JAEA-Data/Code 2019-009 DOI:10.11484/jaea-data-code-2019-009

超深地層研究所計画における研究坑道での 湧水量計測データ集

- 2016~2018年度-

Monitoring of Groundwater Inflow into Research Galleries in the Mizunami Underground Research Laboratory Project (MIU Project) -From Fiscal Year 2016 to 2018-

> 尾上 博則 竹内 竜史 Hironori ONOE and Ryuji TAKEUCHI

核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部

Geoscientific Research Department Tono Geoscience Center Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development

日本原子力研究開発機構

October 2019

Japan Atomic Energy Agency

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>https://www.jaea.go.jp</u>) より発信されています。

国立研究開発法人日本原子力研究開発機構 研究連携成果展開部 研究成果管理課 〒319-1195 茨城県那珂郡東海村大字白方 2 番地4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Institutional Repository Section,

Intellectual Resources Management and R&D Collaboration Department, Japan Atomic Energy Agency.

2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2019

JAEA-Data/Code 2019-009

超深地層研究所計画における研究坑道での湧水量計測データ集 - 2016~2018 年度 -

日本原子力研究開発機構

核燃料・バックエンド研究開発部門 東濃地科学センター 地層科学研究部

尾上 博則, 竹内 竜史

(2019年7月16日受理)

日本原子力研究開発機構 東濃地科学センターでは、「地層処分技術に関する研究開発」の うち深地層の科学的研究(地層科学研究)の一環として、岐阜県瑞浪市において結晶質岩(花 崗岩)を対象とした超深地層研究所計画を進めている。この計画は、「地表からの調査予測 研究段階(第1段階)」、「研究坑道の掘削を伴う研究段階(第2段階)」、「研究坑道を利用 した研究段階(第3段階)」の3段階からなり、2019年度は第3段階の調査研究を実施し ている。

研究坑道内に湧出する地下水については、超深地層研究所計画の「研究坑道の掘削を伴う 研究段階(第2段階)」における岩盤の水理に関する調査研究の一環として計測体制が整備 されて計測を開始し、「研究坑道を利用した研究段階(第3段階)」においても、湧水量計測 を継続している。

本データ集は、2016~2018年度に実施した研究坑道内での湧水量計測で取得したデータ を取りまとめたものである。

東濃地科学センター:〒509-6132 岐阜県瑞浪市明世町山野内1-64

JAEA-Data/Code 2019-009

Monitoring of Groundwater Inflow into Research Galleries in the Mizunami Underground Research Laboratory Project (MIU Project) - From Fiscal Year 2016 to 2018 -

Hironori ONOE and Ryuji TAKEUCHI

Geoscientific Research Department, Tono Geoscience Center Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development, Japan Atomic Energy Agency Akiyo-cho, Mizunami-shi, Gifu-ken

(Received July 16, 2019)

Tono Geoscience Center of Japan Atomic Energy Agency (JAEA) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). In 2019 fiscal year, the MIU Project is conducting Phase III investigation.

The groundwater inflow monitoring into shafts and research galleries, has been maintained to achieve the Phase II goals, begins in 2004 fiscal year and follows now.

This document presents the results of the groundwater inflow monitoring from fiscal year 2016 to 2018.

Keywords: Mizunami Underground Research Laboratory (MIU) Project, Crystalline Rock, Construction Phase (Phase II), Groundwater Inflow Monitoring

目 次

1. はじめに	
2. 湧水量計測の概要	
2.1 目的	
2.2 研究坑道内の排水系統および湧水量計測箇所	
2.3 湧水量の計測方法および整理方法	
3. 湧水量計測結果	
3.1 研究坑道全体の湧水量	
3.2 主立坑側の湧水量	
3.3 換気立坑側の湧水量	
4. 電子ファイルの様式	
4.1 フォルダ構成	
4.2 両立坑の湧水量計測データ	
4.3 採水時計測による湧水量計測データ	
4.4 集水リング等の湧水量計測データ	
5. まとめ	
参考文献	

付録 CD 湧水量計測データ (~2018 年度)

CONTENTS

1. Introduction	1
2. Outline of groundwater inflow monitoring	3
2.1 Objectives	3
2.2 Draining system and monitoring points	3
2.3 Monitoring methods of groundwater inflow	6
3. Results of groundwater inflow monitoring	9
3.1 Total groundwater inflow	9
3.2 Groundwater inflow into Main Shaft side 1	12
3.3 Groundwater inflow into Ventilation Shaft side 1	15
4. Format of electronic files 1	18
4.1 Folder composition1	18
4.2 Total groundwater inflow 1	18
4.3 Measurement of groundwater inflow by manually sampling 1	19
4.4 Measurement of groundwater inflow by measurement insturment 1	19
5. Summary	21
References	22

Appendix CD: Groundwater inflow data until FY 2018

1. はじめに

日本原子力研究開発機構 東濃地科学センターでは、「高レベル放射性廃棄物の地層処分 技術に関する研究開発」のうち深地層の科学的研究(地層科学研究)の一環として、結晶質 岩(花崗岩)を対象とした超深地層研究所計画を進めている。

瑞浪超深地層研究所(以下、研究所)は、地上施設と研究坑道からなる(図1-1)。研究所 の研究坑道は、主として研究対象領域の基盤を成す土岐花崗岩中に建設されており、2本の 立坑(主立坑、換気立坑)とそれらを結ぶ深度100mごとの水平坑道(予備ステージ)、さ らに深度300m、500mで展開される水平坑道(深度300m研究アクセス坑道、深度500m 研究アクセス北坑道および研究アクセス南坑道)から構成される。両立坑とも2011年度初 めには深度500mに到達し、2013年度末には深度500mの水平坑道の掘削を完了した。 2014年度以降に、深度500m研究アクセス北坑道設備横坑に排水ピットが掘削されるなど、 坑道内の整備が行われた。さらに、研究アクセス北坑道では冠水坑道の整備、止水壁の性能 確認試験および岩盤力学調査(ボーリング孔掘削を含む)が進められ、研究アクセス南坑道 ではポストグラウト工、物質移動試験(ボーリング孔掘削を含む)が行われた。

研究坑道内に湧出する地下水については、超深地層研究所計画の「研究坑道の掘削を伴う 研究段階(第2段階)」における岩盤の水理に関する調査研究の一環として計測体制が整備 され、現在まで湧水量計測が継続されている。これまでに、立坑の一般部掘削工事が開始さ れた 2005 年 2 月から 2015 年度までの計測結果がデータ集として取りまとめられており¹⁾ ~3)、本データ集は、これらに続く 2016~2018 年度の湧水量計測結果を取りまとめたもの である。なお、取得され、整理されたデータは、その利用を考慮して電子ファイル化し、巻 末に添付した CD-ROM に掲載した。

