JAEA-Data/Code 2021-008 DOI:10.11484/jaea-data-code-2021-008

SCHERN-V2:再処理施設の高レベル廃液蒸発乾固事故での 化学的挙動解析プログラム解説書

SCHERN-V2: Technical Guide of Computer Program for Chemical Behavior in Accident of Evaporation to Dryness by Boiling of Reprocessed High Level Liquid Waste in Fuel Reprocessing Facilities

吉田 一雄 玉置 等史 桧山 美奈

Kazuo YOSHIDA, Hitoshi TAMAKI and Mina HIYAMA

安全研究・防災支援部門 安全研究センター 原子炉安全研究ディビジョン Reactor Safety Research Division Nuclear Safety Research Center Sector of Nuclear Safety Research and Emergency Preparedness

August 2021

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートはクリエイティブ・コモンズ表示 4.0 国際 ライセンスの下に提供されています。 本レポートの成果(データを含む)に著作権が発生しない場合でも、同ライセンスと同様の 条件で利用してください。(<u>https://creativecommons.org/licenses/by/4.0/deed.ja</u>) なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>) より発信されています。本レポートに関しては下記までお問合せください。

国立研究開発法人日本原子力研究開発機構 研究連携成果展開部 研究成果管理課 〒 319-1195 茨城県那珂郡東海村大字白方 2 番地 4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.en).

Even if the results of this report (include data) are not copyrighted, they must be used under the same terms and conditions as CC-BY.

For inquiries regarding this report, please contact Intellectual Resources Section,

Intellectual Resources Management and R&D Collaboration Department,

Japan Atomic Energy Agency.

2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2021

SCHERN-V2 :

再処理施設の高レベル廃液蒸発乾固事故での 化学的挙動解析プログラム解説書

日本原子力研究開発機構 安全研究・防災支援部門 安全研究センター 原子炉安全研究ディビジョン

吉田 一雄、玉置 等史、桧山 美奈*

(2021年5月20日受理)

再処理施設で想定される重大事故の一つに高レベル廃液貯槽の蒸発乾固事故がある。高レベル 廃液には、再処理の過程で取り除かれた核分裂生成物の硝酸塩が含まれ、それらの崩壊熱で発熱 するため常時冷却する必要がある。このため全電源の喪失などにより冷却機能が全喪失した状態 が継続した場合、廃液が沸騰しいずれ乾固する。この間、ルテニウムの揮発性化学種が硝酸-水混 合蒸気とともに気相へ移行し、施設外へ放出される可能性がある。乾固時には、廃液に含まれる 硝酸塩の熱分解による脱硝反応が進行し NO_x ガスが発生する。NO_x はルテニウムの施設内での移 行挙動に影響することが実験的に確認されており、硝酸及び水が共存する環境では気液各相で複 雑に化学変化することが知られている。そこで建屋区画内での熱流動条件を境界条件として Ru を含む各化学種の濃度変化を解析する計算プログラム:SCHERN の開発を進めている。本報は、 SCHERN-V2 として新たに整備した解析モデルを含め、当該プログラムが解析対象とする事故の 概要、解析モデル、連立微分方程式、使い方等を説明する解説書である。

原子力科学研究所:〒319-1195 茨城県那珂郡東海村大字白方 2-4 *株式会社フロンティアシステム

SCHERN-V2: Technical Guide of Computer Program for Chemical Behavior in Accident of Evaporation to Dryness by Boiling of Reprocessed High Level Liquid Waste in Fuel Reprocessing Facilities

Kazuo YOSHIDA, Hitoshi TAMAKI and Mina HIYAMA*

Reactor Safety Research Division Nuclear Safety Research Center Sector of Nuclear Safety Research and Emergency Preparedness Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received May 20, 2021)

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO_x) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NO_x affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO_x with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.

Keywords: SCHERN, Reprocessing Plant, High Level Liquid Waste, Accident of Evaporation to Dryness by Boiling, Ruthenium, Nitrogen Oxide, Thermal Decomposition, Chemical Reaction, Thermal-hydraulic Behavior

^{*} Frontier System Inc.

目次

1.	はじめに	1
2.	解析対象とする事故	2
	2.1 事故の概要	2
	2.2 想定される事象の進展	2
3.	物理、化学的挙動の解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	3.1 化学反応のモデル化	4
	3.2 各化学種の生成速度の定式化	5
	3.3 気液間の移行のモデル化	6
	3.4 Ru の気液間移行のモデル化	9
4.	熱流動解析との連携・・・・・	10
	4.1 蒸気の流れに伴う気相部の濃度変化	10
	4.2 ミスト流に伴う液相部の濃度変化	10
	4.3 気液間の移動に伴う気液各相の濃度変化	10
5.	連立1次微分方程式	12
	5.1 気相部の微分方程式群	12
	5.2 液相部の微分方程式群	13
	5.3 境界条件	14
	5.4 Ru の移行に係る微分方程式	15
6.	SCHERN のプログラム構造	16
	6.1 DVODE の入手	16
	6.2 SCHERN での処理の流れ	16
7.	計算の実行	19
	7.1 SCHERN の実行手順	19
	7.2 入力変数の説明	20
	7.3 計算結果の表示	25
8.	まとめ・・・・・	30
参	考文献	30
付	録	32

Contents

1. Introduction	1
2. Objective accident	2
2.1 Overview of accident ·····	2
2.2 Anticipated accident scenario	2
3. Analytical model of physical and chemical behaviors	4
3.1 Modeling of chemical reactions	4
3.2 Formulations of gelation rate of each chemical element	5
3.3 Modeling of transfer between vapor and liquid phase	6
3.4 Modeling of Ru transfer from vapor to liquid phase	9
4. Coupling with thermal-hydraulic behavior analysis	10
4.1 Concentration change in vapor phase with vapor flow in vapor phase	10
4.2 Concentration change in liquid phase with mist flow in liquid phase	10
4.3 Concentration change with crossing between vapor and liquid phases	10
5. System of first-order differential equations	12
5.1 Differential equations in vapor phase	12
5.2 Differential equations in liquid phase	13
5.3 Boundary conditions	14
5.4 Differential equations of Ru migration	15
6. Program structure of SCHERN ·····	16
6.1 Implementation of DVODE ······	16
6.2 Process flow in SCHERN	16
7. Execution of simulation	19
7.1 Executive procedure of SCHERN	19
7.2 Descriptions of input	20
7.3 Display of simulation results	25
8. Summary	30
References	30
Appendix	32

1. はじめに

再処理施設で想定される事故のリスクを評価する上では、施設外へ移行する放射性物質の量を 精度良く評価することが重要である。このためには、気相中に移行した放射性物質の挙動を評価 することが不可欠である。例えば、「再処理施設の位置、構造及び設備の基準に関する規則」(原 子力規制委員会、2013年11月27日)において重大事故の一つと位置づけられている高レベル廃 液貯槽の冷却機能喪失に起因する「蒸発乾固事故」では、放射性物質(硝酸塩として廃液中に溶 解している核分裂生成物(Fission Products: FP))を含む大量の硝酸及び水の混合蒸気が発生する。 沸騰が継続し廃液が乾固すると FP の硝酸塩の熱分解に伴う脱硝反応により NO_x ガスが発生する。 これらの気体は通常の廃ガス処理系を経由しないでセル等に流出し、セルあるいは建屋排気系を 経由して施設外へ移行するシナリオが想定される¹⁾。セル等の施設内の区画に流出した混合蒸気 は、区画内の壁面あるいは構造物表面で凝縮し、硝酸を含む凝縮水として停留する。NO_x を含む 硝酸-水混合蒸気及び凝縮水中では、化学反応により硝酸、亜硝酸を含む多様な窒素化合物が生 成される。

高レベル廃液貯槽の蒸発乾固事故において、周辺公衆への被ばく影響で重要な化学種の一つに としてルテニウム (Ru) がある。Ru は事故の進展に伴い揮発性化学種である RuO₄に変化する²⁾。 RuO₄ は混合蒸気あるいは NO_x とともに貯槽から流出するが、施設内を移動する混合蒸気の凝縮 に合わせて凝縮水に移行すること、さらに凝縮水中の亜硝酸(HNO₂)が Ru の凝縮水への移行を 促進することが実験で確認されている³⁾。このことから当該事故での被ばく評価の精度向上には、 施設内での混合蒸気の熱流動それに伴う硝酸、NO_x などの化学挙動解析に基づく Ru の移行挙動 の解析が不可欠である。

このような物理・化学的な複合現象は、実験室規模での実験的な方法により確認可能⁴⁾ である が、経時的な変化を連続的に測定することは計測系の構築を必要とする。また実施設規模での経 時的な変化の実験的な再現は困難である。このようなケースでは解析コードを用いた熱流動解析 及び化学反応のシミュレーションにより解析的に解明する方法が有効な手段である。

日本原子力研究開発機構では、再処理施設の高レベル廃液の蒸発乾固事故に特化して、硝酸-水混合蒸気、その凝縮水及び NO_x が存在する気相及び液相で構成される系において想定される化 学反応を伴う多様な化学種の濃度変化を、化学反応速度を考慮した連立一次微分方程式の数値解 を求める計算プログラム:SCHERN(<u>Simulation of Chemical Reaction of Nitroxide</u>)を作成した。す でに、使用マニュアルとして JAEA-Data/Code 2019-006、「SCHERN:再処理施設の高レベル廃液 蒸発乾固事故での NO_x の化学的挙動解析プログラム」⁵⁾を刊行している。本報では、その後のプ ログラムの改良を含めた SCHERN-V2 として、解析モデルの概要、熱流動解析から得られる入力 データとしての境界条件、出力情報などについて解説している。

- 1 -

2. 解析対象とする事故

2.1 事故の概要

再処理施設の機器には、放射性物質の崩壊熱により内包する溶液の温度が沸点まで上昇するも のがある。このような機器の沸騰を防止するために、例えば六ヶ所再処理施設では、信頼度の高 い独立2系統の安全冷却水系統を設置し、維持管理している^{6,7}。また、このような対策にもか かわらず、冷却機能が全喪失した場合でも沸騰までに時間余裕があり、種々の対策を施すことで 沸騰を防止できる。敢えてこれらの対策を考慮せず、冷却機能が全喪失した状態が継続すると仮 定すれば、溶液が沸騰しいずれ乾固する。乾固時には、含有硝酸塩の脱硝反応が進行し NO_x ガス が発生し始めると考えられる。溶液の沸騰および脱硝反応に伴い発生する気体(蒸気あるいはガ ス)とともに貯槽から放出される放射性物質は、貯槽の圧力上昇を防止する目的で設置される廃 ガスシールポットから廃ガス処理セル内に流出することとなる¹⁾。セルに流出した放射性物質を 含む気体は、セル排気系から排気筒放出されるかまたはセルから建屋内へ逆流し建屋排気系から 排気筒放出される。事故時の蒸気等の流れを図 2.1 に示す。

図 2.1 想定される放射性物質の移行経路(参考文献 1)より転載)

2.2 想定される事象の進展

図 2.2 には、文献 8)で示された当該事象での貯槽およびセル内の温度挙動に関する解析結果お よび文献 9)の実液を用いた実験結果をもとに推定した廃液の温度挙動の概要を示す。図 2.2 に示 すように温度挙動は、沸騰初期、沸騰晩期および乾固段階に分けられる。廃液の温度上昇が急激 になること、Ru の気化が急激になり始めることの2つの現象進展の特徴から、本報では沸騰初期 と晩期の境界は廃液温度:120℃とする。

文献 8)の解析では、廃液の発熱を 5W/L と仮定した場合、冷却機能が喪失して約 16 時間で沸騰が始まるとしている。沸騰が始まると溶液成分が蒸発し廃液が徐々に濃縮され、それにつれて 溶液温度は徐々に上昇し約 120℃に至る。この期間では、廃液の沸騰で発生した気泡の破裂で生 じる飛沫が上向蒸気流に同伴される。主としてこのメカニズムにより放射性物質が気相へ移行し エアロゾル化する。

廃液温度が 120℃以上になると温度上昇は、沸騰初期に比して急になる。この沸騰晩期では、 廃液中の溶液成分の蒸発が進み溶解物の一部が析出するとともに溶液の粘性の高い状態を経て水、 硝酸の溶液成分が徐々に消失し、約 160℃でほとんど消失し乾固に至る。この期間の放射性物質 の気相への移行は、Ru の揮発性のガス状物質:RuO4 が主になると想定される⁹。この期間での 貯槽からの流出気体には、水および硝酸蒸気(以降、蒸気という)、NO_x ガス、揮発性のガス状物 質が含まれる。これらの気体に加え、廃ガス処理セル以降の建屋区画内での温度低下による凝縮 水を含めた物質間での化学反応により揮発性のガス状物質は不揮発性の物質に変化し、気体から エアロゾルへ変化、液相へ移行、あるいはコンクリート壁面へ沈着することが想定される。気化 した RuO4 は、NO_x を含む硝酸及び水の混合蒸気とともに建屋区画内へ移行し凝縮水へ移行する と考えられる。このような凝縮を伴う状況では NO_x が存在することにより Ru の凝縮水への移行 が促進することが実験的に確認されている^{3,4}。

乾固後は約 400℃までに多くの化学種の硝酸塩の脱硝反応が進む¹⁾。貯槽内で発生した放射性 物質を含む蒸気等が、セル内へ流出し換気系を経由して建屋内の区画へ移行する。この期間での 貯槽からの流出気体は、揮発性のガス状物質を含む NO_x ガスが主である。廃ガス処理セルあるい は直近の建屋区画内では、高温の NO_x ガスの流入でコンクリート壁面の温度が上昇し、沈着した 物質が再浮遊あるいはガス化する可能性がある。一方、下流側の建屋内区画では、NO_x ガスの温 度も低下して流入してくるため、セル内気相部の温度上昇は起こらず、沸騰晩期と同様に、凝縮 水を含めた物質間での化学反応による揮発性ガスの不揮発性物質への変化によるガスからエアロ ゾル、液相への移行、あるいはコンクリート壁面への沈着が継続すると考えられる。

図 2.2 熱流動解析による事象進展予測(参考文献 1)より転載)

3. 物理、化学的挙動の解析モデル

3.1 化学反応のモデル化

SCHERN では文献 10) 及び 11) に記載の NO_x に係る気液各相での化学反応をモデル化している。反応に関わる化学種は NO、NO₂、N₂O₃、N₂O₄、HNO₂、HNO₃、H₂O、O₂である。各化学反応の平衡定数及び反応速度定数は、プログラム内に組み込まれている。

(1) 気相部での化学反応

気相部でモデル化している化学反応式を(3.1)~(3.5)式に示す。表 3.1 に各化学反応の平衡定数、 正方向及び逆方向の反応速度定数を示す。文献 10)及び 11)とも同様の反応式及び反応速度定数が 示されている。

$$2NO(g) + O_2(g) \rightarrow 2NO_2(g) \tag{3.1}$$

$$2NO_2(g) \leftrightarrow N_2O_4(g) \tag{3.2}$$

$$NO(g) + NO_2(g) \leftrightarrow N_2O_3(g)$$

$$N = O_2(g) \leftrightarrow N_2O_3(g)$$

$$(3.3)$$

$$(3.4)$$

$$N_2O_3(g) + H_2O(g) \leftrightarrow 2HNO_2(g)$$

$$(3.4)$$

$$N_2O_4(g) + H_2O(g) \leftrightarrow HNO_3(g) + HNO_2(g)$$
(3.5)

表 3.1 気相部での化学反応の平衡定数	三数、正方向及び逆方向の反応速度定数	ζ
	27	*+

反応式 番号	正方向反応速度定数:k _{iF}	平衡定数:Ki	逆方向反応速 度定数:k _i B
3.1	$10^{(652.1/T-0.7356)} \times (RT/101.325)^{2}$ a)	_	—
3.2	10 ^{9 b)}	$10^{(2993/T-9.226)} \times (RT/101.325)^{\circ}$	k_{2F}/K_{2}
3.3	10 ^{9 b)}	$10^{(2072/T-7.234)} \times (RT/101.325)$ ^{c)}	k_{3F}/K_{3}
3.4	4.1×10 ⁴ b)	$10^{(-20.83/T-0.5012)}$ d)	k_{4F}/K_4
3.5	250 ^{b)}	$10^{(-965.5/T-1.481)}$ d)	k_{5F}/K_5

a): $[(m^3/kmol)^2/s]$, b): $[m^3/kmol/s]$, c): $[m^3/kmol]$, d): [-], T : Gas phase temp. [K], R = 8.31446 [J/mol/K]

(2) 液相部での化学反応

液相部の化学反応式を(3.6)~(3.11)式に示す。表 3.2 に各化学反応の平衡定数、正方向及び逆方 向の反応速度定数を示す。文献 10)では(3.9)及び(3.10)式の反応は平衡反応としているのに対して 文献 11) では、不可逆反応としている。ここでは平衡反応を仮定する。また、(3.6)及び(3.7)式は 文献 10) のみに、(3.8)及び(3.11)式は文献 11)のみに示されている。

$$2NO_2(aq) \leftrightarrow N_2O_4(aq) \tag{3.6}$$

$$NO(aq) + NO_2(aq) \leftrightarrow N_2O_3(aq)$$

$$(3.7)$$

$$2NO_2(aq) + H_2O(aq) \to HNO_2(aq) + HNO_3(aq)$$
(3.8)

$$N_2O_3(aq) + H_2O(aq) \leftrightarrow 2HNO_2(aq)$$
(3.9)

 $N_2O_4(aq) + H_2O(aq) \leftrightarrow HNO_3(aq) + HNO_2(aq)$ (3.10)

 $3HNO_2(aq) \rightarrow HNO_3(aq) + H_2O(aq) + 2NO(g)$ (3.11)

反応式 番号	正方向反応速度定数:k _{iF}	平衡定数:K _i	逆方向反応速度定数:k _i B
3.6	$\cong k_{7F}^{a}$	6.54×10 ⁴ c)	k_{6F}/K_6
3.7	1.37×10^{6} a)	1.37×10 ⁴ ^{c)}	k_{7F}/K_7
3.8	10 ^{4.67209} a)	_	_
3.9	868 b)	330 ^{d)}	k_{9F}/K_9
3.10	0.1572 ^{b)}	5.81×10 ⁴ d)	k_{10F}/K_{10}
3.11	$10^{(-6200/T+20.1979)}$ e)	_	_

表 3.2 気相部での化学反応の平衡定数、正方向及び逆方向の反応速度定数

a): $[m^3/kmol/s]$, b): $[m^3/kmol/s]$, c): $[m^3/kmol]$, d): [-], e): $[atm^2m^{12}/kmol^4/s]$, T : Liquid phase temp [K]

3.2 各化学種の生成速度の定式化

3.1 節において(3.1)~(3.5)式で示した気相部での化学反応での生成速度は(3.12)~(3.16)式で表 される。[*X*(*g*)]は、気相中での化学種: *X*の濃度[kmol/m³]を表す。(3.12)~(3.16)式で表される生成速 度を、それぞれ A~E とし、5章 5.1節で示す気相における濃度の経時変化を表す式で参照する。

$$-\frac{d}{dt}[NO(g)] = k_1[NO(g)]^2[O_2(g)] = A$$
(3.12)

$$-\frac{d}{dt}[NO_2(g)] = k_{2F}[NO_2(g)]^2 - k_{2B}[N_2O_4(g)] = B$$
(3.13)

$$-\frac{d}{dt}[NO(g)] = k_{3F}[NO(g)][NO_2(g)] - k_{3B}[N_2O_3(g)] = C$$
(3.14)

$$-\frac{d}{dt}[N_2O_3(g)] = k_{4F}[N_2O_3(g)][H_2O(g)] - k_{4B}[HNO_2(g)]^2 = D$$
(3.15)

$$-\frac{d}{dt}[N_2O_4(g)] = k_{5F}[N_2O_4(g)][H_2O(g)] - k_{5B}[HNO_2(g)][HNO_3(g)] = E$$
(3.16)

同様に (3.6)~(3.11)式で示した液相部での化学反応の反応速度は(3.17)~(3.22)式で表される。 [X(aq)]は、液相中での化学種: X の濃度[kmol/m³]を表す。(3.17)~(3.22)式で表される生成速度を、 それぞれ F~K とし、5 章 5.2 節で示す液相における濃度の経時変化を表す式で参照する。

$$-\frac{d}{dt}[NO_2(aq)] = k_{6F}[NO_2(aq)]^2 - k_{6B}[N_2O_4(aq)] = F$$
(3.17)

$$-\frac{d}{dt}[NO(aq)] = k_{7F}[NO(aq)][NO_2(aq)] - k_{7B}[N_2O_3(aq)] = G$$
(3.18)

$$-\frac{d}{dt}[NO_2(aq)] = k_8[NO_2(aq)]^2 = H$$
(3.19)

$$-\frac{d}{dt}[N_2O_3(aq)] = k_{9F}[N_2O_3(aq)] - k_{9B}[HNO_2(aq)]^2 = I$$
(3.20)

$$-\frac{d}{dt}[N_2O_4(aq)] = k_{10F}[N_2O_4(aq)] - k_{10B}[HNO_2(aq)][HNO_3(aq)] = J$$
(3.21)

$$-\frac{d}{dt}[HNO_{2}(aq)] = k_{11}[HNO_{2}(aq)]^{4} / p_{no}^{2} = K$$
(3.22)

3.3 気液間の移行のモデル化

高レベル廃液貯槽の蒸発乾固事故では、沸騰に伴い蒸気が施設内に流出する期間(沸騰時)と、 蒸気発生がなくなり廃液中のFP硝酸塩の熱分解による脱硝反応でNO_xが発生する期間(乾固時) に大きく分けられ、それぞれの期間で気液間の物質の移行のメカニズムが異なる。

2 章で述べたように沸騰時の実規模施設では、セル等の建屋の区画に流出した蒸気は、蒸気の 飽和温度が 100℃未満の場合、コンクリート壁面等の区画内の構造物表面で除熱され凝縮し液膜 を形成し、気相部にはミストが発生する。液膜は徐々に床面に移動しプール水として停留すると 想定される。気相部の温度が 100 ℃より低い場合、除熱により温度が低下して飽和温度になると 気相部にミストが発生する。気相部に浮遊できるミストには上限があり、これを超えるとプール 水として床面に停留すると考えられる。この期間ではミスト及び壁面液膜において瞬時に平衡状 態となる溶解を仮定し、化学種が平衡状態で溶解したミスト及び壁面液膜水がプール水へ追加さ れる仮定しモデル化している。

一方、乾固時には、気相中のミスト及び壁面液幕は発生しない。この場合の気液間の物質の移動はプール水の気液界面を介しての分子拡散での移行が考えられる。物質の拡散に関する基本法則である Fick の法則では、溶解速度(液相濃度の増加速度)は境界膜厚さ、溶媒中の溶質の拡散係数等で表される。

(1) 凝縮に伴う移行のモデル化

凝縮液量は、ミスト及びプール水の和であると仮定し、それぞれの体積を V_{cond}、V_{mist}及び V_{pool}とする。SCHERN で提案する液相への溶解のモデルでは、ミスト及び壁面液膜において瞬時に平 衡状態となる溶解を仮定し、化学種が平衡状態で溶解したミスト及び壁面液膜水がプール水へ追 加されることになる。このため単位時間当たりの各化学種の気相から液相水への移行量は、V_{cond} の単位時間当たりの増加分に溶解する量としている。また、プール水と気相部は、Henry の法則 に従う平衡にほぼ近い状態にあることから、凝縮水が増加する状況ではプール水界面を介しての 移行はないと仮定する。

