

JAEA-Data/Code 2024-008 DOI:10.11484/jaea-data-code-2024-008

Dataset of Nuclide Production from Nuclear Capture Reaction of Negative Muon Based on Monte Carlo Simulation

Yuji YAMAGUCHI, Masahide HARADA and Katsuhiro HAGA

Materials and Life Science Division J-PARC Center

August 2024

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの転載等の著作権利用は許可が必要です。本レポートの入手並びに成果の利用(データを含む) は、下記までお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>) より発信されています。

国立研究開発法人日本原子力研究開発機構 研究開発推進部 科学技術情報課 〒 319-1112 茨城県那珂郡東海村大字村松 4 番地 49 E-mail: ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Reuse and reproduction of this report (including data) is required permission. Availability and use of the results of this report, please contact Library, Institutional Repository and INIS Section, Research and Development Promotion Department, Japan Atomic Energy Agency. 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1112, Japan E-mail: ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2024

JAEA-Data/Code 2024-008

Dataset of Nuclide Production from Nuclear Capture Reaction of Negative Muon Based on Monte Carlo Simulation

Yuji YAMAGUCHI, Masahide HARADA and Katsuhiro HAGA

Materials and Life Science Division J-PARC Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received May 29, 2024)

We have produced a dataset of the yields of radionuclides produced by the nuclear capture of negative muons applying Monte Carlo calculation due to scarce experimental data for the sake of radiation safety of experimental facilities which can provide negative muons. The dataset covers all the stable targets of natural elements. The use of the dataset is described in an example of radioactive estimation for a negative-muon-irradiated sample. The dataset reported is fundamental data expected to be utilized in experiments with negative muons of various fields including radiation safety.

Keywords: Nuclide Production, Negative Muon, Nuclear Capture, Monte Carlo Calculation, Radiation Safety

モンテカルロ計算に基づく負ミュオン原子核捕獲反応による核種生成のデータ集

日本原子力研究開発機構 J-PARC センター 物質・生命科学ディビジョン

山口 雄司、原田 正英、羽賀 勝洋

(2024年5月29日受理)

負ミュオンを利用可能な実験施設における試料の放射化に伴う放射線安全の観点から、負ミ ュオンの原子核捕獲に伴う放射性核種生成量の評価が重要であるが、実験データの報告例が少 ないのが現状である。そこでモンテカルロ計算によって、自然界に安定に存在する全元素に対 して放射性核種生成量を求め、データ集を作成した。また、データの利用例として照射試料の 放射化量を見積もった。本報告書は放射線安全をはじめ、様々な分野で負ミュオンを用いた実 験を行う際の基礎データを提供するものである。

Contents

1.	Introduction	1
2.	Monte Carlo calculation	2
2	2.1 Calculation code	2
2	2.2 Calculation condition	2
3.	Results	3
4.	Use of the dataset	4
5.	Summary	5
Ac	knowledgments	6
Ret	ferences	6
Ap	pendix CD-ROM Nuclide production dataset	

目 次

1. 序論	1
2. モンテカルロ計算	2
2.1 計算コード	2
2.2 計算条件	2
3. 結果	3
4. データ集の利用	4
5. まとめ	5
謝辞	6
参考文献	6
付録 CD-ROM 核種生成量データ集	

Table list

Table 1	Yields of nuclides produced by the nuclear capture of μ^{-} for targets with $2 \le Z \le 5$ 9
Table 2	Yields of nuclides produced by the nuclear capture of μ^{-} for targets with $6 \le Z \le 7$ 10
Table 3	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 8$ 11
Table 4	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 9$ 12
Table 5	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 10$ 13
Table 6	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 11$ 14
Table 7	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 12$ 15
Table 8	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 13$ 16
Table 9	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 14$ 17
Table 10	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 15$ 18
Table 11	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 16$ 19
Table 12	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 17$ 20
Table 13	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 18$ 21
Table 14	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 19$ 22
Table 15	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 20$ 23
Table 16	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 21$ 24
Table 17	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 22$ 25
Table 18	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 23$ 26
Table 19	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 24$ 27
Table 20	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 25$ 28
Table 21	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 26$ 29
Table 22	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 27$ 30
Table 23	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 28$ 31
Table 24	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 29$ 32
Table 25	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 30$ 33
Table 26	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 31$ 34
Table 27	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 32$ 35
Table 28	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 33$ 36
Table 29	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 34$ 37
Table 30	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 35$ 38
Table 31	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 36$ 39
Table 32	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 37$ 40
Table 33	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 38$ 41
Table 34	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 39$ 42
Table 35	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 40$ 43
Table 36	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 41$ 44

Table 37	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 42$ 45
Table 38	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 44$ 46
Table 39	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 45$ 47
Table 40	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 46$ 48
Table 41	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 47$ 49
Table 42	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 48$ 50
Table 43	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 49$ 51
Table 44	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 50$ 52
Table 45	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 51$ 53
Table 46	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 52$ 54
Table 47	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 53$ 55
Table 48	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 54$ 56
Table 49	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 55$ 57
Table 50	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 56$ 58
Table 51	Yields of nuclides produced by the nuclear capture of μ^- for targets with $57 \le Z \le 58$ 59
Table 52	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 59$ 60
Table 53	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 60$ 61
Table 54	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 62$ 63
Table 55	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 63$ 64
Table 56	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 64$ 65
Table 57	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 65$ 66
Table 58	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 66$ 67
Table 59	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 67$ 68
Table 60	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 68$ 69
Table 61	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 69$ 70
Table 62	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 70$ 71
Table 63	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 71$ 72
Table 64	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 72$ 73
Table 65	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 73$ 74
Table 66	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 74$ 75
Table 67	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 75$ 76
Table 68	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 76$ 77
Table 69	Yields of nuclides produced by the nuclear capture of μ^- for targets with $77 \le Z \le 78$ 78
Table 70	Yields of nuclides produced by the nuclear capture of μ^- for the target with $Z = 79$ 79
Table 71	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 80$ 80
Table 72	Yields of nuclides produced by the nuclear capture of μ^- for targets with $81 \le Z \le 82$ 81
Table 73	Yields of nuclides produced by the nuclear capture of μ^- for targets with $Z = 83, 90$ 82
Table 74	Yields of nuclides produced by the nuclear capture of μ^{-} for the target with $Z = 92$ 83

Table 75	Comparison between calculated yields per captured $\mu^{\text{-}}$ and experimental data for silicon and
iron target	s 90
Table 76	Estimated radioactivities of $Li_4Ti_5O_{12}$ irradiated by μ^- 91

Figure list

Fig. 1	Two-dimensional distribution of μ^- fluence for Al target	-7
Fig. 2	Chart of nuclides produced by the nuclear capture for Al target	-7
Fig. 3	Nuclear capture probability versus atomic number of target	-8
Fig. 4	Trend of radioactivity of produced radionuclide	-8

1. Introduction

Muons are charged leptons and have positive or negative unit electric charge. The positively charged muon (μ^+) and negatively charged muon (μ^-) are utilized in experiments for materials science depending on analyzing methods because they exhibit different characteristics in matter.

When the negative muon μ^{-} is irradiated to and stopped in a sample, it either decays or is captured by a nucleus in a probability. The nuclear capture probability is known to be higher for the nucleus with higher atomic number Z and is about 60% even for ²⁷Al (Z = 13). After the nuclear capture, a nucleus (Z - 1) is produced in an excited state because a part of the μ^{-} mass of 106 MeV/c² is converted to the excitation energy, and is deexcited with emitting neutrons, γ -rays, and sometimes charged particles. As a result, radionuclides with relatively long lifetime can be left in the irradiated sample, which means that the irradiated sample can be activated.

It is important to handle properly the activated sample in terms of radiation safety of experimental facilities especially those providing intense beam. Materials and Life Science Experimental Facility (MLF) of Japan Proton Accelerator Research Complex (J-PARC)¹) is one of the facilities where the intense beam is available and promotes experimental studies on materials science by providing intense pulsed muon and neutron beams from a muon source²) and a spallation neutron source³), respectively. The intensity of 3-GeV proton beam to produce muons and neutrons at MLF has been steadily increased and has reached about 95% of design value of 1 MW in user operation recently, which enables versatile μ^{-} application such as non-destructive elemental analysis⁴, ⁵) and muon spin rotation and relaxation⁶). To promote intense- μ^{-} -beam applications, it is required to ensure radiation safety by estimating radioactivity of samples used in not only neutron- but also μ^{-} -irradiation experiments.

The radioactivity induced by neutron irradiation can be estimated using a user-friendly web interface system of SAmple Radioactivity Evaluation program, SARE-MLF. This program has been originally developed for neutron beam users in MLF and has been utilized by those from beginners to experts.

On the other hand, μ -induced radioactivity cannot be estimated by SARE-MLF due to no numerical dataset of radionuclide production from nuclear capture of μ ⁻. Moreover, the radioactivity estimation based on experimental data is difficult for a wide range of target Z because experimental data of radionuclide production is limited for targets with $Z \leq 29^{7}$. To update SARE-MLF for enabling estimation of μ -induced radioactivity for light to heavy targets, the numerical dataset covering a wide range of Z is demanded.

In this report, we aim to provide the dataset on μ^- -induced radionuclide production covering a wide range of target $2 \le Z \le 92$ except for radioactive target. The dataset reported here includes also yields of stable nuclides produced by the nuclear capture and is obtained using Monte Carlo calculation code which is described in the next Chapter.

2. Monte Carlo calculation

2.1 Calculation code

The dataset of nuclide production from nuclear capture of μ^- was calculated using Particle and Heavy Ion Transport code System (PHITS)⁸⁾ version 3.20. The PHITS is a general-purpose Monte Carlo radiation transport code and can simulate behaviors of various kinds of particles including muons. Muon interactions such as bremsstrahlung and nuclear capture of μ^- were taken in the PHITS in stages of its update and were completely introduced to the PHITS version 2.86⁹⁾. The model for nuclear capture of μ^- implemented in PHITS2.86 is detailed in Ref. 9) and is outlined here.

The nuclear capture probability mentioned in the previous chapter is obtained from nuclear capture rate Λ_c which is taken from Ref. 10). When the measured capture rate is not available, Λ_c is compensated by the following expression¹¹:

$$\Lambda_{\rm c} = Z_{\rm eff}^4 G_1 \{ 1 + G_2 A / (2Z) - G_3 (A - 2Z) / (2Z) - G_4 [(A - Z) / (2A) + (A - 2Z) / (8AZ)] \}, \tag{1}$$

where A is mass number of the target nucleus with Z, Z_{eff} is effective atomic number calculated by empirical formula given in Ref. 12), and G_i (i = 1, 2, 3, 4) is parameter set reported in Ref. 10). After the nuclear capture occurs according to the probability, the excitation energy determined by the distribution function deduced in Ref. 13) is given to a neutron in the produced nucleus and triggers deexcitation of the nucleus. The deexcitation process is described by JAERI quantum molecular dynamics (JQMD)¹⁴) model plus generalized evaporation model (GEM)¹⁵.

2.2 Calculation condition

The calculation was performed in a simple geometrical condition where a cubic target was placed in a vacuum. The target consisted of an element in natural isotope composition. The side length of the cubic target was set to 10 nm to avoid nuclide production from interactions between the target and secondary particles. Since the target was very thin, the incident energy of μ^- was set to 10 eV so that μ^- could be stopped in the target. The μ^- pencil beam flew the vacuum region and entered the target. The two-dimensional distribution of μ^- fluence is shown in Fig. 1 for aluminum target.

The input parameters used in the calculation were basically default setting of the PHITS. The number of events in the calculation for each target was adjusted to satisfy a criterion for statistical errors of nuclide yields. The criterion of the relative statistical error was set to be 10% or less for produced nuclide with (Z - 1) and (Z - 2) because it seems that those nuclides are mainly produced and that experimental data tend to include uncertainty of about 10% at least. The yield of the produced nuclide per incident μ^- was obtained using t-yield tally. A typical example of the output from the tally is shown in Fig. 2.

3. Results

The yields per incident μ^- of radionuclides as well as stable nuclides produced by the nuclear capture are summarized in Tables 1-74 with relative statistical errors. The calculation results with the relative error of 10% or less are listed in the tables. This dataset covers targets with $2 \le Z \le 92$ except for following nine radioactive targets: technetium (Z = 43), promethium (Z = 61), polonium (Z = 84), astatine (Z = 85), radon (Z = 86), francium (Z = 87), radium (Z = 88), actinium (Z = 89), and protactinium (Z = 91). Although bismuth (Z = 83), thorium (Z = 90) and uranium (Z = 92) are radioactive targets in the long term, they are considered stable targets based on the idea that the nuclide with half-life¹⁶ longer than 1×10^9 year is stable in this report.

To check reliability of calculated yields, calculation results are compared with experimental data⁷⁾ of yields per captured μ^- for mainly produced nuclides in silicon and iron targets in Table 75. The calculated yields per incident μ^- was converted to those per captured μ^- using nuclear capture probability described below. It is confirmed that the calculation/experiment (C/E) value ranges from 0.6 to 2.4. This implies that additional experimental data especially for targets with high-*Z* is needed to clarify and improve the reliability of the calculated yields.

The sum of calculated yields per incident μ^- for a target with Z gives the nuclear capture probability for the target. Note that the probability for uranium (Z = 92) is obtained by summing total yield of nuclides with Z > 87 and half of that for produced nuclides with Z ≤ 58 in Table 74 because the nuclides with Z ≤ 58 are fission products. The probability obtained from the sum of yields for each target is shown in Fig. 3. This figure illustrates that the probability of nuclear capture is low for the target with low-Z while is almost 90% for that with Z > 40. It should be noted that the probabilities for light targets with 3 ≤ Z ≤ 6 are overestimated due to double counting of reactions involving hydrogen- or helium-isotope production such as ${}^{12}C(\mu^-, {}^{4}He){}^{8}Li$ and ${}^{9}Be(\mu^-, {}^{3}H){}^{6}He$. Also, the probability for helium (Z = 2) is underestimated due to proton production.

4. Use of the dataset

An example of the dataset use for estimating μ -induced radioactivity is described in this Chapter. The radioactivity of the radionuclide *i* produced from nuclear capture of μ - during μ - irradiation is written as

$$A_i(t) = p_i \{ 1 - (1/2)^{t/T_i} \} \qquad t \le t_{\rm irr},$$
(2)

where p_i and T_i is production rate and half-life of the radionuclide *i*, respectively, and t_{irr} is the irradiation time. The production rate p_i can be calculated by

$$p_i = I_{\mu} Y_i, \tag{3}$$

where I_{μ} is the number of μ^{-} stopped in matter per unit time and Y_i is the yield of the radionuclide *i*, which is obtained from Tables 1-74. Assuming that I_{μ} is constant during irradiation, the radioactivity $A_i(t)$ increases along the saturation curve shown in Fig. 4 and almost reaches p_i when the irradiation time t_{irr} is much longer than T_i . After the irradiation, $A_i(t)$ decreases along the decay curve as shown in Fig. 4 and is expressed as

$$A_{i}(t) = A_{i}(t_{irr})(1/2)^{(t-t_{irr})/T_{i}} \quad t > t_{irr.}$$
(4)

Therefore, the radioactivity of irradiated matter A is obtained by summing over those of radionuclides produced in the matter:

$$A(t) = \sum_{i} A_i(t) \tag{5}$$

Let us consider an example of radioactivity estimation for the battery anode material of $\text{Li}_4\text{Ti}_5\text{O}_{12}^{60}$ irradiated by μ^- . In a compound, μ^- is captured by the nucleus of the constituent element, namely, Li, Ti, and O for the $\text{Li}_4\text{Ti}_5\text{O}_{12}$ example in a ratio. The ratio is known to be different from the atomic ratio in many cases¹⁷⁾ and is generally determined by experiments. Here, it is assumed that the ratio agrees with the atomic ratio for simplicity. In other words, $I_{\mu-}$ is assumed to be distributed to Li, Ti, and O with the ratio of 4:5:12.

If $I_{\mu-} = 1 \times 10^6 \text{ s}^{-1}$ and $t_{irr} = 5$ h are selected, radioactivities of produced radionuclides at the end of irradiation can be calculated using equations (2) and (3) with Tables 1, 3, and 17 for Y_i paying attention to the assumption on $I_{\mu-}$ above. Then, the radioactivity of Li₄Ti₅O₁₂ at the end of irradiation can be obtained by using equation (5). The calculated results are listed in Table 76. The radioactivity of Li₄Ti₅O₁₂ is mainly contributed from scandium isotopes and decreases with ⁴⁶Sc decay over a long period. If the cooling period is 1 year, A = 4 Bq is obtained from equations (4) and (5).

5. Summary

We produced the dataset of the yields of nuclides produced by the nuclear capture of μ^- based on Monte Carlo calculation to provide the dataset covering all the stable natural elements. We also described an example of the dataset use for estimating radioactivity of a compound irradiated by μ^- . The use of the dataset enabled estimation of μ^- -induced radioactivity for irradiated substances. The produced dataset is expected to contribute to various fields including radiation safety as fundamental data.

Acknowledgments

The authors would like to thank Dr. Hiroshi Takada for useful discussions and comments and careful review of the manuscript.

References

- 1) The Joint Project Team of JAERI and KEK, The Joint Project for High-intensity Proton Accelerators, JAERI-Tech 99-056, 1999, 78p.
- 2) Miyake, Y. et al., J-PARC muon source, MUSE, Nucl. Instr. Meth. A, vol.600, 2009, pp.22-24.
- 3) Ikeda, Y., J-PARC status update, Nucl. Instr. Meth. A, vol.600, 2009, pp.1-4.
- 4) Ninomiya, K. et al., Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements, J. Radioanal. Nucl. Chem., vol.309, 2016, pp.65-69.
- 5) Nakamura, T. et al., Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples, Science, vol.379, no.6634, 2023, eabn8671.
- Umegaki, I. et al., Negative Muon Spin Rotation and Relaxation Study on Battery Anode Material, Spinel Li₄Ti₅O₁₂, J. Phys. Chem. C, vol.126, 2022, pp.10506-10514.
- Heisinger, B. et al., Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth and Planetary Sci. Lett., vol.200, 2002, pp.357-369.
- 8) Sato, T. et al., Recent improvements of the particle and heavy ion transport code system PHITS version 3.33, J. Nucl. Sci. Tech., vol.61, no.1, 2024, pp.127-135.
- 9) Abe, S. and Sato, T., Implementation of muon interaction models in PHITS, J. Nucl. Sci. Tech., vol.54, no.1, 2017, pp.101-110.
- Suzuki, T. et al., Total nuclear capture rates for negative muons, Phys. Rev. C, vol.35, no.6, 1987, pp.2212-2224.
- 11) Goulard, B. and Primakoff, H., Nuclear muon-capture sum rules and mean nuclear excitation energies, Phys. Rev. C, vol.10, no.5, 1974, pp.2034-2044.
- Wheeler, J. A., Some Consequences of the Electromagnetic Interaction between μ⁻-Mesons and Nuclei, Rev. Mod. Phys., vol.21, no.1, 1949, pp.133-143.
- Singer, P., Neutron Emission Following Muon Capture in Heavy Nuclei, Il Nuovo Cimento, vol.23, no.4, 1962, pp.669-689.
- Niita, K. et al., Analysis of the (N, xN²) reactions by quantum molecular dynamics plus statistical decay model, Phys. Rev. C, vol.52, no.5, 1995, pp.2620-2635.
- Furihata, S. et al., The GEM Code A Simulation Program for the Evaporation and the Fission Process of an Excited Nucleus, JAERI-Data/Code 2001-015, 2001, 90p.
- National Nuclear Data Center, Evaluated Nuclear Structure Data File (ENSDF), https://www.nndc.bnl.gov/ensdfarchivals/ (accessed 2024-05-19).
- Egidy, T. and Hartmann, F. J., Average muonic Coulomb capture probabilities for 65 elements, Phys. Rev. A, vol.26, no.5, 1982, pp.2355-2360.

Fig.1 Two-dimensional distribution of μ^- fluence for Al target. The y is vertical direction. The μ^- beam comes from the negative z side and enters the cubic target with a side length of 10 nm located at the origin.

Fig. 2 Chart of nuclides produced by the nuclear capture for Al target. The horizontal and vertical axes indicate the number of neutrons and protons, respectively. Square dots show stable nuclides.

Fig. 3 Nuclear capture probability versus atomic number of target. The probability is obtained by summing yields of nuclides listed in tables of this report for a target.