(a) 地上施設

(b)研究坑道のイメージ図

2. 湧水量計測の概要

2.1 目的

研究坑道内の湧水量計測は、坑道の掘削に伴う湧水がその周辺の地下水流動場に変化を 生じさせる要因になると考えられるため、その深度方向での分布および経時変化を把握す ることを目的としてきた。深度 500m ステージの掘削が終了した後は、坑道が安定した状 態での湧水量の深度方向および経時的な変化の把握、および坑道掘削時または掘削後の湧 水抑制対策として行われたグラウト工の効果の確認を目的として、湧水量の経時変化を把 握している。

2.2 研究坑道内の排水系統および湧水量計測箇所

図 2.2-1 に研究坑道内の湧水の排水系統および湧水量計測箇所を、表 2.2-1 に湧水量計測 箇所ごとの計測期間等を示す。

湧水量の深度方向での分布を把握するために、地質・地質構造、透水性の割れ目の分布な どを考慮し、両立坑に集水リング(WR(Water Ring):深度 25m~30m間隔)を設置して いる。WRは、立坑の覆工背面に鉛直方向排水材(WR間、円周方向に 90°間隔で連続) と集水位置での円周方向排水材を設置することで一定区間の湧水を集め、集水管で排水す るとともに、流量を計測する構造になっている。WR(M)1~WR(M)20は主立坑の、WR(V)1 ~WR(V)20は換気立坑の集水リングを表す記号である。また、水平坑道の湧水は、立坑の 集水リングへ流下して計測されている箇所もあるが、湧水量の多い場所については適宜排 水槽を設けて集水し、予備ステージの排水ピットへ送水する過程で流量を計測している。湧 水を排出するために、深度 100m ごとの予備ステージに排水ピット(水槽)が設置されてお り、主立坑と換気立坑からの湧水を流入させ、下段から上段の予備ステージへと 100m ご とに順次揚水している。最終的に、深度 100m 予備ステージから地上の排水処理設備へと 揚水し、坑内の湧水を排出している。

表 2.2-1 に示した通り、湧水量計測箇所に設置した流量計については、湧水量の減少や経 年劣化によって計測不能または計測値異常となるものが多く発生している。そのため、主立 坑側では各深度の電磁流量計と深度 400m~500m 区間の集水リングに設置した熱線式流量 計のみで計測を継続している。換気立坑については 2017 年 11 月末以降、深度 200m~500m に設置した電磁式水道メータを除く全計測箇所での計測を終了した。

- ※1:深度200mボーリング横坑(主立坑)の湧水
- ※2:深度200m連接部の湧水(連接部周囲の側溝を集水リングとして利用)
- ※3:深度300m研究アクセス坑道の湧水
- ※4:WR(V)17以深の換気立坑及び深度500m研究アクセス南坑道の湧水
- ※5:深度500m研究アクセス北坑道の湧水

(本図は 2016 年 4 月時点の流量計測位置を示す。各流量計の計測期間については、表 2.2-1 を参照。)

図 2.2-1 研究坑道内の排水系統図

相 然 雨 柱			主立坑				被 刻 丘	坑
	計測対象湧水量	設置流量計	計測開始	備考	計測対象湧水量	設置流量計	計測開始	備老
	WR(M)1	TF(M)1	2005年6月	2009年2月に計測終了	WR(V)1	TF(V)1	2005年6月	2008年12月に計測終了
	WR(M)2	TF(M)2	2005年6月	2009年2月15計測終了	WR(V)2	TF(V)2	2005年6月	2008年12月に計測終了
,	WR(M)3	TF(M)3	2005年6月	2009年2月に計測終了	WR(V)3	TF(V)3	2005年6月	2008年12月に計測終了
0m~ 100m	WR(M)4	TF(M)4	2005年8月	2009年2月に計測終了	WR(V)4	TF(V)4	2005年6月	2008年12月に計測終了
	c	Ê	900-4-9日	₩₽₩₩1 - ₩₽₩₩1₩ 포카르소 = 1	c	c L L	2006年0日	WR(V)1~WR(V)4の湧水量合計
	CEF3	213	Ho+1007		GEF2	CL2	4e+0007	2017年11月に計測終了
	WR(M)5	TF(M)5	2005年8月	2013年5月に計測終了	WR(V)5	TF(V)5	2005年7月	2013年8月に計測終了
	WR(M)6	TF(M)6	2005年9月		WR(V)6	TF(V)6	2005年9月	2016年6月に計測終了
	WR(M)6(1)	TF(M)6(1)	2005年10月		WR(V)7	TF(V)7	2006年6月	2016年6月に計測終了
	WR(M)7	TF(M)7	2005年10月	2013年2月に計測終了 2014年4月に計測再開	WR(V)8	TF(V)8	2008年6月	2016年6月に計測終了
100m~200m	WR(M)8	TF(M)8	2008年4月	2014年4月に計測終了	WR(V)9	TF(V)9	2008年6月	深度200mボーリング横坑、立坑連接部の湧水量 2014年4月に計測終了
•	Q _{EF4}	EF4	2008年4月	WR(M)5~WR(M)8の湧水量合計 2015年10月に計測終了	QUFI	UFI	2008年6月	WR(V)5~WR(V)8の湧水量合計 2017年11月に計測終了
	QUF2	UF2	2008年5月	深度200mボーリング横坑の湧水量 2012年9月不具合発生以降は欠測扱い	QEFwi	EFw1	2008年4月	深度100m~200mの湧水量合計
	WR(M)9	TF(M)9	2008年4月					
	WR(M)10	TF(M)10	2008年7月	2014年4月に計測終了	WR(V)10	TF(V)10	2008年9月	2017年11月に計測終了
	WR(M)11	TF(M)11	2008年7月	2014年4月に計測終了	WR(V)11	TF(V)11	2008年11月	2010年5月に計測終了
200m~300m	WR(M)12	TF(M)12	2008年8月	2012年11月に計測終了	WR(V)12	TF(V)12	2009年4月	2014年4月に計測終了
	Q _{EF6}	EF6	2009年7月	WR(M)9~WR(M)12の湧水量合計	Q _{EFS}	EF5	2009年4月	WR(V)10~WR(V)12の湧水量合計 2017年11月に計測終了
	QEF7	EF7	2009年7月	深度300m研究アクセス坑道の湧水量 (主立坑壁面から約6mまでを除く)	Q _{EFw2}	EFw2	2009年5月	深度200m~300mの湧水量合計
	WR(M)13	TF(M)13	2009年6月	2014年4月に計測終了	WR(V)13	TF(V)13	2009年6月	深度300mボーリング横坑の湧水を含む 2013年3月に計測終了
-	WR(M)14	TF(M)14	2009年8月	2014年4月に計測終了	WR(V)14	TF(V)14	2009年6月	2013年3月に計測終了
•	WR(M)15	TF(M)15	2009年8月	2014年4月に計測終了	WR(V)15	TF(V)15	2009年7月	2014年4月に計測終了
	WR(M)16	TF(M)16	2010年1月	2014年4月に計測終了	WR(V)16	TF(V)16	2009年12月	2013年1月に計測終了
300m∼400m	QEF9	EF9	2009年7月	WR(M)13~WR(M)16の湧水量合計	Q _{EF8}	EF8	2010年1月	(2010/9/23まで、2014/4/16から) (2010/9/23まで、2014/4/16から) (2010/9/24から2014/4/16まで) WR(N)14~WR(N)16の湧水量合計
					Qee3	EFw3	2009年5月	2017年11月に計測終了 深度300m~400mの湧水量合計
		TEMMA7	9010年1日		WD(1)17	TE(\\\17	2010年2日	2015年4日1-14副终了
	WE(M)18	TE(M)18	2010年3日		WID(V)18	TE(V/18	2010年2日	2015年7月15日14号。1 10015年7日1-111143、7
	WR(M)19	TF(M)19	2012年2月	2012年9月に一日終了、2014年4月再開	WR(V)19	TF(V)19	2012年3月	2015年4月に計測終了
	WR(M)20	TF(M)20	2014年4月		WR(V)20		100-1-0-1	
400m~500m	Q _{EF10}	EF10	2015年3月	WR(M)17~WR(M)20の湧水量合計	Q _{EF12}	EF12	2015年4月	WR(V)17~WR(V)20の湧水量合計 2017年11月に計測終了
	QEF11	EF11	2015年3月	深度500m研究アクセス北坑道の湧水量	QEFwd	EFw4	2015年4月	深度400m~500mの湧水量合計及び 深度500m研究アクセス南坑道の湧水量の合計
44	研究坑道総揚水量(Q _{EI})	EF1	2005年6月	地上部排水処理設備内で計測				
€	主立坑への給水量(Q _{EF0})	EFO	2006年7月	地上部排水処理設備内で計測	換気立坑への給水量(Q _{ffw0})	EFw0	2006年7月	地上部排水処理設備内で計測
t8]:2018年度末時点で	ざの流量計稼働箇 戸	所 TF(M)1~TF(M)20, TF(V)1~T Qfr0 ⁴ 04r12;電磁流量計(こよ;		F12:電磁流量計, UF 波式流量計による計 #	1~UF2:超音波(握 則湧水量, Q _{FW} 0~G	〕式流量計, EFw0~EFw4:電磁式水道メータ, _{Pew} 5:電磁式水道メータ,