表 3.3 に NIST Chemistry WebBook¹²⁾ のサイトに掲載されている水に対する Henry 定数を定数項 と温度依存項に分けて示す。Henry 定数は、これら 2 項の積で表される。化学種: X の Henry 定 数: h_X [kmol/m³/kPa]に分圧: p_X [kPa]を乗ずれば液相中の平衡状態での化学種 X の濃度が求まる が、気液各相の濃度の経時変化を解析するためには、単位時間当たりの気液間の移行量が必要と なる。蒸気凝縮に伴い発生するミスト及び液膜に溶解する化学種 X の移行速度: S_X [kmol/s] は、 (3.23)式で表される。同式の中辺の気相の化学種 X の濃度: [X(g)] [kmol/m³]以外の項をまとめて K_X [m³/s]とする。凝縮液量が減少する場合、即ち K_X が負の場合では、 S_X をゼロとし、凝縮液の減少 による濃度増加を考慮する。

$$S_{\rm X} = h_{\rm X} \ p_{\rm X} \ \frac{d}{dt} V_{\rm cond} = h_{\rm X} \ \frac{[X(g)]}{M_{\rm tot}} \ p_{\rm tot} \ \frac{d}{dt} V_{\rm cond} = [X(g)] \ MIN(K_{\rm X}, \ 0.0)$$
(3.23)

ここで、気相部全圧: ptot [kPa]、気相部全モル濃度: Mtot [kmol/m³]である。(3.23)式で得られる 値は、気相から液相への単位時間当たりの移動量 [kmol/s]である。一方、気液各相での各化学種 の存在量は、濃度[kmol/m³]で表すため、気相から液相への移動に伴う気相部の濃度減少及び液相 部(凝縮液)の濃度増加に換算するには、それぞれの体積(気相部体積: V_{stm}、凝縮液体積: V_{cond})

) // //(iiiioi iii / iii w]
化学種(X)	定数項 (@298.15 K)	温度依存項
NO	1.84×10^{-5}	$\exp(1500(1/T-1/298))$
NO ₂	1.18×10^{-4}	$\exp(2500(1/T-1/298))$
N_2O_3	5.98×10^{-3}	
N_2O_4	1.38×10^{-2}	
O ₂	1.30×10^{-5}	$\exp(4800(1/T-1/298))$
HNO ₂	4.80×10^{-1}	$\exp(1700(1/T-1/298))$
HNO ₃	2.10×10^{3}	$\exp(8700(1/T-1/298))$

表 3.3 水に対する Henry 定数[kmol/m³/kPa]

(2) 分子拡散による移行のモデル化

乾固後に蒸気の凝縮が生じない状態では、気液界面を介した化学種の移動が主体と考えられる。 SCHERNでは、このような現象をWhitemanの薄膜理論¹³⁾による気液界面での物質の移動を仮定 してモデル化している。気液界面における化学物質の移動を分子拡散と考えると、化学種の移動 量束: *N* [kmol/m²/s] はFickの第一法則に従い (3.24)式で表される。

$$N = -D\frac{dC}{dz}$$
(3.24)

ここで、*C*は濃度 [kmol/m³]、*D*は拡散係数 [m²/s]、*z*は移動方向の距離 [m]を表す。気液界面において、濃度勾配 *dC/dz* が一定であれば、(3.24)式は(3.25)式で表すことができる。*k*は *D/dz* で定義される質量移動係数 [m/s] である。

 $N = k\Delta C \tag{3.25}$

ここで、図 3.1 に示す気相液相の界面を考える。

図 3.1 気液界面のモデル

図中、 C_g は気相中の化学種の濃度 [kmol/m³]、 C_{sg} は気相境界層の気液界面での化学物質濃度 [kmol/m³]、 C_{aq} は液相中の化学種の濃度 [kmol/m³]及び、 C_{saq} は液相境界層の気液界面での化学 種の濃度 [kmol/m³]を表す。

図 3.1 の界面の液相境界層での物質の移動量束: Nsaq [kmol/m²/s] は(3.26)式で表される。

$$N_{saq} = k_{aq} \left(C_{aq} - C_{saq} \right) \tag{3.26}$$

ここで、 k_{aq} は液相中の化学種の質量移動係数 [m/s]、を表す。気相境界層での物質の移動量束: N_{sg} $[kmol/m^2/s]$ は、(3.27)式で表される。

$$N_{sg} = k_g \left(C_{sg} - C_g \right) \tag{3.27}$$

ここで、 k_g は気相中の化学物質の質量移動係数 [m/s] である。

気液界面では平衡状態にあると仮定すれば *Csg* と *Csaq* の間にはヘンリーの法則が成立し、これら2つの濃度には (3.28) 式で示す関係が成り立つ。ここで、*Kgaq* はヘンリー定数から求まる値である。

$$C_{saq} = K_{gaq} C_{sg} \tag{3.28}$$

(3.27)式から、 C_{sg} は C_{g} と(3.29)式で関係付けられる。

$$C_{sg} = \frac{N_{sg}}{k_g} + C_g \tag{3.29}$$

したがって、(3.28) 式と (3.29) 式から、Csaq は Cg と (3.30) 式で関係付けられる。

$$C_{saq} = K_{gaq} \left(\frac{N_{sg}}{k_g} + C_g \right)$$
(3.30)

各境界層での化学種の移動量束は等しいため、これらを*N*とすれば、(3.26) 式に (3.30) 式を 代入して (3.31) 式が得られる。

$$N = k_{aq} \left(C_{aq} - K_{gaq} \left(\frac{N}{k_g} + C_g \right) \right)$$
(3.31)

(3.31) 式をNについて整理すると(3.32) 式が得られる。

$$N = \frac{C_{aq} - C_g K_{gaq}}{1/k_{aq} + K_{gaq}/k_g}$$
(3.32)

文献 14)では気相及び液相中の物質の拡散係数は、それぞれ概ね 10⁻⁵ [m²/s]、10⁻⁹ [m²/s]程度の 値が示されている。本解析では、気相境界層及び液相境界層厚さを、それぞれ 10⁻² [m]、10⁻⁵ [m] と仮定し、SCHERN で扱うすべて化学種の k_g 及び k_{aq} を、それぞれ 10⁻³ [m/s]、10⁻⁴ [m/s]としている。

3.4 Ru の気液間移行のモデル化

(1) Ru物質移動係数の相関式

文献 15) には、ガラス管内で Ru を含む硝酸-水混合蒸気の凝縮に伴う凝縮液への移行量を調べる実験の分析から、(3.33)式に示す Ru 物質移行係数にかかる相関式が提案され、実規模施設への 適用可能性についても考察されている。相関式では、Ru 物質移行係数:*Mtc*_{Ru}[m/s] は、単位面積 当たりの蒸気凝縮速度:*Vd*_{cond-pa} [m³/s/m²] 及び単位体積当たりの供給蒸気体積流量:*Fv*_{stm-pa} [m³/s/m³] を用いて表される。

$$Mtc_{_{Ru}} = 7.333 \times 10^{9} \times (Vd_{_{cond-pa}})^{1.788} \times (Fv_{_{stm-pa}}/2.154 \times 10^{-3})^{-3.233}$$
(3.33)

(2) 乾固後の取り扱い

(3.33)式は、物理的な吸収を表すと考える。施設内での蒸気の凝縮を伴う乾固前の期間では、同 相関式で求まる物質移動係数に従い、区画内の濡れた壁面及びプール水面から液相に移行すると 仮定する。文献 4) に示されている気液接触試験では、濡れ壁塔を流れ出しリザーバーに貯留さ れる吸収液から、Ruの一部が再揮発したと思われる現象が確認されたとしている。このことから も乾固後では蒸気凝縮がないので上述の 3.3(2)で示した分子拡散による移行のモデルに従い移行 すると考えられるが、液相中でのRuと亜硝酸との化学変化については不明な点が多いことから、 現状の SCHERN では、乾固後は気液間の移行は生じない取り扱いとしている。

4. 熱流動解析との連携

再処理施設を解析対象とするため、廃液貯槽で発生した NO_x を含む硝酸-水混合蒸気は、換気 系を通して複数のセル等の建屋内の区画間を移動する。ここで提案する解析モデルでは、移動す るのは、ミストを含む気相成分だけとし、凝縮水は個々の区画に停留すると仮定する。評価対象 区画内での化学挙動解析の境界条件として区画内に流入あるいは流出する蒸気流量などが必要で ある。区画間の流れの情報としては、例えば発電用原子炉施設のシビアアクシデント解析コード: MELCOR¹⁶⁾を用いた区画内の熱流動解析¹⁷⁾から蒸気流量及びミスト流量を得ることができる。 以下、MELCOR を例として解説する。図 4.1 に区画 i での気相及び液相濃度と流入及び流出濃度 との関係を示す。

4.1 蒸気の流れに伴う気相部の濃度変化

[*inX*(*g*)]_{*i*} 及び[*outX*(*g*)]_{*i*} [kmol/m³/s] は、それぞれ区画:iでの上流側から流入し、下流側へ流 出するモル濃度の変化を表す。[*inX*(*g*)]_{*i*}はひとつ手前の区画:i-1の [*inX*(*g*)]_{*i*-1}に等しい。流入す る気体成分のモル濃度は、上流区画:i-1のモル濃度のままで流入すると仮定し、MELCORで計 算される上流側ジャンクションの蒸気体積流量 [m³/s] を基に設定される。[*inX*(*g*)]_{*i*}は、上流区画 の化学種:Xのモル濃度 [kmol/m³] に蒸気体積流量 [m³/s] を乗じて流入量速度 [kmol/s] に換算 し、さらに区画内気相体積 [m³] で除することで区画内:iでの濃度の増分 [kmol/m³/s] に変換す る。[*outX*(*g*)]も同様に当該の区画内の濃度及び下流側のジャンクションの蒸気体積流量を乗じ、 区画:i+1の体積で除することで与えられる。

4.2 ミスト流に伴う液相部の濃度変化

[outX(ms)]_i [kmol/m³/s] ([outX(ms)]_{i+1}に等しい)は、ミスト流に含まれて移行する濃度であ り液相部の濃度:[inX(aq)]_i [kmol/m³] を基に求める。移行する下流側の区画:i+1 にミストが存在 する場合は、MELCOR で計算される出口ジャンクションのミスト体積流量 [m³/s] を下流区画の 液相体積 [m³] で除した補正項「1/s」を乗じた値が液相に加算される。ミストが形成されていな い場合には、ミスト体積流を下流区画(i+1)の気相体積 [m³]で除した補正項「1/s」を乗じた値 が気相に加算される。区画:iの液相での減少分は、[X(aq)]_iに出口ジャンクションのミスト体積 流量を乗じ区画:iの液相体積で除した値に等しく、[X(aq)]_iから差し引かれる。

4.3 気液間の移動に伴う気液各相の濃度変化

(3.23)式で表される S_x は単位時間当たりに気相から液相への溶解により移行する化学種Xの量 [kmol/s]を表す。溶解による気相濃度の減少を考慮するために、 S_x を気相部体積: V_{stm} [m³]で除す ることで濃度の時間変化 [kmol/m³/s] に換算する必要がある。一方、液相では濃度が増加するの で液相体積: V_{cond} [m³] で除することで液相濃度の時間変化 [kmol/m³/s] に換算する。

 [X(g)]、[X(aq)]。
 :区画iにおける化学種Xの気相及び液相濃度[kmol/m³]

 [Y(g)]、[Y(aq)]。
 :区画iにおける化学種Yの気相及び液相濃度[kmol/m³]

 [inX(g)]、[inX(ms)]。
 :区画iに気体またはミストとして流入する化学種Xの濃度[kmol/m³/s]

 [outX(g)]、[outX(ms)]。
 :区画iから気体またはミストとして流出する化学種Xの濃度[kmol/m³/s]

 Sx
 :区画iで単位時間に気液間を移行する化学種Xの濃度 [kmol/s]

図 4.1 区画 i の気相及び液相濃度と流入及び流出濃度との関係

5. 連立1次微分方程式

前節で示した解析対象化学種の気相及び液相での濃度は、複数の化学反応が関係して変化する。 それらの濃度の経時変化を模擬することは、化学変化しない N₂を除く 8 種類の化学種(NO、NO₂、 N₂O₃、N₂O₄、HNO₂、HNO₃、H₂O、O₂)の気液各相での濃度の連立 1 次微分方程式の解を求める ことになる¹⁸⁾。微分方程式の数は、気相では 8 種、液相では H₂O を除く 7 種の濃度に対応する合 計 15 個の連立微分方程式の解を求めることになる。

5.1 気相部の微分方程式群

3.2 節で示した(3.12)~(3.16)式の各値: A~E を用いて、8 つの化学種の気相部での濃度変化速度は(5.1)~(5.8)式で表される。

$$\frac{d}{dt}[NO(g)] = [inNO(g)] - A - C + 2/3 \times KV_{cond} / V_{stm} - [outNO(g)] - K_{NO}[NO(g)] / V_{atm} + SurfA1 ([NO(aq)] - [NO(g)]K_{gaqNO}) / (1/k_{aq} + K_{gaq} / k_g)$$
(5.1)

$$\frac{d}{dt}[O_{2}(g)] = [inO_{2}(g)] - 1/2 \times A - [outO_{2}(g)] - K_{O_{2}}[O_{2}(g)]/V_{atm} + SurfA1 ([O_{2}(aq)] - [O_{2}(g)]K_{gaqO_{2}})/(1/k_{aq} + K_{gaq}/k_{g})$$
(5.2)

$$\frac{d}{dt}[NO_{2}(g)] = [inNO_{2}(g)] + A - B - C - [outNO_{2}(g)] - K_{NO_{2}}[NO_{2}(g)]/V_{atm} + SurfA1 ([NO_{2}(aq)] - [NO_{2}(g)]K_{gaqNO_{2}})/(l/k_{aq} + K_{gaq}/k_{g})$$
(5.3)

$$\frac{d}{dt}[N_2O_4(g)] = [inN_2O_4(g)] + 1/2 \times B - E - [outN_2O_4(g)] - K_{N_2O_4}[N_2O_4(g)]/V_{atm} + SurfA1 \left([N_2O_4(aq)] - [N_2O_4(g)]K_{gaqN_2O_4} \right) / \left(1/k_{aq} + K_{gaq}/k_g \right)$$
(5.4)

$$\frac{d}{dt}[N_2O_3(g)] = [inN_2O_3(g)] + C - D - [outN_2O_4(g)] - K_{N_2O_3}[N_2O_3(g)]/V_{atm} + SurfA1 \left([N_2O_3(aq)] - [N_2O_3(g)]K_{gaqN_2O_3} \right) / \left(l/k_{aq} + K_{gaq}/k_g \right)$$
(5.5)

$$\frac{d}{dt}[HNO_2(g)] = [inHNO_2(g)] + 2D + E - [outHNO_2(g)] - K_{HNO_2}[HNO_2(g)]/V_{atm} + SurfA1 ([HNO_2(aq)] - [HNO_2(g)]K_{gaqHNO_2})/(l/k_{aq} + K_{gaq}/k_g)$$
(5.6)

$$\frac{a}{dt}[HNO_{3}(g)] = [inHNO_{3}(g)] + E - [outHNO_{3}(g)] - K_{HNO_{3}}[HNO_{3}(g)]/V_{atm} + SurfA1 ([HNO_{3}(aq)] - [HNO_{3}(g)]K_{gaqHNO_{3}})/(l/k_{aq} + K_{gaq}/k_{g})$$
(5.7)

$$\frac{d}{dt}[H_2O(g)] = [inH_2O(g)] - D - E - [outH_2O(g)] - \frac{d}{dt}V_{cond} \rho_{cond}/18/V_{atm}$$
(5.8)

[*inX*(*g*)]及び[*outX*(*g*)] [kmol/m³/s] は、4.1 節で述べたようにそれぞれ各区画での上流側からの 流入及び下流側への流出を表す。(5.1)~(5.8)式中の*A*~*E*で表された項は、対応する化学反応に よる減少または増加を表す。例えば(5.1)式の"-*A*"及び"-*C*"は(3.12)式及び(3.14)式で表される反 応での減少を表す。(5.3)式の"+*A*"は(3.1)式の反応による増加を表す。右端の項は、Henry の法則に 基づき(3.23)式で求められる気相から液相への溶解による移行を表す。例えば *K*_{NO}[*NO*(*g*)]は単位 時間当たりに溶解する NO の量[kmol/s]を表す。(5.6)式を除く上記の微分方程式において溶解による気相部濃度の減少を考慮するために、右辺最終項は気相部体積: *V*sm [m³]で除することで濃度減少による時間変化に換算している。(5.8)式の右辺最終項では水蒸気の凝縮に伴う減少を考慮している。HNO3成分は無視している。

5.2 液相部の微分方程式群

3.2 節で示した(3.17)~(3.22)式の各値: *F*~*K*を用いて、7 つの化学種の濃度変化速度は(5.9)~(5.15)式で表される。

$$\frac{d}{dt}[NO(aq)] = K_{NO}[NO(g)]/V_{\text{cond}} - [NO(aq)]/V_{\text{cond}} \frac{dV_{\text{cond}}}{dt} - G + [inNO(ms)]_{i} - [outNO(ms)]_{i} - SurfA1 ([NO(aq)] - [NO(g)]K_{gaqNO})/(1/k_{aq} + K_{gaq}/k_{g})$$
(5.9)

$$\frac{d}{dt}[O_{2}(aq)] = K_{O_{2}}[O_{2}(g)]/V_{\text{cond}} - [O_{2}(aq)]/V_{\text{cond}} \frac{dV_{\text{cond}}}{dt} + [inO_{2}(ms)]_{i} - [outO_{2}(ms)]_{i} - SurfA1 ([O_{2}(aq)] - [O_{2}(g)]K_{gaqO_{2}})/(1/k_{aq} + K_{gaq}/k_{g})$$
(5.10)

$$\frac{d}{dt}[NO_{2}(aq)] = K_{NO_{2}}[NO_{2}(g)]/V_{\text{cond}} - [NO_{2}(aq)]/V_{\text{cond}} \frac{dV_{\text{cond}}}{dt} -F - G - H + [inNO_{2}(ms)]_{i} - [outNO_{2}(ms)]_{i} -SurfA1 ([NO_{2}(aq)] - [NO_{2}(g)]K_{gaqNO_{2}})/(1/k_{aq} + K_{gaq}/k_{g})$$
(5.11)

$$\frac{d}{dt} [N_2 O_4(aq)] = K_{N_2 O_4} [N_2 O_4(g)] / V_{\text{cond}} - [N_2 O_4(aq)] / V_{\text{cond}} \frac{dV_{\text{cond}}}{dt} + 1/2 \times F - J + [inN_2 O_4(ms)]_i - [outN_2 O_4(ms)]_i - SurfA1 ([N_2 O_4(aq)] - [N_2 O_4(g)] K_{gaqN_2 O_4}) / (1/k_{aq} + K_{gaq}/k_g)$$
(5.12)

$$\frac{d}{dt} [N_2 O_3(aq)] = K_{N_2 O_3} [N_2 O_3(g)] / V_{\text{cond}} - [N_2 O_3(aq)] / V_{\text{cond}} \frac{dV_{\text{cond}}}{dt} + G - I + [inN_2 O_3(ms)]_i - [outN_2 O_3(ms)]_i - SurfA1 ([N_2 O_3(aq)] - [N_2 O_3(g)] K_{gaqN_2 O_3}) / (1/k_{aq} + K_{gaq} / k_g)$$
(5.13)

$$\frac{d}{dt}[HNO_{2}(aq)] = K_{HNO_{2}}[HNO_{2}(g)]/V_{cond} - [HNO_{2}(aq)]/V_{cond} \frac{dV_{cond}}{dt} + 1/2 \times H + 2I + J - K + [inHNO_{2}(ms)]_{i} - [outHNO_{2}(ms)]_{i} - SurfA1 ([HNO_{2}(aq)] - [HNO_{2}(g)]K_{gaqHNO_{2}})/(1/k_{aq} + K_{gaq}/k_{g})$$
(5.14)

$$\frac{d}{dt}[HNO_{3}(aq)] = K_{HNO_{3}}[HNO_{3}(g)]/V_{cond} - [HNO_{3}(aq)]/V_{cond} \frac{dV_{cond}}{dt} + \frac{1}{2} \times H + J + \frac{1}{3} \times K + [inHNO_{3}(ms)]_{i} - [outHNO_{3}(ms)]_{i} - SurfA1 ([HNO_{3}(aq)] - [HNO_{3}(g)]K_{gaqHNO_{3}})/(\frac{1}{k_{aq}} + \frac{K_{gaq}}{k_{g}})$$
(5.15)

右辺の第1項は、Henryの法則に基づき(3.23)式で求められる化学種Xの気相から液相への溶解 による移行を表す。気相部の微分方程式と同様に溶解による液相部濃度の増加を考慮するために 液相部体積(凝縮水体積: V_{cond} [m³])で除することで濃度に換算する必要がある。第2項は、凝 縮水の体積変化に伴う濃度補正項である。化学種Xの微分方程式中の[*inX(ms)*]及び[*outX(ms)*]は、 4.2節で述べたミスト流に伴う液相部の濃度変化を表す。

5.3 境界条件

(1) 気相流の取扱い

微分方程式中の[in H₂O(g)]及び[out H₂O(g)]、並びに[in HNO₃(g)]及び [out HNO₃(g)]は、境界条 件として MELCOR を用いた解析体系内の熱流動解析結果から設定する⁸⁾。MELCOR は硝酸を解 析対象としない。解析体系での熱流動は、硝酸-水-空気(NO 又は NO₂ は他の成分に比して少 なく化学変化するため熱流動解析では無視する)3 成分系の系外への放熱による凝縮が主であり、 凝縮量の主要な決定因子は混合蒸気の蒸発潜熱である。硝酸及び水の単位モル当たりの潜熱がほ ぼ等しいことから硝酸をモル数の等しい水に置き換えて解析している。従って MELCOR の解析 結果: W_{steam} [kg/s](対象区画からの流出蒸気流)から、化学種:Xの流出項は、MELCOR で計算 された出口蒸気流を基に (5.16)式で計算され、下流側の区画の流入項に等しい。 $W_{steam}/(\rho_{steam}Y_{atmi})$ は、区画 *i* の気相部体積に対する単位時間に流出する気体の体積との比を表し、それに化学種: Xの濃度を乗ずることで単位時間に流出する化学種:Xの濃度の減少を表している。

$$[outX(g)]_i = [X(g)]_i W_{steam} / (\rho_{steam} V_{atm,i})$$
(5.16)

(2) ミスト流の取扱い

MELCOR の解析では、ミストが解析対象区画間を移動する。ミストは液相水として考慮する。 ミストに含まれて流出する化学種 X の流出項は、(5.17)式で表され、下流側の区画の流入項に等 しい。 $outW_{ms}$ 及び ρ_{mist} は、それぞれ MELCOR で計算されるミストの流出量[kg/s]及び密度[kg/m³] (水の密度に等しい)である。 $outW_{ms}/(\rho_{mist}V_{cond,i})$ は、区画 i の凝縮水体積に対する単位時間に流出 するミストの体積との比を表し、それに化学種:X の濃度を乗ずることで単位時間にミストとし て流出する化学種:X の濃度の減少を表している。

$$\left[outX(ms)\right]_{i} = \left[X(aq)\right]_{i} outW_{ms} / \left(\rho_{mist}V_{cond,i}\right)$$
(5.17)

(5.17)式は、ミストとして流出する化学種 X の液相水の濃度からの減少分が、凝縮水全体のうち の流出するミストの体積分であることを意味する。下流側の区画で蒸気凝縮が発生している場合 はミストのままで流入するので上流側の出口濃度が当該区画の流入濃度に等しいとする(5.18)式 が成立する。

$$\left[inX(ms)\right]_{i} = \left[outX(ms)\right]_{i-1}$$
(5.18)

下流側で蒸気凝縮が発生していない場合は、流入したミストは気化するため、ミストに溶存して 流入した化学種は、気相部に追加される。この場合(5.19)式に示す補正が必要となる。

$$\left[inX(ms)\right]_{i} = \left[outX(ms)\right]_{i-1} / V_{atm}$$
(5.19)