Fig. 4 Trend of radioactivity of produced radionuclide. The units of horizontal and vertical axes are half-life and production rate of the produced nuclide, respectively.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
He (2)	² H	Stable	1.372×10 ⁻⁴	3.82
	³ H	12.32 y	4.620×10 ⁻⁵	6.58
Li (3)	² H	Stable	6.440×10 ⁻⁵	4.04
	³ H	12.32 y	5.777×10 ⁻⁴	1.81
	³ He	Stable	1.350×10 ⁻⁵	8.61
	⁴ He	Stable	3.518×10 ⁻³	0.532
	⁶ He	806.7 ms	3.816×10 ⁻⁴	1.62
Be (4)	² H	Stable	7.691×10 ⁻⁴	0.658
	³ H	12.32 y	6.058×10 ⁻³	0.236
	³ He	Stable	3.367×10 ⁻⁶	9.95
	⁴ He	Stable	6.282×10 ⁻³	0.230
	⁶ He	806.7 ms	7.355×10 ⁻⁴	0.673
	⁸ He	119.1 ms	2.610×10 ⁻⁵	3.57
	⁶ Li	Stable	8.933×10 ⁻⁵	1.93
	⁷ Li	Stable	5.282×10 ⁻³	0.251
	⁸ Li	839.9 ms	2.811×10 ⁻³	0.344
	⁹ Li	178.3 ms	2.104×10 ⁻⁴	1.26
B (5)	³ He	Stable	2.957×10 ⁻⁵	3.11
	⁴ He	Stable	3.672×10 ⁻²	0.119
	⁶ He	806.7 ms	4.339×10 ⁻³	0.256
	⁶ Li	Stable	1.370×10 ⁻⁴	1.45
	⁷ Li	Stable	1.074×10 ⁻³	0.516
	⁸ Li	839.9 ms	3.765×10 ⁻⁴	0.871
	⁹ Li	178.3 ms	2.329×10 ⁻⁴	1.11
	⁷ Be	53.22 d	2.857×10 ⁻⁶	10.0
	⁹ Be	Stable	7.910×10 ⁻³	0.189
	¹⁰ Be	1.51×10 ⁶ y	1.601×10 ⁻²	0.133

Table 1 Yields of nuclides produced by the nuclear capture of μ^- for targets with $2 \le Z \le 5$. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
C (6)	³ He	Stable	2.080×10 ⁻⁵	9.81
	⁴ He	Stable	3.585×10 ⁻²	0.283
	⁶ He	806.7 ms	4.224×10 ⁻⁴	2.18
	⁶ Li	Stable	1.893×10 ⁻³	1.03
	⁷ Li	Stable	1.560×10 ⁻²	0.355
	⁸ Li	839.9 ms	1.241×10 ⁻³	1.27
	⁹ Be	Stable	1.172×10 ⁻³	1.31
	¹⁰ Be	1.51×10 ⁶ y	2.460×10-3	0.901
	¹¹ Be	13.76 s	5.080×10 ⁻⁵	6.27
	$^{10}\mathrm{B}$	Stable	3.241×10 ⁻³	0.784
	$^{11}\mathbf{B}$	Stable	4.090×10 ⁻²	0.217
	$^{12}\mathrm{B}$	20.20 ms	5.326×10 ⁻⁴	1.94
	¹³ B	17.36 ms	2.960×10 ⁻⁵	8.22
N (7)	⁶ Li	Stable	1.522×10 ⁻⁴	3.66
	⁷ Li	Stable	3.822×10 ⁻⁴	2.40
	⁸ Li	839.9 ms	6.220×10 ⁻⁵	5.67
	⁹ Be	Stable	4.616×10 ⁻³	0.657
	¹⁰ Be	1.51×10 ⁶ y	3.283×10 ⁻³	0.779
	$^{10}\mathrm{B}$	Stable	1.398×10 ⁻⁴	3.78
	$^{11}\mathbf{B}$	Stable	1.901×10 ⁻³	1.03
	$^{12}\mathrm{B}$	20.20 ms	8.912×10 ⁻⁴	1.50
	¹³ B	17.36 ms	4.866×10 ⁻⁴	2.03
	¹¹ C	1221.8 s	3.060×10 ⁻⁵	8.08
	¹² C	Stable	3.397×10 ⁻²	0.239
	¹³ C	Stable	4.066×10 ⁻²	0.217
	^{14}C	5700 y	3.302×10 ⁻²	0.242

Table 2 Yields of nuclides produced by the nuclear capture of μ^- for targets with $6 \le Z \le 7$. Target (Z) Produced nuclide Half life Vield [/u⁻¹] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
O (8)	⁶ Li	Stable	2.842×10 ⁻⁴	2.65
	⁷ Li	Stable	1.626×10 ⁻³	1.11
	⁸ Li	839.9 ms	3.756×10 ⁻⁴	2.31
	⁹ Be	Stable	2.816×10 ⁻⁴	2.67
	¹⁰ Be	1.51×10 ⁶ y	4.112×10 ⁻⁴	2.21
	¹¹ Be	13.76 s	2.280×10 ⁻⁵	9.37
	$^{10}\mathrm{B}$	Stable	7.774×10 ⁻⁴	1.60
	^{11}B	Stable	1.331×10 ⁻²	0.385
	$^{12}\mathrm{B}$	20.20 ms	2.322×10 ⁻³	0.927
	¹² C	Stable	4.915×10 ⁻³	0.636
	¹³ C	Stable	7.968×10 ⁻³	0.499
	^{14}C	5700 y	9.029×10 ⁻³	0.469
	¹⁵ C	2.449 s	4.208×10 ⁻⁴	2.18
	¹³ N	9.965 min	4.914×10 ⁻⁴	2.02
	^{14}N	Stable	3.465×10 ⁻²	0.236
	¹⁵ N	Stable	1.002×10 ⁻¹	0.134
	^{16}N	7.13 s	8.588×10 ⁻⁴	1.53

Table 3 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 8. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
F (9)	⁶ Li	Stable	3.740×10 ⁻⁵	7.31
	⁷ Li	Stable	2.544×10 ⁻⁴	2.87
	⁸ Li	839.9 ms	6.680×10 ⁻⁵	5.47
	⁹ Be	Stable	4.582×10 ⁻⁴	2.26
	¹⁰ Be	1.51×10 ⁶ y	8.602×10 ⁻⁴	1.52
	¹¹ Be	13.76 s	1.248×10 ⁻⁴	4.00
	$^{11}\mathbf{B}$	Stable	2.964×10 ⁻⁴	2.60
	$^{12}\mathrm{B}$	20.20 ms	1.596×10 ⁻⁴	3.54
	¹³ B	17.36 ms	5.860×10 ⁻⁵	5.84
	^{12}C	Stable	2.388×10 ⁻³	0.914
	¹³ C	Stable	8.697×10 ⁻³	0.478
	^{14}C	5700 y	3.323×10 ⁻²	0.241
	¹⁵ C	2.449 s	1.573×10 ⁻³	1.13
	¹⁶ C	0.747 s	2.840×10 ⁻⁵	8.39
	^{14}N	Stable	3.280×10 ⁻⁴	2.47
	¹⁵ N	Stable	4.353×10 ⁻³	0.676
	¹⁶ N	7.13 s	2.057×10 ⁻³	0.985
	^{17}N	4.173 s	3.314×10 ⁻³	0.776
	^{18}N	624 ms	7.722×10 ⁻⁴	1.61
	¹⁶ O	Stable	1.582×10 ⁻²	0.353
	¹⁷ O	Stable	3.524×10 ⁻²	0.234
	¹⁸ O	Stable	1.084×10 ⁻¹	0.128
	¹⁹ O	26.88 s	1.791×10 ⁻²	0.331

Table 4 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 9.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ne (10)	⁶ Li	Stable	2.470×10 ⁻⁴	2.85
	⁷ Li	Stable	5.124×10 ⁻⁴	1.98
	⁸ Li	839.9 ms	7.080×10 ⁻⁵	5.32
	⁹ Be	Stable	1.086×10 ⁻⁴	4.31
	¹⁰ Be	1.51×10 ⁶ y	3.780×10 ⁻⁵	7.27
	$^{10}\mathrm{B}$	Stable	9.920×10 ⁻⁵	4.49
	$^{11}\mathbf{B}$	Stable	7.226×10 ⁻⁴	1.66
	$^{12}\mathrm{B}$	20.20 ms	4.166×10 ⁻⁴	2.19
	¹² C	Stable	8.996×10 ⁻⁴	1.49
	¹³ C	Stable	1.377×10 ⁻³	1.21
	^{14}C	5700 y	2.106×10 ⁻³	0.974
	¹⁵ C	2.449 s	1.446×10 ⁻⁴	3.72
	¹³ N	9.965 min	1.128×10 ⁻⁴	4.21
	¹⁴ N	Stable	1.553×10 ⁻²	0.356
	¹⁵ N	Stable	8.558×10 ⁻²	0.146
	¹⁶ N	7.13 s	4.921×10 ⁻³	0.636
	¹⁷ N	4.173 s	1.054×10 ⁻⁴	4.36
	¹⁸ N	624 ms	3.100×10 ⁻⁵	8.03
	¹⁵ O	122.24 s	2.280×10 ⁻⁵	9.37
	¹⁶ O	Stable	5.094×10 ⁻³	0.625
	¹⁷ O	Stable	8.180×10 ⁻³	0.492
	¹⁸ O	Stable	1.206×10 ⁻²	0.405
	¹⁹ O	26.88 s	3.243×10 ⁻³	0.784
	17 F	64.385 s	3.150×10 ⁻⁴	2.52
	^{18}F	109.77 min	3.015×10 ⁻²	0.254
	¹⁹ F	Stable	1.377×10 ⁻¹	0.112
	²⁰ F	11.163 s	4.424×10 ⁻²	0.208

Table 5 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 10. Target (Z) Produced nuclide Half life Viald [/u⁻] Palative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Na (11)	⁷ Li	Stable	4.400×10 ⁻⁵	6.74
	⁹ Be	Stable	4.760×10 ⁻⁵	6.48
	¹⁰ Be	1.51×10 ⁶ y	3.280×10 ⁻⁵	7.81
	^{12}C	Stable	8.700×10 ⁻⁵	4.79
	¹³ C	Stable	1.112×10 ⁻⁴	4.24
	^{14}C	5700 y	4.082×10 ⁻⁴	2.21
	¹⁵ C	2.449 s	3.520×10 ⁻⁵	7.54
	¹⁵ N	Stable	3.112×10 ⁻⁴	2.54
	^{16}N	7.13 s	5.020×10 ⁻⁵	6.31
	^{17}N	4.173 s	4.260×10-5	6.85
	¹⁶ O	Stable	3.747×10 ⁻³	0.729
	¹⁷ O	Stable	2.679×10 ⁻³	0.863
	¹⁸ O	Stable	6.076×10 ⁻³	0.572
	¹⁹ O	26.88 s	5.162×10 ⁻⁴	1.97
	²⁰ O	13.51 s	6.600×10 ⁻⁵	5.51
	²¹ O	3.42 s	3.920×10 ⁻⁵	7.14
	18 F	109.77 min	5.800×10 ⁻⁵	5.87
	¹⁹ F	Stable	1.602×10 ⁻³	1.12
	²⁰ F	11.163 s	4.183×10 ⁻³	0.690
	²¹ F	4.158 s	7.580×10 ⁻³	0.512
	²² F	4.23 s	3.280×10 ⁻³	0.780
	²⁰ Ne	Stable	2.978×10 ⁻²	0.255
	²¹ Ne	Stable	8.810×10 ⁻²	0.144
	²² Ne	Stable	2.038×10 ⁻¹	0.0884
	²³ Ne	37.25 s	4.389×10 ⁻²	0.209

Table 6 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 11. Target (Z) Produced nuclide Half life Viald [/u⁻¹] Palative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Mg (12)	⁷ Li	Stable	4.980×10 ⁻⁵	6.34
	⁹ Be	Stable	3.740×10 ⁻⁵	7.31
	^{11}B	Stable	6.300×10 ⁻⁵	5.63
	¹² C	Stable	6.620×10 ⁻⁵	5.50
	¹³ C	Stable	3.740×10 ⁻⁵	7.31
	¹⁴ C	5700 y	2.520×10 ⁻⁵	8.91
	¹⁴ N	Stable	2.074×10 ⁻⁴	3.11
	¹⁵ N	Stable	3.953×10 ⁻³	0.710
	¹⁶ N	7.13 s	2.978×10 ⁻⁴	2.59
	¹⁶ O	Stable	4.476×10 ⁻⁴	2.11
	¹⁷ O	Stable	3.250×10 ⁻⁴	2.48
	¹⁸ O	Stable	6.126×10 ⁻⁴	1.81
	¹⁹ O	26.88 s	6.720×10 ⁻⁵	5.46
	^{18}F	109.77 min	1.817×10 ⁻³	1.05
	¹⁹ F	Stable	1.581×10 ⁻²	0.353
	²⁰ F	11.163 s	7.469×10 ⁻³	0.516
	²¹ F	4.158 s	1.061×10 ⁻³	1.37
	²² F	4.23 s	3.302×10 ⁻⁴	2.46
	²⁰ Ne	Stable	3.254×10 ⁻³	0.783
	²¹ Ne	Stable	1.594×10 ⁻²	0.351
	²² Ne	Stable	7.019×10 ⁻²	0.163
	²³ Ne	37.25 s	8.844×10 ⁻³	0.473
	²⁴ Ne	3.38 min	2.066×10-3	0.983
	²⁵ Ne	602 ms	3.268×10 ⁻⁴	2.47
	²¹ Na	22.49 s	2.350×10 ⁻⁴	2.92
	²² Na	2.6018 y	3.059×10 ⁻²	0.252
	²³ Na	Stable	2.166×10 ⁻¹	0.0851
	²⁴ Na	14.956 h	8.626×10 ⁻²	0.146
	²⁵ Na	59.1 s	2.990×10 ⁻²	0.255
	²⁶ Na	1.07128 s	3.404×10 ⁻³	0.765

Table 7 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 12. Target (Z) Produced nuclide Half life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Al (13)	¹⁴ C	5700 y	2.220×10 ⁻⁵	9.49
	¹⁶ O	Stable	2.840×10 ⁻⁵	8.39
	¹⁷ O	Stable	3.180×10 ⁻⁵	7.93
	¹⁸ O	Stable	2.190×10 ⁻⁴	3.02
	¹⁹ O	26.88 s	4.720×10 ⁻⁵	6.51
	¹⁹ F	Stable	3.100×10 ⁻⁵	8.03
	²⁰ F	11.163 s	7.360×10 ⁻⁵	5.21
	²¹ F	4.158 s	1.700×10 ⁻⁴	3.43
	²² F	4.23 s	9.100×10 ⁻⁵	4.69
	²⁰ Ne	Stable	9.754×10 ⁻⁴	1.43
	²¹ Ne	Stable	5.076×10 ⁻³	0.626
	²² Ne	Stable	2.013×10 ⁻²	0.312
	²³ Ne	37.25 s	4.120×10 ⁻³	0.695
	²⁴ Ne	3.38 min	2.282×10 ⁻⁴	2.96
	²⁵ Ne	602 ms	1.046×10 ⁻⁴	4.37
	²² Na	2.6018 y	3.260×10 ⁻⁵	7.83
	²³ Na	Stable	2.051×10 ⁻³	0.986
	²⁴ Na	14.956 h	6.040×10 ⁻³	0.574
	²⁵ Na	59.1 s	1.418×10 ⁻²	0.373
	²⁶ Na	1.07128 s	6.557×10 ⁻³	0.551
	²⁴ Mg	Stable	2.534×10 ⁻²	0.277
	²⁵ Mg	Stable	9.677×10 ⁻²	0.137
	²⁶ Mg	Stable	2.737×10 ⁻¹	0.0729
	²⁷ Mg	9.458 min	8.591×10 ⁻²	0.146

Table 8 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 13. Target (7) Produced public Half life Vield [4:1] Polative array [9/1]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Si (14)	¹³ C	Stable	2.400×10 ⁻⁵	9.20
	¹⁵ N	Stable	6.780×10 ⁻⁵	5.43
	¹⁹ F	Stable	4.866×10 ⁻⁴	2.03
	²⁰ F	11.163 s	3.690×10 ⁻⁴	2.33
	²⁰ Ne	Stable	9.260×10 ⁻⁵	4.65
	²¹ Ne	Stable	4.020×10 ⁻⁴	2.23
	²² Ne	Stable	4.624×10 ⁻³	0.656
	²³ Ne	37.25 s	6.196×10 ⁻⁴	1.80
	²² Na	2.6018 y	1.468×10 ⁻³	1.17
	²³ Na	Stable	3.053×10 ⁻²	0.252
	²⁴ Na	14.956 h	1.343×10 ⁻²	0.383
	²⁵ Na	59.1 s	8.858×10 ⁻⁴	1.50
	²⁶ Na	1.07128 s	4.222×10 ⁻⁴	2.18
	²⁴ Mg	Stable	3.150×10 ⁻³	0.796
	²⁵ Mg	Stable	1.847×10 ⁻²	0.326
	²⁶ Mg	Stable	1.051×10 ⁻¹	0.131
	²⁷ Mg	9.458 min	2.129×10 ⁻²	0.303
	^{28}Mg	20.915 h	1.041×10 ⁻³	1.39
	²⁹ Mg	1.30 s	1.056×10 ⁻⁴	4.35
	²⁵ Al	7.183 s	2.864×10 ⁻⁴	2.64
	²⁶ Al	7.17×10 ⁵ y	3.178×10 ⁻²	0.247
	²⁷ Al	Stable	2.694×10 ⁻¹	0.0737
	²⁸ Al	2.245 min	1.147×10 ⁻¹	0.124
	²⁹ Al	6.56 min	1.352×10 ⁻²	0.382
	³⁰ Al	3.62 s	1.287×10 ⁻³	1.25

Table 9 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 14. Target (Z) Produced nuclide Half life Viald [/u⁻¹] Palative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
P (15)	²¹ Ne	Stable	2.220×10 ⁻⁵	9.49
	²² Ne	Stable	3.450×10 ⁻⁴	2.41
	²³ Ne	37.25 s	1.294×10 ⁻⁴	3.93
	²³ Na	Stable	2.640×10 ⁻⁵	8.70
	²⁴ Na	14.956 h	9.460×10 ⁻⁵	4.60
	²⁵ Na	59.1 s	2.612×10 ⁻⁴	2.77
	²⁶ Na	1.07128 s	1.542×10 ⁻⁴	3.60
	²⁴ Mg	Stable	4.458×10 ⁻⁴	2.12
	²⁵ Mg	Stable	3.296×10 ⁻³	0.778
	²⁶ Mg	Stable	1.373×10 ⁻²	0.379
	²⁷ Mg	9.458 min	5.118×10 ⁻³	0.624
	²⁸ Mg	20.915 h	3.558×10 ⁻⁴	2.37
	²⁹ Mg	1.30 s	1.272×10 ⁻⁴	3.97
	²⁷ Al	Stable	2.654×10 ⁻³	0.867
	²⁸ Al	2.245 min	1.111×10 ⁻²	0.422
	²⁹ Al	6.56 min	2.447×10 ⁻²	0.282
	³⁰ Al	3.62 s	9.645×10 ⁻³	0.453
	²⁸ Si	Stable	2.835×10 ⁻²	0.262
	²⁹ Si	Stable	1.322×10 ⁻¹	0.115
	³⁰ Si	Stable	3.142×10 ⁻¹	0.0661
	³¹ Si	157.24 min	1.067×10 ⁻¹	0.129

Table 10 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 15. Target (Z) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
S (16)	²² Ne	Stable	3.000×10 ⁻⁵	8.17
	²³ Na	Stable	6.372×10 ⁻⁴	1.77
	²⁴ Na	14.956 h	5.858×10 ⁻⁴	1.85
	^{24}Mg	Stable	5.060×10 ⁻⁵	6.29
	²⁵ Mg	Stable	3.650×10 ⁻⁴	2.34
	²⁶ Mg	Stable	4.638×10 ⁻³	0.655
	²⁷ Mg	9.458 min	1.325×10 ⁻³	1.23
	²⁶ Al	7.17×10 ⁵ y	1.007×10 ⁻³	1.41
	²⁷ Al	Stable	2.233×10 ⁻²	0.296
	²⁸ Al	2.245 min	1.575×10 ⁻²	0.354
	²⁹ Al	6.56 min	2.007×10 ⁻³	0.997
	³⁰ Al	3.62 s	8.212×10 ⁻⁴	1.56
	²⁸ Si	Stable	4.312×10 ⁻³	0.680
	²⁹ Si	Stable	3.374×10 ⁻²	0.239
	³⁰ Si	Stable	1.419×10 ⁻¹	0.110
	³¹ Si	157.24 min	3.051×10 ⁻²	0.252
	³² Si	153 y	1.035×10 ⁻³	1.39
	³³ Si	6.11 s	2.602×10 ⁻⁴	2.77
	²⁹ P	4.142 s	2.948×10 ⁻⁴	2.60
	³⁰ P	2.498 min	3.464×10 ⁻²	0.236
	³¹ P	Stable	2.711×10 ⁻¹	0.0733
	³² P	14.268 d	1.397×10 ⁻¹	0.111
	³³ P	25.35 d	1.276×10 ⁻²	0.393
	³⁴ P	12.43 s	2.988×10 ⁻³	0.817
	³⁵ P	47.3 s	3.340×10 ⁻⁵	7.74

Table 11 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 16. Target (Z) Produced nuclide Half life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Cl (17)	²⁶ Mg	Stable	2.504×10 ⁻⁴	2.83
	²⁷ Mg	9.458 min	1.674×10 ⁻⁴	3.46
	²⁷ Al	Stable	2.520×10 ⁻⁵	8.91
	²⁸ Al	2.245 min	1.770×10 ⁻⁴	3.36
	²⁹ A1	6.56 min	6.668×10 ⁻⁴	1.73
	³⁰ A1	3.62 s	2.622×10 ⁻⁴	2.76
	²⁸ Si	Stable	5.322×10 ⁻⁴	1.94
	²⁹ Si	Stable	5.961×10 ⁻³	0.578
	³⁰ Si	Stable	2.492×10 ⁻²	0.280
	³¹ Si	157.24 min	9.286×10 ⁻³	0.462
	³² Si	153 y	2.434×10 ⁻³	0.905
	³³ Si	6.11 s	5.012×10 ⁻⁴	2.00
	³⁴ Si	2.77 s	4.360×10 ⁻⁵	6.77
	³⁰ P	2.498 min	2.360×10 ⁻⁵	9.21
	³¹ P	Stable	3.145×10 ⁻³	0.796
	³² P	14.268 d	1.659×10 ⁻²	0.344
	³³ P	25.35 d	4.586×10 ⁻²	0.204
	³⁴ P	12.43 s	1.923×10 ⁻²	0.319
	³⁵ P	47.3 s	3.521×10 ⁻³	0.752
	³⁶ P	5.6 s	9.480×10 ⁻⁴	1.45
	^{32}S	Stable	1.137×10 ⁻²	0.417
	³³ S	Stable	7.581×10 ⁻²	0.156
	³⁴ S	Stable	2.837×10 ⁻¹	0.0711
	³⁵ S	87.37 d	1.386×10 ⁻¹	0.112
	³⁶ S	Stable	6.921×10 ⁻²	0.164
	³⁷ S	5.05 min	1.036×10 ⁻²	0.437

Table 12 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 17. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ar (18)	³⁴ Si	2.77 s	2.020×10 ⁻⁵	9.95
	³² P	14.268 d	5.300×10 ⁻⁵	6.14
	³³ P	25.35 d	1.665×10 ⁻³	1.10
	³⁴ P	12.43 s	4.171×10 ⁻³	0.691
	³⁵ P	47.3 s	4.346×10 ⁻³	0.677
	³⁶ P	5.6 s	4.824×10 ⁻⁴	2.04
	³⁷ P	2.31 s	1.128×10 ⁻⁴	4.21
	³⁸ P	0.64 s	6.920×10 ⁻⁵	5.38
	³⁴ S	Stable	6.340×10 ⁻⁵	5.62
	³⁵ S	87.37 d	5.706×10 ⁻⁴	1.87
	³⁶ S	Stable	5.097×10 ⁻³	0.625
	³⁷ S	5.05 min	6.572×10 ⁻³	0.550
	³⁸ S	170.3 min	1.601×10 ⁻²	0.351
	³⁹ S	11.5 s	6.293×10 ⁻³	0.562
	³⁵ Cl	Stable	2.516×10 ⁻⁴	2.82
	³⁶ Cl	3.01×10 ⁵ y	8.103×10 ⁻³	0.495
	³⁷ Cl	Stable	9.887×10 ⁻²	0.135
	³⁸ Cl	37.230 min	1.811×10 ⁻¹	0.0951
	³⁹ Cl	56.2 min	2.944×10 ⁻¹	0.0692
	⁴⁰ Cl	1.35 min	6.954×10 ⁻²	0.164

Table 13 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 18. Toract (Z) Produced nuclide Half life Vield [(u;]) Polative error [9]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
K (19)	²⁹ Si	Stable	6.980×10 ⁻⁵	5.35
	³⁰ Si	Stable	9.592×10 ⁻⁴	1.44
	³¹ Si	157.24 min	5.272×10 ⁻⁴	1.95
	³² Si	153 y	2.500×10 ⁻⁵	8.94
	³¹ P	Stable	5.740×10 ⁻⁵	5.90
	³² P	14.268 d	6.024×10 ⁻⁴	1.82
	³³ P	25.35 d	3.019×10 ⁻³	0.813
	³⁴ P	12.43 s	1.574×10 ⁻³	1.13
	³² S	Stable	3.538×10 ⁻⁴	2.38
	³³ S	Stable	5.309×10 ⁻³	0.612
	³⁴ S	Stable	3.730×10 ⁻²	0.227
	³⁵ S	87.37 d	1.604×10 ⁻²	0.350
	³⁶ S	Stable	3.272×10 ⁻³	0.781
	³⁷ S	5.05 min	6.322×10 ⁻⁴	1.78
	³⁵ Cl	Stable	3.258×10 ⁻³	0.782
	³⁶ Cl	3.01×10 ⁵ y	2.484×10 ⁻²	0.280
	³⁷ Cl	Stable	7.170×10 ⁻²	0.161
	³⁸ Cl	37.230 min	2.457×10 ⁻²	0.282
	³⁹ Cl	56.2 min	1.115×10 ⁻³	1.34
	⁴⁰ Cl	1.35 min	5.696×10 ⁻⁴	1.87
	³⁶ Ar	Stable	1.018×10 ⁻²	0.441
	³⁷ Ar	35.011 d	7.570×10 ⁻²	0.156
	³⁸ Ar	Stable	3.407×10 ⁻¹	0.0622
	³⁹ Ar	268 y	1.204×10 ⁻¹	0.121
	⁴⁰ Ar	Stable	1.892×10 ⁻²	0.322
	⁴¹ Ar	109.61 min	5.677×10 ⁻³	0.592