表 2. 2-1 湧水量計測箇所ごとの計測開始時期

JAEA-Data/Code 2019-009

- 5 -

2.3 湧水量の計測方法および整理方法

(1) 流量計の種類および仕様

湧水量の計測は、突発的な湧水の変動にも対応可能となるよう連続的な自動計測を基本 とし、想定される測定範囲、メンテナンスの必要性を勘案して流量計を選定した。両立坑と も、各集水リング(WR)に集められた湧水は熱線式流量計(TF)を用いて、深度100mご との区間で集約された湧水は電磁流量計(EF)または超音波(堰)式流量計(UF)を用い て、それぞれの流量計測を実施した。さらに、換気立坑の湧水量については、深度200m、 300m、400mおよび500m予備ステージに設置された各排水ピットへの流入直前で電磁式 水道メータ(EFw)を用いて計測した。表 2.3-1に各流量計の仕様を示す。

種 類	測定範	通	測定精度
熱線式流量計(TF)	0.01∼2 m∕s	(流速を計測)	±5%以下
電磁流量計(EF)	0∼10 m∕s	(流速を計測)	±0.5%以下
超音波(堰)式流量計(UF)	0.25∼5 m	(三角堰の溢流水位 を計測)	±2mmまたは±1%FSの大きい方
電磁式水道メータ(EFw)	0.625∼125 m³∕h	(流速を計測)	1 m³/h 以上で、±2%

表 2.3-1 各流量計の仕様

※FS:フルスケール

2016年度までの湧水量計測 1)~3)においては、以下の方法で各流量を算出している。

- ・熱線式流量計および超音波(堰)式流量計は、10分間隔で取得する計測値から流量率 を計算し、これを1日で平均したうえで日流量を算出。
- ・電磁流量計は、計測値から機器内部で演算処理された 10 分間隔の積算流量を取得し、 その差を取って流量率とし、改めて日平均流量を算出。
- ・電磁式水道メータも積算型であるため、毎日定時の読み値から日流量(積算流量の差) を算出。
- ・WRの湧水量については、1回/月の頻度で実施している湧水の採水時に、手計りによる計測(以下、採水時計測)を実施。ここではWR集水管の流水によって1Lの容器が 満水となるまでの時間を計測し、湧水量を算出。

前述した通り、熱線式流量計や電磁流量計については、湧水量の減少や経年劣化によって 計測不能又は計測値異常となるものが多く発生しており、その計測値の信頼性は低いと判 断される。また、上野・竹内³⁾では、採水時計測の値を用いて WR ごとの湧水量や 100m ご との湧水量を評価することが妥当とされている。そこで、本データ集でも採水時計測の計測 データを用いて、WR ごとの湧水量や 100m ごとの湧水量を算出する。

(2) 研究坑道全体の湧水量計測

研究坑道の総湧水量(以下、研究坑道総湧水量(Qtotal))は、地上の排水処理設備内で電磁流量計(EF1)により計測している研究坑道総揚水量から、研究坑道内の作業に伴い地上から地下へ送水された給水量(主立坑給水量、換気立坑給水量)を差し引いて求めている。 給水量の計測は地上の排水処理設備において実施しており、主立坑給水量は電磁流量計を、 換気立坑給水量は電磁式水道メータを用いている。なお、換気立坑側では 2008 年 6 月以 降、深度 200mの集水槽(WR 集水管の湧水を集約するための水槽)から取水することにより地上からの給水を抑制し、2009 年 7 月以降は電磁式水道メータによる計測給水量は 0 と なっている。

換気立坑側湧水量(Q_v)は、深度 100m ごとの予備ステージにおいて排水ピットへ放出 する直前に電磁式水道メータ(EFw1~EFw4、深度100mのみ例外的に電磁流量計(EF2)) で計測した結果を合算して総量を算出している。一方、主立坑側湧水量(Q_M)は、各予備 ステージとも、排水ピットの周囲(避難所等含む)から直接流入する湧水量を計測すること が困難であったため、研究坑道総湧水量(Q_{total})から換気立坑側湧水量(Q_v)を差し引い て算出している。

ここでいう換気立坑側湧水量(Qv)には、立坑壁面からWRを通じて収集される湧水の 他に、深度500m研究アクセス南坑道の湧水が含まれる。一方、主立坑側湧水量(QM)に は、WRを通じて収集される湧水の他に、深度200mボーリング横坑(主立坑)、深度300m 研究アクセス坑道および深度500m研究アクセス北坑道の湧水が含まれる。

(3) 主立坑側の湧水量計測

主立坑側の湧水量については、主立坑部(全深度における WR の採水時計測の合計値) と主要な水平坑道部として、深度 200m 予備ステージ、深度 300m 研究アクセス坑道、深 度 500m 研究アクセス北坑道に区分して整理した。さらに、主立坑部については深度 100m ごとの湧水量を算出して整理した。

