

JAEA-Data/Code 2022-013 DOI:10.11484/jaea-data-code-2022-013

Data of Groundwater Chemistry Obtained in the Horonobe Underground Research Laboratory Project (FY2022)

Kazuya MIYAKAWA and Kotaro NAKATA

Horonobe Underground Research Department Horonobe Underground Research Center Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development

March 2023

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの転載等の著作権利用は許可が必要です。本レポートの入手並びに成果の利用(データを含む)は、 下記までお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>)

より発信されています。

国立研究開発法人日本原子力研究開発機構 JAEA イノベーションハブ 研究成果利活用課 〒 319-1195 茨城県那珂郡東海村大字白方 2 番地 4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Reuse and reproduction of this report (including data) is required permission. Availability and use of the results of this report, please contact Institutional Repository and Utilization Section, JAEA Innovation Hub, Japan Atomic Energy Agency. 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2023

JAEA-Data/Code 2022-013

Data of Groundwater Chemistry Obtained in the Horonobe Underground Research Laboratory Project (FY2022)

Kazuya MIYAKAWA and Kotaro NAKATA*

Horonobe Underground Research Department Horonobe Underground Research Center Sector of Nuclear Fuel, Decommissioning and Waste Management Technology Development Japan Atomic Energy Agency Horonobe-cho, Teshio-gun, Hokkaido

(Received December 13, 2022)

In the Horonobe Underground Research Laboratory (URL) project, groundwater chemistry was analyzed to investigate changes due to the excavation of the underground facility and to review geochemical models until the fiscal year 2019. From the fiscal year 2020, to proceed remaining important issues deduced from the conclusion of the investigations during the fiscal year 2015–2019, primary data such as groundwater chemistry need to be successively acquired. Here, the chemical analysis of 54 groundwater samples in 2022 from boreholes drilled in the 140 m, 250 m, 350 m gallery in the Horonobe URL, and water rings settled in three vertical shafts is presented. Analytical results include groundwater chemistry such as pH, electrical conductivity, dissolved components (Na⁺, K⁺, Ca²⁺, Mg²⁺, Li⁺, NH₄⁺, F⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, PO₄³⁻, SO₄²⁻, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, alkalinity, dissolved organic carbon, dissolved inorganic carbon, CO₃²⁻, HCO₃⁻, Fe²⁺, sulfide), and δ¹⁸O, δD along with a detailed description of analytical methods.

Keywords: Groundwater, Chemistry, Horonobe URL

^{*} Central Research Institute of Electric Power Industry

幌延深地層研究計画で得られた地下水の水質データ(2022年度)

日本原子力研究開発機構

核燃料・バックエンド研究開発部門 幌延深地層研究センター 深地層研究部

宫川 和也,中田 弘太郎*

(2022年12月13日受理)

幌延深地層研究計画において、2019 年度までは主に地下施設建設時の坑道掘削に伴う地下水の 水質変化の調査や地球化学モデルの構築および見直しを目的として、2020 年度からは必須の課題 へ対応するため、地下水の水質データを取得している。2022 年度は、引き続き必須の課題に対応 するため、地下施設を利用して得られた地下水の水質データを取得している。地下施設の 140m、 250m および 350m 調査坑道から掘削されたボーリング孔や3本の立坑に設置されている集水リン グなどから 54 試料の地下水を採取し、分析を実施した。

本報告は, 2022 年度に得られた地下水の水質データとして, pH や電気伝導度, 溶存成分 (Na⁺, K⁺, Ca²⁺, Mg²⁺, Li⁺, NH₄⁺, F⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, PO₄³⁻, SO₄²⁻, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, アルカリ度, 溶存有機炭素, 溶存無機炭素, CO₃²⁻, HCO₃⁻, Fe²⁺, 硫化物) および 酸素水素同位体比の測定・分析結果を取りまとめたものである。

幌延深地層研究センター:〒098-3224 北海道天塩郡幌延町北進 432 番地 2

Contents

1. Introduction1
2. Location and sampling1
3. Analytical methods3
3.1 pH, electrical conductivity, and temperature4
3.2 Dissolved components in groundwater5
$3.2.1 \text{ Na}^+, \text{K}^+, \text{Ca}^{2+}, \text{Mg}^{2+}, \text{Li}^+, \text{NH}_4^+, \text{F}^-, \text{Cl}^-, \text{Br}^-, \text{NO}_3^-, \text{NO}_2^-, \text{PO}_4^{3-}, \text{and } \text{SO}_4^{2-}$ 5
3.2.2 Total-Mn, Total-Fe, Al, B, Sr, Ba, and I5
3.2.3 M-Alkalinity5
3.2.4 Dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)6
3.2.5 CO ₃ ²⁻ and HCO ₃ ⁻ 6
3.2.6 Fe ²⁺ and total Fe (Fe ²⁺ HACH and Total-Fe HACH)7
3.2.7 Sulfide (H ₂ S, HS ⁻) (HS ⁻ HACH)8
3.3 Isotope analysis8
3.3.1 Oxygen isotope ratio (δ ¹⁸ O)8
3.3.2 Hydrogen isotope ratio (δD)9
4. Results9
4.1 Ion balance9
4.2 Stiff diagram 10
5. Summary 18
Acknowledgement 18
References19

目次

1.	はじめに	1
2.	採取箇所および採取方法	1
3.	測定・分析方法	3
	3.1 pH および電気伝導度,水温の測定	4
	3.2 地下水中の溶存成分の分析	5
	3.2.1 Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺ , Li ⁺ , NH ₄ ⁺ , F ⁻ , Cl ⁻ , Br ⁻ , NO ₃ ⁻ , NO ₂ ⁻ , PO ₄ ³⁻ , SO ₄ ²⁻	5
	3.2.2 Total-Mn, Total-Fe, Al, B, Sr, Ba, I	5
	3.2.3 アルカリ度(M-Alkalinity)	5
	3.2.4 溶存有機炭素(DOC),溶存無機炭素(DIC)	6
	3.2.5 CO ₃ ²⁻ , HCO ₃ ⁻	6
	3.2.6 Fe ²⁺ および全鉄(Fe ²⁺ HACH および Total-Fe HACH)	7
	3.2.7 硫化物(H ₂ S, HS ⁻ など)(HS ⁻ HACH)	8
	3.3 同位体の分析	8
	3.3.1 酸素同位体比(δ ¹⁸ O)	8
	3.3.2 水素同位体比(δD)	9
4.	測定・分析結果	9
	4.1 イオンバランス	9
	4.2 スティッフダイアグラム	10
5.	おわりに	18
謝	辞	18
参	考文献	19

1. Introduction

The surface-based investigation phase (Phase 1) of the Horonobe Underground Research Laboratory (URL) Project started in March 2001, and the Phase I investigations were completed in March 2006. Subsequently, a construction phase (Phase 2, investigations during the URL construction) was initiated during the excavation of the tunnels¹). In parallel with the Phase 2 investigations, an operation phase (Phase 3, research in the URL) at the URL has been started in FY2010, following the construction of a tunnel at the URL¹). The results of phase 2, which was conducted from April 2005 to June 2014 until the completion of the excavation of the 350 m galleries, are summarized by Sato et al²). Since FY2015, we have been working on the important issues identified by the reform of the Japan Atomic Energy Agency, and the results of this research have been compiled by Nakayama et al.³) as the outcome of the third phase of the research project. From FY2020, as part of the Horonobe URL Project after FY2020, we will continue to work on the research results of the essential subjects compiled by Nakayama et al.³), which are considered to require further research and development⁴).

In the Horonobe URL Project, the development of techniques for investigating the characteristics of the subsurface geological environment and modeling techniques based on the obtained geological environmental characteristics were promoted. One of the geological environment models is a groundwater geochemical model. Amano et al.⁵⁾ compiled data on surface water (river water) and groundwater around URL obtained during the first and second phases of investigations from 2001 to 2010 as baseline data for the model. Amano et al.⁵⁾ reported a wide range of existing information on groundwater physicochemical parameters (pH, redox potential, electrical conductivity), water quality (dissolved constituents, oxygen and hydrogen isotopes in water, dissolved gases, organic matter, and microorganisms) from water samples obtained through surface-based investigations (river water, rainwater, groundwater and water extracted from rock cores) in Phase I and from water samples obtained during URL construction in Phase II (water from shaft walls and boreholes excavated from the shafts and galleries).