Table 14 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 19. Toract (Z) Produced nuclide Half life Vield [/u⁻¹] Polative error [9/]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Ca (20)	³⁰ Si	Stable	1.838×10 ⁻⁴	3.30
	³¹ Si	157.24 min	1.244×10 ⁻⁴	4.01
	³¹ P	Stable	1.505×10 ⁻³	1.15
	³² P	14.268 d	2.498×10 ⁻³	0.894
	³³ P	25.35 d	1.972×10 ⁻⁴	3.18
	³⁴ P	12.43 s	1.604×10 ⁻⁴	3.53
	³² S	Stable	4.060×10 ⁻⁵	7.02
	³³ S	Stable	9.500×10 ⁻³	1.45
	³⁴ S	Stable	1.517×10 ⁻²	0.360
	³⁵ S	87.37 d	7.279×10 ⁻³	0.522
	³⁶ S	Stable	1.462×10 ⁻⁴	3.70
	³⁷ S	5.05 min	2.540×10 ⁻⁵	8.87
	³⁴ Cl	1.5266 s	8.702×10 ⁻⁴	1.52
	³⁵ Cl	Stable	3.182×10 ⁻²	0.247
	³⁶ Cl	3.01×10 ⁵ y	3.778×10 ⁻²	0.226
	³⁷ Cl	Stable	1.113×10 ⁻²	0.422
	³⁸ Cl	37.230 min	3.907×10 ⁻³	0.714
	³⁹ Cl	56.2 min	5.880×10 ⁻⁵	5.83
	³⁶ Ar	Stable	2.174×10 ⁻³	0.958
	³⁷ Ar	35.011 d	2.707×10 ⁻²	0.268
	³⁸ Ar	Stable	1.935×10 ⁻¹	0.0913
	³⁹ Ar	268 y	4.728×10 ⁻²	0.201
	⁴⁰ Ar	Stable	3.840×10 ⁻⁴	2.28
	⁴¹ Ar	109.61 min	2.488×10 ⁻⁴	2.84
	⁴² Ar	32.9 y	3.594×10 ⁻⁴	2.36
	⁴³ Ar	5.37 min	1.548×10 ⁻⁴	3.59
	³⁷ K	1.225 s	6.100×10 ⁻⁵	5.73
	³⁸ K	7.651 min	1.835×10 ⁻²	0.327
	³⁹ K	Stable	2.659×10 ⁻¹	0.0743
	⁴⁰ K	Stable	1.421×10 ⁻¹	0.110
	⁴¹ K	Stable	2.975×10 ⁻³	0.819
	⁴² K	12.355 h	3.555×10 ⁻³	0.749
	⁴³ K	22.3 h	5.336×10 ⁻³	0.611
	⁴⁴ K	22.13 min	1.738×10 ⁻³	1.07
	⁴⁵ K	17.81 min	8.680×10 ⁻⁵	4.80

Table 15 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 20. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

_	Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
-		⁴⁶ K	105 s	1.808×10 ⁻⁴	3.33
		⁴⁷ K	17.50 s	2.704×10 ⁻⁴	2.72
		⁴⁸ K	6.8 s	2.760×10 ⁻⁵	8.51

Table 15 (Continued).

Table 16 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 21.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Sc (21)	³⁵ S	87.37 d	4.100×10 ⁻⁵	6.98
	³⁶ S	Stable	2.114×10 ⁻⁴	3.08
	³⁷ Cl	Stable	3.320×10 ⁻⁵	7.76
	³⁸ Cl	37.230 min	1.086×10 ⁻⁴	4.29
	³⁹ Cl	56.2 min	1.904×10 ⁻⁴	3.24
	⁴⁰ Cl	1.35 min	5.800×10 ⁻⁵	5.87
	³⁸ Ar	Stable	1.163×10 ⁻³	1.31
	³⁹ Ar	268 y	3.923×10 ⁻³	0.713
	⁴⁰ Ar	Stable	7.151×10 ⁻³	0.527
	⁴¹ Ar	109.61 min	1.105×10 ⁻³	1.35
	⁴² Ar	32.9 y	5.922×10 ⁻⁴	1.84
	⁴³ Ar	5.37 min	4.114×10 ⁻⁴	2.20
	⁴⁰ K	Stable	1.538×10 ⁻⁴	3.61
	⁴¹ K	Stable	3.674×10 ⁻³	0.737
	⁴² K	12.355 h	1.408×10 ⁻²	0.374
	⁴³ K	22.3 h	3.252×10 ⁻²	0.244
	⁴⁴ K	22.13 min	1.817×10 ⁻²	0.329
	⁴⁰ Ca	Stable	2.560×10 ⁻⁵	8.84
	⁴¹ Ca	9.94×10 ⁴ y	1.331×10 ⁻³	1.23
	⁴² Ca	Stable	4.562×10 ⁻²	0.205
	⁴³ Ca	Stable	1.504×10 ⁻¹	0.106
	⁴⁴ Ca	Stable	3.759×10 ⁻¹	0.0576
	⁴⁵ Ca	162.61 d	1.507×10 ⁻¹	0.106

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ti (22)	³⁷ Cl	Stable	4.380×10 ⁻⁵	6.76
	³⁸ Cl	37.230 min	3.360×10 ⁻⁵	7.72
	³⁹ Ar	268 y	3.180×10 ⁻⁵	7.93
	⁴⁰ Ar	Stable	1.420×10 ⁻⁴	3.75
	⁴¹ Ar	109.61 min	6.320×10 ⁻⁵	5.63
	⁴² Ar	32.9 y	6.140×10 ⁻⁵	5.71
	³⁹ K	Stable	4.540×10 ⁻⁵	6.64
	⁴⁰ K	Stable	4.420×10 ⁻⁴	2.13
	⁴¹ K	Stable	1.738×10 ⁻³	1.07
	⁴² K	12.355 h	2.233×10 ⁻³	0.945
	⁴³ K	22.3 h	2.909×10 ⁻³	0.828
	⁴⁴ K	22.13 min	1.066×10 ⁻³	1.37
	⁴⁵ K	17.81 min	3.854×10 ⁻⁴	2.28
	⁴⁶ K	105 s	3.016×10 ⁻⁴	2.58
	⁴² Ca	Stable	5.752×10 ⁻⁴	1.86
	⁴³ Ca	Stable	3.931×10 ⁻³	0.712
	⁴⁴ Ca	Stable	2.158×10 ⁻²	0.301
	⁴⁵ Ca	162.61 d	1.719×10 ⁻²	0.338
	⁴⁶ Ca	Stable	3.219×10 ⁻²	0.245
	⁴⁷ Ca	4.536 d	1.688×10 ⁻²	0.341
	⁴⁸ Ca	Stable	2.155×10 ⁻³	0.962
	⁴⁹ Ca	8.718 min	3.982×10 ⁻⁴	2.24
	⁴³ Sc	3.891 h	5.984×10 ⁻⁴	1.83
	⁴⁴ Sc	4.0420 h	1.039×10 ⁻²	0.436
	⁴⁵ Sc	Stable	7.134×10 ⁻²	0.161
	⁴⁶ Sc	83.79 d	1.585×10 ⁻¹	0.103
	⁴⁷ Sc	3.3492 d	3.052×10 ⁻¹	0.0675
	⁴⁸ Sc	43.71 h	1.349×10 ⁻¹	0.113
	⁴⁹ Sc	57.18 min	2.688×10 ⁻²	0.269
	⁵⁰ Sc	102.5 s	3.626×10 ⁻³	0.741

Table 17 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 22. Target (Z) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
V (23)	⁴⁵ K	17.81 min	2.700×10 ⁻⁵	8.61
	⁴⁴ Ca	Stable	2.966×10 ⁻⁴	2.60
	⁴⁵ Ca	162.61 d	1.271×10 ⁻³	1.25
	⁴⁶ Ca	Stable	2.372×10 ⁻³	0.917
	⁴⁷ Ca	4.536 d	5.666×10 ⁻⁴	1.88
	⁴⁸ Ca	Stable	4.724×10 ⁻⁴	2.06
	⁴⁹ Ca	8.718 min	3.212×10 ⁻⁴	2.50
	⁴⁶ Sc	83.79 d	1.072×10 ⁻⁴	4.32
	⁴⁷ Sc	3.3492 d	2.366×10 ⁻³	0.918
	⁴⁸ Sc	43.71 h	1.111×10 ⁻²	0.422
	⁴⁹ Sc	57.18 min	2.815×10 ⁻²	0.263
	⁵⁰ Sc	102.5 s	1.197×10 ⁻²	0.406
	⁴⁶ Ti	Stable	7.820×10 ⁻⁵	5.06
	⁴⁷ Ti	Stable	3.148×10 ⁻³	0.796
	⁴⁸ Ti	Stable	6.086×10 ⁻²	0.176
	⁴⁹ Ti	Stable	1.799×10 ⁻¹	0.0955
	⁵⁰ Ti	Stable	4.031×10 ⁻¹	0.0544
	⁵¹ Ti	5.76 min	1.168×10 ⁻¹	0.123

Table 18 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 23. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Cr (24)	⁴⁴ Ca	Stable	1.170×10 ⁻⁴	4.13
	⁴⁵ Ca	162.61 d	7.240×10 ⁻⁵	5.26
	⁴⁶ Ca	Stable	2.072×10 ⁻⁴	3.11
	⁴⁷ Ca	4.536 d	1.030×10 ⁻⁴	4.41
	⁴⁴ Sc	4.0420 h	5.660×10 ⁻⁵	5.94
	⁴⁵ Sc	Stable	4.824×10 ⁻⁴	2.04
	⁴⁶ Sc	83.79 d	1.686×10 ⁻³	1.09
	⁴⁷ Sc	3.3492 d	4.837×10 ⁻³	0.641
	⁴⁸ Sc	43.71 h	2.421×10 ⁻³	0.908
	⁴⁹ Sc	57.18 min	1.154×10 ⁻³	1.32
	⁵⁰ Sc	102.5 s	5.456×10 ⁻⁴	1.91
	⁵¹ Sc	12.4 s	3.760×10 ⁻⁵	7.29
	⁴⁶ Ti	Stable	2.236×10 ⁻⁴	2.99
	⁴⁷ Ti	Stable	1.967×10 ⁻³	1.01
	⁴⁸ Ti	Stable	1.269×10 ⁻²	0.395
	⁴⁹ Ti	Stable	2.001×10 ⁻²	0.313
	⁵⁰ Ti	Stable	6.097×10 ⁻²	0.176
	⁵¹ Ti	5.76 min	1.816×10 ⁻²	0.329
	⁵² Ti	1.7 min	2.082×10 ⁻³	0.979
	⁵³ Ti	32.7 s	2.214×10 ⁻⁴	3.01
	^{47}V	32.6 min	2.114×10 ⁻⁴	3.08
	^{48}V	15.974 d	4.670×10 ⁻³	0.653
	⁴⁹ V	330 d	4.298×10 ⁻²	0.211
	50 V	Stable	1.486×10 ⁻¹	0.107
	⁵¹ V	Stable	3.604×10 ⁻¹	0.0596
	⁵² V	3.743 min	1.391×10 ⁻¹	0.111
	⁵³ V	1.543 min	2.147×10 ⁻²	0.302
	⁵⁴ V	49.8 s	1.728×10 ⁻³	1.08

Table 19 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 24. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Mn (25)	⁴⁸ Sc	43.71 h	4.300×10 ⁻⁵	6.82
	⁴⁹ Sc	57.18 min	1.796×10 ⁻⁴	3.34
	⁵⁰ Sc	102.5 s	6.260×10 ⁻⁵	5.65
	⁴⁸ Ti	Stable	4.062×10 ⁻⁴	2.22
	⁴⁹ Ti	Stable	2.040×10 ⁻³	0.989
	⁵⁰ Ti	Stable	3.912×10 ⁻³	0.714
	⁵¹ Ti	5.76 min	6.906×10 ⁻⁴	1.70
	⁵² Ti	1.7 min	4.290×10 ⁻⁴	2.16
	⁵³ Ti	32.7 s	3.642×10 ⁻⁴	2.34
	$^{50}\mathrm{V}$	Stable	1.244×10 ⁻⁴	4.01
	⁵¹ V	Stable	3.735×10 ⁻³	0.730
	⁵² V	3.743 min	1.120×10 ⁻²	0.420
	⁵³ V	1.543 min	2.168×10 ⁻²	0.300
	⁵⁴ V	49.8 s	1.227×10 ⁻²	0.401
	⁵⁰ Cr	Stable	7.040×10 ⁻⁵	5.33
	⁵¹ Cr	27.704 d	3.748×10 ⁻³	0.729
	⁵² Cr	Stable	8.176×10 ⁻²	0.150
	⁵³ Cr	Stable	2.103×10 ⁻¹	0.0867
	⁵⁴ Cr	Stable	3.870×10 ⁻¹	0.0563
	⁵⁵ Cr	3.497 min	1.125×10 ⁻¹	0.126

Table 20 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 25. Target (Z) Produced nuclide Helf life Vield [/u⁻¹] Polative error [%]
Target (Z)	Produced nuclide	Half-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
Fe (26)	⁴⁷ Sc	3.3492 d	2.640×10 ⁻⁵	8.70
	⁴⁸ Sc	43.71 h	2.760×10 ⁻⁵	8.51
	⁴⁸ Ti	Stable	1.814×10 ⁻⁴	3.32
	⁴⁹ Ti	Stable	1.868×10 ⁻⁴	3.27
	⁵⁰ Ti	Stable	6.806×10 ⁻⁴	1.71
	⁵¹ Ti	5.76 min	1.010×10 ⁻⁴	4.45
	^{48}V	15.974 d	7.720×10 ⁻⁵	5.09
	⁴⁹ V	330 d	6.820×10 ⁻⁴	1.71
	50 V	Stable	2.433×10 ⁻³	0.906
	⁵¹ V	Stable	6.616×10 ⁻³	0.548
	⁵² V	3.743 min	2.235×10 ⁻³	0.945
	⁵³ V	1.543 min	6.628×10 ⁻⁴	1.74
	⁵⁴ V	49.8 s	5.190×10 ⁻⁴	1.96
	⁵⁰ Cr	Stable	2.104×10 ⁻⁴	3.08
	⁵¹ Cr	27.704 d	2.459×10 ⁻³	0.901
	⁵² Cr	Stable	2.073×10 ⁻²	0.307
	⁵³ Cr	Stable	2.892×10 ⁻²	0.259
	⁵⁴ Cr	Stable	4.601×10 ⁻²	0.204
	⁵⁵ Cr	3.497 min	1.839×10 ⁻²	0.327
	⁵⁶ Cr	5.94 min	4.728×10 ⁻⁴	2.06
	⁵⁷ Cr	21.1 s	2.580×10 ⁻⁵	8.80
	⁵¹ Mn	46.2 min	1.646×10 ⁻⁴	3.49
	⁵² Mn	5.591 d	3.967×10 ⁻³	0.709
	⁵³ Mn	3.7×10 ⁶ y	5.578×10 ⁻²	0.184
	⁵⁴ Mn	312.20 d	1.828×10 ⁻¹	0.0946
	⁵⁵ Mn	Stable	3.706×10 ⁻¹	0.0583
	⁵⁶ Mn	2.5789 h	1.238×10 ⁻¹	0.119
	⁵⁷ Mn	85.4 s	4.280×10 ⁻³	0.682
	⁵⁸ Mn	3.0 s	2.548×10 ⁻⁴	2.80

Table 21 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 26. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Co (27)	⁵⁰ Ti	Stable	2.560×10 ⁻⁵	8.84
	⁵² V	3.743 min	3.800×10 ⁻⁵	7.26
	⁵³ V	1.543 min	9.840×10 ⁻⁵	4.51
	⁵⁴ V	49.8 s	2.960×10 ⁻⁵	8.22
	⁵² Cr	Stable	6.624×10 ⁻⁴	1.74
	⁵³ Cr	Stable	2.770×10 ⁻³	0.849
	⁵⁴ Cr	Stable	3.926×10 ⁻³	0.712
	⁵⁵ Cr	3.497 min	6.452×10 ⁻⁴	1.76
	⁵⁶ Cr	5.94 min	5.156×10 ⁻⁴	1.97
	⁵⁷ Cr	21.1 s	4.066×10 ⁻⁴	2.22
	⁵⁴ Mn	312.20 d	2.166×10 ⁻⁴	3.04
	⁵⁵ Mn	Stable	4.422×10 ⁻³	0.671
	⁵⁶ Mn	2.5789 h	1.361×10 ⁻²	0.381
	⁵⁷ Mn	85.4 s	2.615×10 ⁻²	0.273
	⁵⁸ Mn	3.0 s	1.526×10 ⁻²	0.359
	⁵⁴ Fe	Stable	8.300×10 ⁻⁵	4.91
	⁵⁵ Fe	2.744 y	4.536×10 ⁻³	0.663
	⁵⁶ Fe	Stable	7.963×10 ⁻²	0.152
	⁵⁷ Fe	Stable	1.999×10 ⁻¹	0.0895
	⁵⁸ Fe	Stable	3.973×10 ⁻¹	0.0551
	⁵⁹ Fe	44.490 d	1.259×10 ⁻¹	0.118

Table 22 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 27. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
Ni (28)	⁴⁹ V	330 d	5.300×10 ⁻⁵	6.14
	$^{50}\mathrm{V}$	Stable	1.060×10 ⁻⁴	4.34
	⁵¹ V	Stable	5.200×10 ⁻⁵	6.20
	⁵² V	3.743 min	4.100×10 ⁻⁵	6.98
	⁵¹ Cr	27.704 d	2.220×10 ⁻⁴	3.00
	⁵² Cr	Stable	3.296×10 ⁻³	0.778
	⁵³ Cr	Stable	1.726×10 ⁻³	1.08
	⁵⁴ Cr	Stable	2.166×10 ⁻⁴	3.04
	⁵⁵ Cr	3.497 min	6.620×10 ⁻⁵	5.50
	⁵² Mn	5.591 d	6.004×10 ⁻⁴	1.83
	⁵³ Mn	3.7×10 ⁶ y	7.325×10 ⁻³	0.521
	⁵⁴ Mn	312.20 d	8.367×10 ⁻³	0.487
	⁵⁵ Mn	Stable	8.876×10-3	0.473
	⁵⁶ Mn	2.5789 h	3.953×10 ⁻³	0.710
	⁵⁷ Mn	85.4 s	3.358×10 ⁻⁴	2.44
	⁵⁸ Mn	3.0 s	2.382×10 ⁻⁴	2.90
	⁵⁴ Fe	Stable	2.699×10 ⁻³	0.860
	⁵⁵ Fe	2.744 y	3.184×10 ⁻²	0.247
	⁵⁶ Fe	Stable	1.470×10 ⁻¹	0.108
	⁵⁷ Fe	Stable	5.398×10 ⁻²	0.187
	⁵⁸ Fe	Stable	1.611×10 ⁻²	0.350
	⁵⁹ Fe	44.490 d	6.409×10 ⁻³	0.557
	⁶⁰ Fe	2.62×10 ⁶ y	1.097×10 ⁻³	1.35
	⁶¹ Fe	5.98 min	4.418×10 ⁻⁴	2.13
	⁶² Fe	68 s	1.202×10 ⁻⁴	4.08
	⁶³ Fe	6.1 s	6.300×10 ⁻⁵	5.63
	⁵⁵ Co	17.53 h	1.758×10 ⁻³	1.07
	⁵⁶ Co	77.236 d	3.977×10 ⁻²	0.220
	⁵⁷ Co	271.74 d	2.318×10 ⁻¹	0.0814
	⁵⁸ Co	70.86 d	1.650×10 ⁻¹	0.101
	⁵⁹ Co	Stable	1.013×10 ⁻¹	0.133
	⁶⁰ Co	1925.28 d	4.201×10 ⁻²	0.214
	⁶¹ Co	1.649 h	1.384×10 ⁻²	0.378
	⁶² Co	1.54 min	4.420×10 ⁻³	0.671
	⁶³ Co	27.4 s	2.281×10 ⁻³	0.935

Table 23 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 28. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	⁶⁴ Co	0.30 s	5.248×10 ⁻⁴	1.95
Table 24 Yiel	ds of nuclides produce	d by the nuclear	r capture of μ ⁻ fe	or the target with $Z = 29$
Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Cu (29)	⁵⁴ Cr	Stable	2.560×10 ⁻⁵	8.84
	⁵⁶ Mn	2.5789 h	5.420×10 ⁻⁵	6.07
	⁵⁷ Mn	85.4 s	1.102×10 ⁻⁴	4.26
	⁵⁸ Mn	3.0 s	3.280×10 ⁻⁵	7.81
	⁵⁶ Fe	Stable	6.030×10 ⁻⁴	1.82
	⁵⁷ Fe	Stable	2.372×10 ⁻³	0.917
	⁵⁸ Fe	Stable	3.683×10 ⁻³	0.736
	⁵⁹ Fe	44.490 d	8.782×10 ⁻⁴	1.51
	⁶⁰ Fe	2.62×10 ⁶ y	8.448×10 ⁻⁴	1.54
	⁶¹ Fe	5.98 min	4.694×10 ⁻⁴	2.06
	⁶² Fe	68 s	9.560×10 ⁻⁵	4.57
	⁶³ Fe	6.1 s	8.420×10 ⁻⁵	4.87
	⁵⁸ Co	70.86 d	1.348×10 ⁻⁴	3.85
	⁵⁹ Co	Stable	3.757×10 ⁻³	0.728
	⁶⁰ Co	1925.28 d	1.305×10 ⁻²	0.389
	⁶¹ Co	1.649 h	2.748×10 ⁻²	0.266
	⁶² Co	1.54 min	1.559×10 ⁻²	0.355
	⁶³ Co	27.4 s	5.403×10 ⁻³	0.607
	⁶⁴ Co	0.30 s	3.351×10 ⁻³	0.771
	⁵⁸ Ni	Stable	3.320×10 ⁻⁵	7.76
	⁵⁹ Ni	7.6×10 ⁴ y	2.022×10 ⁻³	0.994
	⁶⁰ Ni	Stable	4.719×10 ⁻²	0.201
	⁶¹ Ni	Stable	1.380×10 ⁻¹	0.112
	⁶² Ni	Stable	3.268×10 ⁻¹	0.0642
	⁶³ Ni	101.2 y	1.569×10 ⁻¹	0.104
	⁶⁴ Ni	Stable	1.094×10 ⁻¹	0.128
	⁶⁵ Ni	2.51719 h	3.120×10 ⁻²	0.249

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Zn (30)	⁵⁵ Mn	Stable	4.780×10 ⁻⁵	6.47
	⁵⁶ Mn	2.5789 h	2.820×10-5	8.42
	⁵⁶ Fe	Stable	2.020×10 ⁻⁵	9.95
	⁵⁷ Fe	Stable	1.824×10 ⁻⁴	3.31
	⁵⁸ Fe	Stable	6.360×10 ⁻⁴	1.77
	⁵⁹ Fe	44.490 d	1.178×10 ⁻⁴	4.12
	⁶⁰ Fe	2.62×10 ⁶ y	2.780×10 ⁻⁵	8.48
	⁵⁷ Co	271.74 d	2.436×10 ⁻⁴	2.87
	⁵⁸ Co	70.86 d	2.156×10 ⁻³	0.962
	⁵⁹ Co	Stable	6.487×10 ⁻³	0.554
	⁶⁰ Co	1925.28 d	3.067×10 ⁻³	0.806
	⁶¹ Co	1.649 h	2.646×10 ⁻³	0.868
	⁶² Co	1.54 min	1.281×10 ⁻³	1.25
	⁶³ Co	27.4 s	4.754×10 ⁻⁴	2.05
	⁶⁴ Co	0.30 s	2.246×10 ⁻⁴	2.98
	⁶⁵ Co	1.16 s	6.760×10 ⁻⁵	5.44
	⁶⁶ Co	0.20 s	4.560×10 ⁻⁵	6.62
	⁵⁹ Ni	7.6×10 ⁴ y	1.020×10 ⁻⁴	4.43
	⁶⁰ Ni	Stable	5.443×10 ⁻³	0.605
	⁶¹ Ni	Stable	2.455×10 ⁻²	0.282
	⁶² Ni	Stable	9.133×10 ⁻²	0.141
	⁶³ Ni	101.2 y	2.770×10 ⁻²	0.265
	⁶⁴ Ni	Stable	1.367×10 ⁻²	0.380
	⁶⁵ Ni	2.51719 h	8.359×10 ⁻³	0.487
	⁶⁶ Ni	54.6 h	6.239×10 ⁻³	0.564
	⁶⁷ Ni	21 s	2.482×10 ⁻³	0.897
	⁶⁸ Ni	29 s	6.780×10 ⁻⁵	5.43
	⁶⁹ Ni	11.4 s	2.940×10 ⁻⁵	8.25
	⁶⁰ Cu	23.7 min	4.100×10 ⁻⁵	6.98
	⁶¹ Cu	3.336 h	8.050×10 ⁻³	0.496
	⁶² Cu	9.67 min	5.199×10 ⁻²	0.191
	⁶³ Cu	Stable	2.056×10 ⁻¹	0.0879
	⁶⁴ Cu	12.7006 h	1.409×10 ⁻¹	0.110
	⁶⁵ Cu	Stable	1.297×10 ⁻¹	0.116
	⁶⁶ Cu	5.120 min	7.794×10 ⁻²	0.154

Table 25 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 30. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	⁶⁷ Cu	61.83 h	6.713×10 ⁻²	0.167
	⁶⁸ Cu	30.9 s	1.690×10 ⁻²	0.341
	⁶⁹ Cu	2.85 min	1.537×10 ⁻³	1.14
	⁷⁰ Cu	44.5 s	3.140×10 ⁻⁴	2.52

Table 25 (Continued).