(4) 換気立坑側の湧水量計測

換気立坑側の湧水量については、換気立坑部(全深度における WR の採水時計測の合計 値)と主要な水平坑道部として、深度 200m ボーリング横坑、深度 300m ボーリング横坑、 深度 500m 研究アクセス南坑道に区分して整理した。さらに、換気立坑部については深度 100m ごとの湧水量を算出して整理した。

なお、深度 200m ボーリング横坑からの湧水については、換気立坑連接部周囲の側溝が WR と同様の集水機能を有していることから、これを WR(V)9の湧水量としており(図 2.3-1)、採水時計測により把握している。深度 300m ボーリング横坑の湧水は、ボーリングピッ トの底から WR(V)13 (GL-302.6m) へ排水され、立坑壁面の湧水(深度 294~302m の区 間)と一体となって計測されている(図 2.3-2)。これも採水時計測により把握している。 深度 500m 研究アクセス南坑道の湧水量については、排水ピット流入前に深度 400m 以 深の換気立坑側の湧水の全量を計測している電磁式水道メータ(EFw4)の値から、深度 400m~500m における WR の採水時計測の合計値を差し引くことで算出した。

図 2.3-1 深度 200m ボーリング横坑(換気立坑)と連接部における湧水量計測

図 2.3-2 深度 300m ボーリング横坑と連接部における湧水量計測

3. 湧水量計測結果

3.1 研究坑道全体の湧水量

図 3.1-1 に、研究坑道総湧水量(Qtotal)、主立坑側湧水量(QM)および換気立坑側湧水量 (Qv)の計測開始から 2019 年 3 月 31 日までの日平均値の経時的推移を、図 3.1-2 に Qtotal、 QM、Qvの 2016 年 4 月 1 日から 2019 年 3 月 31 日までの日平均値の経時的推移を示す。 なお、2.3 で述べたように、ここでいう主立坑側湧水量および換気立坑側湧水量には、両立 坑の壁面からの湧水だけでなく、研究アクセス坑道その他の水平坑道からの湧水が含まれ ている。

Qtotal、QMおよびQvともに研究坑道内でのボーリング調査に伴う湧水量の急増(例えば、 図 3.1-1 中の赤枠)など一時的な変化が確認できるが、本稿では全体的な変化傾向について 記述する。QMは、主立坑掘削深度100m付近(2005年6月頃)で150m³/日程度に急増し た後、坑道掘削とともに増加し、深度500mステージ掘削終了(2014年3月頃)以降は概 ね 450m³/日で大きな変化が見られない。QMは、換気立坑掘削深度100m付近(2005年6 月頃)で420m³/日程度に急増した後、2008年10月頃までは減少する。2008年10月以降 は坑道掘削とともに450m³/日程度(2014年9月頃)に増加するが、その後は減少し2019 年3月末時点で320m³/日程度の値を示す。Qtotalは、2005年6月頃のQMおよびQvの急増 によって600m³/日程度の値を示す。その後は、坑道掘削とともに980m³/日程度(2014年 4月頃)に増加するが、その後は減少し2019年3月末時点で760m³/日程度の値を示す。

2016年4月1日から2019年3月31日までのQ_{total}、Q_MおよびQ_Vの変化をみると、坑 道内で実施した調査試験の影響として深度500mの冠水坑道内から地下水を全排水したこ とによる湧水量の増加(2017年9月頃)が見られるものの、大きな変動は認められない。 Q_Mは、450m³/日程度(2016年4月)から440m³/日程度(2019年4月)と、3年間で10 m³/日程度減少した。Q_Vは、360m³/日程度(2016年4月)から320m³/日程度(2019年4 月)と、3年間で40m³/日程度減少した。Q_{total}は、810m³/日程度(2016年4月)から760 m³/日程度(2019年4月)と、3年間で50m³/日程度減少した。

3.2 主立坑側の湧水量

図 3.2-1 に、QMと主立坑に設置した全 WR の採水時計測の合計値、深度 200m ボーリン グ横坑、深度 300m 研究アクセス坑道および深度 500m 研究アクセス北坑道の湧水量を示 す。図 3.2-2 に、WR の採水時湧水量計測結果に基づき算出した深度 100m ごとの区間湧水 量を示す。これらの図には、各計測データから月平均値を算出しプロットした。また、表 3.2-1 に、2019 年 3 月時点における主立坑側の水平坑道部ごとの湧水量や深度方向の区間湧水 量の月平均値を整理した。

図 3.2-1 をみると、計測開始から増加していた深度 300m 研究アクセス坑道の湧水量は、 2013 年 4 月以降には概ね一定の値を示す。深度 500m 研究アクセス北坑道の湧水量は、坑 道内の作業等による短期的な増減が見られるものの、全体的には増加傾向を示す。また、図 3.2-2 の WR の採水時計測値をみると、計測開始からの湧水量の減少傾向は継続しているも のの、深度 500m ステージ掘削終了後から湧水量の減少量が小さくなっている。主立坑側 の湧水量割合をみると、深度 300m 研究アクセス坑道と深度 500m 研究アクセス北坑道か らの湧水量が QM の約 95%を占めている(表 3.2-1)。

深度	湧水量(m³/日)	Qmに占める割合
0~100m	4	0.8%
100~200m	22	4.6%
200m ボーリング横坑	_	_
200~300m	15	3.1%
300m 研究アクセス坑道	288	60.1%
300~400m	2	0.4%
400~500m	6	1.3%
500m 研究アクセス北坑道	165	34. 4%
合 計	502	104. 8%
主立坑側湧水量 Q _M	479	—

表 3.2-1 主立坑側湧水量の月平均値(2019年3月)

[日/ɛm] 量水颩

\$PB BOOZ

3.3 換気立坑側の湧水量

図 3.3-1 に、Qv と換気立坑に設置した全 WR の採水時計測の合計値、深度 200m ボーリ ング横坑、深度 300m ボーリング横坑および深度 500m 研究アクセス南坑道の湧水量を示 す。図 3.3-2 に、WR の採水時湧水量計測結果に基づき算出した深度 100m ごとの区間湧水 量を示す。これらの図には、各計測データから月平均値を算出しプロットした。また、表 3.3-1 に、2019 年 3 月時点における換気立坑側の水平坑道部ごとの湧水量や深度方向の区間湧 水量の月平均値を整理した。

図 3.3-1 をみると、深度 200m ボーリング横坑、深度 300m ボーリング横坑および深度 500m 研究アクセス南坑道の湧水量は、計測開始から減少傾向を示す。図 3.3-2 の WR の採 水時計測値には、計測開始から坑道内調査に伴う短期的な増減が見られるものの長期的な 変化傾向は認められなかったが、深度 500m ステージ掘削開始後は明瞭な減少傾向を示し ており、深度 500m ステージ掘削期間中の減少量は特に多い。換気立坑側の湧水量割合を みると、深度 500m 研究アクセス南坑道からの湧水量が Qv の約 66%を占めている。また、換気立坑部からの湧水量が占める割合は約 35%であり、主立坑側と比べて多い。立坑部に おいては、深度 100m~200m と深度 400m~500m 区間からの湧水量がほとんどを占める (表 3.3-1)。

