JAEA-Data/Code 2013-017

広域地下水流動研究における表層水理観測データ集 -2011 年度-

Annual Data Compilation of Water Balance Observation in the Regional Hydrogeological Study Project (RHS Project) - For the Fiscal Year 2011 -

佐藤 成二 尾方 伸久 竹内 竜史 武田 匡樹 Seiji SATO, Nobuhisa OGATA, Ryuji TAKEUCHI and Masaki TAKEDA

> 地層処分研究開発部門 東濃地科学研究ユニット

Tono Geoscientific Research Unit Geological Isolation Research and Development Directorate

December 2013

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency. 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2013

広域地下水流動研究における表層水理観測データ集 -2011 年度-

日本原子力研究開発機構

地層処分研究開発部門 東濃地科学研究ユニット 佐藤 成二**, 尾方 伸久, 竹内 竜史, 武田 匡樹+1

(2013年8月30日受理)

独立行政法人 日本原子力研究開発機構 東濃地科学研究ユニットでは, 広域地下水流 動研究の一環として, 地下水流動解析における上部境界条件を与える岩盤浸透量の水収 支解析による算出, 水理地質構造モデルのキャリブレーションに必要なデータの取得を 目的として, 表層水理観測を実施している。観測項目は降水量および河川流量であり, 柄石川と日吉川を観測流域としている。

本報告では、2011 年度の表層水理観測で得られた降水量、河川流量について、データの欠測や異常値を示すデータの補正・補完を行いデータセットとして取りまとめた。

東濃地科学センター(駐在):〒509-6132 岐阜県瑞浪市明世町山野内1-64

+1 地層処分基盤研究開発ユニット システム性能研究グループ

※ 技術開発協力員

Annual Data Compilation of Water Balance Observation in the Regional Hydrogeological Study Project (RHS Project) - For the Fiscal Year 2011 -

Seiji SATO^{**}, Nobuhisa OGATA, Ryuji TAKEUCHI and Masaki TAKEDA⁺¹

Tono Geoscientific Research Unit Geological Isolation Research and Development Directorate Japan Atomic Energy Agency Akiyo-cho, Mizunami-shi, Gifu-ken

(Received August 30, 2013)

The Tono Geoscientific Research Unit of Japan Atomic Energy Agency (JAEA) has carried out the subsurface water balance observation in order to estimate groundwater recharge rate for setting the upper boundary conditions on groundwater flow simulation and to obtain data for calibration of hydrogeological model.

In the subsurface water balance observations, precipitation data and river flow rate have been observed in the Garaishi River and the Hiyoshi River watersheds.

The missing or abnormal data in the monitoring data during the fiscal year 2011 were complemented or corrected, and these data were compiled in data set.

Keywords: Regional Hydrogeological Study Project (RHS Project), Water Balance, Precipitation, River Flow Rate, Groundwater Recharge Rate

⁺¹ Performance Assessment Research Group, Geological Isolation Research Unit

[※] Collaborating Engineer

目	次
	い

1.	はじめに
2.	観測の概要
	2.1 目的
	2.2 表層水理定数観測システムの仕様と諸元
3.	観測データの整理方法
	3.1 観測データセット
	3.2 補正・補完データセット6
	3.3 補正・補完
4.	観測結果
	4.1 降水量
	4.2 河川流量
	4.3 岩盤浸透量の算出
5.	電子ファイルの様式15
	5.1 物理量への変換式
	5.2 補正・補完箇所の表示
	5.3 フォルダ構造
6.	まとめ
参考	考文献
付籤	录 過去の検討資料一覧

CONTENTS

1.	Introduction
2.	Outline of observation ·····2
	2.1 Purposes2
	2.2 Specifications of the observation system ······2
3.	Reduction method of observation data ·······6
	3.1 Observation data sets ··································
	3.2 Correction data sets / Complement data sets ·······6
	3.3 Correction / Complement ······6
4.	Observation results ······12
	4.1 Precipitation ·····12
	4.2 River flow rate ·····12
	4.3 Estimated recharge rate ······14
5.	Style of the electronic files ······15
	5.1 Conversion to physical quantity15
	5.2 Indication of correction/Complement points
	5.3 Folder structure ·····18
6.	Summary ·····20
Ref	ferences ······21
Ap	pendix List of studied documents ······22

1. はじめに

独立行政法人 日本原子力研究開発機構(以下,原子力機構) 東濃地科学研究ユニット では,広域地下水流動研究 ¹⁾の一環として,地下水流動解析において上部境界条件を与え る岩盤浸透量の水収支解析による算出,水理地質構造モデルのキャリブレーションに必要 なデータの取得を目的として,1992年度より東濃鉱山流域,正馬川流域,柄石川流域,日 吉川流域に設置された表層水理定数観測システム用いて表層水理観測を実施してきた ^{2),3)}。

その後、広域地下水流動研究は、2004 年度をもって主な現場調査を終了したことから、 2005 年度以降は、前述の目的に加えて、瑞浪超深地層研究所における地下施設の建設に伴 う周辺地下水への影響を既存の観測設備およびボーリング孔において長期観測することと している¹⁾。

本観測は 1992 年度に東濃鉱山流域および正馬川流域での蒸発散量算出のための気象要素,降水量,河川流量,地下水位,土壌水分の観測を東濃鉱山における立坑掘削影響試験より引き継ぎ,1999 年度に柄石川流域の気象要素,降水量,河川流量,地下水位の観測,2003 年度に広域の地下水流動解析領域と同等の水収支解析領域を設定するために,日吉川下流部に河川流量計を設置し河川流量の観測を開始した。