Water sampling from existing surface boreholes and from within the URL has continued since FY2011. Since FY2013, the third phase of the research using the loop galleries excavated to a depth of 350 m began in earnest. Water sampling from the boreholes excavated from the 350 m galleries has also been underway. The results of these analyses of water samples obtained from FY2011 to 2013 are summarized by Sasamoto et al⁶. After the completion of the Phase 2 study, the Phase 3 study has continued to obtain water quality data mainly to investigate the impact of the construction of underground facilities on groundwater quality. The results of groundwater analyses obtained from FY2014 to 2019 were compiled by Miyakawa et al^{7), 8}.

After FY2020, data acquisition will be focused on groundwater geochemistry, which is necessary to address critical issues in the Horonobe URL Project^{9), 10)}. This report presents the analytical results of groundwater samples obtained in FY2022.

2. Location and sampling

Groundwater samples were collected from the water rings of the East, West, and Ventilation Shafts (Fig. 1a) and boreholes excavated from each of the galleries (Fig. 1b) at the Horonobe URL located in Horonobe,

Hokkaido. The groundwater sampling method from the water ring was as follows: upwelling groundwater from the surrounding rocks flowed contacting the shotcretes and was collected at 30 to 40 m depth intervals on the shaft wall. Groundwater was collected under open-air conditions through a water sampling hose extending from the water ring to each gallery. Groundwater samples from the water ring correspond to discharging water from the surrounding rocks between the water ring installed one depth above.

Groundwater was sampled from the boreholes excavated from each of the galleries through tubes extending from sampling zones in the boreholes. The groundwater samples were collected from naturally gushing groundwater under open-air conditions. In the 350 m niche no. 4, groundwater from 350 m depth was injected into the area of the full-scale engineered barrier system (EBS) performance experiment. The injection water was sampled for the analysis. In the 350 m niche no. 4, groundwater seeped out from the tunnel wall around the area where the full-scale EBS performance experiment was conducted, and this was collected (Fig. 1b, Water-from-EBS-area). Figure 2 shows pictures of groundwater seeping from the wall around the test site. The URL supplies water for work purposes from an external source. This water was supplied from a depth of approximately 50 m in another borehole settled in the central part of Horonobetown and was analyzed because its origin differs from groundwater collected from a depth of 140-350 m.

Fig. 1 Schematic illustration of the Horonobe underground research laboratory and location maps of (a) water rings and (b) boreholes

Fig. 2 Picture of sampling point of the water-from-EBS-area

3. Analytical methods

The following items were measured and analyzed: pH, electrical conductivity, water temperature, concentrations of Na⁺, K⁺, Ca²⁺, Mg²⁺, Li⁺, NH₄⁺, F⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, PO₄³⁻, SO₄²⁻, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, dissolved organic carbon, dissolved inorganic carbon, sulfide (H₂S, HS⁻), and alkalinity, oxygen isotope ratios, and hydrogen isotope ratios. Table 1 shows a list of analytical items and methods.

Analytical species	Analytical method	Reference
pH Electric conductivity (EC) Temperature	Glass electrode method	JIS K 0102 12.1 JIS K 0102 13 JIS K 0102 7.2
HCO ₃ ⁻ CO ₃ ²⁻	Calculated from pH and DIC content	
M-Alkalinity	Neutralization titration	JIS K 0102 15
Dissolved organic carbon (DOC) Dissolved inorganic carbon (DIC)	Combustion catalytic oxidation and nondispersive infrared detection	JIS K 0102 22.2
Na ⁺ K ⁺ Ca ²⁺ Mg ²⁺ Li ⁺ NH ₄ ⁺ F^- C1 ⁻ Br ⁻ NO ₃ ⁻ NO ₂ ⁻ PO ³⁻	Ion chromatography	JIS K 0102 48.3 JIS K 0102 49.3 JIS K 0102 50.4 JIS K 0102 51.4 JIS K 0102 42.5 JIS K 0102 34.3 JIS K 0102 35.3 JIS K 0102 37.2 JIS K 0102 43.2.5 JIS K 0102 43.1.2 JIS K 0102 46.1.3
SO ₄ - Total-Mn Total-Fe Al B Sr Ba I	Inductively coupled plasma mass spectrometry	JIS K 0102 41.3 JIS K 0102 56.5 JIS K 0102 58.5 JIS K 0102 47.4 JIS K 0133 JIS K 0133 JIS K 0133
Oxygen isotope ratio (δ ¹⁸ O) Hydrogen isotope ratio (δD)	Mass spectrometry	
Fe ²⁺ and total Fe	Phenanthroline absorptiometry	JIS K 0400 57.10
Sulfide (H ₂ S, HS ⁻ , etc.)	Methylene blue absorptiometry	JIS K 0102 39.1

3.1 pH, electrical conductivity, and temperature

The pH, electrical conductivity, and water temperature of groundwater samples were measured by the glass electrode method. EC/pH meter WM-32EP, pH electrode (GST-2729C), and conductivity cell (CT-2712B) manufactured by DKK-TOA Corp. were used for measurement. The following three reagents were used as pH standard reagents. (1) Powder reagent for phthalate pH standard solution (DKK-TOA Corp.), (2) Powder reagent for phosphate pH standard solution (DKK-TOA Corp.), (3) Powder reagent for tetraborate pH standard solution (DKK-TOA Corp.).

3.2 Dissolved components in groundwater

3.2.1 Na⁺, K⁺, Ca²⁺, Mg²⁺, Li⁺, NH₄⁺, F⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, PO₄³⁻, and SO₄²⁻

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.), and the concentration of each dissolved ion in the filtrate was analyzed by ion chromatography. The measurement device used was an ion chromatograph IC-2010 manufactured by TOSOH Corp.

For cations: TSKgel SuperIC-CR (TOSOH Corp.) was used as the separation column. Eluents were aqueous solutions of 2 M Methanesulfonic Acid Solution (FUJIFILM Wako Pure Chemical Corp.) and 18-Crown-6 (FUJIFILM Wako Pure Chemical Corp.) prepared to concentrations of 2.2 mM and 1.0 mM, respectively. The eluent flow rate was 0.70 mL/min. The detector was an electrical conductivity detector, and the sample injection volume was 30.0μ L. Multication Standard Solution III from FUJIFILM Wako Pure Chemical Corp. was used as the standard reagent.

For anions: TSKgel SuperIC-Anion HS (TOSOH Corp.) was used as the separation column. The eluents were aqueous solutions of sodium carbonate (FUJIFILM Wako Pure Chemical Corp.) and sodium bicarbonate (FUJIFILM Wako Pure Chemical Corp.) prepared to concentrations of 0.8 mM and 7.5 mM, respectively. The eluent flow rate was 1.0 mL/min. TSKgel suppress IC-A (TOSOH Corp.) was used as the suppressor gel. The detector was an electrical conductivity detector, and the sample injection volume was 30.0 µL. Multication Standard Solution 1 from FUJIFILM Wako Pure Chemical Corp. was used as the standard reagent.

3.2.2 Total-Mn, Total-Fe, Al, B, Sr, Ba, and I

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.), and the concentration of each dissolved element in the filtrate was analyzed by ICP-mass spectrometry. The analyzer was an Agilent 7700x manufactured by Agilent Technologies International Japan, Ltd. For Total-Mn and Total-Fe, Al, Sr, and Ba, the custom assurance standard (XSTC-331, Spex Certiprep, Inc.) from Seishin Trading Co. Ltd. was used as the standard reagent. The matrix was prepared using a 2% nitric acid solution diluted in ultrapure water (Milli-Q, Academic-A10, Millipore Corp.) with nitric acid (TAMAPURE-AA-10, Tama Chemicals Co. Ltd.). For boron, Boron standard solution (B 1000, FUJIFILM Wako Pure Chemical Corp.) was used as the standard reagent. The matrix was prepared using a 2% nitric acid solution diluted in Milli-Q with nitric acid (TAMAPURE-AA-10, Tama Chemicals Co. Ltd.). For iodine, Anion Standard Iodine (Spex Certiprep, Inc.) from Seishin Trading Co. Ltd. was used as the standard reagent. The matrix was used as the standard reagent. The matrix was used as the standard reagent. The matrix was prepared using a 2% nitric acid solution diluted in Milli-Q with nitric acid (TAMAPURE-AA-10, Tama Chemicals Co. Ltd.). For iodine, Anion Standard Iodine (Spex Certiprep, Inc.) from Seishin Trading Co. Ltd. was used as the standard reagent. The matrix was prepared using a 1% TMAH solution of 25% tetramethylammonium hydroxide solution (FUJIFILM Wako Pure Chemical Corp.) diluted with Milli-Q.