5.4 Ru の移行に係る微分方程式

文献 4)によれば、気体状の RuO₄ は、NO_x を含む硝酸-水混合蒸気の凝縮にともない液相に移行することが確認されている。Ru は、液相ではニトロシルルテニウム:Ru(NO)(NO₃)₃ (本報中では Ru[NO]と表記する)で存在すると仮定し、再揮発は想定しない。また、気相において水蒸気と 共存する場合、RuO₂ に変化する⁴⁾ とされるが、液相への移行に比して十分に少ないので考慮しない。

凝縮水が発生する期間では各区画内のプール水面及び濡れた壁面(天井を含む)(S_{cond} [m²])で移行する。Ru物質移行整数: Mtc_{Ru} [m/s]は(3.33)で与えられる。気相から液相への移行速度[kmol/s]は、気相部の RuO₄の濃度: [RuO_4 (g)]に S_{cond} 及び Mtc_{Ru} を乗じて表される。気液各相でのモル濃度の変化速度は、それぞれの空間の体積; V_{stm}及び V_{cond}で除した値となる。具体的には、気相中の RuO₄、及び液相中の Ru[NO]の濃度の変化は、それぞれ(5.20)及び(5.21)式で表される。

$$\frac{d}{dt}[RuO_4(g)] = [inRuO_4(g)] - [outRuO_4(g)] - [RuO_4(g)] \times S_{cond} \times Mtc_{Ru}/V_{stm}$$
(5.20)

$$\frac{d}{dt} [Ru[NO](aq)] = [RuO_4(g)] \times S_{cond} \times Mtc_{Ru} / V_{cond}$$
(5.21)

6. SCHERN のプログラム構造

SCHERN は 2.1 節で示した化学反応による 8 つ化学種の気液各相での濃度変化を表す 15 個(液相の H₂O を除く)の一次微分方程式の連立解を求める汎用数学ライブラリ:DVODE¹⁹⁾を核とする計算プログラムである。SCHERN のメインプログラムでは、DVODE の境界条件を設定し、それに基づき求められた連立解をファイルに出力する。設定する境界条件として各区画の温度、各化学種の流入濃度、流出蒸気流量及びミスト流量の変化等をテーブルデータの形式で読み込み、時刻ごとの値を内挿で求め DVODE の入力値とする。

6.1 DVODE の入手

DVODE は文献 20)として示した URL からダウンロードできる。DVODE を SCHERN が対象と する化学挙動解析に適合させるためには、DVODE のサブルーチンである"FEX"及び"JEX"を解析 モデルに合わせてカスタマイズする必要がある。DVODE として公開されているそれ以外のソー スは改変していない。

6.2 SCHERN での処理の流れ

(1) 全体の処理の流れ

図 6.1 に SCHERN での処理の流れを示す。最初に INIT.dat から、DVODE 及び SCHERN の制御 変数、解析対象空間の諸元を読み込む。次に流入量読込オプションに応じて解析対象空間への流 入量を読み込む。入力データの読み込み後解析時刻を設定し、微分方程式の各係数を計算し DVODE に入力し連立解を求め、それを出力する。液相での硝酸濃度は、15 [kmol/L]を超えること はないのでこの値を上限値として液相硝酸濃度を補正する。実験などの実測値として予め液相の 硝酸濃度が既知の場合は、DVODE の結果をその値になるように補正する。気相部の各濃度から 流出する量を計算し、解析時刻を次に進める。

(2) DVODE 内の処理の流れ

図 6.2 に DVODE での処理の流れを示す。DVODE での SCHERN に特化した処理として"FEX" 及び"JEX"において微分方程式の係数を設定する。

図 6.1 SCHERN での処理の流れ

図 6.2 DVODE での処理の流れ

7. 計算の実行

7.1 SCHERN の実行手順

(1) 入力データの作成

SCHERN の実行形式のファイルがあるフォルダに次のファイルを準備する。 制御入力データファイル : INIT.dat 流入量入力データファイル : INFLOW.dat

ただし、INFLOW.dat は INIT.dat で[IXTYP=2or3]を設定の時のみ必要となる。IXTYP=2 が指定 されたときは計算対象空間(以下 VOL という)の上流側 VOL の計算結果ファイル XINDATA.dat のファイル名を INFLOW.dat に置き換えて使用する。個々の入力データは 7.2 節を参照し作成す る。

(2) 実行方法

cmd.exe を実行してコマンドプロンプトウィンドゥを開き、実行ファイル格納フォルダに入力 データ (INIT.dat、必要に応じて INFLOW.dat) があることを確認し、次のコマンドを実行する。 具体例を図 7.1 に示す。

SCHERN.exe <u>*****</u>.***

(結果出力ファイル名)

例)

C:¥Windows¥System32¥cmd.exe	-	×
Microsoft Windows [Version 10.0.19042.985] (c) Microsoft Corporation. All rights reserved.		^
C:¥WINDOWS¥system32>SCHERN.exe out.dat		

図 7.1 SCHERN 実行の例

(3) 実行結果の出力

・out.dat 等指定ファイル

実行時に指定した出力ファイルには計算結果が出力される。

 $\boldsymbol{\cdot} \text{ XINDATA.dat}$

自動で作成され、化学種ごとの流出量の時系列データとなっている。

(4) 取り扱い化学種

SCHERN の取扱い化学種を以下に示す。

NO(gas)	O ₂ (gas)	NO ₂ (gas)	N ₂ O ₄ (gas)	N ₂ O ₃ (gas)
H ₂ O(gas)	HNO ₂ (gas)	HNO ₃ (gas)	N ₂ (gas)	RuO4(gas)
Ru[NO](gas)	aqNO ₂ (liq)	aqN2O4(liq)	aqNO(liq)	aqN ₂ O ₃ (liq)
aqHNO ₂ (liq)	aqHNO ₃ (liq)	aqO ₂ (liq)	aq RuO ₄ (liq)	aqRu[NO] (liq)

7.2 入力変数の説明

入力例とともに入力変数名及び内容を示す。

(1) INIT.dat ファイルで入力する変数

付録の付図1にサンプル入力を示す。

(a) DVODE の制御変数

表 7.1 に DVODE の制御変数を、図 7.2 にその入力の一例を示す。

入力変数	内容	備考	単位
IXTYP	化学種ごとの流入量読込オ	1:入力データ: XIN Gas phase inflow	
	プション	で指定(一定量注入)、7.2 節(1) (e)	
		参照	
		2: INFLOW.dat で時系列データとし	
		て指定 (気相のみ)、7.2 節(2)(a)参照	
		3: INFLOW.dat で時系列データとし	
		て指定(気相及び液相(ミスト))、	
		7.2 節(2)(b)参照	
ITASK	DVODE 変数	推奨值 = 1	
ISTATE	DVODE 変数	デフォルト値 =1	
IOPT	DVODE 変数	入力指定方法オプション	
		デフォルト値 =0	
ITOL	DVODE 変数	入力指定方法オプション	
		デフォルト値 =2	
Т	計算開始時刻	デフォルト値 =0.0	S
TINI	DVODE変数	デフォルト値 =1.66D-3	
TOUT	初期出力時間	デフォルト値 =0.0	S
RTOL	相対許容誤差パラメータ	デフォルト値 =1.0000D-4	
ATOL	絶対許容誤差パラメータ	デフォルト値 = 1.0000D-16	

表 7.1 DVODE の制御変数

	/XIN-TYF	E↑	4.0 1		T-2+6d		
	IXIT	2	/l:Gas phase	INTIOW	L C LEVE	Ζ: ファイルよりメイムステップ毎に読込↓	
	↓ /DR2SLIR	INPLIT DATA					
	ITASK	INFOLDATA↓ 31					
	ISTATE	Ĩ↓					
	IOPT	ÓÌ					
	ITOL	2↓					
	Ţ	0.000D+00↓					
		1.660D-03↓					
		U.UUUU+UU↓ 1.0000D.4.					
		1.0000D-44					
L	ATUL	1.00000-10+					

図 7.2 DVODE の制御変数の例

(b) SCHERN の制御変数

表 7.2 に SCHERN の制御変数を、図 7.3 にその入力の一例を示す。

入力変数	内容	備考	単位
TEND	計算終了時間		s
DTLN0	標準計算時間幅(DT)		s
TSTEP	結果出力間隔		s
WSTEP	流出量出力間隔	XINDATA.dat の出力間隔	s
NTINT	DT 変更期間の数	最小值:0、最大值:10	
TINTn	DT 変更期間名	NTINT のセットを昇順に入力	s
TIMES(n)	時間幅(DT)変更開始時間	DT を DTLN2 に変更開始時間	s
TIMEE(n)	時間幅(DT)変更終了時間	DTをDTLN0に戻す時間	s
DLT(n)	変更計算時間幅(DT)	変更する計算時間幅	s

表 7.2	SCHERN	の制御変数	
表 1.2	SCHERN	の前御変笏	τ

図 7.3 SCHERN の制御変数の入力の一例

(c) HENRY 常数変数

表 7.3 に SCHERN で使用する henry 定数を、図 7.4 にその入力の一例を示す。

入力変数	内容	備考	単位
HENNO	NO の定数項	推奨值:1.84d-5	
HENO2	O2の定数項	推奨值:1.30d-5	
HNENO2	NO ₂ の定数項	推奨值:1.18d-4	
HENN2O3	N ₂ O ₃ の定数項	推奨值:5.98d-3	
HNEN2O4	N ₂ O ₄ の定数項	推奨值:1.38d-2	
HENHNO2	HNO2の定数項	推奨值:4.80d-1	
HENHNO3	HNO3の定数項	推奨值:2.10d+3	
HENRUO4	RuO4の定数項	推奨值:3.62d-3	s
HENRUO2	Ru[NO]の定数項	推奨值:0.00d+0	
EXPNO	NOの温度依存項の定数	推奨值:1500.0	
EXPO2	O ₂ の温度依存項の定数	推奨值:1700.0	

表 7.3 SCHERN の Henry 定数[kmol/m³/kPa] (1/2)

JAEA-Data/Code 2021-008

入力変数	内容	備考	単位
EXPNO2	NO ₂ の温度依存項の定数	推奨值:2500.0	
EXPN2O3	N2O3の温度依存項の定数	推奨值:0.000	
EXPN2O4	N2O4の温度依存項の定数	推奨值:0.000	
EXPHNO2	HNO ₂ の温度依存項の定数	推奨值:4800.0	
EXPHNO3	HNO3の温度依存項の定数	推奨值:8700.0	
EXPRUO4	RuO4の温度依存項の定数	推奨值:6420.0	
EXPRUO2	Ru[NO]の温度依存項定数	推奨值:0.000	

表 7.3 SCHERN の Henry 定数[kmol/m³/kPa] (2/2)

/HENNRY								
HENNO	HENO2	HNEN02	HENN203	HNEN204	HENHNO2	HENHNO3	HENRUO4	HENRU02
1.84d-5	1.30d-5	1.18d-4	5.98d-3	1.38d-2	4.80d-1	2.10d+3	3.62d-3	0.00d+0
EXPNO	EXPO2	EXPN02	EXPN203	EXPN204	EXPHN02	EXPHN03	EXPRU04	EXPRU02
1500.0	1700.0	2500.0	0.000	0.000	4800.0	8700.0	6420.0	0.0
1000.0	1700.0	2000.0	0.000	0.000	4000.0	0700.0	0420.0	0.0

図 7.4 HENNRY 常数変数の入力の一例

(d) 解析対象空間の諸元

表 7.4 に解析対象空間の諸元に係る入力を、図 7.5 にその入力の一例を示す。

入力変数	内容	備考	単位
TEMP	初期温度		Κ
rgasgen	気体定数	推奨值:8.314472	
vtube	空間体積		m ³
AFlow	流路面積		m ²
Surface	気液界面面積	凝縮水発生時の気液界面	m ²
SurfA	気液界面面積	凝縮水無発生時のプール水表面積	m ²
PRESSER	圧力	デフォルト値:101.325	kPa

表 7.4 解析対象空間の諸元に係る入力

図 7.5 解析対象空間の諸元に係る入力の一例

(e) 気液各相の初期濃度

表 7.5 に気液各相の初期濃度に係る入力を、図 7.6 にその入力の一例を示す。

入力変数	内容	備考	単位
Y(1-21)	初期濃度	[NO][O ₂][NO ₂][N ₂ O ₄][N ₂ O ₃]	kmol/m ³
		[H ₂ O][HNO ₂][HNO ₃][N ₂] [RuO ₄]	
		[RuO ₂]	
		[aqNO2][aqN2O4][aqNO]	
		[aqN2O3][aqHNO2][aqHNO3]	
		[aqO ₂][aqH ₂ O][aqRuO ₄]	
		[aqRuO ₂]	

表 7.5 気液谷相の初期濃度に係る。	人力
---------------------	----

′initial values(初期濃度)								
'(GAS)No O2 NO2	N204	N2O3	H20	HNO2	HN03	N2	RUO4	RUO2
.000E-20 7.710E-03 0.000E+0	0.000E+00	0.000E+00	1.680E-03	0.000E+00	1.000E-20	3.080E-02	0.000E-00	0.000E-00
'(liq)aqNo2 aqN2O4 aqNO	aqN2O3	agHNO2	aqHNO3	aq02	aqH2O	aqRUO4	aqRUO2	
).000E+00	0.000E+00	1.000E-04	0.100E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	

図 7.6 気液各相の初期濃度に係る入力の一例

(f) 気相部流入量

気相部への流入量が一定の場合、IXTYP = 1 として INIT.dat から読込む。表 7.6 に気相部流入 量に係る入力を、図 7.7 にその入力の一例を示す。IXTYP = 2 または = 3 を指定した場合は、入 力は必要であるが解析には反映されない。

表 7.6 気相部流入量に係る入力

入力変数	内容	備考	単位
XIN (1-11)	流入量(一定値)	IXTYP=1 読込(下記入力順)	kg/s
		[NO][O ₂][NO ₂][N ₂ O ₄][N ₂ O ₃]	
		[H ₂ O][HNO ₂][HNO ₃][N ₂][RuO ₄]	
		[RuO ₂]	

/Gas phase	inflow XIN((1-8)								
NO	02	N02	N204	N2O3	H2O	HNO3	HNO2	N2	RUO4	RUO2
0.000d-00	2.3810d-06	0.000d-0	0.000d+00	0.000d+00	0.000d-00	0.000d-00	0.000d+00	9.344d-06	0.000d+00	0.000d+00

図 7.7 気相部流入量に係る入力の一例

(g) 時間依存の境界条件の入力

表 7.7 に時間依存の境界条件として入力する変数を示す。図 7.8 に入力の一例を示す。

入力変数	内容	備考	単位
DataNO	時系列データ数		
時系列 data			
TIME	時間		s
AQFLOW	ミスト流出量	(5.17)式中の <i>outW_{ms}</i> に対応	kg/s
Vcond	液相体積		m ³
Vdcond	Vcond 変化率		m ³ /s
TEMP	気相温度		Κ
Vstm	気相体積		m ³
TMPLIQ	液相温度		Κ
VELVAPCV	空間蒸気流速		m/s
VAPOR	蒸気量		kg

表 7.7 時間依存の境界条件として入力する変数

/TIME	AQFLOW	VCOND	Vdcond	TEMP	Vstm	TMPLIQ	VELVAPCV	VAPOR↓
data No	78↓							
0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.000E+02	1.406E+02	3.000E+02	0.000E+00	1.793E+00↓
1.001E+00	0.000E+00	0.000E+00	0.000E+00	3.002E+02	1.406E+02	3.002E+02	1.181E-02	1.797E+00↓
1.001E+02	0.000E+00	0.000E+00	0.000E+00	3.003E+02	1.406E+02	3.003E+02	4.083E-04	1.912E+00↓
1.001E+03	2.415E-04	2.120E-03	2.354E-06	3.142E+02	1.406E+02	3.142E+02	2.015E-03	7.584E+00↓
3.009E+03	1.280E-03	6.575E-02	3.169E-05	3.320E+02	1.405E+02	3.233E+02	4.799E-03	1.740E+01↓
5.009E+03	1.703E-03	2.443E-01	8.926E-05	3.437E+02	1.403E+02	3.317E+02	7.835E-03	2.840E+01↓
7.009E+03	3.284E-03	5.093E-01	1.325E-04	3.543E+02	1.401E+02	3.422E+02	1.127E-02	4.291E+01↓
9.009E+03	5.724E-03	8.275E-01	1.591E-04	3.659E+02	1.397E+02	3.555E+02	1.647E-02	6.522E+01↓
1.001E+04	4.113E-03	9.703E-01	1.428E-04	3.708E+02	1.396E+02	3.625E+02	2.180E-02	7.702E+01↓
3.004E+04	0.000E+00	1.530E+00	2.796E-05	3.749E+02	1.390E+02	3.719E+02	2.991E-02	8.258E+01↓
5.004E+04	0.000E+00	1.934E+00	2.019E-05	3.750E+02	1.386E+02	3.721E+02	3.014E-02	8.231E+01↓
7.004E+04	0.000E+00	2.280E+00	1.731E-05	3.751E+02	1.382E+02	3.721E+02	3.032E-02	8.206E+01↓
9.004E+04	0.000E+00	2.583E+00	1.514E-05	3.753E+02	1.379E+02	3.722E+02	3.035E-02	8.183E+01↓
1.100E+05	0.000E+00	2.852E+00	1.346E-05	3.754E+02	1.376E+02	3.723E+02	3.045E-02	8.162E+01↓
1.300E+05	0.000E+00	3.094E+00	1.211E-05	3.756E+02	1.374E+02	3.723E+02	3.037E-02	8.142E+01↓
1.500E+05	0.000E+00	3.315E+00	1.101E-05	3.757E+02	1.371E+02	3.723E+02	3.039E-02	8.123E+01↓

図 7.8 時間依存の境界条件として入力する変数の一例

(2) INFLOW.dat ファイルで入力する変数

化学種ごとの流入量読込オプション: IXTYP として、次のいずれかを指定した場合、INFLOW.dat ファイルを用いて入力する。単位は kg/s である。付録の付図 2 にサンプル入力を示す。

(a) IXTYP=2 (気相のみ) 流入量を指定

次の順で各変数を入力し、スペースにより区切る。図 7.9 に INFLOW.dat の例を示す。

 $\mathsf{TIME}\ \ \mathsf{NO}\ \ \mathsf{O}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_4\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_2\ \ \mathsf{NO}_4\ \ \mathsf{RuO}_2\ \ \mathsf{RuO}_4\ \ \mathsf{RuO}_4\$

0.000000E+00										
1.161721E+00	7.272433E-26	6.317157E-08	2.008745E-43	5.705559E-79	1.803076E-62	1.221769E-08	1.408964E-60	7.272433E-26	2.558396E-07	
2.089691E+00	6.713162E-26	6.403555E-08	3.224772E-43	1.467979E-78	2.671953E-62	1.127811E-08	3.741628E-60	6.713162E-26	2.618284E-07	
3.279451E+00	6.059004E-26	6.504611E-08	4.376789E-43	2.698445E-78	3.273074E-62	1.017913E-08	7.095813E-60	6.059004E-26	2.688333E-07	
4.317973E+00	5.540577E-26	6.584699E-08	5.078760E-43	3.627499E-78	3.473052E-62	9.308169E-09	9.816861E-60	5.540577E-26	2.743847E-07	
5.074977E+00	5.190972E-26	6.638707E-08	5.444925E-43	4.164940E-78	3.488511E-62	8.720833E-09	1.152761E-59	5.190972E-26	2.781283E-07	
6.300747E+00	4.671204E-26	6.719003E-08	5.827097E-43	4.762691E-78	3.359570E-62	7.847622E-09	1.371068E-59	4.671204E-26	2.836941E-07	
7 1720010+00	4 9994016_00	C 77110EE_00	5 0700905-49	4 0049795-70	9 1091105-09	7 2001475-00	1 4017090-50	4 9994016_00	0 0701106_07	

図 7.9 INFLOW.datの例

(b) IXTYP=3 (気相及び液相(ミスト)) 流入量を指定

このオプションは、上流側 VOL の解析で求められた流出量を流入量として用いる。上流側 VOL の計算結果の XINDATA.dat のファイル名を INFLOW.dat へ変更して用いる。図 7.10 に INFLOW.dat の例を示す。

1 10131E-00 1 33343E-00 0 113153E-01 1 00334E-41 5 30555E-30 1 00334E-41	1 111365-01 1 4080645-00 1 1334115-10 1 1541065-01 0 00000054		
1 0000010400 0 1110000-00 0 00000000 1 000000-01 1 000000-01 1 010000-01	1 123811E-01 1 341628E-00 6 313162E-26 2 618284E-03 0 000000E	0 0.000000Ex00 0.00000Ex00 0.00000Ex00 0.00000Ex00 0.00000Ex00	
1 23545 E400 6 05000E-26 6 50461 E-08 4 13638E-41 2 63445E-38 1 233034E-62	1 013911E-08 1 055811E-60 6 059004E-26 1 688111E-01 0 000000E	0 0 00000Ex00 0 00000Ex00 0 00000Ex00 0 00000Ex00 0 00000Ex00	0 00000E+00 0 00000E+00 0 00000E+00 0 00000E+00
4 317973F400 5 54057F-76 6 54499F-08 5 03096F-41 3 673499F-78 3 433057F-67	9 308169F-09 9 816861F-60 5 540577F-76 7 743847F-07 0 000000F+	0 0 000000F+00 0 00000F+00 0 00000F+00 0 00000F+00 0 00000F+00	0.000000F+00 0.000000F+00 0.000000F+00 0.000000F+00 0.000000F+00
\$ 014977F400 \$ 190977F-76 6 638707F-08 \$ 444975F-43 4 164940F-78 3 488511F-67	8 720833E-09 152761E-59 5 190972E-26 2 781283E-07 0 000000E+	0 0 000000E+00 0 000000E+00 0 000000E+00 0 000000E+00 0 000000E+00	0.000000F+00 0.000000F+00 0.00000F+00 0.000000F+00 0.000000F+00
6.300747E400 4.671204E-26 6.719002E-08 5.827097E-43 4.762691E-78 3.359570E-68	7.847622E-09 371068E-59 4.671204E-76 2.836941E-07 0.000000E4	0 0.00000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.00000E+00 0.000000E+00 0.000000E+00
7,173061E400 4,333421E-26 6,771185E-08 5,970039E-43 4,994272E-78 3,193110E-62	7.280147E-09 1.481763E-59 4.333421E-26 2.873112E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
8.087426E+00 4.005138E-26 6.821839E-08 6.029656E-43 5.081769E-78 3.026741E-62	6.728629E-09 1.561485E-59 4.005136E-26 2.908265E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
9.028219E+00 3.693624E-26 6.870022E-08 6.010912E-43 5.065751E-78 2.774053E-62	6.205288E-09 1.608099E-59 3.693624E-26 2.941622E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.010284E+01 3.367372E-26 6.920423E-08 5.912830E-43 4.909219E-78 2.479524E-62	5.657185E-09 1.624842E-59 3.367372E-26 2.976558E-07 0.000000E+	0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.109502E+01 3.091828E-26 6.962990E-08 5.766826E-43 4.670468E-78 2.214011E-62	5.194267E-09 1.612359E-59 3.091826E-26 3.006064E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.210979E+01 2.833341E-26 7.002922E-08 5.576777E-43 4.364727E-78 1.956556E-62	4.760014E-09 1.578071E-59 2.833341E-26 3.033743E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.302999E+01 2.617699E-26 7.036235E-08 5.378582E-43 4.055438E-78 1.739173E-62	4.397735E-09 1.532721E-59 2.617699E-26 3.056834E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.4064436E401 2.330650E-26 7.071313E-08 5.130605E-43 3.683842E-78 1.511051E-62	4.016238E-09 1.468693E-59 2.390630E-26 3.081149E-07 0.000000E+	0 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00	0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
1.50/3N/SE401 Z.20/2006/20 / 10/A2/2006 4.8540/24E-43 3.342504E-78 1.324659E-62	3.039030ETV9 1.403130ET39 2.202200ET26 3.101327ET07 0.000000EF	N U.U.U.U.U.E.HOV U.UUUUUUEHOV U.UUUUUUEHOO U.UUUUUEHOO U.UUUUUEHOO U.UUUUUEHOO	0.00000E400 0.00000E400 0.00000E400 0.00000E400
1.500502E401 2.023901E720 7.12704E706 4.594309E743 3.011012E7/6 1.134033E702	3.403013ET09 1.331976ET09 2.023901ET20 3.120199ET07 0.000000E+ 1.004040E+00 1.147310E+50 1.941808E+08 1.100030E+03 0.000000E1	0 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00	

