$	35.120 ± 0.934	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathrm{U}^{4+} + 5 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{U}(\mathrm{CO}_3)_5^{6-}$	31.500 ± 1.000	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 2 CO_3^{2-} + 2 H_2O(1) \Leftrightarrow U(CO_3)_2(OH)_2^{2-} + 2 H^+$	13.557 ± 1.000	45	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + SO_4^{2-} + CO_3^{2-} + NO_3^{-} + 20 H^+ + 16 e^- \Leftrightarrow USCN^{3+} + 10 H_2O(1)$	159.942 ± 0.718	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$U^{4+} + 2 SO_4^{2-} + 2 CO_3^{2-} + 2 NO_3^{-} + 40 H^+ + 32 e^- \Leftrightarrow U(SCN)_2^{2+} + 20 H_2O(I)$	318.204 ± 1.441	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathrm{U}^{4+} + 2 \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{UO}_{2}^{+} + 4 \mathrm{H}^{+} + \mathrm{e}^{-}$	-7.554 ± 0.047	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathrm{UO}_2^{+} + 3 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{UO}_2(\mathrm{CO}_3)_3^{5-}$	6.950 ± 0.360	14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{U}^{4+} + 2 \mathrm{H}_{2}\mathrm{O}(\mathrm{I}) \Leftrightarrow \mathrm{UO}_{2}^{2+} + 4 \mathrm{H}^{+} + 2 \mathrm{e}^{-}$	-9.038 ± 0.041	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$UO_2^{2^+} + H_2O(I) \Leftrightarrow UO_2OH^+ + H^+$	-5.250 ± 0.240	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$UO_2^{2^+} + 2 H_2O(l) \Leftrightarrow UO_2(OH)_2(aq) + 2 H^+$	-12.150 ± 0.070	14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$UO_2^{2^+} + 3 H_2O(I) \Leftrightarrow UO_2(OH)_3^- + 3 H^+$	-20.250 ± 0.420	14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{UO_2}^{2^+} + 4 \mathrm{H_2O(l)} \Leftrightarrow \mathrm{UO_2(OH)_4}^{2^-} + 4 \mathrm{H^+}$	-32.400 ± 0.680	14	
$\begin{array}{c c} 2 \text{ UO}_2^{2+} + 2 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_2\text{OH}_2^{2+} + 2 \text{ H}^+ & -5.620 \pm 0.040 & 14 \\ \hline 3 \text{ UO}_2^{2+} + 4 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_3(\text{OH}_4^{2+} + 4 \text{ H}^+ & -11.900 \pm 0.300 & 14 \\ \end{array}$	$2 \operatorname{UO_2}^{2^+} + \operatorname{H_2O}(1) \Leftrightarrow (\operatorname{UO_2})_2 \operatorname{OH}^{3^+} + \operatorname{H}^+$	-2.700 ± 1.000	14	
$3 \text{ UO}_2^{2^+} + 4 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_3(\text{OH})_4^{2^+} + 4 \text{ H}^+$ -11.900 ± 0.300 14	$2 \text{ UO}_2^{2^+} + 2 \text{ H}_2O(1) \Leftrightarrow (\text{UO}_2)_2OH_2^{2^+} + 2 \text{ H}^+$	-5.620 ± 0.040	14	
	$3 \text{ UO}_2^{2^+} + 4 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_3(\text{OH})_4^{2^+} + 4 \text{ H}^+$	-11.900 ± 0.300	14	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$3 \operatorname{UO}_{2}^{2^{+}} + 5 \operatorname{H}_{2}O(1) \Leftrightarrow (\operatorname{UO}_{2})_{3}(\operatorname{OH})_{5}^{+} + 5 \operatorname{H}^{+}$	-15.550 ± 0.120	14	
$3 \text{ UO}_2^{2^+} + 7 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_3(\text{OH})_7^- + 7 \text{ H}^+$	-32.200 ± 0.800	14	
$4 \text{ UO}_2^{2^+} + 7 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_4(\text{OH})_7^+ + 7 \text{ H}^+$	-21.900 ± 1.000	14	
$UO_2^{2^+} + F \Leftrightarrow UO_2F^+$	5.160 ± 0.060	14	
$UO_2^{2^+} + 2 F \Leftrightarrow UO_2F_2(aq)$	8.830 ± 0.080	14	
$UO_2^{2+} + 3 F \Leftrightarrow UO_2F_3^{-}$	10.900 ± 0.100	14	
$\mathrm{UO_2}^{2^+} + 4 \mathrm{F}^- \Leftrightarrow \mathrm{UO_2F_4}^{2^-}$	11.840 ± 0.110	14	
$UO_2^{2^+} + CI^- \Leftrightarrow UO_2CI^+$	0.170 ± 0.020	14	
$UO_2^{2^+} + 2 Cl^- \Leftrightarrow UO_2Cl_2(aq)$	-1.100 ± 0.400	14	
$UO_2^{2^+} + CI^- + 3 H_2O(1) \Leftrightarrow UO_2CIO_3^+ + 6 H^+ + 6 e^-$	-145.738 ± 0.246	14	
$UO_2^{2^+} + Br \Leftrightarrow UO_2Br^+$	0.220 ± 0.020	14	
$UO_2^{2^+} + Br^- + 3 H_2O(1) \Leftrightarrow UO_2BrO_3^+ + 6 H^+ + 6 e^-$	-145.539 ± 0.141	14	
$UO_2^{2+} + 2 IO_3 \Leftrightarrow UO_2(IO_3)_2(aq)$	3.590 ± 0.150	14	
$UO_2(IO_3)_2(cr) \Leftrightarrow UO_2^{2+} + 2IO_3^{-1}$	-7.880 ± 0.100	14	
$UO_2^{2+} + SO_3^{2-} \Leftrightarrow UO_2SO_3(aq)$	6.600 ± 0.600	14	
$UO_2^{2+} + S_2O_3^{2-} \Leftrightarrow UO_2S_2O_3(aq)$	2.800 ± 0.300	14	
$UO_2^{2+} + SO_4^{2-} \Leftrightarrow UO_2SO_4(aq)$	3.150 ± 0.020	14	
$UO_2^{2+} + 2 SO_4^{2-} \Leftrightarrow UO_2(SO_4)_2^{2-}$	4.140 ± 0.070	14	
$UQ_{2}^{2+} + 3 SQ_{4}^{2-} \Leftrightarrow UQ_{2}(SQ_{4})_{4}^{4-}$	3.020 ± 0.380	14	<u> </u>
$\frac{100^{2}}{100^{2^{+}} + 300^{-} + 18} H^{+} + 16 e^{-} \Leftrightarrow 100^{-} N_{2}^{+} + 9 H_{2}O(1)$	257252 ± 0428	14	
$\frac{UO_2^{2+} + 6NO_2^{-} + 36H^+ + 32e^- \Leftrightarrow UO_2(N_2)(aq) + 18H_2O(1)}{UO_2^{2+} + 6NO_2^{-} + 36H^+ + 32e^- \Leftrightarrow UO_2(N_2)(aq) + 18H_2O(1)}$	513.674 ± 0.867	14	
$\frac{100^{2}}{100^{2}} + 9 \text{ NO}_{2} + 54 \text{ H}^{+} + 48 \text{ e}^{-} \Leftrightarrow 100^{2} \text{ (N_{2})}^{-} + 27 \text{ H}_{2} \text{ (I)}$	769 756 + 1 273	14	
$\frac{100^{2}}{100^{2}} + 12 \text{ NO}_{2} + 72 \text{ H}^{+} + 64 \text{ e}^{-} \Leftrightarrow \text{IO}_{2}(\text{N}_{3})_{3}^{2} + 27 \text{ H}_{2}^{2}(\text{H})$	$1023\ 608\ \pm\ 1\ 689$	14	
$\frac{100^{2}}{100^{2}} + \frac{1000}{100^{2}} + \frac{10000^{2}}{100^{2}} + \frac{10000^{2}$	0.300 ± 0.150	14	
$UO_2^{2+} + PO_3^{3-} \Leftrightarrow UO_2 PO_3^{-}$	0.300 ± 0.150 13 230 ± 0.150	14	
$UO_2^{2+} + H^+ + PO_3^{3-} \leftrightarrow UO_4 HPO_{(ag)}$	19.250 ± 0.150 19.590 ± 0.262	14	
$UO_{2}^{2+} + 2 H^{+} + PO_{4}^{3-} \Leftrightarrow UO H PO_{4}^{+}$	17.570 ± 0.202	14	
$UO_2^{2+} + 2 H^+ + PO_4^{3-} \Leftrightarrow UO H PO_2^{++}$	20.082 ± 0.008	14	
$UO_2^{2+} + 3H^{+} + 2PO_4^{3-} \leftrightarrow UO(HPO)(aq)$	22.402 ± 0.231	14	
$UO_2^{2+} + 5 H^+ + 2 PO_4^{3-} \Leftrightarrow UO_2(H_2PO_4)_2(dq)$	44.044 ± 0.309	14	
$UO_2^{2+} + 3\Pi^{+} 2 PO_4 \iff UO_2(\Pi_2 PO_4)(\Pi_3 PO_4)$	43.034 ± 0.309 18.760 ± 0.210	14	
$UO_2^{2+} + AsO_4^{2+} + \Pi \iff UO_2\Pi AsO_4(aq)$	18.700 ± 0.310 21.060 ± 0.240	14	<u> </u>
$UO_2^{2+} + ASO_4^{2+} + 2 H \Leftrightarrow UO_2\Pi_2ASO_4$	$\frac{21.900 \pm 0.240}{41.520 \pm 0.200}$	14	
$\frac{UO_2}{2} + 2 \operatorname{ASO}_4 + 4 \operatorname{H} \Leftrightarrow UO_2(\operatorname{H}_2\operatorname{ASO}_4)_2(\operatorname{aq})$	41.330 ± 0.200	14	
$\frac{UO_2^2}{UO_2^2} + \frac{2}{CO_3^2} \Leftrightarrow \frac{UO_2CO_3(aq)}{CO_3(aq)}$	9.940 ± 0.030	14	
$\frac{100_2}{100_2} + 2 CO_3 \Leftrightarrow \frac{100_2}{100_2} $	16.610 ± 0.090	14	
$\frac{1002^{-1} + 3003^{-1} \Leftrightarrow 002(003)3^{-1}}{1002^{+1} \otimes 002(003)3^{-1}}$	21.840 ± 0.040	14	
$\frac{3 \ \cup 02^{-} + 6 \ \cup 03^{-} \Leftrightarrow (\cup 02)(03)_{6}}{2 \ \cup 02^{2} + 2 \ \cup 02}$	54.000 ± 1.000	14	
$\frac{2 \operatorname{UO}_2^{2+} + \operatorname{CO}_3^{2+} + 3 \operatorname{H}_2\operatorname{O}(1) \Leftrightarrow (\operatorname{UO}_2)_2\operatorname{CO}_3(\operatorname{OH})_3 + 3 \operatorname{H}^2}{2 \operatorname{UO}_2^{2+} + 2 \operatorname{O}_2^{2+} + 2 \operatorname{H}_2\operatorname{O}(1)} \qquad \qquad$	-0.855 ± 0.501	14	
$\frac{3 \text{ UO}_2^- + \text{CO}_3^- + 3 \text{ H}_2\text{U}(1) \Leftrightarrow (\text{UO}_2)_3\text{U}(\text{OH}_2(\text{HCO}_3) + 3 \text{ H}_2(1))}{11 \text{ UO}_2^+ + (1000 \text{ GeV}_2)_3 \text{U}(1000 \text{ GeV}_2)_3 \text$	0.655 ± 0.501	14	
$\frac{11 \text{ UO}_2^{-1} + 6 \text{ CO}_3^{-1} + 12 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{UO}_2)_{11}(\text{CO}_3)_6(\text{OH})_{12}^{-1} + 12 \text{ H}_2^{-1}}{\text{ UO}_2^{-1} + 20 \text{ GO}_2^{-1} + 12 \text{ H}_2^{-1}}$	36.430 ± 2.011	14	
$\frac{UO_2^{2*} + CO_3^{2*} + F \Leftrightarrow UO_2CO_3F}{UO_2^{2*} + CO_3^{2*} + F \Leftrightarrow UO_2CO_3F}$	13.750 ± 0.090	14	
$UO_2^{2^*} + CO_3^{2^*} + 2F \Leftrightarrow UO_2CO_3F_2^{2^*}$	15.570 ± 0.140	14	
$\frac{UO_2^{2+} + CO_3^{2+} + 3F}{CO_2^{2+} + 3F} \Leftrightarrow UO_2CO_3F_3^{2+}$	16.380 ± 0.110	14	
$\frac{UO_2^{24} + SO_4^{24} + CO_3^{24} + NO_3^{24} + 20 \text{ H}^4 + 16 \text{ e}^2 \Leftrightarrow UO_2\text{SCN}^4 + 10 \text{ H}_2\text{O}(1)}{100^{24} + 20 \text{ H}^4 + 16 \text{ e}^2}$	158.372 ± 0.751	14	
$UO_2^{2^*}+2 SO_4^{2^*}+2 CO_3^{2^*}+2 NO_3^{*}+40 H^{*}+32 e^{-} \Leftrightarrow UO_2(SCN)_2(aq)+20 H_2O(l)$	315.184 ± 1.532	14	
$\frac{UO_2^{21} + 3 SO_4^{22} + 3 CO_3^{22} + 3 NO_3^{2} + 60 H^{+} + 48 e^{-} \Leftrightarrow UO_2(SCN)_3^{-} + 30 H_2O(1)}{2}$	473.016 ± 2.203	14	
$UO_2^{2'} + H_4SiO_4(aq) \Leftrightarrow UO_2SiO(OH)_3^+ + H^+$	-1.840 ± 0.100	14	<u> </u>
$UO_2^{2'} + PuO_2^{2''} + 6 CO_3^{2'} \Leftrightarrow (UO_2)_2 PuO_2(CO_3)_6^{0'}$	53.480 ± 1.395	14	<u> </u>
$UO_2^{2'} + NpO_2^{2^+} + 6 CO_3^{2^-} \Leftrightarrow (UO_2)_2 NpO_2(CO_3)_6^{6^-}$	54.053 ± 3.336	14	<u> </u>
$Np^{+} + e^{-} \Leftrightarrow Np^{+}$	3.695 ± 0.169	14	
$\frac{\text{Np}^{4+} + 3 \text{ CO}_3^{2+} + e^- \Leftrightarrow \text{Np}(\text{CO}_3)_3^{3-}}{2}$	20.279 ± 2.385	45, 14	
$Np^{J^+} + H_2O(l) \Leftrightarrow NpOH^{J^+} + H^+$	-6.800 ± 0.300	14	
$Np^{4+} + H_2O(l) \Leftrightarrow NpOH^{3+} + H^+$	-0.090 ± 0.300	45	
$Np^{4+} + 2 H_2O(1) \Leftrightarrow Np(OH)_2^{2+} + 2 H^+$	-0.870 ± 0.150	45	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Np^{4+} + 3 H_2O(1) \Leftrightarrow Np(OH)_3^+ + 3 H^+$	-4.300 ± 0.300	45	
$Np^{4+} + 4 H_2O(l) \Leftrightarrow Np(OH)_4(aq) + 4 H^+$	-9.600 ± 1.100	45	
$Np^{4+} + F^- \Leftrightarrow NpF^{3+}$	8.960 ± 0.140	14	
$Np^{4+} + 2 F \Leftrightarrow NpF_2^{2+}$	15.700 ± 0.300	14	
$Np^{4+} + Cl^- \Leftrightarrow NpCl^{3+}$	1.500 ± 0.300	14	
$Np^{4+} + I \Leftrightarrow NpI^{3+}$	1.500 ± 0.400	14	
$Np^{4+} + SO_4^{2-} \Leftrightarrow NpSO_4^{2+}$	6.850 ± 0.158	14	
$Np^{4+} + 2 SO_4^{2-} \Leftrightarrow Np(SO_4)_2(aq)$	11.050 ± 0.269	14	
$Np^{4+} + NO_3 \Leftrightarrow NpNO_3^{3+}$	1.900 ± 0.150	14	
$Np^{4+} + 4 CO_3^{2-} \Leftrightarrow Np(CO_3)_4^{4-}$	37.610 ± 0.686	45, 14	
$Np^{4+} + 5 CO_3^{2-} \Leftrightarrow Np(CO_3)_5^{6-}$	36.540 ± 0.748	45, 14	
$Np^{4+} + 2 CO_3^{2-} + 2 H_2O(1) \Leftrightarrow Np(CO_3)_2(OH)_2^{2-} + H^+$	16.387 ± 1.210	45	
$Np^{4+} + SQ_4^{2-} + CQ_3^{2-} + NQ_3^{-} + 20 H^+ + 16 e^- \Leftrightarrow NpSCN^{3+} + 10 H_2O(1)$	159.972 ± 0.775	14	
$Np^{4+} + 2 SO_4^{2-} + 2 CO_3^{2-} + 2 NO_3^{-} + 40 H^+ + 32 e^- \Leftrightarrow Np(SCN)_2^{2+} + 20 H_2O(1)$	318.044 ± 1.515	14	
$Np^{4+} + 3 SO_4^{2-} + 3 CO_2^{2-} + 3 NO_2^{-} + 60 H^+ + 48 e^- \Leftrightarrow Np(SCN)_2^+ + 30 H_2O(1)$	475.716 ± 2.203	14	
$\frac{1}{Np^{4}} + 2 H_2O(1) \Leftrightarrow NpO_2^+ + 4 H^+ + e^-$	-10.212 ± 1.389	14	
$\frac{N(p^{-1} + 2M_2)(1) \Leftrightarrow N(p_2)^2 + M^{-1} + C}{N(p_2)^2 + M_2}$	-11300 ± 0.700	14	
$\frac{N_{1}O_{2}}{N_{1}O_{2}} + \frac{1}{2}O(1) \Leftrightarrow \frac{N_{1}O_{2}O(1)}{N_{1}O_{2}O(1)} + \frac{1}{2} H^{+}$	-23600 ± 0.500	14	
$NpO_2^{+} + E^{-} \Leftrightarrow NpO_2E(aq)$	-23.000 ± 0.300 1 200 ± 0.300	14	
$NpO_2^{+} + IO_2^{-} \leftrightarrow NpO_2I(aq)$	1.200 ± 0.300	14	
$NpO_2^{+} + SO_2^{-} \Leftrightarrow NpO_2O_3(aq)$	0.300 ± 0.300	14	
$NpO_2^{+} + SO_4^{-} \Leftrightarrow NpO_2SO_4^{-}$ $NpO_2^{+} + H^{+} + PO_2^{-3} \Leftrightarrow NpO_2HDO_2^{-}$	0.440 ± 0.270 15 300 ± 0.104	14	
$NpO_2 + H + PO_4 \iff NpO_2HPO_4$	13.300 ± 0.104	14	
$NpO_2^{-+} + 2 CO_3^{-2-} \leftrightarrow NpO_2^{-2-} OO^{-3-}$	4.902 ± 0.001	14	
$NpO_2 + 2 CO_3 \Leftrightarrow NpO_2(CO_3)_2^{-1}$	6.534 ± 0.103	14	
$\frac{\text{NpO}_2^2 + 3 \text{CO}_3^2}{\text{2} \text{NpO}_2(\text{CO}_3)_3^2} \Rightarrow \frac{\text{NpO}_2(\text{CO}_3)_3^2}{\text{2} \text{NpO}_2(\text{CO}_3)_3^2}$	5.500 ± 0.151	14	
$\frac{3 \text{ NpO}_2^+ + 6 \text{ CO}_3^- \Leftrightarrow (\text{NpO}_2)_3(\text{CO}_3)_6^+ + 3 \text{ e}}{2 \text{ NpO}_2^+ + 2 \text{ co}_3^- \Leftrightarrow (\text{NpO}_2)_3(\text{CO}_3)_6^+ + 3 \text{ e}}$	-8.492 ± 1.458	14	
$NpO_2 + 2 CO_3^2 + H_2O(1) \Leftrightarrow NpO_2(CO_3)_2OH^2 + H^2$	$-5.306 \pm 1.1/4$	14	
$Np^{+} + 2 H_2O(1) \Leftrightarrow NpO_2^{-+} + 4 H^{+} + 2 e$	-29.803 ± 1.388	14	
$NpO_2^{2'} + H_2O(I) \Leftrightarrow NpO_2OH' + H'$	-5.100 ± 0.400	14	
$2 \text{ NpO}_2^{2+} + 2 \text{ H}_2\text{O}(1) \Leftrightarrow (\text{NpO}_2)_2(\text{OH})_2^{2+} + 2 \text{ H}^{-}$	-6.270 ± 0.210	14	
$3 \operatorname{NpO}_2^{2'} + 5 \operatorname{H}_2O(1) \Leftrightarrow (\operatorname{NpO}_2)_3(OH)_5' + 5 \operatorname{H}'$	-17.120 ± 0.220	14	
$NpO_2^{2'} + F \Leftrightarrow NpO_2F'$	4.570 ± 0.070	14	
$NpO_2^{2\tau} + 2 F \Leftrightarrow NpO_2F_2(aq)$	7.600 ± 0.080	14	
$NpO_2^{2^+} + Cl^- \Leftrightarrow NpO_2Cl^+$	0.400 ± 0.170	14	
$NpO_2^{2^+} + IO_3^- \Leftrightarrow NpO_2IO_3^+$	1.200 ± 0.300	14	
$NpO_2^{2+} + SO_4^{2-} \Leftrightarrow NpO_2SO_4(aq)$	3.280 ± 0.060	14	
$NpO_2^{2^+} + 2 SO_4^{2^-} \Leftrightarrow NpO_2(SO_4)_2^{2^-}$	4.700 ± 0.100	14	
$NpO_2^{2^+} + H^+ + PO_4^{3^-} \Leftrightarrow NpO_2HPO_4(aq)$	18.550 ± 0.701	14	
$NpO_2^{2^+} + 2 H^+ + PO_4^{3^-} \Leftrightarrow NpO_2H_2PO_4^+$	22.882 ± 0.501	14	
$NpO_2^{2^+} + 2 H^+ + 2 PO_4^{3^-} \Leftrightarrow NpO_2(HPO_4)_2^{2^-}$	34.200 ± 1.001	14	
$NpO_2^{2^+} + CO_3^{2^-} \Leftrightarrow NpO_2CO_3(aq)$	9.320 ± 0.610	14	
$NpO_2^{2^+} + 2 CO_3^{2^-} \Leftrightarrow NpO_2(CO_3)_2^{2^-}$	16.516 ± 0.729	14	
$NpO_2^{2+} + 3 CO_3^{2-} \Leftrightarrow NpO_2(CO_3)_3^{4-}$	19.371 ± 1.972	14	
$NpO_2^{2+} + CO_3^{2-} + 3 H_2O(1) \Leftrightarrow (NpO_2)_2 CO_3 (OH)_3^{-}$	2.867 ± 4.254	14	
$Pu^{4+} + e^- \Leftrightarrow Pu^{3+}$	17.694 ± 0.668	14	
$Pu^{3+} + H_2O(1) \Leftrightarrow PuOH^{2+} + H^+$	-7.200 ± 0.500	28	
$Pu^{3+} + 2 H_2O(1) \Leftrightarrow Pu(OH)_2^+ + 2 H^+$	-15.100 ± 0.700	28	
$Pu^{3+} + 3 H_2O(1) \Leftrightarrow Pu(OH)_3(aq) + 3 H^+$	-26.200 ± 0.500	28	
$Pu^{3+} + F \Leftrightarrow PuF^{2+}$	3.400 ± 0.400	28	
$Pu^{3+} + 2 F^- \Leftrightarrow PuF_2^+$	5.800 ± 0.200	28	
$Pu^{3+} + Cl^- \Leftrightarrow PuCl^{2+}$	0.240 ± 0.030	28	
$Pu^{3+} + 2 Cl^{-} \Leftrightarrow PuCl_{2}^{+}$	-0.740 ± 0.050	28	
$Pu^{3+} + SO_4^{2-} \Leftrightarrow PuSO_4^+$	3.300 ± 0.150	28	
$Pu^{3+} + 2 SO_4^{2-} \Leftrightarrow Pu(SO_4)_2^{}$	3.700 ± 0.150	28	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Pu^{3+} + 3 NO_3^- + 18 H^+ + 16 e^- \Leftrightarrow PuN_3^{2+} + 9 H_2O(1)$	256.342 ± 0.430	28, 3	
$Pu^{3+} + NO_2^- \Leftrightarrow PuNO_2^{2+}$	2.100 ± 0.200	28	
$Pu^{3+} + NO_3^- \Leftrightarrow PuNO_3^{2+}$	1.330 ± 0.200	28	
$Pu^{3+} + 2 H^+ + PO_4^{3-} \Leftrightarrow PuH_2PO_4^{2+}$	22.562 ± 0.501	28, 3	
$Pu^{3+} + CO_3^{2-} \Leftrightarrow PuCO_3^+$	8.000 ± 0.400	28	
$Pu^{3+} + 2 CO_3^{2-} \Leftrightarrow Pu(CO_3)_2^{-}$	12.900 ± 0.600	28	
$Pu^{3+} + 3 CO_3^{2-} \Leftrightarrow Pu(CO_3)_3^{3-}$	15.000 ± 1.000	28	
$Pu^{3+} + H^+ + CO_3^{2-} \Leftrightarrow PuHCO_3^{2+}$	13.429 ± 0.301	28, 3	
$Pu^{3+} + H_4SiO_4(aq) \Leftrightarrow PuSiO(OH)_3^{2+} + H^+$	-1.680 ± 0.180	28	
$Pu^{3+} + NO_3^{-} + CO_3^{2-} + SO_4^{2-} + 20 H^+ + 16 e^- \Leftrightarrow PuSCN^{2+} + 10 H_2O(1)$	158.272 ± 0.775	28, 3	
$Pu^{4+} + H_2O(1) \Leftrightarrow PuOH^{3+} + H^+$	0.000 ± 0.200	45	
$Pu^{4+} + 2 H_2O(1) \Leftrightarrow Pu(OH)_2^{2+} + 2 H^+$	-1.200 ± 0.600	45	
$Pu^{4+} + 3 H_2O(1) \Leftrightarrow Pu(OH)_3^+ + 3 H^+$	-3.100 ± 0.900	45	
$Pu^{4+} + 4 H_2O(1) \Leftrightarrow Pu(OH)_4(aq) + 4 H^+$	-8.500 ± 0.500	45	
$Pu^{4+} + F^- \Leftrightarrow PuF^{3+}$	8.840 ± 0.100	14	
$Pu^{4+} + 2 F^- \Leftrightarrow PuF_2^{2+}$	15.700 ± 0.200	14	
$Pu^{4+} + CI \Leftrightarrow PuCl^{3+}$	1800 ± 0300	14	
$Pu^{4+} + Br \hookrightarrow PuBr^{3+}$	1.000 ± 0.300 1.600 ± 0.300	14	
$Pu^{4+} + SO^{2-} \Leftrightarrow PuSO^{2+}$	6.890 ± 0.226	14	
$Pu^{4+} + 2 SO_4^{2-} \leftrightarrow Pu(SO_4)$ (20)	0.090 ± 0.220 11 140 ± 0.335	14	
$\mathbf{P}_{\mathbf{u}}^{4+} + \mathbf{N}_{\mathbf{u}}^{-1} \hookrightarrow \mathbf{P}_{\mathbf{u}}^{3+} \mathbf{N}_{\mathbf{u}}^{-1} \hookrightarrow \mathbf{P}_{\mathbf{u}}^{3+} \mathbf{N}_{\mathbf{u}}^{-1} \to \mathbf{P}_{\mathbf{u}}^{3+} \mathbf{N}_{\mathbf{u}}^{-1} \to \mathbf{P}_{\mathbf{u}}^{-1} \mathbf{N}_{u$	11.140 ± 0.333 1.950 ± 0.150	14	
$D_{1}^{4+} + 2 U^{+} + D_{1}^{3-} \leftrightarrow D_{1} U D_{1}^{4+}$	1.930 ± 0.130 24.102 ± 0.348	14	
$Pu^{4+} + 4 CO^{2-} \leftrightarrow Pu(CO)^{4-}$	24.102 ± 0.348 $27,000 \pm 1,100$	14	
$P_{u} + 4 CO_{3} \Leftrightarrow P_{u}(CO_{3})_{4}$ $P_{u} + 5 CO^{2} \Leftrightarrow P_{u}(CO_{3})^{6}$	37.000 ± 1.100	14	
$Pu + 5 CO_3 \Leftrightarrow Pu(CO_3)_5$ $P + 2 CO_2^2 + 2 U O(1) \leftrightarrow P (CO_2) (OU)^2 + 2 U^{\dagger}$	35.050 ± 1.130	14	
$Pu' + 2 CO_3^{-1} + 2 H_2O(1) \Leftrightarrow Pu(CO_3)_2(OH)_2^{-1} + 2 H$	19.17 ± 1.230	45	
$\frac{Pu^{+} + 2H_2O(1)}{PuO_2^{+} + 4H_1^{+} + e}$	$-1/.453 \pm 0.691$	14	
$\frac{PuO_2 + H_2O(1) \Leftrightarrow PuO_2OH(aq) + H}{PuO_2 + H}$	≤ -9.730	14	
$\frac{PuO_2}{PuO_2} + \frac{CO_3}{PuO_2CO_3} \Leftrightarrow \frac{PuO_2CO_3}{PuO_2CO_3}$	5.120 ± 0.140	14	
$\frac{\operatorname{PuO}_{2} + 3 \operatorname{CO}_{3}^{2}}{4} \Leftrightarrow \operatorname{PuO}_{2}(\operatorname{CO}_{3})_{3}^{3}$	5.025 ± 0.920	14	
$Pu^{+} + 2 H_2O(1) \Leftrightarrow PuO_2^{-2} + 4 H^{+} + 2 e^{-2}$	-33.272 ± 0.697	14	
$PuO_2^{2+} + H_2O(1) \Leftrightarrow PuO_2OH^{+} + H^{+}$	-5.500 ± 0.500	14	
$PuO_2^{2+} + 2 H_2O(1) \Leftrightarrow PuO_2OH_2(aq) + 2 H^{-}$	-13.200 ± 1.500	14	
$2 \operatorname{PuO}_{2}^{2+} + 2 \operatorname{H}_{2}O(1) \Leftrightarrow (\operatorname{PuO}_{2})_{2}(OH)_{2}^{2+} + 2 \operatorname{H}^{+}$	-7.500 ± 1.000	14	
$PuO_2^{2+} + F^- \Leftrightarrow PuO_2F^+$	4.560 ± 0.200	14	
$PuO_2^{2+} + 2 F \Leftrightarrow PuO_2F_2(aq)$	7.250 ± 0.450	14	
$PuO_2^{2^+} + Cl^- \Leftrightarrow PuO_2Cl^+$	0.230 ± 0.030	14	
$PuO_2^{2^+} + 2 Cl^- \Leftrightarrow PuO_2Cl_2(aq)$	-1.150 ± 0.300	14	
$PuO_2^{2+} + SO_4^{2-} \Leftrightarrow PuO_2SO_4(aq)$	3.380 ± 0.200	14	
$PuO_2^{2^+} + 2 SO_4^{2^-} \Leftrightarrow PuO_2(SO_4)_2^{2^-}$	4.400 ± 0.200	14	
$PuO_2^{2^+} + CO_3^{2^-} \Leftrightarrow PuO_2CO_3(aq)$	9.500 ± 0.500	14	
$PuO_2^{2^+} + 2 CO_3^{2^-} \Leftrightarrow PuO_2(CO_3)_2^{2^-}$	14.700 ± 0.500	14	
$PuO_2^{2^+} + 3 CO_3^{2^-} \Leftrightarrow PuO_2(CO_3)_3^{4^-}$	18.000 ± 0.500	14	
$Am^{3+} + e^- \Leftrightarrow Am^{2+}$	-38.878 ± 2.536	14	
$Am^{3+} + H_2O(1) \Leftrightarrow AmOH^{2+} + H^+$	-7.200 ± 0.500	14	
$Am^{3+} + 2 H_2O(1) \Leftrightarrow Am(OH)_2^+ + 2 H^+$	-15.100 ± 0.700	14	
$Am^{3+} + 3 H_2O(1) \Leftrightarrow Am(OH)_3(aq) + 3 H^+$	-26.200 ± 0.500	14	
$Am^{3+} + F \Leftrightarrow AmF^{2+}$	3.400 ± 0.400	14	
$Am^{3+} + 2F^- \Leftrightarrow AmF_2^+$	5.800 ± 0.200	14	
$Am^{3+} + Cl^- \Leftrightarrow AmCl^{2+}$	0.240 ± 0.030	14	
$Am^{3+} + 2 Cl^{-} \Leftrightarrow AmCl_{2}^{+}$	-0.740 ± 0.050	14	
$Am^{3+} + SQ_4^{2-} \Leftrightarrow AmSQ_4^+$	3.300 ± 0.150	14	
$Am^{3+} + 2 SO_4^{2-} \Leftrightarrow Am(SO_4)^{-}$	3.700 ± 0.150	14	
$Am^{3+} + 3 NO_3^{-} + 18 H^{+} + 16 e^{-} \leftrightarrow AmN_2^{2+} + 9 H_2O(1)$	256342 + 0.430	14	
$\Delta m^{3+} + N\Omega_{2}^{-} \hookrightarrow \Delta m N\Omega_{2}^{2+}$	250.542 ± 0.450 2 100 + 0 200	14	
	2.100 - 0.200	17	1