3.2.3 M-Alkalinity

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.) and the alkalinity of the filtrate was determined by titration. SR-100 (Sansyo Co. Ltd.) was used as the magnetic stirrer, and Digital Burette dTrite YA219BA (DLAB Scientific Inc.) as the dispenser. The reagent for titration was prepared at 0.01 M using 1 M sulfuric acid (FUJIFILM Wako Pure Chemical Corp.) diluted in Milli-Q. The pH was measured using a DKK-TOA Corp. multi-water quality meter (MM-43X) and a pH electrode (GST-5846C).

The procedure for measuring M-alkalinity (acid consumption (pH 4.8)) is as follows. 3-12 mL of the sample was taken in a beaker, and the pH meter electrode was dipped in the sample. The sample was titrated with 0.01 M sulfuric acid while stirring in a magnetic stirrer until the pH of the sample reached 4.8. The M-alkalinity was calculated according to the following equations:

M-alkalinity (CaCO₃ mg/L) = $a \times f \times 1000/v \times 1.00087$,

M-alkalinity (mEq/L) = $a \times f \times 0.02 \times 1000/v$,

where *a* is the volume of 0.01 M sulfuric acid required for titration (mL). *f* is the factor for 0.01 M sulfuric acid, *v* is the sample's volume (mL), 1.00087 is the equivalent amount of calcium carbonate (mg) in 1 mL of 0.01 M sulfuric acid, and 0.02 is the equivalent hydrogen ion amount (mmol) in 1 mL of 0.01 M sulfuric acid.

3.2.4 Dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)

Groundwater samples were filtered through a 0.45 μ m filter (PES membrane, Millex, Merck Millipore Ltd.). DOC and DIC concentrations in the filtrate were analyzed by combustion oxidation-infrared TOC automated measuring method. The measuring device used was a TOC-V_{CSH} total organic carbon meter (Shimadzu Corp.). Pure air gas was used as the carrier gas. Potassium hydrogen phthalate (FUJIFILM Wako Pure Chemical Corp.) was used as the standard reagent for DOC. Sodium bicarbonate (FUJIFILM Wako Pure Chemical Corp.) and sodium carbonate (FUJIFILM Wako Pure Chemical Corp.) were used as standard reagents for DIC. For the DOC measurement, 2 M hydrochloric acid (FUJIFILM Wako Pure Chemical Corp.) was added to the sample to adjust 4wt% and aired to remove inorganic carbon and volatile organic compounds before measuring DOC concentration. DOC detected in this way does not include volatile organic compounds such as methane gas dissolved in groundwater, which means non-purgeable organic carbon (NPOC). In the DIC measurement, 85wt% phosphoric acid (FUJIFILM Wako Pure Chemical Corp.) was adjusted to 25wt% using Milli-Q to acidify the sample.

$3.2.5\ \text{CO}_3{}^{2-}$ and $\text{HCO}_3{}^{-}$

From the total carbonate concentration in the sample and the pH of the sample, the CO_3^{2-} and HCO_3^{-} concentrations were calculated using the following equations. The total carbonate concentration was calculated from the DIC concentration. Table 2 shows the percentages of carbonate and bicarbonate ions at each pH.

$$HCO_3^-$$
 (mg) = $C \times a \times 1.387$.
 CO_3^{2-} (mg) = $C \times b \times 1.364$.

C is the total carbonate concentration (CO₂ mg/L), and *a* is the percentage of bicarbonate ions present relative to total carbonate. *b* is the percentage of carbonate ions present relative to total carbonate, 1.387 is the coefficient for converting the amount of total carbonate to bicarbonate ion equivalent (61.02/44.01), and 1.364 is the coefficient for converting the amount of total carbonate to carbonate ion equivalent (60.01/44.01).

ъЦ	Abundance	ratio (25℃)	- nU	Abundance	ratio (25℃)	ъЦ	Abundance	ratio (25℃)
рп	a (HCO ₃ ⁻)	b (CO ₃ ²)	рп	a (HCO ₃ ⁻)	b (CO ₃ ²)	рп	a (HCO ₃ [¬])	b (CO ₃ ^{2–})
2.0	0.00004	-	6.0	0.30118	0.00001	10.0	0.68012	0.31972
2.1	0.00005	-	6.1	0.35174	0.00002	10.1	0.62814	0.37175
2.2	0.00007	-	6.2	0.40584	0.00003	10.2	0.57300	0.42692
2.3	0.00009	-	6.3	0.46233	0.00004	10.3	0.51597	0.48397
2.4	0.00011	-	6.4	0.51980	0.00006	10.4	0.45852	0.54144
2.5	0.00014	-	6.5	0.57675	0.00009	10.5	0.40215	0.59782
2.6	0.00017	-	6.6	0.63172	0.00012	10.6	0.34824	0.65174
2.7	0.00022	-	6.7	0.68345	0.00016	10.7	0.29796	0.70202
2.8	0.00027	-	6.8	0.73098	0.00022	10.8	0.25213	0.74786
2.9	0.00034	-	6.9	0.77371	0.00029	10.9	0.21123	0.78876
3.0	0.00043	-	7.0	0.81137	0.00038	11.0	0.17541	0.82459
3.1	0.00054	-	7.1	0.84396	0.00050	11.1	0.14455	0.85545
3.2	0.00068	-	7.2	0.87173	0.00065	11.2	0.11833	0.88166
3.3	0.00086	-	7.3	0.89508	0.00084	11.3	0.09634	0.90366
3.4	0.00108	-	7.4	0.91445	0.00108	11.4	0.07807	0.92193
3.5	0.00136	-	7.5	0.93036	0.00138	11.5	0.06303	0.93697
3.6	0.00171	-	7.6	0.94326	0.00177	11.6	0.05072	0.94928
3.7	0.00216	-	7.7	0.95361	0.00225	11.7	0.04072	0.95928
3.8	0.00271	-	7.8	0.96178	0.00285	11.8	0.03261	0.96739
3.9	0.00341	-	7.9	0.96811	0.00362	11.9	0.02608	0.97392
4.0	0.00429	-	8.0	0.97285	0.00457	12.0	0.02083	0.97917
4.1	0.00540	-	8.1	0.97623	0.00578	12.1	0.01662	0.98338
4.2	0.00678	-	8.2	0.97839	0.00729	12.2	0.01324	0.98676
4.3	0.00853	-	8.3	0.97942	0.00919	12.3	0.01055	0.98945
4.4	0.01071	-	8.4	0.97939	0.01156	12.4	0.00840	0.99160
4.5	0.01345	-	8.5	0.97828	0.01454	12.5	0.00668	0.99332
4.6	0.01687	-	8.6	0.97604	0.01827	12.6	0.00531	0.99469
4.7	0.02114	-	8.7	0.97258	0.02291	12.7	0.00423	0.99577
4.8	0.02647	-	8.8	0.96774	0.02870	12.8	0.00336	0.99664
4.9	0.03310	-	8.9	0.96130	0.03590	12.9	0.00267	0.99733
5.0	0.04132	-	9.0	0.95299	0.04480	13.0	0.00212	0.99788
5.1	0.05147	-	9.1	0.94248	0.05578			
5.2	0.06394	-	9.2	0.92939	0.06925			
5.3	0.07919	-	9.3	0.91328	0.08566			
5.4	0.09769	-	9.4	0.89365	0.10553			
5.5	0.11995	-	9.5	0.87002	0.12934			
5.6	0.14645	-	9.6	0.84194	0.15757			
5.7	0.17764	-	9.7	0.80901	0.19061			
5.8	0.21380	-	9.8	0.77102	0.22870			
5.9	0.25504	-	9.9	0.72796	0.27183			

Table 2 Abundance ratios of bicarbonate and carbonate ions at pH of 2.0-13.0

3.2.6 Fe^{2+} and total Fe (Fe²⁺ HACH and Total-Fe HACH)

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.), and the concentration of dissolved iron in the filtrate was analyzed by 1, 10-phenanthroline absorption spectrophotometry. The analyzer used was an absorption spectrophotometer DR2800 (HACH Company).

The analysis procedure is as follows. 1,10-phenanthroline reagent (HACH Cat. 1037-69) was added to the sample solution, stirred, and stood for 3 minutes. The absorbance at a wavelength of 510 nm was measured, and the concentration of divalent iron was determined using the calibration curve provided with the instrument. For total iron, 1,10-phenanthroline reagent and reducing agents such as sodium hyposulfite (HACH Cat. 21057-69) were added to the sample solution, stirred, allowed to stand for 3 minutes, and the absorbance at a wavelength of 510 nm was measured and determined using the calibration curve provided

with the instrument. This analysis was conducted in the field immediately after sample collection.