図 7.10 XINDATA.dat (INFLOW.dat) の例

7.3 計算結果の表示

計算結果はプログラム実行時に指定した任意の名前(図 7.1 に示す実行例では、"out.dat")のファイルに出力される。

(1) 計算結果の出力項目

計算結果の出力ファイルには、次の変数がここに示す順序で書き込まれる。

流入量読込オプション	IXTYP
時間	TIME
気相濃度	NO-gas, O2-gas, NO2-gas, N2O4-gas, N2O3-gas, HNO2-gas, HNO3-gas,
	H2O-gas, N2-gas, RuO4-gas, Ru[NO]-gas
液相濃度	NO2-liq, N2O4-liq, NO-liq, N2O3-liq, HNO2-liq, HNO3-liq, O2-liq, H2O-liq,
	RuO4-liq, Ru[NO]-liq
気相流出積算量	NO-out, O2-out, NO2-out, N2O4-out, N2O3-out, HNO2-out,
	HNO3-out, H2O-out, N2-out, RuO4-out, Ru[NO]-out
液相流出量	aqNO2out, aqN2O4out, aqNOout, aqN2O3out, aqHNO2out,
	aqHNO3out, aqO2out, aqH2Oout, aqRuO4out, aqRu[NO]out
気相流出微分量	XOUT(no), XOUT(o2), XOUT(no2), XOUT(n2o4), XOUT(n2o3),
	XOUT(hno2), XOUT(hno3), XOUT(h2o), XOUT(n2), XOUT(RuO4),
	XOUT(Ru[NO])
気相部流入量	xinno, xino2, xinno2, xinn2o4, xinn2o3, xinhno2, xinhno3, xinw, xinn2,
	xinruo4, xinru[NO]
気相→液相移行量	LqflNO, LqflO2, LqflNO2, LqflN2O4, LqflN2O3, LqflHNO2, LqflHNO3,
	LqflH2O, LqfRuO4, LqfRu[NO]
液相各種最大濃度	HmaxNO, HmaxNO2, HmaxO2, HmaxN2O4, HmaxN2O3, HmaxHNO2,
	HmaxHNO3, HmaxRuO4, HmaxRuNO
各種 henry 定数	heNO, heNO2, heO2, heN2O4, heN2O3, heHNO2, heHNO3, heRuO4, heRuNO

気相→液相移行量計算項

	kno, kno2, ko2, kn2o3, kn2o4, khno2, khno3, kruo4, kruo2					
Ru 物質移行係数	rc35c					
計算指定 DT	DTLN					
BODE 内 DT	BODEDT					
液相流量	AQFLOW					
液相流出量係数	AQDMP					
気相流出量係数	GDMP					
蒸気流速	VAPOR					
気相濃度合計	МТОТ					
気相濃度合計初期値	MTOT0					
気相体積	Vstm					
VOL 体積	Vtube					
圧力	PRE					
出口流速	VELVAP					
流路面積	AFlow					
液相体積	Vcond					
Vcond 微分值	Vdcond					
初期温度	TEMP0					
硝酸密度	RHO					
硝酸最大濃度	HNO3max					
気相部硝酸重量分率	Fg					
硝酸密度	Tm <rho *="" 1000.0=""></rho>					
気相部硝酸モル分率	Fm $<$ Fm = Y(8) / (Y(6) + Y(8)) >					
計算状況確認 flg	CALflg					
亜硝酸反応速度定数	RC11					
亜硝酸移行変数	RC11dmp, RC11dmp2, RC11dmp3					
計算状況確認 flg	ITESflg					
液相最大濃度差分值	DYgNO, DYgNO2, DYgO2, DYgN2O4, DYgN2O3, DYgHNO2, DYgHNO,					
	DYgRuO4, DygRuO2					
計算確認用変数	tdmp1, tdmp2, tdmp3, tdmp4, tdmp5, tdmp6, tdmp7, tdmp8, tdmp9, tdmp10,					
	tdmp11					
液相流入力	AQIN-NO, AQIN-NO2, AQIN-O2, AQIN-N2O3, AQIN-N2O4, AQIN-HNO2,					
	AQIN-HNO3, AQIN-RuO4, AQIN-Ru[NO]					
液相流出量	AQOUT-NO, AQOUT-NO2, AQOUT-O2, AQOUT-N2O3, AQOUT-N2O4,					
	AQOUT-HNO2, AQOUT-HNO3, AQOUT-RuO4, AQOUT-Ru[NO]					
気相流入量	XIN[no], XIN[o2], XIN[no2], XIN[n2o4], XIN[n2o3], XIN[h2o], XIN[hno2],					
	XIN[hno3], XIN[n2], XIN[ruo4], XIN[ru[NO]]					
液相流入量	AQIN[NO], AQIN[NO2], AQIN[O2], AQIN[N2O3], AQIN[N2O4],					
	AQIN[HNO2], AQIN[HNO3], AQIN[RuO4], AQIN[Ru[NO]]					

流入 Ru 積算量	totRu
Ru 停留量	sumRu
Ru 流出量	XOUTIN(RuO4)
化学反応変化量	YDOTdmp(35), YDOTdmp(36), YDOTdmp(37), YDOTdmp(38),
	YDOTdmp(39), YDOTdmp(40), YDOTdmp(41), YDOTdmp(42)
流出速度(kmol/s)	XOUTIN(NO), XOUTIN(O2), XOUTIN(NO2), XOUTIN(N2O4),
	XOUTIN(N2O3), XOUTIN(H2O), XOUTIN(HNO2), XOUTIN(HNO3),
	XOUTIN(N2), XOUTIN(RuO4), XOUTIN(RuNO)

(2) 計算結果の作図

SCHERN を実行することで作成される出力ファイルに書き込まれた各パラメータの経時変化のグラフを自動で作図する方法を次に示す。作図は Excel®のマクロ機能により実行される。

- (a) SCHERN_plot.xlsm ファイルを実行結果ファイルと同じフォルダに格納する。
- (b) SCHERN_plot.xlsm を起動し、シート[Graph 白黒]へ移動
- (c) シート[Graph 白黒]左上の 結果作図 ボタンを押す
- (d) 図 7.11 に示すメッセージウィンドウが表示されたら、SCHERN の実行結果ファイル名 を入力し OK を押す。

OPEN FILE NAME	×
outファイル名指定	ОК
	キャンセル

図 7.11 出力ファイル名の入力メッセージウィンドウ

上記の手順により、[Graph 白黒] 及び[Graph]シート上にグラフが作成される。作成されるグ ラフの一例をそれぞれ、図 7.12 及び図 7.13 に示す。

[Graph 白黒]シートには、図 7.12 に示すような気相濃度、液相濃度、gas 流入量、気相液相移 行量の 5 種類のグラフが白黒で作成される。[Graph]シートには、図 7.13 にその一部のみを示し ているが、計算結果の出力ファイルに書き込まれた全てのデータがそれぞれ作図される。

図 7.12 気相濃度、液相濃度、gas 流出量及び気相液相移行量の作図例

図 7.13 全出力結果の作図例 (一部のみ表示)

8. まとめ

再処理施設で想定される蒸発乾固事故を対象に、貯槽から流出する硝酸-水混合蒸気の施設内の熱流動を境界条件として、硝酸-水-NO_x系での化学変化挙動を模擬する計算プログラム: SCHERNの開発・整備を進めている。

SCHERN と熱流動解析コードを組み合わせることで、気相への移行割合が大きいと考えられる Ru の揮発性化学種の凝縮水への移行を解明するための実験データの分析に資するための実験解 析ツールだけでなく、実規模施設内での化学変化挙動を解析するためのツールにも供し得る解析 手法を整備した。

参考文献

- 「再処理施設における放射性物質移行挙動に係る研究」運営管理グループ,"再処理施設における放射性物質移行挙動に係る研究報告書",2014.
- 2) T. Kato et al., "Study on volatilization mechanism of ruthenium tetroxide from nitrosyl ruthenium nitrate by using mass spectrometer," J. Nucl. Mater., 479, pp. 123-129, 2016.
- 日本原子力研究開発機構,"平成 29 年度原子力施設等防災対策等委託費(再処理施設内での 放射性物質の移行挙動に係る試験等)事業事業報告書 平成 30 年 3 月", 2018, https://www.nsr.go.jp/data/000256373.pdf,(閲覧:2019/03/31).
- 4) 日本原子力研究開発機構,"平成 31 年度原子力施設等防災対策等委託費(再処理施設内での 放射性物質の移行挙動に係る試験等)事業事業報告書 令和 2 年 3 月",2020, https://www.nsr.go.jp/data/000319224.pdf,(閲覧:2021/03/31).
- 5) 桧山 美奈 他, "SCHERN: 再処理施設の高レベル廃液蒸発乾固事故での NO_x の化学的挙動 解析プログラム", JAEA-Data/Code 2019-006, 2019, 17p.
- 6) 日本原燃株式会社,"再処理事業指定申請書及び同添付書類",平成元年3月申請(平成8年4月,同13年7月,同16年10月変更許可申請).
- 7) 宮田 敬士 他, "六ヶ所再処理工場の確率論的安全評価, (II) 高レベル濃縮廃液沸とう事故の 発生頻度評価(内的事象)", 日本原子力学会和文論文誌, Vol.7, No.2, 2008, pp.85-98.
- 8) 吉田 一雄, 石川 淳, "MELCOR コードを用いた再処理施設の廃液沸騰事故事象解析", JAEA-Research 2012-026, 2012, 25p.
- M. Philippe, et al., "Behavior of Ruthenium in the Case of Shutdown of the Cooling System of HLLW Storage Tanks," Proc. of 21th DOE/NRC Nucl. Air Cleaning Conf., San Diego, CA, Aug., 1990, NUREG/CP-0116, Vol. 2, 1991, pp. 831-843.
- J.A. Patwardhan, J. B. Joshi, "Unified Model for NO_x Absorption in Aqueous Alkaline and Dilute Acidic Solutions," AIChE J., Vol. 49, No. 11, 2003, pp. 2728-2748.
- K.G. Loutet et al., "Experimental Measurements and Mass Transfer/Reaction Modeling for an Industrial NO_x Absorption Process," Ind. Eng. Chem. Res., Vol.50, No.4, 2011, pp. 2192-2203.
- National Institute of Standards and Technology, NIST Chemistry WebBook, DOI: https://doi.org/10.18434/T4D303, (accessed March 30, 2021).
- 13) Whiteman W.G. "A preliminary experimental confirmation of the two-film theory of gas adsorption,"

Chem. Metall. Eng. Vol.29, No.4, 1923, pp.146-148.

- 14) 大江 修造, "物性推算法", データブック出版社, ISBN4-902209-02-0, 2002, 404p.
- 15) 吉田 一雄 他, "再処理施設の高レベル廃液蒸発乾固事故での NO_x の化学挙動を考慮した Ru の移行挙動解析", JAEA-Research 2021-005, 2021, 25p.
- R. O. Gauntt, et al., "MELCOR Computer Code Manuals, Reference Manuals, Version 1.8.5," NUREG/CR-6119, Vol. 2, Rev. 2, SAND2000-2417/2, 2000.
- 17) 吉田 一雄, "重大事故対処策を考慮した再処理施設の蒸発乾固事故解析", JAEA-Research 2016-004, 2016, 15p.
- 18) 吉田 一雄 他, "再処理施設の高レベル廃液蒸発乾固事故での FP 硝酸塩の脱硝に伴い発生する NO_x の化学的挙動解析",日本原子力学会和文論文誌, Vol.18, No.2, 2019, pp. 69-80.
- 19) P. N. Brown et al., Original DVODE Documentation Prologue, https://www.radford.edu/~thompson/vodef90web/Documentation/Original Prologue.txt, (accessed March 31, 2021).
- 20) S. Thompson et al, VODE F90 Source Code, https://www.radford.edu/~thompson/vodef90web/ vodef90source/misc.html, (accessed March 31, 2021).

付録

	10	. 110	20 , , , , , , , , , 30	1 40 .		160	1 170 1	180	190 🛋 .	1100	. 110
1	/XIN-TYPE IXTYP	↓ 3	/1:0	ias phase in	flow 下で指	定 2:ファイ	イルよりタイ	ムステップ名	毎に読込↓		
34 56 7 89 10 11 12 13	+ /DB2SUB I ITASK ISTATE IOPT ITOL T TINI TOUT RTOL ATOL	NPUT DATA↓ 1↓ 0↓ 2↓ 0.000D+00. 1.660D-03. 0.000D+00. 1.0000D-4↓ 1.0000D-16.									
14 15 16 17 18 20 21 22 23 24	TIME STE TEND DTNL0 TSTEP WSTEP NTINT TINT1 TINT2 TINT2 TINT3	P SETTING 4.37000d+5 2.5D-3 1.00000d+2 1.00000E+1 3 3.8E5 4.0E5 4.2E5	4.0E5 4.2E5 4.5E5	2.0D-3 5.0D-4 5.0D-4	/言/木 / / / / / / / / / / / / / / / / / / /	計算終了時間 票準計算時間 出力間隔↓ LOWout出力R IT変更期間の IMES, TIMEE IMES, TIMEE IMES, TIMEE	↓ 幅(DT)↓ ĴP稿↓ 数↓ , DLT↓ , DLT↓ , DLT↓				
25 26 27 28 29 30	/HENNRY↓ HENN0 1.84d-5 EXPN0 1500.0	HEN02 1.30d-5 EXP02 1700.0	HNEN02 1.18d-4 EXPN02 2500.0	HENN203 5.98d-3 EXPN203 0.000	HNEN204 1.38d-2 EXPN204 0.000	HENHN02 4.80d-1 EXPHN02 4800.0	HENHN03 2.10d+3 EXPHN03 8700.0	HENRU04 3.62d-3 EXPRU04 6420.0	HENRU02↓ 0.00d+0↓ EXPRU02↓ 0000.0↓		
31 32 33 34 35 36 37 38	/FEX-JEX TEMP rsassen vtube AFlow Surface Surfa PRESSER	Initial valu 333.15 8.314472 1.406D+2 1.435D+1 1.777D+2 1.435D+1 101.3255	ue setting∔		/初期 /気体 /X0Lf /流距 /表面 /正つ	温度 ↓ 定数↓ 插積(m^3) 面積(M~2) 面積(M~2) 句積(M~2)			1 1 1		
39 40 41 42 43 44 45	↓ /initial Y(GAS)No 1.000E-20 Y(liq)aqN 0.000E+00	values(初期 02 7.682E-03 o2 aqN204 0.000E+00	N(2) NO2 0.000E+00 aqN0 0.000E+00	N204 0.000E+00 aqN203 0.000E+00	N203 0.000E+00 aqHN02 0.000E+00	H20 0.000E+00 aqHN03 0.000E+00	HNO2 0.000E+00 aq02 0.000E+00	HN03 0.000E+00 aqH20 0.000E+00	N2 3.073E-02 aqRU04 0.000E+00	RU04 0.000E-02 aqRU02↓ 0.000E+00↓	RU02↓ 0.000E-02↓
46 47 48	/Gas phas N0 0.000d-00	e inflow XI№ 02 2.760d-06	N(1-8) ↓ NO2 1.710d-07	N2O4 0.000d+00	N2O3 0.000d+00	H2O 1.710d-05	HNO3 4.210d-05	HNO2 0.000d+00	N2 9.670d-06	RU04 0.000d+00	RUO2 ↓ 0.000d+00↓
490515234555555890612334566678907172374757778990812238455687	+ /TIME /data No 0.000E+00 1.001E+02 1.001E+02 1.001E+03 3.009E+03 7.009E+03 7.009E+03 7.009E+03 7.009E+04 3.004E+04 3.004E+04 1.001E+04 1.001E+05 1.300E+05 2.300E+05 3.100E+05 3.000E+05 3.	AQFLOW VCON 78 + 0.000E+00 (0.000E+00 (2.415E-04 2 1.280E-03 (5.724E-03 5 5.724E-03 5 5.724E-03 5 5.724E-03 5 0.000E+00 1 0.000E+00 1 0.000E+00 2 0.000E+00 2 0	U Vdcond TE 0.000E+00 0. 0.000E+00 0. 0.000E+00 0. 1.000E+00 0. 2.120E-03 2. 5.75E-01 3. 2.75E-01 1. 2.75E-01 1. 3.275E-01 1. 3.275E-01 1. 3.278E+00 2. 2.280E+00 1. 3.315E+00 1. 3.315E+00 1. 3.315E+00 1. 3.315E+00 3. 3.73E+00 8. 4.32E+00 7. 4.315E+00 4. 4.32E+00 7. 4.315E+00 4. 4.378E+00 4. 4.778E+00 4. 4.778E+00 4. 4.878E+00 3. 4.878E+00	MP Vstm TMP 000E+00 3.0 000E+00 3.0 354E-06 3.1 189E-05 3.3 325E-04 3.5 591E-04 3.6 325E-04 3.7 796E-05 3.7 731E-05 3.7 731E-05 3.7 731E-05 3.7 211E-05 3.7 211E-05 3.7 211E-05 3.7 211E-05 3.7 907E-06 3.8 278E-06 3.7 991E-06 3.8 882E-06 3.7 991E-06 3.8 882E-06 3.8 882E-06 3.8 882E-06 3.8 882E-06 3.8 882E-06 3.8 882E-06 3.8 882E-06 3.8 167E-06 3.8 167E-07 3.7	LIQ VELVAPC 00E+02 1.40 02E+02 1.40 02E+02 1.40 02E+02 1.40 42E+02 1.40 42E+02 1.40 43E+02 1.40 50E+02 1.33 49E+02 1.33 50E+02 1.33 50E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 55E+02 1.33 57E+02 1.33 68E+02 1.33 58E+02 1.35 58E+02 1.35 58E+0	W VAPOR↓ i6E+02 3.000 i6E+02 3.013 i6E+02 3.031 i6E+02 3.142 i5E+02 3.231 i1E+02 3.422 i7E+02 3.623 i0E+02 3.625 i0E+02 3.721 i2E+02 3.721 i2E+02 3.721 i2E+02 3.721 i2E+02 3.723 i4E+02 3.723 i9E+02 3.723 i9E+02 3.723 i9E+02 3.724 i2E+02 3.724 <	E+02 0.000E E+02 1.181E E+02 4.083E E+02 4.083E E+02 4.739E E+02 1.127E E+02 1.647E E+02 1.647E E+02 1.647E E+02 3.034E E+02 3.032E E+02 3.035E E+02 3.038E E+02	+00 1.793E+ -02 1.797E+ -03 1.797E+ -03 7.584E+ -03 2.840E+ -02 4.291E+ -02 4.291E+ -02 8.231E+ -02 8.231E+ -02 8.231E+ -02 8.231E+ -02 8.183E+ -02 8.183E+ -02 8.183E+ -02 8.183E+ -02 8.183E+ -02 8.183E+ -02 8.183E+ -02 8.042E+ -02 8.042E+ -02 7.938E+ -02 7.931E+ -02 7.938E+ -02 7.383E+ -02 7.385E+ -02 7.467E+ -03 7.467E+ -04 7.467E+ -04 7.467E+ -05 7.57E+ -05	$\begin{array}{c} 001 \\ 0001 \\ 0001 \\ 0011 \\ 011$		

付図1 サンプル入力 (INIT.dat) (1/2)