深度	湧水量(m³/日)	Qvに占める割合
0~100m	1	0.3%
100~200m	59	19.3%
200m 連接部・ボーリング横坑	5	1.6%
200~300m	6	2.0%
300m 連接部・ボーリング横坑	22	7.2%
300~400m	2	0. 7%
400~500m	38	12. 4%
500m 研究アクセス南坑道	201	65.7%
合 計	334	109.2%
换気立坑側湧水量 Q _V	306	_

表 3.3-1 換気立坑側湧水量の月平均値(2019 年 3 月)

4. 電子ファイルの様式

研究坑道の湧水量計測データは、両立坑の湧水量、各立坑の集水リング等の湧水量および 採水時計測による湧水量として整理し、以下の様式で電子ファイル化して本データ集に添 付した。なお、電子データは Microsoft®社製 Excel®形式で保存した。

4.1 フォルダ構成

電子データのフォルダ構成を以下に示す。

付録_湧水量計測データ(~2018年度)
一両立坑の湧水量(~2018年度)
-主立坑の集水リング等の湧水量(~2018年度)
-主立坑の採水時計測による湧水量(~2018年度)
-換気立坑の集水リング等の湧水量(~2018年度)
換気立坑の採水時計測による湧水量(~2018年度)

4.2 両立坑の湧水量計測データ

両立坑の湧水量計測データとして、主立坑側湧水量(Q_M)、換気立坑側湧水量(Q_v)および研 究坑道総湧水量(Q_{total})を日単位で整理した(表 4.2-1 参照)。なお、データ整理にあたって は既存データ集³⁰の添付ファイルを活用し、計測開始から 2018 年度までのデータを収録し た。

表 4.2-1 データファイルの様式(両立坑の湧水量)

(日平均データ)

			立坑掘削深度,	水平坑掘削县	l.			湧 水 量		
日付	(A工区) 主立坑	(A工区)予備ステージ	(A工区) 調査横坑	(B工区) 换気立坑	(B工区) 予備ステージ	(B工区) 調査横坑		主立坑湧水量(Q _M)	换気立坑湧水量(Q _V)	研究坑道総湧水量(Q _{total})
	GL-m	立坊	、センターから[m]	GL-m		立坑センターから [m]		m3/day	m3/day	m3/day
2016年4月1日			1		1	1	-	454.9	362.0	816.9
2016年4月2日								448.7	366.0	814.7
2016年4月3日								449.6	367.0	816.6
2016年4月4日			2016年 年 い 啓	1+ ====	計 ナトト			464.7	367.0	831.7
2016年4月5日			2010 千皮以阵	して、「口」	説るし			444.1	369.0	813.1
2016年4月6日								442.6	364.0	806.6
2016年4月7日								462.2	363.0	825.2
2016年4月8日								459.8	368.0	827.8
2016年4月9日								451.1	367.0	818.1
2016年4月10日				1	1			452.0	367.0	819.0
2016年4月11日								443.8	368.0	811.8
2016年4月12日								452.3	361.0	813.3
2016年4月13日								464.6	368.0	832.6
2016年4月14日								453.0	372.0	825.0
2016年4月15日								436.7	370.0	806.7
2016年4月16日								451.9	372.0	823.9
2016年4月17日								458.7	370.0	828.7
2016年4月18日								459.6	372.0	831.6
2016年4月19日								453.5	370.0	823.5
2016年4月20日								439.4	368.0	807.4
2016年4月21日								468.1	369.0	837.1
2016年4月22日								441.7	385.0	826.7
2016年4月23日								440.6	378.0	818.6
2016年4月24日								473.2	378.0	851.2
2016年4月25日			1		1			449.7	378.0	827.7
2016年4月26日								448.3	372.0	820.3
2016年4月27日								448.3	381.0	829.3
2016年4月28日								445.3	386.0	831.3
2016年4月29日								454.0	374.0	828.0
2016年4月30日								439.6	374.0	813.6

4.3 採水時計測による湧水量計測データ

集水リングごとの採水時計測による湧水量計測データを、主立坑と換気立坑に分けて整理した(表 4.3-1 参照)。なお、データ整理にあたっては既存データ集³⁾の添付ファイルを活用し、計測開始から 2018 年度までのデータを収録した。

表 4.3-1 データファイルの様式(採水時計測による湧水量)

主立坑 採水田	寺湧水量計測値	∎(GL-400m~-	-500m)					
採水時計測	(WR(M)17)	採水時計測	(WR(M)18)	採水時計測	(WR(M)19)	採水時計測	(WR(M)20)	採水時計測(WR(M)17~WR(M)20)
	(GL-405.2m)	64	(GL-436.2m)	D /4	(GL-464.6m)	D /4	(GL-494.4m)	(GL-400~-500m)
日1寸	m ³ /day	日1寸	m ³ /day	日1寸	m ³ /day	日 1寸	m ³ /day	m³/day
2016年4月12日	2.45	2016年4月12日	0.00	2016年4月12日	1.15	2016年4月12日	2.30	5.90
2016年5月16日	0.00	2016年5月19日	2.45	2016年5月19日	1.30	2016年5月19日	2.45	6.19
2016年6月13日	0.00	2016年6月15日	2.45	2016年6月15日	1.44	2016年6月15日	2.59	6.48
2016年7月11日	0.00	2016年7月12日	2.59	2016年7月12日	1.44	2016年7月12日	2.45	6.48
2016年8月25日	0.00	2016年8月25日	2.45	2016年8月25日	1.58	2016年8月25日	2.59	6.62
2016年9月12日	0.00	2016年9月13日	2.45	2016年9月13日	1.58	2016年9月13日	2.45	6.48
2016年10月18日	0.00	2016年10月18日	2.30	2016年10月18日	1.44	2016年10月18日	2.30	6.05
2016年11月29日	0.00	2016年11月29日	1.15	2016年11月29日	2.02	2016年11月29日	2.45	5.62
2016年12月6日	0.00	2016年12月6日	0.72	2016年12月6日	2.45	2016年12月6日	2.45	5.62
2017年1月11日	2.30	2017年1月11日	0.14	2017年1月11日	0.00	2017年1月11日	3.46	5.90
2017年2月23日	2.02	2017年2月23日	0.29	2017年2月23日	0.00	2017年2月23日	3.89	6.19
2017年3月23日	216			2017年3月23日	0.00	2017年3月23日	4.32	6.48