3.2.7 Sulfide (H₂S, HS⁻) (HS⁻ HACH)

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.), and the dissolved sulfide concentration in the filtrate was analyzed by methylene blue absorption spectrophotometry. The analyzer used was an absorption spectrophotometer DR2800 (HACH Company).

The analysis procedure is as follows. A sulfuric acid reagent containing N, N-dimethyl-pphenylenediamine and dichromic acid reagent (HACH Cat. 1816-32 and 1817-32) was added to the sample solution, stirred, and allowed to stand for 5 minutes. The absorbance was measured at a wavelength of 665 nm, and the concentration of sulfide was determined using the calibration curve provided with the instrument. This analysis was conducted in the field immediately after sample collection.

3.3 Isotope analysis

3.3.1 Oxygen isotope ratio (δ^{18} O)

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.), and the oxygen isotope ratio of the filtrate was measured by mass spectrometry. Oxygen isotopic ratio analysis was performed using an equilibrium pretreatment device for solution (iso FLOW for solution, Elementar Inc.) and a stable isotope ratio mass spectrometer (isoprime precisION, Elementar Inc.).

First, the sample was filtered through a filter with a pore diameter of $0.2 \ \mu\text{m}$, and $200 \ \mu\text{L}$ of the filtrate was sealed in a designated vial. Then the appropriate amount of CO₂ was added to the headspace of each vial. The vials were kept at 30°C for at least 12 hours to allow the equilibrium of O in water of the sample solution and CO₂ in the headspace. The preliminary experiment confirmed that isotopic equilibrium was achieved in the vial when solution and CO₂ were contacted over 12 hours. The laboratory standard samples that have known isotopic ratios of oxygen were also sealed into vials in the same manner. These operations were performed using iso FLOW for solution.

Prior to the analysis, a "Stability test" was performed. The warming up of the device was followed by the measurement of reference gas (CO_2 gas) several times. After confirming that the device was sufficiently stable, the sample was analyzed. At least 12 hours after CO_2 injection, a portion of the headspace gas was taken, and the gas was passed through a GC column to extract CO_2 . The isotopic ratio of O in CO_2 was measured with a mass spectrometer. A calibration curve was obtained from the relationship between the analyzed values and known isotopic ratios in lab standards, and the calibration curve was used to convert the analyzed values to isotope ratios. The analysis was conducted three times, and the average value of the three times was used as the analytical value.

The analysis results are expressed as the delta value (δ) as the thousandths of the deviation from the standard substance of Vienna Standard Mean Ocean Water (VSMOW), which is expressed by the following equation,

 $\delta = (R)_{\text{sample}} / (R)_{\text{VSMOW}} - 1,$

where *R* is the oxygen isotope ratio ($^{18}O/^{16}O$).

3.3.2 Hydrogen isotope ratio (δD)

Groundwater samples were filtered through a 0.45 µm filter (PES membrane, Millex, Merck Millipore Ltd.) and the hydrogen isotope ratio of the filtrate was measured by mass spectrometry. Hydrogen isotopic ratio analysis was performed using an equilibrium pretreatment device for solution (iso FLOW for solution, Elementar Inc.) and a stable isotope ratio mass spectrometer (isoprime precisION, Elementar Inc.).

First, the sample was filtered through a filter with a pore diameter of 0.2 μ m, and 200 μ L of the filtrate was sealed in a designated vial. A platinum coil was placed in the vial to accelerate the equilibrium reaction. Then the appropriate amount of H₂ was added in the headspace of each vial. The sample were kept at 30°C for at least 12 hours to allow the equilibrium of H in water of the sample solution and H₂ in the headspace. The preliminary experiment confirmed that isotopic equilibrium was achieved in the vial when solution and H₂ were contacted over 12 hours. The laboratory standard samples that have known isotopic ratios of oxygen were also sealed into vials in the same manner. These operations were performed using iso FLOW for solution.

Prior to the analysis, a "H₃ factor test" and a "Stability test" were performed. The warming up of the device was followed by the H₃ factor test and the H₃ factor was determined and used to correct the effect of H₃ to HD. Then the reference gas (H₂ gas) was measured several times to confirm the stability of the device. After confirming that the device was sufficiently stable, the sample was analyzed. At least 12 hours after hydrogen injection, a portion of the headspace gas was taken, and the gas was passed through a GC column to extract H₂. The isotopic ratio of H in H₂ was measured with a mass spectrometer. A calibration curve was obtained from the relationship between the analyzed values and known isotopic ratios in lab standards, and the calibration curve was used to convert the analyzed values to isotope ratios. The analysis was conducted three times, and the average value of the three times was used as the analytical value.

The analysis results are expressed as the delta value (δ) as the thousandths of the deviation from the standard substance of Vienna Standard Mean Ocean Water (VSMOW), which is expressed by the following equation,

$$\delta = (R)_{\text{sample}} / (R)_{\text{VSMOW}} - 1$$

where R is the hydrogen isotope ratio (D/H).

4. Results

Table 3 shows the measurement and analysis results, along with the sampling point's depth information and coordinates. The measurement dates in Table 3 refer to the total period required for each analysis. "Total-Fe HACH," "Fe²⁺ HACH," and "HS⁻ HACH" correspond to the results of the on-site analysis immediately after sample collection, as described in Sections 3.2.6 and 3.2.7. A blank field for an analyte in a sample means no analysis has been performed. The sample of index no. 52 is groundwater supplied from a depth of about 50 m in the central part of Horonobe-town.

4.1 Ion balance

To evaluate the results of the analysis of dissolved constituents in groundwater, assuming that all elements are dissolved as ions, we calculated the total equivalent of cations (Σ cation) and anions (Σ anion) dissolved in groundwater and checked whether electroneutrality was maintained for the balance of charges (Table 3).

In the calculations, Na⁺, K⁺, NH4⁺, Li⁺, Ca²⁺, and Mg²⁺ were used as cations and F⁻, Cl⁻, Br⁻, NO3⁻, SO4²⁻, PO4³⁻, HCO3⁻, and CO3²⁻ as anions. Friedman and Erdmann¹¹⁾ have presented a range of ion balances, based on Σ anion, that are considered desirable for groundwater that meets each of the following conditions. (1) For Σ anion = 0.0–3.0 mEq/L: | Σ anion – Σ cation| < 0.2 mEq/L. (2) For Σ anion = 3.0–10.0 mEq/L: |(Σ anion – Σ cation)/(Σ anion + Σ cation)| < 0.02. (3) For Σ anion = 10.0–800 mEq/L: |(Σ anion – Σ cation)/(Σ anion + Σ cation)| < 0.05. By applying these criteria to the analytical results of the 54 samples from this year, all the analytical results meet the criteria.

4.2 Stiff diagram

The graphical representation of water quality analysis results as a stiff diagram effectively discriminates groundwater of different origins since water quality composition can be understood easily. The stiff diagram shows the concentrations of each principal dissolved constituent, Na^+ , K^+ , Mg^{2+} , Ca^{2+} , Cl^- , SO_4^{2-} , and HCO_3^- , as equivalent values (mEq/L), divided into cations and anions. Figure 3 shows stiff diagrams of the analysis results.