1	DL	20 30 40		60	80,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100, 110,
I	85 4.000E+05 0.000E+00	4.877E+00 1.180E-06 3.	.790E+02 1.355E+02	3.720E+02 5.570E-03	7.567E+01↓	
I	86 4 010E+05 0 000E+00	4 878E+00 5 044E-07 3	786E+02 1 355E+02	3 719E+02 4 850E-03	7 514E+011	
I	07 4 020E+05 0 000E+00	1 070E+00 2 200E-07 2	7625+02 1 2665+02	2 710E+02 2 276E-02	7 4615+01	
l	07 14.020E+05 0.000E+00	4.0700100 0.2000-07 0	703ETUZ 1.303ETUZ	0.710ETUZ 0.270ETU0	7.4015-01.	
L	88 4.030E+05 0.000E+00	4.877E+00 -9.500E-07 3	3.755E+UZ 1.355E+U.	2 3.717E+UZ 2.866E-U3	5 7.3/7E+UI↓	
L	89 4.040E+05 0.000E+00	4.876E+00 -1.140E-06 3	3.747E+02 1.355E+02	2 3.715E+02 2.433E-03	3 7.295E+01↓	
L	90 4 050E+05 0 000E+00	4 875E+00 -1 300E-06 3	3 740E+02 1 355E+03	2 3 714E+02 2 113E-03	3 7 205E+01↓	
L	01 4 060E+05 0 000E+00	4 972E+00 -1 460E-06 1	722E+02 1 266E+0	2 712E+02 1 020E-02	7 1125+01	
L	31 14.000E+00 0.000E+00	4.0735-00 -1.4005-00 0	200E-00 1 0EEE-0	2 3.71ZETUZ 1.0ZJE-03	7.11351014	
L	92 4.070E+05 0.000E+00	4.872E+00 -1.620E-06 (3.728E+UZ 1.355E+U.	2 3.710E+UZ 1.687E-03	5 7.018E+014	
t	93 4.080E+05 0.000E+00	4.870E+00 -1.750E-06 3	3.722E+02 1.355E+02	2 3.708E+02 1.560E-03	3 6.924E+01↓	
I	94 4 090E+05 0 000E+00	4 868E+00 -1 870E-06 3	3 717E+02 1 355E+01	2 3 705E+02 1 433E-03	3 6 826E+011	
I	05 / 100E+05 0 000E+00	4 966E+00 -1 000E-06	7125-02 1 2555-0	2 702E+02 1 200E-02	6 722E+01	
I	35 14.100E+05 0.000E+00	4.0000000000000000000000000000000000000	200E-00 1 0EEE-0	0.700E+02 1.000E-00	0.7235-014	
l	96 4.110E+05 0.000E+00	4.864E+00 -2.100E-06	3.703E+02 1.355E+0.	2 3.700E+02 1.039E-03	5 6.6U3E+UI4	
î	97 4.120E+05 0.000E+00	4.862E+00 -2.260E-06 3	3.696E+02 1.355E+02	2 3.697E+02 9.146E-04	4 6.470E+01↓	
I	98 4 130E+05 0 000E+00	4 859E+00 -2 410E-06 3	3 690E+02 1 355E+03	2 3 694E+02 7 848E-04	↓ 6 329E+01↓	
I	99 4 140E+05 0 000E+00	4 957E+00 -2 570E-06	0 604E+02 1 255E+0	2 R01E+02 7 429E-04	6 190E+01	
Į	100 4 1505.05 0.0005.00	4.0572100 2.3702 00 0	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000		
1	100 4.150E+05 0.000E+00	4.854E+00 -2.740E-06 3	3.680E+02 1.355E+0.	2 3.688E+UZ 7.040E-04	6.035E+014	
I	101 4.160E+05 0.000E+00	4.851E+00 -2.850E-06 3	3.675E+02 1.356E+02	2 3.684E+02 6.646E-04	↓ 5.891E+01↓	
I	102 4 170E+05 0 000E+00	4 848E+00 -3 000E-06 3	3 672E+02 1 356E+03	2 3 681E+02 6 771E-04	↓ 5 759E+01↓	
I	102 / 100E+05 0 000E+00	4 945E+00 -2 000E-06 1	2 REQE+02 1 25RE+0	2 677E+02 6 965E-04	5 6/1E+01	
I	104 4 1005 05 0.0005 00	4.040E.00 0.030E 00 0	0.0032102 1.050210	0.0770702 0.0000 04		
ł	104 4.190E+05 0.000E+00	4.842E+00 -3.210E-06	5.00/E+U2 1.300E+U	2 3.0/3E+U2 /.9/8E-U4	1 2.011E+014	
ł	105 4.200E+05 0.000E+00	4.838E+00 -3.410E-06 3	3.6666E+U2 1.356E+U2	2 3.669E+U2 9.121E-U4	1 5.36TE+UT↓	
Į	106 4.300E+05 0.000E+00	4.798E+00 -4.039E-06 3	3.652E+02 1.356E+02	2 3.624E+02 1.232E-03	3 4.141E+01↓	
I	107 4 400E+05 0 000E+00	4 750E+00 -4 761E-06 (3 676E+02 1 357E+0	2 3 575E+02 2 687E-03	2 921E+011	
ł	108 / 600E+05 0 000E+00	1 507E+00 -7 660E-06	1 160E+02 1 250E+0	2 454E+02 1 922E-02	7 217E+00	
l	100 4 0000 05 0.0000 000	4.00705.00 7.00055.00	1705.00 1 0015.00	0.4040102 1.0200 02	0.7005.00.	
1	109 4.800E+05 0.000E+00	4.3782+00 -7.0022-00 4	1.1/9E+U2 1.301E+U	2 3.383E+UZ 1.478E-UZ	0./395+00+	
l	110 5.000E+05 0.000E+00	4.226E+00 -7.644E-06 4	4.IU/E+U2 I.363E+U2	2 3.364E+U2 1.113E-U2	2 7.830E+00↓	
ł	111 5.200F+05 0.000F+00	4.095E+00 -6.528E-06 4	4.048E+02 1.364E+0	2 3.360F+02 9.012F-03	3 8.765E+00↓	
1	112 5 400E+05 0 000E+00	3 978E+00 -5 871E-06	1 003E+02 1 365E+0	2 361E+02 7 607E-03	9 621E+001	
I	112 5 6005+05 0.0005+00	2 9725-00 5 2405 00 1	0455-02 1.0005-02	2 202E-02 C 10/E 02	1 0000-011	
ł	113 J. 000ETUS 0.000ETU0	3.073ETU0 -0.240E-00 (0.04JETUZ 1.00/ETU	2 3.303ETUZ 0.104ETU3		
ł	114 5.800E+05 0.000E+00	3.780E+00 -4.636E-06 3	3.892E+U2 1.367E+U2	2 3.366E+U2 5.042E-U3	3 . /5E+U ↓	
1	115 6.000E+05 0.000E+00	3.699E+00 -4.040E-06 3	3.844E+02 1.368E+02	2 3.369E+02 4.185E-03	3 1.280E+01↓	
ł	116 6.200E+05 0.000E+00	3.625E+00 -3.724E-06 3	3.819E+02 1.369E+03	2 3 372E+02 3 833E-03	1.332E+014	
1	117 6 400E+05 0 000E+00	3 555E+00 -3 185E-06 1	2 796E+02 1 370E+0	2 27/E+02 2 /97E-03	2 1 38/E+01	
i	110 6 6005+05 0 0005+00	2 400E+00 -2 222E-00 1	7055-02 1 2705-0	2 2 275E+02 2 200E-02	1 107E+01	
ł	110 0.000ETUS 0.000ETU0	3.4095700 -3.3235-00 0	270E-02 1.370E-0	2 3.370ETUZ 3.380ETU3		
ł	119 [6.800E+05 0.000E+00	3.424E+00 -3.228E-06	3.776E+UZ 1.371E+U	2 3.375E+UZ 3.281E-U3	3 1.429E+UI↓	
ł	120 / 7.000E+05 0.000E+00	3.361E+00 -3.133E-06 3	3./68E+02 1.3/2E+02	2 3.3/6E+02 3.168E-03	3 1.451E+01↓	
Į	121 7.200E+05 0.000E+00	3.301E+00 -3.037E-06 3	3.760E+02 1.372E+03	2 3.376E+02 3.049E-03	3 1.475E+014	
1	122 7 400E+05 0 000E+00	3 2/2E+00 -2 9/0E-06 1	2 751E+02 1 373E+0	2 277E+02 2 925E-03	1 501E+01	
i	122 7.00000000000000000000000000000000000	0.2422.00 2.0402.00 0	7405.00 1.0745.00	0.077E-02 2.020E 00	1 5005.01	
I	123 17.000ET00 0.000ET00	3.10JETU0 -2.041E-00 (0.742ETUZ 1.074ETU	2 3.3705702 2.7335703	1.02857014	
l	124 17.800E+05 0.000E+00	3.130E+00 -2.762E-06 3	3.738E+UZ 1.374E+U	2 3.379E+UZ Z.760E-U3	3 1.545E+UI↓	
1	125 18.000E+05 0.000E+00	3.075E+00 -2.737E-06 3	3.737E+02 1.375E+02	2 3.380E+02 2.743E-03	3 1.555E+01↓	
ł	126 8 200E+05 0 000E+00	3 021E+00 -2 712E-06 3	3 735E+02 1 375E+03	2 3 380E+02 2 726E-03	1 565E+011	
I	127 8 400E+05 0 000E+00	2 967E+00 -2 690E-06 1	735E+02 1 376E+0	2 2 200E+02 2 700E-03	1 576E+01	
I	100 0.000000000000000000000000000000000	2.0072.00 2.0002.00	7045.00 1.0705.00	0.0015.00 0.0005 00	1 5005.01	
1	128 18.000E+05 0.000E+00	2.914E+00 -2.009E-00	5.734E+UZ 1.376E+U	2 3.301ETUZ Z.000ETU3	1.0000011	
I	129 18.630E+05 0.000E+00	2.906E+00 -2.657E-06 3	3.734E+U2 1.376E+O2	2 3.381E+02 2.685E-03	3 I.590E+01↓	
I	130 +					
1	131 [FOF]					
8	The second se					

付図1 サンプル入力 (INIT.dat) (2/2)