東濃鉱山流域は、鉱山の閉山措置に伴い2007年度までに全ての観測を終了している。

また,柄石川流域は表層部に土岐砂礫層と基盤花崗岩が分布している流域の岩盤浸透量の把握を目的に,気象要素,降水量(尾根部と谷部),河川流量(尾根部と谷部)および地下水位の観測を行ってきたが,所期の目的を達成したことから,2003年度までで気象要素, 尾根部での降水量と河川流量,2005年度に地下水位の観測を終了し,現在は谷部での降水 量と河川流量の観測を継続している^{4)~8}。

観測データの補正・補完に関しては、既往の表層水理観測年報 4).5)および表層水理観測 データ集 6)~8)において補正・補完方法が整理されており、それらに基づき 2011 年度に取 得した観測データの補正・補完を行った。

また,得られた補正・補完後の観測データを用いて,日吉川流域の岩盤浸透量を水収支 解析によって算出した。

なお、本データ集では、観測で得られたデータを「観測データセット」、補正・補完後のデータを「補正・補完データセット」として整理し、コンピュータによる利用等を考慮し、CD-ROMを巻末に添付した。

2. 観測の概要

2.1 目的

広域地下水流動研究における表層水理観測は,地下水流動解析における境界条件の設定 および解析結果の妥当性確認のためのデータ取得を目的としている。

また,2005年度以降は,瑞浪超深地層研究所における地下施設の建設に伴う周辺地下水 への影響を把握することを目的としている。

2.2 表層水理定数観測システムの仕様と諸元

広域地下水流動研究では、柄石川流域雨雪量計(GRD)を用いた降水量観測、柄石川流 域河川流量計(GPD)および日吉川流域河川流量計(HRQ)を用いた河川流量観測を継 続している。

GPD は、河川流量の変化に対応するため、大小 2 種類のパーシャルフリュームとパー シャルフリュームの水位を観測するための測水井戸で構成されている(図 2.1a)。河川流 量はパーシャルフリュームの水位(図 2.1b)と流量の関係式から算出している。

HRQは、河川の幅が広いため、河川水位と河川流量の既往の関係式(水位・流量曲線) を用いて、観測した河川水位(図 2.2)から河川流量を算出している。

表層水理定数観測システムの設置位置を図 2.3 に,表層水理定数観測システムを構成する各観測機器の仕様と諸元を表 2.1 および表 2.2 に示す。

(a)設置状況

(b) 水位観測の概念

図 2.1 柄石川流域河川流量計(GPD)

図 2.2 日吉川流域河川流量計(HRQ)

図 2.3 表層水理定数観測システムの設置位置図 (図中の地点名称は表 2.1,表 2.2 参照)

センサー測定誤差	20mm以下のとき±0.5mm以内, 100mm以下の連続した雨量のとき±3%
測定単位(mm)	0.5
地上高の基準	日水受
地上高(m)	2.530
型式	B-071-00
製造元	横河電子機器㈱
観測機器名	椙重重地注すまの建立水でい
地点標高(m)	£0 [.] 66Z
観測装置の名称	丙石川流域雨雪量計(GRD)

(雨雪量計)
、テムの仕様と諸元
観測シス
表層水理定数律
表 2.1

表 2.2 表層水理定数観測システムの仕様と諸元(河川流量計)

測定条件	−5~40°C	−5~40°C	0~30°C
センサー 測定 誤差	±2mm	±2mm	±5mm (0.1%FS)
水位計 測定範囲	0∼1m	0∼1m	0~5m
パーシャル天 端高さ(mm)	920	335	Ι
観測項目	測水井戸水位:H(mm)	測水井戸水位:H(mm)	河川水位:H(mm)
取水口高さ ^(mm)	65	35	Ι
水位計型式	W-4481-11-00	W-4481-11-00	ELP-200型
型式	Ι	Ι	水圧式 水位検出器
製造元	横河電子機器㈱	横河電子機器㈱	㈱池田計器製作所
機器名称	ムーェリマルタぐー^ いしょ	ムーェリマルタビッム	デジタル式水圧水位計
地点標高 (m)	296.66	296.25	171.48 [%]
流域面積 (km ²)		0.233	23.9
観測装置の名称	柄石川流域河川流量計 (GPD)		日吉川流域河川流量計 (HRQ)

※水位標零点高

3. 観測データの整理方法

3.1 観測データセット

観測データセットは,各観測機器(センサー)の観測間隔ごとに得られた電圧データと物 理量データで構成されている。

電圧データは各センサーからデータロガーへ送られ、データロガーの IC カードに記録され、各センサーに設定されている変換式を用いて物理量データに変換される。

3.2 補正・補完データセット

観測機器の故障,観測条件の変化またはメンテナンス時の作業等によって,観測データに は欠測や異常値が生じる。よって,観測データの品質を確保するためには,観測データごと に適切な補正・補完方法を選択し,補正・補完を実施する必要がある。補正・補完のどちら を選択するかは,観測データの特性および欠測や異常値が生じている期間の長さによって異 なる。補正・補完の定義および選択した補正・補完方法の詳細は次項に示す。各観測データ に補正・補完を実施し,その結果を整理したものが「補正・補完データセット」となる。

