高温ガス炉に接続するヘリウムガスタービンの設計データ

Design Database of Helium Gas Turbine for High Temperature Gas-cooled Reactor

今井 良行 佐藤 博之 野本 恭信 Xing L. Yan
Yoshiyuki IMAI, Hiroyuki SATO, Yasunobu NOMOTO and Xing L. YAN

原子力科学研究部門
高温ガス炉水素・熱利用研究センター
HTGR Hydrogen and Heat Application Research Center
Sector of Nuclear Science Research

August 2016
Japan Atomic Energy Agency
高温ガス炉に接続するヘリウムガスタービンの設計データ

日本原子力研究開発機構 原子力科学研究部門
高温ガス炉水素・熱利用研究センター

今井 良行、佐藤 博之、野本 恭信※、Xing L. Yan

(2016年6月15日 受理)

高温ガス炉は優れた安全性を有し、高温熱供給が可能であることから多様な産業利用が期待されている。日本原子力研究開発機構では、高温ガス炉を用いたヘリウムガスタービンによる高効率発電に着目し、文部科学省の原子力科学研究技術開発作業部会が提言した、今後10年間の実施課題に焦点を当てた研究開発を実施している。具体的には、世界で初めての原子炉施設へのヘリウムガスタービン及び水素製造施設の接続に係る許認可の取得、ヘリウムガスタービン発電技術及び水素製造技術の確証を目的に、高温工学試験研究炉（HTTR）にヘリウムガスタービン及び水素製造施設等から成る熱利用システムを接続したHTTR熱利用試験を計画している。また、ヘリウムガスタービンの要素技術として、タービン翼への核分裂生成物沈着低減技術の研究開発を実施している。

本報は、高温ガス炉に接続するヘリウムガスタービンの設計データとして、HTTRに接続する熱利用システムの2次ヘリウム冷却設備及びヘリウムガスタービンの設計データ、並びに、タービン翼候補合金中の核分裂生成物同位体の拡散試験データをまとめたものである。
Design Database of Helium Gas Turbine for High Temperature Gas-cooled Reactor

Yoshiyuki IMAI, Hiroyuki SATO, Yasunobu NOMOTO and Xing L. YAN

HTGR Hydrogen and Heat Application Research Center
Sector of Nuclear Science Research
Japan Atomic Energy Agency
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received June 15, 2016)

High Temperature Gas-cooled Reactor (HTGR) is expected to extend the use of nuclear heat to a wider spectrum of industrial applications because of the high temperature heat supply capability and inherently safe characteristics. Japan Atomic Energy Agency has been conducting research and development for remaining topics in need of further development of high efficient HTGR gas turbine power generation system which is recommended by a task force established under the Nuclear Science Committee of Ministry of Education, Culture, Sports, Science and Technology (MEXT). We are developing a plan for a nuclear cogeneration demonstration utilizing of the High Temperature engineering Test Reactor (HTTR), the first HTGR in Japan. In addition, we are developing turbine blade alloy for reduction of fission product plate-out.

This report provides design database of helium gas turbine for HTGR. The design details for a secondary helium cooling system and a helium gas turbine in a heat application system to be coupled to the HTTR are described. In addition, experimental data for fission product isotope diffusion through the turbine blade alloy is compiled.

Keywords: HTGR, Helium Gas Turbine, HTTR, Demonstration Test

※ Collaborating Engineer
目次

1. はじめに .. 1
2. HTTR に接続する熱利用システムの設計データ ... 2
 2.1 HTTR に接続する熱利用システムの概要 ... 2
 2.2 2次ヘリウム冷却設備 .. 2
 2.3 ヘリウムガスタービン ... 3
3. タービン翼候補合金中における核分裂生成物同位体の拡散試験データ 23
 3.1 試験方法 ... 23
 3.2 試験結果 ... 23
4. まとめ ... 27