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Am^{3+} + NO_3^- \Leftrightarrow AmNO_3^{2+}$	1.330 ± 0.200	14	
$\operatorname{Am}^{3+} + 2 \operatorname{H}^{+} + \operatorname{PO}_{4}^{3-} \Leftrightarrow \operatorname{AmH}_{2}\operatorname{PO}_{4}^{2+}$	22.562 ± 0.501	14	
$Am^{3+} + CO_3^{2-} \Leftrightarrow AmCO_3^+$	8.000 ± 0.400	14	
$\operatorname{Am}^{3+} + 2\operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{Am}(\operatorname{CO}_3)_2^{-}$	12.900 ± 0.600	14	
$\mathrm{Am}^{3+} + 3 \mathrm{CO}_3^{2-} \Leftrightarrow \mathrm{Am}(\mathrm{CO}_3)_3^{3-}$	15.000 ± 1.000	14	
$Am^{3+} + H^+ + CO_3^{2-} \Leftrightarrow AmHCO_3^{2+}$	13.429 ± 0.301	14	
$Am^{3+} + H_4SiO_4(aq) \Leftrightarrow AmSiO(OH)_3^{2+} + H^+$	-1.680 ± 0.180	14	
$Am^{3+} + NO_3^{-} + CO_3^{2-} + SO_4^{2-} + 20 H^+ + 16 e^- \Leftrightarrow AmSCN^{2+} + 10 H_2O(1)$	158.272 ± 0.775	14	
$Am^{3+} \Leftrightarrow Am^{4+} + e^{-}$	-44.208 ± 1.736	present	
$Am^{4+} + 5 CO_3^{2-} \Leftrightarrow Am(CO_3)_5^{6-}$	39.308 ± 2.088	present	
$Am^{3+} + 2H_2O(1) \Leftrightarrow AmO_2^+ + 4H^+ + 2e^-$	-58.371 ± 1.370	present	
$AmO_2^+ + CO_3^{2-} \Leftrightarrow AmO_2CO_3^-$	5.100 ± 0.500 *	14	
$\operatorname{AmO}_2^+ + 2 \operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{AmO}_2(\operatorname{CO}_3)_2^{3-}$	6.700 ± 0.800 *	14	
$\operatorname{AmO}_2^+ + 3\operatorname{CO}_3^{2-} \Leftrightarrow \operatorname{AmO}_2(\operatorname{CO}_3)_3^{5-}$	5.100 ± 1.000 *	14	
$Am^{3+} + 2 H_2O(1) \Leftrightarrow AmO_2^{2+} + 4 H^+ + 3 e^-$	-85.349 ± 1.303	present	
$\operatorname{AmO_2}^{2+} + 3 \operatorname{CO_3}^{2-} \Leftrightarrow \operatorname{AmO_2}(\operatorname{CO_3})_3^{4-}$	18.978 ± 1.905	present	
$Cm^{3+} + H_2O(1) \Leftrightarrow CmOH^{2+} + H^+$	-7.200 ± 0.500	28	
$Cm^{3+} + 2 H_2O(1) \Leftrightarrow Cm(OH)_2^+ + 2 H^+$	-15.100 ± 0.700	28	
$Cm^{3+} + 3 H_2O(1) \Leftrightarrow Cm(OH)_2(aq) + 3 H^+$	-26.200 ± 0.500	28	
$Cm^{3+} + F \hookrightarrow CmF^{2+}$	3400 ± 0400	28	
$Cm^{3+} + 2F \Leftrightarrow CmF_2^+$	5.800 ± 0.200	28	
$\frac{\operatorname{Cm}^{3+} + \operatorname{Cl}^{-} \Leftrightarrow \operatorname{Cm}^{2+}}{\operatorname{Cm}^{3+} + \operatorname{Cl}^{-} \Leftrightarrow \operatorname{Cm}^{2+}}$	0.240 ± 0.030	28	
$Cm^{3+} + 2Cl^{-} \Leftrightarrow CmCl_{p}^{+}$	-0.740 ± 0.050	28	
$\frac{\operatorname{Cm}^{2} + 2 \operatorname{Cr}^{2} \Leftrightarrow \operatorname{Cm}^{2} \operatorname{Cr}^{2}}{\operatorname{Cm}^{3^{+}} + \operatorname{SO}^{2^{-}} \Leftrightarrow \operatorname{Cm}^{2} \operatorname{Cm}^{+}}$	3300 ± 0.150	28	
$\frac{\operatorname{Cm}^{3+} + 2\operatorname{SO}_{4}^{2-} \Leftrightarrow \operatorname{Cm}(\operatorname{SO}_{4})^{-}}{\operatorname{Cm}^{3+} + 2\operatorname{SO}_{4}^{2-} \Leftrightarrow \operatorname{Cm}(\operatorname{SO}_{4})^{-}}$	3.300 ± 0.150 3.700 ± 0.150	28	
$Cm^{3+} + 3 NO^{-} + 18 H^{+} + 16 e^{-} \oplus CmN^{2+} + 9 H_{2}O(1)$	256342 ± 0.430	28.3	
$Cm^{3+} + NQ_{2}^{-} \Leftrightarrow CmNQ_{2}^{2+}$	230.312 ± 0.190 2 100 + 0 200	20, 5	
$\operatorname{Cm}^{3+} + \operatorname{NO}_2^{-} \hookrightarrow \operatorname{Cm}^{2+}$	1330 ± 0.200	28	
$Cm^{3+} + 2H^{+} + PO_{*}^{3-} \hookrightarrow CmH_{*}PO_{*}^{2+}$	22562 ± 0.501	28.3	
$\operatorname{Cm}^{3+} + \operatorname{Co}^{2-} \hookrightarrow \operatorname{Cm}^{2-} \operatorname{Co}^{+}$	$\frac{22.302 \pm 0.301}{8.000 \pm 0.400}$	20, 5	
$Cm^{3+} + 2CO_2^{2-} \Leftrightarrow Cm(CO_2)_2^{}$	12900 ± 0.600	28	
$\operatorname{Cm}^{3+} + 3 \operatorname{CO}_{2}^{2-} \hookrightarrow \operatorname{Cm}(\operatorname{CO}_{2})_{2}^{3-}$	12.900 ± 0.000 15 000 + 1 000	28	
$Cm^{3+} + H^{+} + CO^{2-} \Leftrightarrow CmHCO^{2+}$	13.000 ± 1.000 13.429 ± 0.301	28 3	
$Cm^{3+} + H.SiO_{4}(aq) \hookrightarrow CmSiO(OH)_{2}^{2+} + H^{+}$	-1.680 ± 0.180	20, 5	
$Cm^{3+} + NO^{-2} + CO^{-2-} + SO^{-2-} + 20 H^{+} + 16 e^{-} \oplus CmSCN^{2+} + 10 H O(1)$	-1.000 ± 0.100 158 272 ± 0.775	28 3	
$H^+ + av^{2-} \leftrightarrow Hav^{-}$	$\frac{130.272 \pm 0.773}{4.250 \pm 0.010}$	20, J 46	
$\frac{11}{2} H^{+} + \alpha x^{2-} \Leftrightarrow H \alpha x(\alpha \alpha)$	4.250 ± 0.010 5.650 ± 0.032	46	
$Ni^{2+} + ox^{2-} \Leftrightarrow Ni(ox)(ag)$	5.050 ± 0.032	40	
$Ni^{2+} + 2 ox^{2-} \Leftrightarrow Ni(ox)(aq)$	3.170 ± 0.040 7 640 ± 0.070	46	
$\Delta m^{3+} + \alpha v^{2-} \Leftrightarrow \Delta m(\alpha v)^{+}$	7.040 ± 0.070 6 510 ± 0.150	46	
$\operatorname{Am}^{3+} + 2 \operatorname{cv}^{2-} \Leftrightarrow \operatorname{Am}(\operatorname{cv})^{-1}$	0.310 ± 0.130 10.710 ± 0.200	40	
$Am^{3+} + 2 \text{ ov} \iff Am(\text{ov})^{3-}$	10.710 ± 0.200 13.000 ± 1.000	40	
$\operatorname{Ain}^{+} + \operatorname{Sox}^{+} \Leftrightarrow \operatorname{Ain}(\operatorname{Ox})_{3}$ $\operatorname{NnO}^{+} + \operatorname{ox}^{2^{-}} \Leftrightarrow \operatorname{NnO}^{-} \operatorname{ox}^{-}$	13.000 ± 1.000	40	
$NpO_2^+ + X \iff NpO_2 0X$ $NpO_2^+ + 2 cy^2 \iff NpO_2 (cy)^{3-1}$	5.900 ± 0.100	40	
$NpO_2 + 2 \text{ ox } \Leftrightarrow NpO_2(\text{ox})_2$	3.800 ± 0.200	40	
$UO_2^2 + 0X \Leftrightarrow UO_20X(aq)$	7.130 ± 0.100	40	
$UO_2^{2+} + 2 \text{ ox } \Leftrightarrow UO_2(0\text{ ox})_2$ $UO_2^{2+} + 2 \text{ ox}^{2-} \Leftrightarrow UO_2(0\text{ ox})^{4-}$	11.030 ± 0.130	40	
$UU_2 + 5 \text{ OX } \hookrightarrow UU_2(\text{OX})_3$ $Ma^{2^+} + ax^{2^-} \leftrightarrow Ma(ax)(ax)$	15.000 ± 1.000	40	
$\frac{1}{100} + 0x \Leftrightarrow \frac{1}{100} \frac{1}{10$	5.300 ± 0.040	40	
$\frac{ \text{NIg} + 2 \text{ OX } \Leftrightarrow \text{NIg}(\text{OX})_2}{C_2^{2+} + c_2^{2-}} \leftrightarrow C_2(c_2)(c_2)$	$3.1/0 \pm 0.080$	40	
$Ca^{2+} + 2 ca^{2-} \leftrightarrow Ca(cx)(aq)$	3.190 ± 0.000	40	
$\begin{array}{c} La \forall \ Z \text{ ox } \Leftrightarrow La(ox)_2 \\ La^{La^2} + Lt^+ \Leftrightarrow La^{La^2} \end{array}$	4.020 ± 0.199	40	
$CIT + H \Leftrightarrow HCIT$	0.300 ± 0.020	46	
$\operatorname{clt}^{+} + 2 \operatorname{H} \Leftrightarrow \operatorname{H}_2 \operatorname{clt}$	11.140 ± 0.022	46	
$\operatorname{cut}^{-} + 3 \operatorname{H}^{+} \Leftrightarrow \operatorname{H}_{3}\operatorname{cut}(\operatorname{aq})$	14.270 ± 0.024	46	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Ni^{2+} + cit^{3-} \Leftrightarrow Ni(cit)^{-}$	6.760 ± 0.080	46	
$Ni^{2+} + 2 cit^{3-} \Leftrightarrow Ni(cit)_2^{4-}$	8.500 ± 0.400	46	
$Ni^{2+} + H^+ + cit^{3-} \Leftrightarrow Ni(Hcit)(aq)$	10.520 ± 0.102	46	
$Ni^{2+} + 2H^+ + cit^{3-} \Leftrightarrow Ni(H_2cit)^+$	13.190 ± 0.251	46	
$Am^{3+} + cit^{3-} \Leftrightarrow Am(cit)(aq)$	8.550 ± 0.200	46	
$\operatorname{Am}^{3+} + 2\operatorname{cit}^{3-} \Leftrightarrow \operatorname{Am}(\operatorname{cit})_2^{3-}$	13.900 ± 1.000	46	
$Am^{3+} + H^+ + cit^{3-} \Leftrightarrow Am(Hcit)^+$	12.860 ± 1.000	46	
$Am^{3+} + 2H^{+} + 2cit^{3-} \Leftrightarrow Am(Hcit)_2^{-}$	23.520 ± 1.001	46	
$NpO_2^+ + cit^{3-} \Leftrightarrow NpO_2 cit^{2-}$	3.680 ± 0.050	46	
$UO_2^{2+} + cit^{3-} \Leftrightarrow UO_2cit^{-}$	8.960 ± 0.170	46	
$2 UO_2^{2+} + 2 cit^{3-} \Leftrightarrow (UO_2)_2 (cit)_2^{2-}$	21.300 ± 0.500	46	
$UO_2^{2^+} + H^+ + cit^{3^-} \Leftrightarrow UO_2(Hcit)(ag)$	11.360 ± 1.000	46	
$Mg^{2+} + cit^{3-} \Leftrightarrow Mg(cit)^{-}$	4.810 ± 0.030	46	
$Mg^{2+} + H^+ + cit^{3-} \Leftrightarrow Mg(Hcit)(ag)$	8.960 ± 0.073	46	
$Mg^{2+} + 2 H^+ + cit^{3-} \Leftrightarrow Mg(H_2cit)^+$	12.450 ± 0.162	46	
$Ca^{2+} + cit^{3-} \Leftrightarrow Ca(cit)^{-}$	4.800 ± 0.030	46	
$Ca^{2+} + H^+ + cit^{3-} \Leftrightarrow Ca(Hcit)(aq)$	9.280 ± 0.073	46	
$Ca^{2+} + 2H^+ + cit^{3-} \Leftrightarrow Ca(H_{2}cit)^+$	12.670 ± 0.162	46	
$edta^{4} + H^{+} \leftrightarrow Hedta^{3}$	11.240 ± 0.030	46	
edta ⁴⁻⁺ + 2 H ⁺ \Leftrightarrow H ₂ edta ²⁻	18.040 ± 0.036	46	
edta ⁴ + 3 H ⁺ \Leftrightarrow H ₂ edta ⁻	21.190 ± 0.041	46	
$edta^{4-} + 4 H^{+} \Leftrightarrow H_{e}dta(aq)$	23420 ± 0.065	46	
$edta^{4+} + 5 H^{+} \Leftrightarrow H_{c}edta^{+}$	23.120 ± 0.003 24 720 + 0 119	46	
$edta^4 + 6 H^+ \oplus H_e edta^{2+}$	24.720 ± 0.113 24.220 ± 0.233	46	
Ni ²⁺ + edta ⁴⁻ \Leftrightarrow Ni(edta) ²⁻	20.540 ± 0.239	46	
$Ni^{2+} + edta^{4-} + H^+ \hookrightarrow Ni(Hedta)^-$	20.510 ± 0.150 24.200 ± 0.206	46	
$\Delta m^{3+} + \text{edta}^4 \leftrightarrow \Delta m(\text{edta})^-$	19.670 ± 0.200	46	
$\Delta m^{3+} + edta^4 + H^+ \leftrightarrow \Delta m(Hedta)(ag)$	17.070 ± 0.110 21.840 ± 0.273	46	
$Pu^{3+} + edta^{4-} \hookrightarrow Pu(edta)^{-}$	21.010 ± 0.279 20.180 ± 0.370	46	
$Pu^{3+} + edta^4 + H^+ \hookrightarrow Pu(Hedta)(aq)$	20.100 ± 0.570 22.020 ± 0.454	46	
Nn^{4+} + edta ⁴⁻ \hookrightarrow $\operatorname{Nn}(edta)(aq)$	22.020 ± 0.404 31 200 ± 0.600	46	
$NnO_{+}^{+} + edta^{4-} \Leftrightarrow NnO_{+}edta^{3-}$	9230 ± 0.000	46	
$NpO_2^+ + edta^4 + H^+ \Leftrightarrow NpO_2(Hedta)^{2^-}$	9.250 ± 0.130 17.060 ± 0.114	46	
$NpO_2^+ + edta^4 + 2 H^+ \leftrightarrow NpO_2(Hedta)^-$	17.000 ± 0.114 22 510 ± 0.145	46	
$II^{4+} + \text{edta}^{4-} \Leftrightarrow II\text{edta}(aa)$	22.510 ± 0.149 29 500 ± 0.200	46	
$U_{2^{2^{+}}} + edta^{4^{-}} \hookrightarrow U_{2^{-}}$	23.300 ± 0.200 13.700 ± 0.200	46	
$2 \text{ UO}^{2^+} + \text{adta}^4 \Leftrightarrow (\text{UO}) \text{ adta}(\text{ag})$	13.700 ± 0.200 20.600 ± 0.400	46	
$UO_{2}^{2+} + edta^{4+} + H^{+} \Leftrightarrow UO_{2}/2edta(aq)^{2-}$	20.000 ± 0.400 19.610 ± 0.104	40	
$Mg^{2+} + adta^4 \Leftrightarrow Mg(adta)^{2-}$	10.010 ± 0.104 10.000 ± 0.100	40	
$Mg^{2+} + adta^{4-} + H^+ \leftrightarrow Mg(Hadta)^{-}$	10.000 ± 0.100 15.400 ± 0.224	40	
$\operatorname{Co}_{2^{2^{+}}}^{2^{+}} = \operatorname{Ata}_{4^{-}} \hookrightarrow \operatorname{Co}(\operatorname{adta})^{2^{-}}$	13.400 ± 0.224 12.690 ± 0.060	40	
$Ca^{2^+} + odta^4 + U^+ \hookrightarrow Ca(Uodta)^-$	12.000 ± 0.000 16.230 ± 0.108	40	
$Ca + euta + H \Leftrightarrow Ca(Heuta)$ No ⁺ + adta ⁴⁻ \Leftrightarrow No(adta) ³⁻	10.230 ± 0.108	40	
$\frac{1}{1} \frac{1}{1} \frac{1}$	2.800 ± 0.200	40	
\mathbf{K}^+ edita \Leftrightarrow Na(edita) $\mathbf{H}^+ + iso^2 \Leftrightarrow$ Hiso(co)	1.800 ± 0.300	40	
$\Pi^{+} \operatorname{Isa} \Leftrightarrow \operatorname{Hisa}(\operatorname{aq})$ $C_{2}^{2^{+}} \vdash \operatorname{isa}^{-} \Leftrightarrow C_{2}(\operatorname{isa})^{+}$	4.000 ± 0.300	40	
$ \begin{array}{l} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \label{eq:linear} \begin{tabular}{l} \label{eq:linear} eq:linea$	1.700 ± 0.300	40	*
$\frac{ \mathbf{N}\mathbf{a} + (\mathbf{O}\mathbf{X}) \iff \mathbf{N}\mathbf{d}(\mathbf{O}\mathbf{X}) }{ \mathbf{V}^{+} + (\mathbf{O}\mathbf{X}) ^{2} \iff \mathbf{V}(\mathbf{O}\mathbf{X}) ^{2}}$	0.000	4/	*
$\mathbf{N}^{-+}(0\mathbf{X}) \hookrightarrow \mathbf{N}(0\mathbf{X})$ $\mathbf{S}\mathbf{r}^{2+} \vdash (0\mathbf{X})^{2-} \hookrightarrow \mathbf{S}\mathbf{r}(0\mathbf{X})$	0.900	4/	*
$\frac{51}{2} + \frac{1}{2} (0x) \approx \frac{51(0x)}{(0x)^2} + \frac{5}{2} \exp(2x)^2$	2.330	48	*
$\begin{array}{l} 51 \forall \neq 2 \ (0X) \\ \square P e^{2+} + (ex)^{2-} \\ \leftrightarrow \\ \square P e^{2+} \end{array} \xrightarrow{(0,1)} \square P e^{2+} \\ \square P e$	2.980	48	*
$\frac{\pi a}{r} + \frac{1}{2} \left(\frac{1}{r} \right)^{2} \leftrightarrow \frac{1}{2} \left(\frac{1}{r} \right)^{2}$	2.780	49	۰. بر
$\frac{\operatorname{Ka}}{\operatorname{Fa}^{2+}} + (\operatorname{cn})^{2-} \leftrightarrow \operatorname{Fa}(\operatorname{cn})$	5.44U 4.120	49	*
$\frac{re}{re} + \frac{re}{(0x)} \Leftrightarrow \frac{re(0x)}{re(0x)}$	4.130	48	۰، ۴
$re + 2(0x) \Leftrightarrow re(0x)_2$	0.230	48	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\operatorname{Co}^{2^+} + (\operatorname{ox})^{2^-} \Leftrightarrow \operatorname{Co}(\operatorname{ox})$	4.720	48	*
$\operatorname{Co}^{2^+} + 2 (\operatorname{ox})^{2^-} \Leftrightarrow \operatorname{Co}(\operatorname{ox})_2^{2^-}$	7.000	48	*
$Pb^+ + 2 (ox)^{2-} \Leftrightarrow Pb(ox)$	4.910	48	*
$Pb + 2(ox)^{2-} \Leftrightarrow Pb(ox)_2^{2-}$	6.760	48	*
$Al^{3+} + (ox)^{2-} \Leftrightarrow Al(ox)^+$	7.720	48	*
$Al^{3+} + 2(ox)^{2-} \Leftrightarrow Al(ox)_2^{-}$	13.200	48	*
$Al^{3+} + 3(ox)^{2-} \Leftrightarrow Al(ox)^{3-}$	16.740	48	*
$Zr^{4+} + (ox)^{2-} \Leftrightarrow Zr(ox)^{2+}$	10.520	49	*
$Zr^{4+} + 2(ox)^2 \Leftrightarrow Zr(ox)_2$	18.150	49	*
$TcO(OH)_2(aq) + 2 H^+ + (cit)^{3-} \Leftrightarrow TcO(cit)^- + 2 H_2O(l)$	< 15.999	49, present	*
$TcO(OH)_2(aq) + 3 H^+ + (cit)^{3-} \Leftrightarrow TcOH(cit)(aq) + 2 H_2O(l)$	< 18.110	49, present	*
$\mathrm{Sm}^{3+} + (\mathrm{ox})^{2-} \Leftrightarrow \mathrm{Sm}(\mathrm{ox})^{+}$	6.300	49	*
$\mathrm{Sm}^{3+} + 2 (\mathrm{ox})^2 \Leftrightarrow \mathrm{Sm}(\mathrm{ox})_2^-$	10.130	49	*
$Ac^{3+} + (ox)^{2-} \Leftrightarrow Ac(ox)^{+}$	5.650	48	*
$Ac^{3+} + 2(ox)^{2-} \Leftrightarrow Ac(ox)^{2-}$	8.800	48	*
$(Cm^{3+} + (ox))^2 \Leftrightarrow Cm(ox)^+$	6.540	48	*
$Cm^{3+} + 2(ox)^{2-} \Leftrightarrow Cm(ox)^{-}$	10.570	48	*
$Th^{4+} + (ox)^{2-} \Leftrightarrow Th(ox)^{2+}$	10.600	48	*
$Th^{4+} + 2(\alpha x)^{2-} \Leftrightarrow Th(\alpha x)_{2}(aq)$	20.200	48	*
$Th^{4+} + 3 (\alpha x)^2 \Leftrightarrow Th(\alpha x)_2^2$	26 400	48	*
$Pu^{4+} + (\alpha x)^2 \Leftrightarrow Pu(\alpha x)^{2+}$	10 340	49	*
$Pu^{4+} + 2 (\alpha x)^{2-} \Leftrightarrow Pu(\alpha x)_{\alpha}(aq)$	17 800	49	*
$\frac{\Gamma u}{U^{4+}} + \frac{(\alpha x)^2}{U(\alpha x)^{2+}} \rightarrow U(\alpha x)^{2+}$	10.180	49	*
$U^{4+} + 2 (\alpha x)^{2-} \Leftrightarrow U(\alpha x)_{\alpha}(a\alpha)$	17 500	49	*
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \sum_{i=1}^{2} \frac{1}{$	10.290	49	*
$Nn^{4+} + 2(\alpha x)^2 \leftrightarrow Nn(\alpha x)_{\alpha}(\alpha \alpha)$	17.710	49	*
$Pu \Omega_{2}^{2+} + (\alpha x)^{2-} \Leftrightarrow Pu \Omega_{2}(\alpha x) \text{ (ag)}$	7 250	49	*
$PuO_{2}^{2+} + 2(ox)^{2-} \Leftrightarrow PuO_{2}(ox)^{2-}$	11 940	49	*
$Na^{+} + (ait)^{3-} \leftrightarrow Na(ait)^{2-}$	1 340	42	*
$\frac{1}{1} \frac{1}{1} \frac{1}$	1.340	48	*
$\frac{\mathbf{R}^{2}}{\mathbf{R}^{2+}} + (\operatorname{cit})^{3-} \Leftrightarrow \mathbf{R}(\operatorname{cit})^{-}$	<u> </u>	40	*
$\operatorname{Sr}^{2+} + \operatorname{H}^+ + (\operatorname{cit})^3 \hookrightarrow \operatorname{SrH}(\operatorname{cit})(\operatorname{ag})$	9.080	40	*
$\operatorname{Po}^{2+} + \operatorname{(oit)}^3 \hookrightarrow \operatorname{Po}(\operatorname{oit)}^3$	3 590	42	*
$Ra^{2+} + H^{+} + (ait)^{3-} \hookrightarrow Ra(H(ait)(aa))$	9,000	47	*
$\operatorname{Ka}^{2+} + \operatorname{Ii}^{+} + \operatorname{Cit}^{3-} \Leftrightarrow \operatorname{Eo}(\operatorname{cit})^{-}$	5.600	42	*
$Fc^{2+} + H^{+} + (ait)^{3-} \Leftrightarrow FcH(ait)(aa)$	9.870	40	*
$\Gamma c + \Pi + (cn) \Leftrightarrow \Gamma cn(cn)(dq)$	6 200	40	*
$Co^{2+} + U^{+} + (oit)^{3-} \hookrightarrow CoH(oit)(og)$	10.270	40	*
$C0^{+}H^{+}(CI) \Leftrightarrow COI(CI)(aq)$ $Dh^{2+}(cit)^{3-} \Leftrightarrow Dh(cit)^{-}$	5 700	40	*
$\frac{PO}{PO} + \frac{PO}{PO} + PO$	0.010	40	*
$PD + 2 (CH) \Leftrightarrow PD(CH)_2$ $Pb^{2+} + 2 (cit)^3 \leftrightarrow Pb(cit)^{7-}$	9.910	40	*
$PD + 5 (CII) \Leftrightarrow PD(CII)_3$ $PI^{2+} + II^+ + (CI)^3 \leftrightarrow PI + I(CI)(CI)$	4.330	48	*
$PD + H + (cit)^{2} \Leftrightarrow PDH(cit)(aq)$	0.010	48	*
$Al^{3+} + (cit)^{3} \Leftrightarrow Al(cit)$	9.910	4/	т 4
$AI^{*} + 2 (cit)^{*} \Leftrightarrow AI(cit)_{2}^{*}$	14.120	4/	*
$AI^{+} + H^{+} + (cit)^{+} \Leftrightarrow AIH(cit)^{+}$	12.860	4/	T
$Zr^{4+} + (cit)^{*} \Leftrightarrow Zr(cit)^{*}$	13.270	49	т
$Lr^{+} + H^{+} + (Cl)^{+} \Leftrightarrow LrH(Cl)^{+}$	14.880	49	۳ ب
$\frac{1}{1} \frac{1}{1} \frac{1}$	11.990	49	*
$\frac{1 \text{cO}^{-1} + \text{H}^{-1} + (\text{cit})^{-2} \Leftrightarrow \text{TcOH}(\text{cit})(\text{aq})}{2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	14.110	49	*
$Sm^{(-)} + (cit)^{(-)} \Leftrightarrow Sm(cit)(aq)$	7.990	49	*
$\operatorname{Sm}^{3+} + \operatorname{H}^{+} + (\operatorname{cit})^{3} \Leftrightarrow \operatorname{Sm} \operatorname{H}(\operatorname{cit})^{1}$	11.670	49	*
$Ac^{*+} + (ctt)^{*} \Leftrightarrow Ac(ctt)(aq)$	7.990	49	*
$Ac^{-1} + H^{+} + (cit)^{-1} \Leftrightarrow AcH(cit)^{-1}$	11.670	49	*
$\operatorname{Cm}^{3^+} + (\operatorname{cit})^{3^-} \Leftrightarrow \operatorname{Cm}(\operatorname{cit})(\operatorname{aq})$	7.990	49	*

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$Cm^{3+} + H^+ + (cit)^{3-} \Leftrightarrow CmH(cit)^+$	11.670	49	*
$Pu^{3+} + (cit)^{3-} \Leftrightarrow Pu(cit)(aq)$	7.990	49	*
$Pu^{3+} + H^+ + (cit)^{3-} \Leftrightarrow PuH(cit)^+$	11.670	49	*
$\mathrm{Th}^{4+} + (\mathrm{cit})^{3-} \Leftrightarrow \mathrm{Th}(\mathrm{cit})^+$	11.290	49	*
$Th^{4+} + H^+ + (cit)^{3-} \Leftrightarrow ThH(cit)^{2+}$	13.680	49	*
$Pu^{4+} + (cit)^{3-} \Leftrightarrow Pu(cit)^{+}$	13.040	49	*
$Pu^{4+} + H^+ + (cit)^{3-} \Leftrightarrow PuH(cit)^{2+}$	14.750	49	*
$U^{4+} + (\operatorname{cit})^{3-} \Leftrightarrow U(\operatorname{cit})^{+}$	12.840	49	*
$\mathrm{U}^{4+} + \mathrm{H}^{+} + (\mathrm{cit})^{3-} \Leftrightarrow \mathrm{UH}(\mathrm{cit})^{2+}$	14.620	49	*
$Np^{4+} + (cit)^{3-} \Leftrightarrow Np(cit)^{+}$	12.980	49	*
$Np^{4+} + H^+ + (cit)^{3-} \Leftrightarrow NpH(cit)^{2+}$	14.710	49	*
$NpO_2^+ + H^+ + (cit)^{3-} \Leftrightarrow NpH(cit)^{-1}$	9.920	49	*
$PuO_2^{2^+} + (cit)^{3^-} \Leftrightarrow PuO_2(cit)^-$	9.180	49	*
$PuO_2^{2^+} + H^+ + (cit)^{3-} \Leftrightarrow PuO_2H(cit)(aq)$	12.400	49	*
$\mathrm{Sr}^{2^+} + (\mathrm{edta})^{4^-} \Leftrightarrow \mathrm{Sr}(\mathrm{edta})^{2^-}$	10.460	47	*
$\mathrm{Sr}^{2^+} + \mathrm{H}^+ + (\mathrm{edta})^4 \Leftrightarrow \mathrm{Sr}\mathrm{H}(\mathrm{edta})^-$	14.820	47	*
$\operatorname{Fe}^{2^+} + (\operatorname{edta})^{4^-} \Leftrightarrow \operatorname{Fe}(\operatorname{edta})^{2^-}$	16.020	47	*
$Fe^{2^+} + H^+ + (edta)^{4^-} \Leftrightarrow FeH(edta)^-$	19.250	47	*
$\operatorname{Co}^{2^+} + (\operatorname{edta})^{4^-} \Leftrightarrow \operatorname{Co}(\operatorname{edta})^{2^-}$	18.170	47	*
$\text{Co}^{2^+} + \text{H}^+ + (\text{edta})^{4^-} \Leftrightarrow \text{CoH}(\text{edta})^-$	21.600	47	*
$\operatorname{Co}^{2^+} + 2 \operatorname{H}^+ + (\operatorname{edta})^{4^-} \Leftrightarrow \operatorname{CoH}_2(\operatorname{edta})(\operatorname{aq})$	23.570	47	*
$Pb^{2+} + (edta)^{4-} \Leftrightarrow Pb(edta)^{2-}$	19.680	47	*
$Pb^{2+} + H^+ + (edta)^{4-} \Leftrightarrow PbH(edta)^{-}$	22.610	47	*
$Pb^{2+} + 2 H^{+} + (edta)^{4-} \Leftrightarrow PbH_2(edta)(aq)$	24.570	47	*
$Pb^{2+} + 3 H^{+} + (edta)^{4-} \Leftrightarrow PbH_3(edta)^{+}$	25.770	47	*
$Th^{4+} + (edta)^{4-} \Leftrightarrow Th(edta)(aq)$	26.630	47	*
$Th^{4+} + H^+ + (edta)^{4-} \Leftrightarrow ThH(edta)^+$	28.610	47	*
$Pu^{4+} + (edta)^{4-} + H_2O \Leftrightarrow PuOH(edta)^{-} + H^{+}$	24.200	50	*
$Pu^{4+} + (edta)^{4-} + 2 H_2O \Leftrightarrow Pu(OH)_2(edta)^{2-} + 2 H^+$	19.220	50	*
Pu^{4+} + (edta) ⁴⁻ + 3 H ₂ O ⇔ $Pu(OH)_3(edta)^{3-}$ + 3 H ⁺	9.710	50	*
$Mg^{2+} + (isa)^{-} \Leftrightarrow Mg(isa)^{+}$	0.600	49	*
$\mathrm{Sr}^{2^+} + (\mathrm{isa})^- \Leftrightarrow \mathrm{Sr}(\mathrm{isa})^+$	0.910	49	*
$\operatorname{Fe}^{2^+} + (\operatorname{isa})^- \Leftrightarrow \operatorname{Fe}(\operatorname{isa})^+$	0.940	49	*
$Ni^{2+} + (isa)^- \Leftrightarrow Ni(isa)^+$	2.200	51	*
$Pb^{2^+} + (isa)^- \Leftrightarrow Pb(isa)^+$	2.440	49	*
$Am^{3+} + 3 H_2O(1) + (isa)^- \Leftrightarrow Am(OH)_3(isa)^- + 3 H^+$	-47.700	51	*
$Pu^{4+} + 4 H_2O(1) + (isa)^- \Leftrightarrow Pu(OH)_4(isa)^- + 4 H^+$	-12.300	51	*
$Pu^{4+} + 4 H_2O(1) + 2 (isa)^- \Leftrightarrow Pu(OH)_4(isa)_2^{2-} + 4 H^+$	-8.100	51	*
$Np^{4+} + 4 H_2O(l) + (isa)^- \Leftrightarrow Np(OH)_4(isa)^- + 4 H^+$	-13.660	51	*
$Np^{4+} + 4 H_2O(1) + 2 (isa)^- \Leftrightarrow Np(OH)_4(isa)_2^{2-} + 4 H^+$	-11.800	51	*
$U^{4+} + 4 H_2O(l) + (isa)^- \Leftrightarrow U(OH)_4(isa)^- + 4 H^+$	-17.600	51	*
$U^{4+} + 4 H_2O(1) + 2(isa)^- \Leftrightarrow U(OH)_4(isa)_2^{2-} + 4 H^+$	-15.700	51	*
$Th^{4+} + H_2O(l) + (isa)^- \Leftrightarrow ThOH(isa)^{2+} + H^+$	-6.200	52	*
$Th^{4+} + 3 H_2O(1) + 2 (isa)^- \Leftrightarrow Th(OH)_3(isa)_2^- + 3 H^+$	-70.300	52	*
$Th^{4+} + 4 H_2 \overline{O(1)} + 2 (isa)^- \Leftrightarrow Th(OH)_4 (isa)_2^{2-} + 4 H^+$	-105.900	52	*

*1 Tentative values.