3.3 補正·補完

(1) 補正・補完の定義

本データ集では補正・補完を以下のように定義する。

①補正

観測データの明らかな異常値や欠測を, 欠測前後の観測データやメンテナンス作業の記録から補うことを補正と定義する。

②補完

欠測や異常値が長期間に亘っており補正が不可能な場合,あるいは気象要素のように観 測データが短期間で大きく変動する場合に対して,他の観測地点で取得した観測データと の相関性に基づき,計算によって欠測や異常値を補うことを補完と定義する。

(2)補正の実施

各観測データに対して補正可能かどうかを検討するためには,観測データの時間変動に 連続性があるかを確認することが必要となる。

①降水量

降水量は、雨雪量計の転倒ますの転倒回数から計測する。欠測の原因としては、デー タロガーの停止や枯葉等により雨雪量計内部で目詰まりを起こすことで転倒ますが転倒 しないことが挙げられる。よって観測データの欠測や異常値は、メンテナンス記録およ び他の観測点の観測データとの比較によって確認する。

2011 年度の柄石川流域雨雪量計(GRD)の観測データについては、補正の必要はなかった。

②河川流量

河川流量は、欠測期間中に降雨がない場合において、前後の観測データを端点とした 線形補正(Y=aX+b)を行う。

また,メンテナンス時に行うパーシャルフリューム内の実測水位と観測データの間に 機械の持つ誤差以上の差異が長期間認められる場合は,実測水位に合うように観測デー タに補正量を加減算する。

2011 年度の日吉川流域河川流量計(HRQ)の観測については、実測水位と観測デー タに機械の持つ誤差以上の差異が認められなかったため補正は行っていない。

2011 年度の柄石川流域河川流量計(GPD)の観測では、小パーシャルフリュームの観 測データに補正の必要があった。補正期間と補正量を表 3.1 および表 3.2 に示す。

表 3.1 柄石川流域河川流量計(GPD:大パーシャルフリューム)

期間	補正量				
補正の必要があるデータは無い					

表 3.2 柄石川流域河川流量計(GPD:小パーシャルフリューム)

期間	補正量
2011/4/1~2011/4/27	3.0mm 引く
2011/4/28~2012/3/31	7.0mm 加える

(3) 補完の実施

観測データの欠測・異常値が長期にわたる場合はその期間に対して,降水量については 観測地点間のデータの相関から,河川流量についてはタンクモデルによる流出解析⁹から, 観測データの日変動又は時間変動が推定可能であることから,以下の補完を実施する。

①降水量

降水量の観測データについては,瞬間値で比較すると場所によるばらつきが大きく,他の観測地点との相関性は極めて低いが,日平均や日積算値については観測地点間の相関性が高くなることから,既往の表層水理観測データ集 4^{>~7}による補完式に基づき,日単位での補完を行う。

2011 年度の柄石川流域雨雪量計(GRD)の観測データについては、補完の必要はなかった。

②柄石川流域の河川流量のタンクモデルによる補完

降水量と河川流量の関係は、タンクモデルによる流出解析によって検討が可能であり、 測定限界を超えた観測データおよび降雨を伴う期間の欠測に対して、降水量から流出量を 解析する方法で補完を行う。柄石川流域河川流量計(GPD)については、2011年9月20 日の11時30分~13時30分間で欠測しており、この間は降雨が観測されていることから、 タンクモデル⁹による流出解析により補完を行った。

タンクモデルによる流出解析による補完は,既往の観測年報 4^{>~7}で報告されている諸元 のタンクモデルを用いて,時間単位の降水量を与えて流出解析を行い,短期流出量を算定 した。柄石川流域タンクモデルは,時間降水量が 20mm 以上と 20mm 以下で場合分けを した諸元を設定している。図 3.1 に柄石川流域タンクモデルの諸元を,図 3.2 にタンクモ デルによる補完結果を示す。

図 3.1 柄石川流域タンクモデルの諸元

図 3.2 GPD 観測データのタンクモデルによる補完結果

③日吉川流域の河川流量のタンクモデルによる補完

2011 年度の観測では補完の必要はなかったが、2010 年度の観測データで約2ヶ月間の欠 測があり、年度河川流量、年度河川流出高として集計できなかった¹⁰。そこで、日吉川流 域タンクモデルの諸元を設定し、2010 年度の欠測データを補完した。

タンクモデルの諸元の検討は、現地での実測による水位・流量曲線(H・Q曲線)を設定 し観測を開始した 2003 年度と 2004 年度の観測データ(日吉川流域河川流量計(HRQ)に よる河川流出高 ^{5),6)}(河川流量を流域面積で除したもの))と日吉川流域内の1 観測地点で ある正馬様コミュニティー雨雪量計(SR)による降水量^{11),12}に基づき行った。タンクモデ ルの諸元は、タンクモデルに時間単位の降水量を与えて流出解析により解析河川流出高(解 析値)を算出し、実測値と整合するように設定した。図 3.3 に日吉川流域タンクモデルの諸 元を示す。

図 3.3 日吉川流域タンクモデルの諸元

2010 年度の HRQ の観測データは,2010 年 7 月 6 日~8 月 6 日と 10 月 4 日~10 月 31 日の期間が欠測であり、この期間を補完した(図 3.4)。

2010 年度の河川流出高は,約2ヶ月間の欠測データを補完した結果として,年度河川流 出高 885mm/年(年度河川流量 21,142,750 ㎡/年)である。

さらに,観測を開始した 2003 年度から 2011 年度までの岩盤浸透量を算出するために, 年度ごとの降水量(SR)^{11)~15)}と河川流出高 ^{5)~8),10)}の推移を比較したところ,2005 年度~ 2007 年度は年度降水量より大きい実測河川流出高となっている(図 3.5)。これは,2004 年10月,11月の台風による集中豪雨の影響により,その後の河川形状(横断方向,縦断方向)が変化し,河川流量算定に用いている当初の水位・流量曲線との整合性が悪くなったためと考えられる。また,2004年度の河川流出高の月別推移をみると(図 3.6),2005年1月以降,月間降水量より大きい実測河川流出高となっている。