謝辞 ... 27
参考文献 .. 27

Contents

1. Introduction .. 1
2. Design Database for HTTR Heat Application System .. 2
 2.1 Summary of HTTR Heat Application System ... 2
 2.2 Secondary Helium Cooling System .. 2
 2.3 Gas Turbine ... 3
3. Experiment Data for Fission Product Isotope Diffusion through Turbine Blade Alloy 23
 3.1 Experiment Method ... 23
 3.2 Experiment Result ... 23
4. Conclusion ... 27
Acknowledgement ... 27
References .. 27
This is a blank page.
1. はじめに

高温ガス炉は、燃料に二酸化ウラン等の燃料核をセラミックス材により被覆した被覆燃料粒子、冷却材にヘリウム、減速材や原子炉内の主な構造材に黒鉛を用いた原子炉であり、これらの基本要素の固有の特性を活用することで、優れた安全性を有するのみならず、高温熱供給が可能である。このような優れた特長を有する高温ガス炉については、平成26年4月に閣議決定された「エネルギー基本計画」において、「水素製造を含めた多様な産業利用が見込まれ、固有の安全性を有する高温ガス炉など、安全性の高度化に貢献する原子力技術の研究開発を国際協力の下で推進する。」との言及がなされ、これを受けて文部科学省の原子力科学技術委員会に設置された高温ガス炉技術研究開発作業部会において、今後10年間の実施課題として、ヘリウムガスタービン発電や熱化学法ISプロセスによる水素製造等の高温ガス炉の熱利用に関する要素技術開発や大洗研究開発センターの高温工学試験研究炉（High Temperature engineering Test Reactor; HTTR）を用いたこれら熱利用技術の実証試験、実用高温ガス炉の安全基準の策定等が示された1）。

日本原子力研究開発機構（原子力機構）では高温ガス炉を用いたヘリウムガスタービンによる高効率発電に着目し、高温ガス炉技術研究開発作業部会が提言した実施課題に焦点を当てた研究開発を実施している。具体的には、世界で初めての原子炉施設へのヘリウムガスタービン及び水素製造施設の接続に係る許認可の取得やヘリウムガスタービン発電や水素製造技術の確証を目的に、HTTRにヘリウムガスタービン及び水素製造施設等から成る熱利用システムを接続したHTTR熱利用試験を計画している。また、ヘリウムガスタービンの要素技術として、タービン翼への核分裂生成物（Fission Product; FP）沈着低減技術の研究開発を実施している。本報では、HTTRに接続する熱利用システムの基本設計の結果として、2次ヘリウム冷却設備及びヘリウムガスタービンの全体系構成、熱物質収支、並びに機器設計データを提示する。加えて、タービン翼へのFP沈着低減技術について、タービン翼候補合金とFP同位体の拡散試験の結果として試験データを提示する。
2. HTTR に接続する熱利用システムの設計データ

2.1 HTTR に接続する熱利用システムの概要

HTTR 熱利用試験では、熱電併給実用高温ガス炉の展開に向けて、高温ガス炉を用いたヘリウムガスタービン発電技術及び水素製造技術を確立するとともに、世界で初めての原子炉施設へのヘリウムガスタービン及び水素製造施設の接続に係る許認可を取得することを目的とする。