1 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000 0.0000000 0.00	1 D.000E+00 0.000E+00 0.0	00E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 (0.000E+00 0	.000E+00 (0.000E+00 0.000E+00	0.000E+00↓
	2 3.602E+03 0.000E+00 5.6	85E-05 3.274E-04	0.000E+00 0.000E+00	2.650E-01 (0.000E+00 2	.370E-03 (0.000E+00 2.144E-10	0.000E+00↓
	3 / . 203E+03 U.UUUE+00 5.6	385E-U5 3.2/4E-U4	U.UUUE+UU U.UUUE+UU	2.644E-UI U 2.642E-01 0	J.UUUE+UU 2 0.000E+00 2	.403E-03 (J.UUUE+UU 2.18/E-10) 000E+00 2 220E-10	0.000E+001
6 1.000000000000000000000000000000000000	5 1.440E+04 0.000E+00 5.7	27E-05 3.298E-04	0.000E+00 0.000E+00	2.643E-01 (0.000E+00 2	.485E-03 (0.000E+00 2.275E-10	0.000E+00↓
	6 1.800E+04 0.000E+00 5.7	61E-05 3.318E-04	0.000E+00 0.000E+00	2.643E-01 (0.000E+00 2	.527E-03 (0.000E+00 2.321E-10	0.000E+00↓
	/ 12.160E+04 0.000E+00 5.7	95E-05 3.337E-04	U.UUUE+UU U.UUUE+UU	2.643E-01 U 2.642E-01 U	J.UUUE+UU 2	.5/IE-03 U	J.UUUE+UU 2.369E-IU) 000E+00 2 /19E-10	0.000E+001
	9 2.880F+04 0.000F+00 5.8	363F-05 3.377F-04	0.000E+00 0.000E+00	2.643E-01 (2.642E-01 (0.000E+00 2	.661E-03 (0.000E+00 2.470E-10	0.000E+00\$
11 2000-40 0.000-40 0.000-40 2.000-	10 3.240E+04 0.000E+00 5.9	67E-05 3.437E-04	0.000E+00 0.000E+00	2.642E-01 (0.000Ē+00 2	.707E-03 (0.000E+00 2.522E-10	0.000E+00↓
15 3.8722-04 0.000-00 5.882-05 0.000-00 2.882-05 0.000-000 2.882-05 0.0	11 3.600E+04 0.000E+00 6.1	09E-05 3.519E-04	0.000E+00 0.000E+00	2.642E-01 (0.000E+00 2	.755E-03 (0.000E+00 2.577E-10	0.000E+00↓
14 4.880=4.4 0.000=00 5.980=4.0 0.000=00 2.980=4.0 0.000=00 <td>12 3.960E+04 0.000E+00 6.2 13 14 320E+04 0.000E+00 6.3</td> <td>297E-05 3.600E-04</td> <td>0.000E+00 0.000E+00</td> <td>2.642E-01 (2.641E-01 (</td> <td>).UUUE+UU 2).OOOE+OO 2</td> <td>.804E-03 (.855E-03 (</td> <td>).000E+00 2.633E-10) 000E+00 2 691E-10</td> <td>0.000E+001</td>	12 3.960E+04 0.000E+00 6.2 13 14 320E+04 0.000E+00 6.3	297E-05 3.600E-04	0.000E+00 0.000E+00	2.642E-01 (2.641E-01 ().UUUE+UU 2).OOOE+OO 2	.804E-03 (.855E-03 ().000E+00 2.633E-10) 000E+00 2 691E-10	0.000E+001
15 1.008-045 0.008-040 0.808E-03 0.008E-040 0.008E-040 <t< td=""><td>14 4.680E+04 0.000E+00 6.5</td><td>35E-05 3.764E-04</td><td>0.000E+00 0.000E+00</td><td>2.641E-01 (</td><td>0.000E+00 2</td><td>.907E-03 (</td><td>0.000E+00 2.751E-10</td><td>0.000E+00↓</td></t<>	14 4.680E+04 0.000E+00 6.5	35E-05 3.764E-04	0.000E+00 0.000E+00	2.641E-01 (0.000E+00 2	.907E-03 (0.000E+00 2.751E-10	0.000E+00↓
19 1442-02 0.000-00 0.	15 1.008E+05 0.000E+00 8.8	85E-05 5.117E-04	0.000E+00 0.000E+00	2.629E-01 (0.000E+00 3	.895E-03 (0.000E+00 3.997E-10	0.000E+00↓
19 1152-45 0.000-00 2.872-01 0.000-00 4.872-10 0.000-00 20 1182-45 0.000-00 1.972-45 5.861-40 0.000-00 0.000-00 3.382-05 0.000-00 4.872-10 0.000-00 21 1182-45 0.000-00 1.972-45 0.000-00 0.000-00 1.972-10 0.000-	16 1.044E+05 0.000E+00 9.1	06E-05 5.244E-04	U.UUUE+UU U.UUUE+UU	2.62/E-UI U 2.6265-01 (J.UUUE+UU 3 0.000E+00 4	.979E-03 (J.UUUE+UU 4.111E-10) 000E+00 4 221E-10	0.000E+001
19 1.522-615 0.0002-00 0.2022-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 4.2522-01 0.0002-00 5.2522-01 0.0002-00 <	18 1.116F+05 0.000F+00 9.5	65E-05 5.509E-04	0.000E+00 0.000E+00	2.624E-01 (0.000E+004	.156E-03 (0.000E+00 4.357E-10	0.000E+001
111 112 <	19 1.152E+05 0.000E+00 9.8	29E-05 5.661E-04	0.000E+00 0.000E+00	2.623E-01 (0.000E+00 4	.250E-03 (0.000E+00 4.489E-10	0.000E+00↓
12 1207E+05 0.000E+00 1207E+04 0.000E+00 0.000E+00 <td< td=""><td>20 1.188E+05 0.000E+00 1.0</td><td>09E-04 5.814E-04</td><td>0.000E+00 0.000E+00</td><td>2.621E-01 (</td><td>0.000E+00 4</td><td>.348E-03 (</td><td>0.000E+00 4.627E-10</td><td>0.000E+00↓</td></td<>	20 1.188E+05 0.000E+00 1.0	09E-04 5.814E-04	0.000E+00 0.000E+00	2.621E-01 (0.000E+00 4	.348E-03 (0.000E+00 4.627E-10	0.000E+00↓
21 2.286-H5 0.000F00 1.086-H4 0.000F00 0.000F00 1.682-H5 0.000F00 5.682-H5 0.000F00 5.682	22 1 260E+05 0 000E+00 1.0	162E-04 5.300E-04	0.000E+00 0.000E+00	2.617E-01 (0.000E+00 4	555E-03 () 000E+00 4.773E-10	0.000E+001
1 332E+65 0.000E+00 1.16E+04 6.30E+04 0.000E+00 2.12E+01 0.000E+00 2.22E+01	23 1.296E+05 0.000E+00 1.0	089E-04 6.270E-04	0.000E+00 0.000E+00	2.615E-01 (0.000E+00 4	.665E-03 (0.000E+00 5.088E-10	0.000E+00↓
19 1.3484-90 0.0000-00 1.3724-04 0.0000-00 <	24 1.332E+05 0.000E+00 1.1	16E-04 6.430E-04	0.000E+00 0.000E+00	2.614E-01 (0.000E+00 4	.780E-03 (0.000E+00 5.258E-10	0.000E+00↓
1 A40E+6 0.00E+00 1.20E+04 0.00E+00 1.20E+04 0.00E+00 1.23E+15 0.00E+00	25 11.368E+05 0.000E+00 1.1 26 11 404E+05 0 000E+00 1.1	44E-04 6.091E-04	0.000E+00 0.000E+00	2.612E-01 (2.610E-01 (1.000E+00 4 1.000E+00 5	.900E-03 (.026E-03 ().000E+00 5.437E-10) 000E+00 5 627E-10	0.000E+001
1 ATPEHE6 0.000E+00 1.228E-04 7.07E-04 0.000E+00 2.00E+01 0.00E+00 2.72E-10 0.00E+00 5.72E-10 0.00E+00 5.77E-10 0.00E+00 5.77	27 1.440E+05 0.000E+00 1.2	200E-04 6.914E-04	0.000E+00 0.000E+00	2.608E-01 (0.000E+00 5	.157E-03 (0.000E+00 5.828E-10	0.000E+00↓
31 5.24E************************************	28 1.476E+05 0.000E+00 1.2	28E-04 7.075E-04	0.000E+00 0.000E+00	2.606E-01 (0.000E+00 5	.295E-03 (0.000E+00 6.041E-10	0.000E+00↓
31 1;5242-r/6 0;0022-r00 2;8722-r04 0;0022-r00 2;8022-r05 0;0022-r00 0;8722-r03 0;0022-r00 0;8722-r03 0;0002-r00 0;8222-r03 0;0002-r00 0;0002-r00 0;0002-r00 0;822-r03 0;0002-r00 0;0002-r00 0;0002-r00 0;822-r03 0;0002-r00 0;0002-r00 0;0002-r00 0;0002-r00 0;0002-r00 0;0002-r00 0;822-r00 0;0002-r00 0;822-r03 0;0002-r00 0;0002-r00 <td< td=""><td>29 1.512E+05 0.000E+00 1.2 30 1 548E+05 0 000E+00 1 3</td><td>201E-04 7.204E-04 204E-04 7 513E-04</td><td>0.000E+00 0.000E+00</td><td>2.604E-01 (2.602E-01 (</td><td>).UUUE+UU 5) 000E+00 5</td><td>.439E-03 (501E-03 (</td><td>).UUUE+UU 6.267E-IU) 000E+00 6 507E-10</td><td>0.000E+001</td></td<>	29 1.512E+05 0.000E+00 1.2 30 1 548E+05 0 000E+00 1 3	201E-04 7.204E-04 204E-04 7 513E-04	0.000E+00 0.000E+00	2.604E-01 (2.602E-01 ().UUUE+UU 5) 000E+00 5	.439E-03 (501E-03 ().UUUE+UU 6.267E-IU) 000E+00 6 507E-10	0.000E+001
12 11. 656E+05 0.000E+00 2.38E+04 0.000E+00 2.68E+01 0.000E+00 2.68E+01 0.000E+00 7.32E+10 0.000E+00 11. 68E+05 0.000E+00 1.72E+04 0.000E+00 0.288E+10 0.000E+00 7.32E+10 0.000E+00 7.32E+01 0.000E+00 7.32E+01 0.000E+00 7.32E+10 0.00E+00 7.32E+10 0.00E	31 1.584E+05 0.000E+00 1.3	348E-04 7.762E-04	0.000E+00 0.000E+00	2.600E-01 (0.000E+00 5	.751E-03 (0.000E+00 6.762E-10	0.000E+00↓
31 1058±+00 1008±+00 1.442±+10 2.008±+01 0.008±+00 2.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.848±+31 0.000±+00 0.000±+00 0.848±+31 0.000±+00 0.000±+00 0.848±+31 0.000±+00 <td< td=""><td>32 1.620E+05 0.000E+00 1.3</td><td>91E-04 8.011E-04</td><td>0.000E+00 0.000E+00</td><td>2.598E-01 (</td><td>0.000E+00 5</td><td>.919E-03 (</td><td>0.000E+00 7.034E-10</td><td>0.000E+00↓</td></td<>	32 1.620E+05 0.000E+00 1.3	91E-04 8.011E-04	0.000E+00 0.000E+00	2.598E-01 (0.000E+00 5	.919E-03 (0.000E+00 7.034E-10	0.000E+00↓
35 1,728E+06 0.000E+00 1,528E+04 0.000E+00 1,508E+04 0.000E+00 1,000E+00 1,828E+03 0.000E+00 0,928E+00 0.000E+00 1,828E+03 0.000E+00 0,928E+00 0.000E+00 1,828E+03 0.000E+00 0,900E+00 1,828E+03 0.000E+00 0,000E+00 2,828E+01 0.000E+00 1,828E+03 0.000E+00 0,928E+03 0.000E+00 1,928E+03 0.000E+00 1,928E+03 0.000E+00 1,928E+03 0.000E+00 1,928E+03 0.000E+01 1,828E+03 0.000E+01 1,928E+03 0.000E+01 1,828E+03 0.000E+01 1,928E+03 <	33 1.656E+05 0.000E+00 1.4	34E-04 8.260E-04	U.UUUE+UU U.UUUE+UU	2.596E-01 U 2.502E-01 U	J.UUUE+UU 6 D.000E±00 6	.096E-03 (202E-02 (J.UUUE+UU 7.324E-IU) 000E±00 7 624E-10	0.000E+001
38 1.774E+05 1.000E+00 1.577E+04 0.000E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.000E+00 0.000E+00 0.000E	35 11.728E+05 0.000E+00 1.5	526E-04 8.787E-04	0.000E+00 0.000E+00	2.591E-01 (0.000E+00 6	.480E-03 (0.000E+00 7.965E-10	0.000E+00↓
31 1.300±+0 1.22±+0 9.382±+04 1.000±+00 2.584±+01 1.000±+00 7.145±-63 0.000±+00 9.542±+03 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 2.572±-01 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 2.562±+01 0.000±+00 1.302±+05 0.000±+00 2.562±+01 0.000±+00 1.302±+05 0.000±+00 2.562±+01 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00 1.302±+05 0.000±+00	36 1.764E+05 0.000E+00 1.5	76E-04 9.075E-04	0.000E+00 0.000E+00	2.589E-01 (0.000E+00 6	.689E-03 (0.000E+00 8.320E-10	0.000E+00↓
38 1:972E-06 0:000E+00 1:726E-04 0:000E+00 1:000E+00 1:00E+00 1:000E+00 1:00E+00 1	3/11.800E+05 0.000E+00 1.6	26E-04 9.362E-04	U.UUUE+UU U.UUUE+UU	2.58/E-UI U 2.50/E-01 (J.UUUE+UU 6 0.000E±00 7	.911E-03 U	J.UUUE+UU 8./UUE-IU) 000E+00 9 109E-10	0.000E+001
40 1,908E+05 0.000E+00 1,708E+04 1,004E+03 0.000E+00 1,902E+05 0.000E+00 1,902E+05 0.000E+00 1,902E+05 0.000E+00 1,902E+05 0.000E+00 1,902E+05 0.000E+00 1,902E+05 0.000E+00 1,902E+04 1,902E+05 0.000E+00 <	39 1.872E+05 0.000E+00 1.7	25E-04 9.937E-04	0.000E+00 0.000E+00	2.582E-01 (0.000E+00 7	.394E-03 (0.000E+00 9.549E-10	0.000E+00↓
1 1.944 E+0 0.100E+00 1.900E+00 2.774E+01 0.100E+00 3.92E+33 0.100E+00 1.98E+04 2 1.980E+05 0.100E+00 1.97E+04 1.98E+06 0.000E+00 2.97E+01 0.100E+00 8.94E+01 0.00E+00 1.98E+06 0.000E+00 1.98E+06 0.00E+00 1.98E+06 0.00E+00 0.98E+06 0.00E+00 0.98E+06 0.00E+00 0.98E+06 0.00E+00 0.98E+06 0.00E+00 0.98E+06 0.00E+00 0.98E+06 0.00E+00 0.00E+0	40 1.908E+05 0.000E+00 1.7	79E-04 1.024E-03	0.000E+00 0.000E+00	2.580E-01 (0.000E+00 7	.660E-03 (0.000E+00 1.002E-09	0.000E+00↓
¹⁶ 2. 118E-49 0.1000E-40 1. 378E-74 1.138E-78 0.100E-40 0.100E-40 2.578E-61 0.100E-40 3.518E-63 0.100E-40 1.138E-63 0.100E-40 4.24E-69 0.100E-40 2.58E-61 0.100E-40 2.58E-61 0.100E-40 1.33E-69 0.100E-40 4.24E-69 0.100E-40 2.58E-61 0.100E-40 2.58E-61 0.100E-40 1.33E-69 0.100E-40 4.24E-69 0.100E-40 2.58E-61 0.100E-40 1.58E-61 0.100E-40 1.33E-69 0.100E-40 4.24E-61 0.100E-40 2.58E-61 0.100E-40 1.58E-61 0.100E-40 1.38E-63 0.100E-40 1.25E-63 0.100E-40 1.58E-61 0.000E-40 2.58E-61 0.100E-40 1.58E-61 0.000E-40 2.58E-61 0.100E-40 1.58E-61 0.000E-40 2.58E-61 0.000E-40 0.00E+40 2.58E-61 0.000E+40 0.58E-61 0.000E+40 2.58E-61 0.000E+40 2.58E-	41 1.944E+05 0.000E+00 1.8	344E-04 1.062E-03	U.UUUE+UU U.UUUE+UU	2.5//E-UI U 2.57/E-01 (J.UUUE+UU / ∩ ∩∩∩E±∩∩ 0	.942E-03 (J.UUUE+UU I.U54E-U9) 000E+00 1 109E-09	0.000E+001
44 2.052E-05 0.000E+00 2.042E-04 1.176E-03 0.000E+00 2.057E-03 0.000E+00 1.000E+00 2.072E-03 0.000E+00 1.000E+00 2.072E-03 0.000E+00 1.000E+00 2.072E-03 0.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.055E-02 0.000E+00 0.000E+00 <	43 2.016E+05 0.000E+00 1.9	976E-04 1.138E-03	0.000E+00 0.000E+00	2.574L 01 0	0.000E+00 8	.565E-03 (0.000E+00 1.169E-09	0.000E+00↓
46 2, 248±05 0, 000±00 2.174±04 1.274±03 0, 000±00 2.084±07 0, 000±00 1.282±03 <td>44 2.052E+05 0.000E+00 2.0</td> <td>42E-04 1.176E-03</td> <td>0.000E+00 0.000E+00</td> <td>2.569E-01 (</td> <td>0.000E+00 8</td> <td>.910E-03 (</td> <td>0.000E+00 1.234E-09</td> <td>0.000E+00↓</td>	44 2.052E+05 0.000E+00 2.0	42E-04 1.176E-03	0.000E+00 0.000E+00	2.569E-01 (0.000E+00 8	.910E-03 (0.000E+00 1.234E-09	0.000E+00↓
12 12 <td< td=""><td>45 2.088E+05 0.000E+00 2.1</td><td>0/E-04 1.214E-03</td><td>0.000E+00 0.000E+00</td><td>2.567E-01 (2.567E-01 (</td><td>0.000E+00 9</td><td>.278E-03 (</td><td>).000E+00 1.305E-09</td><td>0.000E+00↓</td></td<>	45 2.088E+05 0.000E+00 2.1	0/E-04 1.214E-03	0.000E+00 0.000E+00	2.567E-01 (2.567E-01 (0.000E+00 9	.278E-03 ().000E+00 1.305E-09	0.000E+00↓
48 2.196E+05 0.000E+00 1.055E+02 0.000E+00 2.052E+03 0.000E+00 1.055E+02 0.000E+00 2.052E+03 0.000E+00 0.000E+00 1.055E+02 0.000E+00 2.052E+03 0.000E+00 0.000E+00 1.055E+02 0.000E+00 2.052E+03 0.000E+00 0.000E+00 1.052E+02 0.000E+00 2.052E+03 0.000E+00 2.052E+03 0.000E+00 2.052E+03 0.000E+00 2.052E+03 0.000E+00 2.052E+03 0.000E+00 2.052E+03 0.00E+00 2.052E+03 0.00E+00 2.052E+03 0.00E+00 2.052E+03 0.000E+00 2.052E+03	40 12.124E+05 0.000E+00 2.1	241E-04 1.291E-03	0.000E+00 0.000E+00	2.561E-01 (0.000E+00 1	.010E-02 (0.000E+00 1.466E-09	0.000E+00↓
49 2.222-115 0.1000±400 2.385±-108 0.000±400 1.05±-108 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.25±-128 0.000±400 1.25±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.000±400 1.05±-128 0.00±+00 1.00±+02 1.55±-128 0.00±+00 1.05±-128 0.00±+00 1.05±-128 0.00±+00 1.05±-128 0.00±+00 1.05±-128 0.00±+00 1.00±+00 1.05±-128 0.00±+00 1.05±+128 0.00±+00 1.05±+128 0.00±+00 1.05±+128 0.00±+00 1.00±+1	48 2.196E+05 0.000E+00 2.3	808E-04 1.330E-03	0.000E+00 0.000E+00	2.558E-01 (0.000E+00 1	.055E-02 (0.000E+00 1.559E-09	0.000E+00↓
31 2.502±05 0.000±00 2.513±00 1.445±03 0.000±00 2.545±01 0.000±00 1.215±05 0.000±00 1.632±03 0.000±00 52 2.340±05 0.000±00 2.513±00 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 1.445±02 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 2.545±01 0.000±00 1.445±05 0.000±00 2.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±01 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01 0.000±00 1.545±01	49 12.232E+05 0.000E+00 2.3	3/6E-04 1.368E-03	U.UUUE+UU U.UUUE+UU	2.555E-01 U	J.UUUE+UU	105E-02 U	J.UUUE+UU I.659E-U9) 000E≠00 1 770E-09	0.000E+001
52 2:346=45 0.000E+00 2:54E=41 0.000E+00 1:37E=02 0.000E+00 2:38E=04 1:564=03 0.000E+00 2:53E=01 0.000E+00 1:38E=02 0.000E+00 2:38E=04 0.000E+00 1:38E=04 0.000E+00 1:38E=04 0.000E+00 1:38E=04 0.000E+00 1:38E=04 0.000E+00 1:38E=04 0:000E+00 1:38E=04 0:00E+00 1:38E=04 0:00E+00 1:38E=04 0:00E+00 1:38E=04 0:00E+00 1:38E=04 0:00E+00 1:38E=04	51 12.304E+05 0.000E+00 2.5	513E-04 1.448E-03	0.000E+00 0.000E+00	2.548E-01 (0.000E+00 1	.215E-02 (0.000E+00 1.892E-09	0.000E+001
53 2.376E+05 0.000E+00 2.174E+04 1.584E+05 0.000E+00 2.338E+03 0.000E+00 2.512E+01 0.000E+00 2.520E+05 0.000E+00 2.338E+03 0.000E+00 2.520E+05 0.000E+00 2.348E+03 0.000E+00 2.320E+03 0.000E+00 2.320E+03 0.000E+00 2.348E+03 0.000E+00 2.348E+03 0.000E+00 3.148E+03 0.000E+00 3.148E+03 0.000E+00 3.148E+03 0.000E+00 3.148E+03 0.000E+00 3.148E+03 0.000E+00 3.148E+03 0.000E+00 2.522E+01 0.000E+00 2.372E+03 0.000E+00 3.742E+03 <	52 2.340E+05 0.000E+00 2.6	14E-04 1.506E-03	0.000E+00 0.000E+00	2.545E-01 (0.000E+00 1	.277E-02 (0.000E+00 2.026E-09	0.000E+00↓
35 2.442E+05 0.000E+00 2.937E+03 0.000E+00 2.937E+03 0.000E+00 2.937E+01 0.000E+00 1.442E+02 0.000E+00 2.937E+03 0.000E+00 2.937E+01 0.000E+00 1.587E+02 0.000E+00 2.937E+03 0.000E+00 2.937E+01 0.000E+00 1.587E+02 0.000E+00 2.937E+03 0.000E+00 2.937E+01 0.000E+00 1.587E+02 0.000E+00 2.947E+03 0.000E+00 2.937E+01 0.000E+00 1.587E+02 0.000E+00 2.947E+03 0.000E+00 0.00E+00 1.937E+02 0.000E+00 2.957E+02 0.000E+00 3.148E+03 0.000E+00 0.000E+00 2.957E+01 0.000E+00 2.957E+01 0.000E+00 2.957E+02 0.000E+00 3.784E+03 0.000E+00 2.957E+01 0.000E+00 2.957E+02 0.000E+00 3.784E+03 0.000E+00 0.957E+02 0.000E+00 4.937E+02 0.000E+00 <t< td=""><td>53 2.376E+05 0.000E+00 2.7</td><td>15E-04 1.564E-03</td><td>0.000E+00 0.000E+00</td><td>2.541E-01 U 2.527E-01 U</td><td>J.UUUE+UU 1</td><td>.343E-02 (</td><td>J.UUUE+UU 2.1/4E-U9) 000E±00 2 220E±00</td><td>0.000E+001</td></t<>	53 2.376E+05 0.000E+00 2.7	15E-04 1.564E-03	0.000E+00 0.000E+00	2.541E-01 U 2.527E-01 U	J.UUUE+UU 1	.343E-02 (J.UUUE+UU 2.1/4E-U9) 000E±00 2 220E±00	0.000E+001
56 2.484E+05 0.000E+00 3.018E+04 1.738E+03 0.000E+00 2.527E+01 0.000E+00 1.581E+02 0.000E+00 3.194E+09 0.000E+00 57 2.552E+05 0.000E+00 3.19E+04 1.854E+03 0.000E+00 2.527E+01 0.000E+00 1.88E+02 0.000E+00 3.194E+09 0.000E+00 58 2.552E+05 0.000E+00 3.18E+04 1.93E+03 0.000E+00 2.572E+01 0.000E+00 1.88E+02 0.000E+00 3.472E+09 0.000E+00 62 2.522E+05 0.000E+00 3.18E+04 1.93E+03 0.000E+00 2.502E+01 0.000E+00 2.13E+02 0.000E+00 3.73E+05 0.000E+00 3.73E+05 0.000E+00 3.73E+05 0.000E+00 3.638E+04 2.12E+03 0.000E+00 2.437E+01 0.000E+00 5.45E+05 0.000E+00 3.638E+04 2.20E+03 0.000E+00 2.437E+01 0.000E+00 5.45E+05 0.000E+00 3.638E+04 2.20E+03 0.000E+00 2.437E+01 0.000E+00 5.45E+05 0.000E+00 3.638E+04 2.20E+03 0.000E+00 2.438E+05 0.000E+00 5.45E+02 0.000E+00 5.63E	55 12.448E+05 0.000E+00 2.9	17E-04 1.680E-03	0.000E+00 0.000E+00	2.533E-01 (0.000E+00 1	.494E-02 (0.000E+00 2.519E-09	0.000E+001
57 2.520±405 0.000±400 3.118±-04 1.785±-03 0.000±400 2.522±-01 0.000±400 1.864±-02 0.000±400 3.484±-03 0.000±400 2.522±-01 0.000±400 3.484±-03 0.000±400 2.522±-01 0.000±400 3.484±-03 0.000±400 3.484±-03 0.000±400 2.512±-01 0.000±400 3.485±-04 3.485±-04 3.685±-04 0.000±400 2.512±-01 0.000±400 2.305±-02 0.000±400 4.525±-03 0.000±400 2.502±-01 0.000±400 2.305±-02 0.000±+00 4.525±-03 0.000±+00 2.502±-01 0.000±400 2.305±-02 0.000±+00 4.525±-03 0.000±+00 2.502±-01 0.000±400 2.335±-02 0.000±+00 4.525±-03 0.000±+00 2.432±-01 0.000±+00 2.432±-01 0.000±+00 2.432±-03 0.000±+00 2.432±-01 0.000±+00 2.337±-02 0.000±+00 4.525±-03 0.000±+00 2.432±-01 0.000±+00 2.337±-02 0.000±+00 4.525±-03 0.000±+00 2.432±-01 0.000±+00 2.337±-02 0.000±+00 4.525±-03 0.000±+00 2.442±-01 0.000±+00 2.331±-02 0.000±+00 4.525±-03 <	56 2.484E+05 0.000E+00 3.0	18E-04 1.739E-03	0.000E+00 0.000E+00	2.531E-01 (0.000E+00 1	.581E-02 (0.000E+00 2.720E-09	0.000E+00↓
38 2:352E+05 0.000E+00 3:218E+04 1:91E+03 0.000E+00 0.000E+00 2:517E+01 0.000E+00 1:73E+02 0.000E+00 3:742E+09 0.000E+004 4:2628E+05 0.000E+00 3:418E+04 1:968E+03 0.000E+00 0.000E+00 2:517E+01 0.000E+00 2:188E+02 0.000E+00 4:132E+09 0.000E+004 4:2.70E+05 0.000E+00 3:617E+04 2:08E+03 0.000E+00 0.000E+00 2:498E+01 0.000E+00 2:188E+02 0.000E+00 4:532E+09 0.000E+004 4:2.772E+05 0.000E+00 3:618E+04 2:125E+03 0.000E+00 0.000E+00 2:498E+01 0.000E+00 2:280E+02 0.000E+00 4:532E+09 0.000E+004 4:2.772E+05 0.000E+00 3:618E+04 2:125E+03 0.000E+00 0.000E+00 2:498E+01 0.000E+00 2:280E+02 0.000E+00 4:532E+09 0.000E+004 4:2.772E+05 0.000E+00 3:781E+04 2:186E+03 0.000E+00 0.000E+00 2:487E+01 0.000E+00 2:608E+02 0.000E+00 5:454E+09 0.000E+004 4:2.808E+05 0.000E+00 3:781E+04 2:207E+03 0.000E+00 0.000E+00 2:474E+01 0.000E+00 2:078E+02 0.000E+00 5:454E+09 0.000E+004 4:2.808E+05 0.000E+00 3:978E+04 2:207E+03 0.000E+00 0.000E+00 2:474E+01 0.000E+00 3:038E+02 0.000E+00 5:454E+09 0.000E+004 4:2.9382E+05 0.000E+00 3:978E+04 2:202E+03 0.000E+00 0.000E+00 2:474E+01 0.000E+00 3:038E+02 0.000E+00 5:454E+09 0.000E+004 4:2.9382E+05 0.000E+00 4:342E+02 2:202E+03 0.000E+00 0:000E+00 2:478E+01 0.000E+00 3:038E+02 0:000E+00 5:454E+09 0.000E+00 4:2.9382E+05 0.000E+00 4:149E+04 2:230E+03 0.000E+00 0:000E+00 2:478E+01 0:000E+00 3:231E+02 0:000E+00 5:812E+09 0.000E+00 4:2.9382E+05 0:000E+00 4:149E+04 2:230E+03 0:000E+00 0:245E+01 0:000E+00 3:757E+02 0:000E+00 5:812E+09 0:000E+00 4:2.9382E+05 0:000E+00 4:242E+04 2:448E+03 0:000E+00 2:443E+01 0:000E+00 4:771E+02 0:000E+00 1:14E+08 0:000E+00 4:3.932E+05 0:000E+00 4:242E+04 2:438E+03 0:000E+00 0:2443E+01 0:000E+00 4:782E+02 0:000E+00 1:380E+08 0:000E+00 4:3.932E+05 0:000E+00 4:42E+04 2:438E+03 0:000E+00 0:2432E+01 0:000E+00 4:782E+02 0:000E+00 1:380E+08 0:000E+00 4:3.932E+05 0:000E+00 4:42E+04 2:68E+03 0:000E+00 0:2432E+01 0:000E+00 4:782E+02 0:000E+00 1:380E+08 0:000E+00 4:3.932E+05 0:000E+00 4:458E+04 2:048E+03 0:000E+00 0:000E+00 2:438E+01 0:000E+00 1:582E+02 0:000E+00 4:3.132E+05 0:000E+00 4:458E+	57 2.520E+05 0.000E+00 3.1	19E-04 1.796E-03	0.000E+00 0.000E+00	2.52/E-01 (0.000E+00 1	.674E-02 (0.000E+00 2.944E-09	0.000E+00↓
60 2.628±05 0.000E+00 3.418±04 1.969±03 0.000E+00 2.506±01 0.000E+00 2.136±02 0.000E+00 4.132±09 0.000E+004 62 2.730±05 0.000E+00 3.617±04 2.034±03 0.000E+00 2.500±01 0.000E+00 2.438±02 0.000E+00 4.523±09 0.000E+004 63 2.735±05 0.000E+00 3.688±04 2.125±03 0.000E+00 2.438±01 0.000E+004 4.361±04 0.000E+004 64 2.772±05 0.000E+003 3.835±04 2.207±03 0.000E+004 2.438±01 0.000E+004 2.438±01 0.000E+004 3.945±04 2.207±03 0.000E+004 2.438±01 0.000E+004 3.035±04 0.000E+004 4.985±04 0.	59 2.592E+05 0.000E+00 3.3	318E-04 1.911E-03	0.000E+00 0.000E+00	2.517E-01 (0.000E+00 1	.885E-02 (0.000E+00 3.134E-03	0.000E+001
61 2.864±05 0.000±+00 3.518±-04 2.125±-03 0.000±+00 2.500±-01 0.000±+00 2.382±-02 0.000±+00 4.682±-03 0.000±+00 2.500±-01 0.000±+00 2.437±-02 0.000±+00 4.682±-03 0.000±+00 2.438±-01 0.000±+00 2.437±-02 0.000±+00 4.52±-09 0.000±+00 4.642±-03 0.000±+00 2.438±-01 0.000±+00 2.688±-02 0.000±+00 4.62±-03 0.000±+00 2.487±-01 0.000±+00 2.688±-02 0.000±+00 6.072±-09 0.000±+00 4.62±-01 0.000±+00 3.035±-04 2.207±-03 0.000±+00 2.487±-01 0.000±+00 3.035±-02 0.000±+00 4.62±-01 0.000±+00 3.035±-02 0.000±+00 4.62±-01 0.000±+00 3.035±-02 0.000±+00 4.32±-09 0.000±+00 4.62±-01 0.000±+00 3.43±-02 0.000±+00 4.32±-09 0.000±+00 4.42±-01 0.000±+00 3.43±-02 0.000±+00 8.12±-09 0.000±+00 4.32±-01 0.000±+00 4.32±-01 0.000±+00 3.43±-02 0.000±+00 4.32±-01 0.000±+00 4.32±-01 0.000±+00 4.32±-01 0.000±+00 4.32±-01	60 2.628E+05 0.000E+00 3.4	18E-04 1.969E-03	0.000E+00 0.000E+00	2.511E-01 (0.000E+00 2	.005E-02 (0.000E+00 3.784E-09	0.000E+00↓
12,736E+05 0.000E+00 3.87E-04 2.032E-03 0.000E+00 2.432E-01 0.000E+00 2.432E-02 0.000E+00 4.32E-09 0.000E+00 64 2.772E+05 0.000E+00 3.781E-04 2.168E-03 0.000E+00 2.437E-01 0.000E+00 2.638E-02 0.000E+00 5.454E-09 0.000E+00 65 2.838E+05 0.000E+00 3.33E-04 2.292E-03 0.000E+00 2.474E-01 0.000E+00 3.03E-02 0.000E+00 6.631E-09 0.000E+004 64 2.91E+05 0.000E+00 3.97E-04 2.238E-03 0.000E+00 2.47E-01 0.000E+00 3.231E-02 0.000E+00 8.631E-09 0.000E+004 64 2.91E+05 0.000E+00 3.97E-04 2.338E-03 0.000E+00 2.467E-01 0.000E+00 3.231E-02 0.000E+00 8.432E-09 0.000E+004 7.925E+05 0.000E+00 4.432E-04 2.438E-03 0.000E+00 3.47E-02 0.000E+00 1.01E-08 0.000E+004 7.925E+05 0.000E+00 4.432E-04 2.448E-03 0.000E+00 4.71E-02 0.000E+00 1.01E-08 0.000E+004	61 2.664E+05 0.000E+00 3.5	18E-04 2.026E-03	0.000E+00 0.000E+00	2.506E-01 (2.500E-01 (0.000E+00 2	.136E-02 ().000E+00 4.132E-09	0.000E+001