そのため、タンクモデルを用いた流出解析により解析河川流出高を試算した。図 3.5 に、 解析河川流出高を併せて示す。

図 3.4 HRQ のタンクモデルによる補完結果

図 3.5 日吉川流域の年度河川流出高の試算結果

図 3.6 日吉川流域の 2004 年度河川流出高の月別推移

図 3.5 および図 3.6 の結果より、日吉川流域の河川流量観測データ(HRQ)は実測による水位・流量曲線(H・Q曲線)の見直しが必要と考えられる。しかし、過去に遡った実測 見直しは困難であることから、2004 年度以降の観測結果は参考値として取扱うことが妥当 と判断される。

したがって、岩盤浸透量の算出に用いる日吉川流域の年度河川流出高としては、2003年 度は実測河川流出高、2004~2011年度は解析河川流出高を採用することとした。

4. 観測結果

4.1 降水量

柄石川流域雨雪量計(GRD)の2011年度の年間降水量は2,171 mm/年であり,1999年度から2010年度までの降水量の年平均値1,695 mm/年より500 mm程度多い降水量が観測された(図4.1)。

柄石川流域(GRD)

4.2 河川流量

図 4.2, 図 4.3 に柄石川流域河川流量計 (GPD) と日吉川流域河川流量計 (HRQ) の 2011 年度の年間の河川流量と河川流出高および観測開始 (柄石川流域:1999 年度,日吉川流域: 2003 年度) から 2010 年度までの河川流量と河川流出高の年平均値を示す。なお,河川流 出高は河川流量を流域面積で除したものである。

日吉川流域の河川流量については,2004 年度以降の観測結果(実測値)は水位・流量曲線(H・Q曲線)の見直しが必要であり参考値扱いとするので,タンクモデルによる解析河川流量(解析値)と併せて示す。

図 4.2 柄石川流域と日吉川流域の河川流量

4.3 岩盤浸透量の算出

表 4.1 と図 4.4 に,補正・補完後の観測データを用いた水収支解析による日吉川流域の岩 盤浸透量の算出結果と 2003 年度からの推移を示す。なお,岩盤浸透量の算出方法について は,既往の観測データ集¹⁵⁾を参照されたい。

岩盤浸透量の算出には,年度降水量として正馬様コミュニティー (SR) での観測結果を, 年度蒸発散量としては,2007年度までは東濃鉱山気象観測装置 (TMP,2008年2月で観 測終了) での観測データからペンマン法により算出した値,2008年度以降は研究所用地気 象観測装置 (MMP,2005年3月より観測開始) での観測データからペンマン法により算 出した値を用いている。また,年度河川流出高については,2003年度は実測値を,2004 年度以降はタンクモデルを用いた流出解析による解析値を用いている。

	Py:年度降水量	Ey: 年度蒸発散量 (ペンマン法)		Ry:年度河川流出高	Gy: 年度岩盤浸透量 (Gy=Py-Ey-Ry)
観測年度	正馬様コミュニティー 雨雪量計	東濃鉱山 気象観測装置	研究所用地 気象観測装置	日吉川流域 (HRQ)	日吉川流域
	(SR)	(TMP)	(MMP)	(Titika)	
2003年度	1,883	375	_	1,277	231
2004年度	1,947	416	_	1,196	335
2005年度	1,168	414	427	567	188
2006年度	1,440	460	425	754	226
2007年度	1,384	483	491	750	150
2008年度	1,587		495	919	173
2009年度	1,796	-	421	1,050	325
2010年度	1,965		361	1,232	372
2011年度	2,014	Ι	337	1,328	349
平 均	1,687	430	422	1,008	261

表 4.1 水収支解析結果(2003~2011年度)

単位:mm

図 4.4 岩盤浸透量の算出結果(2003~2011 年度)

5. 電子ファイルの様式

「観測データセット」と「補正・補完データセット」の電子ファイルの様式を以下に示す。 なお,各データセットは,Microsoft 社製 EXCEL 形式で保存した。

5.1 物理量への変換式

観測データセットには得られた電圧データを物理量データに変換する変換式が組込まれている。表 5.1 と表 5.2 に、雨雪量計と河川流量計の物理量変換式を示す。

河川流量については、表 5.2 の優先順位に従った変換式を用い流量への変換を行った。

表 5.1 物理量変換式 (雨雪量計)

観測装置の名称	降水量(mm)への変換式
柄石川流域雨雪量計(GRD)	Y=0.5X
	X:電圧値 Y:物理値

花々	装印クな	十字十〇十十	よ 回 / 3 / ・ / 半祐 十		河川流量(m ³ /m	in)変換式	
ע <i>ו</i> יף ב	波命石柳	小山へい炙汚れ	派里(m / min) 炙換式	順位	条件式	流量(Y)	
	ユーェリフルナシントン	Y ₁ '=200X (Y1' :単位mm)	۲ ₁ =1.541 (۲ ₁ , ^{1.538} /1000)	2	Y1>0.5	۲=۲	
	ムーェリレンシーム	Υ ₂ '=200X (Υ ₂ ':単位mm)	$Y_{2}=5.76(Y_{2}^{'}/10)^{1.55}/1000$	1	0.968≧Y ₂ >0.011	Y=Y2	
	F 나 나 나 나 가 나 다 가 기	Y ₁ '=X	$Y_1 = 60*(0.02 - 0.66 Y_1, +5.72 Y_1^2)$	1	0.63≧Y ₁ '>0.01	Y=Y1	
eat (nrw)	アンタルれん圧水は目	(Y1':単位m)	Y ₂ =60*(2.19-8.61Y ₁ ' +12.87Y ₁ ' ²)	2	2>Y1>0.63	Y=Y2	
						X:電圧値 Y:物理値	