Fig.2.1 に HTTR、並びに、水素製造施設及びヘリウムガスタービンから成る熱利用システムの設備構成を示す。本プラントは熱電併給実用高温ガス炉の設備構成を模擬するため、水素製造施設に熱を供給する第2中間熱交換器（IHX）とヘリウムガスタービンを2次ヘリウム冷却設備にカスケード的に設置するシステムを採用している。既存設備のうち、1次冷却設備や補助冷却設備、炉容器冷却設備については改造しない。一方、2次ヘリウム冷却設備の2次加圧水冷却器を撤去し、2次ヘリウム冷却設備配管を原子炉格納容器や原子炉建屋外へ引く改造を行う。また、第2 IHX やヘリウムガスタービン、発電サイクルの構成要素である再生熱交換器や前置冷却器、IHX への戻りヘリウム温度を調整する冷却器を2次ヘリウム冷却設備に設置する。前記冷却器や冷却器での熱を冷却水に伝えられ、冷却塔や空気冷却器において大気に放出される。水素製造施設は3次ヘリウム冷却設備に設置し、第2 IHX を介して3次ヘリウム冷却設備に供給された熱を利用する。熱利用システムの運転モードには、ヘリウムガスタービンのみに熱を供給し発電を行う単独発電運転と、第 2 IHX 及びヘリウムガスタービンの両者に熱を供給する熱電併給運転の2種類がある。1次冷却設備は、いずれの運転においても加圧水冷却器及び IHX で除熱する並列運転を行う。原子炉は、単独発電運転において原子炉出口冷却材温度 850°C の定格運転を、熱電併給運転において原子炉出口冷却材温度 950°C の高温試験運転を行う。HTTR 既設設備の設計や運転条件については、参考文献 2) を参照されたい。

2.2 2次ヘリウム冷却設備

2.2.1 系統

2次ヘリウム冷却設備は、炉心で発生した熱を1次冷却設備の IHX を介して受け取り、その熱をヘリウムガスタービンに伝達し発電するとともに第 2 IHX や3次ヘリウム冷却設備を介して水素製造施設に伝達する機能を有する。2次ヘリウム冷却設備の系統構成を Fig.2.2 に、熱物質収支を Table 2.1 に、配管仕様を Table 2.2 に示す。単独発電運転と熱電併給運転間の切り替え時には第 2 IHX 切換弁及び第 2 IHX バイパス弁の開閉により流路を変更する。また、冷却器出入口に設置した冷却器切換弁の開閉により流路を変更し、単独発電運転時には冷却器 A を、熱電併給運転時には冷却器 B を使用する。配管及び弁仕様は、既設配管との取り合いや原子炉格納容器貫通部仕様、建設コスト、配置上の制約、製作性等を考慮して設定した。

2.2.2 一体型熱交換器

実用高温ガス炉では再生熱交換器と前置冷却器をひとつの圧力容器（熱交換器収納容器）に格納する構造としている。そこで、本構造の製作性技術を確立する観点から HTTR に接続する熱利
用システムの再生熱交換器と前置冷却器の検討に当たり同構造を採用することとした。Fig.2.3

(1) 再生熱交換器
再生熱交換器は、ガスタービン出口の高温ヘリウムにより圧縮機から排出された低温ヘリウムを加熱するガス／ガス熱交換器であり、実用高温ガス炉と同じオフセットフィン式のプレートフィン型を採用している。

(2) 前置冷却器
前置冷却器は、圧縮機に導入するヘリウムを冷却する機能を有する。前置冷却器の型式には、実用高温ガス炉と同様に胴側を2次ヘリウム、管内を冷却水が流れる縦置きのヘリカルコイル式熱交換器を採用し、伝熱管にローフィン管を用いる。

2.2.3 冷却器
冷却器は、熱利用システムの最下流に設置され、IHXへの還りヘリウム温度を所定の温度まで冷却する機能を有する。冷却器の型式にはたて置きU字管型のシェル・アンド・チューブ式熱交換器を採用し、胴側をヘリウム、管内を冷却水が流れる構造とした。単独発電運転と熱電併給運転では、要求される中間熱交換器入口ヘリウム温度が大きく異なるため、2種類の冷却器（冷却器A：単独発電運転、冷却器B：熱電併給運転）を並列に設置し、運転状態に応じ冷却器切換弁の操作で切り替える方式としている。Fig.2.4に構造図を示す。

2.3 ヘリウムガスタービン
ヘリウムガスタービンは、タービン、圧縮機、発電機/電動機等で構成される。ターボマシンの設備構成をFig.2.5に示す。以下に各機器の概要を示す。