Table 26 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 31.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ga (31)	⁶² Co	1.54 min	2.260×10 ⁻⁵	9.41
	⁶³ Co	27.4 s	7.160×10 ⁻⁵	5.29
	⁶⁴ Co	0.30 s	2.740×10 ⁻⁵	8.54
	⁶¹ Ni	Stable	2.640×10 ⁻⁵	8.70
	⁶² Ni	Stable	6.504×10 ⁻⁴	1.75
	⁶³ Ni	101.2 y	1.527×10 ⁻³	1.14
	⁶⁴ Ni	Stable	2.467×10 ⁻³	0.899
	⁶⁵ Ni	2.51719 h	9.282×10 ⁻⁴	1.47
	⁶⁶ Ni	54.6 h	1.094×10 ⁻³	1.35
	⁶⁷ Ni	21 s	5.662×10 ⁻⁴	1.88
	⁶⁸ Ni	29 s	1.004×10 ⁻⁴	4.46
	⁶⁹ Ni	11.4 s	9.040×10 ⁻⁵	4.70
	⁶⁴ Cu	12.7006 h	1.882×10 ⁻⁴	3.26
	⁶⁵ Cu	Stable	2.879×10 ⁻³	0.832
	⁶⁶ Cu	5.120 min	8.996×10 ⁻³	0.469
	⁶⁷ Cu	61.83 h	2.262×10 ⁻²	0.294
	⁶⁸ Cu	30.9 s	1.510×10 ⁻²	0.361
	⁶⁹ Cu	2.85 min	7.573×10 ⁻³	0.512
	⁷⁰ Cu	44.5 s	4.101×10 ⁻³	0.697
	⁶⁴ Zn	Stable	3.150×10 ⁻⁴	2.52
	⁶⁵ Zn	243.93 d	5.124×10 ⁻³	0.623
	⁶⁶ Zn	Stable	5.982×10 ⁻²	0.177
	⁶⁷ Zn	Stable	1.248×10 ⁻¹	0.118
	⁶⁸ Zn	Stable	3.010×10 ⁻¹	0.0682
	⁶⁹ Zn	56.4 min	1.549×10 ⁻¹	0.105
	⁷⁰ Zn	Stable	1.394×10 ⁻¹	0.111
	71 Zn	2.42 min	3.715×10 ⁻²	0.228

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ge (32)	⁶³ Ni	101.2 y	4.760×10 ⁻⁵	6.48
	⁶⁴ Ni	Stable	1.582×10 ⁻⁴	3.56
	⁶⁵ Ni	2.51719 h	5.880×10 ⁻⁵	5.83
	⁶⁶ Ni	54.6 h	3.660×10 ⁻⁵	7.39
	⁶³ Cu	Stable	1.704×10 ⁻⁴	3.43
	⁶⁴ Cu	12.7006 h	9.586×10 ⁻⁴	1.44
	⁶⁵ Cu	Stable	2.300×10 ⁻³	0.932
	⁶⁶ Cu	5.120 min	1.677×10 ⁻³	1.09
	⁶⁷ Cu	61.83 h	1.391×10 ⁻³	1.20
	⁶⁸ Cu	30.9 s	7.794×10 ⁻⁴	1.60
	⁶⁹ Cu	2.85 min	2.892×10 ⁻⁴	2.63
	⁷⁰ Cu	44.5 s	1.820×10 ⁻⁴	3.32
	⁷¹ Cu	19.4 s	1.106×10 ⁻⁴	4.25
	⁷² Cu	6.63 s	7.660×10 ⁻⁵	5.11
	⁶⁵ Zn	243.93 d	1.056×10 ⁻⁴	4.35
	⁶⁶ Zn	Stable	3.221×10 ⁻³	0.787
	⁶⁷ Zn	Stable	8.305×10 ⁻³	0.489
	⁶⁸ Zn	Stable	2.493×10 ⁻²	0.280
	⁶⁹ Zn	56.4 min	1.640×10 ⁻²	0.346
	70 Zn	Stable	1.222×10 ⁻²	0.402
	^{71}Zn	2.42 min	9.128×10 ⁻³	0.466
	^{72}Zn	46.5 h	9.891×10 ⁻³	0.448
	⁷³ Zn	24.5 s	4.155×10 ⁻³	0.692
	^{74}Zn	95.6 s	1.041×10 ⁻³	1.39
	⁷⁵ Zn	10.2 s	4.870×10 ⁻⁴	2.03
	⁶⁶ Ga	9.49 h	2.034×10 ⁻⁴	3.14
	⁶⁷ Ga	3.2617 d	1.033×10 ⁻²	0.438
	⁶⁸ Ga	67.71 min	4.058×10 ⁻²	0.217
	⁶⁹ Ga	Stable	1.220×10 ⁻¹	0.120
	⁷⁰ Ga	21.14 min	1.126×10 ⁻¹	0.126
	⁷¹ Ga	Stable	1.682×10 ⁻¹	0.0994
	⁷² Ga	14.10 h	1.203×10 ⁻¹	0.121
	⁷³ Ga	4.86 h	1.489×10 ⁻¹	0.107
	⁷⁴ Ga	8.12 min	4.644×10 ⁻²	0.203
	⁷⁵ Ga	126 s	2.119×10 ⁻²	0.304

Table 27 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 32. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

|--|

_	Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
-		⁷⁶ Ga	30.5 s	4.924×10 ⁻³	0.636

Table 28 Yields of nuclides produced by the nuclear capt	ture of μ^{-} for the target with $Z = 33$.
--	--

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
As (33)	⁶⁷ Zn	Stable	3.560×10 ⁻⁵	7.50
	⁶⁸ Zn	Stable	5.088×10 ⁻⁴	1.98
	⁶⁹ Zn	56.4 min	8.222×10 ⁻⁴	1.56
	70 Zn	Stable	6.960×10 ⁻⁴	1.70
	^{71}Zn	2.42 min	1.606×10 ⁻⁴	3.53
	^{72}Zn	46.5 h	5.114×10 ⁻⁴	1.98
	⁷³ Zn	24.5 s	4.218×10 ⁻⁴	2.18
	⁷⁰ Ga	21.14 min	2.682×10 ⁻⁴	2.73
	⁷¹ Ga	Stable	2.792×10 ⁻³	0.845
	⁷² Ga	14.10 h	8.063×10 ⁻³	0.496
	⁷³ Ga	4.86 h	2.332×10 ⁻²	0.289
	⁷⁴ Ga	8.12 min	1.508×10 ⁻²	0.361
	⁷⁰ Ge	Stable	1.160×10 ⁻³	1.31
	⁷¹ Ge	11.43 d	1.219×10 ⁻²	0.403
	⁷² Ge	Stable	1.084×10 ⁻¹	0.128
	⁷³ Ge	Stable	1.892×10 ⁻¹	0.0926
	⁷⁴ Ge	Stable	4.064×10 ⁻¹	0.0541
	⁷⁵ Ge	82.78 min	1.281×10 ⁻¹	0.117

Target (Z)	Produced nuclide	Halt-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
Se (34)	⁶⁸ Ga	67.71 min	2.780×10 ⁻⁵	8.48
	⁶⁹ Ga	Stable	1.278×10 ⁻⁴	3.96
	⁷⁰ Ga	21.14 min	1.826×10 ⁻⁴	3.31
	⁷¹ Ga	Stable	2.038×10 ⁻⁴	3.13
	⁷² Ga	14.10 h	1.514×10 ⁻⁴	3.63
	⁷³ Ga	4.86 h	1.960×10 ⁻⁴	3.19
	⁷⁴ Ga	8.12 min	1.794×10 ⁻⁴	3.34
	⁷⁵ Ga	126 s	2.092×10 ⁻⁴	3.09
	⁷⁶ Ga	30.5 s	1.212×10 ⁻⁴	4.06
	⁷⁷ Ga	13.2 s	9.180×10 ⁻⁵	4.67
	⁷⁸ Ga	5.09 s	1.108×10 ⁻⁴	4.25
	⁷⁰ Ge	Stable	1.660×10 ⁻⁴	3.47
	⁷¹ Ge	11.43 d	5.614×10 ⁻⁴	1.89
	⁷² Ge	Stable	2.505×10 ⁻³	0.892
	⁷³ Ge	Stable	2.478×10 ⁻³	0.897
	⁷⁴ Ge	Stable	7.450×10 ⁻³	0.516
	⁷⁵ Ge	82.78 min	7.327×10 ⁻³	0.521
	⁷⁶ Ge	Stable	1.166×10 ⁻²	0.412
	⁷⁷ Ge	11.211 h	7.854×10 ⁻³	0.503
	⁷⁸ Ge	88 min	1.063×10 ⁻²	0.431
	⁷⁹ Ge	18.98 s	6.243×10 ⁻³	0.564
	⁸⁰ Ge	29.5 s	1.147×10 ⁻³	1.32
	⁸¹ Ge	7.6 s	5.902×10 ⁻⁴	1.84
	⁷¹ As	65.30 h	4.056×10 ⁻⁴	2.22
	^{72}As	26.0 h	2.520×10-3	0.890
	⁷³ As	80.30 d	1.418×10 ⁻²	0.373
	⁷⁴ As	17.77 d	3.284×10 ⁻²	0.243
	⁷⁵ As	Stable	9.383×10 ⁻²	0.139
	⁷⁶ As	26.254 h	1.010×10 ⁻¹	0.133
	⁷⁷ As	38.79 h	1.739×10 ⁻¹	0.0975
	^{78}As	90.7 min	1.334×10 ⁻¹	0.114
	⁷⁹ As	9.01 min	1.848×10 ⁻¹	0.0939
	⁸⁰ As	15.2 s	6.526×10 ⁻²	0.169
	⁸¹ As	33.3 s	2.604×10 ⁻²	0.274
	⁸² As	19.1 s	5.749×10 ⁻³	0.588

Table 29Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 34.Target (Z)Produced nuclideHalf-lifeYield $[/\mu^-]$ Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Br (35)	⁷² Ge	Stable	2.484×10 ⁻⁴	2.84
	⁷³ Ge	Stable	4.906×10 ⁻⁴	2.02
	⁷⁴ Ge	Stable	6.070×10 ⁻⁴	1.82
	⁷⁵ Ge	82.78 min	2.532×10 ⁻⁴	2.81
	⁷⁶ Ge	Stable	5.230×10 ⁻⁴	1.96
	⁷⁷ Ge	11.211 h	4.134×10 ⁻⁴	2.20
	⁷⁸ Ge	88 min	1.802×10 ⁻⁴	3.33
	⁷⁹ Ge	18.98 s	1.800×10 ⁻⁴	3.33
	⁷⁴ As	17.77 d	1.104×10 ⁻⁴	4.26
	⁷⁵ As	Stable	1.926×10 ⁻³	1.02
	⁷⁶ As	26.254 h	6.009×10 ⁻³	0.575
	⁷⁷ As	38.79 h	1.705×10 ⁻²	0.340
	⁷⁸ As	90.7 min	1.369×10 ⁻²	0.380
	⁷⁹ As	9.01 min	9.554×10 ⁻³	0.455
	⁸⁰ As	15.2 s	6.537×10 ⁻³	0.551
	⁷⁴ Se	Stable	2.878×10 ⁻⁴	2.64
	⁷⁵ Se	119.78 d	4.531×10 ⁻³	0.663
	⁷⁶ Se	Stable	5.028×10 ⁻²	0.194
	⁷⁷ Se	Stable	1.083×10 ⁻¹	0.128
	⁷⁸ Se	Stable	2.714×10 ⁻¹	0.0733
	⁷⁹ Se	3.26×10 ⁵ y	1.673×10 ⁻¹	0.0998
	⁸⁰ Se	Stable	1.839×10 ⁻¹	0.0942
	⁸¹ Se	18.45 min	6.124×10 ⁻²	0.175

Table 30 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 35. Target (Z) Produced nuclide Helf life Vield [/u⁻¹] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Kr (36)	⁷³ As	80.30 d	3.200×10 ⁻⁵	7.91
	^{74}As	17.77 d	5.180×10 ⁻⁵	6.21
	⁷⁵ As	Stable	1.030×10 ⁻⁴	4.41
	^{76}As	26.254 h	1.092×10 ⁻⁴	4.28
	⁷⁷ As	38.79 h	2.058×10 ⁻⁴	3.12
	⁷⁸ As	90.7 min	2.068×10 ⁻⁴	3.11
	⁷⁹ As	9.01 min	2.588×10 ⁻⁴	2.78
	⁸⁰ As	15.2 s	1.648×10 ⁻⁴	3.48
	⁸¹ As	33.3 s	2.374×10 ⁻⁴	2.90
	⁸² As	19.1 s	1.590×10 ⁻⁴	3.55
	⁷⁴ Se	Stable	5.700×10 ⁻⁵	5.92
	⁷⁵ Se	119.78 d	1.904×10 ⁻⁴	3.24
	⁷⁶ Se	Stable	9.492×10 ⁻⁴	1.45
	⁷⁷ Se	Stable	7.000×10 ⁻⁴	1.69
	⁷⁸ Se	Stable	2.393×10 ⁻³	0.913
	⁷⁹ Se	3.26×10 ⁵ y	2.598×10 ⁻³	0.876
	⁸⁰ Se	Stable	7.585×10 ⁻³	0.512
	⁸¹ Se	18.45 min	9.929×10 ⁻³	0.447
	⁸² Se	Stable	1.796×10 ⁻²	0.331
	⁸³ Se	22.25 min	8.941×10 ⁻³	0.471
	⁸⁴ Se	3.26 min	2.973×10 ⁻³	0.819
	⁸⁵ Se	32.9 s	1.237×10 ⁻³	1.27
	⁷⁵ Br	96.7 min	1.374×10 ⁻⁴	3.82
	⁷⁶ Br	16.14 h	8.360×10 ⁻⁴	1.55
	$^{77}\mathrm{Br}$	57.04 h	3.558×10 ⁻³	0.748
	$^{78}\mathrm{Br}$	6.45 min	7.028×10 ⁻³	0.532
	⁷⁹ Br	Stable	2.389×10 ⁻²	0.286
	$^{80}\mathrm{Br}$	17.68 min	4.399×10 ⁻²	0.209
	$^{81}\mathrm{Br}$	Stable	1.360×10 ⁻¹	0.113
	$^{82}\mathrm{Br}$	35.282 h	1.790×10 ⁻¹	0.0958
	⁸³ Br	2.374 h	2.724×10 ⁻¹	0.0731
	$^{84}\mathrm{Br}$	31.76 min	1.017×10 ⁻¹	0.133
	⁸⁵ Br	2.90 min	5.927×10 ⁻²	0.178
	⁸⁶ Br	55.1 s	9.313×10 ⁻³	0.461

Table 31 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 36. Target (Z) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Rb (37)	⁷⁸ Se	Stable	8.760×10 ⁻⁵	4.78
	⁷⁹ Se	3.26×10 ⁵ y	1.872×10 ⁻⁴	3.27
	⁸⁰ Se	Stable	2.162×10 ⁻⁴	3.04
	⁸¹ Se	18.45 min	1.034×10 ⁻⁴	4.40
	⁸² Se	Stable	3.816×10 ⁻⁴	2.29
	⁸³ Se	22.25 min	3.678×10 ⁻⁴	2.33
	⁸⁴ Se	3.26 min	6.520×10 ⁻⁵	5.54
	⁸⁵ Se	32.9 s	4.860×10 ⁻⁵	6.42
	$^{80}\mathrm{Br}$	17.68 min	8.020×10 ⁻⁵	4.99
	⁸¹ Br	Stable	1.479×10 ⁻³	1.16
	⁸² Br	35.282 h	5.855×10 ⁻³	0.583
	⁸³ Br	2.374 h	1.814×10 ⁻²	0.329
	⁸⁴ Br	31.76 min	1.380×10 ⁻²	0.378
	⁸⁵ Br	2.90 min	4.675×10 ⁻³	0.653
	⁸⁶ Br	55.1 s	2.374×10 ⁻³	0.917
	⁸⁰ Kr	Stable	5.386×10 ⁻⁴	1.93
	⁸¹ Kr	2.29×10 ⁵ y	6.697×10 ⁻³	0.545
	⁸² Kr	Stable	6.694×10 ⁻²	0.167
	⁸³ Kr	Stable	1.425×10 ⁻¹	0.110
	⁸⁴ Kr	Stable	3.316×10 ⁻¹	0.0635
	⁸⁵ Kr	10.739 y	1.608×10 ⁻¹	0.102
	⁸⁶ Kr	Stable	1.041×10 ⁻¹	0.131
	⁸⁷ Kr	76.3 min	2.197×10 ⁻²	0.298

Table 32 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 37. Target (Z) Produced nuclide Half life Vield [/u⁻] Pelative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Sr (38)	⁷⁹ Br	Stable	2.640×10 ⁻⁵	8.70
	⁸⁰ Br	17.68 min	7.800×10 ⁻⁵	5.06
	⁸¹ Br	Stable	2.098×10 ⁻⁴	3.09
	⁸² Br	35.282 h	2.124×10 ⁻⁴	3.07
	⁸³ Br	2.374 h	2.588×10 ⁻⁴	2.78
	⁸⁴ Br	31.76 min	1.556×10 ⁻⁴	3.59
	⁸⁵ Br	2.90 min	3.300×10 ⁻⁴	2.46
	⁸⁶ Br	55.1 s	2.480×10 ⁻⁴	2.84
	⁸⁰ Kr	Stable	6.640×10 ⁻⁵	5.49
	⁸¹ Kr	2.29×10 ⁵ y	2.060×10 ⁻⁴	3.12
	⁸² Kr	Stable	1.342×10 ⁻³	1.22
	⁸³ Kr	Stable	1.888×10 ⁻³	1.03
	⁸⁴ Kr	Stable	7.219×10 ⁻³	0.525
	⁸⁵ Kr	10.739 y	1.164×10 ⁻²	0.412
	⁸⁶ Kr	Stable	2.619×10 ⁻²	0.273
	⁸⁷ Kr	76.3 min	1.134×10 ⁻²	0.418
	⁸¹ Rb	4.572 h	2.798×10 ⁻⁴	2.67
	⁸² Rb	1.2575 min	1.405×10 ⁻³	1.19
	⁸³ Rb	86.2 d	9.605×10 ⁻³	0.454
	⁸⁴ Rb	32.82 d	3.202×10 ⁻²	0.246
	⁸⁵ Rb	Stable	1.281×10 ⁻¹	0.117
	⁸⁶ Rb	18.642 d	2.375×10 ⁻¹	0.0801
	⁸⁷ Rb	Stable	3.672×10 ⁻¹	0.0587
	⁸⁸ Rb	17.773 min	7.532×10 ⁻²	0.157

Table 33 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 38. Target (Z) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Y (39)	⁸² Kr	Stable	9.780×10 ⁻⁵	4.52
	⁸³ Kr	Stable	2.524×10 ⁻⁴	2.82
	⁸⁴ Kr	Stable	2.772×10 ⁻⁴	2.69
	⁸⁵ Kr	10.739 y	1.160×10 ⁻⁴	4.15
	⁸⁶ Kr	Stable	5.966×10 ⁻⁴	1.83
	⁸⁷ Kr	76.3 min	5.202×10 ⁻⁴	1.96
	⁸⁴ Rb	32.82 d	6.620×10 ⁻⁵	5.50
	⁸⁵ Rb	Stable	1.744×10 ⁻³	1.07
	⁸⁶ Rb	18.642 d	9.559×10 ⁻³	0.455
	⁸⁷ Rb	Stable	2.748×10 ⁻²	0.266
	⁸⁸ Rb	17.773 min	1.531×10 ⁻²	0.359
	⁸⁴ Sr	Stable	2.844×10 ⁻⁴	2.65
	⁸⁵ Sr	64.849 d	5.834×10 ⁻³	0.584
	⁸⁶ Sr	Stable	7.796×10 ⁻²	0.154
	⁸⁷ Sr	Stable	2.056×10 ⁻¹	0.0879
	⁸⁸ Sr	Stable	4.535×10 ⁻¹	0.0491
	⁸⁹ Sr	50.563 d	1.198×10 ⁻¹	0.121