JAEA-Data/Code 2022-013

Table 3 Groundwater chemistry

			Depth (GL	-)	Dept	h (EL)				location (V	WGS84, UTM,	Zone54)	Physico-c	hemical paran	eter	Tommor							Total																	
Index	Name	Min	Max	Mid	Min N	lax Midd	Sampling date	e Analyzing date	Geological			z	EC E	с "н		ature	Na ⁺ K	Ca ²⁺	Mg ²⁺ 1	fotal-Mn Li ⁺	В	Sr 1	fotal-Fe Fe	Fe ²⁺	Ba Al	³⁺ F	CI.	Br [:] I	NO3	NO ₂ ⁻ N	I ₄ ⁺ PO ₄ ³⁻	SO42. H	8 ⁻ нсо ₃ -	CO32- 1	M-Alkalinity	тос	TIC Exation	Σanion i ba	onic ôD lance	$\delta^{18}O$
no.	. time						(yyyy/mm/dd)) (yyyy/mm/dd)	formation	East	North	(middle depth)	at site at l	ab. pri at site	at lab.	at site							HACI	1																
	WR V 70 20220614	(m)	(m)	(m)	(m) (m) (m)	2022/06/14	2022/06/15 8/12	Voatai Em	\$67699 1	4099246 5	_2 9	(mS/m) (mS	/m)	7.2	(U)	(mg/L) (mg	L) (mg/L)	(mg/L) ((mg/L) (mg/l	L) (mg/L)	(mg/L) (mg/L) (mg/L	.) (mg/L)	(mg/L) (mg	z/L) (mg/L)	(mg/L) (:	ng/L) (mg/	L) (mg/L)	(mg/L) (m	g/L) (mg/L)	(mg/L) (μg	/L) (mg/L)	(mg/L) (n	ng/L) (meq/L	.) (mg/L) (n	1g/L) (mEq/L)	(mEq/L)	(%) (%)	(%)
	wk-v-70_20220014	03.8	03.8	03.8	-3.8	5.8 -5.8	5 2022/00/14	2022/00/13-6/12	Kocioi Fili.	507088.1	4988340.5	-3.8	200 2	.0 7.2	7.5	13.4	380 23	51	4.7	0.14 2.5	9.0	0.10	0.27		0.050 < 0.	.01 0.2	320	2.0 23	13.0	4.4 1	+.0 2.2	40	490	~1 .	+80 9.7	9.7	108 20	18.5	4.4 -33.7	-0.1
2	WR-V-100-20220613	98.0	98.0	98.0	-38.0 -	58.0 - 58.0	0 2022/06/13	2022/06/15-8/12	Koetoi I ⁻ m.	56/688.1	4988346.5	-38.0	580 6	0 8.5	8.5	14.0	1260 53	30	18.5	< 0.05 3.7	39	0.34	0.05		0.165 < 0.	.01 0.2	1280	9.5 19.0	191	< 0.1 0	.2 2.2	39	980	14	900 17.9	16.0	19/ 60	57	2.6 -53.6	-0.0
3	WR-V-136_20220613	133.8	133.8	133.8	-73.8 -	73.8 -73.8	8 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567688.1	4988346.5	-73.8	1670 17	20 8.2	8.2	14.5	3800 13	54	44	< 0.05 11.9	9 116	1.27	0.14		1.15 < 0.	.01 0.1	4600	31 23	155	230 9	07 1.3	4.9	2500	18 2	2600 52	32	500 181	178	0.8 -43.9	-1.9
4	WR-V-168_20220614	168.0	168.0	168.0	-108.0 -1	08.0 -108.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567688.1	4988346.5	-108.0	950 9	80 8.6	8.5	15.0	2200 77	18.2	20	< 0.05 2.8	64	0.45	0.08		0.21 < 0.	.01 0.2	2000	13.7 3.7	145	12.2	50 1.2	1.3	2200	32 2	2100 42	19.3	102	97	2.8 -51.7	-4.8
5	WR-V-200_20220614	202.0	202.0	202.0	-142.0 -1	42.0 -142.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567688.1	4988346.5	-142.0	1340 13	90 8.0	8.0	15.1	2900 10	32	38	< 0.05 8.7	94	0.67	0.07		0.52 < 0.	.01 0.1	3200	23 13.	27	13.4 8	4 1.8	3.0	2800	13 2	2500 50	26	570 141	139	0.8 -50.5	-3.3
6	WR-V-210_20220614	202.0	202.0	202.0	-142.0 -1	42.0 -142.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567688.1	4988346.5	-142.0	1100 11	40 8.3	8.2	15.8	2500 86	26	29	< 0.05 7.3	72	0.47	0.04		0.32 < 0.	.01 0.2	2700	17.8 9.2	102	29 3	8 2.8	3.1	2400	17 2	2100 43	22	470 120	117	1.0 -50.5	-4.1
7	WR-V-246_20220614	242.0	242.0	242.0	-182.0 -1	82.0 -182.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567688.1	4988346.5	-182.0	930 9	70 7.7	7.8	15.9	1980 60	34	24	< 0.05 4.4	47	0.47	< 0.03		0.28 < 0.	.01 0.2	2100	13.5 7.1	13.8	3.8 6	64 2.4	2.5	2100	6 1	8990 38	11.5	430 96	94	1.0 -62.3	-6.4
8	WR-V-300_20220615	282.0	282.0	282.0	-222.0 -2	22.0 -222.	.0 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567688.1	4988346.5	-222.0	13	00	7.8		2700 63	62	47	< 0.05 5.5	63	0.83	0.05		0.48 < 0.	.01 0.2	3300	21 11.	43	23 6	5 1.8	5.4	2200	7 :	2000 40	12.6	460 131	133 -	0.5 -52.8	-4.5
9	WR-V-330 20220615	310.0	310.0	310.0	-250.0 -2	50.0 -250.	.0 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567688.1	4988346.5	-250.0	11	40	7.4		2500 61	60	40	< 0.05 3.8	57	0.70 <	< 0.03		0.44 < 0.	.01 0.3	2900	18.9 10.1	0.7	< 0.1	4 2.2	4.5	2200	3	2000 40	11.2	460 124	117	2.9 -57.3	-5.2
10	WR-V-338 20220615	310.0	310.0	310.0	-250.0 -2	50.0 -250	0 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567688.1	4988346.5	-250.0	11	50	7.4		2300 57	53	37	< 0.05 5.0	69	0.72	< 0.03		0.45 < 0.	01 0.2	2600	17.0 11.9	7.9	0.6	6 1.7	3.5	2200	3	2000 40	11.5	480 112	110	1.1 -55.7	-5.3
11	WP V 348 20220615	3/3 0	3/13 0	3/13 0	-283.0 -3	83.0 -283	9 2022/06/15	2022/06/15 8/12	Wakkanai Em	567688 1	4988346 5	-283.0	13	20	7.6		3000 70	41	34	< 0.05 7.4	66	0.83	< 0.03		0.58 < 0	01 0.2	3900	25 27	2.6	2.0 1	03 20	6.9	2300	4	2100 42	12.6	170 144	147 .	12 -548	-4.4
	WR F 20 0 20220015	345.7	345.7	343.9	205.7 2	205.7 205.	2022/06/15	2022/06/15-0/12	Wakkanar I III	567688.1	40000000	200.9		20	7.0		3000 //				00	0.05	0.05		0.00 < 0.	.01 0.2	3700	2.5 2.7	2.0	2.0 1	2.0	0.9	2500		.100 42	12.0	7. 12.0	147	1.2 54.6	
12	WR-E-20.0_20220614	27.0	27.0	27.0	33.0 3	3.0 33.0	2022/06/14	2022/06/15-8/12	Koetoi I'm.	567724.0	4988286.5	33.0	13/ 1.	6 /./	/.6	12.3	260 13.	0 8.9	5.5	< 0.05 0.60	8.4	0.34	0.10		0.035 < 0.	.01 0.3	220	1.8 0.4	5.1	< 0.1 1.	2.1 3.8	23	360	< 1	310 6.1	12.1	/4 12.9	12.7	0.8 -66.5	-9.8
13	WR-E-68.0_20220614	63.8	63.8	63.8	-3.8 -	3.8 -3.8	3 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-3.8	830 8	50 7.4	7.5	11.7	1790 67	41	26	< 0.05 4.2	69	0.51	0.13		0.33 < 0.	.01 0.1	1770	12.6 7.6	41	1.7 8	1.3	1.1	1980	3 1	1840 37	19.6	420 89	83	3.3 -57.5	-6.5
14	WR-E-132.0_20220613	132.0	132.0	132.0	-72.0 -	72.0 -72.0	0 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-72.0	1510 15	60 7.9	7.9	13.9	3500 12	45	37	< 0.05 9.7	131	0.78	0.57		0.54 < 0.	.01 0.1	3800	26 10.	0.7	1.9 1	16 10.0	3.9	3300	12 2	2900 58	64	570 167	163	1.0 -46.7	-2.6
15	WR-E-136_20220613	132.0	132.0	132.0	-72.0 -	72.0 -72.0	0 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-72.0	1420 14	50 8.0	7.9	12.8	3200 11	44	31	< 0.05 8.6	110	0.83	0.21		0.68 < 0.	.01 0.1	3600	24 10.0	6.5	1.5 9	9 1.6	4.6	3000	11 7	2700 53	28	510 153	151	0.7 -45.8	-2.2
16	WR-E-170.0_20220614	169.0	169.0	169.0	-109.0 -1	09.0 -109.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-109.0	1220 12	60 7.8	7.7	14.8	2800 92	11.8	21	< 0.05 13.5	5 94	0.58	0.08		0.43 < 0.	.01 0.1	2800	19.0 16.4	9.5	80 9	2 1.6	8.2	2900	7 1	2600 52	27	590 132	129	1.1 -49.2	-2.5
17	WR-E-202.0_20220614	202.0	202.0	202.0	-142.0 -1	42.0 -142.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-142.0	1030 10	50 8.1	8.0	14.5	2400 79	27	24	< 0.05 5.7	88	0.42	0.15		0.32 < 0.	.01 0.1	2100	14.2 15.3	26	1.1 9	4 1.4	6.6	2900	14 :	2600 53	29	590 116	108	3.3 -53.2	-3.9