2.3.1 タービン
タービンの型式は遠心式であり、同一仕様のタービンを発電機の軸両端へ対称配置することで軸振りトルク起因の軸振動や、タービン段間の接続配管と車室の熱膨張差に起因する反力を抑制しつつ、サイクル圧力比の向上を達成している。また、タービン特性は以下手順で導出する。導出に当たり必要な特性曲線をFig.2.6及びFig.2.7に示す。

① 修正流量の算出
② 流量係数の算出
③ 理論ガス流速の算出
④ 圧力比の算出
⑤ 効率の算出
2.3.2 圧縮機

圧縮機は、ヘリウムガス環境で低マッハ数の性能データベースが存在する遠心式でクローズドインペラ型とし、2段の圧縮機を発電機の軸両端へ対称配置することで系統設計上要求されるサイクル圧力比を達成している。また、圧縮機特性は以下手順で導出する。導出に当たり必要な特性曲線をFig.2.8 及び Fig.2.9 に示す。

① 流量係数の算出
② 圧力係数及び効率の算出
③ 圧力比の算出

2.3.3 発電機/電動機

発電機はタービン及び圧縮機の設計仕様に基づき選定している。また、ヘリウムガスタービン起動用として電動機が接続されている。
Table 2.1(a) Heat and mass balance for HTTR-GT/H2 plant (Sole power generation)

<table>
<thead>
<tr>
<th>Location</th>
<th>Temperature [°C]</th>
<th>Pressure [MPa]</th>
<th>Flow rate [kg/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHX secondary side outlet</td>
<td>570</td>
<td>4.1</td>
<td>9.8</td>
</tr>
<tr>
<td>Turbine inlet</td>
<td>568</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Turbine outlet</td>
<td>506</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Recuperator LP side inlet</td>
<td>506</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Recuperator LP side outlet</td>
<td>121</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Precooler inlet</td>
<td>121</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Precooler outlet</td>
<td>30</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Compressor inlet</td>
<td>30</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Compressor outlet</td>
<td>78</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Recuperator HP side inlet</td>
<td>78</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Recuperator HP side outlet</td>
<td>463</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Cooler A inlet</td>
<td>463</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Cooler A outlet</td>
<td>374</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>IHX secondary side inlet</td>
<td>374</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>IHX primary side inlet</td>
<td>850</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td>IHX primary side outlet</td>
<td>387</td>
<td>-</td>
<td>4.2</td>
</tr>
<tr>
<td>Precooler water side inlet</td>
<td>20</td>
<td>0.5</td>
<td>111</td>
</tr>
<tr>
<td>Precooler water side outlet</td>
<td>30</td>
<td>-</td>
<td>111</td>
</tr>
<tr>
<td>Cooler A water side inlet</td>
<td>100</td>
<td>3.7</td>
<td>27</td>
</tr>
<tr>
<td>Cooler A water side outlet</td>
<td>140</td>
<td>-</td>
<td>27</td>
</tr>
<tr>
<td>Location</td>
<td>Temperature [°C]</td>
<td>Pressure [MPa]</td>
<td>Flow rate [kg/s]</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>IHX secondary side outlet</td>
<td>900</td>
<td>4.1</td>
<td>2.6</td>
</tr>
<tr>
<td>2nd IHX secondary side inlet</td>
<td>885</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>2nd IHX secondary side outlet</td>
<td>832</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>Turbine inlet</td>
<td>568</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Turbine outlet</td>
<td>493</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Recuperator LP side inlet</td>
<td>493</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Recuperator LP side outlet</td>
<td>118</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Precooler inlet</td>
<td>118</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Precooler outlet</td>
<td>30</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Compressor inlet</td>
<td>30</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Compressor outlet</td>
<td>78</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Recuperator HP side inlet</td>
<td>78</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Recuperator HP side outlet</td>
<td>452</td>
<td>-</td>
<td>8.5</td>
</tr>
<tr>
<td>Cooler B inlet</td>
<td>452</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>Cooler B outlet</td>
<td>150</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>IHX secondary side inlet</td>
<td>150</td>
<td>-</td>
<td>2.6</td>
</tr>
<tr>
<td>IHX primary side inlet</td>
<td>950</td>
<td>4.0</td>
<td>3.4</td>
</tr>
<tr>
<td>IHX primary side outlet</td>
<td>389</td>
<td>-</td>
<td>3.4</td>
</tr>
<tr>
<td>Precooler water side inlet</td>
<td>20</td>
<td>0.5</td>
<td>93</td>
</tr>
<tr>
<td>Precooler water side outlet</td>
<td>30</td>
<td>-</td>
<td>93</td>
</tr>
<tr>
<td>Cooler B water side inlet</td>
<td>100</td>
<td>3.7</td>
<td>24</td>
</tr>
<tr>
<td>Cooler B water side outlet</td>
<td>140</td>
<td>-</td>
<td>24</td>
</tr>
</tbody>
</table>
Table 2.2 Piping specifications of secondary helium cooling system (1/3)