換気立坑 採2	水時湧水量計測	侧值(GL-400m・	~-500m)					
採水時計測	(WR(V)17)	採水時計測	(WR(V)18)	採水時計測	(WR(V)19)	採水時計測	(WR(V)20)	採水時計測(WR(V)17~WR(V)20)
	(GL-402.6m)	64	(GL-431.2m)	D /4	(GL-465.0m)	64	(GL-493.0m)	(GL-400~-500m)
日1寸	m ³ /day	m³/day						
2016年4月13日	8.84	2016年4月13日	25.17	2016年4月13日	12.48	2016年4月13日	0.26	46.76
2016年5月17日	8.45	2016年5月17日	22.12	2016年5月17日	12.27	2016年5月17日	0.68	43.52
2016年6月15日	8.78	2016年6月15日	23.21	2016年6月15日	12.43	2016年6月15日	0.78	45.20
2016年7月14日	9.10	2016年7月14日	25.00	2016年7月14日	12.96	2016年7月14日	0.73	47.79
2016年8月8日	9.26	2016年8月8日	23.08	2016年8月8日	12.21	2016年8月8日	0.63	45.19
2016年9月14日	8.88	2016年9月14日	21.40	2016年9月14日	11.71	2016年9月14日	0.66	42.65
2016年10月12日	8.78	2016年10月12日	21.48	2016年10月12日	11.92	2016年10月12日	0.63	42.83
2016年11月9日	8.37	2016年11月9日	20.84	2016年11月9日	11.66	2016年11月9日	0.59	41.46
2016年12月14日	8.25	2016年12月14日	21.38	2016年12月14日	11.84	2016年12月14日	0.73	42.21
2017年1月18日	8.09	2017年1月18日	21.12	2017年1月18日	12.01	2017年1月18日	0.75	41.98
2017年2月15日	8.21	2017年2月15日	21.54	2017年2月15日	10.92	2017年2月15日	0.58	41.24
2017年3月8日	8.24	2017年3月8日	20.56	2017年3月8日	11.23	2017年3月8日	0.71	40.74

4.4 集水リング等の湧水量計測データ

前述した通り、2016 年度以降は各 WR での採水時計測値を用いて WR ごとの湧水量や 100m ごとの区間湧水量を評価する。そのため、集水リング等の湧水量計測データについて は、各 WR に設置した熱線式流量計の計測値はデータ整理の対象外とした。100m ごとの湧 水量については、参考値扱いとしてデータ整理の対象とした(表 4.4-1 参照)。なお、デー タ整理にあたっては既存データ集³⁰の添付ファイルを活用し、計測開始から 2018 年度まで のデータを収録した。

	移動式 熱動式 粉膜式 粉膜式 粉膜式 医脑部位 電磁化量计 電磁化量计 電磁化量计 電磁化量计 医氯化合物 网络加加 化加加加加 化加加加加加加加加加加加加加加加加加加加加加加加加加加加	「TFRM016) (TFRM013) (TFRM018) (TFRM018) (TFRM019) (TFRM020) (EF3) (EF4) (EF6) (EF9) TFRM020) (EF10) (27-5-344) (TFRM016) (TFRM017) (TFRM018) (TFRM019) (TFRM020) (EF3) (EF4) (EF6) (EF6) (EF9) (TFRM020) (EF10) (27-5-344)	0 (01-394.4m) (01-405.2m) (01-436.2m) (01-456.6m) (01-454.4m) (01-100m) (01-200m) (01-300m) (01-400m) (01-400m) (01-900m) (01-	m3/day	10.76 15.28 11.16 10.06 14.86 2.99.31 14.75	10.0 12.0 12.5 12.5 12.0 12.91 3004 142.58	14284 1238 1123 1010 1107 3002 14244	10.91 14.81 11.52 9.81 300.02 141.90	五十 Z 1089 1479 11.14 9.81 12.82 259.75 142.82	1009 Q G 1338 28776 1378	1039 15.40 11.27 2.76.83 142.42	10.95 15.37 11.37 10.03 11.14 119.85 142.24	11.57 15.22 11.25 9.98 12.16 11.751 142.55	11.75 15.79 11.29 10.04 11.02 299.60 143.52	11.15 15.13 11.01 9.63 13.43 299.23 141.14	14.99 10.96 14.101 299.29 141.05	10.22 14.78 11.18 9.70 10.29 297.51 141.73	015 14.79 11.40 295.4 142.73	14.58 11.08 9.80 10.21 299.68 141.88	877 14.22 11.11 9.94 11.24 300.17 141.19	1 141 1006 7.31 300.43 14185	14.34 11.18 9.55 30001 141.41	931 1339 1036 364 11.33 26330 140.65	940 12.98 10.93 9.42 11.97 2.97.75 13.942	962 12.62 11.24 9.88 9.51 3000 M1.44	350 1143 986 8.36 28991 14239	10.06 14.25 11.39 9.97 8.08 299.20 14.274	1 152 152 29323 14142	950 14.63 11.38 9.87 7.22 262.73 140.70	939 1415 1132 936 748 21507 14277	9.37 13.97 11.26 9.81 7.47 2.13.76 140.35	1 1.34 9.85 7.70 146.96 141.91	945 13.50 11.40 963 882 122.11 141.77	1 1028 12.63 11.09 2.68 11.95 77.94 141.85
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	15 熟練式 熟練式 熟練式 熟練式	0) (TF0M011) (TF(M012) (TF(M013) (TF(M014) (TF(M015)	2m) (GL-264.8m) (GL-294.4m) (GL-302.6m) (GL-336.2m) (GL-372.0m) (v m3/day m3/day m3/day m3/day m3/day					世紀 子 同 や 別 間 心 ら い 「 " o い た 一 い 一 い 一 い 一 い 一 い 一 い 一 い 一 い 一 い 一 い - い - い - い - - い - - - い - - - - - - - - - - - - -	「重く」NUMLCのと同派へ重と計画		(社会 ダフナス	or x1 X L L A のo		-																			
6 4 4 A A A A A A A A A A A A A A A A A	各級式 陸級式 陸級式 陸級式 陸級式	F(M06) (TF(M06(1)) (TF(M07) (TF(M08) (TF0M09) (TF(M01	-136.2m) (GL-151.8m) (GL-167.4m) (GL-194.4m) (GL-202.6m) (GL-236.	3/day m3/day m3/day m3/day m3/day m3/day					1 第11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	◇ 時間 運行 通行 用いて MKL CO 第小		9.4.は書計 6.4 当店 4.1 一方数 31	<u>※ * / /// 単 il / / il // / / / / / </u>		-																			
	2646년 2546년 2546년 2546년 2	TF(M01) (TF(M02) (TF(M03) (TF(M04) (TF0M)5) (1	L-10.0m) (GL-42.5m) (GL-77.0m) (GL-94.4m) (GL-102.6m) (GL	n3/day m3/day m3/day m3/day m3/day m					10016年11次1 なきしんでき	ZUI0 中国 以前は、 の M K C U は		ー ストナチ 女Mini-記第一 ち数&			-																			
1		な田	-	1	2016年4月1日	2016年4月2日	2016年4月3日	2016年4月4日	2016年4月5日	2016年4月6日	2016年4月7日	2016年4月8日	2016年4月9日	2016年4月10日	2016年4月11日	2016年4月12日	2016年4月13日	2016年4月14日	2016年4月15日	2016年4月16日	2016年4月17日	2016年4月18日	2016年4月19日	2016年4月20日	2016年4月21日	2016年4月22日	2016年4月23日	2016年4月24日	2016年4月25日	2016年4月26日	2016年4月27日	2016年4月28日	2016年4月29日	2016年4月30日