18	WR-E-246.0_20220614	239.0	239.0	239.0	-179.0 -1	79.0 -179.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567724.0	4988286.5	-179.0	840 8	50 8.1	8.1	15.0	1990 62	16.5	14.5	< 0.05 5.0	69	0.23	0.08		0.182 < 0.	.01 0.2	1600	10.2 13.3	21	18.8 4	7 1.5	17.4	2600	15 :	2300 46	23	510 93	89	2.4 -59.1	-5.2
19	WR-E-276.0 20220614	276.0	276.0	276.0	-216.0 -2	16.0 -216.	.0 2022/06/14	2022/06/15-8/12	Wakkanai Fm	567724.0	4988286.5	-216.0	1000 10	40 7.4	7.5	16.7	2100 50	39	27	< 0.05 4.8	57	0.51 -	< 0.03		0.35 < 0.	.01 0.2	2200	14.9 29	1.6	0.6	1 1.6	8.1	2100	3 :	2000 40	12.0	450 102	99	1.3 -58.0	-5.6
20	WP F 310 0 20220614	310.0	310.0	310.0	-250.0 -2	50.0 -250	0 2022/06/14	2022/06/15 8/12	Wakkanai Em	567724.0	4088786 5	-250.0	810 8	10 77	78	16.7	1960 57	19.6	14.1	< 0.05 5.3	58	0.24	0.06		0.150 < 0	01 03	1580	10.3 6.6	0.5	0.6	6 10	64	2400	7	2100 43	21	100 03	86	10 -59.6	-5.6
20	WR-E-340.0_20220014	240.0	240.0	240.0	200.0 2	200 200	0 2022/06/14	2022/06/15 8/12	Wakkanai Fin	507724.0	4000200.5	200.0	1210 12	50 7.7	7.0	16.7	2700 (4	17.0	14.1	- 0.05 5.5		0.24	< 0.00		0.157 < 0.	.01 0.5	2100	10.0 24	0.5	22	1 10	6.0	2400		2100 43	12.4	100 128	126	0.7 52.4	
21	WR-E-340.0_20220614	340.0	340.0	340.0	-280.0 -2	.80.0 -2.80.	.0 2022/06/14	2022/06/13-8/12	wakkanai rm	567724.0	4988280.5	-280.0	1210 12	50 7.7	1.1	10.4	2700 63	4/	3/	< 0.05 6.2	09	0.76	< 0.03		0.43 < 0.	.01 0.2	3100	19.8 34	35	22 0	51 1.8	5.9	2400	5 2	100 45	15.4	128	120	0.7 -55.4	-4.4
22	WR-W-136_20220613	136.0	136.0	136.0	-76.0 -	76.0 -76.0	0 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567654.1	4988285.4	-76.0	1630 16	60 7.5	7.6	10.9	3400 10	79	71	0.23 9.6	95	1.90	0.10		1.37 0.0	02 0.3	4600	34 12.4	56	1.2 1	52 < 0.3	136	2900	5 2	2200 44	25	500 170	181 -	-3.0 -48.9	-3.5
23	WR-W-156_20220614	156.0	156.0	156.0	-96.0 -	96.0 -96.0	0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567654.1	4988285.4	-96.0	1810 18	70 7.5	7.5	14.1	4100 15	97	77	0.06 12.4	106	1.56	0.07		1.23 < 0.	.01 0.2	5300	38 36	31	< 0.1 1	53 1.9	59	2900	4 2	2600 51	28	510 205	198	1.9 -44.6	-1.9
24	WR-W-246_20220614	246.0	246.0	246.0	-186.0 -1	86.0 -186.	.0 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567654.1	4988285.4	-186.0	1190 12	20 8.4	8.4	13.7	2600 95	24	31	< 0.05 7.0	79	0.54	0.07		0.34 < 0.	.01 0.2	2600	19.0 9.4	124	13.0	0 1.8	4.2	2500	29 7	2300 46	23	500 121	119	0.9 -47.6	-3.6
25	WR-W-276.0_20220615	276.0	276.0	276.0	-216.0 -2	16.0 -216.	.0 2022/06/15	2022/06/15-8/12	Koetoi Fm.	567654.1	4988285.4	-216.0	10	00	7.9		2100 69	31	23	< 0.05 4.7	59	0.41	0.05		0.29 < 0.	.01 0.2	2100	14.6 8.5	0.6	1.2	54 2.0	13.3	2300	8 !	1990 40	14.2	460 99	98	0.9 -55.1	-5.3
26	WR-W-310.0_20220614	310.0	310.0	310.0	-250.0 -2	50.0 -250.	.0 2022/06/14	2022/06/15-8/12	Wakkanai Fm	567654.1	4988285.4	-250.0	1150 11	70 7.3	7.3	14.7	2400 67	53	36	< 0.05 6.3	71	0.77	0.03		0.45 < 0.	.01 0.2	2700	18.3 18.2	0.6	< 0.1	1.9	5.5	2200	2 5	2100 41	12.2	470 117	113	1.9 -58.0	-4.7
27	WR-W-340.0_20220614	340.0	340.0	340.0	-280.0 -2	80.0 -280.	.0 2022/06/14	2022/06/15-8/12	Wakkanai Fm	567654.1	4988285.4	-280.0	1170 12	10 7.4	7.6	14.5	2800 71	52	39	< 0.05 6.9	63	0.67	< 0.03		0.41 < 0.	.01 0.3	3100	19.9 9.7	1.3	0.7 8	5 1.6	8.6	2300	4 :	2100 42	13.1	470 135	124	4.0	-4.4
28	07-V140-M01 20220613	136.9	138.7	137.8	-76.9 -	78.7 -77.8	8 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567670.0	4988364.3	-77.8	1590 16	20 7.3	7.4	15.2	3500 11	95	64	< 0.05 10.6	5 114	1.45	0.19 0.69	0.47	0.96 < 0.	.01 < 0.1	4300	31 22	< 0.1	< 0.1 1	59 3.8	4.9 (0 2900	3	2600 53	24	520 174	170	1.3 -47.1	-2.1
29	07-V140-M03#1 20220613	142.3	150.1	146.2	-82.3 -	90.1 -86.2	2 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567674.3	4988369.4	-86.2	1360 13	90 7.3	7.3	15.8	3000 94	72	48	< 0.05 7.6	102	1.14	0.19 0.53	0.51	0.67 < 0.	01 < 0.1	3400	24 9.6	< 0.1	< 0.1 1	35 2.9	3.4	1 2700	3	2600 51	24	500 147	140	2.6 -51.1	-3.2
20	08 E140 C01#5 20220612	157.6	167.0	162.7	-07.6 -1	07.0 -102	7 2022/06/12	2022/06/15 8/12	Kostoj Em	567747 7	4099250 7	-102.7	1240 12	70 71	7.2	16.7	2700 07	50	21	< 0.05 7.0	104	0.80	0.08 0.52	0.47	0.55 < 0	01 < 0.1	2800	10.0 0.7	< 0.1	< 0.1 1	20 4.2	20 3	2 2000		2700 55	27	60 125	120	2.4 -40.0	-2.6
50	00-E140-C01#5_20220015	157.0	107.9	102.7	77.0		5 2022/06/13	2022/06/15-0/12	Kocior I III.	507747.7	4700257.7	102.7	1240 12			10.7	2100 72		51			0.07	0.00 0.02	0.47	0.00 < 0.	.01 < 0.1	2000	17.0 7.5	- 0.1			2.7 .				27		127	2.4 49.0	2.0
31	08-E140-C01#4_20220613	168.6	1/4.4	1/1.5	-108.6 -1	14.4 -111.	.5 2022/06/13	2022/06/15-8/12	Koetoi I'm.	567753.0	4988254.5	-111.5	920 9	50 7.2	1.1	16.5	2100 72	40	26	< 0.05 5.1	11	0.62	0.10 0.38	0.34	0.37 < 0.	.01 0.1	1830	12.4 10.	< 0.1	< 0.1	15 4.3	1.8 4	2800	6 2	2500 50	21	580 104	98	3.1 -57.3	-4.5
32	08-E140-C01#3_20220613	175.1	194.2	184.7	-115.1 -1	34.2 -124.	.7 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567760.5	4988247.3	-124.7	920 9	50 7.2	7.6	16.6	2100 72	39	26	< 0.05 5.3	76	0.51	0.08 0.33	0.21	0.36 < 0.	.01 0.1	1800	12.1 4.8	< 0.1	< 0.1 1	10 5.1	1.8 0	2800	5 2	2500 51	19.5	590 104	98	3.2 -56.4	-4.6
33	08-E140-C01#2_20220613	195.0	208.9	201.9	-135.0 -1	48.9 -141.	.9 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567769.8	4988238.3	-141.9	760 8.	30 7.3	7.9	16.6	1780 58	32	20	< 0.05 3.9	56	0.41	0.09 0.18	0.16	0.59 < 0.	.01 0.1	1470	9.8 4.8	0.4	< 0.1 8	4.8	1.1 3	2400	9 2	2200 44	22	500 88	82	3.3	-5.9
34	08-E140-C01#1_20220613	209.7	218.7	214.2	-149.7 -1	58.7 -154.	.2 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567775.8	4988232.4	-154.2	710 7	70 7.3	7.5	16.5	1640 50	27	17.8	< 0.05 3.5	49	0.34	0.08 0.46	0.20	0.33 < 0.	.01 0.1	1380	9.0 9.8	< 0.1	< 0.1	4.2	1.4 2	2200	3 1	1980 40	13.4	460 80	75	3.4 -62.8	-6.7
35	E140G_20220613	140.0	163.0	151.5	-80.0 -1	03.0 -91.5	5 2022/06/13	2022/06/15-8/12	Koetoi Fm.	567729.6	4988276.2	-91.5	1310 13	60 7.3	7.5	15.1	2900 96	65	44	< 0.05 9.0	106	1.05	0.08 0.69	0.55	0.78 < 0.	.01 < 0.1	3100	22 8.5	0.4	< 0.1 1	27 3.3	3.3 4	4 3100	4 2	2700 54	29	550 144	139	1.9 -47.8	-2.3