Table 34 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 39.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Zr (40)	⁸³ Rb	86.2 d	6.120×10 ⁻⁵	5.72
	⁸⁴ Rb	32.82 d	3.672×10 ⁻⁴	2.33
	⁸⁵ Rb	Stable	7.136×10 ⁻⁴	1.67
	⁸⁶ Rb	18.642 d	4.024×10 ⁻⁴	2.23
	⁸⁷ Rb	Stable	6.860×10 ⁻⁴	1.71
	⁸⁸ Rb	17.773 min	5.822×10 ⁻⁴	1.85
	⁸⁹ Rb	15.32 min	2.458×10 ⁻⁴	2.85
	⁹⁰ Rb	158 s	1.054×10 ⁻⁴	4.36
	⁹¹ Rb	58.2 s	4.180×10 ⁻⁵	6.92
	⁹² Rb	4.48 s	4.300×10 ⁻⁵	6.82
	⁸⁵ Sr	64.849 d	6.860×10 ⁻⁵	5.40
	⁸⁶ Sr	Stable	3.342×10 ⁻³	0.773
	⁸⁷ Sr	Stable	1.137×10 ⁻²	0.417
	⁸⁸ Sr	Stable	3.550×10 ⁻²	0.233
	⁸⁹ Sr	50.563 d	1.812×10 ⁻²	0.329
	⁹⁰ Sr	28.91 y	8.830×10 ⁻³	0.474
	⁹¹ Sr	9.65 h	4.466×10 ⁻³	0.668
	⁹² Sr	2.611 h	3.520×10 ⁻³	0.752
	⁹³ Sr	7.43 min	2.078×10 ⁻³	0.980
	⁹⁴ Sr	75.3 s	3.686×10 ⁻⁴	2.33
	⁹⁵ Sr	23.90 s	1.828×10 ⁻⁴	3.31
	⁸⁶ Y	14.74 h	9.240×10 ⁻⁴	1.47
	⁸⁷ Y	79.8 h	2.700×10 ⁻²	0.269
	⁸⁸ Y	106.627 d	1.139×10 ⁻¹	0.125
	⁸⁹ Y	Stable	3.109×10 ⁻¹	0.0666
	⁹⁰ Y	64.05 h	1.460×10 ⁻¹	0.108
	⁹¹ Y	58.51 d	9.636×10 ⁻²	0.137
	⁹² Y	3.54 h	5.463×10 ⁻²	0.186
	⁹³ Y	10.18 h	5.306×10 ⁻²	0.189
	⁹⁴ Y	18.7 min	1.976×10 ⁻²	0.315
	⁹⁵ Y	10.3 min	6.646×10 ⁻³	0.547
	⁹⁶ Y	5.34 s	1.327×10 ⁻³	1.23

Table 35 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 40. Toract (Z) Produced nuclide Half life Vield [(u;]) Polative error [9]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Nb (41)	⁸⁷ Rb	Stable	2.700×10 ⁻⁵	8.61
	⁸⁶ Sr	Stable	2.306×10 ⁻⁴	2.95
	⁸⁷ Sr	Stable	8.312×10 ⁻⁴	1.55
	⁸⁸ Sr	Stable	1.072×10 ⁻³	1.37
	⁸⁹ Sr	50.563 d	3.412×10 ⁻⁴	2.42
	⁹⁰ Sr	28.91 y	8.862×10 ⁻⁴	1.50
	⁹¹ Sr	9.65 h	7.988×10 ⁻⁴	1.58
	⁸⁸ Y	106.627 d	2.064×10 ⁻⁴	3.11
	⁸⁹ Y	Stable	5.593×10 ⁻³	0.596
	⁹⁰ Y	64.05 h	1.378×10 ⁻²	0.378
	⁹¹ Y	58.51 d	2.913×10 ⁻²	0.258
	⁹² Y	3.54 h	1.985×10 ⁻²	0.314
	⁸⁸ Zr	83.4 d	4.892×10 ⁻⁴	2.02
	⁸⁹ Zr	78.41 h	1.034×10 ⁻²	0.438
	⁹⁰ Zr	Stable	1.237×10 ⁻¹	0.119
	⁹¹ Zr	Stable	2.206×10 ⁻¹	0.0841
	⁹² Zr	Stable	3.645×10 ⁻¹	0.0591
	⁹³ Zr	1.61×10 ⁶ y	1.332×10 ⁻¹	0.114

Table 36 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 41. Toract (Z) Produced nuclide Half life Vield [(u;1) Polative error [9/1]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Mo (42)	⁸⁶ Sr	Stable	1.014×10 ⁻⁴	4.44
	⁸⁷ Sr	Stable	4.000×10 ⁻⁵	7.07
	⁸⁸ Sr	Stable	4.160×10 ⁻⁵	6.93
	⁸⁶ Y	14.74 h	8.700×10 ⁻⁵	4.80
	⁸⁷ Y	79.8 h	3.392×10 ⁻⁴	2.43
	⁸⁸ Y	106.627 d	3.982×10 ⁻⁴	2.24
	⁸⁹ Y	Stable	1.506×10 ⁻³	1.15
	⁹⁰ Y	64.05 h	8.140×10 ⁻⁴	1.57
	⁹¹ Y	58.51 d	6.288×10 ⁻⁴	1.78
	⁹² Y	3.54 h	4.712×10 ⁻⁴	2.06
	⁹³ Y	10.18 h	3.794×10 ⁻⁴	2.30
	⁹⁴ Y	18.7 min	2.102×10 ⁻⁴	3.08
	⁹⁵ Y	10.3 min	1.596×10 ⁻⁴	3.54
	⁹⁶ Y	5.34 s	9.500×10 ⁻⁵	4.59
	⁸⁸ Zr	83.4 d	1.231×10 ⁻³	1.27
	⁸⁹ Zr	78.41 h	9.000×10 ⁻³	0.469
	⁹⁰ Zr	Stable	4.161×10 ⁻²	0.215
	⁹¹ Zr	Stable	1.150×10 ⁻²	0.415
	⁹² Zr	Stable	1.116×10 ⁻²	0.421
	⁹³ Zr	1.61×10 ⁶ y	1.221×10 ⁻²	0.402
	⁹⁴ Zr	Stable	1.478×10 ⁻²	0.365
	⁹⁵ Zr	64.032 d	9.807×10 ⁻³	0.449
	⁹⁶ Zr	Stable	9.621×10 ⁻³	0.454
	⁹⁷ Zr	16.749 h	4.461×10 ⁻³	0.668
	⁹⁸ Zr	30.7 s	1.602×10 ⁻³	1.12
	⁹⁹ Zr	2.1 s	7.972×10 ⁻⁴	1.58
	⁸⁹ Nb	2.03 h	1.161×10 ⁻³	1.31
	⁹⁰ Nb	14.60 h	1.453×10 ⁻²	0.368
	⁹¹ Nb	6.8×10 ² y	8.137×10 ⁻²	0.150
	⁹² Nb	3.47×10 ⁷ y	6.663×10 ⁻²	0.167
	⁹³ Nb	Stable	1.001×10 ⁻¹	0.134
	⁹⁴ Nb	2.03×10 ⁴ y	1.162×10 ⁻¹	0.123
	⁹⁵ Nb	34.991 d	1.409×10 ⁻¹	0.110
	⁹⁶ Nb	23.35 h	1.011×10 ⁻¹	0.133
	⁹⁷ Nb	72.1 min	1.036×10 ⁻¹	0.132

Table 37 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 42. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

_	Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
-		⁹⁸ Nb	2.86 s	3.784×10 ⁻²	0.226
		⁹⁹ Nb	15.0 s	2.394×10 ⁻²	0.286
		$^{100}\mathrm{Nb}$	1.4 s	5.795×10 ⁻³	0.586

Table 37 (Continued).

Table 38 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 44.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ru (44)	⁹⁰ Zr	Stable	1.686×10 ⁻⁴	3.44
	⁹¹ Zr	Stable	2.320×10 ⁻⁵	9.29
	⁹² Zr	Stable	3.560×10 ⁻⁵	7.50
	⁹³ Zr	1.61×10 ⁶ y	2.580×10 ⁻⁵	8.80
	⁹⁰ Nb	14.60 h	5.020×10 ⁻⁵	6.31
	⁹¹ Nb	6.8×10 ² y	3.436×10 ⁻⁴	2.41
	⁹² Nb	3.47×10 ⁷ y	3.038×10 ⁻⁴	2.57
	⁹³ Nb	Stable	7.578×10 ⁻⁴	1.62
	⁹⁴ Nb	2.03×10 ⁴ y	6.250×10 ⁻⁴	1.79
	⁹⁵ Nb	34.991 d	4.424×10 ⁻⁴	2.13
	⁹⁶ Nb	23.35 h	4.730×10 ⁻⁴	2.06
	⁹⁷ Nb	72.1 min	5.544×10 ⁻⁴	1.90
	⁹⁸ Nb	2.86 s	2.694×10 ⁻⁴	2.72
	⁹⁹ Nb	15.0 s	2.574×10 ⁻⁴	2.79
	¹⁰⁰ Nb	1.4 s	1.470×10 ⁻⁴	3.69
	¹⁰¹ Nb	7.1 s	3.680×10 ⁻⁵	7.37
	¹⁰² Nb	4.3 s	5.000×10 ⁻⁵	6.32
	⁹² Mo	Stable	1.035×10 ⁻³	1.39
	⁹³ Mo	4.0×10 ³ y	4.020×10 ⁻³	0.704
	⁹⁴ Mo	Stable	9.448×10 ⁻³	0.458
	⁹⁵ Mo	Stable	5.375×10 ⁻³	0.608
	⁹⁶ Mo	Stable	7.106×10 ⁻³	0.529
	⁹⁷ Mo	Stable	1.040×10 ⁻²	0.436
	⁹⁸ Mo	Stable	1.710×10 ⁻²	0.339
	⁹⁹ Mo	65.924 h	1.130×10 ⁻²	0.418
	¹⁰⁰ Mo	Stable	1.505×10 ⁻²	0.362
	¹⁰¹ Mo	14.61 min	6.279×10 ⁻³	0.563
	¹⁰² Mo	11.3 min	3.927×10 ⁻³	0.712
	¹⁰³ Mo	67.5 s	2.107×10 ⁻³	0.973

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
	⁹³ Tc	2.75 h	1.847×10 ⁻³	1.04
	⁹⁴ Tc	293 min	9.740×10 ⁻³	0.451
	⁹⁵ Tc	20.0 h	2.961×10 ⁻²	0.256
	⁹⁶ Tc	4.28 d	2.623×10 ⁻²	0.273
	⁹⁷ Tc	4.21×10 ⁶ y	6.051×10 ⁻²	0.176
	⁹⁸ Tc	4.2×10 ⁶ y	9.570×10 ⁻²	0.138
	⁹⁹ Tc	2.111×10 ⁵ y	1.613×10 ⁻¹	0.102
	¹⁰⁰ Tc	15.65 s	1.386×10 ⁻¹	0.112
	¹⁰¹ Tc	14.2 min	1.626×10 ⁻¹	0.102
	¹⁰² Tc	5.28 s	6.547×10 ⁻²	0.169
	¹⁰³ Tc	54.2 s	5.734×10 ⁻²	0.181
	104 Tc	18.3 min	1.380×10 ⁻²	0.378

Table 38 (Continued).

Table 39 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 45.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Rh (45)	⁹⁷ Nb	72.1 min	2.040×10 ⁻⁵	9.90
	⁹⁵ Mo	Stable	2.540×10 ⁻⁵	8.88
	⁹⁶ Mo	Stable	2.362×10 ⁻⁴	2.91
	⁹⁷ Mo	Stable	3.626×10 ⁻⁴	2.35
	⁹⁸ Mo	Stable	3.012×10 ⁻⁴	2.58
	⁹⁹ Mo	65.924 h	2.062×10 ⁻⁴	3.11
	¹⁰⁰ Mo	Stable	7.772×10 ⁻⁴	1.60
	¹⁰¹ Mo	14.61 min	6.642×10 ⁻⁴	1.74
	⁹⁸ Tc	4.2×10 ⁶ y	3.250×10 ⁻⁴	2.48
	⁹⁹ Tc	2.111×10 ⁵ y	3.760×10 ⁻³	0.728
	¹⁰⁰ Tc	15.65 s	1.101×10 ⁻²	0.424
	¹⁰¹ Tc	14.2 min	2.747×10 ⁻²	0.266
	¹⁰² Tc	5.28 s	1.845×10 ⁻²	0.326
	⁹⁷ Ru	2.83 d	2.740×10 ⁻⁵	8.54
	⁹⁸ Ru	Stable	2.470×10 ⁻³	0.899
	⁹⁹ Ru	Stable	2.056×10 ⁻²	0.309
	¹⁰⁰ Ru	Stable	1.248×10 ⁻¹	0.118
	¹⁰¹ Ru	Stable	2.131×10 ⁻¹	0.0860
	¹⁰² Ru	Stable	3.918×10 ⁻¹	0.0557
	¹⁰³ Ru	39.247 d	1.148×10 ⁻¹	0.124

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Pd (46)	⁹⁷ Tc	4.21×10 ⁶ y	2.420×10 ⁻⁵	9.09
	⁹⁸ Tc	4.2×10 ⁶ y	6.780×10 ⁻⁵	5.43
	⁹⁹ Tc	2.111×10 ⁵ y	1.712×10 ⁻⁴	3.42
	¹⁰⁰ Tc	15.65 s	1.278×10 ⁻⁴	3.96
	¹⁰¹ Tc	14.2 min	1.978×10 ⁻⁴	3.18
	¹⁰² Tc	5.28 s	3.024×10 ⁻⁴	2.57
	¹⁰³ Tc	54.2 s	4.502×10 ⁻⁴	2.11
	¹⁰⁴ Tc	18.3 min	2.018×10 ⁻⁴	3.15
	¹⁰⁵ Tc	7.64 min	9.737×10 ⁻⁵	4.53
	¹⁰⁶ Tc	35.6 s	1.034×10 ⁻⁴	4.40
	¹⁰⁷ Tc	21.2 s	2.300×10 ⁻⁵	9.32
	¹⁰⁸ Tc	5.17 s	2.360×10 ⁻⁵	9.21
	⁹⁸ Ru	Stable	1.606×10 ⁻⁴	3.53
	⁹⁹ Ru	Stable	5.226×10 ⁻⁴	1.96
	¹⁰⁰ Ru	Stable	2.134×10 ⁻³	0.967
	¹⁰¹ Ru	Stable	4.015×10 ⁻³	0.704
	¹⁰² Ru	Stable	1.241×10 ⁻²	0.399
	¹⁰³ Ru	39.247 d	1.408×10 ⁻²	0.374
	104 Ru	Stable	2.004×10 ⁻²	0.313
	¹⁰⁵ Ru	4.439 h	8.267×10 ⁻³	0.490
	¹⁰⁶ Ru	371.8 d	7.659×10 ⁻³	0.509
	¹⁰⁷ Ru	3.75 min	4.911×10 ⁻³	0.637
	¹⁰⁸ Ru	4.55 min	2.320×10 ⁻³	0.927
	¹⁰⁹ Ru	34.4 s	1.270×10 ⁻³	1.25
	⁹⁸ Rh	8.72 min	4.560×10 ⁻⁵	6.62
	⁹⁹ Rh	16.1 d	8.748×10 ⁻⁴	1.51
	100 Rh	20.5 h	4.045×10 ⁻³	0.702
	¹⁰¹ Rh	3.3 y	2.277×10 ⁻²	0.293
	¹⁰² Rh	207.3 d	5.344×10 ⁻²	0.188
	¹⁰³ Rh	Stable	1.447×10 ⁻¹	0.109
	104 Rh	42.3 s	1.545×10 ⁻¹	0.105
	¹⁰⁵ Rh	35.341 h	1.875×10 ⁻¹	0.0931
	¹⁰⁶ Rh	30.07 s	8.812×10 ⁻²	0.144
	¹⁰⁷ Rh	21.7 min	1.063×10 ⁻¹	0.130
	¹⁰⁸ Rh	16.8 s	4.520×10 ⁻²	0.206

Table 40 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 46. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹⁰⁹ Rh	80.8 s	3.494×10 ⁻²	0.235
	110 Rh	3.35 s	8.506×10 ⁻³	0.483

Table 41 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 47.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Ag (47)	100 Ru	Stable	1.284×10 ⁻⁴	3.95
	¹⁰¹ Ru	Stable	2.042×10 ⁻⁴	3.13
	102 Ru	Stable	2.148×10 ⁻⁴	3.05
	¹⁰³ Ru	39.247 d	2.516×10 ⁻⁴	2.82
	104 Ru	Stable	6.616×10 ⁻⁴	1.74
	¹⁰⁵ Ru	4.439 h	5.818×10 ⁻⁴	1.85
	¹⁰⁶ Ru	371.8 d	3.178×10 ⁻⁴	2.51
	¹⁰⁷ Ru	3.75 min	2.882×10 ⁻⁴	2.63
	102 Rh	207.3 d	2.174×10 ⁻⁴	3.03
	103 Rh	Stable	2.700×10 ⁻³	0.859
	104 Rh	42.3 s	8.120×10 ⁻³	0.494
	¹⁰⁵ Rh	35.341 h	2.089×10 ⁻²	0.306
	¹⁰⁶ Rh	30.07 s	1.693×10 ⁻²	0.341
	107 Rh	21.7 min	1.276×10 ⁻²	0.393
	108 Rh	16.8 s	8.225×10 ⁻³	0.491
	102 Pd	Stable	8.520×10 ⁻⁴	1.53
	¹⁰³ Pd	16.991 d	8.337×10 ⁻³	0.488
	104 Pd	Stable	6.225×10 ⁻²	0.174
	¹⁰⁵ Pd	Stable	1.231×10 ⁻¹	0.119
	¹⁰⁶ Pd	Stable	2.750×10 ⁻¹	0.0726
	¹⁰⁷ Pd	6.5×10 ⁶ y	1.625×10 ⁻¹	0.102
	¹⁰⁸ Pd	Stable	1.783×10 ⁻¹	0.0960
	¹⁰⁹ Pd	13.59 h	5.072×10 ⁻²	0.194

Target (Z)	Produced nuclide	Halt-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
Cd (48)	¹⁰⁰ Rh	20.5 h	2.860×10 ⁻⁵	8.36
	101 Rh	3.3 y	6.840×10 ⁻⁵	5.41
	102 Rh	207.3 d	4.020×10 ⁻⁵	7.05
	¹⁰³ Rh	Stable	9.300×10 ⁻⁵	4.64
	104 Rh	42.3 s	1.668×10 ⁻⁴	3.46
	¹⁰⁵ Rh	35.341 h	2.660×10 ⁻⁴	2.74
	¹⁰⁶ Rh	30.07 s	2.030×10 ⁻⁴	3.14
	¹⁰⁷ Rh	21.7 min	3.322×10 ⁻⁴	2.45
	¹⁰⁸ Rh	16.8 s	2.882×10 ⁻⁴	2.63
	¹⁰⁹ Rh	80.8 s	3.176×10 ⁻⁴	2.51
	110 Rh	3.35 s	2.124×10 ⁻⁴	3.07
	¹¹¹ Rh	11 s	1.702×10 ⁻⁴	3.43
	112 Rh	3.6 s	9.760×10 ⁻⁵	4.53
	¹⁰² Pd	Stable	2.546×10 ⁻⁴	2.80
	¹⁰³ Pd	16.991 d	7.450×10 ⁻⁴	1.64
	104 Pd	Stable	1.385×10 ⁻³	1.20
	¹⁰⁵ Pd	Stable	1.027×10 ⁻³	1.40
	¹⁰⁶ Pd	Stable	1.841×10 ⁻³	1.04
	¹⁰⁷ Pd	6.5×10 ⁶ y	3.456×10 ⁻³	0.759
	108 Pd	Stable	1.048×10 ⁻²	0.435
	¹⁰⁹ Pd	13.59 h	1.071×10 ⁻²	0.430
	¹¹⁰ Pd	Stable	1.677×10 ⁻²	0.342
	¹¹¹ Pd	23.4 min	1.019×10 ⁻²	0.441
	112 Pd	21.04 h	1.113×10 ⁻²	0.422
	¹¹³ Pd	93 s	4.392×10 ⁻³	0.673
	114 Pd	2.42 min	1.216×10 ⁻³	1.28
	¹¹⁵ Pd	25 s	6.436×10 ⁻⁴	1.76
	¹⁰³ Ag	65.7 min	7.372×10 ⁻⁴	1.65
	^{104}Ag	69.2 min	3.293×10 ⁻³	0.778
	¹⁰⁵ Ag	41.29 d	7.742×10 ⁻³	0.506
	¹⁰⁶ Ag	23.96 min	7.169×10 ⁻³	0.526
	$^{107}\mathrm{Ag}$	Stable	2.267×10 ⁻²	0.294
	^{108}Ag	2.382 min	4.938×10 ⁻²	0.196
	¹⁰⁹ Ag	Stable	1.260×10 ⁻¹	0.118
	¹¹⁰ Ag	24.56 s	1.295×10 ⁻¹	0.116

Table 42 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 48. Target (Z) Produced nuclide Half-life Vield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹¹¹ Ag	7.45 d	1.902×10 ⁻¹	0.0923
	^{112}Ag	3.130 h	1.216×10 ⁻¹	0.120
	¹¹³ Ag	5.37 h	1.306×10 ⁻¹	0.115
	114 Ag	4.6 s	3.776×10 ⁻²	0.226
	¹¹⁵ Ag	20.0 min	2.287×10 ⁻²	0.292
	^{116}Ag	237 s	4.712×10 ⁻³	0.650

Table 42 (Continued).