Table A2Selected equilibrium constants of solid phases for JAEA-TDB ready to use for the
geochemical calculation programs (revised from Table A2 in the previous TDB report $^{2)}$)Reactions and $log_{10} K^{\circ}$ values written with bold letters are additionally selected or revised in the
present report.

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$H(g) \Leftrightarrow H^+ + e^-$	35.612 ± 0.001	3	
$H_2(g) \Leftrightarrow 2 H^+ + 2 e^-$	0.000	3, 4	
$H_2O(g) \Leftrightarrow H_2O(l)$	1.499 ± 0.010	3	
$\text{Li}(\text{cr}) \Leftrightarrow \text{Li}^+ + \text{e}^-$	51.317 ± 0.019	present	
$Li(g) \Leftrightarrow Li^+ + e^-$	73.497 ± 0.177	present	
$B(cr) + 3 H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3 H^+ + 3 e^-$	45.173 ± 0.145	3	
$B(g) + 3 H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3 H^+ + 3 e^-$	136.450 ± 0.888	3	
$B_2O_3(cr) + 3 H_2O(1) \Leftrightarrow 2 B(OH)_3(aq)$	5.745 ± 0.379	3	
$B(OH)_3(cr) \Leftrightarrow B(OH)_3(aq)$	-0.070 ± 0.203	3	
$BF_3(g) + 3 H_2O(1) \Leftrightarrow B(OH)_3(aq) + 3 F^- + 3 H^+$	-2.976 ± 0.416	3	
$C(cr) + 3 H_2O(1) \Leftrightarrow CO_3^2 + 6 H^+ + 4 e^-$	-32.151 ± 0.069	3	
$C(g) + 3 H_2O(1) \Leftrightarrow CO_3^2 + 6 H^+ + 4 e^-$	85.447 ± 0.105	3	
$CO(g) + 2 H_2O(1) \Leftrightarrow CO_3^{2^-} + 4 H^+ + 2 e^-$	-14.637 ± 0.075	3	
$CO_2(g) + H_2O(1) \Leftrightarrow CO_3^{2-} + 2 H^+$	-18.155 ± 0.035	3	
$CH_4(g) + 3 H_2O(1) \Leftrightarrow CO_3^{2^-} + 10 H^+ + 8 e^-$	-43.931	1	
$HCN(g) + 6 H_2O(I) \Leftrightarrow CO_3^{2-} + NO_3^{-} + 13 H^+ + 10 e^-$	-116.437 ± 0.451	present	
$N(g) + 3 H_2O(1) \Leftrightarrow NO_3^- + 6 H^+ + 5 e^-$	-25.418 ± 0.102	3	
$N_2(g) + 6 H_2O(1) \Leftrightarrow 2 NO_3^- + 12 H^+ + 10 e^-$	-210.449 ± 0.105	3	
$NH_3(g) + 3 H_2O(1) \Leftrightarrow NO_3^- + 9 H^+ + 8 e^-$	-108.099 ± 0.096	3	
$O(g) + 2 H^+ + 2 e^- \Leftrightarrow H_2O(1)$	82.144 ± 0.019	3	
$O_2(g) + 4 H^+ + 4 e^- \Leftrightarrow 2 H_2O(l)$	83.090 ± 0.010	3	
$F(g) + e^{-} \Leftrightarrow F^{-}$	60.231 ± 0.132	3	
$F_2(g) + 2e^- \Leftrightarrow 2F^-$	98.641 ± 0.171	3	
$\operatorname{HF}(g) \Leftrightarrow \operatorname{F}^{-} + \operatorname{H}^{+}$	1.073 ± 0.172	3	
$Na(cr) \Leftrightarrow Na^+ + e^-$	45.892 ± 0.017	3	
$Na(g) \Leftrightarrow Na^+ + e^-$	59.375 ± 0.124	3	
$NaCl(cr) \Leftrightarrow Na^+ + Cl^-$	1.568 ± 0.037	present	
$NaF(cr) \Leftrightarrow Na^+ + F^-$	-0.499 ± 0.174	present	
$Na_2Al_{14}Si_{22}O_{60}(OH)_{12}(montmorillonite, Na) + 16 H_2O(1) + 44 H^+$	58.540	4	
$NaAl_3Si_3O_{10}(OH)_2(plagioclase) + 10 H^+ \Leftrightarrow Na^+ + 3 Al^{3+} + 3 H_4SiO_4(aq)$	18.870	4	
NaAlSi ₃ O ₈ (albite) + 4 H ₂ O(l) + 4 H ⁺ \Leftrightarrow Na ⁺ + Al ³⁺ + 3 H ₄ SiO ₄ (aq)	3.540	4	
$Mg(cr) \Leftrightarrow Mg^{2+} + 2 e^{-}$	79.778 ± 0.234	present	
$Mg(g) \Leftrightarrow Mg^{2+} + 2 e^{-}$	99.491 ± 0.273	present	
$Mg_{26}Fe_8Al_{20}Si_{24}O_{80}(OH)_{64}(clinochlore) + 128 H^+$	447.610	4	
$Mg_2Si_2O_6(s) + 2 H_2O(l) + 4 H^+ \Leftrightarrow 2 Mg^{2+} + 2 H_4SiO_4(aq)$	23.260	4	
$Mg_{3}Si_{4}O_{10}(OH)_{2}(talc) + 4 H_{2}O(l) + 6 H^{+} \Leftrightarrow 3 Mg^{2+} + 4 H_{4}SiO_{4}(aq)$	20.600 ± 2.000	4, 29	
$Mg_{40}Al_{16}Si_{24}O_{80}(OH)_{64}(clinochlore,Mg-rich) + 128 H^+$	546.830	4	
$Mg_4Si_6O_9(OH)_{14}(sepiolite) + H_2O(1) + 8 H^+ \Leftrightarrow 4 Mg^{2+} + 6 H_4SiO_4(aq)$	32.830	4	
$Mg_8Fe_{26}Al_{25}Si_{20}O_{80}(OH)_{64}(clinochlore,Fe-rich) + 144 H^+ + e^-$	178.370	4	
$MgAl_{14}Si_{22}O_{60}(OH)_{12}(montmorillonite,Mg) + 16 H_2O(l) + 44 H^+$	57.040	4	
MgFe ₂ O ₄ (magnesio-ferrite) + 8 H ⁺ + 2 e ⁻ \Leftrightarrow Mg ²⁺ + 2 Fe ²⁺ + 4 H ₂ O(l)	42.820	4	
$MgO(periclase) + 2 H^+ \Leftrightarrow Mg^{2+} + H_2O(l)$	21.580	4	
$Al(OH)_3(gibbsite) + 3 H^+ \Leftrightarrow Al^{3+} + 3 H_2O(l)$	8.770	4	
$Al_2SiO_4(OH)_2(topaz,O) + 6 H^+ \Leftrightarrow 2 Al^{3+} + H_4SiO_4(aq) + 2 H_2O(l)$	12.810	4	
$Al_2Si_2O_5(OH)_4(\text{kaolinite}) \ 6 \ H^+ \Leftrightarrow + 2 \ H_4SiO_4(aq) + 2 \ Al^{3+} + H_2O(l)$	9.080	4	
$Al(cr) \Leftrightarrow Al^{3+} + 3e^{-}$	86.108 ± 0.585	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Al(g) \Leftrightarrow Al^{3+} + 3 e^{-}$	136.804 ± 0.913	present	
$Al_2O_3(corundum) + 6 H^+ \Leftrightarrow 2 Al^{3+} + 3 H_2O(l)$	19.652 ± 1.192	present	
$AlF_3(cr) \Leftrightarrow Al^{3+} + 3 F^-$	-16.647 ± 0.726	present	
SiO_2 (chalcedony) + 2 H ₂ O(l) \Leftrightarrow H ₄ SiO ₄ (aq)	-3.490	4	
$SiO_2(quartz) + 2 H_2O(1) \Leftrightarrow H_4SiO_4(aq)$	-3.780	4	
$SiO_2(silica-gel) + 2 H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-2.700	4	
$SiO_2 \cdot H_2O(silica-glass) + H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-3.020	4	
$SiO_2(am) + 2 H_2O(l) \Leftrightarrow H_4SiO_4(aq)$	-2.710	4	
$Si(cr) + 4 H_2O(1) \Leftrightarrow H_4SiO_4(aq) + 4 H^+ + 4 e^-$	62.924 ± 0.205	3	
$\mathrm{Si}(\mathrm{g}) + 4 \mathrm{H}_2\mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_4\mathrm{SiO}_4(\mathrm{aq}) + 4 \mathrm{H}^+ + 4 \mathrm{e}^-$	133.969 ± 1.416	3	
$SiO_2(\alpha$ -quartz) + 2 H ₂ O(l) \Leftrightarrow H ₄ SiO ₄ (aq)	-4.000 ± 0.268	3	
$\mathrm{SiF}_4(g) + 4 \operatorname{H}_2\mathrm{O}(l) \Leftrightarrow \operatorname{H}_4\mathrm{SiO}_4(\mathrm{aq}) + 4 \operatorname{F}^- + 4 \operatorname{H}^+$	-15.330 ± 0.545	3	
$P(am) + 4 H_2O(l) \Leftrightarrow PO_4^{3-} + 8 H^+ + 5 e^-$	13.478 ± 0.276	3	
$P(cr) + 4 H_2O(l) \Leftrightarrow PO_4^{3} + 8 H^+ + 5 e^-$	13.478 ± 0.276	3	
$P(g) + 4 H_2O(l) \Leftrightarrow PO_4^{3-} + 8 H^+ + 5 e^-$	62.548 ± 0.328	3	
$P_2(g) + 8 H_2O(1) \Leftrightarrow 2 PO_4^{3-} + 16 H^+ + 10 e^-$	45.082 ± 0.526	3	
$P_4(g) + 16 H_2O(l) \Leftrightarrow 4 PO_4^{3-} + 32 H^+ + 20 e^-$	58.189 ± 0.558	3	
$S(cr) + 4 H_2O(l) \Leftrightarrow SO_4^{-2} + 8 H^+ + 6 e^{-2}$	-35.836 ± 0.075	3	
$S(g) + 4 H_2O(l) \Leftrightarrow SO_4^{2^-} + 8 H^+ + 6 e^-$	5.629 ± 0.079	3	
$S_2(g) + 8 H_2O(l) \Leftrightarrow 2 SO_4^{2-} + 16 H^+ + 12 e^-$	-57.713 ± 0.118	3	
$SO_2(g) + 2 H_2O(l) \Leftrightarrow SO_4^{2^2} + 4 H^+ + 2 e^-$	-5.321 ± 0.082	3	
$H_2S(g) + 4 H_2O(l) \Leftrightarrow SO_4^{2-} + 10 H^+ + 8 e^-$	-41.695 ± 0.115	3	
$Cl(g) + e^{-} \Leftrightarrow Cl^{-}$	41.437 ± 0.021	3	
$\operatorname{Cl}_2(g) + 2 e^{-} \Leftrightarrow 2 \operatorname{Cl}^{-}$	45.976 ± 0.029	3	
$\mathrm{HCl}(\mathrm{g}) \Leftrightarrow \mathrm{Cl}^- + \mathrm{H}^+$	6.293 ± 0.027	3	
$K(cr) \Leftrightarrow K^+ + e^-$	49.493 ± 0.020	3	
$K(g) \Leftrightarrow K^+ + e^-$	60.089 ± 0.142	3	
$KAl_{2}(AlSi_{3}O_{10})(OH)_{2}(muscovite) + H^{+} \Leftrightarrow 3 Al^{3+} + 3 H_{4}SiO_{4}(aq) + K^{+}$	14.600	4	
$K_2AI_{10}Si_{14}O_{40}(OH)_8(illite,idealized2) + 8 H_2O(1) + 32 H'$	28.540	4	
$K_2Al_{14}Si_{22}O_{60}(OH)_{12}(montmorillonite,K) + 16 H_2O(1) + 44 H^{+}$	57.510	4	
$KAl_3(SO_4)_2(OH)_6(alunite) + 6 H^+ \Leftrightarrow 3 Al^{3+} + 2 SO_4^{-2-} + K^+ + 6 H_2O(l)$	1.610	4	
$KAlSi_{3}O_{8}(microcline) + 4 H_{2}O(1) + 4 H^{+} \Leftrightarrow Al^{3+} + 3 H_{4}SiO_{4}(aq) + K^{+}$	1.780	4	
$KAlSi_{3}O_{8}(orthoclase) + 4 H_{2}O(1) + 4 H^{+} \Leftrightarrow Al^{3+} + 3 H_{4}SiO_{4}(aq) + K^{+}$	0.860	4	
$KFe_3AISi_3O_{10}(OH)_2(annite) + 10 H^+ \Leftrightarrow AI^{3+} + 3 H_4SiO_4(aq) + K^+ + 3 Fe^{2+}$	22.330	4	
$K_3MgAl_9S1_4O_{40}(OH)_8(1llite,1dealized) + 8 H_2O(1) + 32 H_2O(1)$	67.150	4	
$KMg_{3}AlSi_{3}O_{10}(OH)_{2}(phlogopite)+10 H^{+} \Leftrightarrow 3 Mg^{2+}+Al^{3+}+3 H_{4}SiO_{4}(aq)+K^{+}$	36.330	4	
$KAlSi_{3}O_{8}(feldspar,K) + 4 H_{2}O(l) + 4 H^{+} \Leftrightarrow 3 H_{4}SiO_{4}(aq) + K^{+} + Al^{3+}$	0.0832	4	
$Ca(cr) \Leftrightarrow Ca^{2+} + 2 e^{-}$	96.847 ± 0.184	3	
$Ca(g) \Leftrightarrow Ca^{2^+} + 2 e^-$	122.078 ± 0.232	3	
$CaO(cr) + 2 H^+ \Leftrightarrow Ca^{2+} + H_2O(l)$	32.699 ± 0.244	3	
$\operatorname{CaCl}(g) \Leftrightarrow \operatorname{Ca}^{2^+} + \operatorname{CI}^+ + e^-$	97.097 ± 0.895	present	
$CaF(g) \Leftrightarrow Ca^{2+} + F^{-} + e^{-}$	93.239 ± 0.921	present	
$CaCO_{3}(calcite) \Leftrightarrow Ca^{2+} + CO_{3}^{2-}$	-8.460 ± 0.010	30	
$CaCO_3(aragonite) \Leftrightarrow Ca^{2+} + CO_3^{2+}$	-8.340 ± 0.020	4, 29	
$CaMg(CO_3)_2(dolomite) \Leftrightarrow Ca^{2+} + Mg^{2+} + 2CO_3^{2+}$	-17.090	4	
$CaSO_4 \cdot 2H_2O(gypsum) \Leftrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O(1)$	-4.600 ± 0.020	4, 29	
$CaSO_4(anhydrite) \Leftrightarrow Ca^{2+} + SO_4^{2-}$	-4.380	4	
$Ca_{5}(PO_{4})_{3}(OH)(hydroxyapatite) + H^{+} \Leftrightarrow H_{2}O(l) + 3 PO_{4}^{3^{-}} + 5 Ca^{2^{+}}$	-40.470	4	
$CaF_2(\text{fluorite}) \Leftrightarrow Ca^{2\tau} + 2 F$	-10.960	4	
$\frac{\text{Ca}_2\text{Al}_3(\text{SiO}_4)_3\text{OH}(\text{clinozoisite})+13 \text{ H}^{\top} \Leftrightarrow 3 \text{ Al}^{3^{\top}}+3 \text{ H}_4\text{SiO}_4(\text{aq})+2 \text{ Ca}^{2^{+}} \text{ H}_2\text{O}(1)}{\text{Ca}_2\text{Al}^{3^{-}}+3 \text{ H}_4\text{SiO}_4(\text{aq})+2 \text{ Ca}^{2^{+}} \text{ H}_2\text{O}(1)}$	43.610	4	
$Ca_2Al_2Fe(SiO_4)(Si_2O_7)OOH(epidote) + 13 H' + e^{-2H}$	45.430	4	
$Ca_2Mg_5Si_8O_{22}(OH)_2(tremolite)+8H_2O(l)+14H^+ \Leftrightarrow 5Mg^{2+}+8H_4SiO_4(aq)+2Ca^{2+}$	57.700	4	
$Ca_{3}Fe_{2}(SiO_{4})_{3}(andradite) + 12 H^{+} + 2 e^{-} \Leftrightarrow 3 H_{4}SiO_{4}(aq) + 3 Ca^{2+} + 2 Fe^{2+}$	55.100	4	
$CaAI_{14}SI_{22}O_{60}(OH)_{12}$ (montmorillonite, Ca) + 16 H ₂ O(l) + 44 H ⁺	41.880	4	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$CaAl_2Si_2O_8(anorthite, hexagonal) + 8 H^+ \Leftrightarrow 2 Al^{3+} + 2 H_4SiO_4(aq) + Ca^{2+}$	26.700	4	
$CaAl_2Si_2O_8(anorthite, triclinic) + 8 H^+ \Leftrightarrow 2 Al^{3+} + 2 H_4SiO_4(aq) + Ca^{2+}$	26.370	4	
$CaO(s) + 2 H^+ \Leftrightarrow Ca^{2+} + H_2O(l)$	32.700	4	
$MnO_{2}(birnessite-type) + 2 e^{-} + 4 H^{+} \Leftrightarrow Mn^{2+} + 2 H_{2}O(1)$	43.597	4	
$MnOOH(manganite) + e^{-} + 3 H^{+} \Leftrightarrow Mn^{2+} + 2 H_2O(l)$	25.267	4	
$MnCO_3(rhodochrosite) \Leftrightarrow CO_3^{2^-} + Mn^{2^+}$	-10.540	4	
$MnO_2(pyrolusite) + 4 H^+ + 2 e^- \Leftrightarrow Mn^{2+} + 2 H_2O(1)$	41.550	4	
$MnS(alabandite) + 4 H_2O(1) \Leftrightarrow SO_4^{2-} + Mn^{2+} + 8 H^+ + 8 e^-$	-34.110	4	
$Fe(OH)_{3}(s) + 3 H^{+} \Leftrightarrow Fe^{3+} + 3 H_{2}O(1)$	4.890	4	
$FeCO_3(siderite) \Leftrightarrow Fe^{2+} + CO_3^{2-}$	-10.570	4	
Fe_2O_3 (hematite) + 6 H ⁺ + 2 e ⁻ \Leftrightarrow 2 Fe ²⁺ + 3 H ₂ O(l)	22.400	4	
$FeS(mackinawite) + 4 H_2O(1) \Leftrightarrow Fe^{2+} + SO_4^{2-} + H^+ + 8 e^{-1}$	-38.323	4	
$\operatorname{FeS}(s) + 4 \operatorname{H}_2O(l) \Leftrightarrow \operatorname{Fe}^{2^+} + \operatorname{SO}_4^{2^-} + 8 \operatorname{H}^+ + 8 \operatorname{e}^-$	-37.603	4	
$Fe_3(PO_4)_2 \cdot 8H_2O$ (vivianite) $\Leftrightarrow 3 Fe^{2+} + 2 PO_4^{3-} + 8 H_2O(1)$	-36.000	4, 29	
$Fe_2Si_2O_6(s) + 2 H_2O(l) + 4 H^+ \Leftrightarrow 2 H_4SiO_4(aq) + 2 Fe^{2+}$	10.600	4	
$Fe_3Al_2(SiO_4)_3(almandine) + 12 H^+ \Leftrightarrow 2 Al^{3+} + 3 H_4SiO_4(aq) + 3 Fe^{2+}$	33.410	4	
Fe_3O_4 (magnetite) + 8 H ⁺ + 2 e ⁻ \Leftrightarrow 3 Fe^{2+} + 4 H ₂ O(1)	30.650	4	
Fe_7S_8 (pyrrhotite) + 32 H ₂ O(1) \Leftrightarrow 8 SO ₄ ⁻² + 7 Fe ²⁺ + 64 H ⁺ + 62 e ⁻	-321.280	4	
$FeCl_2(lawrencite) \Leftrightarrow 2 Cl^- + Fe^{2+}$	6.820	4	
$FeCl_3(molysite) + e^- \Leftrightarrow 3 Cl^- + Fe^{2+}$	24.560	4	
FeOOH(goethite) + 3 H ⁺ + e ⁻ \Leftrightarrow Fe ²⁺ + 2 H ₂ O(1)	11.290	4	
$FeS_2(pvrite) + 8 H_2O(1) \Leftrightarrow 2 SO_4^{2-} + Fe^{2+} + 16 H^+ + 14 e^{-}$	-85.950	4	
$FeSiO_3(ferrosilite) + H_2O(1) + 2 H^+ \Leftrightarrow Fe^{2+} + H_4SiO_4(aq)$	7.420	4	
$Fe_2Si_2O_5(OH)_4$ (greenalite) + 6 H ⁺ \Leftrightarrow 3 Fe ²⁺ + 2 H ₄ SiO ₄ (aq) + H ₂ O(1)	22.590	4	
$Fe_2SiO_4(favalite) + 4 H^+ \Leftrightarrow 2 Fe^{2+} + H_4SiO_4(aq)$	19.050	4	
$Co(cr) \Leftrightarrow Co^{2+} + 2e^{-}$	9.530 ± 0.175	31	
$CoO(cr) + 2 H^+ \Leftrightarrow Co^{2+} + H_2O(1)$	12.399 ± 0.326	31	*
β -Co(OH) ₂ +2 H ⁺ \Leftrightarrow Co ²⁺ + 2 H ₂ O(1)	12.430 ± 0.170	31	
$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}$	3.037 ± 0.018	31	*
β -Co(IQ ₂) ₂ +12 H ⁺ + 12 e ⁻ \Leftrightarrow Co ²⁺ + 2 I ⁻ + 6 H ₂ O(I)	218.731 ± 0.293	31	*
$\frac{p + co(10)}{Co(10)} + \frac{2}{12} + \frac{12}{12} + \frac{12}$	218.025 ± 0.328	31	*
$\frac{1}{a - \cos S + H^+} \Leftrightarrow \cos^{2+} + HS^-$	-7.440 ± 0.120	31	
$\beta - \cos^{2} + H^{+} \Leftrightarrow \cos^{2+} + HS^{-}$	$-11\ 100 \pm 1\ 700$	31	
$g = CoSO_4 + GH_2O \iff Co^{2+} + 6H_2O(1) + SO_4^{2-}$	-2.229 ± 0.279	31	*
$\frac{\partial c}{\partial c} \cos(\frac{1}{2} \cos \frac{1}{2} \cos $	-2.124 ± 0.467	31	*
$\frac{p \cos \theta_4 \sin 2\theta}{\cos \theta_4 \cos 2\theta} \Leftrightarrow \frac{1}{\cos \theta_4} \cos \theta_4 \sin \theta_$	-2.245 ± 0.058	31	
$\frac{(1)}{(2)} = \frac{(2)}{(2)} + $	-51.640 + 2.012	31	*
$\frac{(1.5)}{(1.5)} \frac{(1.5)}{(1.5)} \frac{(1.5)}{(1.$	-27.929 ± 0.883	31	*
$Co(Co_2(cr) \Leftrightarrow Co^{2+} + Co_2^{2-})$	-11.027 ± 0.003	31	*
$C_0CO_2 \cdot 5.5H_2O(cr) \hookrightarrow C_0^{2+} + CO_2^{2-} + 5.5H_2O(1)$	-7577 ± 0.049	31	*
$Ni(cr) \hookrightarrow Ni^{2+} + 2e^{-1}$	$\frac{-7.577 \pm 0.049}{8.019 \pm 0.135}$	10	
$NiO(cr) + 2 H^+ \simeq Ni^{2+} + HO(1)$	12.483 ± 0.154	31	*
$\frac{1}{100} \frac{1}{100} + 2 H \Leftrightarrow H^{2} + 2 H \odot H^{2}$	12.405 ± 0.104 11.029 ± 0.280	31	*
$\frac{1}{10000000000000000000000000000000000$	3.045 ± 0.014	10	
$\frac{1}{100} \frac{1}{200} \frac{1}{200} \frac{1}{200} \frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	3.045 ± 0.014 218 696 ± 0.277	10	
$\frac{1}{10} \frac{1}{10} \frac$	217.096 ± 0.277	10	
$\frac{1}{\alpha} \operatorname{NiS} + \operatorname{H}^{+} \hookrightarrow \operatorname{Ni}^{2+} + \operatorname{HS}^{-}$	0.508 ± 0.464	21	*
$R - NiS + H^+ \rightarrow Ni^{2+} + HS^-$	-9.500 ± 0.404 -10.128 ± 0.464	31	*
$\frac{p - N(S + H)}{N(S + H)} \leftrightarrow \frac{N(S + H)}{N(S + H)} \leftrightarrow $	-10.128 ± 0.404	10	
$\frac{1}{100} + \frac{1}{100} + \frac{1}$	-2.207 ± 0.019 -51 /8/ \pm 2 106	10	
$\frac{1}{1} \frac{1}{1} \frac{1}$	-31.404 ± 2.100 28 100 ± 0.500	10	
$\frac{1}{1} \frac{1}{1} \frac{1}$	-20.100 ± 0.300 -10.005 ± 0.102	10	
$\frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$	-10.335 ± 0.103 7 525 ± 0.106	10	
$\frac{1}{100} + \frac{1}{100} + \frac{1}$	-7.323 ± 0.100	10	
$NI(g) \Leftrightarrow NI^- + 2 e$	(5.413 ± 1.4)	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$NiF_2(cr) \Leftrightarrow Ni^{2+} + 2 F^{-}$	-0.181 ± 1.429	present	
$NiCl_2(cr) \Leftrightarrow Ni^{2+} + 2 Cl^{-}$	8.666 ± 0.144	present	
$NiCl_2 \cdot 2H_2O(cr) \Leftrightarrow Ni^{2+} + 2 C\Gamma + 2 H_2O(l)$	4.924 ± 0.262	present	
$NiCl_2 \cdot 4H_2O(cr) \Leftrightarrow Ni^{2+} + 2 Cl^- + 4 H_2O(l)$	3.823 ± 0.232	present	
$NiBr_2(cr) \Leftrightarrow Ni^{2+} + 2 Br^{-}$	10.172 ± 0.449	present	
$NiI_2(cr) \Leftrightarrow Ni^{2+} + 2 I^-$	9.611 ± 0.211	present	
$NiS_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow Ni^{2+} + 2 HS^-$	-17.965 ± 1.499	present	
$Ni_3S_2(cr) + 2 H^+ \Leftrightarrow 3 Ni^{2+} + 2 HS^- + 2 e^-$	-17.228 ± 0.891	present	
$Ni_9S_8(cr) + 8 H^+ \Leftrightarrow 9 Ni^{2+} + 8 HS^- + 2 e^-$	-75.821 ± 3.591	present	
$NiSO_4(cr) \Leftrightarrow Ni^{2+} + SO_4^{2-}$	4.746 ± 0.315	present	
$\alpha - \text{NiSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Ni}^{2+} + \text{SO}_4^{2-} + 6\text{H}_2\text{O}(1)$	-2.251 ± 0.245	present	
$\beta \text{-NiSO}_4 \cdot 6\text{H}_2\text{O} \Leftrightarrow \text{Ni}^{2+} + \text{SO}_4^{2-} + 6\text{H}_2\text{O}(\textbf{I})$	-2.155 ± 0.356	present	
$NiAs(cr) + 4 H_2O(l) \Leftrightarrow Ni^{2+} + AsO_4^{3-} + 8 H^+ + 7 e^-$	-56.238 ± 1.079	present	
$Ni_5As_2(cr) + 8 H_2O(1) \Leftrightarrow 5 Ni^{2+} + 2 AsO_4^{3-} + 6 H^+ + 20 e^-$	-106.722 ± 4.144	present	
$Ni_{11}As_8(cr) + 32 H_2O(I) \Leftrightarrow 11 Ni^{2+} + 8 AsO_4^{3-} + 64 H^+ + 62 e^-$	-457.925 ± 9.017	present	
$Ni_2SiO_4(oliv) + 4 H^+ \Leftrightarrow 2 Ni^{2+} + H_4SiO_4(aq)$	19.418 ± 0.939	present	
$Cu(cr) \Leftrightarrow Cu^{2+} + 2e^{-}$	-11.394 ± 0.273	present	
$Cu(g) \Leftrightarrow Cu^{2+} + 2e^{-}$	40.755 ± 0.344	present	
$CuSO_4(cr) \Leftrightarrow Cu^{2+} + SO_4^{2-}$	2.940 ± 0.353	present	
$Zn(cr) \Leftrightarrow Zn^{2+} + 2e^{-}$	25.789 ± 0.044	present	
$Z_n(g) \Leftrightarrow Z_n^{2^+} + 2e^{-1}$	42.399 ± 0.083	present	
$ZnQ(cr) + 2H^+ \Leftrightarrow Zn^{2+} + H_2Q(l)$	11.188 ± 0.069	present	
$\frac{2}{4} \operatorname{As}(cr) + 4 \operatorname{H}_{2}O(1) \Leftrightarrow \operatorname{As}O_{4}^{3} + 8 \operatorname{H}^{+} + 5 \operatorname{e}^{-}$	-52.592 ± 0.703	3	
$\frac{\operatorname{As}_{2}\mathcal{O}_{\varepsilon}(\operatorname{cr}) + 3\operatorname{H}_{2}\mathcal{O}(\operatorname{l}) \Leftrightarrow 2\operatorname{As}_{2}\mathcal{O}_{\varepsilon}^{3-} + 6\operatorname{H}^{+}}{\operatorname{As}_{2}\mathcal{O}_{\varepsilon}(\operatorname{cr}) + 3\operatorname{H}_{2}\mathcal{O}(\operatorname{l}) \Leftrightarrow 2\operatorname{As}_{2}\mathcal{O}_{\varepsilon}^{3-} + 6\operatorname{H}^{+}}$	-34.539 ± 1.986	3	
$As_4 O_4(\text{cubic}) + 10 \text{ H}_2 O(1) \Leftrightarrow 4 \text{ As} O_4^{3-} + 20 \text{ H}^+ + 8 \text{ e}^-$	-162.999 ± 3.973	3	
As Ω_{4} (monoclinic) + 10 H ₂ $\Omega(1)$ \Leftrightarrow 4 As Ω_{4}^{3-} + 20 H ⁺ + 8 e ⁻	-163273 ± 3974	3	
As $O_{c}(\sigma) + 10 H_{2}O(1) \Leftrightarrow 4 As O_{c}^{3} + 20 H^{+} + 8 e^{-1}$	-152.535 ± 3.983	present	
Se(cr trigonal) + H^+ + 2 e \Leftrightarrow HSe	-7.616 ± 0.355	11	
$\frac{Se(mono) + H^{+} + 2e^{-} \Leftrightarrow HSe^{-}}{Se(mono) + H^{+} + 2e^{-} \Leftrightarrow HSe^{-}}$	-7.391 ± 0.356	present	
Se(am) + H^+ + 2 e ⁻ \Leftrightarrow HSe ⁻	-6.570 ± 0.150	12	
$PbSeO_2(cr) \Leftrightarrow Pb^{2+} + SeO_2^{2-}$	-12.500 ± 1.000	11	
$PbSeO_4(cr) \Leftrightarrow Pb^{2+} + SeO_4^{2-}$	-6.900 ± 0.250	11	
$Tl_2SeO_4(cr) \Leftrightarrow 2 Tl^+ + SeO_4^{2-}$	-3.900 ± 0.150	11	
$Z_{n}SeO_{4}(G) \Leftrightarrow Z_{n}^{2} + 6H_{2}O(1) + SeO_{4}^{2}$	-1.538 ± 0.068	11	
$Cd(SeCN)_2(cr)+20 H_2O(1) \Leftrightarrow Cd^{2+}+2 SeO_4^{2-}+40 H^++32 e^-+2 CO_2^{2-}+2 NO_2^{-}$	-411.153 ± 1.528	11	
$\frac{\operatorname{ce}(\operatorname{scer})_2(\operatorname{cr})}{\operatorname{Ag}} \approx 2 \operatorname{Ag}^+ + \operatorname{SeO}_2^{2^-}$	-15.800 ± 0.300	11	
$Ag_2SeO_4(cr) \Leftrightarrow 2Ag^+ + SeO_4^{2-}$	-7.860 ± 0.500	11	
$AgSeCN(cr) + 10 H_{2}O(1) \Leftrightarrow SeO_{4}^{2-} + 20 H^{+} + 16 e^{-} + CO_{2}^{2-} + NO_{2}^{-} + Ag^{+}$	-216724 ± 0.883	11	
$NiSeO_2: 2H_2O(cr) \Leftrightarrow Ni^{2+} + 2H_2O(l) + SeO_2^{2-}$	-5.800 ± 1.000	11	
NiSeQ: $\Theta_2 \Theta_2 \Theta_1 \Theta_2 \Theta_2 \Theta_1 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2 \Theta_2$	-1.381 ± 0.045	11	
$\frac{1}{1} \frac{1}{1} \frac{1}$	-2.440 ± 0.200	11	
$M \circ SeQ_2 : 6H_2 O(cr) \Leftrightarrow M \circ^{2+} + 6 H_2 O(l) + SeQ_2^{2-}$	-5.820 ± 0.250	11	
$MgSeQ_{4}:6H_{2}O(cr) \Leftrightarrow Mg^{2+} + 6H_{2}O(1) + SeQ_{4}^{2-}$	-1.133 ± 0.044	11	
$CaSeO_{2} H_{2}O(cr) \Leftrightarrow Ca^{2+} H_{2}O(1) + SeO_{4}^{2-}$	-6400 ± 0.250	11	
$CaSeO_{4}:2H_{2}O(cr) \Leftrightarrow Ca^{2+} + 2H_{2}O(1) + SeO_{4}^{2-}$	-2.680 ± 0.250	11	
$\frac{\operatorname{CubCO_4} 2 \operatorname{II_2O(1)} \Leftrightarrow \operatorname{Cu}^2 + 2 \operatorname{II_2O(1)} + \operatorname{SOO_4}^2}{\operatorname{SrSeO_2(cr)} \Leftrightarrow \operatorname{Sr}^{2^+} + \operatorname{SeO_2^{2^-}}}$	-6.300 ± 0.500	11	
$BaSeO_{3}(cr) \Leftrightarrow Ba^{2+} + SeO_{3}^{2-}$	-6.500 ± 0.250	11	
$BaSeO_{3}(cr) \Leftrightarrow Ba^{2+} + SeO_{3}^{2-}$	-7.560 ± 0.100	11	
$NH_{\rm H} \text{HSe}(\text{cr}) + 7 \text{ H}_{\circ} \Omega(1) \Leftrightarrow \text{Se}\Omega^{-2} + N\Omega^{-1} + 10 \text{ H}^{+} + 16 \text{ p}^{-1}$	-198.643 ± 0.073	11	
$(NH_{\star})_{\star}$ SeO ₄ (cr) \Leftrightarrow 2 NH ₄ ⁺ + SeO ₄ ²⁻	0.911 ± 0.065	11	
$I_{i_1} SeO_{i_1} H_2O(cr) \Leftrightarrow 2 I_{i_1} H_1 + BOO_4$	1.762 ± 0.065	11	
$N_{2}SeO_{4} \cdot 10H_{2}O(cr) \leftrightarrow 2 Na^{+} + 10H_{2}O(1) + SeO_{4}^{2-}$	-0.681 ± 0.003	11	
$K_{2} = 0.120(1) \leftrightarrow 2.14a + 101120(1) + 5004$ $K_{2} = 0.120(1) \leftrightarrow 2.14a + 101120(1) + 5004$	0.001 ± 0.007	11	
$\frac{1}{2} \frac{1}{2} \frac{1}$	0.636 ± 0.005	11	
$55_{2}55_{4}(61) \leftrightarrow 2.55^{\circ}$, $55_{4}(61)$	0.000 ± 0.000		