その権	采度 500m 研究 ア クセス 南坑 道 (E 644-EF12)		m3/day	213.11	212.93	212.74	212.78	215.00	213.00	212.83	213.76	213.82	213.89	215.01	213.98	215.65	215.68	215.96	216.64	216.46	216.45	215.52	216.42	217.25	218.17	216.31	218.12	217.06	214.23	218.03	222.06	215.13
	電磁波量計 (EF12) (GL-500m)		m3/day	49.89	50.07	5026	5022	50.00	50.00	50.17	5024	50.18	50.11	49.99	50.02	50.35	50.32	50.04	50.36	50.54	50.55	50.48	50.58	50.75	50.83	50.69	50.88	50.94	50.77	50.97	50.94	50.87
	撥線式合計 (TF(V)17~ TF(V)19) 乱-400m~-	500m)	m3/day																													
₩¥	電機統量計 (EF8) + TF(V)13 Ctl -400m) (0		m3/day																													
範囲図のマン	配任的 (EF8) (EF8) GL-400m)		m3/day	9.87	9.93	9.77	10.34	9.85	9.83	9.97	10.01	9.83	9.86	9.65	9.70	9.89	9.95	9.71	9.76	9.86	9.82	9.68	9.77	9.92	9.82	9.72	9.72	9.71	9.75	9.66	9.73	9.71
減度100m	(EHL的金融計 1 (EFS) (L-300m) ()		m3/day	9.63	10.27	10.40	10.72	8.96	8.71	9.79	98.6	9.04	9.15	7.55	8.04	9.59	10.35	8.08	8.78	10.48	9.26	8.74	9.08	10.13	10.49	10.42	10.88	10.23	9.84	10.28	10.15	8.11
	(音波式流量 計(UFI) (GL-200m) (m3/day	73.55	73.41	74.02	75.07	73.16	74.55	76.94	76.23	75.75	77.34	76.50	76.58	77.68	76.72	73.90	76.29	77.62	75.76	77.50	78.93	80.44	78.64	78.05	78.50	17.97	78.80	79.16	80.20	79.65
	電磁流量計 程 (EF2) (GL-100m)		m3/day	0.84	1.08	126	175	1.06	0.83	1.37	1.42	960	1.06	0.88	0.83	128	185	0.86	0.87	1.77	126	0.84	0.95	1.62	193	1.75	185	1.54	1.39	1.76	1.97	124
	線式 (V)19) 465.0m)		5/ day																													_
	線式 2018) (TF 131.2m) (GL-		/day m																													
	線式 (V)17) (TFI 402.6m) (GL→		/ day m3					0	,																							
	線式 2011年 (1)16) (TFI (30.9m) (GL-4		/day m3				м † Щ						<u>۱</u>	•																		
	観式 (115) (116) (116) (11-3) (0L-3)		/day m3				日本市	まる重					国大数										_		_				_			
	業式 V)14) (TFC 312m) (GL-3		/day m3				- 1- 12:10	三十二				i									_		_		_							
	業式 (TFC (02.6m) (GL-3		/day m3/				三 心()	2			ŝ		きます																			
	線式 整: (115) (TF((9.3.9m) (GL-5		/day m3				ĩ			オレマ	202			K H										_		_						
米馬間	線式 約11) (TF(265.0m) (GL-2		/day m3						Ì	いたゆう			した。欧く																			
ン グ 9 8	機武 (V)10) (TF 231.2m) (GL-		s/day mo				小王王	しょまく		が田田な	ン理主要		ボイー	ļ																		
* * * •	編成 F(V)9) 「ビグ撤抗 (TF -200m) (GL-		3/day m.				ĩ	J		ף 			オキ																			
-	機武 (11) (10) (11) (11) (10) (10)		5/day m.				NH C	≳ د		させ前	요미망		11=1-1	いして																		
	編式 F(V)7) 165.0m) (GL-		3/ day m				日本性	エチョ		100	2		- 売 第																_		_	
	1線式 F(V)6) -1312m) (GL-		3/ day m					. 프 르 그 곗!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	いい里口																					
	8線式 第 F(V)5) (T -102.6m) (GL-		13/ day m				「上で」	い # # //		た 1 日本 1 日	表記を		2																			
	路線式 FF(V)4) (T 94.0m) (GL		13/day n				NH CIM	SU LAN		「王」			いほう	1XX																		
	8載ま式 FF(V)3) (GL -68.5m) (GL		G/day m				₹ †			나는 - 10/	ビート	1	図に	í í																		
	8線式 R F(V)2) (T -39.5m) (GL		G/day n				年に反	ラくぼ		ちを	Ъ́р		╟	5																		
	*E3		ε	_			Ĥ			+++++++++++++++++++++++++++++++++++++++			Ľ H	ł							_		_		_							
	路線式 FF(V)1) -11.6m) ((n3/day				č	5		۶Ì	J		9			J															12	

表4.4-1 データファイルの様式(各流量計計測による湧水量)

5. まとめ

2016 年度~2018 年度の研究坑道の湧水量計測データを整理することで、主立坑および 換気立坑の深度方向の湧水状況、並びにその経時的推移を把握することができた。

上記 3 か年の研究坑道の総湧水量、主立坑側湧水量および換気立坑側湧水量は、長期的 な減少傾向があるとともに坑道内で実施した調査試験の影響が短期的に認められるが大き な変動がないことが確認できた。2019年3月時点における湧水量の内訳をみると、主立坑 側については深度 300m 研究アクセス坑道と深度 500m 研究アクセス北坑道からの湧水量 が主立坑側湧水量の 95%を占める。換気立坑側については、深度 500m 研究アクセス南坑 道からの湧水量が換気立坑側湧水量の約 66%を占める。また、換気立坑部からの湧水量が 占める割合は約 35%であり、主立坑側と比べて多い。

今後も定期的にデータを取りまとめ、その傾向を把握しつつ湧水量情報の共有化を図る とともに、水理地質構造モデルの更新等に活用する予定である。

参考文献

- 佐藤成二,尾方伸久,竹内竜史,武田匡樹:超深地層研究所計画における研究坑道での 湧水量計測(2004~2011年度)データ集,JAEA-Data/Code 2013-020, 2014, 38p.
- 上野哲朗,佐藤成二,竹内竜史:超深地層研究所計画における研究坑道での湧水量計測 (2012~2013 年度)データ集,JAEA-Data/Code 2014-018, 2014, 37p.
- 3) 上野哲朗, 竹内竜史: 超深地層研究所計画における研究坑道での湧水量計測データ集-2014~2015 年度-, JAEA-Data/Code 2017-003, 2017, 46p.