Table 43 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 49.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
In (49)	¹⁰⁸ Pd	Stable	5.800×10 ⁻⁵	5.87
	¹⁰⁹ Pd	13.59 h	6.000×10 ⁻⁵	5.77
	¹¹⁰ Pd	Stable	9.920×10 ⁻⁵	4.49
	¹¹¹ Pd	23.4 min	1.530×10 ⁻⁴	3.62
	112 Pd	21.04 h	5.738×10 ⁻⁴	1.87
	¹¹³ Pd	93 s	5.094×10 ⁻⁴	1.98
	¹⁰⁹ Ag	Stable	1.684×10 ⁻⁴	3.45
	$^{110}\mathrm{Ag}$	24.56 s	7.424×10 ⁻⁴	1.64
	¹¹¹ Ag	7.45 d	4.455×10 ⁻³	0.669
	^{112}Ag	3.130 h	1.007×10 ⁻²	0.444
	¹¹³ Ag	5.37 h	2.465×10 ⁻²	0.281
	^{114}Ag	4.6 s	1.582×10 ⁻²	0.353
	^{108}Cd	Stable	1.146×10 ⁻⁴	4.18
	109 Cd	461.9 d	9.482×10 ⁻⁴	1.45
	^{110}Cd	Stable	9.418×10 ⁻³	0.459
	¹¹¹ Cd	Stable	3.317×10 ⁻²	0.241
	¹¹² Cd	Stable	1.463×10 ⁻¹	0.108
	¹¹³ Cd	Stable	2.084×10 ⁻¹	0.0872
	^{114}Cd	Stable	3.712×10 ⁻¹	0.0582
	¹¹⁵ Cd	53.46 h	1.050×10 ⁻¹	0.131

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Sn (50)	109Ag	Stable	3.800×10 ⁻⁵	7.25
	$^{110}\mathrm{Ag}$	24.56 s	5.100×10 ⁻⁵	6.26
	¹¹¹ Ag	7.45 d	4.500×10 ⁻⁵	6.67
	^{112}Ag	3.130 h	5.000×10 ⁻⁵	6.32
	¹¹³ Ag	5.37 h	1.482×10 ⁻⁴	3.67
	^{114}Ag	4.6 s	1.804×10 ⁻⁴	3.33
	¹¹⁵ Ag	20.0 min	1.862×10 ⁻⁴	3.28
	^{116}Ag	237 s	1.562×10 ⁻⁴	3.58
	¹¹⁷ Ag	72.8 s	1.174×10 ⁻⁴	4.13
	$^{118}\mathrm{Ag}$	3.76 s	7.500×10 ⁻⁵	5.16
	^{108}Cd	Stable	1.864×10 ⁻⁴	3.28
	109 Cd	461.9 d	4.916×10 ⁻⁴	2.02
	^{110}Cd	Stable	1.095×10 ⁻³	1.35
	¹¹¹ Cd	Stable	7.462×10 ⁻⁴	1.64
	^{112}Cd	Stable	1.618×10 ⁻³	1.11
	¹¹³ Cd	Stable	3.483×10 ⁻³	0.756
	^{114}Cd	Stable	9.899×10 ⁻³	0.447
	¹¹⁵ Cd	53.46 h	9.360×10 ⁻³	0.460
	^{116}Cd	Stable	1.372×10 ⁻²	0.379
	^{117}Cd	2.49 h	9.468×10 ⁻³	0.458
	^{118}Cd	50.3 min	1.091×10 ⁻²	0.426
	¹¹⁹ Cd	2.69 min	4.589×10 ⁻³	0.659
	120 Cd	50.80 s	6.674×10 ⁻⁴	1.73
	^{121}Cd	13.5 s	3.834×10 ⁻⁴	2.28
	¹²² Cd	5.24 s	2.984×10 ⁻⁴	2.59
	¹²³ Cd	2.10 s	2.106×10 ⁻⁴	3.08
	¹⁰⁸ In	58.0 min	3.620×10 ⁻⁵	7.43
	¹⁰⁹ In	4.159 h	7.988×10 ⁻⁴	1.58
	¹¹⁰ In	4.92 h	2.595×10 ⁻³	0.877
	111 In	2.8047 d	6.401×10 ⁻³	0.557
	112 In	14.88 min	6.756×10 ⁻³	0.542
	¹¹³ In	Stable	2.501×10 ⁻²	0.279
	¹¹⁴ In	71.9 s	5.271×10 ⁻²	0.190
	¹¹⁵ In	Stable	1.233×10 ⁻¹	0.119
	¹¹⁶ In	14.10 s	1.163×10^{-1}	0.123

Table 44 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 50. Target (Z) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹¹⁷ In	43.2 min	1.780×10 ⁻¹	0.0961
	¹¹⁸ In	5.0 s	1.196×10 ⁻¹	0.121
	¹¹⁹ In	2.4 min	1.388×10 ⁻¹	0.111
	¹²⁰ In	3.08 s	3.765×10 ⁻²	0.226
	¹²¹ In	23.1 s	2.144×10 ⁻²	0.302
	¹²² In	1.5 s	1.318×10 ⁻²	0.387
	¹²³ In	6.15 s	1.633×10 ⁻²	0.347
	124 In	3.12 s	3.053×10 ⁻³	0.808

Table 44 (Continued).

Table 45 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 51.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu]$	Relative error [%]
Sb (51)	¹¹⁴ Cd	Stable	4.880×10 ⁻⁵	6.40
	¹¹⁵ Cd	53.46 h	5.700×10 ⁻⁵	5.92
	¹¹⁶ Cd	Stable	5.380×10 ⁻⁵	6.10
	¹¹⁷ Cd	2.49 h	7.640×10 ⁻⁵	5.12
	^{118}Cd	50.3 min	3.274×10 ⁻⁴	2.47
	¹¹⁹ Cd	2.69 min	3.014×10 ⁻⁴	2.58
	¹²⁰ Cd	50.80 s	7.760×10 ⁻⁵	5.08
	¹²¹ Cd	13.5 s	5.800×10 ⁻⁵	5.87
	¹¹⁶ In	14.10 s	1.572×10 ⁻⁴	3.57
	¹¹⁷ In	43.2 min	1.763×10 ⁻³	1.07
	118 In	5.0 s	5.342×10 ⁻³	0.610
	¹¹⁹ In	2.4 min	1.604×10 ⁻²	0.350
	¹²⁰ In	3.08 s	1.296×10 ⁻²	0.390
	¹²¹ In	23.1 s	8.427×10 ⁻³	0.485
	¹²² In	1.5 s	5.452×10 ⁻³	0.604
	¹¹⁵ Sn	Stable	5.080×10 ⁻⁵	6.27
	¹¹⁶ Sn	Stable	2.450×10 ⁻³	0.902
	¹¹⁷ Sn	Stable	1.471×10 ⁻²	0.366
	¹¹⁸ Sn	Stable	8.067×10 ⁻²	0.151
	¹¹⁹ Sn	Stable	1.362×10 ⁻¹	0.113
	¹²⁰ Sn	Stable	2.908×10 ⁻¹	0.0698
	¹²¹ Sn	27.03 h	1.547×10 ⁻¹	0.105
	¹²² Sn	Stable	1.550×10 ⁻¹	0.104
	¹²³ Sn	129.2 d	4.370×10 ⁻²	0.209

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Te (52)	¹¹⁹ In	2.4 min	3.180×10 ⁻⁵	7.93
	¹²⁰ In	3.08 s	4.160×10 ⁻⁵	6.93
	121 In	23.1 s	6.040×10 ⁻⁵	5.75
	¹²² In	1.5 s	6.620×10 ⁻⁵	5.50
	¹²³ In	6.15 s	1.270×10 ⁻⁴	3.97
	¹²⁴ In	3.12 s	8.800×10 ⁻⁵	4.77
	¹²⁵ In	2.36 s	7.440×10 ⁻⁵	5.18
	¹²⁶ In	1.53 s	7.600×10 ⁻⁵	5.13
	¹²⁷ In	1.09 s	4.220×10 ⁻⁵	6.88
	¹²⁸ In	0.84 s	5.220×10 ⁻⁵	6.19
	¹¹⁷ Sn	Stable	4.980×10 ⁻⁵	6.34
	¹¹⁸ Sn	Stable	3.202×10 ⁻⁴	2.50
	¹¹⁹ Sn	Stable	7.124×10 ⁻⁴	1.68
	¹²⁰ Sn	Stable	2.264×10 ⁻³	0.939
	¹²¹ Sn	27.03 h	2.439×10 ⁻³	0.905
	¹²² Sn	Stable	5.321×10 ⁻³	0.612
	¹²³ Sn	129.2 d	6.086×10 ⁻³	0.572
	¹²⁴ Sn	Stable	1.096×10 ⁻²	0.425
	¹²⁵ Sn	9.64 d	7.258×10 ⁻³	0.523
	¹²⁶ Sn	2.18×10 ⁵ y	1.010×10 ⁻²	0.443
	¹²⁷ Sn	2.10 h	7.605×10 ⁻³	0.511
	¹²⁸ Sn	59.07 min	7.282×10 ⁻³	0.522
	¹²⁹ Sn	2.23 min	3.911×10 ⁻³	0.714
	¹¹⁷ Sb	2.80 h	2.054×10 ⁻⁴	3.12
	¹¹⁸ Sb	3.6 min	8.860×10 ⁻⁴	1.50
	¹¹⁹ Sb	38.19 h	4.915×10 ⁻³	0.636
	¹²⁰ Sb	15.89 min	9.914×10 ⁻³	0.447
	¹²¹ Sb	Stable	2.676×10 ⁻²	0.270
	¹²² Sb	2.7238 d	3.232×10 ⁻²	0.245
	¹²³ Sb	Stable	7.520×10 ⁻²	0.157
	¹²⁴ Sb	60.20 d	8.332×10 ⁻²	0.148
	¹²⁵ Sb	2.75856 y	1.399×10 ⁻¹	0.111
	¹²⁶ Sb	12.35 d	9.796×10 ⁻²	0.136
	¹²⁷ Sb	3.85 d	1.583×10 ⁻¹	0.103
	¹²⁸ Sb	9.05 h	9.452×10 ⁻²	0.138

Table 46 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 52. Target (Z) Produced nuclide Half life Vield [/u⁻] Polative error [%]

Table 46 (Continued).
------------	-------------

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹²⁹ Sb	4.366 h	1.081×10 ⁻¹	0.129
	¹³⁰ Sb	39.5 min	2.596×10 ⁻²	0.274

Table 47 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 53.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
I (53)	¹²⁰ Sn	Stable	2.580×10 ⁻⁵	8.81
	¹²¹ Sn	27.03 h	3.600×10 ⁻⁵	7.45
	¹²² Sn	Stable	5.680×10 ⁻⁵	5.93
	¹²³ Sn	129.2 d	1.636×10 ⁻⁴	3.50
	¹²⁴ Sn	Stable	8.010×10 ⁻⁴	1.58
	¹²⁵ Sn	9.64 d	7.206×10 ⁻⁴	1.67
	¹²² Sb	2.7238 d	2.812×10 ⁻⁴	2.67
	¹²³ Sb	Stable	3.594×10 ⁻³	0.745
	¹²⁴ Sb	60.20 d	1.082×10 ⁻²	0.428
	¹²⁵ Sb	2.75856 y	3.094×10 ⁻²	0.250
	¹²⁶ Sb	12.35 d	1.942×10 ⁻²	0.318
	¹²¹ Te	19.17 d	6.460×10 ⁻⁵	5.56
	¹²² Te	Stable	3.547×10 ⁻³	0.750
	¹²³ Te	Stable	2.190×10 ⁻²	0.299
	¹²⁴ Te	Stable	1.254×10 ⁻¹	0.118
	¹²⁵ Te	Stable	2.080×10 ⁻¹	0.0873
	¹²⁶ Te	Stable	3.878×10 ⁻¹	0.0562
	¹²⁷ Te	9.35 h	1.177×10^{-1}	0.123

Target (Z)	Produced nuclide	Half-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
Xe (54)	¹²⁵ Sb	2.75856 y	9.060×10 ⁻⁵	4.70
	¹²⁶ Sb	12.35 d	2.172×10 ⁻⁴	3.03
	¹²⁷ Sb	3.85 d	4.016×10 ⁻⁴	2.23
	¹²⁸ Sb	9.05 h	1.438×10 ⁻⁴	3.73
	¹²⁹ Sb	4.366 h	3.114×10 ⁻⁴	2.53
	¹³⁰ Sb	39.5 min	1.254×10 ⁻⁴	3.99
	¹³¹ Sb	23.03 min	3.140×10 ⁻⁵	7.98
	¹³² Sb	2.79 min	3.220×10 ⁻⁵	7.88
	¹²¹ Te	19.17 d	2.940×10 ⁻⁵	8.25
	¹²² Te	Stable	9.060×10 ⁻⁵	4.70
	¹²³ Te	Stable	8.060×10 ⁻⁵	4.98
	¹²⁴ Te	Stable	3.804×10 ⁻⁴	2.29
	¹²⁵ Te	Stable	1.506×10 ⁻³	1.15
	¹²⁶ Te	Stable	7.194×10 ⁻³	0.525
	¹²⁷ Te	9.35 h	1.070×10 ⁻²	0.430
	¹²⁸ Te	Stable	1.732×10 ⁻²	0.337
	¹²⁹ Te	69.6 min	9.691×10 ⁻³	0.452
	¹³⁰ Te	Stable	1.541×10 ⁻²	0.357
	¹³¹ Te	25.0 min	5.765×10 ⁻³	0.587
	¹³² Te	3.204 d	2.816×10 ⁻³	0.842
	¹³³ Te	12.5 min	2.231×10 ⁻³	0.946
	¹³⁴ Te	41.8 min	1.656×10 ⁻³	1.10
	¹³⁵ Te	19.0 s	4.986×10 ⁻⁴	2.00
	121 I	2.12 h	1.206×10 ⁻⁴	4.07
	¹²² I	3.63 min	2.970×10 ⁻⁴	2.60
	¹²³ I	13.2230 h	7.270×10 ⁻⁴	1.66
	124 I	4.1760 d	1.249×10 ⁻³	1.27
	¹²⁵ I	59.400 d	9.763×10 ⁻³	0.450
	¹²⁶ I	12.93 d	3.045×10 ⁻²	0.252
	127 I	Stable	9.672×10 ⁻²	0.137
	¹²⁸ I	24.99 min	1.223×10 ⁻¹	0.120
	¹²⁹ I	$1.57 \times 10^{7} \text{ y}$	1.624×10 ⁻¹	0.102
	¹³⁰ I	12.36 h	1.238×10 ⁻¹	0.119
	¹³¹ I	8.0252 d	1.493×10 ⁻¹	0.107
	¹³² I	2.295 h	4.905×10 ⁻²	0.197

Table 48 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 54. Target (Z) Produced nuclide Half-life Vield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu]$	Relative error [%]
	¹³³ I	20.83 h	4.377×10 ⁻²	0.209
	¹³⁴ I	52.5 min	2.610×10 ⁻²	0.273
	¹³⁵ I	6.58 h	2.442×10 ⁻²	0.283
	¹³⁶ I	83.4 s	2.007×10 ⁻³	0.998

Table 48 (Continued).

Table 49 Yields of nuclides produced by the nuclear capture of μ^2 for the target with Z = 55.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Cs (55)	¹²⁶ Te	Stable	8.980×10 ⁻⁵	4.72
	¹²⁷ Te	9.35 h	1.438×10 ⁻⁴	3.73
	¹²⁸ Te	Stable	1.382×10 ⁻⁴	3.80
	¹²⁹ Te	69.6 min	1.546×10 ⁻⁴	3.60
	¹³⁰ Te	Stable	7.308×10 ⁻⁴	1.65
	¹³¹ Te	25.0 min	7.284×10 ⁻⁴	1.66
	¹²⁷ I	Stable	2.800×10 ⁻⁵	8.45
	128 I	24.99 min	3.276×10 ⁻⁴	2.47
	¹²⁹ I	1.57×10 ⁷ y	3.689×10 ⁻³	0.735
	¹³⁰ I	12.36 h	1.101×10 ⁻²	0.424
	¹³¹ I	8.0252 d	3.033×10 ⁻²	0.253
	¹³² I	2.295 h	1.968×10 ⁻²	0.316
	¹²⁷ Xe	36.4 d	5.340×10 ⁻⁵	6.12
	¹²⁸ Xe	Stable	3.014×10 ⁻³	0.813
	¹²⁹ Xe	Stable	2.044×10 ⁻²	0.310
	¹³⁰ Xe	Stable	1.196×10 ⁻¹	0.121
	¹³¹ Xe	Stable	2.068×10 ⁻¹	0.0876
	¹³² Xe	Stable	3.791×10 ⁻¹	0.0572
	¹³³ Xe	5.2475 d	1.220×10 ⁻¹	0.120

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ba (56)	¹²⁸ I	24.99 min	2.620×10 ⁻⁵	8.74
	¹²⁹ I	1.57×10 ⁷ y	5.880×10 ⁻⁵	5.83
	¹³⁰ I	12.36 h	8.180×10 ⁻⁵	4.95
	¹³¹ I	8.0252 d	1.788×10 ⁻⁴	3.34
	¹³² I	2.295 h	1.906×10 ⁻⁴	3.24
	¹³³ I	20.83 h	2.764×10 ⁻⁴	2.69
	¹³⁴ I	52.5 min	1.886×10 ⁻⁴	3.26
	¹³⁵ I	6.58 h	4.530×10 ⁻⁴	2.10
	¹³⁶ I	83.4 s	1.926×10 ⁻⁴	3.22
	¹²⁷ Xe	36.4 d	3.940×10 ⁻⁵	7.13
	¹²⁸ Xe	Stable	9.600×10 ⁻⁵	4.56
	¹²⁹ Xe	Stable	9.600×10 ⁻⁵	4.57
	¹³⁰ Xe	Stable	2.678×10 ⁻⁴	2.73
	¹³¹ Xe	Stable	7.852×10 ⁻⁴	1.60
	¹³² Xe	Stable	3.197×10 ⁻³	0.790
	¹³³ Xe	5.2475 d	4.953×10 ⁻³	0.634
	¹³⁴ Xe	Stable	1.123×10 ⁻²	0.420
	¹³⁵ Xe	9.14 h	1.532×10 ⁻²	0.359
	¹³⁶ Xe	Stable	2.672×10 ⁻²	0.270
	¹³⁷ Xe	3.818 min	7.547×10 ⁻³	0.513
	¹²⁷ Cs	6.25 h	1.236×10 ⁻⁴	4.02
	¹²⁸ Cs	3.66 min	3.250×10 ⁻⁴	2.48
	¹²⁹ Cs	32.06 h	7.696×10 ⁻⁴	1.61
	¹³⁰ Cs	29.21 min	1.071×10 ⁻³	1.37
	¹³¹ Cs	9.689 d	5.236×10 ⁻³	0.616
	¹³² Cs	6.480 d	1.410×10 ⁻²	0.374
	¹³³ Cs	Stable	4.424×10 ⁻²	0.208
	¹³⁴ Cs	2.0652 y	7.080×10 ⁻²	0.162
	¹³⁵ Cs	2.3×10 ⁶ y	1.732×10 ⁻¹	0.0977
	¹³⁶ Cs	13.01 d	2.276×10 ⁻¹	0.0824
	¹³⁷ Cs	30.08 y	2.881×10 ⁻¹	0.0703
	¹³⁸ Cs	32.5 min	3.142×10 ⁻²	0.248

Table 50 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 56. Target (Z) Produced nuclide Half life Vield [/u⁻] Palative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
La (57)	¹³³ Xe	5.2475 d	2.160×10 ⁻⁵	9.62
	¹³⁴ Xe	Stable	5.520×10 ⁻⁵	6.02
	¹³⁵ Xe	9.14 h	1.864×10 ⁻⁴	3.28
	¹³⁶ Xe	Stable	7.772×10 ⁻⁴	1.60
	¹³⁷ Xe	3.818 min	4.508×10 ⁻⁴	2.11
	¹³⁴ Cs	2.0652 y	2.548×10 ⁻⁴	2.80
	¹³⁵ Cs	2.3×10 ⁶ y	3.478×10 ⁻³	0.757
	¹³⁶ Cs	13.01 d	1.256×10 ⁻²	0.397
	¹³⁷ Cs	30.08 y	3.142×10 ⁻²	0.248
	¹³⁸ Cs	32.5 min	1.239×10 ⁻²	0.399
	¹³³ Ba	10.551 y	7.340×10 ⁻⁵	5.22
	¹³⁴ Ba	Stable	3.684×10 ⁻³	0.736
	¹³⁵ Ba	Stable	2.456×10 ⁻²	0.282
	¹³⁶ Ba	Stable	1.372×10 ⁻¹	0.112
	¹³⁷ Ba	Stable	2.465×10 ⁻¹	0.0782
	¹³⁸ Ba	Stable	3.912×10 ⁻¹	0.0558
	¹³⁹ Ba	82.93 min	6.681×10 ⁻²	0.167
Ce (58)	¹³⁶ Cs	13.01 d	2.140×10 ⁻⁴	9.67
	¹³⁷ Cs	30.08 y	8.040×10 ⁻⁴	4.99
	¹³⁸ Cs	32.5 min	4.820×10 ⁻⁴	6.44
	¹³⁵ Ba	Stable	5.100×10 ⁻⁴	6.26
	¹³⁶ Ba	Stable	5.284×10 ⁻³	1.94
	¹³⁷ Ba	Stable	1.648×10 ⁻²	1.09
	¹³⁸ Ba	Stable	3.974×10 ⁻²	0.695
	¹³⁹ Ba	82.93 min	1.601×10 ⁻²	1.11
	¹⁴⁰ Ba	12.751 d	3.180×10 ⁻³	2.50
	¹⁴¹ Ba	18.27 min	1.462×10 ⁻³	3.70
	¹³⁵ La	19.5 h	2.196×10 ⁻³	3.02
	¹³⁶ La	9.87 min	1.683×10 ⁻²	1.08
	¹³⁷ La	6×10 ⁴ y	1.061×10 ⁻¹	0.411
	¹³⁸ La	Stable	2.298×10 ⁻¹	0.259
	¹³⁹ La	Stable	3.734×10 ⁻¹	0.183
	¹⁴⁰ La	1.67858 d	8.301×10 ⁻²	0.470
	¹⁴¹ La	3.92 h	3.198×10 ⁻²	0.778
	¹⁴² La	91.1 min	6.520×10 ⁻³	1.75

Table 51 Yields of nuclides produced by the nuclear capture of μ^- for targets with $57 \le Z \le 58$. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Pr (59)	¹³⁴ Ba	Stable	5.160×10 ⁻⁵	6.23
	¹³⁵ Ba	Stable	9.040×10 ⁻⁵	4.70
	¹³⁶ Ba	Stable	1.382×10 ⁻⁴	3.80
	¹³⁷ Ba	Stable	3.322×10 ⁻⁴	2.45
	¹³⁸ Ba	Stable	1.334×10 ⁻³	1.22
	¹³⁹ Ba	82.93 min	8.320×10 ⁻⁴	1.55
	¹³⁶ La	9.87 min	2.918×10 ⁻⁴	2.62
	¹³⁷ La	6×10 ⁴ y	3.953×10 ⁻³	0.710
	¹³⁸ La	Stable	1.534×10 ⁻²	0.358
	¹³⁹ La	Stable	3.934×10 ⁻²	0.221
	¹⁴⁰ La	1.67858 d	1.809×10 ⁻²	0.330
	¹³⁵ Ce	17.7 h	2.060×10 ⁻⁵	9.86
	¹³⁶ Ce	Stable	1.898×10 ⁻³	1.03
	¹³⁷ Ce	9.0 h	1.699×10 ⁻²	0.340
	¹³⁸ Ce	Stable	1.161×10 ⁻¹	0.124
	¹³⁹ Ce	137.641 d	2.340×10 ⁻¹	0.0809
	¹⁴⁰ Ce	Stable	4.004×10 ⁻¹	0.0547
	¹⁴¹ Ce	32.504 d	8.845×10 ⁻²	0.144