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$FeSe_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow Fe^{2+} + 2 HSe^-$	-17.220 ± 2.754	53	*
β -Fe _{1.04} Se + H ⁺ \Leftrightarrow 1.04 Fe ²⁺ + HSe ⁻ + 0.08 e ⁻	-3.503 ± 0.870	53	*
γ -Fe ₃ Se ₄ + 4 H ⁺ + 2 e ⁻ \Leftrightarrow 3 Fe ²⁺ + 4 HSe ⁻	-25.908 ± 5.547	53	*
$\alpha - Fe_7 Se_8 + 8 H^+ + 2 e^- \Leftrightarrow 7 Fe^{2+} + 8 HSe^-$	-36.274 ± 5.175	53	*
$HgSeO_3(cr) \Leftrightarrow Hg^{2+} + SeO_3^{2-}$	-16.200 ± 1.000	11	
$Hg_2SeO_3(cr) \Leftrightarrow Hg_2^{2+} + SeO_3^{2-}$	-15.200 ± 1.000	11	
$\operatorname{SeO}_2(\operatorname{cr}) + \operatorname{H}_2O(I) \Leftrightarrow \operatorname{SeO}_3^{2^-} + 2 \operatorname{H}^+$	-8.154 ± 0.326	present	
$SeO_3(cr) + H_2O(l) \Leftrightarrow SeO_4^{-2} + 2 H^+$	20.356 ± 0.463	present	
$\operatorname{SeCl}_4(\operatorname{cr}) + 3\operatorname{H}_2O(1) \Leftrightarrow \operatorname{SeO}_3^{2-} + 4\operatorname{Cl}^- + 6\operatorname{H}^+$	15.756 ± 0.632	present	
$PbSe(cr) + H^+ \Leftrightarrow HSe^- + Pb^{2+}$	-20.527 ± 1.396	present	
α -ZnSe + H ⁺ \Leftrightarrow HSe ⁻ + Zn ²⁺	-12.045 ± 0.789	present	
$\alpha - CdSe + H^+ \Leftrightarrow HSe^- + Cd^{2+}$	-18.682 ± 0.506	present	
$CdSeO_3(cr) \Leftrightarrow SeO_3^{2-} + Cd^{2+}$	-9.339 ± 1.181	present	
α -HgSe + H ⁺ \Leftrightarrow HSe ⁻ + Hg ²⁺	-45.434 ± 0.787	present	
α -CuSe + H ⁺ \Leftrightarrow HSe ⁻ + Cu ²⁺	-25.463 ± 0.458	present	
β -CuSe + H ⁺ \Leftrightarrow HSe ⁻ + Cu ²⁺	-25.126 ± 0.458	present	
α -Ag ₂ Se + H ⁺ \Leftrightarrow HSe ⁻ + 2 Ag ⁺	-42.845 ± 0.425	present	
$Ni_{0.88}Se(cr) + H^+ + 0.24 e^- \Leftrightarrow HSe^- + 0.88 Ni^{2+}$	-12.757 ± 0.470	present	
$NiSe_2(cr) + 2 H^+ + 2 e^- \Leftrightarrow 2 HSe^- + Ni^{2+}$	-26.896 ± 1.426	present	
$Co_{0.84}Se(cr) + H^+ + 0.32 e^- \Leftrightarrow HSe^- + 0.84 Co^{2+}$	-9.473 ± 1.202	present	
$USe(cr) + H^+ \Leftrightarrow HSe^- + U^{4+} + 2e^-$	37.339 ± 3.189	present	
$Na_3SeO_3(cr) \Leftrightarrow SeO_3^{2-} + 2 Na^+$	3.087 ± 0.353	present	
$Rb_2SeO_4(cr) \Leftrightarrow SeO_4^{2-} + 2 Rb^+$	0.421 ± 0.367	present	
$Ga_2(SeO_3)_3 \cdot 6H_2O(cr) \Leftrightarrow 3 SeO_3^{2-} + 2 Ga^{3+} + 6 H_2O(l)$	-37.000 ± 2.000	present	
$In_2(SeO_3)_3 \cdot 6H_2O(cr) \Leftrightarrow 3 SeO_3^{2-} + 2 In^{3+} + 6 H_2O(l)$	-39.000 ± 2.000	present	
$CoSeO_3 \cdot 2H_2O(cr) \Leftrightarrow SeO_3^{2-} + Co^{2+} + 2H_2O(l)$	-7.900 ± 0.400	present	
$CoSeO_4 \cdot 6H_2O(cr) \Leftrightarrow SeO_4^{2-} + Co^{2+} + 6H_2O(l)$	-1.759 ± 0.043	present	
$FeSeO_3^+ \Leftrightarrow SeO_3^{2-} + Fe^{3+}$	-11.150 ± 0.110	present	
$Fe_2(SeO_3)_3 \cdot 6H_2O(cr) \Leftrightarrow 3 SeO_3^{2-} + 2 Fe^{3+} + 6 H_2O(l)$	-41.580 ± 0.110	present	
$MnSeO_3 \cdot 2H_2O(cr) \Leftrightarrow SeO_3^{2-} + Mn^{2+} + 2H_2O(l)$	-7.600 ± 1.000	present	
$Se(g) + H^+ + 2e^- \Leftrightarrow HSe^-$	26.709 ± 0.444	present	
$Se_2(g) + 2 H^+ + 4 e^- \Leftrightarrow 2 HSe^-$	0.964 ± 0.884	present	
$\operatorname{Se}_{3}(g) + 3 \operatorname{H}^{+} + 6 \operatorname{e}^{-} \Leftrightarrow 3 \operatorname{HSe}^{-}$	-1.203 ± 2.116	present	
$Se_4(g) + 4 H^+ + 8 e^- \Leftrightarrow 4 HSe^-$	-10.903 ± 2.744	present	
$Se_5(g) + 5 H^+ + 10 e^- \Leftrightarrow 5 HSe^-$	-22.593 ± 1.998	present	
$\operatorname{Se}_6(\mathbf{g}) + 6 \operatorname{H}^+ + 12 \operatorname{e}^- \Leftrightarrow 6 \operatorname{HSe}^-$	-31.042 ± 2.292	present	
$\operatorname{Se}_7(g) + 7 \operatorname{H}^+ + 14 \operatorname{e}^- \Leftrightarrow 7 \operatorname{HSe}^-$	-37.045 ± 2.626	present	
$Se_8(g) + 8 H^+ + 16 e^- \Leftrightarrow 8 HSe^-$	-43.353 ± 2.905	present	
$\operatorname{SeO}(g) + 2 \operatorname{H}_2O(l) \Leftrightarrow \operatorname{SeO}_3^{2-} + 4 \operatorname{H}^+ + 2 \operatorname{e}^-$	-14.196 ± 1.132	present	
$\operatorname{SeO}_2(g) + \operatorname{H}_2O(I) \Leftrightarrow \operatorname{SeO}_3^{2-} + 2 \operatorname{H}^+$	1.767 ± 0.550	present	
$H_2Se(g) \Leftrightarrow HSe^- + H^+$	-4.950 ± 0.051	present	
$\operatorname{SeF}_4(\mathbf{g}) + 3 \operatorname{H}_2O(\mathbf{l}) \Leftrightarrow \operatorname{SeO}_3^{2-} + 4 \operatorname{F}^- + 6 \operatorname{H}^+$	2.017 ± 4.252	present	
$\operatorname{SeF}_6(\mathbf{g}) + 4 \operatorname{H}_2O(\mathbf{l}) \Leftrightarrow \operatorname{SeO}_4^{2-} + 6 \operatorname{F}^- + 8 \operatorname{H}^+$	28.489 ± 0.774	present	
$SeOF_2(g) + 2 H_2O(l) \Leftrightarrow SeO_3^{2-} + 2 F^- + 4 H^+$	-11.258 ± 2.836	present	
$\operatorname{SeCl}_2(g) + 3 \operatorname{H}_2O(I) \Leftrightarrow \operatorname{SeO}_3^{2^-} + 2 \operatorname{CI}^- + 6 \operatorname{H}^+ + 2 \operatorname{e}^-$	-19.716 ± 0.843	present	
$Se_2Cl_2(g) + 6 H_2O(I) \Leftrightarrow 2 SeO_3^{2-} + 2 CI^- + 12 H^+ + 6 e^-$	-82.438 ± 1.858	present	
SeOCl ₂ (g) + 2 H ₂ O(l) \Leftrightarrow SeO ₃ ²⁻ + 2 Cl ⁻ + 4 H ⁺	6.363 ± 0.537	present	
$\operatorname{SeBr}_{2}(g) + 3 \operatorname{H}_{2}O(1) \Leftrightarrow \operatorname{SeO}_{3}^{2^{-}} + 2 \operatorname{Br}^{-} + 6 \operatorname{H}^{+} + 2 \operatorname{e}^{-}$	-25.562 ± 3.557	present	
$SeS(g) + 3 H_2O(l) \Leftrightarrow SeO_3^{2^-} + HS^- + 5 H^+ + 2 e^-$	-47.112 ± 1.297	present	
$CSe(g) + 3 H_2O(l) \Leftrightarrow HSe^- + CO_3^{2-} + 5 H^+ + 2 e^-$	14.516 ± 1.652	present	
$CSe_2(g) + 3 H_2O(l) \Leftrightarrow 2 HSe^- + CO_3^{2-} + 4 H^+$	-11.655 ± 1.512	present	
$SiSe(g) + 4 H_2O(1) \Leftrightarrow HSe^- + H_4SiO_4(aq) + 3 H^+ + 2 e^-$	72.498 ± 1.885	present	
$\operatorname{SnSe}(g) + \operatorname{H}^+ \Leftrightarrow \operatorname{HSe}^- + \operatorname{Sn}^{2+}$	8.061 ± 2.785	present	
$PbSe(g) + H^+ \Leftrightarrow HSe^- + Pb^{2+}$	11.148 ± 1.565	present	