表 5.2 物理量変換式(河川流量計)

5.2 補正・補完箇所の表示

補正・補完データセットには、補正または補完を実施した場所について、色を変更して表示した。表 5.3 に補正・補完箇所の表示方法の例を示す。

(1)補正箇所

補正を実施した箇所は,赤字で表示した。

(2)補完箇所

補完を実施した箇所は、青字で表示した。

日時	水位	[mm]	換算流量	<u>遣[m³∕分]</u>	CPD 換質法量[m ³ /分]	
<u>цы</u>	GPD 1.5ft	GPD 2in	GPD 1.5ft	GPD 2in	GID 及并加重[III / 刀]	
2011/9/20 10:00	750.2	412.1	40.722	1.831	40.722	
2011/9/20 10:10	750.9	406.8	40.780	1.795	40.780	
2011/9/20 10:20	782.8	431.8	43.475	1.969	43.475	
2011/9/20 10:30	840.4	453.8	48.491	2.126	48.491	
2011/9/20 10:40	871.3	488.5	51.260	2.384	51.260	
2011/9/20 10:50	892.3	524.3	53.173	2.660	53.173	
2011/9/20 11:00	924.8	571.4	56.180	3.039	56.180	
2011/9/20 11:10	941.9	628.0	57.786	3.518	57.786	
2011/9/20 11:20	979.3	665.8	61.352	3.852	61.352	
2011/9/20 11:30		914.6		6.301	98.623	
2011/9/20 11:40					136.753	
2011/9/20 11:50					175.748	
2011/9/20 12:00					184.550	
2011/9/20 12:10		1,022.1		7.486	174.284	
2011/9/20 12:20		953.9		6.726	164.854	タン
2011/9/20 12:30		912.8		6.282	155.236	─ 流出
2011/9/20 12:40		899.4		6.140	148.107	
2011/9/20 12:50		937.4		6.546	141.290	
2011/9/20 13:00		842.5		5.548	131.196	
2011/9/20 13:10		911.7		6.270	132.496	
2011/9/20 13:20		955.5		6.743	137.140	
2011/9/20 13:30		940.6		6.581	128.675	
2011/9/20 13:40	997.3	765.8	63.095	4.785	63.095	
2011/9/20 13:50	978.3	676.0	61.256	3.944	61.256	
2011/9/20 14:00	977.5	654.3	61.179	3.749	61.179	
2011/9/20 14:10	929.3	592.9	56.601	3.218	56.601	
2011/9/20 14:20	883.7	535.6	52.387	2.749	52.387	
2011/9/20 14:30	877.3	524.0	51.804	2.658	51.804	
2011/9/20 14:40	869.5	517.6	51.097	2.607	51.097	
2011/9/20 14:50	823.4	483.3	46.991	2.345	46.991	
2011/9/20 15:00	742.6	447.0	40.089	2.077	40.089	
2011/9/20 15:10	677.5	447.9	34.813	2.084	34.813	
2011/9/20 15:20	612.6	423.9	29.818	1.913	29.818	

表 5.3 補正・補完箇所の表示方法の例

青字は補完値

タンクモデルによる 流出解析により補完

5.3 フォルダ構造

それぞれのデータセットの構造を以下に示す。

(1)観測データセット

観測データセットでは、各観測項目で10分ごとに回収した電圧データを物理量データに 変換している。雨雪量計は転倒ますの転倒回数から降水量(mm)へ、河川流量観測のため の水位計は電圧データから水位(mm)に変換している。表 5.4 に観測データセットのファ イル例を示す。

観測データセットの CD-ROM の内部フォルダ構造を以下に示す。

¥observed data set (観測データセットのフォルダ)

observed data set_2011

柄石川流域

河川流量計 GPD (雨雪量計 GRD 含む)

日吉川流域

河川流量計 HRQ

ㅁ哖		電圧値データ		物理量データ(mm)			
口吋	GPD大パーシャル	GPD小パーシャル	柄石雨雪量計	GPD大パーシャル	GPD小パーシャル	柄石雨雪量計	
2012/3/1 0:00	55.4	197.7	144	55.4	197.7	72	
2012/3/1 0:10	55.4	199.1	144	55.4	199.1	72	
2012/3/1 0:20	55.5	199	144	55.5	199	72	
2012/3/1 0:30	55.7	198.9	144	55.7	198.9	72	
2012/3/1 0:40	55.5	198.2	144	55.5	198.2	72	
2012/3/1 0:50	55.9	198.3	144	55.9	198.3	72	
2012/3/1 1:00	55.8	197.5	144	55.8	197.5	72	
2012/3/1 1:10	56.1	197.7	144	56.1	197.7	72	
2012/3/1 1:20	56.2	197.7	144	56.2	197.7	72	
2012/3/1 1:30	56.2	196.9	144	56.2	196.9	72	
2012/3/1 1:40	56.4	197.2	144	56.4	197.2	72	
2012/3/1 1:50	56.5	197.9	144	56.5	197.9	72	
2012/3/1 2:00	56.6	198.1	144	56.6	198.1	72	
2012/3/1 2:10	56.8	198.5	144	56.8	198.5	72	
2012/3/1 2:20	56.8	197.5	144	56.8	197.5	72	
2012/3/1 2:30	56.8	197.2	144	56.8	197.2	72	
2012/3/1 2:40	56.9	196.4	144	56.9	196.4	72	
2012/3/1 2:50	57	197.5	144	57	197.5	72	