<table>
<thead>
<tr>
<th>Segment</th>
<th>From</th>
<th>IHX outlet bend</th>
<th>End of existing piping</th>
<th>End of co-axial piping</th>
<th>Containment penetration</th>
<th>Containment penetration</th>
<th>Isolation valve</th>
<th>Branch for 2nd IHX</th>
<th>Branch for 2nd IHX</th>
</tr>
</thead>
<tbody>
<tr>
<td>To</td>
<td>IHX outlet bend</td>
<td>End of existing piping</td>
<td>End of co-axial piping</td>
<td>Reducer</td>
<td>Isolation valve</td>
<td>Branch for 2nd IHX</td>
<td>Mixing volume</td>
<td>Junction to mixing volume</td>
<td></td>
</tr>
<tr>
<td>Piping number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2/1</td>
<td>1/2/1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Piping type</td>
<td>Co-axial piping</td>
<td>Co-axial piping</td>
<td>Co-axial piping</td>
<td>Inner insulated piping</td>
<td></td>
</tr>
<tr>
<td>Outer pipe (Pressure boundary)</td>
<td>Material</td>
<td>SCMV4</td>
<td>SCMV4</td>
<td>SCMV4</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
</tr>
<tr>
<td></td>
<td>Specification</td>
<td>24B</td>
<td>22B</td>
<td>30B</td>
<td>24B</td>
<td>16B</td>
<td>16B</td>
<td>32B</td>
<td>24B</td>
</tr>
<tr>
<td>Inner pipe</td>
<td>Material</td>
<td>SCMV4</td>
<td>SCMV4</td>
<td>SCMV4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Specification</td>
<td>18B</td>
<td>16B</td>
<td>22B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Inner insulator</td>
<td>Material</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
<td>Kaowool</td>
</tr>
<tr>
<td>Liner</td>
<td>Material</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
<td>Hastelloy-XR</td>
</tr>
<tr>
<td>Piping length [m]</td>
<td>3.0</td>
<td>1.3</td>
<td>11.2</td>
<td>6.2</td>
<td>4.7</td>
<td>6.0</td>
<td>50.0</td>
<td>13.5</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Table 2.2 Piping specifications of secondary helium cooling system (2/3)

<table>
<thead>
<tr>
<th>Segment</th>
<th>From</th>
<th>Mixing volume</th>
<th>LP turbine</th>
<th>Integrated heat exchanger</th>
<th>HP compressor</th>
<th>Integrated heat exchanger</th>
<th>Bypass line</th>
<th>Branch for cooler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cooler B</td>
</tr>
<tr>
<td>Piping number</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1/2/1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Piping type</td>
<td></td>
<td>Single piping</td>
</tr>
<tr>
<td>Outer pipe (Pressure boundary)</td>
<td></td>
<td>SUS316TP</td>
<td>SUS316TP</td>
<td>STPT410</td>
<td>STPT410</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
<td>SUS316TP</td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td>22B</td>
<td>24B</td>
<td>16B</td>
<td>14B</td>
<td>18B</td>
<td>18B</td>
<td>10B</td>
</tr>
<tr>
<td>Piping length [m]</td>
<td></td>
<td>7.5</td>
<td>16.5</td>
<td>5.0</td>
<td>30.0</td>
<td>20.0</td>
<td>5.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 2.2 Piping specifications of secondary helium cooling system (3/3)