$\begin{split} & \text{Bse}_{fg}(p+3 \text{ H}_{2}0(p) + c \approx 2 \text{ Hse } + \text{B}(OH)_{f}(aq) + \text{H}^{+} & \text{S2.961} \pm 3.727 & \text{present} \\ & \text{AlSe}(p) + H^{+} \approx \text{Bs}(e^{+} \Lambda h^{+} + e^{+}) & 114.681 \pm 6.170 & \text{present} \\ & \text{Br}(q) + c & \text{Br} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) - 2 c \approx 2 \text{ Br}^{-} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) \geq 2 c \approx 2 \text{ Br}^{-} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) \geq 2 c \approx 2 \text{ Br}^{-} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) \geq 2 c \approx 2 \text{ Br}^{-} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) \geq 2 c \approx 2 \text{ Br}^{-} & 3c.931 \pm 0.048 & 3 & \text{H} \\ & \text{Br}(q) \geq 2 c \approx 2 \text{ Br}^{-} & 49.766 \pm 0.027 & \text{present} \\ & \text{Bh}(q) \approx 8 h^{+} + c^{-} & 49.766 \pm 0.027 & \text{present} \\ & \text{Bh}(q) \approx 8 h^{+} + c^{-} & 49.766 \pm 0.027 & \text{present} \\ & \text{St}(q) \approx 8 h^{+} + c^{-} & 99.784 \pm 0.137 & 3 & \text{SO}(c) + 2 \text{H}^{-} \approx 8 h^{-} + 10(1) & 42.233 \pm 0.211 & 3 & \text{SO}(c) + 2 \text{H}^{-} \approx 8 h^{-} + 2 \text{CO}^{-} & -2.240 \pm 0.100 & 30 & \text{SS}(s) \\ & \text{St}(Q) \approx 8 h^{-} + 2 \text{CO}^{-} & -2.240 \pm 0.100 & 30 & \text{SS}(s) \\ & \text{St}(Q) \approx 8 h^{-} + 2 \text{CO}_{2}^{-} & -2.7800 & 4 & \text{St}(Q) \approx 9 h^{-} + 10 & -19.310 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 5 h^{-} + 2 \text{H}_{2}(1) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 5 h^{-} + 2 \text{H}_{2}(1) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 2 h^{+} + 2 \text{H}_{2}(1) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 2 h^{+} + 2 \text{H}_{2}(1) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 1 h^{-} h^{-} + 4 h^{-} & -2.1280 & 0.001 & 13 & \text{Z}(2) \text{H}_{2}(h) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 1 h^{-} h^{-} + 4 h^{-} & -2.1280 & 10.00 & 13 & \text{Z}(2) \text{H}_{2}(h) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 1 h^{-} h^{-} + 4 h^{-} & -2.1280 & 0.000 & 13 & \text{Z}(2) \text{H}_{2}(h) & -2.4980 & 4 & \text{St}(Q) \\ & \text{St}(Q) \approx 1 h^{-} h^{-} + 1 h^{-} h^{-} + 1 h^{-} h^{-$	Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$\begin{aligned} & \text{AlSe}(q) + l^* \Leftrightarrow \text{HS}^* + Al^{2^*} + c^* & \text{II4.681 \pm 6.470} \\ & \text{Br}(g) + c^* \Leftrightarrow \text{Br}' & 32.626 \pm 0.037 & 3 \\ & \text{Br}(g) + 2c^* \Leftrightarrow 2Br' & 36.931 \pm 0.048 & 3 \\ & \text{HBr}(g) \otimes Br^* + H^* & 8.845 \pm 0.041 & 3 \\ & \text{Br}(g) + 2c^* \otimes 2Br' & 36.937 \pm 0.059 & \text{present} \\ & \text{Br}(g) + 2c^* \otimes 2Br' & 40.975 \pm 0.027 & \text{present} \\ & \text{Rb}(cr) \Leftrightarrow \text{Rb}^* + c^* & \text{S9.055 \pm 0.144} & \text{present} \\ & \text{Br}(g) \otimes Rb^* + c^* & \text{S9.055 \pm 0.144} & \text{present} \\ & \text{Br}(g) \otimes Rb^* + c^* & \text{S9.055 \pm 0.144} & \text{present} \\ & \text{Sr}(cr) \otimes Sr^{2^*} + 2C^* & \text{S9.055 \pm 0.114} & \text{present} \\ & \text{Sr}(cr) \otimes Sr^{2^*} + 2C^* & \text{S9.055 \pm 0.114} & \text{present} \\ & \text{Sr}(cl) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.055 \pm 0.101} & 30 \\ & \text{Sr}(Cl) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.055 \pm 0.101} & 30 \\ & \text{Sr}(Cl) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.075} & \text{-0.101} & 30 \\ & \text{Sr}(Cl) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.075} & \text{-0.101} & 30 \\ & \text{Sr}(Cl) (cr) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.075} & \text{-0.101} & 30 \\ & \text{Sr}(Cl) (cr) (cr) \otimes Sr^{2^*} + 2C^* & \text{S9.075} & \text{-0.101} & 30 \\ & \text{Sr}(D_0(s) \otimes Sr^{2^*} + 2C^* & \text{S9.075} & \text{-0.101} & 249 \\ & \text{Sr}(N_0)_{5}(cr) \otimes Sr^{2^*} + 2D_0^{2^*} & \text{-0.101} & 24980 & 4 \\ & \text{Sr}(N_0)_{5}(cr) \otimes Sr^{2^*} + 2D_0^{2^*} & \text{-0.101} & 24980 & 4 \\ & \text{Sr}(N_0)_{5}(cr) \otimes Sr^{2^*} + 2D_0^{2^*} & \text{-0.101} & \text{-0.001} & 13 \\ & \text{Sr}(D_0(cr) \otimes Sr^{2^*} + 2D_0^{2^*} & \text{-0.101} & -3.249 \pm 0.100 & 13 \\ & \text{Sr}(D_0(cr) \otimes Sr^{2^*} + 2D_0^{2^*} & \text{-0.101} & -3.249 \pm 0.100 & 13 \\ & \text{Sr}(O_0(cr) \otimes 4H^* \otimes Zr^{4^*} + 4H_0(1) & -3.240 \pm 0.100 & 13 \\ & \text{Zr}(G_0(cr) + 4H^* \otimes Zr^{4^*} + 1H_5(0(1) + 2SO_2^{2^*} & -11.250 \pm 0.096 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr) \otimes Zr^{4^*} + 4F^* & \text{-0.101} & 13.240 \pm 1.048 & 13 \\ & \text{Zr}(cr$	$BSe_2(g) + 3 H_2O(l) + e^- \Leftrightarrow 2 HSe^- + B(OH)_3(aq) + H^+$	52.961 ± 3.727	present	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$AlSe(g) + H^+ \Leftrightarrow HSe^- + Al^{3+} + e^-$	114.681 ± 6.170	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Br(g) + e^- \Leftrightarrow Br^-$	32.626 ± 0.037	3	
$\begin{split} & HBr(g) \oplus Br + H' & 8.845 \pm 0.041 & 3 \\ & Br_{3}(h) + 2 c' \leftrightarrow 2 Br' & 36.387 \pm 0.059 & present \\ & Bb(cr) \oplus Rh^{+} c' & 59.055 \pm 0.144 & present \\ & Bb(cr) \oplus Rh^{+} c' & 59.055 \pm 0.144 & present \\ & Si(cr) \oplus Sh^{2^{+}} + 2 c' & 98.784 \pm 0.137 & 3 \\ & SrC(ar) + 2 H' \oplus Sr^{2^{+}} + H_{2}(1) & 42.233 \pm 0.211 & 3 \\ & SrC(ar) \oplus Sh^{2^{+}} + 2 c' & 7.240 \pm 0.190 & present \\ & SrC(ar) \oplus Sh^{2^{+}} + 2 CT & 7.240 \pm 0.190 & 30 \\ & SrC(ar) \oplus Sh^{2^{+}} + 2 CT & 7.240 \pm 0.190 & 44 \\ & Si(ar) \oplus Sr^{2^{+}} + 9 O_{2}^{1^{-}} & -6.620 \pm 0.020 & 30 \\ & SrC(ar) \oplus Sr^{2^{+}} + 2 O_{2}^{1^{-}} & -6.620 \pm 0.020 & 30 \\ & SrC(ar) \oplus Sr^{2^{+}} + 2 O_{2}^{1^{-}} & -7.800 & 4 \\ & SiHPO_{4}(s) \oplus Sr^{2^{+}} + 2 O_{2}^{1^{-}} & -7.800 & 4 \\ & SiHPO_{4}(s) \oplus Sr^{2^{+}} + 2 O_{2}^{1^{-}} & -1.9310 & 4 \\ & Si(Or)_{2}(s) \oplus Sr^{2^{+}} + 2 O_{2}^{1^{-}} & -1.9310 & 4 \\ & Si(Or)_{2}(s) \oplus Sr^{2^{+}} + 2 NO_{2}^{1^{-}} & -1.9310 & 4 \\ & Si(Or)_{2}(c) \oplus Sr^{2^{+}} + 2 NO_{2}^{1^{-}} & -1.9310 & -1.000 & 13 \\ & Zr(O_{1}(and, fresh) + 4 H' \oplus Zr^{2^{+}} + 4 H_{2}(0(1) & -3.240 \pm 0.100 & 13 \\ & Zr(O_{1}(and, fresh) + 4 H' \oplus Zr^{2^{+}} + 4 H_{2}(0(1) & -3.240 \pm 0.100 & 13 \\ & Zr(SO_{1}(c) \oplus Cr^{2^{+}} + 4 F' & -3.18.30 \oplus 4.000 & 13 \\ & Zr(SO_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -3.18.30 \oplus -4.000 & 13 \\ & Zr(SO_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -3.18.30 \oplus -4.000 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.250 \oplus -0.06 & 13 \\ & Zr(SO_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.251 \oplus -0.06 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.532 \oplus -1.060 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.251 \oplus -0.06 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.532 \oplus -1.060 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.532 \oplus -1.060 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -11.532 \oplus -1.060 & 13 \\ & Zr(G_{1}(c) \oplus Zr^{4^{+}} + 4 F' & -2.504^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -2.514^{-2} & -$	$Br_2(g) + 2 e^- \Leftrightarrow 2 Br^-$	36.931 ± 0.048	3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$HBr(g) \Leftrightarrow Br^- + H^+$	8.845 ± 0.041	3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Br_2(l) + 2 e^- \Leftrightarrow 2 Br^-$	36.387 ± 0.059	present	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$Rb(cr) \Leftrightarrow Rb^+ + e^-$	49.756 ± 0.027	present	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mathbf{Rb}(\mathbf{g}) \Leftrightarrow \mathbf{Rb}^+ + \mathbf{e}^-$	59.055 ± 0.144	present	
$\begin{split} & \text{SrO}(cr) + 2 \ H^+ \Leftrightarrow Sr^{2+} + \text{H}_2(1) & 42.233 \pm 0.211 & 3 \\ & \text{SrC}_1(cr) \Leftrightarrow Sr^{2+} + 2 \ Cr \\ & \text{SrCO}_3(\text{srotnianic}) \Leftrightarrow Sr^{2+} + CO_3^{2-} & -2.250 \pm 0.010 & 30 \\ & \text{SrSO}_4(\text{celestic}) \Leftrightarrow Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(HO}_4(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(HO}_5(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3r^{2+} + 2 \ O_4^{2-} & -2.7.800 & 4 \\ & \text{Sr(OI)}_2(s) \Leftrightarrow 3 \ Sr^{2+} + 2 \ O_4^{2-} & -2.7.800 & 13 \\ & \text{Zr(O)}_2(s) \Leftrightarrow 2r^{4+} + 4 \ Sr(OI) & -2.7.800 & 13 \\ & \text{Zr(So)}_2(s) \Leftrightarrow 2r^{4+} + 4 \ Sr(OI) & -2.804^{2-} & -1.1250 \pm 0.096 & 13 \\ & \text{Zr(So)}_2(s) \Rightarrow 2r^{4+} + 4 \ Sr(OI) + 2 \ SO_4^{2-} & -1.1250 \pm 0.096 & 13 \\ & \text{Zr(So)}_2(s) \Rightarrow 2r^{4+} + 4 \ Sr(OI) + 2 \ SO_4^{2-} & -1.1250 \pm 0.096 & 13 \\ & \text{Zr(So)}_2(s) \Rightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Leftrightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Leftrightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 4 \ Sr(So_4(ac)) & -1.4633 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 1 \ Sr(So_4(ac)) & -1.4643 \pm 1.718 & 13 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 1 \ Sr(So_4(ac)) & -1.4643 \oplus 1.786 & 10 \\ & \text{Zr(O)} \Rightarrow 2r^{4+} + 1 \ Sr(So$	$\operatorname{Sr}(\operatorname{cr}) \Leftrightarrow \operatorname{Sr}^{2^+} + 2 \operatorname{e}^{-1}$	98.784 ± 0.137	3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$SrO(cr) + 2 H^+ \Leftrightarrow Sr^{2+} + H_2O(l)$	42.233 ± 0.211	3	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\mathrm{SrCl}_2(\mathrm{cr}) \Leftrightarrow \mathrm{Sr}^{2+} + 2 \mathrm{Cl}^-$	7.240 ± 0.190	present	
$\begin{split} & SrSO_{4}celestite) \Leftrightarrow Sr^{2+} + SO_4^{2+} & -6.620 + 0.020 & 30 \\ & Sr_3(PO_4)_{2}(s) \Leftrightarrow 3 Sr^{2+} + 2 O_4^{3+} + H^{-} & -19.310 & 4 \\ & Sr(NO_4)_{2}(s) \Leftrightarrow Sr^{2+} + 2 O_4^{3+} + H^{-} & -19.310 & 4 \\ & Sr(NO_4)_{2}(s) \Leftrightarrow Sr^{2+} + 2 O_4^{3+} + H^{-} & -19.310 & 4 \\ & Sr(NO_4)_{2}(s) \Leftrightarrow Sr^{2+} + 2 O_4^{3+} + H^{-} & -19.310 & -7.000 \pm 1.600 & 13 \\ & ZrO_4(m,m,frsh) + 4H^{+} \Leftrightarrow Zr^{4+} + 2 H_2O(1) & -7.000 \pm 1.600 & 13 \\ & Zr(OH_4(m,frsh) + 4H^{+} \Leftrightarrow Zr^{4+} + 4 H_2O(1) & -3.240 \pm 0.100 & 13 \\ & SZ(NO_4)_{2}(s) \oplus Zr^{4+} + 4F^{-} & -31.830 \pm 0.408 & 13 \\ & Zr(SO_4(s) + 4H^{+} \Leftrightarrow Zr^{4+} + 4 H_2O(1) + 2 SO_2^{2-} & -11.250 \pm 0.096 & 13 \\ & Zr(SO_4(s) + 4H^{-} \Leftrightarrow Zr^{4+} + H_4SO_4(aq) & -14.623 \pm 1.718 & 13 \\ & Zr(s) \oplus Zr^{4+} + 4 e^{-} & 92.590 \pm 1.616 & present \\ & Zr(Q) \oplus Zr^{4+} + 4 e^{-} & 92.590 \pm 1.616 & present \\ & ZrO_4(g) + 2 H^{+} \Leftrightarrow Zr^{4+} + H_2O(1) + 2 e^{-} & 139.492 \pm 5.019 & present \\ & ZrO_4(g) + 2 H^{+} \Leftrightarrow Zr^{4+} + H_2O(1) & 123.405 \pm 8.398 & present \\ & ZrO_4(g) + 2 H^{+} \Leftrightarrow Zr^{4+} + H^{+} + 5 e^{-} & 81.258 \pm 1.623 & present \\ & ZrH_4(c) \Leftrightarrow Zr^{4+} + H^{+} + 5 e^{-} & 149.155 \pm 1.634 & present \\ & ZrH_4(g) \Leftrightarrow Zr^{4+} + 3 F^{+} + e^{-} & 149.155 \pm 1.634 & present \\ & ZrH_4(g) \Leftrightarrow Zr^{4+} + 3 F^{+} + 2 e^{-} & 104.902 \pm 1.654 & present \\ & ZrH_4(g) \Leftrightarrow Zr^{4+} + 1 F^{+} + 2 e^{-} & 104.912 \pm 1.654 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 2 H^{+} + 2 e^{-} & 104.912 \pm 1.634 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} & 111.532 \pm 1.634 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} & 111.532 \pm 1.634 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} & 104.912 \pm 1.635 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{-} & 3.508 \pm 1.683 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{-} & 2e^{-} & 111.532 \pm 1.634 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{+} + 2 e^{-} & 126.225 & 51.645 \pm 2.796 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{-} & 2e^{-} & 72.107 \pm 2.283 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{+} + 2 e^{-} & 72.107 \pm 2.283 & present \\ & ZrH_3(g) \Leftrightarrow Zr^{4+} + 4 F^{+} + 2 e^{-} & 72.107 \pm 2.283 & present \\ & ZrH$	$SrCO_3(strontianite) \Leftrightarrow Sr^{2+} + CO_3^{2-}$	-9.250 ± 0.010	30	
$\begin{split} & Sr_2(PO_2)_{2}(s) \Leftrightarrow 3 Sr^{2+} 2 PO_4^{3+} H^{2} & -27.800 & 4 \\ & SrHPO_4(s) \Leftrightarrow Sr^{2+} PO_4^{3+} H^{2} & -19.310 & 4 \\ & Sr(OH_2(s) \Rightarrow 2H^{2+} ST^{2+} 2 H_2O(1) & 24.980 & 4 \\ & Sr(OO_3)_{2}(cr) \Leftrightarrow Sr^{2+} + 2 H_2O(1) & -7.000 \pm 0.00 & 13 \\ & ZrO_4(mono) + 4H^{2} \Leftrightarrow Zr^{4+} + 2 H_2O(1) & -7.000 \pm 0.00 & 13 \\ & ZrO_4(mono) + 4H^{2} \Leftrightarrow Zr^{4+} + 4 H_2O(1) & -3.240 \pm 0.100 & 13 \\ & Zr(OH_2(am,fresh) + 4H^{2} \Leftrightarrow Zr^{4+} + 4 H_2O(1) & -3.240 \pm 0.100 & 13 \\ & Zr(OH_2(am,fresh) + 2T^{4+} + F^{2} & -3.1830 \pm 0.408 & 13 \\ & Zr(SO_4)_{2} \circ PH_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-2} & -11.250 \pm 0.096 & 13 \\ & Zr(SO_4)_{2} \circ PH_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-2} & -11.250 \pm 0.096 & 13 \\ & Zr(SO_4)_{2} \circ PH_2O(cr) \Leftrightarrow Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(cr) \Leftrightarrow Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 4 e^{-2} & 29.250 \pm 1.616 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 81.258 \pm 1.623 \\ & present \\ & Zr(Q) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 1^{+} 5 e^{-2} & 70.817 \pm 1.644 \\ & present \\ & ZrF_4(g) \oplus Zr^{4+} + 3 F + e^{-2} & 70.817 \pm 1.818 \pm 1.638 \\ & present \\ & ZrC_4(g) \oplus Zr^{4+} + 4 F^{-2} & 70.817 \pm 1.188 \\ & ZrF_4(g) \oplus Zr^{4+} + 4 F^{-2} & 70.817 \pm 1.188 \\ & ZrF_4(g) \oplus Zr^{4+} + 4 F^{-2} & 70.817 \pm 1.188 \\ & ZrF_4(g) \oplus Zr^{4+} + 4 F^{-2} & 70.817 \pm 1.188 \\ & ZrF_4(g) \oplus Zr^{4+} + 4 F^{-2} & 70.817 \pm 1.188 \\ & ZrF_4(g) \oplus Zr^{4+} + $	$SrSO_4$ (celestite) $\Leftrightarrow Sr^{2+} + SO_4^{-2-}$	-6.620 ± 0.020	30	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\operatorname{Sr}_3(\operatorname{PO}_4)_2(s) \Leftrightarrow 3 \operatorname{Sr}^{2+} + 2 \operatorname{PO}_4^{-3-}$	-27.800	4	
$\begin{split} & \text{Sr}(OH)_2(s) + 2 \text{ H}^+ \otimes \text{Sr}^{2+} + 2 \text{ H}_2(0) & 24.980 & 4 \\ & \text{Sr}(No)_3(cr) \otimes \text{Sr}^{2+} + 2 \text{ N}_2(0) & 0.404 \pm 0.268 & 3 \\ & \text{Sr}(D_0)_3(cr) \otimes \text{Sr}^{2+} + 2 \text{ N}_2(0) & -7.000 \pm 1.600 & 13 \\ & \text{Zr}(OH)_4(am, fresh) + 4 \text{ H}^+ \otimes \text{Zr}^{4+} + 4 \text{ H}_2(0(1) & -3.240 \pm 0.100 & 13 \\ & \text{B}_2\text{Lr}f_4 \otimes \text{Zr}^{4+} + 4 \text{ F}^- & -31.830 \pm 0.408 & 13 \\ & \text{Zr}(So)_4(cr) + 4 \text{ H}^+ \otimes \text{Zr}^{4+} + 9 \text{ H}_2(0(1) + 2 \text{ SO}_2^{2^-} & -11.250 \pm 0.096 & 13 \\ & \text{Zr}(So)_4(cr) + 4 \text{ H}^+ \otimes \text{Zr}^{4+} + 9 \text{ H}_2(0(1) + 2 \text{ SO}_2^{2^-} & -11.250 \pm 0.096 & 13 \\ & \text{Zr}(Cr) \otimes \text{Zr}^{4+} + 4 \text{ C}^- & 191.903 \pm 1.635 & \text{present} \\ & \text{Zr}(cr) \otimes \text{Zr}^{4+} + 4 \text{ c}^- & 191.903 \pm 1.635 & \text{present} \\ & \text{Zr}(cr) \otimes \text{Zr}^{4+} + 4 \text{ c}^- & 191.903 \pm 1.635 & \text{present} \\ & \text{Zr}O_2(g) + 2 \text{ H}^+ \otimes \text{Zr}^{4+} + \text{H}_2(0(1) + 2 \text{ c}^- & 139.492 \pm 5.019 & \text{present} \\ & \text{Zr}O_2(g) + 4 \text{ H}^+ \otimes \text{Zr}^{4+} + 2 \text{ H}_2(0(1) & 123.405 \pm 8.398 & \text{present} \\ & \text{Zr}P_3(g) \otimes \text{Zr}^{4+} + 3 \text{ c}^- & 149.155 \pm 1.633 & \text{present} \\ & \text{Zr}P_3(g) \otimes \text{Zr}^{4+} + 2 \text{ H}^+ + 5 \text{ c}^- & 149.155 \pm 1.634 & \text{present} \\ & \text{Zr}F_3(g) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.508 \pm 1.698 & \text{present} \\ & \text{Zr}F_3(g) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.508 \pm 1.698 & \text{present} \\ & \text{Zr}F_3(g) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.508 \pm 1.698 & \text{present} \\ & \text{Zr}F_4(g) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.508 \pm 1.698 & \text{present} \\ & \text{Zr}F_4(g) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.508 \pm 1.698 & \text{present} \\ & \text{Zr}Cl_3(cr) \otimes \text{Zr}^{4+} + 4 \text{ F}^- & 3.608 & 1.698 & \text{present} \\ & \text{Zr}Cl_3(g) \otimes \text{Zr}^{4+} + 4 \text{ C}^- & 150.609 \pm 4.436 & \text{present} \\ & \text{Zr}Cl_3(g) \otimes \text{Zr}^{4+} + 3 \text{ C}^+ + 2 \text{ C}^- & 151.645 \pm 2.796 & \text{present} \\ & \text{Zr}Cl_3(cr) \otimes \text{Zr}^{4+} + 3 \text{ C}^+ & 6 & 77.500 & \text{present} \\ & \text{Zr}Cl_3(cr) \otimes \text{Zr}^{4+} + 3 \text{ C}^+ & 6 & 77.500 & \text{present} \\ & \text{Zr}Cl_3(cr) \otimes \text{Zr}^{4+} + 4 \text{ C}^- & 77.500 & \text{present} \\ & \text{Zr}Cl_3(cr) \otimes \text{Zr}^{4+} + 1 \text{ G}^- & 77.500 & \text{present} \\ & \text{Zr}L_3(cr) \otimes \text{Zr}^{4+} + 1 \text{ G}^- & 77.500 & \text{present} \\ $	$SrHPO_4(s) \Leftrightarrow Sr^{2+} + PO_4^{3-} + H^+$	-19.310	4	
$\begin{aligned} & Sr(NO_3)_2(cr) \Leftrightarrow Sr^{4+} + 2 NO_5^+ & > NO_5^+ + 2 NO_5^+ & > NO_5^+ + 2 H_2O(1) & -7.000 \pm 1.600 & 1.3 \\ & Zr(OH_4)_4(am, fresh) + 4 H^+ & > Zr^{4+} + 4 H_2O(1) & -3.240 \pm 0.100 & 1.3 \\ & Zr(SO_4)_2 \cdot 9H_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-} & -11.250 \pm 0.096 & 1.3 \\ & Zr(SO_4)_2 \cdot 9H_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-} & -11.250 \pm 0.096 & 1.3 \\ & Zr(SO_4)_2 \cdot 9H_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-} & -11.250 \pm 0.096 & 1.3 \\ & Zr(SO_4)_2 \cdot 9H_2O(cr) \Leftrightarrow Zr^{4+} + 9 H_2O(1) + 2 SO_4^{2-} & -11.250 \pm 0.096 & 1.3 \\ & Zr(Cr) \Leftrightarrow Zr^{4+} + 4 e^- & 92.590 \pm 1.616 & present \\ & Zr(Q) \Leftrightarrow Zr^{4+} + 4 e^- & 92.590 \pm 1.616 & present \\ & Zr(Q) \Leftrightarrow Zr^{4+} + 4 e^- & 191.903 \pm 1.635 & present \\ & ZrO_2(Q) + 4 H^+ \Leftrightarrow Zr^{4+} + H_2O(1) + 2 e^- & 139.492 \pm 5.019 & present \\ & ZrO_2(Q) + 4 H^+ \Leftrightarrow Zr^{4+} + 1 H^+ 5 e^- & 81.258 \pm 1.623 & present \\ & ZrH_2 \Leftrightarrow Zr^{4+} + 2 H^+ 4 e^- & 70.817 \pm 1.644 & present \\ & ZrF_4(Q) \Leftrightarrow Zr^{4+} + 1 H^+ 5 e^- & 149.155 \pm 1.634 & present \\ & ZrF_2(Q) \Leftrightarrow Zr^{4+} + 3 F^+ e^- & 104.902 \pm 1.654 & present \\ & ZrF_3(Q) \Leftrightarrow Zr^{4+} + 3 F^+ e^- & 3.508 \pm 1.688 & present \\ & ZrF_4(Q) \Leftrightarrow Zr^{4+} + 4 F^- & 3.608 \pm 1.688 & present \\ & ZrF_4(Q) \Leftrightarrow Zr^{4+} + 2 Cr + 3 e^- & 150.690 \pm 4.436 & present \\ & ZrC_1(cr) \Leftrightarrow Zr^{4+} + 2 Cr + 3 e^- & 150.690 \pm 4.436 & present \\ & ZrC_1(cr) \Leftrightarrow Zr^{4+} + 2 Cr + 2 e^- & 51.645 \pm 2.796 & present \\ & ZrC_1(cr) \Leftrightarrow Zr^{4+} + 3 Cr + e^- & 72.107 \pm 2.283 & present \\ & ZrC_1(cr) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 4 Cr & 28.596 \pm 1.632 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 1 + 3 e^- & 72.500 \pm 1.630 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 1 + 3 e^- & 72.500 \pm 1.630 & present \\ & ZrC_1(q) \Leftrightarrow Zr^{4+} + 1 + 3 e^- & 72.500 \pm 1.630 & present \\ & Zr(1_1(q) \Leftrightarrow Zr^{4+} + 1 + 1 + 2$	$Sr(OH)_2(s) + 2 H^+ \Leftrightarrow Sr^{2+} + 2 H_2O(l)$	24.980	4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Sr(NO_3)_2(cr) \Leftrightarrow Sr^{2+} + 2 NO_3^{-}$	0.404 ± 0.268	3	
$\begin{split} & \frac{2r(OH)_{4}(am, fresh) + 4 H^{+} \Leftrightarrow Zr^{4+} + 4 H_{2}O(1)}{13} \\ & \frac{\beta_{2}Tf_{4}}{\beta_{2}} \Leftrightarrow Zr^{4+} + 4 F^{-} \\ & -3.240 \pm 0.100 \\ & 13 \\ \hline & Zr(SO_{4})_{2} \Theta H_{2}O(cr) & Zr^{4+} + 9 H_{2}O(1) + 2 SO_{4}^{2-} \\ & -11.250 \pm 0.096 \\ & 13 \\ \hline & Zr(SO_{4})_{2} \Theta H_{2}O(cr) & Zr^{4+} + 4 F^{-} \\ & 92.590 \pm 1.616 \\ & \text{present} \\ \hline & Zr(cr) & Zr^{4+} + 4 e^{-} \\ \hline & 92.590 \pm 1.616 \\ & \text{present} \\ \hline & Zr(g) & \Rightarrow Zr^{4+} + 4 e^{-} \\ \hline & 92.590 \pm 1.616 \\ & \text{present} \\ \hline & ZrO_{2}(g) + 2 H^{+} & \varphi Zr^{4+} + H_{2}O(1) + 2 e^{-} \\ \hline & 191.903 \pm 1.635 \\ & \text{present} \\ \hline & ZrO_{2}(g) + 4 H^{+} & \varphi Zr^{4+} + 1 H_{2}O(1) \\ \hline & 123.405 \pm 8.398 \\ & \text{present} \\ \hline & ZrH_{C} & \Rightarrow Zr^{4+} + 1 + 3 e^{-} \\ \hline & 2rO_{2}(g) + 4 H^{+} & \varphi Zr^{4+} + 2 H_{2}O(1) \\ \hline & ZrA_{2} & \varphi Zr^{4+} + 2 H^{+} + 6 e^{-} \\ \hline & 70.817 \pm 1.644 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 H^{+} + 6 e^{-} \\ \hline & 70.817 \pm 1.644 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 H^{+} + 6 e^{-} \\ \hline & 70.817 \pm 1.644 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 F^{+} + 2 e^{-} \\ \hline & 149.155 \pm 1.634 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 F^{+} + 2 e^{-} \\ \hline & 149.155 \pm 1.634 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 F^{+} + 2 e^{-} \\ \hline & 149.155 \pm 1.634 \\ & \text{present} \\ \hline & ZrF_{4}(g) & \Rightarrow Zr^{4+} + 2 F^{+} + 2 e^{-} \\ \hline & 149.155 \pm 1.634 \\ & \text{present} \\ \hline & ZrC_{4}(cr) & \Rightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} \\ \hline & 150.690 \pm 4.436 \\ & \text{present} \\ \hline & ZrC_{4}(cr) & \Rightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} \\ \hline & 111.532 \pm 3.838 \\ & \text{present} \\ \hline & ZrC_{4}(cr) & \Rightarrow Zr^{4+} + 2 G^{+} + 2 e^{-} \\ \hline & 111.532 \pm 3.838 \\ & \text{present} \\ \hline & ZrC_{4}(g) & \Rightarrow Zr^{4+} + 3 G^{+} + 2 G^{+} \\ \hline & 28.596 \pm 1.632 \\ & \text{present} \\ \hline & ZrC_{4}(g) & \Rightarrow Zr^{4+} + 4 G^{-} \\ \hline & 28.596 \pm 1.632 \\ & \text{present} \\ \hline & Zr(L_{4}(cr) & \Rightarrow Zr^{4+} + 4 G^{-} \\ \hline & 28.596 \pm 1.632 \\ & \text{present} \\ \hline & Zr(L_{3}(g) & \Rightarrow Zr^{4+} + 4 G^{-} \\ \hline & 28.596 \pm 1.632 \\ & \text{present} \\ \hline & Zr(L_{3}(g) & \Rightarrow Zr^{4+} + 4 G^{-} \\ \hline & 28.596 \pm 1.632 \\ & \text{present} \\ \hline & Zr(L_{3}(g) & \Rightarrow Zr^{4+} + 4 G^{-} \\ \hline & 22.2$	$\operatorname{ZrO}_2(\operatorname{mono}) + 4 \operatorname{H}^+ \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{H}_2O(1)$	-7.000 ± 1.600	13	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Zr(OH)_4(am, fresh) + 4 H^+ \Leftrightarrow Zr^{4+} + 4 H_2O(l)$	-3.240 ± 0.100	13	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\beta - ZrF_4 \Leftrightarrow Zr^{4+} + 4F^{-}$	-31.830 ± 0.408	13	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\operatorname{Zr}(\operatorname{SO}_4)_2 \circ 9\operatorname{H}_2\operatorname{O}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 9\operatorname{H}_2\operatorname{O}(1) + 2\operatorname{SO}_4^{-2-}$	-11.250 ± 0.096	13	
$\begin{split} & Zr(Cr) \Leftrightarrow Zr^{4+} + 4 \ e^{-} & 92.590 \pm 1.616 & \text{present} \\ & Zr(g) \Leftrightarrow Zr^{4+} + 4 \ e^{-} & 191.903 \pm 1.635 & \text{present} \\ & ZrO(g) + 2 \ H^+ \Leftrightarrow Zr^{4+} + H_2O(I) + 2 \ e^{-} & 139.492 \pm 5.019 & \text{present} \\ & ZrO_2(g) + 4 \ H^+ \Leftrightarrow Zr^{4+} + 2 \ H_2O(I) & 123.405 \pm 8.398 & \text{present} \\ & ZrH(cr) \Leftrightarrow Zr^{4+} + I^+ + 5 \ e^{-} & 81.288 \pm 1.623 & \text{present} \\ & z.ZrH_2 \Leftrightarrow Zr^{4+} + 2 \ H^+ + 5 \ e^{-} & 81.288 \pm 1.623 & \text{present} \\ & z.ZrH_2 \Leftrightarrow Zr^{4+} + 2 \ H^+ + 5 \ e^{-} & 70.817 \pm 1.644 & \text{present} \\ & z.ZrH_2 \Leftrightarrow Zr^{4+} + 2 \ H^+ + 5 \ e^{-} & 70.817 \pm 1.644 & \text{present} \\ & ZrF_3(g) \Leftrightarrow Zr^{4+} + 1^{F} + 3 \ e^{-} & 149.155 \pm 1.634 & \text{present} \\ & ZrF_3(g) \Leftrightarrow Zr^{4+} + 2 \ H^- + 2 \ e^{-} & 104.902 \pm 1.654 & \text{present} \\ & ZrF_4(g) \Leftrightarrow Zr^{4+} + 1^{F} + 3 \ e^{-} & 53.848 \pm 1.683 & \text{present} \\ & ZrF_4(g) \Leftrightarrow Zr^{4+} + 1^{F} + 3 \ e^{-} & 69.244 \pm 1.655 & \text{present} \\ & ZrCI(cr) \Leftrightarrow Zr^{4+} + C\Gamma + 3 \ e^{-} & 69.244 \pm 1.655 & \text{present} \\ & ZrCI_2(g) \Leftrightarrow Zr^{4+} + C\Gamma + 3 \ e^{-} & 150.690 \pm 4.436 & \text{present} \\ & ZrCI_2(g) \Leftrightarrow Zr^{4+} + 2 \ C\Gamma + 2 \ e^{-} & 111.532 \pm 3.838 & \text{present} \\ & ZrCI_3(g) \Leftrightarrow Zr^{4+} + 3 \ C\Gamma + e^{-} & 72.107 \pm 2.283 & \text{present} \\ & ZrCI_3(g) \Leftrightarrow Zr^{4+} + 3 \ C\Gamma + e^{-} & 72.107 \pm 2.283 & \text{present} \\ & ZrCI_4(g) \Leftrightarrow Zr^{4+} + 4 \ C\Gamma & 38.008 \pm 1.627 & \text{present} \\ & ZrCI_4(g) \Leftrightarrow Zr^{4+} + 4 \ C\Gamma & 38.008 \pm 1.632 & \text{present} \\ & ZrCI_4(g) \Leftrightarrow Zr^{4+} + 4 \ C\Gamma & 38.008 \pm 1.632 & \text{present} \\ & ZrCI_4(g) \Leftrightarrow Zr^{4+} + 4 \ G^{-} & 75.300 \pm 1.630 & \text{present} \\ & ZrI_4(g) \Leftrightarrow Zr^{4+} + 1 \ H \ 3 \ e^{-} & 75.300 \pm 1.630 & \text{present} \\ & ZrI_3(g) \Leftrightarrow Zr^{4+} + 3 \ F \ e^{-} & 55.225 \pm 3.086 & \text{present} \\ & ZrI_3(g) \Leftrightarrow Zr^{4+} + 3 \ F \ e^{-} & 55.225 \pm 3.086 & \text{present} \\ & ZrI_3(g) \Leftrightarrow Zr^{4+} + 4 \ \Gamma & 44.594 \pm 1.744 & \text{present} \\ & ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \ \Gamma & 44.594 \pm 1.744 & \text{present} \\ & ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \ \Gamma & 57.716 \pm 1.745 & \text{present} \\ & ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \ \Gamma & 57.716 \pm 1.745 & \text{present} \\ & ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \ \Gamma & 57.716 \pm 1.745 & \text{present} \\ & ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \ \Gamma &$	$\operatorname{ZrSiO}_4(\operatorname{cr}) + 4 \operatorname{H}^+ \Leftrightarrow \operatorname{Zr}^{4+} + \operatorname{H}_4\operatorname{SiO}_4(\operatorname{aq})$	-14.623 ± 1.718	13	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Zr}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4+} + 4 \operatorname{e}^{-}$	92.590 ± 1.616	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{Zr}(g) \Leftrightarrow \operatorname{Zr}^{4^+} + 4 e^-$	191.903 ± 1.635	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ZrO(g) + 2 H^+ \Leftrightarrow Zr^{4+} + H_2O(l) + 2 e^-$	139.492 ± 5.019	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrO}_2(g) + 4 \operatorname{H}^+ \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{H}_2O(l)$	123.405 ± 8.398	present	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\operatorname{ZrH}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{4^+} + \operatorname{H}^+ + 5 \operatorname{e}^-$	81.258 ± 1.623	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ε -ZrH ₂ \Leftrightarrow Zr ⁴⁺ + 2 H ⁺ + 6 e ⁻	70.817 ± 1.644	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrF}(g) \Leftrightarrow \operatorname{Zr}^{4^+} + F^- + 3 e^-$	149.155 ± 1.634	present	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrF}_2(\mathbf{g}) \Leftrightarrow \operatorname{Zr}^{4+} + 2 \operatorname{F}^{-} + 2 \operatorname{e}^{-}$	104.902 ± 1.654	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrF}_{3}(g) \Leftrightarrow \operatorname{Zr}^{++} + 3 \operatorname{F}^{-} + e^{-}$	53.848 ± 1.683	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrF}_4(\mathbf{g}) \Leftrightarrow \operatorname{Zr}^{++} + 4 \operatorname{F}^{-}$	3.508 ± 1.698	present	
$ZrCl(g) \Leftrightarrow Zr^{4+} + C\Gamma + 3 e^{-}$ 150.690 ± 4.436present $ZrCl_2(cr) \Leftrightarrow Zr^{4+} + 2 C\Gamma + 2 e^{-}$ 51.645 ± 2.796 present $ZrCl_2(g) \Leftrightarrow Zr^{4+} + 2 C\Gamma + 2 e^{-}$ 111.532 ± 3.838 present $ZrCl_3(cr) \Leftrightarrow Zr^{4+} + 3 C\Gamma + e^{-}$ 40.718 ± 1.702 present $ZrCl_3(g) \Leftrightarrow Zr^{4+} + 3 C\Gamma + e^{-}$ 40.718 ± 1.702 present $ZrCl_4(cr) \Leftrightarrow Zr^{4+} + 4 C\Gamma$ 28.596 ± 1.632 present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4 C\Gamma$ 28.596 ± 1.632 present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4 C\Gamma$ 38.008 ± 1.627 present $ZrBr_4(g) \Leftrightarrow Zr^{4+} + 4 Br^{-}$ 48.920 ± 1.750 present $ZrI(cr) \Leftrightarrow Zr^{4+} + 1 + 3 e^{-}$ 75.300 ± 1.630 present $Zrl_2(cr) \Leftrightarrow Zr^{4+} + 1 + 3 e^{-}$ 162.849 ± 2.520 present $Zrl_2(g) \Leftrightarrow Zr^{4+} + 1 + 3 e^{-}$ 124.337 ± 3.247 present $Zrl_2(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + 2 e^{-}$ 124.337 ± 3.247 present $Zrl_3(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-}$ 87.211 ± 1.789 present $Zrl_3(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-}$ 87.211 ± 1.789 present $Zrl_4(g) \Leftrightarrow Zr^{4+} + 4 \Gamma$ 44.594 ± 1.744 present	$\operatorname{ZrCl}(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{+} + \operatorname{Cl}^{+} + 3 e^{-}$	69.244 ± 1.655	present	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\operatorname{ZrCl}(\mathfrak{g}) \Leftrightarrow \operatorname{Zr}^{-1} + \operatorname{Cl}^{+} + \mathfrak{g} \mathfrak{e}^{-1}$	150.690 ± 4.436	present	
$ZrCl_2(g) \Leftrightarrow Zr^{+} + 2Cl + 2e$ $I11.532 \pm 3.838$ present $ZrCl_3(cr) \Leftrightarrow Zr^{4+} + 3Cl^+ e^ 40.718 \pm 1.702$ present $ZrCl_3(g) \Leftrightarrow Zr^{4+} + 3Cl^+ e^ 72.107 \pm 2.283$ present $ZrCl_4(cr) \Leftrightarrow Zr^{4+} + 4Cl^ 28.596 \pm 1.632$ present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4Cl^ 28.596 \pm 1.632$ present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4Br^ 48.920 \pm 1.750$ present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4Br^ 48.920 \pm 1.750$ present $ZrI_1(cr) \Leftrightarrow Zr^{4+} + 1^+ 3e^ 162.849 \pm 2.520$ present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2l^+ 2e^ 62.746 \pm 2.384$ present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 3l^+ e^ 52.225 \pm 3.086$ present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3l^+ e^ 87.211 \pm 1.789$ present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4l^ 44.594 \pm 1.744$ present	$\operatorname{ZrCl}_2(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^{*+} + 2\operatorname{Cl}^{*+} + 2\operatorname{cl}^{*}$	51.645 ± 2.796	present	
$ZrCl_3(cr) \Leftrightarrow Zr^{4+} + 3 Cl^+ e^{-1}$ $40./18 \pm 1./02^{-1}$ present $ZrCl_3(g) \Leftrightarrow Zr^{4+} + 3 Cl^+ e^{-1}$ 72.107 ± 2.283^{-1} present $ZrCl_4(cr) \Leftrightarrow Zr^{4+} + 4 Cl^{-1}$ 28.596 ± 1.632^{-1} present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4 Cl^{-1}$ 28.596 ± 1.632^{-1} present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4 Cl^{-1}$ 38.008 ± 1.627^{-1} present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4 Br^{-1}$ 48.920 ± 1.750^{-1} present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 1^{-1} + 3 e^{-1}$ 48.920 ± 1.750^{-1} present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 1^{-1} + 3 e^{-1}$ 162.849 ± 2.520^{-1} present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2 \Gamma + 2 e^{-1}$ 62.746 ± 2.384^{-1} present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 2 \Gamma + 2 e^{-1}$ 124.337 ± 3.247^{-1} present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-1}$ 52.225 ± 3.086^{-1} present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-1}$ 87.211 ± 1.789^{-1} present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \Gamma^{-1}$ 44.594 ± 1.744^{-1} present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4 \Gamma^{-1}$ 57.716 ± 1.745^{-1} present	$\operatorname{ZrCl}_2(g) \Leftrightarrow \operatorname{Zr}^+ + 2\operatorname{Cl}^+ + 2\operatorname{e}^-$	$\frac{111.532 \pm 3.838}{40.719 \pm 1.702}$	present	
$ZrCl_3(g) \Leftrightarrow Zr^{4+} + 3Cl^{+}e$ 72.107 ± 2.283 present $ZrCl_4(cr) \Leftrightarrow Zr^{4+} + 4Cl^{-}$ 28.596 ± 1.632 present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4Cl^{-}$ 38.008 ± 1.627 present $ZrBr_4(g) \Leftrightarrow Zr^{4+} + 4Br^{-}$ 48.920 ± 1.750 present $ZrI(cr) \Leftrightarrow Zr^{4+} + 1 + 3e^{-}$ 48.920 ± 1.750 present $ZrI(g) \Leftrightarrow Zr^{4+} + 1 + 3e^{-}$ 75.300 ± 1.630 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ 162.849 ± 2.520 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ 62.746 ± 2.384 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 3\Gamma + 2e^{-}$ 124.337 ± 3.247 present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ 52.225 ± 3.086 present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ 87.211 ± 1.789 present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4\Gamma$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4\Gamma$ 57.716 ± 1.745 present	$\operatorname{ZrCl}_3(\operatorname{cr}) \Leftrightarrow \operatorname{Zr}^+ + 3 \operatorname{Cl} + e$	$\frac{40.18 \pm 1.02}{72.107 \pm 2.202}$	present	
$ZrCl_4(cr) \Leftrightarrow Zr^4 + 4Cl$ $Zs.596 \pm 1.632$ present $ZrCl_4(g) \Leftrightarrow Zr^{4+} + 4Cl$ 38.008 ± 1.627 present $ZrBr_4(g) \Leftrightarrow Zr^{4+} + 4Br^ 48.920 \pm 1.750$ present $ZrI(cr) \Leftrightarrow Zr^{4+} + 1 + 3e^ 48.920 \pm 1.750$ present $ZrI(g) \Leftrightarrow Zr^{4+} + 1 + 3e^ 75.300 \pm 1.630$ present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 1 + 3e^ 162.849 \pm 2.520$ present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^ 62.746 \pm 2.384$ present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 3\Gamma + 2e^ 52.225 \pm 3.086$ present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3\Gamma + e^ 87.211 \pm 1.789$ present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4\Gamma$ 44.594 ± 1.744 present	$\operatorname{ZrCl}_{3}(g) \Leftrightarrow \operatorname{Zr}^{-} + 3\operatorname{Cl}^{+} e$	$\frac{12.10}{\pm 2.283}$	present	
$ZrCt_4(g) \Leftrightarrow Zr^{4+} + 4Cr$ 38.008 ± 1.627 present $ZrBr_4(g) \Leftrightarrow Zr^{4+} + 4Br^{-}$ 48.920 ± 1.750 present $ZrI(cr) \Leftrightarrow Zr^{4+} + 1^{-} + 3e^{-}$ 75.300 ± 1.630 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 1^{-} + 3e^{-}$ 162.849 ± 2.520 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 21^{-} + 2e^{-}$ 62.746 ± 2.384 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 21^{-} + 2e^{-}$ 62.746 ± 2.384 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 31^{-} + 2e^{-}$ 124.337 ± 3.247 present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 31^{-} + e^{-}$ 52.225 ± 3.086 present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 31^{-} + e^{-}$ 87.211 ± 1.789 present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 41^{-}$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 41^{-}$ 57.716 ± 1.745 present	$ZrCl_4(cr) \Leftrightarrow Zr^{-1} + 4Cl$	$\frac{28.596 \pm 1.632}{28.008 \pm 1.637}$	present	
$ZrBr_4(g) \Leftrightarrow Zr^{-+} + 4Br^{-}$ $48.920 \pm 1.750^{-}$ present $ZrI(cr) \Leftrightarrow Zr^{4+} + \Gamma + 3e^{-}$ $75.300 \pm 1.630^{-}$ present $ZrI(g) \Leftrightarrow Zr^{4+} + \Gamma + 3e^{-}$ $162.849 \pm 2.520^{-}$ present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ $62.746 \pm 2.384^{-}$ present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ $62.746 \pm 2.384^{-}$ present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 3\Gamma + 2e^{-}$ $124.337 \pm 3.247^{-}$ present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ $52.225 \pm 3.086^{-}$ present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ $87.211 \pm 1.789^{-}$ present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4\Gamma^{-}$ $44.594 \pm 1.744^{-}$ present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4\Gamma^{-}$ $57.716 \pm 1.745^{-}$ present	$\operatorname{ZrCl}_4(g) \Leftrightarrow \operatorname{Zr}^{-+} + 4\operatorname{Cl}^{}$	38.008 ± 1.027	present	
$ZrI(cr) \Leftrightarrow Zr^{4+} + I + 3 e^{-}$ 75.300 ± 1.050 present $ZrI(g) \Leftrightarrow Zr^{4+} + I + 3 e^{-}$ 162.849 ± 2.520 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2 \Gamma + 2 e^{-}$ 62.746 ± 2.384 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 2 \Gamma + 2 e^{-}$ 124.337 ± 3.247 present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-}$ 52.225 ± 3.086 present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3 \Gamma + e^{-}$ 87.211 ± 1.789 present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4 \Gamma$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4 \Gamma$ 57.716 ± 1.745 present	$\frac{2 \Gamma B \Gamma_4(g)}{2 \Gamma \Gamma_4} \Leftrightarrow \frac{2 \Gamma \Gamma_4}{2 \Gamma_4} + \frac{1}{2} \Gamma_4 + 2 \Gamma_5$	48.920 ± 1.750 75.300 ± 1.630	present	
$ZrI_1(g) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ 162.349 ± 2.520 present $ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ 62.746 ± 2.384 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 2\Gamma + 2e^{-}$ 124.337 ± 3.247 present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ 52.225 ± 3.086 present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3\Gamma + e^{-}$ 87.211 ± 1.789 present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4\Gamma$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4\Gamma$ 57.716 ± 1.745 present	$Zr1(cr) \Leftrightarrow Zr + 1 + 3e$	75.300 ± 1.030	present	
$ZrI_2(cr) \Leftrightarrow Zr^{4+} + 2I + 2e^{-}$ 02.746 ± 2.364 present $ZrI_2(g) \Leftrightarrow Zr^{4+} + 2I + 2e^{-}$ 124.337 ± 3.247 present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3I^{-} + e^{-}$ 52.225 ± 3.086 present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3I^{-} + e^{-}$ 87.211 ± 1.789 present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4I^{-}$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4I^{-}$ 57.716 ± 1.745 present	$\sum \Gamma(g) \Leftrightarrow \sum \Gamma + 1 + 3 e$	$\frac{102.049 \pm 2.520}{62.746 \pm 2.384}$	present	
$ZrI_2(g) \Leftrightarrow Zr^4 + 3\Gamma + e^ 124.337 \pm 3.247$ present $ZrI_3(cr) \Leftrightarrow Zr^{4+} + 3\Gamma + e^ 52.225 \pm 3.086$ present $ZrI_3(g) \Leftrightarrow Zr^{4+} + 3\Gamma + e^ 87.211 \pm 1.789$ present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4\Gamma$ 44.594 ± 1.744 present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4\Gamma$ 57.716 ± 1.745 present	$ZrI_2(cr) \Leftrightarrow Zr + 2I + 2e$	02.740 ± 2.364	present	
ZrI3(cr) \Leftrightarrow Zr + 51 + eS2.225 \pm 3.060presentZrI3(g) \Leftrightarrow Zr ⁴⁺ + 31 + e87.211 \pm 1.789presentZrI4(cr) \Leftrightarrow Zr ⁴⁺ + 4144.594 \pm 1.744presentZrI4(g) \Leftrightarrow Zr ⁴⁺ + 4157.716 \pm 1.745present	$\Sigma \Gamma I_2(\mathbf{g}) \Leftrightarrow \Sigma \Gamma^- + 2 \mathbf{I}^- + 2 \mathbf{e}^-$ $\mathbf{Zr} \mathbf{I}_2(\mathbf{g}) \Leftrightarrow \mathbf{Zr}^{4+} + 2 \mathbf{I}^- + \mathbf{e}^-$	$\frac{124.337 \pm 3.247}{52.225 \pm 3.086}$	present	
$ZrI_3(g) \Leftrightarrow Zr^{4+} + 4I^ 67.211 \pm 1.765$ present $ZrI_4(cr) \Leftrightarrow Zr^{4+} + 4I^ 44.594 \pm 1.744$ present $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4I^ 57.716 \pm 1.745$ present	$Z_{1}I_{3}(C) \Leftrightarrow Z_{1} + 3I + e$ $Z_{2}I_{1}(C) \Leftrightarrow Z_{2}^{4+} + 3I_{1} + e^{-1}$	32.223 ± 3.080 87 211 ± 1 780	present	
$ZrI_4(c) \Leftrightarrow Zr^{4+} + 4 \Gamma$ $ZrI_4(g) \Leftrightarrow Zr^{4+} + 4 \Gamma$ 57.716 ± 1.745 present	$\sum \Gamma_{3}(g) \Leftrightarrow \sum \Gamma + 5\Gamma + e$ $Z_{r}I_{r}(or) \Leftrightarrow Z_{r}^{4+} + 4\Gamma$	67.211 ± 1.769	present	
$\frac{2114(g)}{10} = \frac{21}{10} = \frac{1}{10} = $	$\frac{2\pi 14(01) \leftrightarrow 2\pi 1 + 41}{7\pi 1}$	44.374 ± 1./44 57 716 ± 1 715	present	
$ 7rS_{c}(r) + 15H^{+} \rightarrow 15HS^{-}$ 01 192 ± 0.970 mesont	$\frac{2 \pi 14(g)}{2 r S_{r}} \leftrightarrow 2 \pi \frac{1}{15} H^{+} \leftrightarrow 15 H^{-}$	$-91 187 \pm 0.870$	present	
$210_{1.5}(07) + 1.5 \text{ II} ~ (-103 \text{ II}) ~ (-103 \text{ II}) ~ (-103 \text{ II}) ~ (-103 \text{ III}) ~ (-103 III$	$ZrS_{1,S}(or) + 1.5 H \leftrightarrow 1.5 HS$	-103 404 + 2.232	nresent	
$2102(0) + 211 + 2105$ -103.404 ± 2.252 present $7rS_{-}(or) + 3 H^{+} \rightarrow 3 HS^{-}$ -111.886 ± 1.308 present	$\frac{2\pi S_2(c_1) + 2\pi T}{2\pi S_2(c_2) + 3H^2} \rightarrow 3HS^2$	-111 886 + 1 308	present	
$Zr(SO_2)_2(cr) \leftrightarrow Tr^{4+} + 2 SO_2^{2-}$ -58 061 + 2 772 present	$Zr(SO_2)_2(cr) \Leftrightarrow Zr^{4+} + 2SO_2^{2-}$	-58.061 + 2 772	nresent	
$Zr(SO_3)_2(r) \Leftrightarrow Zr^{4+} + 2 SO_3^{2-}$ 1.237 ± 1.668 present	$Zr(SO_3)_2(cr) \Leftrightarrow Zr^{4+} + 2 SO_3^{2-}$	1.237 ± 1.668	present	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ZrN(cr) + 3 H_2O(l) \Leftrightarrow Zr^{4+} + NO_3^- + 6 H^+ + 9 e^-$ -72.524 ± 1.654 present $a-Zr(HPO_4)_2 \Leftrightarrow Zr^{4+} + 2 PO_4^{3-} + 2 H^+$ -71.392 ± 4.377 present $Zr(HPO_4)_2 \leftrightarrow Zr^{4+} + 2 PO_4^{3-} + 2 H^+ + H_2O(l)$ -66.204 ± 3.930 present $Zr(cr) + 3 H_2O(l) \Leftrightarrow Zr^{4+} + CO_3^{2-} + 6 H^+ + 8 e^-$ 24.792 ± 1.680 present $Ca_2ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq)$ -69.048 ± 3.177 present
$a-Zr(HPO_4)_2 \Leftrightarrow Zr^{4+} + 2PO_4^{3-} + 2H^+$ -71.392 ± 4.377 present $Zr(HPO_4)_2 \cdot H_2O(cr) \Leftrightarrow Zr^{4+} + 2PO_4^{3-} + 2H^+ + H_2O(l)$ -66.204 ± 3.930 present $ZrC(cr) + 3H_2O(l) \Leftrightarrow Zr^{4+} + CO_3^{2-} + 6H^+ + 8e^ 24.792 \pm 1.680$ present $Ca_2ZrSi_3O_{12}(cr) + 12H^+ + 4e^- \Leftrightarrow 2Ca^{2+} + Zr^{4+} + 3H_4SiO_4(aq)$ -69.048 ± 3.177 present
$Zr(HPO_4)_2 \cdot H_2O(cr) \Leftrightarrow Zr^{4+} + 2PO_4^{3-} + 2H^+ + H_2O(l)$ -66.204 ± 3.930 present $ZrC(cr) + 3H_2O(l) \Leftrightarrow Zr^{4+} + CO_3^{2-} + 6H^+ + 8e^-$ 24.792 ± 1.680 present $Ca_2ZrSi_3O_{12}(cr) + 12H^+ + 4e^- \Leftrightarrow 2Ca^{2+} + Zr^{4+} + 3H_4SiO_4(aq)$ -69.048 ± 3.177 present
$ \begin{array}{c} ZrC(cr) + 3 H_2O(l) \Leftrightarrow Zr^{4+} + CO_3^{-2+} + 6 H^+ + 8 e^- & 24.792 \pm 1.680 \text{ present} \\ Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 2 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 2 Ca^{2+} + Zr^{4+} + 2 H_4SiO_4(aq) & -69.048 \pm 3.177 \text{ present} \\ \hline Ca_2 ZrSi_3O_{12}(cr) + 2 Ca^{2+} + 2 Ca^{2+}$
$Ca_2 Zr Si_3 O_{12}(cr) + 12 H^+ + 4 e^- \Leftrightarrow 2 Ca^{2+} + Zr^{4+} + 3 H_4 SiO_4(aq) -69.048 \pm 3.177 \text{ present}$
$ Ca_3ZrS1_2U_9(cr) + 10 H \Leftrightarrow 3 Ca^- + Zr^- + 2 H_4SiO_4(aq) + H_2O(l) $ 47.344 ± 2.486 present
$SrZrSi_2O_7(cr) + H_2O(l) + 6 H^+ \Leftrightarrow Sr^{2+} + Zr^{4+} + 2 H_4SiO_4(aq) \qquad 4.680 \pm 1.827 \qquad \text{present}$
$Na_{2}ZrSiO_{5}(cr) + 6 H^{+} \Leftrightarrow 2 Na^{+} + Zr^{4+} + H_{4}SiO_{4}(aq) + H_{2}O(l) $ 12.928 ± 3.865 present
$Na_{2}ZrSi_{2}O_{7}(cr) + H_{2}O(l) + 6 H^{+} \Leftrightarrow 2 Na^{+} + Zr^{4+} + 2 H_{4}SiO_{4}(aq) \qquad \qquad 3.214 \pm 2.421 \qquad \text{present}$
$Na_{2}ZrSi_{3}O_{9} \cdot 2H_{2}O(cr) + H_{2}O(l) + 6 H^{+} \Leftrightarrow 2 Na^{+} + Zr^{4+} + 3 H_{4}SiO_{4}(aq) \qquad 14.800 \pm 3.906 \qquad present$
$Na_{2}ZrSi_{4}O_{11}(cr) + 5 H_{2}O(l) + 6 H^{+} \Leftrightarrow 2 Na^{+} + Zr^{4+} + 4 H_{4}SiO_{4}(aq) -14.601 \pm 3.943 \text{ present}$
$Na_{2}ZrSi_{6}O_{15} \cdot 3H_{2}O(cr) + 6H_{2}O(l) + 6H^{+} \Leftrightarrow 2Na^{+} + Zr^{4+} + 6H_{4}SiO_{4}(aq) \qquad 14.889 \pm 5.632 \qquad \text{present}$
$Na_{4}Zr_{2}Si_{3}O_{12}(cr) + 2 H^{+} \Leftrightarrow 4 Na^{+} + 2 Zr^{4+} + 3 H_{4}SiO_{4}(aq) $ 14.721 ± 4.814 present
NaZr ₂ P ₃ O ₁₂ (cr) \Leftrightarrow Na ⁺ + 2 Zr ⁴⁺ + 3 PO ₄ ³⁻ -28.298 ± 4.867 present
$Nb_2O_5(s) + 7 H_2O \Leftrightarrow 2 Nb(OH)_6^- + 2 H^+$ -28.913 ± 0.507 1
$Mo(metal) + 4 H_2O(1) \Leftrightarrow MoO_4^{2^-} + 8 H^+ + 6 e^-$ -19.280 34
$MoO_2(cr) + 2 H_2O(1) \Leftrightarrow MoO_4^{2-} + 4 H^+ + 2 e^-$ -29.570 34
$PbMoO_4(cr) \Leftrightarrow MoO_4^{2-} + Pb^{2+} \qquad -12.980 \pm 0.050 \qquad 54$
$CaMoO_4(cr) \Leftrightarrow MoO_4^{2^2} + Ca^{2^4} \qquad -7.950 \pm 0.050 \qquad 34$
$Sm_2(MoO_4)_3 \cdot xH_2O(cr) \Leftrightarrow 3 MoO_4^{-2} + 2 Sm^{3+}$ -26.100 ± 0.300 36
$\mathrm{NH}_{4}\mathrm{TcO}_{4}(\mathrm{cr}) \Leftrightarrow \mathrm{TcO}_{4}^{-} + \mathrm{NH}_{4}^{+} \qquad -0.910 \pm 0.070 \qquad 14$
$TITcO_4(cr) \Leftrightarrow TcO_4^- + TI^+ \qquad -5.320 \pm 0.120 \qquad 14$
$AgTcO_4(cr) \Leftrightarrow TcO_4^- + Ag^+ \qquad -3.270 \pm 0.130 \qquad 14$
$NaTcO_4 \cdot 4H_2O(s) \Leftrightarrow TcO_4^- + 4H_2O(l) + Na^+$ 0.790 ± 0.040 14
$KTcO_4(cr) \Leftrightarrow TcO_4^- + K^+ \qquad -2.288 \pm 0.026 \qquad 14$
$TcO_{2} \cdot 1.6H_{2}O(s) \Leftrightarrow TcO(OH)_{2}(aq) + 0.6 H_{2}O(l) -8.415 \pm 0.180 \qquad 1$
$TcO_2 \cdot 1.6H_2O(s) + 0.4 H_2O(1) \Leftrightarrow TcO_4 + 4 H^+ + 3 e^37.829 \pm 0.609 \qquad 14$
$\frac{\text{Tc}(\text{cr}) + 4 \text{ H}_2\text{O}(\text{I}) \Leftrightarrow \text{TcO}_4 + 8 \text{ H}^+ + 7 \text{ e}^-}{-54.512 \pm 1.335} \text{ present}$
$Tc(g) + 4 H_2O(l) \Leftrightarrow TcO_4^- + 8 H^+ + 7 e^-$ 55.984 ± 4.579 present
$\frac{\text{TcO}(g) + 3 \text{ H}_2\text{O}(l) \Leftrightarrow \text{TcO}_4^- + 6 \text{ H}^+ + 5 \text{ e}^-}{49.663 \pm 10.075} \text{ present}$
$\frac{\text{TcO}_2(\text{cr}) + 2 \text{ H}_2\text{O}(1) \Leftrightarrow \text{TcO}_4^- + 4 \text{ H}^+ + 3 \text{ e}^-}{-41.822 \pm 2.455} \text{ present}$
$Tc_2O_7(cr) + H_2O(l) \Leftrightarrow 2 TcO_4 + 2 H^+$ $15.310 \pm 3.815 \text{ present}$
$\frac{\text{Tc}_2\text{O}_7(\text{g}) + \text{H}_2\text{O}(1) \Leftrightarrow 2 \text{ Tc}\text{O}_4^- + 2 \text{ H}^+}{23.275 \pm 3.929} \text{ present}$
$\frac{\text{Tc}_2\text{O}_7 \cdot \text{H}_2\text{O}(s)}{14.105 \pm 3.807} \text{ present}$
$\frac{\text{TcS}(g) + 4 \text{ H}_2\text{O}(l) \Leftrightarrow \text{TcO}_4^+ + \text{HS}^+ 7 \text{ H}^+ 5 \text{ e}^2}{29.525 \pm 11.472} \text{ present}$
$\frac{\text{TcC}(g) + 7 \text{ H}_2\text{O}(l) \Leftrightarrow \text{TcO}_4^+ + \text{CO}_3^{-2} + 14 \text{ H}^+ + 11 \text{ e}^2}{47.464 \pm 7.177} \text{ present}$
$\frac{\text{CsTcO}_4(\text{cr}) \Leftrightarrow \text{TcO}_4 + \text{Cs}}{\text{P}^{1/2} + 2 \sigma^2} = \frac{-3.617 \pm 0.047}{22.000} \text{ present}$
Pd(cr) \Leftrightarrow Pd ⁻⁺ 2 e -32.860 9 P(\diamond + 2 e -32.860 9
$Pd(s) \Leftrightarrow Pd^{-} + 2 e \qquad -29.5/0 \pm 1.120 \qquad 3/$
$Pd(OH)_{2}(s) + 2 H \Leftrightarrow Pd + 2 H_{2}O(1) = -4.120 \pm 0.030 = 37$
Ag(cr) \Leftrightarrow Ag + e -13.507 \pm 0.027 present
Ag(g) \Leftrightarrow Ag + e29.592 \pm 0.143present $A_{2}Cl(x_{2}) \leftrightarrow A_{2}^{+} + Cl^{-}$ 0.748 ± 0.028 present
AgCI(Cr) \Leftrightarrow Ag + CI $C_{2}(cr) \Leftrightarrow C_{2}^{2+} + 2 = -$ 12 (18 + 0.131 present
$Cd(cr) \Leftrightarrow Cd + 2 e$ $Cd(cr) \Leftrightarrow Cd^{2+} + 2 e^{-1}$ $Cd(cr) \Leftrightarrow Cd^{2+} + 2 e^{-1}$ $27 148 \pm 0.136$ present
$\begin{array}{c} cu(g) \leftrightarrow cu + 2 c \\ CdO(ar) + 2 H^{+} \leftrightarrow Cd^{2+} + H O(l) \\ \end{array} $
$CdSO_{12} = 667H_{2}O(cr) \implies Cd^{2+} + SO_{12}^{2-} + 2.667H_{2}O(1) = 13.104 \pm 0.107 \text{ present}$
$Sn(cr) + 4 H_2O(1) \leftrightarrow Sn(OH).(ag) + 4 H^+ + 4 e^ 0.770 0$
$Sn(OH)_{a}(s) + 2 H_{a}O(1) \leftrightarrow Sn(OH)_{a}(aq) + 2 H^{+} + 2 e^{-1}$ -2.580 0
$SnO(rr)_{2(3)} + 2 H_{2}O(1) \iff Sn(OH)_{4(aq)} + 2 H^{+} + 2 e^{-1}$ $SnO(rr) + 3 H_{2}O(1) \iff Sn(OH)_{4(aq)} + 2 H^{+} + 2 e^{-1}$ -2 000
$SnC(OH(s) + 3 H_2O(1) \leftrightarrow Sn(OH)_4(aq) + 2 H^+ + Cl^- + 2 e^-$ $SnC(OH(s) + 3 H_2O(1) \leftrightarrow Sn(OH)_4(aq) + 3 H^+ + Cl^- + 2 e^-$ -7 820
$SnO_{2}(am) + 2 H_{2}O(1) \Leftrightarrow Sn(OH)_{2}(aq) = -7.620$
$\frac{1}{\text{SnO}_2(\text{assiterite}) + 2 \text{ H}_2\text{O}(1) \Leftrightarrow \text{Sn}(\text{OH})_4(\text{ag})} \qquad (100)$