表 5.4 観測データセットのファイル例

(2) 補正・補完データセット

補正・補完データセットは、観測データセットで変換された物理量データを日データ・月 間データとしてまとめた。表 5.5 に補正・補完データセットのファイル例を示す。

補正・補完データセットの CD-ROM の内部フォルダ構造を以下に示す。

¥completed data set (補正・補完データセットのフォルダ)

```
completed data set_2011
```

```
柄石川流域
```

雨雪量計 GRD

```
河川流量計 GPD
```

日吉川流域

河川流量計 HRQ

柄石川流域 積	算降水量	柄石川流域	日降水量
日間	谷部雨量	日付	谷部雨量
时间	(mm)	ניום	(mm)
2012/3/1 0:00	72	2012/3/1	0.5
2012/3/1 0:10	72	2012/3/2	12.0
2012/3/1 0:20	72	2012/3/3	0.0
2012/3/1 0:30	72	2012/3/4	10.0
2012/3/1 0:40	72	2012/3/5	22.0
2012/3/1 0:50	72	2012/3/6	10.0
2012/3/1 1:00	72	2012/3/7	0.0
2012/3/1 1:10	72	2012/3/8	0.0
2012/3/1 1:20	72	2012/3/9	14.0
2012/3/1 1:30	72	2012/3/10	6.0
2012/3/1 1:40	72	2012/3/11	0.0
2012/3/1 1:50	72	2012/3/12	0.5
2012/3/1 2:00	72	2012/3/13	0.0
2012/3/1 2:10	72	2012/3/14	0.0
2012/3/1 2:20	72	2012/3/15	0.0
2012/3/1 2:30	72	2012/3/16	0.0
2012/3/1 2:40	72	2012/3/17	55.0
2012/3/1 2:50	72	2012/3/18	0.0
2012/3/1 3:00	72	2012/3/19	0.5
2012/3/1 3:10	72	2012/3/20	0.0
2012/3/1 3:20	72	2012/3/21	0.0
2012/3/1 3:30	72	2012/3/22	0.0
2012/3/1 3:40	72	2012/3/23	25.0
2012/3/1 3:50	72	2012/3/24	4.0
2012/3/1 4:00	72	2012/3/25	2.0
2012/3/1 4:10	72	2012/3/26	0.5
2012/3/1 4:20	72	2012/3/27	0.0
2012/3/1 4:30	72	2012/3/28	0.5
2012/3/1 4:40	72	2012/3/29	0.5
2012/3/1 4:50	72	2012/3/30	0.0
2012/3/1 5:00	72	2012/3/31	39.5

表 5.5 補正・補完データセットのファイル例

柄石川流域 月降水量 谷部雨量 (mm) 202.5

6. まとめ

本データ集では、2011年度に取得した柄石川流域と日吉川流域の観測データ(降水量, 河川流量)について、補正・補完を行い補正・補完データセットとして整理した。

2011 年度の柄石川流域の年間降水量は 2,171 mm/年であり,年間の河川流量および河川 流出高は,各々 298,774 m³/年,1,282 mm/年であった。日吉川流域の年間の河川流量およ び河川流出高は,解析による推定値として各々 31,727,000 m³/年,1,328 mm/年である。

日吉川流域の河川流量観測については、観測水位から河川流量への換算式(H・Q曲線)の実測による見直しが必要であり、岩盤浸透量の算出に用いる年度流出高はタンクモデルによる解析値を用いている。

今後も、観測を継続し、観測データの蓄積と岩盤浸透量の算出を行う予定である。

参考文献

- 1)核燃料サイクル開発機構:広域地下水流動研究年度報告書(平成 16 年度), JNC TN7400 2005-013,(2005).
- 小林公一、中野勝志、小出 馨:表層水理観測システムによる水収支の算定 -岐阜 県東濃鉱山におけるケーススタディー、動燃技報、№97、pp.145-150,(1996).
- 3) 村田正敏, 宮原智哉, 小田川信哉:日吉川流域・柄石川流域における面積雨量算出手 法の検討, サイクル機構契約業務報告, JNC TJ7400 2005-048,(2004).
- 4) 核燃料サイクル開発機構: 1989~2000 年度 表層水理観測年報 (データ集) JNC TN7450 2002-002,(2002).
- 5) 核燃料サイクル開発機構:広域地下水流動研究における表層水理観測年報-2001~2003 年度(データ集)-, JNC TN7450 2005-005,(2005).
- 6) 佐藤敦也, 竹内竜史: 広域地下水流動研究における表層水理観測年報-2004~2007
 年度(データ集) -, JAEA Data/Code 2009-027,(2010).
- 7) 武田匡樹,佐藤敦也,竹内竜史:広域地下水流動研究における表層水理観測データ集
 -2008 年度-, JAEA-Data/Code 2011-006,(2011).
- 8) 武田匡樹,竹内竜史:広域地下水流動研究における表層水理観測データ集-2009 年 度-, JAEA-Data/Code 2012-015,(2012).
- 9) 菅原正巳:流出解析法, 共立出版, (1972).
- 10) 佐藤成二,武田匡樹,竹内竜史:広域地下水流動研究における表層水理観測データ 集-2010 年度-, JAEA-Data/Code 2013-003,(2013).
- 11) 荒井 靖:超深地層研究所計画における表層水理観測年報-2001~2003 年度(データ集) -, JNC TN7450 2005-004,(2005).
- 12) 佐藤敦也, 竹内竜史: 超深地層研究所計画における表層水理観測データ集-2004~2007 年度-, JAEA-Data/Code 2009-028,(2010).
- 13) 武田匡樹, 佐藤敦也, 竹内竜史: 超深地層研究所計画における表層水理観測データ 集-2008 年度-", JAEA-Data/Code 2011-007,(2012).
- 14) 武田匡樹, 竹内竜史: 超深地層研究所計画における表層水理観測データ集-2009 年 度-, JAEA-Data/Code 2012-016,(2012).
- 15) 佐藤成二,尾方伸久,竹内竜史,武田匡樹:超深地層研究所計画における表層水理 観測データ集-2010~2011 年度-,JAEA-Data/Code 2013-016,(2013).