<table>
<thead>
<tr>
<th>Segment</th>
<th>From</th>
<th>Cooler A</th>
<th>Cooler B</th>
<th>Reducer</th>
<th>Isolation valve</th>
<th>Reducer</th>
<th>Junction to co-axial piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To</td>
<td>Reducer</td>
<td>Junction from Cooler A</td>
<td>Isolation valve</td>
<td>Reducer</td>
<td>Junction to co-axial piping</td>
<td></td>
</tr>
<tr>
<td>Piping number</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Piping type</td>
<td></td>
<td>Single piping</td>
<td>Single piping</td>
<td>Single piping</td>
<td>Single piping</td>
<td>Single piping</td>
<td></td>
</tr>
<tr>
<td>Outer pipe (Pressure boundary)</td>
<td></td>
<td>STPA24</td>
<td>STPA24</td>
<td>STPA24</td>
<td>STPA24</td>
<td>STPA24</td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td>16B</td>
<td>8B</td>
<td>12B</td>
<td>12B</td>
<td>16B</td>
<td></td>
</tr>
<tr>
<td>Piping length [m]</td>
<td></td>
<td>47.0</td>
<td>4.0</td>
<td>1.0</td>
<td>4.5</td>
<td>5.9</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2.1 Layout for HTTR-GT/H₂ plant
This is a blank page.
Fig. 2.2(a) Configuration for secondary helium cooling system in HTTR-GT/H2 plant (Sole power generation)
Fig. 2.2(b) Configuration for secondary helium cooling system in HTTR-GT/H₂ plant (Cogeneration)
Fig. 2.3 Cross cut view of integrated heat exchanger
Fig. 2.4(a) Cross cut view of cooler A
Fig. 2.4(b) Cross cut view of cooler B
Fig. 2.5 Helium gas turbine layout
Fig. 2.6 Correlation between flow coefficient and corrective flow for turbine

Fig. 2.7 Correlation between flow coefficient and efficiency for turbine
Fig. 2.8 Correlation between flow coefficient and pressure coefficient for compressor

Fig. 2.9 Correlation between flow coefficient and efficiency for compressor
3. タービン翼候補合金中の核分裂生成物同位体の拡散試験データ

3.1 試験方法

タービン翼候補合金である多結晶性インコネル713Cと、FPの安定同位体である銀（Ag）との拡散対の加熱後の切断面を電子線マイクロアナライザ（Electron Probe Micro Analyzer：EPMA）により分析することで、タービン翼候補合金中のFPの拡散データを取得した。以下に試験方法を示す。

まず、10mm四方のインコネル713の試料全面に電解めっき法でAg膜（約5μm）を形成させ、その後、Ag蒸発防止のためニッケル（Ni）膜（約5μm）を施工し、拡散対とした。Table 3.1にインコネル713Cの組成、Fig.3.1に拡散対の模式図を示す。拡散対は酸化防止のため石英管内に真空封入し、電気炉を用いて800℃で2,000時間の加熱を行った。加熱後の試験片を低速カッターにて切断し、導電性樹脂に埋め込み後、切断面を精密研磨して切断面のEPMAにより観察を行った。

3.2 試験結果

Fig.3.2に走査型電子顕微鏡／エネルギー分散型X線分光法（Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy：SEM-EDX）による試験片切断面の分析結果を示す。Ag及びNiについてのEDX元素マッピングの結果から、試験片切断面のSEM画像上において母材表面にAgめっき層が白い帯状に残存し、かつ、Ag面上にNiめっき層が灰色の帯状に残存していることが判断できる。この結果から、観察範囲内において候補合金とAgの拡散対は加熱完了まで有効に接触面を維持できていたと判断し、Agの母材中への拡散傾向を明らかにするため、EPMAによるライン元素信号強度計測（以下、「ライン計測」）をSEM-EDX観察範囲と同じ領域で実施した。