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$I(g) + e^{-} \Leftrightarrow I^{-}$	21.355 ± 0.022	3	
$I_2(cr) + 2e^- \Leftrightarrow 2I^-$	18.123 ± 0.028	3	
$I_2(g) + 2 e^- \Leftrightarrow 2 I^-$	21.508 ± 0.035	present	
$HI(g) \Leftrightarrow I^{-} + H^{+}$	9.359 ± 0.028	present	
$IO(g) + 2 H^+ + 3 e^- \Leftrightarrow I^- + H_2O(l)$	68.564	present	*
$IF(g) + 2e^{-} \Leftrightarrow I^{-} + F^{-}$	37.620	present	*
$IF_{7}(g) + 8e^{-} \Leftrightarrow I^{-} + 7F^{-}$	210.945	present	*
$ICI(g) + 2e^{-c} \Leftrightarrow I^{-} + CI^{-}$	31.093	present	*
$ICl_2(cr) + 4e^{-c} \Leftrightarrow I^{-} + 3Cl^{-}$	74.121	present	*
$IBr(\sigma) + 2e^{-} \Leftrightarrow I^{-} + Br^{-}$	27.902	present	*
$AgI(cr) \leftrightarrow I^+ Ag^+$	-16.043	present	*
$\frac{\Lambda gI(\alpha) \leftrightarrow I + \Lambda g}{\Lambda gI(\alpha) \leftrightarrow I \cap I^{+} + \Lambda g^{+}}$	-7 789	nresent	*
$KI(cr) \leftrightarrow I^{-} + K^{+}$	1.635	present	*
$KIO_{2}(cr) \Leftrightarrow IO_{2}^{-} + K^{+}$	-1 673	nresent	*
$KIO_{3}(t) \Leftrightarrow IO_{3} + K$ $KIO_{4}(cr) + 2 H^{+} + 2 e^{-} \Leftrightarrow IO_{4}^{-} + K^{+} + H_{4}O(1)$	49 857	present	*
$NaI(ar) \leftrightarrow \Gamma + Na^+$	4 931	present	*
NaI(ci) \Leftrightarrow 1 + Na NaI(ci) \Leftrightarrow 1 + Na NaI(ci) \Leftrightarrow 10 ⁻⁺ Na ⁺ + H O(l)	52 092	present	*
$\operatorname{NalO}_4(C) + 2 \Pi + 2 \mathfrak{e} \Leftrightarrow \operatorname{IO}_3 + \operatorname{Na} + \operatorname{H}_2O(1)$	0.452	present	*
$CSI(CF) \Leftrightarrow I + CS$	75.002	present	*
$BI_3(g) + 3 H_2O(1) \Leftrightarrow 31 + B(OH)_3(aq) + 3 H$	/5.995	present	" *
$Bal_2(cr) \Leftrightarrow 2I + Ba$	11.110	present	
$\frac{\operatorname{Cal}_2(\operatorname{cr}) \Leftrightarrow 21 + \operatorname{Ca}^2}{21 + \operatorname{Ca}^2}$	22.311	present	*
$\frac{\operatorname{CdI}_2(\operatorname{cr}) \Leftrightarrow 21 + \operatorname{Cd}^2}{2}$	-3.539	present	*
$\frac{\operatorname{Col}_2(\operatorname{cr}) \Leftrightarrow 2 \Gamma + \operatorname{Co}^2}{2}$	11.751	present	*
$\operatorname{Cul}(\operatorname{cr}) \Leftrightarrow \Gamma + \operatorname{Cu}^2 + \operatorname{e}^2$	-14.509	present	*
$\operatorname{HgI}_{2}(\operatorname{cr}) \Leftrightarrow 2 \operatorname{I}^{-} + \operatorname{Hg}^{2^{+}}$	-28.542	present	*
$\mathrm{Hg}_{2}\mathrm{I}_{2}(\mathrm{cr}) \Leftrightarrow 2\mathrm{I}^{-} + \mathrm{Hg}_{2}^{2^{+}}$	-28.227	present	*
$\operatorname{Lil}(\operatorname{cr}) \Leftrightarrow \Gamma + \operatorname{Li}^{+}$	13.024	present	*
$MgI_2(cr) \Leftrightarrow 2I + Mg^{2+}$	35.147	present	*
$NH_4I(cr) \Leftrightarrow I + NH_4^+$	3.262	present	*
$PbI_2(cr) \Leftrightarrow 2 I^- + Pb^{2+}$	-8.044	present	*
$\mathbf{RbI}(\mathbf{cr}) \Leftrightarrow \mathbf{I}^- + \mathbf{Rb}^+$	1.197	present	*
$SiI_4(cr) + 4 H_2O(l) \Leftrightarrow 4 I^- + H_4SiO_4(aq) + 4 H^+$	65.604	present	*
$\operatorname{SrI}_2(\operatorname{cr}) \Leftrightarrow 2 \Gamma + \operatorname{Sr}^{2+}$	18.678	present	*
$TII(cr) \Leftrightarrow I^{-} + TI^{+}$	-7.231	present	*
$\operatorname{ZnI}_2(\operatorname{cr}) \Leftrightarrow 2 \operatorname{I}^- + \operatorname{Zn}^{2+}$	7.297	present	*
$AII_3(cr) \Leftrightarrow 3 \Gamma + Al^{3+}$	60.595	present	*
$AsI_{3}(cr) + 4 H_{2}O(l) \Leftrightarrow 3 I^{-} + AsO_{4}^{3-} + 8 H^{+} + 2 e^{-}$	-35.814	present	*
$Sb(cr) + 3 H_2O(1) \Leftrightarrow Sb(OH)_3(aq) + 3 H^+ + 3 e^-$	-11.990	9	
Sb_2O_3 (valentinite) + 3 H ₂ O(l) \Leftrightarrow 2 Sb(OH) ₃ (aq)	-8.720	9	
$Sb_2S_3(stibnite) + 18 H_2O(1) \Leftrightarrow 2 Sb(OH)_3(aq) + 3 SO_4^{2-} + 30 H^+ + 24 e^-$	-156.219	9	
$Sb_2O_5(am) + 5 H_2O(1) \Leftrightarrow 2 Sb(OH)_5(aq)$	-7.400	9	
$Cs(cr) \Leftrightarrow Cs^+ + e^-$	51.061 ± 0.094	3	
$Cs(g) \Leftrightarrow Cs^+ + e^-$	59.742 ± 0.200	3	
$CsNO_3(s) \Leftrightarrow Cs^+ + NO_3^-$	-0.410	4	
$C_{s_2}O(s) + 2 H^+ \Leftrightarrow 2 C_s^+ + H_2O(1)$	89.890	4	
$C_{sOH(s)} + H^{+} \Leftrightarrow C_{s}^{+} + H_{2O(l)}$	27.420	4	
$\frac{C_{S_2}SO_4(s)}{C_{S_2}SO_4(s)} \Leftrightarrow 2C_{S_1}^{s^+} + SO_4^{2^-}$	0.870	4	
$\frac{C_{2}C_{2}C_{3}C_{4}(s)}{C_{3}C_{2}C_{3}(s)} \Leftrightarrow 2C_{3}^{+} + C_{2}^{2}$	10.070	4	
$C_{s}Br(cr) \leftrightarrow C_{s}^{+} + Br^{-}$	0.724 + 0.112	nresent	
$CsCl(cr) \Leftrightarrow Cs^+ + Cl^-$	1.553 + 0.103	nresent	
$Ba(cr) \hookrightarrow Ba^{2+} + 2e^{-}$	97 697 + 0 452	3	
$BaO(cr) + 2 H^{+} - Ba^{2+} + H_{-}O(1)$	$\frac{77.077 \pm 0.432}{48.073 \pm 0.622}$	3	
$BaC(0) + 2 II \leftrightarrow Ba + I_2O(I)$ $BaC(0) (with arite) \leftrightarrow Ba^{2+} + CO^{2-}$	-8540 ± 0.032	30	
$BaSO_{3}(while He) \hookrightarrow Ba^{-1} + CO_{3}$ $BaSO_{4}(barite) \hookrightarrow Ba^{2+} + SO_{4}^{2-}$	-10.050 ± 0.050	30	
DabO4(balle) \rightarrow Da + 504	-10.050 ± 0.050	50	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Ba(g) \Leftrightarrow Ba^{2+} + 2 e^{-}$	124.475 ± 0.987	present	
$BaCl_2(cr) \Leftrightarrow Ba^{2+} + 2 Cl^-$	2.301 ± 0.633	present	
$BaF(g) \Leftrightarrow Ba^{2+} + F^- + e^-$	85.775 ± 1.265	present	
$Sm(OH)_3(am) + 3 H^+ \Leftrightarrow Sm^{3+} + 3 H_2O(l)$	16.900 ± 0.800	28	
$Sm(OH)_3(cr) + 3 H^+ \Leftrightarrow Sm^{3+} + 3 H_2O(l)$	15.600 ± 0.600	28	
$\operatorname{Sm}_2(\operatorname{CO}_3)_3(\operatorname{am}) \Leftrightarrow 2 \operatorname{Sm}^{3+} + 3 \operatorname{CO}_3^{2-}$	-33.400 ± 2.200	28	
$SmCO_3OH(am) + H^+ \Leftrightarrow Sm^{3+} + CO_3^{2-} + H_2O(l)$	-6.199 ± 1.000	28	
$SmCO_3OH \bullet 0.5H_2O(cr) + H^+ \Leftrightarrow Sm^{3+} + CO_3^{2-} + 1.5 H_2O(l)$	-8.399 ± 0.500	28	
$NaSm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Sm^{3+} + 2CO_3^{2-} + 5H_2O(l) + Na^+$	-21.000 ± 0.500	28	
$SmPO_4(am,hydr) \Leftrightarrow Sm^{3+} + PO_4^{3-}$	-24.790 ± 0.600	28	
$Hg(g) \Leftrightarrow Hg^{2+} + 2 e^{-}$	-23.270 ± 0.056	present	
$Hg(l) \Leftrightarrow Hg^{2+} + 2 e^{-}$	-28.848 ± 0.055	present	
$Hg_2Cl_2(cr) \Leftrightarrow 2 Hg^{2+} + 2 e^{-} + 2 Cl^{-}$	-48.638 ± 0.143	present	
$Hg_2SO_4(cr) \Leftrightarrow 2 Hg^{2+} + SO_4^{2-} + 2 e^{-}$	-36.985 ± 0.150	present	
HgO(montroydite,red) + 2 H ⁺ \Leftrightarrow Hg ²⁺ + H ₂ O(l)	$\textbf{2.444} \pm \textbf{0.062}$	present	
$Pb(cr) \Leftrightarrow Pb^{2+} + 2 e^{-1}$	4.250	9	
$Pb(g) \Leftrightarrow Pb^{2+} + 2 e^{-}$	32.668 ± 0.157	present	
$PbO(red, litharge) + 2 H^+ \Leftrightarrow Pb^{2+} + H_2O(l)$	12.680	9	
PbO(yellow,massicot) + 2 $H^+ \Leftrightarrow Pb^{2+} + H_2O(l)$	12.960	9	
$Pb(OH)_2(am) + 2 H^+ \Leftrightarrow Pb^{2+} + 2 H_2O(l)$	13.050	9	
$PbSO_4(anglesite) \Leftrightarrow Pb^{2+} + SO_4^{2-}$	-7.810	9	
$PbCl_2(s) \Leftrightarrow Pb^{2+} + 2 Cl^{-}$	-4.810	9	
$PbClOH(cr) + H^{+} \Leftrightarrow Pb^{2+} + Cl^{-} + H_{2}O(l)$	0.620	9	
$PbF_2(s) \Leftrightarrow Pb^{2+} + 2 F^-$	-7.520	9	
$PbFCl(matlockite) \Leftrightarrow Pb^{2+} + F^{-} + Cl^{-}$	-8.820	9	
$PbCO_3(cerrusite) \Leftrightarrow Pb^{2+} + CO_3^{2-}$	-13.230	9	
$Pb_3(CO_3)_2(OH)_2(hydrocerrusite) + 2 H^+ \Leftrightarrow 3 Pb^{2+} + 2 CO_3^{2-} + 2 H_2O(l)$	-17.640	9	
$Pb_{10}(CO_3)_6(OH)_6(plumbonacrite) + 8 H^+ \Leftrightarrow 10 Pb^{2+} + 6 CO_3^{2-} + 7 H_2O(l)$	-41.210	9	
$PbOHNO_{3}(cr) + H^{+} \Leftrightarrow Pb^{2+} + NO_{3}^{-} + H_{2}O(l)$	2.940	9	
$PbHPO_4(s) \Leftrightarrow Pb^{2+} + PO_4^{3-} + H^+$	-23.780	9	
$Pb(H_2PO_4)_2(s) \Leftrightarrow Pb^{2+} + 2 PO_4^{3-} + 4 H^+$	-48.940	9	
$Pb_{3}(PO)_{4}(s) \Leftrightarrow 3 Pb^{2+} + 2 PO_{4}^{3-}$	-44.400	9	
$Pb_4(PO_4)_2O(s) + 2 H^+ \Leftrightarrow 4 Pb^{2+} + 2 PO_4^{-3-} + H_2O(l)$	-37.090	9	
$Pb_5(PO_4)_3OH(hydroxyl pyromorphite) + H^+ \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{3-} + H_2O(l)$	-62.800	9	
$Pb_5(PO_4)_3Cl(chloro pyromorphite) \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{3-} + Cl^{-}$	-84.400	9	
$Pb_5(PO_4)_3F(fluoro pyromorphite) \Leftrightarrow 5 Pb^{2+} + 3 PO_4^{3-} + F^{-}$	-71.600	9	
$PbS(galena) + 4 H_2O(l) \Leftrightarrow Pb^{2+} + SO_4^{2-} + 8 H^+ + 8 e^{-1}$	-45.863	9	
$PbO_2(s) + 4 H^+ + 2 e^- \Leftrightarrow Pb^{2+} + 2 H_2O(l)$	48.980	9	
$Pb_{3}O_{4}(s) + 8 H^{+} + 2 e^{-} \Leftrightarrow 3 Pb^{2+} + 4 H_{2}O(l)$	70.980	9	
$Bi(OH)_3(am) + 3 H^+ \Leftrightarrow Bi^{3+} + 3 H_2O(l)$	31.501 ± 0.927	39	
$0.5 \alpha - \text{Bi}_2\text{O}_3(c) + 3 \text{ H}^+ \Leftrightarrow \text{Bi}^{3+} + 1.5 \text{ H}_2\text{O}(l)$	31.501 ± 0.927	39	
$BiPO_4(c) \Leftrightarrow Bi^{3+} + PO_4^{3-}$	-30.350 ± 0.540	39	
$\operatorname{Bi}(\operatorname{cr}) \Leftrightarrow \operatorname{Bi}^{3+} + 3 \operatorname{e}^{-}$	-16.740	9	
$BiOCl(s) + 2 H^+ \Leftrightarrow Bi^{3+} + H_2O + Cl^-$	-8.470	9	
$(BiO)_2CO_3(cr) + 4 H^+ \Leftrightarrow 2 Bi^{3+} + 2 H_2O + CO_3^{2-}$	-14.270	9	
$(BiO)_4(OH)_2CO_3(cr) + 10 H^+ \Leftrightarrow 4 Bi^{3+} + 6 H_2O + CO_3^{2-}$	-8.680	9	
$BiONO_3(s) + 2 H^+ \Leftrightarrow Bi^{3+} + H_2O + NO_3^-$	-2.750	9	
$Po(OH)_4(s) + 4 H^+ \Leftrightarrow Po^{4+} + 4 H_2O(l)$	19.520	4	
$RaSO_4(cr) \Leftrightarrow Ra^{2+} + SO_4^{2-}$	-10.050 ± 0.390	30	
$RaCO_3(cr) \Leftrightarrow Ra^{2+} + CO_3^{2-}$	-8.540 ± 0.200	30	
$Ac(OH)_3(am) + 3 H^+ \Leftrightarrow Ac^{3+} + 3 H_2O(l)$	16.900 ± 4.800	28	*
$Ac_2(CO_3)_3(am) \Leftrightarrow 2 Ac^{3+} + 3 CO_3^{2-}$	-33.400 ± 5.100	28	*
$AcCO_3OH(am) + H^+ \Leftrightarrow Ac^{3+} + CO_3^{2-} + H_2O(l)$	-6.199 ± 5.000	28	*
$AcPO_4(am,hydr) \Leftrightarrow Ac^{3+} + PO_4^{3-}$	-24.790 ± 4.600	28	*