付録1 過去の検討資料一覧

本報告書で記した方法によって取りまとめられた表層水理観測データは,地下水流動解析 において上部境界条件を与える岩盤浸透量を算出すること,水理地質構造モデルのキャリブ レーション,浅部の地下水流動機構の把握を目的とした検討にも用いられている。本項では, 今後新たに取得する表層水理観測データに基づいた検討を行う際の参考資料として,過去に 行われた表層水理に関する検討結果が述べられている文献を記載している。

表層部における水収支の調査研究

動燃技報, No.78, p46-53, 1991, 中野勝志, 中島誠, 柳澤孝一

・立坑掘削に伴う地下水流動影響調査研究 - 東濃ウラン鉱山試験立坑を例として - 応用地質,第33巻,第5号, pp.276-293, 1992, 柳澤孝一, 今井 久, 尾方伸久, 大澤英 昭, 渡辺邦夫

・立坑周辺斜面表層部における土壌水分挙動解析 PNC TJ7361 93-002, アジア航測株式会社,山井忠世,中島 誠

・東濃地域を対象とした表層水理調査(その1)

PNC TJ7361 94-003, アジア航測株式会社,山井忠世,小林公一,岡崎彦哉

・河川水の流量および水質による表層部の地下水流動の推定 - 岐阜県東濃地域におけるケー ススタディ

応用地質,第36卷,第1号,pp.2-13,1995, 尾方伸久,若松尚則,梅田浩司,柳澤孝一

・広域地下水流動解析のための水平地質断面図の作成 PNC TJ7361 96-003,アジア航測株式会社,山井忠世,若松尚則,岡崎彦哉

・表層地下水流動機構の把握のための地下水位観測システムの設置 PNC TJ7361 97-006,アジア航測株式会社,山井忠世,若松尚則,和知 剛,小田川信哉

・広域地下水流動研究における表層水理定数観測システムの拡充 JNC TJ7440 99-020, アジア航測株式会社,遠山茂行,若松尚則,岡崎彦哉

・広域地下水流動研究における表層水理定数観測システムの設置 JNC TJ7440 99-031, アジア航測株式会社,遠山茂行,若松尚則,岡崎彦哉 ・土壌水分地下水位観測データの整理業務

JNC TJ7440 2000-026, アジア航測株式会社, 遠山茂之, 若松尚則, 小田川信哉

・表層水理現地調査に基づく水理地質構造の解析

JNC TJ7440 2000-029, アジア航測株式会社, 村田正敏, 安野雅満, 若松尚則, 鹿野浩司, 小林公一

・地下水流動解析における検証用データ(河川流量)の推定 JNC TJ7400 2000-007,日本工営株式会社,斎藤 庸,坂森計則

・超深地層研究所計画用地周辺の水収支観測結果 サイクル機構技報, No.9, pp.103-114, 2000,山内大祐,宮原智哉,竹内真司, 小田川信哉

・雨水・河川水の採取・分析 JNC TJ7420 2000-005, アジア航測株式会社,遠山茂行,岡崎彦哉,和知 剛

・東濃鉱山及び正馬川・柄石川流域の湧水点踏査確認業務 JNC TJ7440 2000-011,基礎地盤コンサルタンツ株式会社,中司龍明,豊嶋賢治, 池田雅俊

・正馬様用地における地下水位計の設置 JNC TJ7440 2000-018, アジア航測株式会社,遠山茂行,若松尚則,岡崎彦哉

・東濃地域を対象とした表層水理調査(その2)

JNC TJ7440 2001-004, アジア航測株式会社, 山井忠世, 江田敏幸, 若松尚則, 岡崎彦哉, 神原正年

・東濃地域を対象とした表層水理調査(その2)図面集 JNC TJ7440 2001-004, アジア航測株式会社,山井忠世,江田敏幸,若松尚則,岡崎彦哉, 神原正年

・東濃地域を対象とした表層水理調査(その3) JNC TJ7440 2001-005, アジア航測株式会社,山井忠世,角南基亮,若松尚則,高遠俊一 土壤物性基礎試験