Table 52 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 59. Target (Z) Produced nuclide Half life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Nd (60)	¹³⁵ La	19.5 h	3.580×10 ⁻⁵	7.47
	¹³⁶ La	9.87 min	1.068×10 ⁻⁴	4.33
	¹³⁷ La	6×10 ⁴ y	2.050×10 ⁻⁴	3.12
	¹³⁸ La	Stable	3.109×10 ⁻⁴	2.54
	¹³⁹ La	Stable	7.650×10 ⁻⁴	1.62
	¹⁴⁰ La	1.67858 d	5.324×10 ⁻⁴	1.94
	¹⁴¹ La	3.92 h	4.319×10 ⁻⁴	2.15
	¹⁴² La	91.1 min	2.554×10 ⁻⁴	2.80
	¹⁴³ La	14.2 min	1.860×10 ⁻⁴	3.28
	¹⁴⁴ La	40.8 s	8.900×10 ⁻⁵	4.74
	¹³⁷ Ce	9.0 h	1.470×10 ⁻⁴	3.69
	¹³⁸ Ce	Stable	2.466×10 ⁻³	0.899
	¹³⁹ Ce	137.641 d	8.641×10 ⁻³	0.479
	¹⁴⁰ Ce	Stable	2.438×10 ⁻²	0.283
	¹⁴¹ Ce	32.504 d	1.751×10 ⁻²	0.335
	¹⁴² Ce	Stable	1.756×10 ⁻²	0.335
	¹⁴³ Ce	33.039 h	9.894×10 ⁻³	0.447
	¹⁴⁴ Ce	284.91 d	8.164×10 ⁻³	0.493
	¹⁴⁵ Ce	3.01 min	3.292×10 ⁻³	0.778
	¹⁴⁶ Ce	13.49 min	1.766×10 ⁻³	1.06
	¹⁴⁷ Ce	56.4 s	1.163×10 ⁻³	1.31
	¹⁴⁸ Ce	56.8 s	1.068×10 ⁻³	1.37
	¹⁴⁹ Ce	5.12 s	5.084×10 ⁻⁴	1.98
	¹³⁷ Pr	1.28 h	2.214×10 ⁻⁴	3.01
	¹³⁸ Pr	1.45 min	3.412×10 ⁻³	0.764
	¹³⁹ Pr	4.41 h	3.148×10 ⁻²	0.248
	140 Pr	3.39 min	8.975×10 ⁻²	0.142
	141 Pr	Stable	2.071×10 ⁻¹	0.0875
	142 Pr	19.12 h	1.327×10 ⁻¹	0.114
	¹⁴³ Pr	13.57 d	1.467×10 ⁻¹	0.108
	144 Pr	17.28 min	8.209×10 ⁻²	0.150
	¹⁴⁵ Pr	5.984 h	6.969×10 ⁻²	0.163
	¹⁴⁶ Pr	24.09 min	2.376×10 ⁻²	0.287
	¹⁴⁷ Pr	13.44 min	2.242×10 ⁻²	0.295
	¹⁴⁸ Pr	2.29 min	1.238×10 ⁻²	0.399

Table 53 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 60. Target (Z) Produced nuclide Half life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
		¹⁴⁹ Pr	2.26 min	1.297×10 ⁻²	0.390
		¹⁵⁰ Pr	6.19 s	2.656×10 ⁻³	0.867

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Sm (62)	¹⁴⁰ Pr	3.39 min	2.240×10 ⁻⁵	9.44
	¹⁴¹ Pr	Stable	1.144×10 ⁻⁴	4.18
	¹⁴² Pr	19.12 h	8.500×10 ⁻⁵	4.85
	¹⁴³ Pr	13.57 d	9.940×10 ⁻⁵	4.49
	¹⁴⁴ Pr	17.28 min	2.408×10 ⁻⁴	2.88
	¹⁴⁵ Pr	5.984 h	4.455×10 ⁻⁴	2.12
	¹⁴⁶ Pr	24.09 min	2.337×10 ⁻⁴	2.92
	¹⁴⁷ Pr	13.44 min	2.234×10 ⁻⁴	2.99
	¹⁴⁸ Pr	2.29 min	8.700×10 ⁻⁵	4.79
	¹⁴⁹ Pr	2.26 min	1.428×10 ⁻⁴	3.74
	¹⁵⁰ Pr	6.19 s	1.424×10 ⁻⁴	3.75
	¹⁵¹ Pr	18.90 s	5.220×10 ⁻⁵	6.19
	¹⁵² Pr	3.57 s	5.020×10 ⁻⁵	6.31
	¹⁴⁰ Nd	3.37 d	3.766×10 ⁻⁴	2.30
	¹⁴¹ Nd	2.49 h	1.169×10 ⁻³	1.31
	¹⁴² Nd	Stable	3.259×10 ⁻³	0.782
	¹⁴³ Nd	Stable	2.978×10 ⁻³	0.818
	¹⁴⁴ Nd	Stable	6.927×10 ⁻³	0.536
	¹⁴⁵ Nd	Stable	1.060×10 ⁻²	0.432
	¹⁴⁶ Nd	Stable	1.692×10 ⁻²	0.341
	¹⁴⁷ Nd	11.03 d	9.213×10 ⁻³	0.464
	¹⁴⁸ Nd	Stable	9.595×10 ⁻³	0.454
	¹⁴⁹ Nd	1.726 h	5.095×10 ⁻³	0.625
	¹⁵⁰ Nd	Stable	9.520×10 ⁻³	0.456
	¹⁵¹ Nd	12.44 min	6.863×10 ⁻³	0.538
	¹⁵² Nd	11.4 min	5.507×10 ⁻³	0.601
	¹⁵³ Nd	31.6 s	2.971×10 ⁻³	0.819
	¹⁴⁰ Pm	9.2 s	2.728×10 ⁻⁴	2.71
	¹⁴¹ Pm	20.90 min	2.972×10 ⁻³	0.819
	¹⁴² Pm	40.5 s	9.308×10 ⁻³	0.461
	¹⁴³ Pm	265 d	2.386×10 ⁻²	0.286
	¹⁴⁴ Pm	363 d	2.786×10 ⁻²	0.264
	¹⁴⁵ Pm	17.7 y	7.035×10 ⁻²	0.163
	¹⁴⁶ Pm	5.53 y	9.757×10 ⁻²	0.136
	¹⁴⁷ Pm	2.6234 y	1.226×10 ⁻¹	0.120

Table 54 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 62. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹⁴⁸ Pm	5.368 d	7.778×10 ⁻²	0.154
	¹⁴⁹ Pm	53.08 h	8.147×10 ⁻²	0.150
	¹⁵⁰ Pm	2.698 h	6.519×10 ⁻²	0.169
	¹⁵¹ Pm	28.40 h	1.167×10 ⁻¹	0.123
	¹⁵² Pm	4.12 min	6.585×10 ⁻²	0.168
	¹⁵³ Pm	5.25 min	6.574×10 ⁻²	0.169
	¹⁵⁴ Pm	2.68 min	1.599×10 ⁻²	0.351

Table 54 (Continued).

Table 55 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 63.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Eu (63)	¹⁴⁴ Nd	Stable	3.296×10 ⁻⁵	9.85
	¹⁴⁵ Nd	Stable	3.680×10 ⁻⁵	9.32
	¹⁴⁶ Nd	Stable	8.416×10 ⁻⁵	6.17
	¹⁴⁷ Nd	11.03 d	1.978×10 ⁻⁴	4.02
	¹⁴⁸ Nd	Stable	6.586×10 ⁻⁴	2.20
	¹⁴⁹ Nd	1.726 h	5.821×10 ⁻⁴	2.34
	¹⁵⁰ Nd	Stable	4.045×10 ⁻⁴	2.81
	¹⁵¹ Nd	12.44 min	3.878×10 ⁻⁴	2.87
	¹⁴⁵ Pm	17.7 y	5.664×10 ⁻⁵	7.52
	¹⁴⁶ Pm	5.53 y	4.954×10 ⁻⁴	2.54
	¹⁴⁷ Pm	2.6234 y	3.522×10 ⁻³	0.952
	¹⁴⁸ Pm	5.368 d	8.692×10 ⁻³	0.604
	¹⁴⁹ Pm	53.08 h	1.996×10 ⁻²	0.396
	¹⁵⁰ Pm	2.698 h	1.676×10 ⁻²	0.433
	¹⁵¹ Pm	28.40 h	1.643×10 ⁻²	0.438
	¹⁵² Pm	4.12 min	1.028×10 ⁻²	0.555
	¹⁴⁵ Sm	340 d	2.038×10 ⁻⁴	3.96
	¹⁴⁶ Sm	10.3×10 ⁷ y	4.284×10 ⁻³	0.862
	¹⁴⁷ Sm	Stable	1.924×10 ⁻²	0.404
	148 Sm	Stable	8.025×10 ⁻²	0.192
	¹⁴⁹ Sm	Stable	1.248×10 ⁻¹	0.150
	¹⁵⁰ Sm	Stable	2.476×10 ⁻¹	0.0986
	¹⁵¹ Sm	90 y	1.466×10 ⁻¹	0.137
	¹⁵² Sm	Stable	1.798×10 ⁻¹	0.121
	¹⁵³ Sm	46.284 h	4.924×10 ⁻²	0.249
Target (Z)	Produced nuclide	Halt-life	Yield $\left[/\mu^{-}\right]$	Relative error [%]
------------	-------------------	-----------	-------------------------------	--------------------
Gd (64)	¹⁴⁹ Pm	53.08 h	2.060×10 ⁻⁵	9.86
	¹⁵⁰ Pm	2.698 h	2.580×10-5	8.80
	¹⁵¹ Pm	28.40 h	8.661×10 ⁻⁵	4.81
	¹⁵² Pm	4.12 min	1.935×10 ⁻⁴	3.22
	¹⁵³ Pm	5.25 min	3.908×10 ⁻⁴	2.26
	¹⁵⁴ Pm	2.68 min	2.711×10 ⁻⁴	2.72
	¹⁵⁵ Pm	41.5 s	2.184×10 ⁻⁴	3.03
	¹⁵⁶ Pm	26.70 s	1.048×10 ⁻⁴	4.37
	¹⁵⁷ Pm	10.56 s	3.480×10 ⁻⁵	7.58
	¹⁵⁸ Pm	4.8 s	3.460×10 ⁻⁵	7.61
	148 Sm	Stable	3.319×10 ⁻⁵	7.76
	¹⁴⁹ Sm	Stable	9.824×10 ⁻⁵	4.51
	150 Sm	Stable	5.574×10 ⁻⁴	1.89
	151 Sm	90 y	1.478×10 ⁻³	1.16
	152 Sm	Stable	6.567×10 ⁻³	0.550
	¹⁵³ Sm	46.284 h	1.021×10 ⁻²	0.440
	154 Sm	Stable	1.910×10 ⁻²	0.321
	¹⁵⁵ Sm	22.18 min	1.301×10 ⁻²	0.390
	¹⁵⁶ Sm	9.4 h	1.312×10 ⁻²	0.388
	157 Sm	8.03 min	6.040×10 ⁻³	0.574
	158 Sm	5.30 min	3.489×10 ⁻³	0.756
	¹⁵⁹ Sm	11.37 s	2.207×10 ⁻³	0.951
	¹⁴⁸ Eu	54.5 d	8.060×10 ⁻⁵	4.98
	¹⁴⁹ Eu	93.1 d	4.958×10 ⁻⁴	2.01
	¹⁵⁰ Eu	36.9 y	1.922×10 ⁻³	1.02
	¹⁵¹ Eu	Stable	1.024×10 ⁻²	0.440
	¹⁵² Eu	13.517 y	2.668×10 ⁻²	0.270
	¹⁵³ Eu	Stable	8.922×10 ⁻²	0.143
	¹⁵⁴ Eu	8.601 y	1.230×10 ⁻¹	0.120
	¹⁵⁵ Eu	4.753 y	1.877×10 ⁻¹	0.0930
	¹⁵⁶ Eu	15.19 d	1.351×10 ⁻¹	0.113
	¹⁵⁷ Eu	15.18 h	1.370×10 ⁻¹	0.112
	¹⁵⁸ Eu	45.9 min	6.819×10 ⁻²	0.165
	¹⁵⁹ Eu	18.1 min	6.406×10 ⁻²	0.171
	¹⁶⁰ Eu	42.6 s	1.393×10 ⁻²	0.376

Table 56 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 64. Target (Z) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Tb (65)	¹⁵² Sm	Stable	2.299×10 ⁻⁵	9.33
	¹⁵³ Sm	46.284 h	2.301×10 ⁻⁵	9.33
	¹⁵⁴ Sm	Stable	5.600×10 ⁻⁵	5.98
	¹⁵⁵ Sm	22.18 min	2.112×10 ⁻⁴	3.08
	¹⁵⁶ Sm	9.4 h	7.788×10 ⁻⁴	1.60
	¹⁵⁷ Sm	8.03 min	7.144×10 ⁻⁴	1.67
	¹⁵³ Eu	Stable	4.360×10 ⁻⁵	6.77
	¹⁵⁴ Eu	8.601 y	5.083×10 ⁻⁴	1.98
	¹⁵⁵ Eu	4.753 y	4.945×10 ⁻³	0.635
	¹⁵⁶ Eu	15.19 d	1.434×10 ⁻²	0.371
	¹⁵⁷ Eu	15.18 h	3.208×10 ⁻²	0.246
	¹⁵⁸ Eu	45.9 min	2.015×10 ⁻²	0.312
	¹⁵³ Gd	240.4 d	1.869×10 ⁻⁴	3.27
	¹⁵⁴ Gd	Stable	5.965×10 ⁻³	0.577
	¹⁵⁵ Gd	Stable	3.006×10 ⁻²	0.254
	¹⁵⁶ Gd	Stable	1.422×10 ⁻¹	0.110
	¹⁵⁷ Gd	Stable	2.282×10 ⁻¹	0.0822
	¹⁵⁸ Gd	Stable	3.556×10 ⁻¹	0.0602
	¹⁵⁹ Gd	18.479 h	1.006×10 ⁻¹	0.134

Table 57 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 65. Target (Z) Produced nuclide Half life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Dy (66)	¹⁵⁷ Eu	15.18 h	8.160×10 ⁻⁵	9.90
	¹⁵⁸ Eu	45.9 min	2.248×10 ⁻⁴	5.97
	¹⁵⁹ Eu	18.1 min	4.152×10 ⁻⁴	4.39
	¹⁶⁰ Eu	42.6 s	2.504×10 ⁻⁴	5.65
	¹⁶¹ Eu	26 s	1.552×10 ⁻⁴	7.18
	¹⁵⁵ Gd	Stable	8.480×10 ⁻⁵	9.71
	¹⁵⁶ Gd	Stable	4.792×10 ⁻⁴	4.09
	¹⁵⁷ Gd	Stable	1.832×10 ⁻³	2.09
	¹⁵⁸ Gd	Stable	7.614×10 ⁻³	1.02
	¹⁵⁹ Gd	18.479 h	1.269×10 ⁻²	0.789
	160 Gd	Stable	2.216×10 ⁻²	0.594
	161 Gd	3.66 min	1.512×10 ⁻²	0.722
	162 Gd	8.4 min	1.281×10 ⁻²	0.785
	¹⁶³ Gd	68 s	3.562×10 ⁻³	1.50
	¹⁵³ Tb	2.34 d	8.800×10 ⁻⁵	9.53
	¹⁵⁴ Tb	21.5 h	2.032×10 ⁻⁴	6.27
	¹⁵⁵ Tb	5.32 d	5.656×10 ⁻⁴	3.76
	¹⁵⁶ Tb	5.35 d	1.579×10 ⁻³	2.25
	¹⁵⁷ Tb	71 y	1.162×10 ⁻²	0.825
	¹⁵⁸ Tb	180 y	3.574×10 ⁻²	0.465
	¹⁵⁹ Tb	Stable	1.110×10 ⁻¹	0.253
	¹⁶⁰ Tb	72.3 d	1.596×10 ⁻¹	0.205
	¹⁶¹ Tb	6.89 d	2.312×10 ⁻¹	0.163
	¹⁶² Tb	7.74 min	1.670×10 ⁻¹	0.200
	¹⁶³ Tb	19.5 min	1.188×10 ⁻¹	0.244
	¹⁶⁴ Tb	3.0 min	2.029×10 ⁻²	0.622

Table 58 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 66.

_	Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	Ho (67)	¹⁶² Gd	8.4 min	5.160×10 ⁻⁴	6.22
		¹⁶³ Gd	68 s	4.120×10 ⁻⁴	6.97
		¹⁶⁰ Tb	72.3 d	5.860×10 ⁻⁴	5.84
		¹⁶¹ Tb	6.89 d	5.092×10 ⁻³	1.98
		¹⁶² Tb	7.74 min	1.506×10 ⁻²	1.14
		¹⁶³ Tb	19.5 min	3.057×10 ⁻²	0.797
		¹⁶⁴ Tb	3.0 min	1.850×10 ⁻²	1.03
		¹⁵⁹ Dy	144.4 d	2.740×10 ⁻⁴	8.54
		¹⁶⁰ Dy	Stable	6.526×10 ⁻³	1.75
		¹⁶¹ Dy	Stable	3.327×10 ⁻²	0.762
		¹⁶² Dy	Stable	1.471×10 ⁻¹	0.341
		¹⁶³ Dy	Stable	2.366×10 ⁻¹	0.254
		¹⁶⁴ Dy	Stable	3.485×10 ⁻¹	0.193
		¹⁶⁵ Dy	2.331 h	9.231×10 ⁻²	0.444

Table 59 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 67. Target (Z) Produced nuclide Half life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Er (68)	¹⁶¹ Tb	6.89 d	4.920×10 ⁻⁵	9.02
	¹⁶² Tb	7.74 min	1.152×10 ⁻⁴	5.89
	¹⁶³ Tb	19.5 min	3.452×10 ⁻⁴	3.40
	¹⁶⁴ Tb	3.0 min	4.012×10 ⁻⁴	3.16
	¹⁶⁵ Tb	2.11 min	2.480×10 ⁻⁴	4.02
	¹⁶⁶ Tb	25.1 s	1.115×10 ⁻⁴	5.99
	¹⁶⁷ Tb	18.9 s	4.120×10 ⁻⁵	9.85
	¹⁶⁸ Tb	8.2 s	4.320×10 ⁻⁵	9.62
	¹⁵⁹ Dy	144.4 d	5.760×10 ⁻⁵	8.33
	¹⁶⁰ Dy	Stable	2.472×10 ⁻⁴	4.02
	¹⁶¹ Dy	Stable	7.044×10 ⁻⁴	2.38
	¹⁶² Dy	Stable	3.708×10 ⁻³	1.04
	¹⁶³ Dy	Stable	8.749×10 ⁻³	0.673
	¹⁶⁴ Dy	Stable	2.139×10 ⁻²	0.428
	¹⁶⁵ Dy	2.331 h	1.876×10 ⁻²	0.458
	¹⁶⁶ Dy	81.6 h	1.475×10 ⁻²	0.517
	¹⁶⁷ Dy	6.20 min	5.317×10 ⁻³	0.865
	¹⁶⁸ Dy	8.7 min	2.672×10 ⁻³	1.22
	¹⁶⁹ Dy	39 s	1.700×10 ⁻³	1.53
	¹⁵⁹ Ho	33.05 min	2.228×10 ⁻⁴	4.24
	¹⁶⁰ Ho	25.6 min	7.424×10 ⁻⁴	2.32
	¹⁶¹ Ho	2.48 h	4.176×10 ⁻³	0.977
	¹⁶² Ho	15.0 min	1.417×10 ⁻²	0.528
	¹⁶³ Ho	4570 y	6.144×10 ⁻²	0.247
	¹⁶⁴ Ho	28.8 min	1.190×10 ⁻¹	0.172
	¹⁶⁵ Ho	Stable	2.328×10 ⁻¹	0.115
	¹⁶⁶ Ho	26.824 h	1.721×10 ⁻¹	0.139
	¹⁶⁷ Ho	2.98 h	1.430×10 ⁻¹	0.155
	¹⁶⁸ Ho	2.99 min	5.673×10 ⁻²	0.258
	¹⁶⁹ Ho	4.72 min	4.336×10 ⁻²	0.297
	¹⁷⁰ Ho	2.76 min	9.670×10 ⁻³	0.640

Table 60 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 68. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Tm (69)	¹⁶⁵ Dy	2.331 h	1.830×10 ⁻⁴	7.39
	¹⁶⁶ Dy	81.6 h	6.570×10 ⁻⁴	3.90
	¹⁶⁷ Dy	6.20 min	5.850×10 ⁻⁴	4.13
	¹⁶⁴ Ho	28.8 min	6.300×10 ⁻⁴	3.98
	¹⁶⁵ Ho	Stable	5.795×10 ⁻³	1.31
	¹⁶⁶ Ho	26.824 h	1.621×10 ⁻²	0.779
	¹⁶⁷ Ho	2.98 h	3.505×10 ⁻²	0.525
	¹⁶⁸ Ho	2.99 min	2.224×10 ⁻²	0.663
	¹⁶³ Er	75.0 min	1.420×10 ⁻⁴	8.39
	¹⁶⁴ Er	Stable	5.081×10 ⁻³	1.40
	¹⁶⁵ Er	10.36 h	2.905×10 ⁻²	0.578
	¹⁶⁶ Er	Stable	1.379×10 ⁻¹	0.250
	¹⁶⁷ Er	Stable	2.286×10 ⁻¹	0.184
	¹⁶⁸ Er	Stable	3.471×10 ⁻¹	0.137
	¹⁶⁹ Er	9.392 d	1.015×10 ⁻¹	0.297

Table 61 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 69. Target (Z) Produced nuclide Half life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Yb (70)	¹⁶⁷ Ho	2.98 h	9.700×10 ⁻⁵	7.18
	¹⁶⁸ Ho	2.99 min	2.240×10 ⁻⁴	4.73
	¹⁶⁹ Ho	4.72 min	3.690×10 ⁻⁴	3.68
	¹⁷⁰ Ho	2.76 min	2.790×10 ⁻⁴	4.23
	¹⁷¹ Ho	53 s	1.970×10 ⁻⁴	5.04
	¹⁷² Ho	25 s	1.235×10 ⁻⁴	6.36
	¹⁶⁵ Er	10.36 h	6.100×10 ⁻⁵	9.06
	¹⁶⁶ Er	Stable	5.430×10 ⁻⁴	3.03
	¹⁶⁷ Er	Stable	1.897×10 ⁻³	1.62
	¹⁶⁸ Er	Stable	7.269×10 ⁻³	0.826
	¹⁶⁹ Er	9.392 d	1.197×10 ⁻²	0.643
	¹⁷⁰ Er	Stable	1.967×10 ⁻²	0.499
	¹⁷¹ Er	7.516 h	1.528×10 ⁻²	0.568
	¹⁷² Er	49.3 h	1.507×10 ⁻²	0.572
	¹⁷³ Er	1.4 min	6.597×10 ⁻³	0.867
	¹⁷⁴ Er	3.2 min	2.125×10 ⁻³	1.53
	¹⁷⁵ Er	1.2 min	1.235×10 ⁻³	2.01
	¹⁶⁵ Tm	30.06 h	2.790×10 ⁻⁴	4.23
	¹⁶⁶ Tm	7.70 h	1.464×10 ⁻³	1.85
	¹⁶⁷ Tm	9.25 d	1.058×10 ⁻²	0.684
	¹⁶⁸ Tm	93.1 d	3.127×10 ⁻²	0.394
	¹⁶⁹ Tm	Stable	9.174×10 ⁻²	0.223
	¹⁷⁰ Tm	128.6 d	1.354×10 ⁻¹	0.179
	¹⁷¹ Tm	1.92 y	1.914×10 ⁻¹	0.145
	¹⁷² Tm	63.6 h	1.512×10 ⁻¹	0.168
	¹⁷³ Tm	8.24 h	1.380×10 ⁻¹	0.177
	¹⁷⁴ Tm	5.4 min	5.245×10 ⁻²	0.301
	¹⁷⁵ Tm	15.2 min	3.508×10 ⁻²	0.371
	¹⁷⁶ Tm	1.9 min	7.373×10 ⁻³	0.820

Table 62 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 70. Target (7) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