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$ThO_2(am, fresh) + 4 H^+ \Leftrightarrow Th^{4+} + 2 H_2O(1)$	9.304 ± 0.900	3	
$ThO_2(am, aged) + 4 H^+ \Leftrightarrow Th^{4+} + 2 H_2O(1)$	8.504 ± 0.900	3	
$ThO_2(cr) + 4 H^+ \Leftrightarrow Th^{4+} + 2 H_2O(1)$	1.765 ± 1.113	3	
$\text{ThF}_4(\text{cr, hyd}) + 4 \text{ H}^+ \Leftrightarrow \text{Th}^{4+} + 4 \text{ HF}(\text{aq})$	-19.110 ± 0.400	3	
$Th(SO_4)_2 \bullet 9H_2O(cr) \Leftrightarrow Th^{4+} + 9 H_2O(1) + 2 SO_4^{2-}$	-11.250 ± 0.096	3	
$Na_6Th(CO_3)_5 \bullet 12H_2O(cr) \Leftrightarrow Th^{4+} + 5 CO_3^{2-} + 12 H_2O(l) + 6 Na^+$	-42.200 ± 0.800	3	
$Th(cr) \Leftrightarrow Th^{4+} + 4e^{-}$	123.472 ± 0.928	present	
$Th(g) \Leftrightarrow Th^{4+} + 4 e^{-}$	221.753 ± 1.403	present	
$ThO(g) + 2 H^+ \Leftrightarrow Th^{4+} + H_2O(l) + 2 e^-$	156.030 ± 1.403	present	
$ThO_2(g) + 4 H^+ \Leftrightarrow Th^{4+} + 2 H_2O(l)$	125.601 ± 2.858	present	
$ThH_2(cr) \Leftrightarrow Th^{4+} + 2 H^+ + 6 e^-$	104.995 ± 0.992	present	
$\text{ThH}_{3.75}(\text{cr}) \Leftrightarrow \text{Th}^{4+} + 3.75 \text{ H}^+ + 7.75 \text{ e}^-$	98.441 ± 1.681	present	
$ThF(g) \Leftrightarrow Th^{4+} + F^- + 3 e^-$	172.654 ± 2.859	present	
$ThF_2(g) \Leftrightarrow Th^{4+} + 2 F^- + 2 e^-$	116.673 ± 3.670	present	
$ThF_3(g) \Leftrightarrow Th^{4+} + 3 F^- + e^-$	68.251 ± 2.859	present	
$ThF_4(g) \Leftrightarrow Th^{4+} + 4 F^-$	19.542 ± 2.074	present	
$ThOF(g) + 2 H^+ \Leftrightarrow Th^{4+} + F^- + H_2O(I) + e^-$	115.146 ± 2.360	present	
ThOF ₂ (cr) + 2 H ⁺ \Leftrightarrow Th ⁴⁺ + 2 F ⁻ + H ₂ O(l)	-14.751 ± 1.691	present	
$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}{1}$	184.247 ± 3.679	present	
$\text{ThCl}_2(\mathbf{g}) \Leftrightarrow \text{Th}^{4+} + 2 \text{ Cl}^- + 2 \text{ e}^-$	135.928 ± 3.999	present	
$ThCl_3(g) \Leftrightarrow Th^{4+} + 3 Cl^- + e^-$	93.670 ± 4.508	present	
β -ThCl ₄ \Leftrightarrow Th ⁴⁺ + 4 Cl	24.064 ± 0.994	present	
$\operatorname{ThCL}(g) \Leftrightarrow \operatorname{Th}^{4+} + 4 \operatorname{CL}^{-}$	53.730 ± 1.316	present	
ThOCl ₂ (cr) + 2 H ⁺ \Leftrightarrow Th ⁴⁺ + 2 F ⁻ + H ₂ O(l)	61.563 ± 1.039	present	
ThBr(g) \Leftrightarrow Th ⁴⁺ + Br ⁻ + 3 e ⁻	197.652 ± 3.679	present	
ThBr ₂ (g) \Leftrightarrow Th ⁴⁺ + 2 Br ⁻ + 2 e ⁻	159.854 ± 3.663	present	
ThBr ₁ (g) \Leftrightarrow Th ⁴⁺ + 3 Br ⁻ + e ⁻	113.044 ± 2.837	present	
β -ThBr ₄ \Leftrightarrow Th ⁴⁺ + 4 Br ⁻	34.190 ± 1.033	present	
ThBr ₄ (g) \Leftrightarrow Th ⁴⁺ + 4 Br ⁻	61.519 ± 1.355	present	
$ThL_{(g)} \Leftrightarrow Th^{4+} + 4I^{-}$	68.914 ± 1.372	present	
$ThL(cr) \Leftrightarrow Th^{4+} + 4 \Gamma$	44.182 ± 1.042	present	
$Th^{4+} + IO_3 \Leftrightarrow ThIO_3^{3+}$	4.140 ± 0.100	3	
$Th^{4+} + 2IO_3 \Leftrightarrow Th(IO_3)_2^{2+}$	6.970 ± 0.120	3	
$Th^{4+} + 3 IO_2^- \Leftrightarrow Th(IO_2)_2^+$	9.870 ± 0.110	3	
$ThS(cr) + H^+ \Leftrightarrow Th^{4+} + HS^- + 2e^-$	52.676 ± 1.477	present	
ThN(cr) + 3 H ₂ O(l) \Leftrightarrow Th ⁴⁺ + NO ₂ ⁻ + 6 H ⁺ + 9 e ⁻	-43.707 ± 1.986	present	
$Th_3N_4(cr) + 12 H_2O(1) \Leftrightarrow 3 Th^{4+} + 4 NO_3^- + 24 H^+ + 32 e^-$	-260.721 ± 3.921	present	
$Th(NO_3)_4$; 5H ₂ O(cr) \Leftrightarrow Th ⁴⁺ + 4 NO ₃ + 5 H ₂ O(1)	1.929 ± 1.091	present	
ThC _{0.97} (cr) + 2.91 H ₂ O(l) \Leftrightarrow Th ⁴⁺ + 0.97 CO ₃ ²⁻ + 5.82 H ⁺ + 7.88 e ⁻	70.480 ± 1.445	present	
$ThC_{1.94}(s) + 5.82 H_2O(1) \Leftrightarrow Th^{4+} + 1.94 CO_3^{2-} + 11.64 H^+ + 11.76 e^{-1}$	38.901 ± 1.615	present	
$PaO_2(cr) + 4 H^+ \Leftrightarrow Pa^{4+} + 2 H_2O(1)$	0.600	55	
$\operatorname{PaCl}_{4}(s) \Leftrightarrow \operatorname{Pa}^{4+} + 4 \operatorname{Cl}^{-}$	24.010	41	
$Pa_2O_5(cr) + 2e^- + 10 H^+ \Leftrightarrow 2Pa^{4+} + 5H_2O(l)$	-8.720	41	
$PaCl_{s}(cr) - e^{-} \Leftrightarrow Pa^{4+} + 5 Cl^{-}$	32.850	41	
$UO_2(am) + 4 H^+ \Leftrightarrow U^{4+} + 2 H_2O(1)$	2.304 ± 1.000	45	
$UO_2(cr) + 4 H^+ \Leftrightarrow U^{4+} + 2 H_2O(1)$	-4.852 ± 0.365	14	
$a-UO_3 + 2 H^+ \Leftrightarrow UO_2^{2+} + H_2O(1)$	9.524 ± 0.401	14	
β -UO ₃ + 2 H ⁺ \Leftrightarrow UO ₂ ²⁺ + H ₂ O(1)	8.302 ± 0.382	14	
γ -UO ₃ + 2 H ⁺ \Leftrightarrow UO ₂ ²⁺ + H ₂ O(1)	7.700 ± 0.372	14	
$a-UO_3 \cdot 0.9H_2O(cr) + 2H^+ \Leftrightarrow UO_2^{2+} + 1.9H_2O(1)$	5.003 ± 0.529	14	
$UO_3 \cdot 2H_2O(cr) + 2H^+ \Leftrightarrow UO_2^{2+} + 3H_2O(1)$	4.812 ± 0.428	14	
β -UO ₂ (OH) ₂ + 4 H ⁺ \Leftrightarrow UO ₂ ²⁺ + 2 H ₂ O(1)	4.931 ± 0.435	14	
$U(OH)_2SO_4(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 H_2O(1) + SO_4^{2-}$	-3.168 ± 0.500	14	
$U(HPO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow U^{4+} + 2PO_4^{3-} + 2H^+ + 4H_2O(1)$	-55.194 ± 0.383	14	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$UF_6(cr) + 2 H_2O(1) \Leftrightarrow UO_2^{2+} + 6 F^- + 4 H^+$	17.204 ± 0.853	14	
$UO_2(IO_3)_2(cr) + 12 H^+ + 12 e^- \Leftrightarrow UO_2^{2+} + 2 I^- + 6 H_2O(1)$	215.246 ± 0.294	14	
$UO_2SO_4(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-}$	1.889 ± 0.560	14	
$UO_2SO_4 \bullet 2.5H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 2.5H_2O(l)$	-1.589 ± 0.019	14	
$UO_2SO_4 \bullet 3.5H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 3.5 H_2O(l)$	-1.585 ± 0.019	14	
$UO_2HPO_4 \cdot 4H_2O(cr) + 2 H^+ \Leftrightarrow UO_2^{2+} + PO_4^{3-} + H^+ + 4 H_2O(l)$	-24.202 ± 0.198	14	
$(UO_2)_3(PO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-} + 4 H_2O(1)$	-48.364 ± 0.462	14	
$UO_2CO_3(cr) \Leftrightarrow UO_2^{2^+} + CO_3^{2^-}$	-14.760 ± 0.020	14	
$CaU_6O_{19} \cdot 11H_2O(cr) + 14 H^+ \Leftrightarrow 6 UO_2^{2+} + Ca^{2+} + 18 H_2O(l)$	-40.500 ± 1.600	14	
$Na_4UO_2(CO_3)_3(cr) \Leftrightarrow UO_2^{2^+} + 3 CO_3^{2^-} + 4 Na^+$	-27.180 ± 0.165	14	
$K_2U_6O_{19} \cdot 11H_2O(cr) + 14 H^+ \Leftrightarrow 6 UO_2^{2+} + 2 K^+ + 18 H_2O(l)$	-37.100 ± 0.540	14	
$UO(g) + 2 H^+ \Leftrightarrow U^{4+} + H_2O(l) + 2 e^{-1}$	135.305 ± 1.782	present	
$UO_2(g) + 4 H^+ \Leftrightarrow U^{4+} + 2 H_2O(l)$	91.638 ± 3.524	present	
β -UO _{2.25} + 4.5 H ⁺ + 0.5 e ⁻ \Leftrightarrow U ⁴⁺ + 2.25 H ₂ O(l)	-0.991 ± 0.430	present	
$UO_{2.25}(cr) + 4.5 H^+ + 0.5 e^- \Leftrightarrow U^{4+} + 2.25 H_2O(l)$	-0.999 ± 0.430	present	
β -UO _{2.3333} + 4.6666 H ⁺ + 0.6666 e ⁻ \Leftrightarrow U ⁴⁺ + 2.3333 H ₂ O(I)	0.632 ± 0.468	present	
$UO_{2.6667}(cr) + 5.3334 H^+ + 1.3334 e^- \Leftrightarrow U^{4+} + 2.6667 H_2O(l)$	6.847 ± 0.340	present	
$UO_3(g) + 2 H^+ \Leftrightarrow UO_2^{2+} + H_2O(l)$	70.940 ± 2.648	present	
$\beta - UH_3 \Leftrightarrow U^{3+} + 3 H^+ + 6 e^-$	70.763 ± 0.318	present	
$UF(g) \Leftrightarrow U^{4+} + F^- + 3 e^-$	128.679 ± 3.523	present	
$UF_2(g) \Leftrightarrow U^{4+} + 2 F^- + 2 e^-$	93.589 ± 4.428	present	
$UF_3(cr) \Leftrightarrow U^{3+} + 3 F^-$	-19.532 ± 0.955	present	
$UF_3(g) \Leftrightarrow U^{3+} + 3 F^-$	45.216 ± 3.575	present	
$UF_4(cr) \Leftrightarrow U^{4+} + 4 F^{-}$	-29.360 ± 0.934	present	
$UF_4(g) \Leftrightarrow U^{4+} + 4 F^-$	13.858 ± 1.307	present	
$UF_4 \cdot 2.5H_2O(cr) \Leftrightarrow U^{4+} + 4 F^- + 2.5 H_2O(l)$	-33.546 ± 1.227	present	
α -UF ₅ + 2 H ₂ O(l) \Leftrightarrow UO ₂ ⁺ + 5 F ⁻ + 4 H ⁺	-13.022 ± 1.401	present	
β -UF ₅ + 2 H ₂ O(l) \Leftrightarrow UO ₂ ⁺ + 5 F ⁻ + 4 H ⁺	-13.356 ± 1.199	present	
$UF_5(g) + 2 H_2O(I) \Leftrightarrow UO_2^+ + 5 F^- + 4 H^+$	5.654 ± 2.764	present	
$UF_6(g) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 6 F^- + 4 H^+$	18.039 ± 0.856	present	
$U_2F_9(cr) + e^- \Leftrightarrow 2 U^{4+} + 9 F^-$	-38.292 ± 3.232	present	
$U_4F_{17}(cr) + e^- \Leftrightarrow 4 U^{4+} + 17 F^-$	-97.874 ± 5.779	present	
$UOF_{2}(cr) + 2 H^{+} \Leftrightarrow U^{4+} + 2 F^{-} + H_{2}O(l)$	-18.234 ± 1.192	present	
$UOF_4(cr) + H_2O(l) \Leftrightarrow UO_2^{2+} + 4 F^- + 2 H^+$	4.422 ± 0.942	present	
$UOF_4(g) + H_2O(l) \Leftrightarrow UO_2^{2+} + 4 F^- + 2 H^+$	23.947 ± 3.575	present	
$UO_2F_2(cr) \Leftrightarrow UO_2^{2+} + 2 F^-$	-7.310 ± 0.453	present	
$UO_2F_2(g) \Leftrightarrow UO_2^{2+} + 2 F^-$	34.603 ± 1.836	present	
$U_2O_3F_6(cr) + H_2O(l) \Leftrightarrow 2 UO_2^{2+} + 6 F^- + 2 H^+$	-2.738 ± 2.762	present	
$U_{3}O_{5}F_{8}(cr) + H_{2}O(I) \Leftrightarrow 3 UO_{2}^{2+} + 8 F^{-} + 2 H^{+}$	-3.055 ± 2.171	present	
$UOFOH(cr) \Leftrightarrow UO_2^{2+} + F^- + H^+$	-18.019 ± 2.292	present	
$UOFOH \cdot 0.5H_2O(cr) \Leftrightarrow UO_2^{2+} + F + H^+ + 0.5 H_2O(l)$	-18.478 ± 1.265	present	
$UOF_2 \cdot H_2O(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 F^- + 2 H_2O(l)$	-18.796 ± 0.825	present	
$UO_2FOH \cdot H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + F^- + 2 H_2O(l)$	-2.338 ± 1.355	present	
$UO_2FOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + F^- + 3H_2O(I)$	-2.722 ± 1.510	present	
$UO_2F_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 F^- + 3 H_2O(l)$	-7.470 ± 1.277	present	
$\mathrm{UCl}(\mathrm{g}) \Leftrightarrow \mathrm{U}^{4+} + \mathrm{Cl}^- + 3 \mathrm{e}^-$	143.135 ± 3.521	present	
$\mathrm{UCl}_2(\mathbf{g}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{Cl}^- + 2 \mathrm{e}^-$	108.210 ± 3.556	present	
$UCl_3(cr) \Leftrightarrow U^{3+} + 3 Cl^-$	12.968 ± 0.477	present	
$UCl_3(g) \Leftrightarrow U^{3+} + 3 Cl^-$	61.049 ± 3.557	present	
$UCl_4(cr) \Leftrightarrow U^{4+} + 4 Cl^-$	21.920 ± 0.544	present	
$UCl_4(g) \Leftrightarrow U^{4+} + 4 Cl^-$	46.476 ± 0.924	present	
$UCl_5(cr) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 C\Gamma + 4 H^+$	37.265 ± 0.757	present	
$UCl_5(g) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 C\Gamma + 4 H^+$	51.379 ± 2.661	present	
$UCl_6(cr) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 6 C\Gamma + 4 H^+$	57.542 ± 0.627	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v.*1
$UCl_6(g) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 6 Cl^- + 4 H^+$	63.767 ± 0.972	present	
$UOCI(cr) + 2 H^+ \Leftrightarrow U^{3+} + C\Gamma + H_2O(I)$	10.367 ± 0.914	present	
$UOCl_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 C\Gamma + H_2O(l)$	5.423 ± 0.567	present	
$UOCl_3(cr) + H_2O(l) \Leftrightarrow UO_2^+ + 3 Cl^- + 2 H^+$	12.606 ± 1.502	present	
$UO_2Cl(cr) \Leftrightarrow UO_2^+ + C\Gamma$	-0.528 ± 1.501	present	
$UO_2Cl_2(cr) \Leftrightarrow UO_2^{2+} + 2 Cl^{-}$	12.114 ± 0.384	present	
$UO_2Cl_2(g) \Leftrightarrow UO_2^{2+} + 2 Cl^-$	48.353 ± 2.664	present	
$U_2O_2Cl_5(cr) + 2 H_2O(l) \Leftrightarrow 2 UO_2^{2+} + 5 Cl^- + 4 H^+ + e^-$	8.690 ± 1.058	present	
$(UO_2)_2Cl_3(cr) + e^- \Leftrightarrow 2 UO_2^{2+} + 3 Cl^-$	11.212 ± 0.801	present	
$U_5O_{12}Cl(cr) + 4 H^+ \Leftrightarrow 5 UO_2^{2+} + Cl^- + 2 H_2O(l) + 5 e^-$	-26.226 ± 2.659	present	
$UO_2Cl_2 H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Cl^{-} + H_2O(l)$	8.255 ± 0.651	present	
$UO_2CIOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + CI^- + 3 H_2O(I)$	$\textbf{2.272} \pm \textbf{0.847}$	present	
$UO_2Cl_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Cl^- + 3 H_2O(l)$	5.569 ± 0.614	present	
$\mathrm{UCl}_{3}\mathrm{F}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 3 \mathrm{Cl}^{-} + \mathrm{F}^{-}$	10.242 ± 0.964	present	
$\mathrm{UCl}_{2}\mathrm{F}_{2}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{Cl}^{-} + 2 \mathrm{F}^{-}$	-3.614 ± 1.056	present	
$\mathrm{UClF}_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + \mathrm{CI}^{-} + 3 \mathrm{F}^{-}$	-17.644 ± 1.022	present	
$UBr(g) \Leftrightarrow U^{4+} + Br^{-} + 3e^{-}$	145.993 ± 2.651	present	
$UBr_2(g) \Leftrightarrow U^{4+} + 2 Br^{-} + 2 e^{-}$	113.991 ± 2.698	present	
$UBr_{3}(cr) \Leftrightarrow U^{3+} + 3 Br^{-}$	$\textbf{20.116} \pm \textbf{0.807}$	present	
$UBr_3(g) \Leftrightarrow U^{3+} + 3 Br^{-}$	66.557 ± 3.605	present	
$UBr_4(cr) \Leftrightarrow U^{4+} + 4 Br^{-}$	31.146 ± 0.703	present	
$UBr_4(g) \Leftrightarrow U^{4+} + 4 Br^{-}$	54.424 ± 0.928	present	
$UBr_{5}(cr) + 2 H_{2}O(l) \Leftrightarrow UO_{2}^{+} + 5 Br^{-} + 4 H^{+}$	41.465 ± 1.648	present	
$UBr_5(g) + 2 H_2O(l) \Leftrightarrow UO_2^+ + 5 Br^- + 4 H^+$	59.176 ± 2.701	present	
$UOBr_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 Br^- + H_2O(I)$	7.893 ± 1.505	present	
$UOBr_{3}(cr) + H_{2}O(l) \Leftrightarrow UO_{2}^{+} + 3 Br^{-} + 2 H^{+}$	23.464 ± 3.751	present	
$UO_2Br_2(cr) \Leftrightarrow UO_2^{2+} + 2 Br^{-}$	16.438 ± 0.444	present	
$UO_2Br_2 \cdot H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Br^- + H_2O(l)$	12.044 ± 0.540	present	
$UO_2BrOH \cdot 2H_2O(cr) + H^+ \Leftrightarrow UO_2^{2+} + Br^- + 3 H_2O(l)$	4.145 ± 0.826	present	
$UO_2Br_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 Br^- + 3 H_2O(l)$	9.318 ± 1.025	present	
$UBr_2Cl(cr) \Leftrightarrow U^{3+} + 2 Br^{-} + Cl^{-}$	17.695 ± 1.741	present	
$UBr_{3}Cl(cr) \Leftrightarrow U^{4+} + 3 Br^{-} + Cl^{-}$	28.996 ± 1.741	present	
$UBrCl_2(cr) \Leftrightarrow U^{3+} + Br^- + 2 Cl^-$	14.443 ± 1.741	present	
$UBr_2Cl_2(cr) \Leftrightarrow U^{4+} + 2 Br^{-} + 2 Cl^{-}$	26.121 ± 1.740	present	
$UBrCl_{3}(cr) \Leftrightarrow U^{4+} + Br^{-} + 3 Cl^{-}$	23.451 ± 1.643	present	
$\mathrm{UI}(\mathbf{g}) \Leftrightarrow \mathrm{U}^{4+} + \Gamma + 3 \mathrm{e}^{-}$	152.494 ± 4.399	present	
$UI_2(g) \Leftrightarrow U^{4+} + 2I^- + 2e^-$	118.018 ± 4.422	present	
$UI_3(cr) \Leftrightarrow U^{3+} + 3 \Gamma$	28.998 ± 0.916	present	
$UI_3(g) \Leftrightarrow U^{3+} + 3I^-$	75.856 ± 4.423	present	
$UI_4(cr) \Leftrightarrow U^{4+} + 4 \Gamma$	39.258 ± 0.732	present	
$UI_4(g) \Leftrightarrow U^{4+} + 4 I^-$	64.325 ± 1.134	present	
$UO_2(IO_3)_2(cr) \Leftrightarrow UO_2^{2+} + 2 IO_3^{-}$	-7.880 ± 0.100	14	
$\text{UCII}_{3}(\text{cr}) \Leftrightarrow \text{U}^{4+} + \text{C}\Gamma + 3 \Gamma$	35.119 ± 2.013	present	
$\mathrm{UCl}_{2}\mathrm{I}_{2}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 2 \mathrm{C}\mathrm{I}^{-} + 2 \mathrm{I}^{-}$	30.201 ± 2.013	present	
$\mathrm{UCl}_{3}\mathrm{I}(\mathrm{cr}) \Leftrightarrow \mathrm{U}^{4+} + 3 \mathrm{Cl}^{-} + \mathrm{I}^{-}$	25.465 ± 1.568	present	
$US(cr) + H^+ \Leftrightarrow U^{4+} + HS^- + 2 e^-$	34.458 ± 2.260	present	
$US_{1,90}(cr) + 1.9 H^+ \Leftrightarrow U^{4+} + 1.9 HS^- + 0.2 e^-$	-0.503 ± 3.741	present	
$US_2(cr) + 2 H^+ \Leftrightarrow U^{4+} + 2 HS^-$	-2.429 ± 1.615	present	
$US_3(cr) + 2 H_2O(I) \Leftrightarrow UO_2^{2+} + 3 HS^- + H^+$	-16.768 ± 2.490	present	
$U_2S_3(cr) + 3 H^+ \Leftrightarrow 2 U^{3+} + 3 HS^-$	6.382 ± 11.808	present	
$U_3S_5(cr) + 5 H^+ \Leftrightarrow 3 U^{4+} + 5 HS^- + 2 e^-$	18.095 ± 17.690	present	
$UO_2SO_3(cr) \Leftrightarrow UO_2^{2+} + SO_3^{2-}$	-15.828 ± 2.358	present	
$U(SO_3)_2(cr) \Leftrightarrow U^{4+} + 2 SO_3^{2-}$	-36.444 ± 3.979	present	
$U(SO_4)_2(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-}$	-11.677 ± 2.489	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$U(OH)_2SO_4(cr) + 2 H^+ \Leftrightarrow U^{4+} + SO_4^{2-} + 2 H_2O(I)$	-3.167 ± 0.673	present	
$UO_2SO_4 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + SO_4^{2-} + 3H_2O(l)$	-1.504 ± 0.447	present	
$U(SO_4)_2 \cdot 4H_2O(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-} + 4 H_2O(l)$	-11.717 ± 2.032	present	
$U(SO_4)_2 \cdot 8H_2O(cr) \Leftrightarrow U^{4+} + 2 SO_4^{2-} + 8 H_2O(I)$	-12.773 ± 2.952	present	
$USe(cr) + H^+ \Leftrightarrow U^{4+} + HSe^- + 2e^-$	37.339 ± 3.189	present	
α -USe ₂ + 2 H ⁺ \Leftrightarrow U ⁴⁺ + 2 HSe ⁻	2.776 ± 7.399	present	
β -USe ₂ + 2 H ⁺ \Leftrightarrow U ⁴⁺ + 2 HSe ⁻	$\textbf{2.618} \pm \textbf{7.430}$	present	
$USe_3(cr) + 2 H_2O(l) \Leftrightarrow UO_2^{2+} + 3 HSe^- + H^+$	-18.244 ± 7.494	present	
$U_2Se_3(cr) + 3 H^+ \Leftrightarrow 2 U^{3+} + 3 HSe^-$	17.754 ± 13.198	present	
$U_3Se_4(cr) + 4 H^+ \Leftrightarrow 3 U^{4+} + 4 HSe^- + 4 e^-$	74.796 ± 15.118	present	
$U_3Se_5(cr) + 5 H^+ \Leftrightarrow 3 U^{4+} + 5 HSe^- + 2 e^-$	42.329 ± 19.996	present	
$UN(cr) + 3 H_2O(l) \Leftrightarrow U^{4+} + NO_3^- + 6 H^+ + 9 e^-$	-58.838 ± 0.615	present	
α -UN _{1.59} + 4.77 H ₂ O(l) \Leftrightarrow U ⁴⁺ + 1.59 NO ₃ ⁻ + 9.54 H ⁺ + 11.95 e ⁻	-133.730 ± 0.970	present	
α -UN _{1 73} + 5.19 H ₂ O(l) \Leftrightarrow U ⁴⁺ + 1.73 NO ₃ ⁻ + 10.38 H ⁺ + 12.65 e ⁻	-151.186 ± 1.356	present	
$UO_2(NO_3)_2(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-1}$	11.921 ± 1.050	present	
$UO_2(NO_3)_2 H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + H_2O(1)$	8.464 ± 1.875	present	
$UO_2(NO_3)_2 \cdot 2H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 2 H_2O(1)$	4.891 ± 0.488	present	
$UO_2(NO_3)_2 \cdot 3H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 3 H_2O(l)$	3.655 ± 0.484	present	
$UO_2(NO_3)_2 \cdot 6H_2O(cr) \Leftrightarrow UO_2^{2+} + 2 NO_3^{-} + 6 H_2O(l)$	2.236 ± 0.444	present	
$UP(cr) + 4 H_2O(1) \Leftrightarrow U^{4+} + PO_4^{3-} + 8 H^+ + 9 e^-$	59.718 ± 1.989	present	
$UP_{2}(cr) + 8 H_{2}O(1) \Leftrightarrow U^{4+} + 2 PO_{4}^{3-} + 16 H^{+} + 14 e^{-1}$	68.179 ± 2.709	present	
$U_3P_4(cr) + 16 H_2O(1) \Leftrightarrow U^{4+} + 4 PO_4^{3-} + 32 H^+ + 32 e^-$	187.607 ± 4.782	present	
$UPO_{5}(cr) + H_{2}O(l) \Leftrightarrow UO_{2}^{+} + PO_{4}^{3-} + 2 H^{+}$	-30.718 ± 0.967	present	
$UP_{2}O_{7}(cr) + 3 H_{2}O(1) \Leftrightarrow UO_{2}^{2+} + 2 PO_{4}^{3-} + 6 H^{+} + 2 e^{-1}$	-64.323 ± 1.133	present	
$(UO_2)_2 P_2 O_7(cr) + H_2 O(1) \Leftrightarrow 2 UO_2^{2+} + 2 PO_4^{3-} + 2 H^+$	-36.976 ± 1.458	present	
$(UO_2)_3(PO_4)_2(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-}$	-36.324 ± 1.435	present	
$U(HPQ_4)_2 \cdot 4H_2O(cr) \Leftrightarrow U^{4+} + 2 PQ_4^{3-} + 4 H_2O(1) + 2 H^+$	-55.194 ± 0.909	present	
$(UO_2)_3(PO_4)_2 \cdot 6H_2O(cr) \Leftrightarrow 3 UO_2^{2+} + 2 PO_4^{3-} + 6 H_2O(l)$	-49.325 ± 2.580	present	
$UAs(cr) + 4 H_2O(1) \Leftrightarrow U^{4+} + AsO_4^{3-} + 8 H^+ + 9 e^-$	-1.445 ± 1.602	present	
$UAs_2(cr) + 8 H_2O(1) \Leftrightarrow U^{4+} + 2 AsO_4^{3-} + 16 H^+ + 14 e^{-1}$	-56.645 ± 2.695	present	
$U_3As_4(cr) + 16 H_2O(1) \Leftrightarrow 3 U^{4+} + 4 AsO_4^{3-} + 32 H^+ + 32 e^-$	-58.971 ± 4.327	present	
$UO_2(AsO_3)_2(cr) + 2 H_2O(1) \Leftrightarrow UO_2^{2+} + 2 AsO_4^{-3-} + 4 H^+$	-29.769 ± 2.548	present	
$(UO_2)_2As_2O_7(cr) + H_2O(1) \Leftrightarrow 2 UO_2^{2+} + 2 AsO_4^{3-} + 2 H^+$	-29.007 ± 2.602	present	
$(UO_2)_3(AsO_4)_2(cr) \Leftrightarrow 3 UO_2^{2+} + 2 AsO_4^{3-}$	-27.403 ± 2.691	present	
$UC(cr) + 3 H_2O(1) \Leftrightarrow U^{4+} + CO_3^{2-} + 6 H^+ + 8 e^-$	43.349 ± 0.614	present	
α -UC _{1.94} + 5.82 H ₂ O(l) \Leftrightarrow U ⁴⁺ + 1.94 CO ₃ ²⁻ + 11.64 H ⁺ + 11.76 e ⁻	15.142 ± 0.500	present	
$U_2C_3(cr) + 9 H_2O(1) \Leftrightarrow 2 U^{4+} + 3 CO_3^{2-} + 18 H^+ + 20 e^{-1}$	56.034 ± 1.871	present	
USiO ₄ (cr) + 4 H ⁺ \Leftrightarrow U ⁴⁺ + H ₄ SiO ₄ (aq)	-8.060 ± 0.792	present	
$MgUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + Mg^{2+} + 2 H_2O(1)$	23.231 ± 0.467	present	
$CaUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + Ca^{2+} + 2 H_2O(l)$	15.930 ± 0.555	present	
α -SrUO ₄ + 4 H ⁺ \Leftrightarrow UO ₂ ²⁺ + Sr ²⁺ + 2 H ₂ O(I)	19.155 ± 0.595	present	
$BaUO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + Ba^{2+} + 2 H_2O(1)$	17.639 ± 0.807	present	
$Ba_3UO_6(cr) + 8 H^+ \Leftrightarrow UO_2^{2+} + 3 Ba^{2+} + 4 H_2O(1)$	92.699 ± 2.129	present	
$BaU_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^{2+} + Ba^{2+} + 3 H_2O(1)$	21.388 ± 1.401	present	
$Ba_{2}U_{2}O_{7}(cr) + 6 H^{+} \Leftrightarrow 2 UO_{2}^{+} + 2 Ba^{2+} + 3 H_{2}O(l)$	35.346 ± 1.742	present	
$Li_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 Li^+ + 2 H_2O(l)$	27.939 ± 0.496	present	
$\operatorname{NaUO}_3(\operatorname{cr}) + 2 \operatorname{H}^+ \Leftrightarrow \operatorname{UO}_2^+ + \operatorname{Na}^+ + \operatorname{H}_2O(1)$	8.342 ± 1.779	present	
$a-Na_2UO_4 + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 Na^+ + 2 H_2O(1)$	30.034 ± 0.687	present	
$Na_3UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^+ + 3 Na^+ + 2 H_2O(l)$	56.280 ± 1.436	present	
$Na_2U_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^{2+} + 2 Na^+ + 3 H_2O(1)$	22.595 ± 0.933	present	
$K_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 K^+ + 2 H_2O(l)$	33.874 ± 0.648	present	
$Rb_2UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 Rb^+ + 2 H_2O(1)$	34.111 ± 0.649	present	
$C_{s_2}UO_4(cr) + 4 H^+ \Leftrightarrow UO_2^{2+} + 2 C_s^+ + 2 H_2O(1)$	35.804 ± 0.419	present	
$Cs_2U_2O_7(cr) + 6 H^+ \Leftrightarrow 2 UO_2^{2+} + 2 Cs^+ + 3 H_2O(l)$	30.931 ± 1.866	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$Cs_2U_4O_{12}(cr) + 8 H^+ \Leftrightarrow 4 UO_2^{2+} + 2 Cs^+ + 4 H_2O(l) + 2 e^-$	15.875 ± 1.392	present	
$Na_4UO_2(CO_3)_3(cr) \Leftrightarrow UO_2^{2+} + 4 Na^+ + 3 CO_3^{2-}$	-27.180 ± 0.555	present	
$NpO_2(am) + 4 H^+ \Leftrightarrow Np^{4+} + 2 H_2O(l)$	0.604 ± 1.000	45	
NpO ₂ OH(am, aged) + H ⁺ \Leftrightarrow NpO ₂ ⁺ + H ₂ O(l)	4.700 ± 0.500	14	
$NpO_2OH(am, fresh) + H^+ \Leftrightarrow NpO_2^+ + H_2O(l)$	5.300 ± 0.200	14	
$Na_{3}NpO_{2}(CO_{3})_{2}(cr) \Leftrightarrow NpO_{2}^{+} + 2 CO_{3}^{2^{-}} + 3 Na^{+}$	-14.220 ± 0.500	14	
$NaNpO_2CO_3 \bullet 3.5H_2O(cr) \Leftrightarrow NpO_2^+ + CO_3^{2-} + 3.5H_2O + Na^+$	-11.000 ± 0.240	14	
$\mathrm{KNpO}_{2}\mathrm{CO}_{3}(\mathrm{s}) \Leftrightarrow \mathrm{NpO}_{2}^{+} + \mathrm{CO}_{3}^{2-} + \mathrm{K}^{+}$	-13.150 ± 0.190	14	
$K_{3}NpO_{2}(CO_{3})_{2}(s) \Leftrightarrow NpO_{2}^{+} + 2 CO_{3}^{2-} + 3 K^{+}$	-15.460 ± 0.160	14	
$NpO_3 H_2O(cr) + 2 H^+ \Leftrightarrow NpO_2^{2+} + 2 H_2O(l)$	5.470 ± 0.400	14	
$NpO_2CO_3(s) \Leftrightarrow NpO_2^{2^+} + CO_3^{2^-}$	-14.596 ± 0.469	14	
$(NH_4)_4NpO_2(CO_3)_3(s) + e^- \Leftrightarrow NpO_2^+ + 3 CO_3^{-2-} + 4 NH_4^+$	-7.223 ± 0.346	14	
$K_4NpO_2(CO_3)_3(s) + e^- \Leftrightarrow NpO_2^+ + 3 CO_3^{-2-} + 4 K^+$	-6.813 ± 0.894	14	
$Np(cr) \Leftrightarrow Np^{4+} + 4e^{-}$	86.155 ± 0.979	present	
$Np(g) \Leftrightarrow Np^{4+} + 4e^{-}$	159.944 ± 1.112	present	
$NpO_2(cr) + 4 H^+ \Leftrightarrow Np^{4+} + 2 H_2O(l)$	-9.754 ± 1.073	present	
$Np_2O_5(cr) + 2 H^+ \Leftrightarrow 2 NpO_2^+ + H_2O(l)$	$\textbf{3.696} \pm \textbf{2.785}$	present	
$NpO_{2}(OH)_{2}(cr) + 2 H^{+} \Leftrightarrow NpO_{2}^{2+} + 2 H_{2}O(I)$	5.469 ± 1.492	present	
$NpF(g) \Leftrightarrow Np^{4+} + F^{-} + 3e^{-}$	116.281 ± 4.497	present	
$NpF_2(g) \Leftrightarrow Np^{4+} + 2 F^- + 2 e^-$	81.410 ± 5.377	present	
$NpF_3(cr) \Leftrightarrow Np^{3+} + 3 F^-$	-18.056 ± 1.802	present	
$NpF_3(g) \Leftrightarrow Np^{3+} + 3 F^{-}$	43.734 ± 4.536	present	
$NpF_4(cr) \Leftrightarrow Np^{4+} + 4 F^{-}$	-29.070 ± 3.016	present	
$NpF_4(g) \Leftrightarrow Np^{4+} + 4 F^{-}$	14.467 ± 4.040	present	
$NpF_5(cr) + 2 H_2O(l) \Leftrightarrow NpO_2^+ + 5 F^- + 4 H^+$	1.169 ± 4.598	present	
$NpF_6(cr) + 2 H_2O(l) \Leftrightarrow NpO_2^{2+} + 6 F^- + 4 H^+$	29.594 ± 3.712	present	
$NpF_6(g) + 2 H_2O(l) \Leftrightarrow NpO_2^{2+} + 6 F^- + 4 H^+$	30.356 ± 3.712	present	
$NpCl_3(cr) \Leftrightarrow Np^{3+} + 3 Cl^{-}$	13.438 ± 1.145	present	
$NpCl_3(g) \Leftrightarrow Np^{3+} + 3 Cl^{-}$	56.790 ± 2.141	present	
$NpCl_4(cr) \Leftrightarrow Np^{4+} + 4 Cl^{-}$	21.212 ± 1.114	present	
$NpCl_4(g) \Leftrightarrow Np^{4+} + 4 Cl^{-}$	44.077 ± 1.374	present	
$NpOCl_2(cr) + 2 H^+ \Leftrightarrow Np^{4+} + 2 Cl^- + H_2O(l)$	5.379 ± 1.730	present	
$NpBr_3(cr) \Leftrightarrow Np^{3+} + 3 Br^{-}$	20.829 ± 1.195	present	
$NpBr_4(cr) \Leftrightarrow Np^{4+} + 4 Br^{-}$	29.665 ± 1.160	present	
$NpOBr_2(cr) + 2 H^+ \Leftrightarrow Np^{4+} + 2 Br^- + H_2O(l)$	5.200 ± 2.173	present	
$NpI_3(cr) \Leftrightarrow Np^{3+} + 3 I^-$	27.249 ± 1.189	present	
$NpN(cr) + 3 H_2O(l) \Leftrightarrow Np^{4+} + NO_3^- + 6 H^+ + 9 e^-$	-68.201 ± 2.010	present	
$NpO_2(NO_3)_2 \cdot 6H_2O(cr) \Leftrightarrow NpO_2^{2+} + 2 NO_3^{-} + 6 H_2O(l)$	2.155 ± 1.393	present	
$NpC_{0.91}(cr) + 2.73 H_2O(l) \Leftrightarrow Np^{4+} + 0.91 CO_3^{2-} + 5.46 H^+ + 7.64 e^-$	43.578 ± 2.012	present	
$Np_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 Np^{4+} + 3 CO_3^{2-} + 18 H^+ + 20 e^-$	42.144 ± 3.933	present	
$Na_3NpF_8(cr) + e^- \Leftrightarrow 3 Na^+ + Np^{4+} + 8 F^-$	1.503 ± 3.979	present	
$K_4NpO_2(CO_3)_3(s) \Leftrightarrow 4 K^+ + NpO_2^{2+} + 3 CO_3^{2-}$	-26.404 ± 1.676	present	
$Cs_2NpCl_6(cr) \Leftrightarrow 2 Cs^+ + Np^{4+} + 6 Cl^-$	5.072 ± 1.318	present	
$Cs_2NpBr_6(cr) \Leftrightarrow 2 Cs^+ + Np^{4+} + 6 Br^-$	13.606 ± 1.194	present	
$Pu(OH)_{3}(am) + 3 H^{+} \Leftrightarrow Pu^{3+} + 3 H_{2}O(1)$	16.900 ± 0.800	28	
$PuCO_{3}OH(am) + H^{+} \Leftrightarrow Pu^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	28	
$PuCO_{3}OH \bullet 0.5H_{2}O(cr) + H^{+} \Leftrightarrow Pu^{3+} + CO_{3}^{2-} + 1.5 H_{2}O(l)$	-8.399 ± 0.500	28	
$Pu(OH)_{3}(cr) + 3 H^{+} \Leftrightarrow Pu^{3+} + 3 H_{2}O(l)$	15.600 ± 0.600	28	
$Pu_2(CO_3)_3(am) \Leftrightarrow 2 Pu^{3+} + 3 CO_3^{2-}$	-33.400 ± 2.200	28	
$PuPO_4(am,hydr) \Leftrightarrow Pu^{3+} + PO_4^{3-}$	-24.790 ± 0.600	28	
$PuO_2(am) + 4 H^+ \Leftrightarrow Pu^{4+} + 2 H_2O(l)$	-2.326 ± 0.520	14	
$PuO_2OH(am) + H^+ \Leftrightarrow PuO_2^+ + H_2O(l)$	5.000 ± 0.500	14	
$PuO_2(OH)_2 \cdot H_2O(cr) + 2 H^+ \Leftrightarrow PuO_2^{2+} + 3 H_2O(l)$	5.500 ± 1.000	14	
$Pu(HPO_4)_2(am) \Leftrightarrow Pu^{4+} + 2 H^+ + 2 PO_4^{3-}$	5.750 ± 0.514	14	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$PuO_2CO_3(s) \Leftrightarrow PuO_2^{2+} + CO_3^{2-}$	-14.650 ± 0.470	14	
$Pu(cr) \Leftrightarrow Pu^{4+} + 4e^{-1}$	83.739 ± 0.474	present	
$Pu(g) \Leftrightarrow Pu^{4+} + 4 e^{-1}$	138.472 ± 0.709	present	
$PuO_{1.61}(bcc) + 3.22 H^+ \Leftrightarrow Pu^{4+} + 1.61 H_2O(1) + 0.78 e^{-1}$	4.382 ± 1.834	present	
$PuO_2(cr) + 4 H^+ \Leftrightarrow Pu^{4+} + 2 H_2O(l)$	-8.032 ± 0.507	present	
$Pu_2O_3(cr) + 6 H^+ \Leftrightarrow 2 Pu^{3+} + 3 H_2O(l)$	50.633 ± 1.991	present	
$Pu(OH)_3(cr) + 3 H^+ \Leftrightarrow Pu^{3+} + 3 H_2O(l)$	15.800 ± 1.641	present	
$PuF(g) \Leftrightarrow Pu^{4+} + F^- + 3e^-$	108.364 ± 1.838	present	
$PuF_2(g) \Leftrightarrow Pu^{4+} + 2 F^- + 2 e^-$	72.684 ± 1.289	present	
$PuF_3(cr) \Leftrightarrow Pu^{3+} + 3 F^{-}$	-16.436 ± 0.881	present	
$PuF_3(g) \Leftrightarrow Pu^{3+} + 3 F^-$	45.983 ± 1.024	present	
$PuF_{4}(cr) \Leftrightarrow Pu^{4+} + 4 F^{-}$	-26.745 ± 3.569	present	
$PuF_4(g) \Leftrightarrow Pu^{4+} + 4 F^{-}$	15.103 ± 3.948	present	
$PuF_{c}(cr) + 2 H_{2}O(1) \Leftrightarrow PuO_{2}^{2+} + 6 F^{-} + 4 H^{+}$	43.334 ± 3.642	present	
$PuF_{\ell}(g) + 2 H_{2}O(I) \Leftrightarrow PuO_{2}^{2+} + 6 F^{-} + 4 H^{+}$	44.174 ± 3.630	present	
$PuOF(cr) + 2 H^+ \Leftrightarrow Pu^{3+} + F^- + H_2O(1)$	1.064 ± 3.576	present	
$\frac{PuCl_2(cr) \Leftrightarrow Pu^{3+} + 3 Cl}{PuCl_2(cr) \Leftrightarrow Pu^{3+} + 3 Cl}$	14.161 ± 0.593	nresent	
$\frac{PuCl_{2}(\sigma) \leftrightarrow Pu^{3+} + 3 Cl^{-}}{PuCl_{2}(\sigma) \leftrightarrow Pu^{3+} + 3 Cl^{-}}$	58.047 ± 0.789	nresent	
$PuCL(cr) \Leftrightarrow Pu^{4+} + A C\Gamma$	30.047 ± 0.109 21 634 ± 1 128	present	
$PuCL(g) \Leftrightarrow Pu^{4+} + 4 C\Gamma$	$\frac{21.034 \pm 1.120}{41.726 \pm 1.891}$	nresent	
$P_{u}O(C)(a_{v}) + 2 H^{+} \Leftrightarrow P_{u}^{3+} + C\Gamma + H O(I)$	$\frac{41.720 \pm 1.071}{11.376 \pm 0.581}$	present	
$PuCl_{2}(H) + 2 H \Leftrightarrow Pu^{3+} + 3 Cl_{2} + 6 H_{2}O(l)$	$\frac{11.370 \pm 0.301}{5.278 \pm 0.658}$	present	
$\mathbf{P}_{u}\mathbf{P}_{v}\left(\mathbf{r}_{v}\right) \leftrightarrow \mathbf{P}_{u}^{3+} \pm 3 \mathbf{P}_{v}^{-}$	3.278 ± 0.038 21 585 ± 0.673	present	
$\frac{1}{2} u D_{13}(c1) \Leftrightarrow r u + 3 D_{1}$ $D_{12} D_{13}(c1) \Leftrightarrow D_{13}^{3+} + 2 D_{13}^{-1}$	$\frac{21.365 \pm 0.073}{63.106 \pm 2.784}$	present	
$\frac{1}{2} uDI_{3}(g) \Leftrightarrow I u \rightarrow 5 DI$ $\frac{1}{2} Dr_{2} OPr(2r) + 2 H^{+} \leftrightarrow Dr_{2}^{3+} + Dr_{2}^{-} + H O(1)$	05.190 ± 2.784 14 200 ± 1 560	present	
$P_{U}(Br(Cr) + 2H \Leftrightarrow P_{U} + Br + H_{2}O(I)$ $P_{U}(r_{0}) \leftrightarrow P_{U}^{3+} + 2F$	14.299 ± 1.309	present	
$\frac{\Gamma(I)}{2} (CT) \Leftrightarrow \Gamma U^{-} + 5 I$	$2/.182 \pm 0.928$	present	
$\frac{\Gamma(I_{3}(g) \Leftrightarrow \Gamma(I_{1} + 3)I}{P_{1} \circ O((m) + 2)I_{1}^{+} \leftrightarrow P_{2}^{-3+} + I_{1}^{+} + I_{1} \circ O(I)}$	04.407 ± 2.763	present	
$PuOI(cr) + 2 H \Leftrightarrow Pu^{+} + 1 + H_2O(l)$ $PuN(cr) + 2 H O(l) \Leftrightarrow Pu^{4+} + NO^{-} + (H^{+} + 0)^{-}$	15.981 ± 3.021	present	
$\frac{P(r)(cr) + 3H_2(0)}{P(r)} \Rightarrow \frac{P(r)}{P(r)} + \frac{P(r)}{P(r)} $	-09.438 ± 0.030	present	
$\frac{\operatorname{PuP}(\operatorname{cr}) + 4 \operatorname{H}_2 O(I) \Leftrightarrow \operatorname{PuI}^* + \operatorname{PO}_4^* + 8 \operatorname{H}^* + 9 \operatorname{e}^*}{\operatorname{PuP}(\operatorname{cr}) + 1 \operatorname{H}_2 O(I) \Leftrightarrow \operatorname{PuI}^* + 2 \operatorname{Po}_4^* + 8 \operatorname{H}^* + 9 \operatorname{e}^*}$	42.250 ± 3.733	present	
$PuPO_4(s, nya) \Leftrightarrow Pu^+ + 3PO_4$	-24.000 ± 1.112	present	
$\frac{PuAs(cr) + 4 H_2O(I) \Leftrightarrow Pu^+ + AsO_4^\circ + 8 H^+ + 9 e}{P_2O_4O_4O_4O_4O_4O_4O_4O_4O_4O_4O_4O_4O_4O$	-11.147 ± 3.624	present	
$\frac{PuC_{0.84}(cr) + 2.52 H_2O(1) \Leftrightarrow Pu^{-1} + 0.84 CO_3^{-1} + 5.04 H_1 + 7.36 e}{2}$	48.003 ± 1.485	present	
$\frac{Pu_{3}C_{2}(cr) + 6 H_{2}O(l) \Leftrightarrow 3 Pu^{+} + 2 CO_{3}^{-} + 12 H^{+} + 20 e}{Pu_{3}C_{3}(cr) + 6 H_{2}O(l) \Leftrightarrow 3 Pu^{+} + 2 CO_{3}^{-} + 12 H^{+} + 20 e}$	165.284 ± 5.454	present	
$\frac{Pu_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 Pu^{+} + 3 CO_3^{-2} + 18 H^{+} + 20 e^{-2}}{2 C_3 C_3^{-2} + 18 H^{+} + 20 e^{-2}}$	43.605 ± 3.088	present	
$\frac{\text{Cs}_2\text{PuCl}_6(\text{cr}) \Leftrightarrow 2 \text{ Cs}^+ + \text{Pu}^+ + 6 \text{ Cr}}{2 \text{ Cs}^+ + \text{Pu}^+ + 6 \text{ Cr}}$	1.745 ± 1.288	present	
$Cs_3PuCl_6(cr) \Leftrightarrow 3Cs^2 + Pu^{32} + 6C\Gamma$	5.713 ± 1.755	present	
$CsPu_2Cl_7(cr) \Leftrightarrow Cs^2 + 2Pu^{3^2} + 7C\Gamma$	23.270 ± 1.332	present	
$Cs_2PuBr_6(cr) \Leftrightarrow 2 Cs^+ + Pu^{++} + 6 Br^-$	8.702 ± 1.205	present	
$Cs_2NaPuCl_6(cr) \Leftrightarrow Na^+ + 2 Cs^+ + Pu^{3+} + 6 Cl^-$	11.853 ± 1.047	present	
$Am(OH)_3(am) + 3 H \Leftrightarrow Am^{3+} + 3 H_2O(1)$	16.900 ± 0.800	14	
$\operatorname{Am}(\operatorname{OH})_{3}(\operatorname{cr}) + 3 \operatorname{H}^{+} \Leftrightarrow \operatorname{Am}^{3^{+}} + 3 \operatorname{H}_{2}\operatorname{O}(1)$	15.600 ± 0.600	14	
$\operatorname{Am}_2(\operatorname{CO}_3)_3(\operatorname{am}) \Leftrightarrow 2 \operatorname{Am}^{3^+} + 3 \operatorname{CO}_3^{2^-}$	-33.400 ± 2.200	14	
$AmCO_{3}OH(am) + H^{+} \Leftrightarrow Am^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	14	
$AmCO_{3}OH \bullet 0.5H_{2}O(cr) + H^{+} \Leftrightarrow Am^{3+} + CO_{3}^{2+} + 1.5 H_{2}O(l)$	-8.399 ± 0.500	14	
$NaAm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Am^{3+} + 2 CO_3^{2-} + 5 H_2O(l) + Na^+$	-21.000 ± 0.500	14	
$AmPO_4(am,hydr) \Leftrightarrow Am^{3+} + PO_4^{-3-}$	-24.790 ± 0.600	14	
$AmO_2OH(am) + H^+ \Leftrightarrow AmO_2^+ + H_2O(l)$	5.300 ± 0.500	14	
$NaAmO_2CO_3(s) \Leftrightarrow AmO_2^+ + CO_3^{2-} + Na^+$	-10.900 ± 0.400	14	
$Am(cr) \Leftrightarrow Am^{3+} + 3e^{-}$	104.887 ± 0.833	present	
$\operatorname{Am}(g) \Leftrightarrow \operatorname{Am}^{3+} + 3 e^{-}$	147.338 ± 0.880	present	
$AmO_2(cr) + 4 H^+ \Leftrightarrow Am^{4+} + 2 H_2O(l)$	-9.994 ± 1.697	present	
$Am_2O_3(cr) + 6 H^+ \Leftrightarrow 2 Am^{3+} + 3 H_2O(l)$	53.147 ± 2.210	present	
$AmH_2(cr) \Leftrightarrow Am^{2+} + 2 H^+$	42.417 ± 3.752	present	