Fig.3.3及びFig.3.4にEPMAによるライン計測結果を示す。本試験では多結晶性のインコネル713Cを候補合金として用いたため、Fig.3.3、Fig.3.4中に矢印で示す結晶粒界が観察された。結晶粒内及び結晶粒界中の拡散傾向の差を明らかにするため、EPMAライン計測は結晶粒内(Fig.3.3)、結晶粒界（Fig.3.4）に沿って実施した。結晶粒内及び結晶粒界中のライン計測位置をそれぞれFig.3.3、Fig.3.4の図中側のSEM画像上に、ライン計測結果を図中右側に示す。いずれの結果も、候補合金中にFP同位体の拡散によると思われるAgの偏析現象と推測される信号（Ag信号）が観察された。候補合金中のAg信号はFig.3.3及びFig.3.4中で赤く囲った領域に観察されている。

Fig.3.3の結晶粒内ではAg信号強度は微弱で、かつ、拡散領域も3μm程度に留まっているのに対し、Fig.3.4の結晶粒界中では結晶粒内より二桁程度の高い信号強度であり、拡散領域も5μm以上に及んでいる。これらの結果から、同一候補合金中の結晶粒内と結晶粒界中ではFP同位体の拡散傾向が異なる、結晶粒界がFPの高速拡散経路として機能している可能性が示唆された。今後、結晶粒内、結晶粒界いずれにおいても、Ag信号強度が母材深さ方向に対して単一減少せず、母材中5μm程度の位置にピークを示すAg偏析現象の生起メカニズムをAg以外の母材構成元素の分布等から考察するとともに、単結晶性インコネル713Cを用いて同様の拡散試験を実施し、結晶粒界を排除した場合の候補合金中のAgの拡散傾向を明らかにする予定である。
Table 3.1 Composition of Inconel 713C (wt%)

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Cr</th>
<th>Co</th>
<th>Mo</th>
<th>W</th>
<th>Ta</th>
<th>Nb</th>
<th>Ti</th>
<th>Al</th>
<th>Fe</th>
<th>others</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN713C</td>
<td>Bal.</td>
<td>12.5</td>
<td>-</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>0.8</td>
<td>6.1</td>
<td>2.5</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Fig. 3.1 Schematic diagram of the diffusion pair

Fig. 3.2 SEM-EDX analysis result for the cross section of specimen
Fig. 3. EPMA line analysis result (Polycrystalline Inconel 713C, In-Grain)

Ag was detected at bright particle showed in red line circle
Ag was detected at bright particle showed in red line circle.

Fig. 3.4 EPMA line analysis region (Polycrystalline Inconel 713C, Grain-Boundary)
4. まとめ

原子力機構では、高温ガス炉を用いたヘリウムガスタービンによる高効率発電に着目し、世界で初めての原子炉施設へのヘリウムガスタービン及び水素製造施設の接続に係る許認可の取得やヘリウムガスタービン発電技術や水素製造技術の確証を目的に、HTTRにヘリウムガスタービン及び水素製造施設等から成る熱利用システムを接続したHTTR熱利用試験を計画している。また、ヘリウムガスタービンの要素技術として、タービンにおけるFP沈着低減技術の研究開発を実施している。本報では、高温ガス炉に接続するヘリウムガスタービンの設計データとして、HTTRに接続する熱利用システムの2次ヘリウム冷却設備及びヘリウムガスタービンの設計データ、並びに、タービン翼候補合金中のFP同位体の拡散試験データをとりまとめた。