36	09-V250-M02#1_20220614	248.9	248.9	248.9	-188.9 -1	88.9 -188.	.9 2022/06/14	2022/06/15-8/12	Koetoi Fm. Wakkanai Fm.	567699.9	4988339.4	-188.9	850 9	00 7.1	7.3	18.8	1930 51	40	25	< 0.05 4.8	45	0.47	0.10 0.31	0.29	0.31 < 0.	.01 0.2	1930	12.3 6.6	0.7	< 0.1 8	30 3.1	2.0 2	2 2000	2 /	1890 38	9.9	450 94	88	3.4 -66.6	-6.9
37	10-E250-M01_20220614	247.0	248.8	247.9	-187.0 -1	88.8 -187.	.9 2022/06/14	2022/06/15-8/12	Koetoi Fm. Wakkanai Fm	567737.9	4988263.4	-187.9	790 8:	50 7.2	7.4	18.0	1910 54	31	22	< 0.05 5.0	56	0.38	0.12 0.25	0.13	0.26 < 0.	.01 0.2	1930	10.1 5.1	< 0.1	< 0.1 8	4.3	1.5 3	3 2200	3 :	2100 41	13.4	480 93	92	0.7 -65.4	-6.3
38	11-V250-TR02_20220614	252.7	280.4	266.6	-192.7 -2	20.4 -206.	.6 2022/06/14	2022/06/15-8/12	Koetoi Fm.	567711.9	4988360.9	-206.6	1370 14	20 7.2	7.3	18.2	3100 77	64	60	0.06 8.7	68	1.10	0.09 0.79	0.35	0.55 < 0.	.01 0.2	3900	25 30	< 0.1	< 0.1 1	17 1.7	4.2 1	7 2300	2 :	2200 44	12.5	500 151	150	0.5 -53.8	-3.7
39	12-P350-M02 20220615	347.4	349.3	348.3	-287.4 -2	89.3 -288.	.3 2022/06/15	2022/06/15-8/12	Wakkanai Fm. Wakkanai Fm	567708.7	4988286.8	-288.3	1620 16	70 6.9	7.0	19.2	3500 71	88	63	< 0.05 7.7	92	1.34	0.40 3.32	2.38	1.00 < 0.	.01 0.1	4500	30 18.3	< 0.1	< 0.1 1	08 2.1	4.4 6	6 2500	1 :	2500 49	20	500 170	167	1.0 -43.3	-1.2
40	13-350LGE-M01_20220615	347 3	345.9	346.6	-2873 -2	85.9 -286	6 2022/06/15	2022/06/15_8/12	Wakkanai Fm	567776.6	4988375 9	-286.6	1830 19	00 68	6.9	19.5	4100 66	117	74	< 0.05 10.3	4 93	1.67	0.12 5.02	3.97	1.22 < 0	01 01	5700	36 23	< 0.1	< 0.1 1	25 2.0	53 (0 2300	< 1	2400 48	15.8	580 200	198	0.6 -39.6	-0.4
-10	13-550EGE-M01_20220015	347.5	345.7	340.0	207.5 2		0 2022/00/15	2022/06/15-0/12	Wakkallal T III	567/10.0	4000407.0	200.0	1000 10	00 0.0	0.7	1).5	4700 00				, ,5	1.07	0.12 0.02	3.00	1.22 0.	.01 0.1	5700		< 0.1		2.0		2300	-1 2	.400 40	15.6	200	156	0.0 59.0	0.4
41	13-350-C01_20220615	348.5	349.4	349.0	-288.5 -2	.89.4 -289.	.0 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567692.3	4988407.0	-289.0	1900 20	20 7.1	/.1	21.5	4/00 83	111	8/	< 0.05 10.8	5 96	1.81	0.14 2.69	2.09	1.33 < 0.	.01 0.1	/100	44 23	< 0.1	< 0.1 1	57 2.2	6.1 2	2400	1 2	2300 46	15.1	560 230	240 -	-2.7 -38.4	-0.3
42	13-350-C05#2_20220615	348.3	348.6	348.4	-288.3 -2	88.6 -288.	.4 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567753.7	4988286.6	-288.4	16	60	7.8		3900 81	28	66	< 0.05 9.6	93	1.10 <	< 0.03		0.83 < 0.	.01 0.2	4700	30 17.9	0.5	0.7 1	34 2.3	3.3	3600	11 3	\$200 64	132	750 189	192 -	0.8 -44.6	-1.3
43	13-350-C06#2_20220615	347.8	348.0	347.9	-287.8 -2	88.0 -287.	.9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567762.9	4988318.3	-287.9	1530 16	40 7.1	7.6	18.7	3400 61	84	59	< 0.05 7.9	85	1.23	< 0.03 0.08	0.07	0.93 0.0	01 0.2	4400	28 11.9	28	6.3 9	0 1.7	2.1 8	3 2300	4 2	2100 42	18.8	470 167	164	0.9 -42.5	-1.2
44	13-350-C06#1_20220615	348.0	348.7	348.4	-288.0 -2	88.7 -288.	4 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567736.0	4988317.9	-288.4	1600 16	70 6.9	7.5	18.7	3600 71	87	60	< 0.05 8.8	94	1.26	< 0.03 0.04	0.01	1.05 < 0.	.01 0.2	4700	30 17.	< 0.1	1.3 1	28 2.2	3.0 4	4 2500	4 7	2200 44	16.2	530 175	174	0.2 -43.0	-1.6
45	13-350-C08#4_20220615	348.9	348.9	348.9	-288.9 -2	88.9 -288.	9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567760.6	4988291.1	-288.9	15	90	8.4		3600 74	26	37	< 0.05 8.6	102	0.89	< 0.03		0.67 < 0.	.01 0.1	4400	29 12.5	290	19.9 0	.3 1.2	41	1740	20	1630 33	27	350 162	161	0.5 -38.7	-0.9
46	13-350-C08#3_20220615	348.9	348.9	348.9	-288.9 -2	88.9 -288.	.9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567758.6	4988291.1	-288.9	16	20	7.9		3600 70	66	57	< 0.05 10.0	95	1.16	0.03		0.96 < 0.	.01 0.2	4300	27 16.2	1.1	66	8 1.4	3.7	2600	9 :	2300 46	24	520 173	165	2.3 -43.0	-1.0
47	13-350-C08#2_20220615	348.9	348.9	348.9	-288.9 -2	88.9 -288.	9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567755.6	4988291.0	-288.9	16	10	7.5		3700 76	81	59	< 0.05 9.7	96	1.20	0.04		1.05 < 0.	.01 0.2	4400	28 11.	i 34	200 9	.4 2.1	1.1	2100	3	1970 39	24	450 172	164	2.4 -45.0	-1.5
48	13-350-C09#4 20220615	-351.7	-352.2	-351.9	-291.7 -7	92.2 -291	9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567762.8	4988291.1	-291.9	15	70	8.1		3400 74	41	57	< 0.05 8.9	86	1.00 <	< 0.03		0.69 < 0	.01 0.1	4500	30 33	19.0	250 1	.8 1.2	15.0	1820	11	1650 33	18.6	370 160	164 -	1.4 -45.8	-2.6
10	13-350-000#2 20220625	255 7	258.2	356.0	-295 7 - 7	98.2 - 201	9 2022/04/15	2022/06/15 9/12	Waktanai Em	567762 9	4988201 1	-206.0	1/	70	75		3800		67	< 0.05 9.7	100	1.28	0.05		104 04	01 01	4800	30 17	5.0	147		27	2400	4	2100 42	21	510 170	180	0.4 -415	-0.8
=7	14 350 (2044) 20220013	333.7	353.2	261	275.7 -2	02.7 250.	1 2022/00/13	2022/00/13-0/12	Wakkalidi Fill	507/02.0	4000221.1	2,0.7	10	~ ~ ~	7.5	12.6	2800		40	. 0.05 0.7	100	1.20	0.10 0.00	0.5	1.04 0.0		4000	20 11.	. 5.0	.01 .	. 1.0	4.1	2400		2400 1-	21	1/7	100 .	1.0 44.0	3.0
50	14-350-C04#6_20220615	348.6	553.7	551.1	-288.6 -2	95.7 -291.	.1 2022/06/15	2022/06/15-8/12	Wakkanai Fm	36/616.4	4988325.0	-291.1	16/0 17	00 7.1	/.1	17.5	5800 88	95	49	~ 0.05 9.7	90	1.56	0.19 0.86	0.5	1.06 < 0.	.01 0.2	4900	55 26	< 0.1	< 0.1 1	50 2.0	4.1 3	. 2500	1 2	.400 48	18.9	185	181	1.0 -44.8	-1.7
51	14-350-C04#5_20220615	354.0	357.8	355.9	-294.0 -2	97.8 -295.	.9 2022/06/15	2022/06/15-8/12	Wakkanai Fm	567627.2	4988332.5	-295.9	1720 18	10 6.9	7.9	18.0	3800 88	66	57	< 0.05 8.9	101	1.47	0.09 0.09	0.01	1.16 < 0.	.01 0.2	5300	35 48	< 0.1	< 0.1 1	28 2.4	3.8 (/ 2900	11 2	2500 51	19.5	590 185	198 -	-3.3 -40.7	-1.1
52	construction_20220614						2022/06/14	2022/06/15-8/12					14.5 14	.8 8.0	7.8	17.4	17.5 3.	5.3	3.2	< 0.05 < 0.0	1 4.1	0.02	0.10		0.003 < 0.	.01 0.2	18.0	0.3 < 0.	1 0.8	< 0.1 <	0.1 1.4	3.9	42	< 1	41 0.82	0.3	8.6 1.37	1.35	0.6 -63.3	-8.5
53	EBS-injected_20220613						2022/06/13	2022/06/15-8/12					17	90	7.0		3600 93	85	61	< 0.05 9.3	87	1.64	< 0.03		1.15 < 0.	.01 0.2	4900	36 21	< 0.1	< 0.1 1	46 1.8	4.9	2200	1 7	2300 46	14.5	540 178	177	0.2 -43.0	-2.1
54	Water-from-EBS- area 20220613						2022/06/13	2022/06/15-8/12					16	70	7.1		3500 82	72	52	0.06 8.4	90	1.37	0.13		0.76 < 0.	.01 0.2	4500	33 19.4	10.6	< 0.1 1	16 1.9	29	2300	1 :	2300 45	14.6	530 171	167	1.3 -45.7	-2.7