Reaction	$\log_{10} K^{\circ}$	ref.	t.v. ^{*1}
$AmF_3(cr) \Leftrightarrow Am^{3+} + 3 F^{-}$	-13.402 ± 2.636	present	
$AmF_3(g) \Leftrightarrow Am^{3+} + 3 F^{-}$	51.764 ± 3.076	present	
$AmF_4(cr) \Leftrightarrow Am^{4+} + 4 F^{-}$	-28.040 ± 3.407	present	
$\operatorname{AmCl}_3(\operatorname{cr}) \Leftrightarrow \operatorname{Am}^{3+} + 3 \operatorname{Cl}^-$	15.284 ± 0.927	present	
$AmBr_3(cr) \Leftrightarrow Am^{3+} + 3 Br^{-}$	23.927 ± 1.446	present	
$AmOCl(cr) + 2 H^+ \Leftrightarrow Am^{3+} + Cl^- + H_2O(l)$	12.264 ± 1.443	present	
$AmOBr(cr) + 2 H^+ \Leftrightarrow Am^{3+} + Br^- + H_2O(l)$	15.978 ± 1.908	present	
$AmI_3(cr) \Leftrightarrow Am^{3+} + 3 I^-$	25.301 ± 1.952	present	
$Am_2C_3(cr) + 9 H_2O(l) \Leftrightarrow 2 Am^{3+} + 8 H^+ + 8 e^- + 3 CO_3^{2-}$	85.979 ± 7.622	present	
$Cs_2NaAmCl_6(cr) \Leftrightarrow Am^{3+} + 2Cs^+ + Na^+ + 6Cl^-$	12.564 ± 1.213	present	
$Cm(OH)_3(am) + 3 H^+ \Leftrightarrow Cm^{3+} + 3 H_2O(l)$	16.900 ± 0.800	28	
$Cm(OH)_3(cr) + 3 H^+ \Leftrightarrow Cm^{3+} + 3 H_2O(l)$	15.600 ± 0.600	28	
$\operatorname{Cm}_2(\operatorname{CO}_3)_3(\operatorname{am}) \Leftrightarrow 2 \operatorname{Cm}^{3+} + 3 \operatorname{CO}_3^{2-}$	-33.400 ± 2.200	28	
$CmCO_{3}OH(am) + H^{+} \Leftrightarrow Cm^{3+} + CO_{3}^{2-} + H_{2}O(l)$	-6.199 ± 1.000	28	
$CmCO_3OH \bullet 0.5H_2O(cr) + H^+ \Leftrightarrow Cm^{3+} + CO_3^{2-} + 1.5 H_2O(l)$	-8.399 ± 0.500	28	
$NaCm(CO_3)_2 \bullet 5H_2O(cr) \Leftrightarrow Cm^{3+} + 2 CO_3^{2-} + 5 H_2O(1) + Na^+$	-21.000 ± 0.500	28	
$CmPO_4(am,hydr) \Leftrightarrow Cm^{3+} + PO_4^{3-}$	-24.790 ± 0.600	28	
$UO_2 ox \cdot 3H_2 O(cr) \Leftrightarrow UO_2^{2+} + ox^{2-} + 3H_2 O(1)$	-8.930 ± 0.314	46	
$Ca(ox) \cdot H_2O(cr) \Leftrightarrow Ca^{2+} + H_2O(1) + ox^{2-}$	-8.730 ± 0.060	46	
$Ca(ox) \cdot 2H_2O(cr) \Leftrightarrow Ca^{2+} + 2H_2O(1) + ox^{2-}$	-8.300 ± 0.060	46	
$Ca(ox) \cdot 3H_2O(cr) \Leftrightarrow Ca^{2+} + 3H_2O(1) + ox^{2-}$	-8.190 ± 0.040	46	
$H_3 \operatorname{cit}(\operatorname{cr}) \Leftrightarrow \operatorname{cit}^{3-} + 3 \operatorname{H}^+$	-13.041 ± 0.500	46	
$H_3 \operatorname{cit} H_2 O(\operatorname{cr}) \Leftrightarrow \operatorname{cit}^{3-} + 3 H^+ + H_2 O(I)$	-12.950 ± 0.024	46	
$Ca_{3}(cit)_{2} \cdot 4H_{2}O(cr) \Leftrightarrow 3 Ca^{2+} 4 H_{2}O(1) + 2 cit^{3-}$	-17.900 ± 0.100	46	
H_4 edta(cr) \Leftrightarrow edta ⁴⁻ + 4 H^+	-27.220 ± 0.201	46	
$Ca(isa)_2(cr) \Leftrightarrow Ca^{2+} + 2 isa^{-}$	-6.400 ± 0.200	46	

*1 Tentative values.
Appendix 2. Text Files of JAEA-TDB for Geochemical Calculation Programs

Enclosed CD-ROM contains three text files of JAEA-TDB for geochemical calculation programs. Correspondence between file name and its corresponding geochemical calculation program is shown in Table A3.

file name	corresponding geochemical calculation program
100331c2.tdb	PHREEQC ⁵⁾
100331e1.tdb	EQ3/6 Ver. 7.2c ⁶⁾
100331g1.tdb	Geochemist's Workbench ⁷⁾

 Table A3
 Correspondence between file name and its corresponding geochemical calculation program

This is a blank page.

表2. 基本単位を用いて表されるSI組立単位の例 表1. SI 基本単位

甘木県	SI 基本単位			
基个里	名称	記号		
長さ	メートル	m		
質 量	キログラム	kg		
時 間	秒	s		
電 流	アンペア	Α		
熱力学温度	ケルビン	Κ		
物質量	モル	mol		
光 度	カンデラ	cd		

组立量		SI 基本単位	
和立里		名称	記号
面	積	平方メートル	m ²
体	積五	立法メートル	m ³
速さ,速	度 >	メートル毎秒	m/s
加速	度 >	メートル毎秒毎秒	m/s^2
波	数每	毎メートル	m ⁻¹
密度,質量密	度 =	キログラム毎立方メートル	kg/m ³
面 積 密	度	キログラム毎平方メートル	kg/m ²
比 体	積ゴ	立方メートル毎キログラム	m ³ /kg
電流密	度フ	アンペア毎平方メートル	A/m^2
磁界の強	さフ	アンペア毎メートル	A/m
量濃度 ^(a) ,濃	度日	モル毎立方メートル	mol/m ³

第一の「「濃度」」の「ホルー」」の「加加」」 豊度 (a)、濃度 モル毎立方メートル mol/m³ 量濃度 キログラム毎立法メートル g^{\dagger} 加加/m³ 度 カンデラ毎平方メートル cd/m²折率 (b) (数字の) 1 1 透磁率 (b) (数字の) 1 1 質 輝 屈 透磁 比

(a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度 (substance concentration) ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのこと を表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 組立単位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
平 面 角	ヨラジアン ^(b)	rad	1 ^(b)	m/m
立 体 牟	コテラジアン ^(b)	$sr^{(c)}$	1 ^(b)	m ² /m ²
周 波 数	ベルツ ^(d)	Hz		s ⁻¹
力	ニュートン	Ν		m kg s ^{'2}
圧力,応力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ビュール	J	N m	m ² kg s ⁻²
仕事率, 工率, 放射束	モワット	W	J/s	$m^2 kg s^{\cdot 3}$
電荷,電気量	ローロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	m ² kg s ⁻³ A ⁻¹
静電容量	マアラド	F	C/V	$m^{2} kg^{1} s^{4} A^{2}$
電気抵抗	ī オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンフ	ジーメンス	S	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁芽	ミウエーバ	Wb	Vs	$m^2 kg s^{\cdot 2} A^{\cdot 1}$
磁束密度	テスラ	Т	Wb/m ²	kg s ⁻² A ⁻¹
インダクタンフ	、ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	モルシウス度 ^(e)	°C		K
光 東	モルーメン	lm	cd sr ^(c)	cd
照度	レクス	lx	lm/m^2	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量,比エネルギー分与,	グレイ	Gv	J/kg	m ² s ⁻²
カーマ		сл <i>у</i>	0/11g	111 5
線量当量,周辺線量当量,方向 性線量当量,個人線量当量,	シーベルト (g)	Sv	J/kg	$m^2 s^2$
酸 素 活 相	カタール	kat		s ⁻¹ mol
				0 11101

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (o)剤光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ベクレルは放射性核種の統計的過程についてのみ使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス選びを大しに使用される。セルシウス度とケルビンの 単位の大きさは同一である。したかって、温度差や温度間隔を表す数値はどちらの単位で表しても同じである。
 (f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば認った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4. 単位の	中に固有の名称と記号を含むSI組立単位の例

	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ^{'3}
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱伝導率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m^3	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	クーロン毎平方メートル	C/m^2	m ⁻² sA
電束密度, 電気変位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 卒	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 卒	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^{-1}$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^{2} kg s^{2} K^{1} mol^{1}$
照射線量 (X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^2 s^{-3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{2} kg s^{3} = m^2 kg s^{3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	$m^{3} s^{1} mol$

表 5. SI 接頭語							
乗数	接頭語	記号	乗数	接頭語	記号		
10^{24}	ヨ タ	Y	10^{-1}	デシ	d		
10^{21}	ゼタ	Z	$10^{.2}$	センチ	с		
10^{18}	エクサ	Е	10^{-3}	ミリ	m		
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ		
10^{12}	テラ	Т	10^{-9}	ナノ	n		
10^{9}	ギガ	G	$10^{\cdot 12}$	ピョ	р		
10^{6}	メガ	М	$10^{.15}$	フェムト	f		
10^{3}	キロ	k	$10^{\cdot 18}$	アト	а		
10^{2}	ヘクト	h	$10^{.21}$	ゼプト	z		
10^{1}	デ カ	da	10^{-24}	ヨクト	У		

表6. SIに属さないが、SIと併用される単位					
名称	記号	SI 単位による値			
分	min	1 min=60s			
時	h	1h =60 min=3600 s			
日	d	1 d=24 h=86 400 s			
度	۰	1°=(п/180) rad			
分	,	1'=(1/60)°=(п/10800) rad			
秒	"	1"=(1/60)'=(п/648000) rad			
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²			
リットル	L, l	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³			
トン	t	$1t=10^3 \text{ kg}$			

表7. SIに属さないが、SIと併用される単位で、SI単位で

	表される数値が実験的に得られるもの							
名称				記号	SI 単位で表される数値			
電	子 オ	゛ル	Ч	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J			
ダ	ル	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg			
統-	一原子	質量単	〔位	u	1u=1 Da			
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m			

	表8.SIに属さないが、SIと併用されるその他の単位						
	名称		記号	SI 単位で表される数値			
バ	_	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa			
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa			
オン	グストロ・	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m			
海		里	М	1 M=1852m			
バ		\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²			
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s			
ネ		パ	Np	ロ光伝しの粉はめた眼接は			
ベ		ル	В	51単位との数値的な関係は、 対数量の定義に依存。			
デ	ジベ	ル	dB -	X19X ± 17 AC44 (19 A 11 6			

表9. 固有の名称をもつCGS組立単位						
名称	記号	SI 単位で表される数値				
エルク	erg	1 erg=10 ⁻⁷ J				
ダイン	dyn	1 dyn=10 ⁻⁵ N				
ポアフ	P	1 P=1 dyn s cm ⁻² =0.1Pa s				
ストークフ	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$				
スチルフ	sb	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²				
フォト	ph	1 ph=1cd sr cm 2 10 ⁴ lx				
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{-2} = 10^{-2} \text{ ms}^{-2}$				
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$				
ガウジ	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$				
エルステッド ^(c)	Oe	1 Oe ≜ (10 ³ /4π)A m ⁻¹				
(a) 2 二系のCCC単位系しCIでけ直接比較できないため 笶具「 A						

3元系のCGS単位系とSI Cは は対応関係を示すものである。

表10. SIに属さないその他の単位の例								
	3	名利	К		記号	SI 単位で表される数値		
キ	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
ν	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$		
ラ				ĸ	rad	1 rad=1cGy=10 ⁻² Gy		
ν				Д	rem	1 rem=1 cSv=10 ⁻² Sv		
ガ		$\boldsymbol{\nu}$		7	γ	1 γ =1 nT=10-9T		
フ	r		ル	i.		1フェルミ=1 fm=10-15m		
メー	ートル	系	カラッ	ット		1メートル系カラット = 200 mg = 2×10-4kg		
ŀ				ル	Torr	1 Torr = (101 325/760) Pa		
標	準	大	気	圧	atm	1 atm = 101 325 Pa		
力	Ц		IJ	_	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)		
ŝ	ク			\sim	μ	$1 \mu = 1 \mu m = 10^{-6} m$		

この印刷物は再生紙を使用しています