今後、HTTRに接続する熱利用システムの2次ヘリウム冷却設備及びヘリウムガスタービンの設計データを用いて、ヘリウムガスタービンや水素製造施設の接続に伴い必要となる評価対象事象について安全解析を行う。また、ヘリウムガスタービンの要素技術確立や、HTTR熱利用試験を目指して、「高温ガス炉研究開発に関する協力のための日本の原子力研究開発機構とアメリカ合衆国エネルギー省との間のプロジェクト取決め」に基づき、当該設計データを米国エネルギー省及びアイダホ国立研究所に提供予定である。

謝辞

HTTRに接続する熱利用システムの検討、並びに、タービン翼へのFP沈着低減技術の研究開発にあたり貴重なご助言を頂いた高温ガス炉水素・熱利用研究センター国富一彦センター長、橘幸男ディビジョン長、中川繁昭研究主幹に感謝いたします。

参考文献

1）原子力科学技術委員会、高温ガス炉技術研究開発作業部会、高温ガス炉技術開発に係る今後の研究開発の進め方について（案）。

This is a blank page.
国際単位系（SI）

表1. SI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>m</td>
<td>横にメートル</td>
</tr>
<tr>
<td>質量</td>
<td>kg</td>
<td>物質の数</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>秒</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>安培</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>物質の量</td>
<td>mol</td>
<td>モル</td>
</tr>
<tr>
<td>光</td>
<td>cd</td>
<td>カンデラ</td>
</tr>
</tbody>
</table>

表2. 国際単位系を用いて表現されるSI単位の例

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>面積</td>
<td>m²</td>
<td>サイドメートル</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表3. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>精密測定</td>
<td>mm</td>
<td>ミリメートル</td>
</tr>
<tr>
<td>角度</td>
<td>rad</td>
<td>ラジアン</td>
</tr>
<tr>
<td>位相</td>
<td>rad</td>
<td>ラジアン</td>
</tr>
<tr>
<td>位相応答</td>
<td>rad/s</td>
<td>ラジアン每秒</td>
</tr>
<tr>
<td>組立単位</td>
<td>rad/s²</td>
<td>ラジアン每秒每秒</td>
</tr>
<tr>
<td>組立単位</td>
<td>rad/s³</td>
<td>ラジアン每秒每秒每秒</td>
</tr>
<tr>
<td>組立単位</td>
<td>rad/s</td>
<td>ラジアン</td>
</tr>
<tr>
<td>組立単位</td>
<td>rad/s²</td>
<td>ラジアン每秒</td>
</tr>
</tbody>
</table>

表4. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>Pa</td>
<td>パascal</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表5. SI単位の記号

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>面積</td>
<td>m²</td>
<td>サイドメートル</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
</tbody>
</table>

表6. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>Pa</td>
<td>パascal</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表7. SI単位の記号

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>面積</td>
<td>m²</td>
<td>サイドメートル</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表8. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>Pa</td>
<td>パascal</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表9. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>Pa</td>
<td>パascal</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>

表10. 特有の名称と記号で表現されるSI基本単位

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記述</th>
</tr>
</thead>
<tbody>
<tr>
<td>空気圧</td>
<td>Pa</td>
<td>パascal</td>
</tr>
<tr>
<td>絶対温度</td>
<td>K</td>
<td>キロカール每立方メートル</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>サイドメートル每秒</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>サイドメートル每秒每秒</td>
</tr>
<tr>
<td>密度</td>
<td>kg/m³</td>
<td>キログラム毎メートル立方</td>
</tr>
<tr>
<td>面積密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>面積度</td>
<td>kg/m³</td>
<td>キログラム每平方メートル</td>
</tr>
<tr>
<td>網状の密度</td>
<td>kg/m²</td>
<td>キログラム毎平方メートル</td>
</tr>
<tr>
<td>消幅率</td>
<td>a</td>
<td>(a)</td>
</tr>
<tr>
<td>断面比</td>
<td>b</td>
<td>(b)</td>
</tr>
</tbody>
</table>