_

表1.	SI 基本単位	<u>Ľ</u>
甘大昌	SI 基本ì	単位
本平里	名称	記号
長さ	メートル	m
質 量	キログラム	kg
時 間	秒	s
電 流	アンペア	Α
熱力学温度	ケルビン	Κ
物質量	モル	mol
光度	カンデラ	cd

表 2. 基本単位を用いて表されるSI組立単	位の例				
AI 立長 SI 組立単位	SI 組立単位				
名称	記号				
面 積 平方メートル	m ²				
体 積 立方メートル	m ³				
速 さ , 速 度 メートル毎秒	m/s				
加 速 度メートル毎秒毎秒	m/s^2				
波 数 毎メートル	m ⁻¹				
密度,質量密度キログラム毎立方メートル	kg/m ³				
面 積 密 度 キログラム毎平方メートル	kg/m ²				
比体積 立方メートル毎キログラム	m ³ /kg				
電 流 密 度 アンペア毎平方メートル	A/m ²				
磁 界 の 強 さ アンペア毎メートル	A/m				
量 濃 度 ^(a) , 濃 度 モル毎立方メートル	mol/m ⁸				
質量濃度 キログラム毎立方メートル	kg/m ³				
輝 度 カンデラ毎平方メートル	cd/m ²				
屈 折 率 ^(b) (数字の) 1	1				
比 透 磁 率 ^(b) (数字の) 1	1				
(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度					

(substance concentration)ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
平 面 角	ラジアン ^(b)	rad	1 ^(b)	m/m
立体鱼	ステラジアン ^(b)	$sr^{(c)}$	1 (b)	m^2/m^2
周 波 数	ヘルツ ^(d)	Hz	-	s ⁻¹
力	ニュートン	Ν		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	$m^{-1} kg s^{-2}$
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕 事 率 , 工 率 , 放 射 束	ワット	W	J/s	m ² kg s ⁻³
電 荷 , 電 気 量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{\cdot 3} A^{\cdot 1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{-3} A^{-2}$
コンダクタンス	ジーメンス	s	A/V	$m^{2} kg^{1} s^{3} A^{2}$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^{-1}$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{-2} A^{-1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量, 比エネルギー分与, カーマ	グレイ	Gy	J/kg	$m^2 s^2$
線量当量,周辺線量当量, 方向性線量当量,個人線量当量	シーベルト ^(g)	Sv	J/kg	$m^2 s^{-2}$
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(1) ダール kat [s¹ mol]
 (w)SH接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
 (h)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周期現象についてのみ、ペラレルは放射性核種の統計的過程についてのみ使用される。 セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。それシウス度とケルビンの
 (a)やレシウス度はケルビンの特別な名称で、温度器や温度開隔を表す整備はとおらの単位で表しても同じである。
 (b)放射性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト (PV,2002,70,205) についてはCIPM物告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	[組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	リニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^{2} s^{2} K^{1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^2 s^2$
熱伝導率	「ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ s A
表面電荷	「クーロン毎平方メートル	C/m ²	m ⁻² s A
電東密度, 電気変位	クーロン毎平方メートル	C/m ²	m ² s A
誘 電 辛	コアラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透 磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ s A
吸収線量率	ダレイ毎秒	Gy/s	$m^{2} s^{3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	$m^{-3} s^{-1} mol$

表 5. SI 接頭語							
乗数	名称	名称 記号 乗数		名称	記号		
10^{24}	э 9	Y	10 ⁻¹	デシ	d		
10^{21}	ゼタ	Z	10^{-2}	センチ	с		
10^{18}	エクサ	E	10^{-3}	ミリ	m		
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ		
10^{12}	テラ	Т	10^{-9}	ナノ	n		
10^{9}	ギガ	G	10^{-12}	ピコ	р		
10^{6}	メガ	М	10^{-15}	フェムト	f		
10^3	+ 1	k	10^{-18}	アト	а		
10^{2}	ヘクト	h	10^{-21}	ゼプト	z		
10^{1}	デカ	da	10^{-24}	ヨクト	v		

表6.SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60 s		
時	h	1 h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	۰	1°=(π/180) rad		
分	,	1'=(1/60)°=(π/10 800) rad		
秒	"	1"=(1/60)'=(π/648 000) rad		
ヘクタール	ha	1 ha=1 hm ² =10 ⁴ m ²		
リットル	L, 1	1 L=1 l=1 dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1 t=10^3 kg$		

表7. SIに属さないが、SIと併用される単位で、SI単位で

表される数値が実験的に得られるもの					
名称			記号	SI 単位で表される数値	
電子	ボル	ŀ	eV	1 eV=1.602 176 53(14)×10 ⁻¹⁹ J	
ダル	- F	\sim	Da	1 Da=1.660 538 86(28)×10 ⁻²⁷ kg	
統一原	子質量単	単位	u	1 u=1 Da	
天 文	単	位	ua	1 ua=1.495 978 706 91(6)×10 ¹¹ m	

表8. SIに属さないが、SIと併用されるその他の単位

名称	記号	SI 単位で表される数値
バール	bar	1 bar=0.1MPa=100 kPa=10 ⁵ Pa
水銀柱ミリメートル	mmHg	1 mmHg≈133.322Pa
オングストローム	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海 里	Μ	1 M=1852m
バーン	b	$1 \text{ b}=100 \text{ fm}^2=(10^{-12} \text{ cm})^2=10^{-28} \text{m}^2$
ノット	kn	1 kn=(1852/3600)m/s
ネーパ	Np	ci単位しの粉結的な肌核け
ベル	В	対数量の定義に依存。
デシベル	dB -	

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{ m}^2 \text{ s}^{\cdot 1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd cm}^{-2} = 10^4 \text{ cd m}^{-2}$		
フォト	ph	1 ph=1cd sr cm ⁻² =10 ⁴ lx		
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²		
マクスウエル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T		
エルステッド ^(a)	Oe	1 Oe ≙ (10 ³ /4 π)A m ⁻¹		
(a) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」				

は対応関係を示すものである。

			表	10.	SIに 尾	属さないその他の単位の例
	-	名利	5		記号	SI 単位で表される数値
キ	ユ		IJ	ſ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ				k	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$				Д	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		$\boldsymbol{\mathcal{V}}$		7	γ	$1 \gamma = 1 \text{ nT} = 10^{-9} \text{T}$
フ	T.		N	"		1フェルミ=1 fm=10 ⁻¹⁵ m
メー	ートル	采	カラゞ	ット		1 メートル系カラット= 0.2 g = 2×10 ⁻⁴ kg
ŀ				ル	Torr	1 Torr = (101 325/760) Pa
標	準	大	気	圧	atm	1 atm = 101 325 Pa
+1	ы		11	_		1 cal=4.1858J(「15℃」カロリー), 4.1868J
15	Ц		9		cal	(「IT」カロリー), 4.184J(「熱化学」カロリー)
3	ク			~	u	$1 \mu = 1 \mu m = 10^{-6} m$