Fig. 3a Stiff diagrams for the data of index no. 1–10

Fig. 3b Stiff diagrams for the data of index no. 11–20

Fig. 3c Stiff diagrams for the data of index no. 21–30

Fig. 3d Stiff diagrams for the data of index no. 31-40

Fig. 3e Stiff diagrams for the data of index no. 41–50

Fig. 3f Stiff diagrams for the data of index no. 51–54

5. Summary

This report summarizes the results of the chemical analysis of 54 groundwater samples collected in the Horonobe URL in 2022. Analytical results include groundwater chemistry such as pH, electrical conductivity, dissolved components (Na⁺, K⁺, Ca²⁺, Mg²⁺, Li⁺, NH₄⁺, F⁻, Cl⁻, Br⁻, NO₃⁻, NO₂⁻, PO₄³⁻, SO₄²⁻, Total-Mn, Total-Fe, Al, B, Sr, Ba, I, alkalinity, dissolved organic carbon, dissolved inorganic carbon, CO_3^{2-} , HCO_3^{-} , Fe²⁺, sulfide), and $\delta^{18}O$, δD . In the Horonobe URL Project after FY2020, we will continue to conduct groundwater investigations to obtain data on groundwater geochemistry, which is essential for the Horonobe URL Project, and will compile and publish the obtained results as appropriate.

Acknowledgment

Mr. Nobuhiro Isozaki of the Horonobe Underground Research Center assisted us in analyzing the samples by ion chromatography. Dr. Shuji Tamamura of the Horonobe Research Institute for the Subsurface Environment assisted with the titration for alkalinity and DOC and DIC analysis. For the isotope analysis, we are grateful to CERES Corp. for their assistance. We would like to take this opportunity to express our deepest gratitude. This study was carried out as a part of R&D supporting program titled "Development and Improvement on Groundwater Flow Evaluation Technique in Rock" under the contract with Ministry of Economy, Trade and Industry (METI) (Grant Number: JPJ007597).

References

- Japan Atomic Energy Agency Horonobe Underground Research Center, Horonobe Underground Research Laboratory Project investigation plan in underground research laboratory phase (phase 3) -Part 1: Investigation plan to a depth of 350m, 2010, 16p. (in Japanese).
- 2) Sato, T., Sasamoto, H., Ishii, E., Matsuoka, T., Hayano, A., Miyakawa, K., Fujita, T., Tanai, K., Nakayama, M., Takeda, M., Yokota, H., Aoyagi, K., Ohno, H., Shigeta, N., Hanamuro, T., Ito, H., Horonobe Underground Research Laboratory Project synthesis of phase II (construction phase) investigations to a depth of 350m, JAEA-Research 2016-025, 2017, 313p. (in Japanese with English abstract).
- 3) Nakayama, M., Saiga, A., Kimura, S., Mochizuki, A., Aoyagi, K., Ohno, H., Miyakawa, K., Takeda, M., Hayano, A., Matsuoka, T., Sakurai, A., Miyara, N., Ishii, E., Sugita, Y., Sasamoto, H., Tanai, K., Sato, T., Osawa, H., Kitayama, A., Taniguchi, N., Synthesis report on the R&D for the Horonobe Underground Research Laboratory Project carried out during fiscal years 2015–2019, JAEA-Research 2019-013, 2020, 276p. (in Japanese with English abstract).
- 4) Nakayama M., Saiga, A., Horonobe Underground Research Laboratory Project investigation program for the 2020 fiscal year, JAEA-Review 2020-022, 2020, 34p. (in Japanese with English abstract).
- Amano, Y., Yamamoto, Y., Nanjyo, I., Murakami, H., Yokota, H., Yamazaki, M., Kunimaru, T., Oyama, T., Iwatsuki, T., Data of groundwater from boreholes, river water and precipitation for the Horonobe Underground Research Laboratory Project (2001–2010), JAEA-Data/Code 2011-023, 2012, 312p. (in Japanese with English abstract).
- Sasamoto, H., Yamamoto, N., Miyakawa, K., Mizuno T., Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (2011–2013), JAEA-Data/Code 2014-033, 2015, 43p. (in Japanese with English abstract).
- Miyakawa, K., Mezawa, T., Mochizuki, A., Sasamoto, H., Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2014–FY2016), JAEA-Data/Code 2017-012, 2017, 60p. (in Japanese with English abstract).
- Miyakawa, K., Mezawa, T., Mochizuki, A., Sasamoto, H., Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2017–FY2019), JAEA-Data/Code 2020-001, 2020, 41p. (in Japanese with English abstract).
- Miyakawa, K., Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2020), JAEA-Data/Code 2021-003, 2021, 25p. (in Japanese with English abstract).
- 10) Miyakawa, K., Data of groundwater chemistry obtained in the Horonobe Underground Research Laboratory Project (FY2021), JAEA-Data/Code 2021-021, 2022, 23p. (in Japanese with English abstract).
- Friedman, L.C., Erdmann, D.E., Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, Tech. Water Resources Inc., Book 5, Chapter A6, 1982, 181p.

This is a blank page.