64 2.772E+05 0.000E+00 3.761E-04 2.166E-03 0.000E+00 2.437E-01 0.000E+00 2.608E-02 0.000E+00 5.454E-09 0.000E+00 4.607E-03 0.000E+00 2.487E-01 0.000E+00 2.797E-02 0.000E+00 6.631E-03 0.000E+00 2.487E-01 0.000E+00 2.797E-02 0.000E+00 6.631E-03 0.000E+00 2.447E-01 0.000E+00 3.77E-02 0.000E+00 7.322E-03 0.000E+00 2.447E-01 0.000E+00 3.77E-02 0.000E+00 7.322E-03 0.000E+00 2.447E-01 0.000E+00 3.77E-02 0.000E+00 8.31E-03 0.000E+00 2.467E-01 0.000E+00 3.77E-02 0.000E+00 8.31E-03 0.000E+00 2.467E-01 0.000E+00 3.481E-02 0.000E+00 3.481E-02 0.000E+00 1.021E-03 0.000E+00 4.422E-01 0.000E+00 4.43E-01 0.000E+00 4.422E-01 0.000E+00 4.422E-01 0.000E+00 4.43E-01 0.000E+00 4.422E-01 0.000	63 12.736F+05 0.000F+00 3.6	389E-04 2.125E-03	0.000E+00 0.000E+00	2.300E-01 (2.493E-01 (0.000E+00 2	.437E-02 (0.000E+00 4.961E-09	0.000E+00↓
65 2.808E+05 0.000E+00 3.838E-04 2.207E-03 0.000E+00 2.474E-01 0.000E+00 3.038E-02 0.000E+00 6.831E-02 0.000E+00 6.831E-02 0.000E+00 7.332E-09 0.000E+004 67 2.880E+05 0.000E+00 4.057E-04 2.338E-03 0.000E+00 2.467E-01 0.000E+00 3.431E-02 0.000E+00 8.122E-09 0.000E+004 68 2.952E+05 0.000E+00 4.149E-04 2.490E-03 0.000E+00 2.461E-01 0.000E+00 3.431E-02 0.000E+00 8.122E-09 0.000E+004 70 2.988E+05 0.000E+00 4.149E-04 2.490E-03 0.000E+00 2.448E-01 0.000E+00 4.369E-02 0.000E+00 1.141E-08 0.000E+004 71 3.024E+05 0.000E+00 4.247E-04 2.448E-03 0.000E+00 2.448E-01 0.000E+00 4.389E-02 0.000E+00 1.340E-08 0.000E+004 1.302E+05 0.000E+004 4.538E-03 0.000E+00 2.438E-01 0.000E+00 1.330E-08 0.000E+004 1.330E-08 0.000E+004 1.330E-08 0.000E+004 1.332E+05 0.000E+004 1.558E-03	64 2.772E+05 0.000E+00 3.7	61E-04 2.166E-03	0.000E+00 0.000E+00	2.487E-01 (0.000E+00 2	.608E-02 (0.000E+00 5.454E-09	0.000E+00↓
60 2.844E+03 0.000E+00 3.937E=04 2.292E=03 0.000E+00 0.000E+00 3.231E=02 0.000E+00 7.33E=03 0.000E+00 67 2.838E+05 0.000E+00 4.149E=04 2.338E=03 0.000E+00 2.461E=01 0.000E+00 3.231E=02 0.000E+00 7.332E=09 0.000E+00 69 2.952E+05 0.000E+00 4.149E=04 2.338E=03 0.000E+00 2.445E=01 0.000E+00 3.757E=02 0.000E+00 9.012E=09 0.000E+004 70 2.988E+05 0.000E+00 4.242E=04 2.443E=03 0.000E+00 2.443E=01 0.000E+00 4.399E=02 0.000E+00 1.001E=08 0.000E+004 71 3.060E+05 0.000E+00 4.512E=03 0.000E+00 2.432E=01 0.000E+00 4.71E=02 0.000E+00 1.381E=08 0.000E+00 1.381E=08 <td< td=""><td>65 2.808E+05 0.000E+00 3.8</td><td>33E-04 2.207E-03</td><td>0.000E+00 0.000E+00</td><td>2.480E-01 (</td><td>0.000E+00 2</td><td>.797E-02 (</td><td>0.000E+00 6.007E-09</td><td>0.000E+00↓</td></td<>	65 2.808E+05 0.000E+00 3.8	33E-04 2.207E-03	0.000E+00 0.000E+00	2.480E-01 (0.000E+00 2	.797E-02 (0.000E+00 6.007E-09	0.000E+00↓
68 2.916E+05 0.000E+00 4.057E-04 2.336E-03 0.000E+00 2.461E-01 0.000E+00 3.481E-02 0.000E+00 8.122E-09 0.000E+004 69 2.952E+05 0.000E+00 4.149E-04 2.330E-03 0.000E+00 0.000E+00 2.445E-01 0.000E+00 4.052E-02 0.000E+00 9.012E-09 0.000E+004 70 2.988E+05 0.000E+00 4.242E-04 2.443E-01 0.000E+00 4.399E-02 0.000E+00 1.114E-08 0.000E+004 71 3.042E+05 0.000E+00 4.327E-04 2.550E-03 0.000E+00 2.443E-01 0.000E+00 4.399E-02 0.000E+00 1.240E-08 0.000E+004 73 3.060E+05 0.000E+00 4.560E-04 2.656E-03 0.000E+00 2.432E-01 0.000E+00 5.180E-02 0.000E+00 1.380E-08 0.000E+004 74 3.132E+05 0.000E+00 4.564E-03 0.000E+00 2.449E-01 0.000E+00 5.381E-02 0.000E+00 1.380E-08 0.000E+004 75 3.168E+05 0.000E+00 4.564E-03 0.000E+00 2.409E-01 0.000E+00 1.380E-01	67 12.880F+05 0.000F+00 3.9	176F-04 2.249E-03	0.000E+00 0.000E+00	2.474E-01 (2.467E-01 (0.000E+00 3	.231E-02 (0.000E+00 7.332E-09	0.000E+00\$
69 2.952±+05 0.000±+00 4.149±-04 2.390±-03 0.000±+00 2.445±-01 0.000±+00 3.757±-02 0.000±+00 9.012±-09 0.000±+00 4.022±-04 0.000±+00 4.022±-04 0.000±+00 4.000±+00 <	68 2.916E+05 0.000E+00 4.0	57E-04 2.336E-03	0.000E+00 0.000E+00	2.461E-01 (0.000E+00 3	.481E-02 (0.000E+00 8.122E-09	0.000E+00↓
12.3824=05 0.000E+00 4.242E-04 2.442E-03 0.000E+00 4.002E+02 0.000E+00 1.001E+03 0.000E+004 72 3.060E+05 0.000E+00 4.242E-04 2.550E-03 0.000E+00 2.443E-01 0.000E+00 4.771E-02 0.000E+00 1.240E-08 0.000E+004 73 3.096E+05 0.000E+00 4.517E-04 2.650E-03 0.000E+00 2.432E-01 0.000E+00 4.771E-02 0.000E+00 1.240E-08 0.000E+004 74 3.132E+05 0.000E+00 4.560E-03 0.000E+00 0.000E+00 2.432E-01 0.000E+00 6.561E-02 0.000E+00 1.537E-08 0.000E+004 75 3.168E+05 0.000E+00 4.662E-03 0.000E+00 0.000E+00 2.432E-01 0.000E+00 6.562E-02 0.000E+00 1.710E-08 0.000E+004 76 3.240E+05 0.000E+00 4.662E-03 0.000E+00 2.338E-01 0.000E+00 7.325E-02 0.000E+00 1.900E+04 78 3.276E+05 0.000E+04 4.695E-04 2.704E-03 0.000E+00 2.338E-01 0.000E+00 7.375E-02 0.000E+00 2.327E-08 <td>69 2.952E+05 0.000E+00 4.1</td> <td>49E-04 2.390E-03</td> <td>0.000E+00 0.000E+00</td> <td>2.455E-01 (2.440E-01 (</td> <td>0.000E+00 3</td> <td>./5/E-02 (</td> <td>).000E+00 9.012E-09</td> <td>0.000E+00↓</td>	69 2.952E+05 0.000E+00 4.1	49E-04 2.390E-03	0.000E+00 0.000E+00	2.455E-01 (2.440E-01 (0.000E+00 3	./5/E-02 ().000E+00 9.012E-09	0.000E+00↓
72 3.060E+05 0.000E+00 4.427E-04 2.550E-03 0.000E+00 2.438E-01 0.000E+00 4.771E-02 0.000E+00 1.240E-08 0.000E+004 73 3.09E+05 0.000E+00 4.518E-04 2.603E-03 0.000E+00 2.422E-01 0.000E+005 5.180E-02 0.000E+001 1.380E-08 0.000E+004 74 3.132E+05 0.000E+00 4.594E-04 2.646E-03 0.000E+00 2.432E-01 0.000E+00 6.124E-02 0.000E+00 1.577E-08 0.000E+004 75 3.168E+05 0.000E+00 4.627E-04 2.665E-03 0.000E+00 2.449E-01 0.000E+00 6.242E-02 0.000E+00 1.710E-08 0.000E+004 76 3.204E+05 0.000E+00 4.661E-04 2.685E-03 0.000E+00 2.348E-01 0.000E+00 7.875E-02 0.000E+00 2.327E-08 0.000E+004 2.332E+01 0.000E+00 2.382E-01 0.000E+00 2.382E-01 0.000E+00 2.382E-01 0.000E+00 2.382E-01 0.000E+00 2.382E-03 0.000E+004 2.332E+01 0.000E+004 2.560E-08 0.000E+004 2.382E-01 0.000E+004 2.327E-08	71 3.024E+05 0.000E+00 4.3	34E-04 2.496E-03	0.000E+00 0.000E+00	2.443E-01 (2.443E-01 (0.000E+00 4	.399E-02 (0.000E+00 1.114E-08	0.000E+00\$
73 3.096E+05 0.000E+00 4.519E-04 2.603E-03 0.000E+00 2.432E-01 0.000E+00 5.180E-02 0.000E+00 1.380E-08 0.000E+004 74 3.132E+05 0.000E+00 4.569E-03 0.000E+00 0.00E+00 2.628E-01 0.000E+00 6.51E-02 0.000E+00 1.537E-08 0.000E+004 75 3.168E+05 0.000E+00 4.627E-04 2.665E-03 0.000E+00 2.449E-01 0.000E+00 6.622E-02 0.000E+00 1.900E-08 0.000E+004 77 3.240E+05 0.000E+00 4.661E-04 2.685E-03 0.000E+00 2.338E-01 0.000E+00 7.245E-02 0.000E+00 2.327E-08 0.000E+004 78 3.276E+05 0.000E+00 4.695E-04 2.711E-03 0.000E+00 2.338E-01 0.000E+00 7.875E-02 0.000E+00 2.327E-08 0.000E+004 78 3.348E+05 0.000E+00 4.715E-04 2.711E-03 0.000E+00 2.337E-01 0.000E+00 7.875E-02 0.000E+00 2.802E-08 0.000E+004 80 3.348E+05 0.000E+00 4.708E-04 2.717E-03 0.000E+00	72 3.060E+05 0.000E+00 4.4	27E-04 2.550E-03	0.000E+00 0.000E+00	2.438E-01 (0.000E+00 4	.771E-02 (0.000E+00 1.240E-08	0.000E+00↓
143:132E+05 0.000E+00 4.302E+03 0.000E+00 0.000E+00 1.302E+03 0.000E+00 2.438E+01 0.000E+00 7.245E+02 0.000E+00 2.106E+03 0.000E+004 78 3.276E+05 0.000E+00 4.685E-04 2.704E+03 0.000E+00 0.000E+00 2.338E+01 0.000E+00 7.875E+02 0.000E+00 2.327E+08 0.000E+004 80 3.348E+05 0.000E+00 4.708E+03 0.000E+00 0.000E+00 2.338E+01 0.000E+00 9.280E+02 0.000E+00 2.802E+08 0.000E+004 81 3.348E+05 0.000E+00 4.708E+04 2.707E+03 0.000E+00 2.338E+01 0.000E+00 1.006E+01 0.000E+00 3.046E+08 <td< td=""><td>73 3.096E+05 0.000E+00 4.5</td><td>019E-04 2.603E-03</td><td>0.000E+00 0.000E+00</td><td>2.432E-01 (</td><td>0.000E+00 5</td><td>.180E-02 (</td><td>).000E+00 1.380E-08</td><td>0.000E+00↓</td></td<>	73 3.096E+05 0.000E+00 4.5	019E-04 2.603E-03	0.000E+00 0.000E+00	2.432E-01 (0.000E+00 5	.180E-02 ().000E+00 1.380E-08	0.000E+00↓
76 3.204E+05 0.000E+00 4.627E-04 2.665E-03 0.000E+00 2.409E-01 0.000E+00 6.662E-02 0.000E+00 1.900E-08 0.000E+004 77 3.240E+05 0.000E+00 4.661E-04 2.685E-03 0.000E+00 2.338E-01 0.000E+00 7.245E-02 0.000E+00 2.106E-08 0.000E+004 78 3.276E+05 0.000E+00 4.695E-04 2.704E-03 0.000E+00 2.338E-01 0.000E+00 7.245E-02 0.000E+00 2.327E-08 0.000E+004 79 3.312E+05 0.000E+04 4.715E-04 2.711E-03 0.000E+00 2.338E-01 0.000E+00 9.280E-02 0.000E+00 2.860E-08 0.000E+004 80 3.348E+05 0.000E+04 4.708E-04 2.707E-03 0.000E+00 2.337E-01 0.000E+00 1.006E-01 0.000E+00 3.842E+05 0.000E+00 4.682E-04 0.000E+00 4.692E-04	75 13.168E+05 0.000E+00 4.5	594F-04 2.646F-03	0.000E+00 0.000E+00	2.420E-01 (2.419E-01 (0.000E+00 5	.124E-02 (0.000E+00 1.710E-08	0.000E+001
77 3.240E+05 0.000E+00 4.695E-04 2.685E-03 0.000E+00 0.000E+00 2.338E-01 0.000E+00 7.245E-02 0.000E+00 2.327E-08 0.000E+00 4.7875E-02 0.000E+00 2.327E-08 0.000E+00 4.79875E-02 0.000E+00 2.327E-08 0.000E+00 4.79875E-02 0.000E+00 4.715E-04 2.71E-03 0.000E+00 0.000E+00 2.337E-01 0.000E+00 9.280E-02 0.000E+00 2.362E-08 0.000E+00 4.3348E+05 0.000E+00 4.708E-04 2.707E-03 0.000E+00 0.000E+00 2.337E-01 0.000E+00 9.280E-02 0.000E+00 2.302E-08 0.000E+00 4.3348E+05 0.000E+00 4.700E-04 2.707E-03 0.000E+00 0.000E+00 2.337E-01 0.000E+00 1.008E-01 0.000E+00 3.245E-08 0.000E+00 4.2348E+05 0.000E+00 4.700E-04 2.707E-03 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.008E-01 0.000E+00 3.245E-08 0.000E+00 4.2348E+05 0.000E+00 4.692E-04 2.707E-03 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.008E-01 0.000E+00 3.245E-08 0.000E+00 4.2348E+05 0.000E+00 4.692E-04 2.638E-03 0.000E+00 0.2327E-01 0.000E+00 1.088E-01 0.000E+00 3.245E-08 0.000E+00 4.2348E+05 0.000E+00 4.692E-04 2.638E-03 0.000E+00 0.2282E-01 0.000E+00 1.088E-01 0.000E+00 3.255E-08 0.000E+00 4.2348E+05 0.000E+00 4.635E-04 2.638E+03 0.000E+00 0.2282E-01 0.000E+00 1.775E-01 0.000E+00 3.509E-08 0.000E+00 4.34325E+05 0.000E+00 4.637E-04 2.638E+03 0.000E+00 0.000E+00 2.227E+01 0.000E+00 1.266E+01 0.000E+00 3.706E+08 0.000E+00 4.3558E+05 0.000E+00 4.677E+04 2.634E+03 0.000E+00 0.000E+00 2.242E+01 0.000E+00 1.340E+01 0.000E+00 3.706E+08 0.000E+00 4.3558E+05 0.000E+00 4.725E+04 2.702E+03 0.000E+00 0.000E+00 2.242E+01 0.000E+00 1.340E+01 0.000E+00 3.743E+07 0.000E+00 4.3558E+05 0.000E+00 4.734E+03 0.000E+00 0.000E+00 2.244E+01 0.000E+00 1.377E+01 0.000E+00 3.743E+07 0.000E+00 4.857E+04 2.797E+03 0.000E+00 0.209E+00 2.244E+01 0.000E+00 1.377E+01 0.000E+00 3.743E+07 0.000E+00 4.357E+01 0.000E+00 4.57E+01 0.0	76 3.204E+05 0.000E+00 4.6	27E-04 2.665E-03	0.000E+00 0.000E+00	2.409E-01 (0.000E+00 6	.662E-02 (0.000E+00 1.900E-08	0.000E+00↓
13.270E-03 0.000E+00 4.035E-04 2.70E-03 0.000E+00 0.000E+00 2.332E-01 0.000E+00 7.873E-02 0.000E+00 2.327E-03 0.000E+00 4.715E-04 2.71E-03 0.000E+00 0.000E+00 2.337E-01 0.000E+00 9.280E-02 0.000E+00 2.802E-08 0.000E+00 4.802E-08 0.000E+00 4.832E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.802E-08 0.000E+00 4.832E-08 0.000E+00 4.8232E-08 0.000E+00 2.327E-01 0.000E+00 1.000E+00 1.000E+00 3.246E-08 0.000E+00 4.8232E-08 0.000E+00 4.822E-08 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.000E+00 3.246E-08 0.000E+00 4.8232E-08 0.000E+00 4.822E-08 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.088E-01 0.000E+00 3.248E-08 0.000E+00 4.832E-08 0.000E+00 4.832E-08 0.000E+00 0.000E+00 2.232E-01 0.000E+00 1.088E-01 0.000E+00 3.250E-08 0.000E+00 4.8325E-08 0.000E+00 4.8432E+05 0.000E+00 4.685E-04 2.698E-03 0.000E+00 0.2282E-01 0.000E+00 1.266E-01 0.000E+00 3.509E-08 0.000E+00 4.8432E+05 0.000E+00 4.677E-04 2.694E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.266E-01 0.000E+00 3.706E-08 0.000E+00 4.857E-04 2.702E-03 0.000E+00 0.2244E-01 0.000E+00 1.340E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 1.779E-06 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.577E-01 0.000E+00 1.577E-05 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.572E-01 0.000E+00 1.572E-05 0.000E+00 4.837E-01 0.000E+00 4.638E-04 0.000E+00 4.895E-04 0.000E+00 4.895E	7/ 3.240E+05 0.000E+00 4.6	61E-04 2.685E-03	U.UUUE+00 0.000E+00	2.398E-01 (J.000E+00 7	.245E-02 (J.UUUE+00 2.106E-08	U.000E+00↓
80 3.348E+05 0.000E+00 4.708E-04 2.711E-03 0.000E+00 0.000E+00 2.348E-01 0.000E+00 9.280E-02 0.000E+00 2.802E-08 0.000E+00 4 81 3.384E+05 0.000E+00 4.700E-04 2.707E-03 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.008E-01 0.000E+00 3.248E-08 0.000E+00 4 82 3.420E+05 0.000E+00 4.682E-04 2.703E-03 0.000E+00 0.000E+00 2.327E-01 0.000E+00 1.088E-01 0.000E+00 3.248E-08 0.000E+00 4 83 3.456E+05 0.000E+00 4.685E-04 2.698E-03 0.000E+00 0.000E+00 2.282E-01 0.000E+00 1.266E-01 0.000E+00 3.509E-08 0.000E+00 4 84 3.492E+05 0.000E+00 4.687E-04 2.698E-03 0.000E+00 0.000E+00 2.248E-01 0.000E+00 1.266E-01 0.000E+00 3.706E-08 0.000E+00 4 84 3.492E+05 0.000E+00 4.677E-04 2.698E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 3.706E-08 0.000E+00 4 85 3.528E+05 0.000E+00 4.729E-04 2.722E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 3.743E-07 0.000E+00 4 86 3.564E+05 0.000E+00 4.739E-04 2.760E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4 86 3.564E+05 0.000E+00 4.739E-04 2.760E-03 0.000E+00 0.000E+00 2.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4 87 3.60E+05 0.000E+00 4.637E-04 2.772E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.377E-01 0.000E+00 1.779E-06 0.000E+00 4 88 3.638E+05 0.000E+00 4.637E-04 2.772E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.577E-01 0.000E+00 1.779E-06 0.000E+00 4 89 3.672E+05 0.000E+00 4.687E-04 2.770E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.577E-01 0.000E+00 1.527E-05 0.000E+00 4 89 3.672E+05 0.000E+00 4.687E-04 2.697E-03 0.000E+00 0.000E+00 1.937E-01 0.000E+00 1.577E-01 0.000E+00 1.577E-01 0.000E+00 4.687E-04 0.000E+00 4.000E+00 0.000E+00 0.000E+00 0.000E+00 4.697E-04 0.000E+00 4.698E-04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.577E-01 0.000E+00 1.577E-01 0.000E+00 0.000E+00 4.698E-04 0.000E+00 0.00	79 3.312E+05 0.000E+00 4.6	15E-04 2.716E-03	0.000E+00 0.000E+00	2.367E-01 (0.000E+00 7	.573E-02 (0.000E+00 2.327E-08	0.000E+001
8 3.384±+05 0.000E+00 4.700E+04 2.707E+03 0.000E+00 0.000E+00 2.327E+01 0.000E+00 1.006E+01 0.000E+00 3.246E+08 0.000E+004 8 3.420E+05 0.000E+00 4.692E+04 2.703E+03 0.000E+00 0.000E+00 2.305E+01 0.000E+00 1.088E+01 0.000E+00 3.285E+08 0.000E+004 8 3.456E+05 0.000E+00 4.685E+04 2.692E+03 0.000E+00 0.000E+00 2.2257E+01 0.000E+00 1.266E+01 0.000E+00 3.706E+08 0.000E+004 8 3.528E+05 0.000E+00 4.677E+04 2.694E+03 0.000E+00 0.000E+00 2.244E+01 0.000E+00 1.340E+01 0.000E+00 3.706E+08 0.000E+004 8 3.528E+05 0.000E+00 4.725E+04 2.722E+03 0.000E+00 0.000E+00 2.244E+01 0.000E+00 1.340E+01 0.000E+00 3.743E+07 0.000E+004 8 3.564E+05 0.000E+00 4.731E+04 2.760E+03 0.000E+00 0.000E+00 2.205E+01 0.000E+00 1.377E+01 0.000E+00 3.743E+07 0.000E+004 8 3.686E+05 0.000E+00 4.857E+04 2.772E+03 0.000E+00 0.000E+00 2.154E+01 0.000E+00 1.377E+01 0.000E+00 1.779E+06 0.000E+004 8 3.686E+05 0.000E+00 4.857E+04 2.750E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.779E+06 0.000E+004 8 3.672E+05 0.000E+00 4.685E+04 2.722E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+004 8 3.672E+05 0.000E+00 4.685E+04 2.772E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+004 8 3.672E+05 0.000E+00 4.683E+04 2.772E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+004 8 3.672E+05 0.000E+00 4.683E+04 2.697E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.672E+01 0.000E+00 1.640E+04 0.000E+004 8 3.672E+05 0.000E+00 4.683E+04 2.697E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.672E+01 0.000E+00 0.00E+00 4.695E+04 0.000E+00 0.00	80 3.348E+05 0.000E+00 4.7	08E-04 2.711E-03	0.000E+00 0.000E+00	2.348E-01 (0.000E+00 9	.280E-02 (0.000E+00 2.802E-08	0.000E+001
3 3.456E+05 0.000E+00 4.685E-04 2.698E+03 0.000E+00 0.000E+00 2.285E-01 0.000E+00 1.266E-01 0.000E+00 3.509E-08 0.000E+004 4.3492E+05 0.000E+00 4.677E-04 2.698E+03 0.000E+00 0.2282E-01 0.000E+00 1.266E-01 0.000E+00 3.706E-08 0.000E+004 4.3492E+05 0.000E+00 4.728E-04 2.722E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 3.706E-08 0.000E+004 4.356E+05 0.000E+00 4.791E-04 2.760E+03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E+07 0.000E+00 4.356E+05 0.000E+00 4.857E-04 2.797E+03 0.000E+00 0.000E+00 2.208E+01 0.000E+00 1.377E+01 0.000E+00 3.743E+07 0.000E+00 4.357E+04 2.797E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.377E+01 0.000E+00 1.779E+06 0.000E+00 4.357E+04 2.750E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 2.056E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.702E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.635E+04 2.637E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.632E+01 0.000E+00 4.635E+04 0.000E+00 4.635E+04 0.000E+00 0.000E+00 0.000E+00 1.632E+01 0.000E+00 1.632E+01 0.000E+00 4.635E+04 0.000E+00 4.635E+04 0.000E+00 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.632E+01 0.000E+00 4.632E+04 0.000E+00 4.635E+04 0.000E+00 0.000E+00 0.000E+00 4.635E+04 0.000E+00 4.635E+04 0.000E+00 4.000E+00 4.635E+04 0.000E+00 4.000E+00 4.000E+00 4.635E+04 0.000E+00 4.000E+00 4.000E+00 4.635E+04 0.000E+00 4.000E+00 4.000E+00 4.635E+04 0.000E+00 4.000E+00 4.000	81 3.384E+05 0.000E+00 4.7	UUE-04 2.707E-03	U.UUUE+00 0.000E+00	2.32/E-01 (2.205E-01 (J.000E+00 1	.006E-01 (J.UUUE+00 3.046E-08	U.000E+00↓
84 3.492E+05 0.000E+00 4.677E-04 2.694E-03 0.000E+00 0.000E+00 2.257E-01 0.000E+00 1.266E-01 0.000E+00 3.706E-08 0.000E+00 4.528E+05 0.000E+00 4.728E-04 2.722E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 3.743E-07 0.000E+00 4.538E+07 0.000E+00 4.538E+07 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.377E-01 0.000E+00 3.743E+07 0.000E+00 4.538E+07 0.000E+00 4.538E+07 0.000E+00 0.000E+00 2.154E+01 0.000E+00 1.377E-01 0.000E+00 3.743E+07 0.000E+00 4.538E+07 0.000E+00 4.538E+07 0.000E+00 0.000E+00 0.000E+00 2.558E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.750E+03 0.000E+00 0.000E+00 2.058E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.750E+03 0.000E+00 0.000E+00 2.058E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.750E+03 0.000E+00 0.000E+00 2.058E+01 0.000E+00 1.537E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.750E+03 0.000E+00 0.000E+00 1.933E+01 0.000E+00 1.568E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.750E+03 0.000E+00 0.000E+00 1.938E+01 0.000E+00 1.608E+01 0.000E+00 1.527E+05 0.000E+00 4.638E+04 2.070E+03 0.000E+00 0.000E+00 1.938E+01 0.000E+00 1.608E+01 0.000E+00 1.568E+01 0.000E+00 0.000E+00 4.638E+04 0.000E+00 0.000E+00 0.000E+00 1.938E+01 0.000E+00 1.608E+01 0.000E+00 0.000E+00 4.638E+04 0.000E+00 0.0	83 3.456E+05 0.000E+00 4.6	32E-04 2.703E-03	0.000E+00 0.000E+00	2.282F-01 (0.000E+00 1	.000E-01 (0.000E+00 3.289E-08	0.000E+001
85 3.528±05 0.000E+00 4.728E-04 2.722E-03 0.000E+00 0.000E+00 2.244E-01 0.000E+00 1.340E-01 0.000E+00 9.990E-08 0.000E+00 4 86 3.564E+05 0.000E+00 4.791E-04 2.760E-03 0.000E+00 0.000E+00 2.209E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4 87 3.600E+05 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.154E-01 0.000E+00 1.377E-01 0.000E+00 1.779E-06 0.000E+00 4 88 3.636E+05 0.000E+00 4.857E-04 2.750E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.537E-01 0.000E+00 1.57E-05 0.000E+00 4 89 3.672E+05 0.000E+00 4.685FE-04 2.702E-03 0.000E+00 0.000E+00 2.938E-01 0.000E+00 1.608E-01 0.000E+00 1.527E-05 0.000E+00 4 90 3.708E+05 0.000E+00 4.683E-04 2.687E-03 0.000E+00 0.000E+00 1.933E-01 0.000E+00 1.608E-01 0.000E+00 1.840E-04 0.000E+00 4.000E+00 4.688E-04 0.000E+00 4.688E-04	84 3.492E+05 0.000E+00 4.6	77E-04 2.694E-03	0.000E+00 0.000E+00	2.257E-01 (0.000E+00 1	.266E-01 (0.000E+00 3.706E-08	0.000E+001
87 3.600E+05 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.298E-01 0.000E+00 1.377E-01 0.000E+00 3.743E-07 0.000E+00 4.857E-04 2.797E-03 0.000E+00 0.000E+00 2.154E-01 0.000E+00 1.442E-01 0.000E+00 1.779E-06 0.000E+00 4.857E-05 0.000E+00 4.857E-01 0.000E+00 1.537E-01 0.000E+00 1.537E-01 0.000E+00 4.857E-05 0.000E+00 4.857E-05 0.000E+00 0.000E+00 1.938E-01 0.000E+00 1.537E-01 0.000E+00 1.527E-05 0.000E+00 4.857E-04 2.702E-03 0.000E+00 0.000E+00 1.938E-01 0.000E+00 1.608E-01 0.000E+00 1.527E-05 0.000E+00 4.857E-04 2.702E-03 0.000E+00 0.000E+00 1.937E-01 0.000E+00 1.608E-01 0.000E+00 1.640E-04 0.000E+00 4.857E-04 0.000E+00 1.937E-01 0.000E+00 1.872E-01 0.000E+00 0.000E+00 1.872E-01 0.000E+00 0.872E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.872E-01 0.000E+00 0.872E-01 0.000E+00 0.8	85 3.528E+05 0.000E+00 4.7	26E-04 2.722E-03	U.UUUE+00 0.000E+00	2.244E-01 (J.000E+00 1	.340E-01 (J.UUUE+00 9.990E-08	U.000E+00+
88 3.636E+05 0.000E+00 4.774E-04 2.750E-03 0.000E+00 0.000E+00 2.056E-01 0.000E+00 1.537E-01 0.000E+00 1.527E-05 0.000E+004 93 3.672E+05 0.000E+00 4.691E-04 2.702E-03 0.000E+00 0.000E+00 1.993E-01 0.000E+00 1.608E-01 0.000E+00 1.640E-04 0.000E+004 0.000	87 3.600E+05 0.000E+00 4.7	357E-04 2.797E-03	0.000E+00 0.000E+00	2.154E-01 (0.000E+00 1	.442E-01 ().000E+00 1.779E-06	0.000E+001
89 [3.672E+05 0.000E+00 4.691E-04 2.702E-03 0.000E+00 0.000E+00 1.993E-01 0.000E+00 1.608E-01 0.000E+00 1.640E-04 0.000E+00 4 90 [3.708E+05 0.000E+00 4.683E-04 2.697E-03 0.000E+00 0.000E+00 1.937E-01 0.000E+00 1.672E-01 0.000E+00 6.995E-04 0.000E+00 4	88 3.636E+05 0.000E+00 4.7	74E-04 2.750E-03	0.000E+00 0.000E+00	2.056E-01 (0.000E+00 1	.537E-01 (0.000E+00 1.527E-05	0.000E+001
100 100 100 V.V.V.V V. T.V.V. VT. V.V. VT. V.V. V.	89 3.672E+05 0.000E+00 4.6	91E-04 2.702E-03 883E-04 2.697E-02	U.UUUE+UU U.UOUE+OO A AAAF+AA A AAAF+AA	1.993E-01 (1.937E-01 ().UUUE+00 1) 000E+00 1	.608E-01 (672E-01 ().UUUE+UU 1.640E-04) NAAF+AA & 995E-04	0.000E+001