JNC TJ7440 2001-006, アジア航測株式会社,山井忠世,中島 誠

・航空写真等による水理地質構造の解析報告書 JNC TJ7440 2001-009, アジア航測株式会社

・精密現地調査による水理地質構造の解析 JNC TJ7440 2001-010, アジア航測株式会社,村田正敏,安野雅満

・現地調査による水理地質構造の解析(昭和 62 年度) JNC TJ7440 2001-007, アジア航測株式会社

・平成13年度 表層水理研究における蒸発散量推定手法の比較 JNC TJ7440 2002-006, アジア航測株式会社,越川憲一,若松尚則,小田川信哉

表 1. SI 基本単位					
甘大昌	SI 基本単位				
盔半里	名称	記号			
長さ	メートル	m			
質 量	キログラム	kg			
時 間	秒	s			
電 流	アンペア	А			
熱力学温度	ケルビン	Κ			
物質量	モル	mol			
光度	カンデラ	cd			

表2. 基本甲位を用	いて表されるSI組立単位	立の例				
和辛雪	SI 基本単位					
和立里	名称	記号				
面 積平	方メートル	m^2				
体 積立	法メートル	m^3				
速さ,速度メ	ートル毎秒	m/s				
加速度メ	ートル毎秒毎秒	m/s^2				
波 数每	メートル	m ⁻¹				
密度,質量密度キ	ログラム毎立方メートル	kg/m ³				
面積密度キ	ログラム毎平方メートル	kg/m ²				
比 体 積立	方メートル毎キログラム	m ³ /kg				
電流密度ア	ンペア毎平方メートル	A/m^2				
磁界の強さア	ンペア毎メートル	A/m				
量 濃 度 ^(a) , 濃 度 モ	ル毎立方メートル	mol/m ³				
質量濃度キ	ログラム毎立法メートル	kg/m ³				
輝 度力	ンデラ毎平方メートル	cd/m^2				
屈 折 率 ^(b) (数字の) 1	1				
比透磁率(b)	数字の) 1	1				
(a) 量濃度 (amount concentra	ation)は臨床化学の分野では	物質濃度				
(substance concentration) Lt. FIFTI Z						

(substance concentration)ともよばれる。
 (b)これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚	5.37 v (b)	red	1 (b)	m/m
	() / / / / / / (b)	(c)	1 1 (b)	2/ 2
		sr II-	1	m m -1
同 仮 多		пг		S .
カ	ニュートン	N		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量 比エネルギー分与				
カーマ	グレイ	Gy	J/kg	m ² s ²
線量当量,周辺線量当量,方向	2 × 2 2 (g)	C	T/la a	2 -2
性線量当量,個人線量当量		SV	J/Kg	ms
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(カタール) kat [s¹ mol]
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周崩現象についてのみ、ペシレルは抜焼性核種の統計的過程についてのみ使用される。
 (a)セルシウス度はケルビンの特別な名称で、セルシウス温度度を表すために使用される。
 (d)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (d)かけ性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	[組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量,エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酸素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ e ⁻¹ mol

表 5. SI 接頭語								
乗数	接頭語 記号		乗数	接頭語	記号			
10^{24}	э 9	Y	10 ⁻¹	デシ	d			
10^{21}	ゼタ	Z	10 ⁻²	センチ	с			
10^{18}	エクサ	E	10 ⁻³	ミリ	m			
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ			
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n			
10^{9}	ギガ	G	10^{-12}	ピコ	р			
10^{6}	メガ	M	10^{-15}	フェムト	f			
10^{3}	+ 1	k	10 ⁻¹⁸	アト	а			
10^{2}	ヘクト	h	10^{-21}	ゼプト	z			
10^{1}	デカ	da	10 ⁻²⁴	ヨクト	v			

表6.SIに属さないが、SIと併用される単位					
名称	記号	SI 単位による値			
分	min	1 min=60s			
時	h	1h =60 min=3600 s			
日	d	1 d=24 h=86 400 s			
度	٥	1°=(п/180) rad			
分	,	1'=(1/60)°=(п/10800) rad			
秒	"	1"=(1/60)'=(п/648000) rad			
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²			
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³			
トン	t	$1t=10^{3}$ kg			

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される剱値が美缺的に待られるもの						
名称 記号				記号	SI 単位で表される数値	
電	子 >	ボル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J	
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg	
統-	一原子	質量単	单位	u	1u=1 Da	
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m	

表8.SIに属さないが、SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値
バ	-	N	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海		里	М	1 M=1852m
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²
1	ッ	ŀ	kn	1 kn=(1852/3600)m/s
ネ	-	パ	Np	の形法はいかおはない
ベ		N	В	31単位との数値的な関係は、 対数量の定義に依存。
デ	ジベ	N	dB -	

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値			
エルグ	erg	1 erg=10 ⁻⁷ J			
ダイン	dyn	1 dyn=10 ⁻⁵ N			
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s			
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$			
スチルブ	sb	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{ m}^{\cdot 2}$			
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx			
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²			
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$			
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$			
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ^{·1}			
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 △ 」					

は対応関係を示すものである。

		表	(10.	SIに 属	禹さないその他の単位の例
	名	称		記号	SI 単位で表される数値
キ	ユ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	ン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ			K	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ	:	\sim	7	γ	1 γ =1 nT=10-9T
フ	II.	N	"		1フェルミ=1 fm=10-15m
メー	ートルネ	系カラ:	ット		1メートル系カラット=200 mg=2×10-4kg
ŀ			N	Torr	1 Torr = (101 325/760) Pa
標	進	大気	圧	atm	1 atm = 101 325 Pa
力	П	IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)
3	カ	17	~		$1 = 1 = 10^{-6} m$

この印刷物は再生紙を使用しています