付図2 サンプル入力 (INFLOW.dat) (1/2)

U	30	190	160	. 179	180 1	190 1	100,	100
90 13 708E+05 0 000E+00 / 683E-0/	2 697E-03 0 000E+00	0 000E+00	1 927E-01	0 000E+00	1 672E-01	0 000E+00	6 995E-01	0.000E+001
	2.0012 00 0.0002.00	0.00000.00	1.00010 01	0.00000.00	1. 7005 01	0.00000.00	0.0000 04	0.00000.000
91 3.744E+05 0.000E+00 4.942E-04	2.846E-03 0.000E+00	0.000E+00	1.8/9E-01	U.UUUE+00	1.732E-01	U.UUUE+UU	6.868E-04	U.UUUE+UU1
92 2 780E+05 0 000E+00 5 200E-04	2 995E-03 0 000E+00	0 000E+00	1 901E-01	0 000E+00	1 763E-01	0.000E+00	6 755E-04	0.000E+001
02 0.700E-05 0.000E-00 5.200E 04	2.0000000000000000000000000000000000000	0.00000000	1.00TE OT	0.00000000	1.7000 01	0.00000000	0.7550 04	0.000000000
9313.816E+05 0.000E+00 5.623E-04	3.239E-03 0.000E+00	0.000++00	1.695E-01	0.000++00	1.739E-01	0.000++00	6./38E-04	0.000++001
	2 CO1E 02 0 000E.00	0.00000.00	1 6505 01	0.00000.000	1 0000 01	0.00000.00	7 0000 01	0.000E.00.
94 3.802E+00 0.000E+00 0.202E-04	3.001E-03 0.000E+00	0.000E+00	1.00ZE-01	0.000E+00	1.020E-01	0.000E+00	7.000E-04	0.000E+004
9513 888E+05 0 000E+00 6 882E-07	3 96/E-03 0 000E+00	0 000E+00	1 353E-01	0.000E+00	1 279E-01	0.000E+00	8 026E-04	0.000E+001
	0.0042 00 0.0002.00	0.00000000	1.00000 01	0.00000000	1 JEAE AT	0.00000000	0.0200 04	0.00000000
9613.897E+05 0.000E+00 7.039E-04	4.054E-03 0.000E+00	0.000++00	1.194E-01	0.000++00	1.150E-01	0.000++00	8.50/E-04	0.000++001
07 2 000E+05 0 000E+00 7 214E-04	A 1555-02 0 0005+00	0.000E+00	1 1205-01	0.000E+00	1 0415-01	0.000E+00	0 1965-04	0.000E+001
37 3.300ETUJ 0.000ETUU 7.214ETU4	4.1002-03 0.0002-00	0.000ET00	1.120E-01	0.000ET00	1.041E-01	0.000ET00	0.120E-04	0.000ET004
9813 915E+05 0 000E+00 7 399E-04	4 261E-03 0 000E+00	0 000E+00	1 041E-01	0 000E+00	9 265E-02	0 000E+00	9 915E-04	0 000E+001
	4.2012 00 0.0002.00	0.00000.00	0. 5005 00	0.00000.00	0.2000 02	0.00000.00	1 0015 00	0.00000.000
9913.924E+U5 0.000E+U0 7.583E-04	4.367E-03 0.000E+00	U.UUUE+UU	9.589E-02	U.UUUE+00	8.102E-02	U.UUUE+UU	1.091E-03	U.UUUE+UU↓
100 2 0225+05 0 0005+00 7 7675-04	4 474E-02 0 000E+00	0 000E+00	9 7/0E-02	0 000E+00	& QEEE-02	0 000E+00	1 216E-02	0 000E+001
100 0.000ETUD 0.000ETUD 7.707E-04	4.474E-03 0.000E+00	0.000E+00	0.740E-02	0.000E+00	0.300E-02	0.000E+00	1.210E-00	0.000E+00+
L 101 L3 942E+05 0 000E+00 7 952E-04	4 580E-03 0 000E+00	0 000F+00	7 882E-02	0 000E+00	5 859E-02	0 000F+00	1 370E-03	0 000F+001
100 0 0515.05 0 0005.00 0 1005 04	1.0000 00 0.0000 00	0.00000.000	7 0000 00	0.00000.00	1 0105 00	0.00000.00	1 5575 00	0.00000.000
IUZ 3.951E+U5 U.UUUE+UU 8.136E-U4	4.686E-03 0.000E+00	0.000E+00	7.036E-02	U.UUUE+00	4.849E-UZ	0.000E+00	1.00/E-03	0.000E+001
103 3 9605+05 0 0005+00 8 3305-04	/ 792E-03 0 000E+00	0 000E+00	6 219E-02	0 000E+00	3 949E-02	0 000E+00	1 705E-03	0 000E+001
100 0.000000000000000000000000000000000	4.7022 00 0.0002.00	0.0002.00	0.2100 02	0.00002.00	0.0400 02	0.0002.00	1.700L 00	0.0002.00*
L 104 L3.969⊢+05 0.000⊢+00 8.505⊢-04	4.8981-03 0.0001+00	0.000++00	5.4491-02	0.000++00	3.170E-02	0.000++00	0.000++00	0.000++001
105 0 070F 05 0 000F 00 0 000F 04	E 004E 02 0 000E.00	0.00000.000	A 740E 02	0.00000.000	9 FIOF 09	0.00000.00	0.00000.000	0.000E.00.
100 0.000ETU0 0.000ETU0 0.000ETU4	0.004E-03 0.000E+00	0.000E+00	4.740E-02	0.000E+00	2.010E-02	0.000E+00	0.000E+00	0.000E+001
106 3 987E+05 0 000E+00 8 873E-0/	5 111E-03 0 000E+00	0.000E+00	A 104E-02	0.000E+00	1 985E-02	0.000E+00	0.000E+00	0.000E+001
	5.0175 00 0.00000.00	0.00000000	4. TUTE 02	0.00000000	1.5535 00	0.00000000	0.00000000	0.00000.000
U/ 3.996E+U5 U.UUUE+UU 9.U58E-U4	5.217E-03 0.000E+00	U.UUUE+UU	3.546E-02	U.UUUE+00	1.55/E-U2	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
	E 222E-02 0 000E+00	0 000E±00	2 0605-02	0 000E+00	1 210E_02	0 000E±00	0 000E±00	0.000E±001
100 4.000E-00 0.000E-00 0.241E-04	J.322E 03 0.000E-00	0.000E-00	3.000E 0Z	0.000E-00	1.210E 02	0.000E-00	0.000E-00	0.000E-00*
L 10914 014E+05 0 000E+00 9 428E-04	5 430E-03 0 000E+00	0 000F+00	2 332E-02	0 000F+00	9 536E-03	0 000F+00	0 000F+00	0 000F+001
110 4 0005.05 0 0005.00 0 0005 04	E E40E 00 0 000E.00	0.0005.00	0 1505 00	0.0005.00	7 4005 00	0.00000.00	0.00000.00	0.000E.00
U 4.UZ3E+U5 U.UUUE+UU 9.bZ3E-U4	5.54ZE-03 0.000E+00	0.000E+00	2.100E-02	U.UUUE+00	7.482E-03	0.000E+00	0.000E+00	U.UUUE+UU1
111 / 022E+05 0 000E+00 9 778E-0/	5 632E-03 0 000E+00	0 000E+00	1 87/F-02	0 000E+00	5 200E-02	0.000E+00	0 000E+00	0.000E+001
111 4.00ZE'00 0.000E'00 0.770E 04	3.032E 03 0.000E-00	0.00000000	1.074L 02	0.000L-00	J.000E 00	0.000L-00	0.000L-00	0.000L-00+
11214.041E+05 0.000E+00 9.755E-04	5.619E-03 0.000E+00	0.000++00	1.586E-02	0.000++00	4.6861-03	0.000++00	0.000++00	0.000++00↓
112 4 0505,05 0 0005,00 0 7005 04	E COME 00 0 000E.00	0.00000.00	1 0405 00	0.00000.00	0 7015 00	0.00000.00	0.00000.00	0.00000.000
113 4.000E+00 0.000E+00 0.730E-04	0.004E-03 0.000E+00	0.000E+00	1.340E-02	0.000E+00	3.701E-03	0.000E+00	0.000E+00	0.000E+004
114 4 059E+05 0 000E+00 9 707E-04	5 591E-03 0 000E+00	0 000E+00	1 154E-02	0 000E+00	3 061E-03	0.000E+00	0 000E+00	0.000E+001
115 14 000E 05 0.000E 00 0.000E 04	5.5012 00 0.0002.00	0.00000.00	1.0000 00	0.00000.00	0.0012 00	0.00000.00	0.00000.00	0.00000.000
5 4.U68E+U5 U.UUUE+UU 9.682E-U4	5.5/6E-03 0.000E+00	U.UUUE+UU	1.066E-02	U.UUUE+UU	2.533E-03	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
110 / 077E+06 0 000E+00 0 049E-04	E 660E-02 0 000E+00	0 000E+00	0 01/E_02	0 000E+00	2 12KE_02	0 000E+00	0 000E+00	0 000E+001
110 4.077ETUJ 0.000ETUU 3.042E-04	J.008E-05 0.000E+00	0.000E+00	3.014E-00	0.000ET00	2.100E-00	0.000E+00	0.000E+00	0.000E+00+
L 117 L4 086E+05 0 000E+00 1 007E-03	5 800E-03 0 000E+00	0 000E+00	8 982E-03	0 000E+00	1 835E-03	0 000E+00	0 000E+00	0 000E+001
110 4.0000 00 0.0000 00 1.0000 00	E 000E 00 0.000E 00	0.00000.00	0.1010 00	0.00000.00	1.0000 00	0.00000.00	0.00000.000	0.00000.000
X 4.095E+05 0.000E+00 .030E-03	5.932E-03 0.000E+00	0.000E+00	8.161E-03	U.UUUE+00	1.609E-03	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU1
110 / 10/E+05 0 000E+00 1 052E-02	6 063E-03 0 000E+00	0 000E+00	7 422E-03	0 000E+00	1 435E-03	0 000E+00	0 000E+00	0.000E+001
113 4.1042.05 0.0002.00 1.0502 05	0.00000 00 0.0000000000	0.0000000	7.422E 00	0.00000000	1.400E 00	0.00000000	0.00000000	0.000000000
12014.113E+U5 0.000E+U0 1.076E-U3	6.195E-03 0.000E+00	0.000E+00	6.762E-03	U.UUUE+00	1.300E-03	0.000E+00	U.UUUE+UU	U.UUUE+UU↓
121 / 122E+05 0 000E+00 1 000E-02	@ 220E_02_0_000E+00	0 000E+00	£ 010E-02	0 000E+00	1 100E-02	0 000E+00	0 000E+00	0.000E+001
121 4.122E+00 0.000E+00 1.098E-03	0.320E-03 0.000E+00	0.000E+00	0.010E-03	0.000E+00	1.100E-03	0.000E+00	0.000E+00	0.000E+004
12214 131E+05 0 000E+00 1 121E-03	6 458E-03 0 000E+00	0 000E+00	5 278E-03	0 000E+00	8 000E-04	0 000E+00	0 000E+00	0 000E+001
100 14 1405 05 0.0000 00 1.1210 00	0.4000 00 0.00000 00	0.00000.00	E. 00FE 00	0.00000.00	E 000E 04	0.00000.00	0.00000.000	0.00000.000
12314.140E+05 0.000E+00 1.144E-03	6.589E-03 0.000E+00	U.UUUE+UU	5.095E-03	U.UUUE+00	5.000E-04	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
12/ / 1/05-05 0 0005-00 1 1505-02	6 621E_02 0 000E+00	0 000E+00	1 000E-02	0 000E+00	2 5005-04	0 000E+00	0 000E±00	0 000E±001
124 4.143ETUJ 0.000ETUU 1.130E-03	0.021E-03 0.000E+00	0.000E+00	4.000E-00	0.000E+00	2.000E-04	0.000E+00	0.000E+00	0.000E+00+
L 12514 149E+05 0 000E+00 1 150E-03	6 622E-03 0 000E+00	0 000F+00	4 804E-03	0 000E+00	0 000E+00	0 000E+00	0 000F+00	0 000F+001
100 4 1505,05 0 0005,00 1 1505 00	0.0000 00.00000.000	0.00000.00	A 700E 00	0.00000.00	0.00000.000	0.00000.00	0.00000.00	0.00000.000
120 4.100E+00 0.000E+00 1.100E-03	0.023E-03 0.000E+00	0.000E+00	4.708E-03	0.000E+00	U.UUUE+00	0.000E+00	0.000E+00	0.000E+004
127 / 150E+05 0 000E+00 1 150E-02	6 624E-03 0 000E+00	0 000E+00	4 662E-03	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0.000E+001
127 4.150E.05 0.000E.00 1.150E 00	0.0242 00 0.0002.00	0.0002.00	4.0020 00	0.00002.00	0.0002.00	0.0002.00	0.0002.00	0.0002.00*
1 12814.150E+05 0.000E+00 1.150E-03	6.625E-03 0.000E+00	U.UUUE+UU	4.616E-03	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
120 / 100E+05 0 000E+00 1 155E-02	6 6555-02 0 000E+00	0 000E+00	A 796E-09	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
128 4.100ETUS 0.000ETUU 1.155ETUS	0.000E-05 0.000E+00	0.000E+00	4.700E-00	0.000ET00	0.000E+00	0.000E+00	0.000E+00	0.000E+00+
L 130 L4 170E+05 0 000E+00 1 161E-03	6 684E-03 0 000E+00	0 000F+00	4 734E-03	0 000F+00	0 000F+00	0 000F+00	0 000F+00	0 000F+001
101 4 1005.05 0 0005.00 1 1005 00	0.7145 00 0.0005.00	0.00000.000	A 700E 00	0.00000.000	0.00000.000	0.00000.00	0.000E.00	0.00000.000
I31 4.180E+05 0.000E+00 1.166E-03	0.714E-03 0.000E+00	0.000E+00	4.70ZE-03	U.UUUE+00	U.UUUE+UU	0.000E+00	0.000E+00	0.000E+001
132 / 190E+05 0 000E+00 1 387E-03	7 986E-03 0 000E+00	0.000E+00	5 210E-03	0.000E+00	0 000E+00	0.000E+00	0 000E+00	0.000E+001
102 4.1002.00 0.0002.00 1.0072 00	7.000E 00 0.000E.00	0.00000000	5.210L 00	0.00000000	0.00000-000	0.00000000	0.00000000	0.00000.000
13314.200E+05 0.000E+00 1.608E-03	9.261E-03 0.000E+00	U.UUUE+UU	5.689E-03	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
19/ / 2005-05 0 0005-00 2 2205-02	1 2025-02 0 0005-00	0 000E±00	E 100E-00	0 000E+00	0 000E±00	0 000E±00	0 000E±00	0.000E±001
134 4.300E 03 0.000E 00 2.220E 03	1.200E 02 0.000E 00	0.000E-00	J.420E 00	0.000E-00	0.000E-00	0.000E-00	0.000E-00	0.000E-00+
L 13514.400E+05 0.000E+00 5.133E-03	2.956E-02.0.000E+00	0.000++00	/.41/E-03	0.000++00	0.000++00	0.000++00	0.000++00	0.000++001
120 4 0005405 0 0005400 0 0075 00	2 0055 01 0 0005.00	0.00000.00	1 270E 00	0.0000000	0.0000000	0.0000000	0.00000.00	0.0000000
1 100 14.000ETUS 0.000ETUU 3.03/ETUZ	2.0000000000000000000000000000000000000	0.000E+00	1.2/UE-UZ	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+004
13714 800E+05 0 000E+00 2 709E-02	1 561E-01 0 000E+00	0 000E+00	8.500E-03	0.000E+00	0 000E+00	0.000E+00	0.000E+00	0.000E+001
100 E 000E.0E 0.000E.00 1.074E 00	1 1075 01 0 0005.00	0.000E.00	0.000E 00	0.00000.000	0.00000.000	0.000E.00	0.000E.00	0.00000.000
ISO D.UUUE+UD U.UUUE+UU I.9/4E-UZ	1.137E-01 U.UUUE+UU	0.000E+00	0.300F-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	U.UUUE+UU↓
13915 200E+05 0 000E+00 1 565E-02	9 013E-02 0 000E+00	0 000E+00	6 125E-02	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
140 5 4005 05 0 0005 00 1 0045 00	7 1555 00 0 0005 00	0.00000.000	E E00E 00	0.00000.000	0.00000.000	0.00000.00	0.00000.000	0.00000.000
140 D.400E+05 0.000E+00 1.294E-02	7.400E-UZ U.UUUE+UU	0.000E+00	0.022E-03	0.000E+00	U.UUUE+UU	0.000E+00	0.000E+00	U.UUUE+UU↓
1/1/5 600E+05 0 000E+00 1 025E-02	5 964E-02 0 000E+00	0 000E+00	1 872E-02	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
141 12.000E-02 0.000E-00 1.030E-02	J.JU4L 02 U.UUUETUU	0.000ET00	4.072E-03	0.000ET00	0.000ET00	0.000ET00	0.000ET00	0.000ET004
1 142 15.800E+05 0.000E+00 8.308E-03	4.785E-02 0.000F+00	U.000E+00	4.280E-03	U.000E+00	U.000E+00	U.000E+00	U.000E+00	U.000E+001
142 6 000E+05 0 000E+00 0 010E 00	2 024E-02 0 000E-00	0.0000000	2 010F 00	0.0005.00	0.0000-000	0.0000-000	0.0000-000	0.0005.00
145 0.000ETUS 0.000ETUU 0.813ETUS	3.324E-02 0.000E+00	0.000E+00	0.010E-03	0.000ET00	0.000E+00	0.000ET00	0.000E+00	0.000E+001
14416 200E+05 0 000E+00 6 169E-02	3 553E-02 0 000E+00	0 000E+00	3 582E-02	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
1 1 E 10 100E 0E 0 000E 00 E FOIE 00	0.000E 02 0.000E 00	0.000E.00	A AFIE AA	0.000E.00	0.000E.00	0.000E.00	0.000E.00	0.00000.000
140 6.400E+05 0.000E+00 5.564E-03	3.200E-02 U.000E+00	0.000E+00	3.304E-03	0.000E+00	U.UUUE+UU	0.000E+00	0.000E+00	U.UUUE+UU↓
146 6 600E+05 0 000E+00 5 224E-02	3 072E-02 0 000E+00	0 000E+00	3 265E-02	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
1 1 1 1 0.000E'02 0.000E'00 0.004E'00	0.012E 02 0.000ET00	0.000E-00	0.200L 00	0.000E-00	0.000E-00	0.000E'00	0.000L'00	0.000E-004
L 14/16.800E+05 0.000E+00 5.104E-03	2.940E-02 0.000E+00	0.000++00	3.1/0E-03	U.000E+00	U.000E+00	U.000E+00	0.000E+00	0.000E+001
140 7 0005-05 0 0005-00 4 0705 00	2 007E-02 0 000E-00	0.0000000	2 072E.00	0.00000000	0.0000000	0.0000000	0.0000000	0.000E+00
14017.000E+00 0.000E+00 4.8/3E-03	2.007E-02 U.UUUE+00	0.000E+00	0.073E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	U.UUUE+UU↓
14917 200E+05 0 000E+00 4 6/2E-02	2 674E-02 0 000E+00	0 000E+00	2 977E-02	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
150 17 4005.05 0.0005.00 4.4405.00	0 5405 00 0 0005 00	0.00000.000	0.0705 00	0.00000.000	0.00000.000	0.00000.00	0.00000.000	0.00000.000
1 150 17.400E+05 0.000E+00 4.410E-03	2.540E-02 U.UUUE+00	U.UUUE+U0	2.878E-03	U.UUUE+UU	U.UUUE+00	0.000E+00	0.000E+00	U.UUUE+UU↓
151 7 600E+05 0 000E+00 / 170E 00	2 108E-02 0 000E.00	0 00000-00	2 777E_00	0 00000-00	0 00000-00	0 0000-00	0 00000-00	0 00000.00
101 17.000ETU0 0.000ETU0 4.1/0ETU0	2.400E-02 0.000E-00	0.000E-00	2.111E-00	0.000ET00	0.000ET00	0.000ET00	0.000ET00	0.000ET004
L 15217.800E+05 0.000E+00 4 081E-03	2.350E-02 0 000E+00	0.000F+00	2.743E-03	0.000F+00	U.000F+00	0.000F+00	0.000F+00	0.000F+001
152 0 0005,05 0 0005,00 4 0105 00	2 214E 02 0 000E.00	0.00000.000	5 710F 00	0.00000.000	0.0000000	0.00000.000	0.00000.000	0.000E.00
1 100 10.000ETUD 0.000ETUU 4.018E-03	2.314E-02 U.UUUE+UU	0.000E+00	2.110E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+004
15418 200E+05 0 000E+00 3 955E-03	2 278E-02 0 000E+00	0 000E+00	2 695E-03	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0.000E+001
1EE 10 400E 0E 0 000E 00 0.000E 00	0.0415 00 0.0005 00	0.00000.000	0.0745 00	0.00000.000	0.000000	0.00000.000	0.0000-000	0.0005.00*
100 0.400E+00 0.000E+00 3.892E-03	2.241E-02 0.000E+00	0.000E+00	2.0/4E-03	U.UUUE+00	U.UUUE+00	0.000E+00	0.000E+00	U.UUUE+UU↓
156 18 600E+05 0 000E+00 3 820E-03	2 205E-02 0 000E+00	0 000E+00	2 652E-03	0 000E+00	0 000E+00	0 000E+00	0 000E+00	0 000E+001
	2.200E 02 0.000E'00	0.000L.00	2.002L 00	0.000E.00	0.000L.00	0.000E.00	0.000E.00	0.000E.00*
157 8.630E+05 0.000E+00 3.819E-03	Z.ZUUE-02 U.UUUE+00	U.UUUE+UU	Z.649E-03	U.UUUE+UU	U.UUUE+00	U.UUUE+UU	U.UUUE+UU	U.UUUE+UU↓
158 FEOFT								

付図2 サンプル入力 (INFLOW.dat) (2/2)

This is a blank page.