_	Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
	Lu (71)	¹⁷² Er	49.3 h	8.600×10 ⁻⁴	5.39
		¹⁷³ Er	1.4 min	7.475×10 ⁻⁴	5.78
		¹⁷⁰ Tm	128.6 d	6.850×10 ⁻⁴	6.04
		¹⁷¹ Tm	1.92 y	5.788×10 ⁻³	2.07
		¹⁷² Tm	63.6 h	1.646×10 ⁻²	1.22
		¹⁷³ Tm	8.24 h	3.349×10 ⁻²	0.849
		¹⁷⁴ Tm	5.4 min	2.147×10 ⁻²	1.07
		¹⁷⁰ Yb	Stable	6.188×10 ⁻³	2.00
		¹⁷¹ Yb	Stable	3.299×10 ⁻²	0.856
		¹⁷² Yb	Stable	1.413×10 ⁻¹	0.390
		¹⁷³ Yb	Stable	2.352×10 ⁻¹	0.285
		¹⁷⁴ Yb	Stable	3.378×10 ⁻¹	0.221
		¹⁷⁵ Yb	4.185 d	9.635×10 ⁻²	0.484

Table 63 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 71. Target (7) Produced nuclide Helf life Vield [/u⁻¹] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Hf (72)	¹⁷³ Tm	8.24 h	1.525×10 ⁻⁴	5.73
	¹⁷⁴ Tm	5.4 min	2.660×10 ⁻⁴	4.34
	¹⁷⁵ Tm	15.2 min	4.580×10 ⁻⁴	3.30
	¹⁷⁶ Tm	1.9 min	2.805×10 ⁻⁴	4.22
	¹⁷⁷ Tm	95 s	1.905×10 ⁻⁴	5.12
	¹⁷¹ Yb	Stable	1.160×10 ⁻⁴	6.56
	¹⁷² Yb	Stable	8.705×10 ⁻⁴	2.40
	¹⁷³ Yb	Stable	3.015×10 ⁻³	1.29
	¹⁷⁴ Yb	Stable	1.031×10 ⁻²	0.693
	¹⁷⁵ Yb	4.185 d	1.543×10 ⁻²	0.565
	¹⁷⁶ Yb	Stable	2.196×10 ⁻²	0.472
	¹⁷⁷ Yb	1.911 h	1.495×10 ⁻²	0.574
	¹⁷⁸ Yb	74 min	1.317×10 ⁻²	0.612
	¹⁷⁹ Yb	8.0 min	4.445×10 ⁻³	1.06
	¹⁷¹ Lu	8.247 d	4.596×10 ⁻⁴	3.30
	¹⁷² Lu	6.70 d	2.663×10 ⁻³	1.37
	¹⁷³ Lu	1.37 y	1.659×10 ⁻²	0.544
	¹⁷⁴ Lu	3.31 y	4.691×10 ⁻²	0.319
	¹⁷⁵ Lu	Stable	1.219×10 ⁻¹	0.190
	¹⁷⁶ Lu	Stable	1.616×10 ⁻¹	0.161
	¹⁷⁷ Lu	6.6443 d	2.038×10 ⁻¹	0.140
	¹⁷⁸ Lu	28.4 min	1.470×10 ⁻¹	0.170
	¹⁷⁹ Lu	4.59 h	1.236×10 ⁻¹	0.188
	¹⁸⁰ Lu	5.7 min	2.698×10 ⁻²	0.425

Table 64 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 72.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu]$	Relative error [%]
Ta (73)	¹⁷⁶ Yb	Stable	4.441×10 ⁻⁵	6.71
	¹⁷⁷ Yb	1.911 h	1.793×10 ⁻⁴	3.34
	¹⁷⁸ Yb	74 min	6.296×10 ⁻⁴	1.78
	¹⁷⁹ Yb	8.0 min	4.699×10 ⁻⁴	2.06
	¹⁷⁵ Lu	Stable	6.420×10 ⁻⁵	5.58
	¹⁷⁶ Lu	Stable	7.956×10 ⁻⁴	1.58
	¹⁷⁷ Lu	6.6443 d	5.741×10 ⁻³	0.589
	¹⁷⁸ Lu	28.4 min	1.646×10 ⁻²	0.346
	¹⁷⁹ Lu	4.59 h	3.289×10 ⁻²	0.243
	¹⁸⁰ Lu	5.7 min	2.084×10 ⁻²	0.307
	¹⁷⁵ Hf	70 d	2.932×10 ⁻⁴	2.61
	¹⁷⁶ Hf	Stable	7.227×10 ⁻³	0.524
	$^{177}\mathrm{Hf}$	Stable	3.696×10 ⁻²	0.228
	$^{178}\mathrm{Hf}$	Stable	1.461×10 ⁻¹	0.108
	$^{179}\mathrm{Hf}$	Stable	2.363×10 ⁻¹	0.0804
	$^{180}\mathrm{Hf}$	Stable	3.428×10 ⁻¹	0.0619
	$^{181}\mathrm{Hf}$	42.39 d	9.046×10 ⁻²	0.142

Table 65 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 73. Target (7) Produced public Helf life Vield [/u⁻¹] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
W (74)	¹⁷⁹ Lu	4.59 h	3.187×10 ⁻⁴	6.47
	¹⁸⁰ Lu	5.7 min	3.933×10 ⁻⁴	5.82
	¹⁸¹ Lu	3.5 min	2.653×10 ⁻⁴	7.09
	¹⁸² Lu	2.0 min	1.507×10 ⁻⁴	9.41
	177 Hf	Stable	2.827×10 ⁻⁴	6.87
	$^{178}\mathrm{Hf}$	Stable	2.403×10 ⁻³	2.35
	¹⁷⁹ Hf	Stable	7.069×10 ⁻³	1.37
	$^{180}\mathrm{Hf}$	Stable	1.813×10 ⁻²	0.849
	$^{181}\mathrm{Hf}$	42.39 d	1.769×10 ⁻²	0.861
	¹⁸² Hf	8.90×10 ⁶ y	1.685×10 ⁻²	0.882
	¹⁸³ Hf	1.018 h	9.637×10 ⁻³	1.17
	184 Hf	4.12 h	6.765×10 ⁻³	1.40
	¹⁸⁵ Hf	3.5 min	3.576×10 ⁻³	1.93
	¹⁷⁷ Ta	56.36 h	1.236×10 ⁻³	3.28
	¹⁷⁸ Ta	2.36 h	8.908×10 ⁻³	1.22
	¹⁷⁹ Ta	1.82 y	4.436×10 ⁻²	0.536
	¹⁸⁰ Ta	8.154 h	9.839×10 ⁻²	0.350
	¹⁸¹ Ta	Stable	1.911×10 ⁻¹	0.238
	¹⁸² Ta	114.74 d	1.584×10 ⁻¹	0.266
	¹⁸³ Ta	5.1 d	1.623×10 ⁻¹	0.262
	¹⁸⁴ Ta	8.7 h	8.839×10 ⁻²	0.371
	¹⁸⁵ Ta	49.4 min	8.341×10 ⁻²	0.383
	¹⁸⁶ Ta	10.39 min	1.735×10 ⁻²	0.869

Table 66 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 74.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Re (75)	¹⁸² Hf	8.90×10 ⁶ y	4.160×10 ⁻⁴	9.80
	¹⁸³ Hf	1.018 h	4.160×10 ⁻⁴	9.80
	¹⁸¹ Ta	Stable	2.428×10 ⁻³	4.05
	¹⁸² Ta	114.74 d	6.940×10 ⁻³	2.39
	¹⁸³ Ta	5.1 d	1.696×10 ⁻²	1.52
	¹⁸⁴ Ta	8.7 h	1.722×10 ⁻²	1.51
	¹⁸⁵ Ta	49.4 min	1.788×10 ⁻²	1.48
	¹⁸⁶ Ta	10.39 min	1.070×10 ⁻²	1.92
	$^{180}\mathrm{W}$	Stable	2.124×10 ⁻³	4.34
	^{181}W	121.2 d	1.286×10 ⁻²	1.75
	^{182}W	Stable	6.270×10 ⁻²	0.773
	^{183}W	Stable	1.161×10 ⁻¹	0.552
	^{184}W	Stable	2.295×10 ⁻¹	0.367
	^{185}W	75.1 d	1.788×10 ⁻¹	0.429
	^{186}W	Stable	2.035×10 ⁻¹	0.396
	^{187}W	24.000 h	5.035×10 ⁻²	0.869

Table 67 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 75. Target (Z) Produced nuclide Half life Vield [/u⁻] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Os (76)	¹⁸⁴ Ta	8.7 h	7.733×10 ⁻⁵	9.29
	¹⁸⁵ Ta	49.4 min	1.654×10 ⁻⁴	6.35
	¹⁸⁶ Ta	10.39 min	2.100×10 ⁻⁴	5.63
	¹⁸⁷ Ta	283 s	2.247×10 ⁻⁴	5.45
	¹⁸⁸ Ta	19.6 s	1.407×10 ⁻⁴	6.88
	¹⁹⁰ Ta	5.3 s	1.033×10 ⁻⁴	8.04
	^{182}W	Stable	1.887×10 ⁻⁴	5.94
	^{183}W	Stable	7.053×10 ⁻⁴	3.07
	^{184}W	Stable	2.749×10 ⁻³	1.56
	^{185}W	75.1 d	5.260×10 ⁻³	1.12
	^{186}W	Stable	1.259×10 ⁻²	0.723
	^{187}W	24.000 h	1.349×10 ⁻²	0.698
	^{188}W	69.78 d	1.615×10 ⁻²	0.637
	^{189}W	11.6 min	9.146×10 ⁻³	0.850
	^{190}W	30.0 min	1.029×10 ⁻²	0.801
	¹⁸¹ Re	19.9 h	9.600×10 ⁻⁵	8.32
	¹⁸² Re	64.2 h	5.647×10 ⁻⁴	3.44
	¹⁸³ Re	70.0 d	3.984×10 ⁻³	1.29
	¹⁸⁴ Re	35.4 d	1.181×10 ⁻²	0.747
	¹⁸⁵ Re	Stable	4.074×10 ⁻²	0.396
	¹⁸⁶ Re	3.7185 d	7.139×10 ⁻²	0.294
	¹⁸⁷ Re	Stable	1.429×10 ⁻¹	0.200
	¹⁸⁸ Re	17.005 h	1.414×10 ⁻¹	0.201
	¹⁸⁹ Re	24.3 h	1.736×10 ⁻¹	0.178
	¹⁹⁰ Re	3.0 min	1.190×10 ⁻¹	0.222
	¹⁹¹ Re	9.8 min	1.259×10 ⁻¹	0.215
	¹⁹² Re	16 s	2.009×10 ⁻²	0.570

Table 68 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 76. Target (7) Produced nuclide Helf life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
Ir (77)	¹⁸⁷ Re	Stable	2.132×10 ⁻³	4.33
	¹⁸⁸ Re	17.005 h	5.936×10 ⁻³	2.59
	¹⁸⁹ Re	24.3 h	1.561×10 ⁻²	1.59
	¹⁹⁰ Re	3.0 min	1.434×10 ⁻²	1.66
	¹⁹¹ Re	9.8 min	1.475×10 ⁻²	1.63
	¹⁹² Re	16 s	8.860×10 ⁻³	2.12
	¹⁸⁶ Os	Stable	2.196×10 ⁻³	4.26
	¹⁸⁷ Os	Stable	1.224×10 ⁻²	1.80
	¹⁸⁸ Os	Stable	5.981×10 ⁻²	0.793
	¹⁸⁹ Os	Stable	1.076×10 ⁻¹	0.576
	¹⁹⁰ Os	Stable	2.348×10 ⁻¹	0.361
	¹⁹¹ Os	14.99 d	1.764×10 ⁻¹	0.432
	¹⁹² Os	Stable	2.205×10 ⁻¹	0.376
	¹⁹³ Os	29.830 h	5.293×10 ⁻²	0.846
Pt (78)	¹⁹⁰ Os	Stable	3.080×10 ⁻³	4.02
	¹⁹¹ Os	14.99 d	7.635×10 ⁻³	2.55
	¹⁹² Os	Stable	2.322×10 ⁻²	1.45
	¹⁹³ Os	29.830 h	2.264×10 ⁻²	1.47
	¹⁹⁴ Os	6.0 y	1.926×10 ⁻²	1.60
	¹⁹⁵ Os	6.5 min	5.140×10 ⁻³	3.11
	¹⁹⁶ Os	34.9 min	1.020×10 ⁻³	7.00
	¹⁹⁷ Os	2.8 min	6.300×10 ⁻⁴	8.91
	¹⁸⁹ Ir	13.2 d	2.165×10 ⁻³	4.80
	¹⁹⁰ Ir	11.78 d	1.105×10 ⁻²	2.12
	¹⁹¹ Ir	Stable	6.108×10 ⁻²	0.877
	¹⁹² Ir	73.829 d	1.209×10 ⁻¹	0.603
	¹⁹³ Ir	Stable	2.538×10 ⁻¹	0.383
	¹⁹⁴ Ir	19.18 h	1.920×10 ⁻¹	0.459
	¹⁹⁵ Ir	2.29 h	1.409×10 ⁻¹	0.552
	¹⁹⁶ Ir	52 s	3.614×10 ⁻²	1.16
	¹⁹⁷ Ir	5.8 min	2.249×10 ⁻²	1.47
	¹⁹⁸ Ir	8 s	4.585×10 ⁻³	3.30

Table 69 Yields of nuclides produced by the nuclear capture of μ^- for targets with $77 \le Z \le 78$. Target (7) Produced nuclide Half-life Vield [/u⁻] Relative error [%]

	Target (Z)	Produced nuclide	Half-life	Yield $[/\mu]$	Relative error [%]
	Au (79)	¹⁹⁴ Os	6.0 y	7.480×10 ⁻⁴	5.17
		¹⁹⁵ Os	6.5 min	6.600×10 ⁻⁴	5.50
		¹⁹² Ir	73.829 d	3.640×10 ⁻⁴	7.41
		¹⁹³ Ir	Stable	4.278×10 ⁻³	2.16
		¹⁹⁴ Ir	19.18 h	1.372×10 ⁻²	1.20
		¹⁹⁵ Ir	2.29 h	3.279×10 ⁻²	0.768
		¹⁹⁶ Ir	52 s	2.143×10 ⁻²	0.956
		¹⁹² Pt	Stable	3.928×10 ⁻³	2.25
		¹⁹³ Pt	50 y	2.402×10 ⁻²	0.902
		¹⁹⁴ Pt	Stable	1.345×10 ⁻¹	0.359
		¹⁹⁵ Pt	Stable	2.301×10 ⁻¹	0.259
		¹⁹⁶ Pt	Stable	3.769×10 ⁻¹	0.182
		¹⁹⁷ Pt	19.8915 h	9.595×10 ⁻²	0.434

Table 70 Yields of nuclides produced by the nuclear capture of μ^- for the target with Z = 79. Target (Z) Produced nuclide Half life Vield [/u⁻] Polative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Hg (80)	¹⁹⁵ Ir	2.29 h	1.394×10 ⁻⁴	9.05
	¹⁹⁶ Ir	52 s	2.526×10 ⁻⁴	6.73
	¹⁹⁷ Ir	5.8 min	3.086×10 ⁻⁴	6.09
	¹⁹⁸ Ir	8 s	1.509×10 ⁻⁴	8.70
	¹⁹⁴ Pt	Stable	7.863×10 ⁻⁴	3.81
	¹⁹⁵ Pt	Stable	2.716×10 ⁻³	2.05
	¹⁹⁶ Pt	Stable	1.003×10 ⁻²	1.06
	¹⁹⁷ Pt	19.8915 h	1.317×10 ⁻²	0.925
	¹⁹⁸ Pt	Stable	1.931×10 ⁻²	0.762
	¹⁹⁹ Pt	30.8 min	1.263×10 ⁻²	0.946
	²⁰⁰ Pt	12.6 h	1.376×10 ⁻²	0.906
	²⁰¹ Pt	2.46 min	5.104×10 ⁻³	1.49
	²⁰² Pt	44 h	3.691×10 ⁻⁴	5.56
	²⁰³ Pt	22 s	3.760×10 ⁻⁴	5.51
	¹⁹³ Au	17.65 h	3.189×10 ⁻⁴	5.99
	¹⁹⁴ Au	38.02 h	2.519×10 ⁻³	2.13
	¹⁹⁵ Au	186.01 d	1.776×10 ⁻²	0.795
	¹⁹⁶ Au	6.1669 d	4.695×10 ⁻²	0.482
	¹⁹⁷ Au	Stable	1.247×10 ⁻¹	0.283
	¹⁹⁸ Au	2.6941 d	1.466×10 ⁻¹	0.258
	¹⁹⁹ Au	3.139 d	1.873×10 ⁻¹	0.223
	²⁰⁰ Au	48.4 min	1.381×10 ⁻¹	0.267
	²⁰¹ Au	26.0 min	1.285×10 ⁻¹	0.278
	²⁰² Au	28.4 s	4.134×10 ⁻²	0.515
	²⁰³ Au	60 s	2.180×10 ⁻²	0.716
	²⁰⁴ Au	39.8 s	4.560×10 ⁻³	1.58

Table 71 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 80.

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Tl (81)	¹⁹⁹ Au	3.139 d	1.048×10 ⁻³	8.73
	²⁰⁰ Au	48.4 min	3.928×10 ⁻³	4.50
	²⁰¹ Au	26.0 min	1.242×10 ⁻²	2.52
	²⁰² Au	28.4 s	1.440×10 ⁻²	2.34
	²⁰³ Au	60 s	1.851×10 ⁻²	2.06
	²⁰⁴ Au	39.8 s	1.214×10 ⁻²	2.55
	¹⁹⁹ Hg	Stable	7.400×10 ⁻³	3.28
	²⁰⁰ Hg	Stable	4.102×10 ⁻²	1.37
	²⁰¹ Hg	Stable	9.182×10 ⁻²	0.890
	²⁰² Hg	Stable	2.149×10 ⁻¹	0.541
	²⁰³ Hg	46.610 d	1.999×10 ⁻¹	0.566
	²⁰⁴ Hg	Stable	2.572×10 ⁻¹	0.481
	²⁰⁵ Hg	5.14 min	6.151×10 ⁻²	1.11
Pb (82)	²⁰² Au	28.4 s	4.302×10 ⁻⁵	8.81
	²⁰³ Au	60 s	1.274×10 ⁻⁴	5.12
	²⁰⁴ Au	39.8 s	1.634×10 ⁻⁴	4.52
	²⁰⁵ Au	32.0 s	3.801×10 ⁻⁵	9.36
	²⁰⁰ Hg	Stable	7.667×10 ⁻⁵	6.59
	²⁰¹ Hg	Stable	3.748×10 ⁻⁴	2.98
	²⁰² Hg	Stable	1.993×10 ⁻³	1.29
	²⁰³ Hg	46.610 d	5.071×10 ⁻³	0.809
	²⁰⁴ Hg	Stable	1.504×10 ⁻²	0.467
	²⁰⁵ Hg	5.14 min	1.601×10 ⁻²	0.453
	²⁰⁶ Hg	8.32 min	1.402×10 ⁻²	0.484
	²⁰⁷ Hg	2.9 min	1.660×10 ⁻³	1.42
	²⁰⁰ T1	26.1 h	2.424×10 ⁻⁴	3.71
	²⁰¹ Tl	3.0420 d	2.042×10 ⁻³	1.28
	²⁰² T1	12.31 d	8.632×10 ⁻³	0.619
	²⁰³ T1	Stable	4.107×10 ⁻²	0.279
	²⁰⁴ Tl	3.783 y	1.019×10 ⁻¹	0.171
	²⁰⁵ Tl	Stable	2.395×10 ⁻¹	0.103
	²⁰⁶ Tl	4.202 min	2.655×10 ⁻¹	0.0959
	²⁰⁷ Tl	4.77 min	2.115×10 ⁻¹	0.111
	²⁰⁸ Tl	3.053 min	1.381×10 ⁻²	0.488

Table 72 Yields of nuclides produced by the nuclear capture of μ^- for targets with $81 \le Z \le 82$. Target (Z) Produced nuclide Half-life Yield [/ μ^-] Relative error [%]

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
Bi (83)	²⁰⁵ Hg	5.14 min	9.240×10 ⁻⁵	5.34
	²⁰⁶ Hg	8.32 min	3.005×10 ⁻⁴	2.96
	²⁰⁷ Hg	2.9 min	7.026×10 ⁻⁵	6.12
	²⁰⁴ Tl	3.783 y	4.093×10 ⁻⁴	2.54
	²⁰⁵ Tl	Stable	4.738×10 ⁻³	0.744
	²⁰⁶ Tl	4.202 min	1.781×10 ⁻²	0.381
	²⁰⁷ Tl	4.77 min	3.602×10 ⁻²	0.265
	²⁰⁸ Tl	3.053 min	1.288×10 ⁻²	0.449
	²⁰³ Pb	51.92 h	5.343×10 ⁻⁵	7.02
	²⁰⁴ Pb	Stable	3.206×10 ⁻³	0.905
	²⁰⁵ Pb	1.70×10 ⁷ y	2.614×10 ⁻²	0.313
	²⁰⁶ Pb	Stable	1.422×10 ⁻¹	0.126
	²⁰⁷ Pb	Stable	2.839×10 ⁻¹	0.0814
	²⁰⁸ Pb	Stable	3.664×10 ⁻¹	0.0674
	²⁰⁹ Pb	3.234 h	4.524×10 ⁻²	0.236
Th (90)	²²⁸ Fr	38 s	4.233×10 ⁻⁴	6.27
	²²⁹ Fr	50.2 s	1.055×10 ⁻³	3.97
	²³⁰ Fr	19.1 s	7.233×10 ⁻⁴	4.80
	²²⁶ Ra	1603 y	6.767×10 ⁻⁴	4.96
	²²⁷ Ra	42.2 min	3.073×10 ⁻³	2.33
	²²⁸ Ra	5.75 y	1.589×10 ⁻²	1.02
	²²⁹ Ra	4.0 min	2.596×10 ⁻²	0.791
	²³⁰ Ra	93 min	4.335×10 ⁻²	0.607
	²³¹ Ra	103.9 s	1.683×10 ⁻²	0.987
	²²⁶ Ac	29.37 h	8.883×10 ⁻⁴	4.33
	²²⁷ Ac	21.772 у	1.303×10 ⁻²	1.12
	²²⁸ Ac	6.15 h	4.982×10 ⁻²	0.564
	²²⁹ Ac	62.7 min	1.714×10 ⁻¹	0.284
	²³⁰ Ac	122 s	2.521×10 ⁻¹	0.223
	²³¹ Ac	7.5 min	2.847×10 ⁻¹	0.205
	²³² Ac	119 s	5.262×10 ⁻²	0.548

Table 73 Yields of nuclides produced by the nuclear capture of μ^- for targets with Z = 83, 90. Target (7) Produced public Half life Vield [/u⁻¹] Poletine error [%]

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
U (92)	⁸³ As	13.4 s	2.683×10 ⁻⁴	7.88
	⁸⁴ As	4.02 s	1.767×10 ⁻⁴	9.71
	⁸⁵ As	2.021 s	2.150×10 ⁻⁴	8.80
	⁸⁴ Se	3.26 min	2.983×10 ⁻⁴	7.47
	⁸⁵ Se	32.9 s	3.017×10 ⁻⁴	7.43
	⁸⁶ Se	14.3 s	5.167×10 ⁻⁴	5.68
	⁸⁷ Se	5.50 s	3.200×10 ⁻⁴	7.22
	⁸⁸ Se	1.53 s	3.733×10 ⁻⁴	6.68
	⁸⁹ Se	0.43 s	1.800×10 ⁻⁴	9.63
	⁹⁰ Se	195 ms	1.883×10 ⁻⁴	9.40
	⁸⁵ Br	2.90 min	2.183×10 ⁻⁴	8.73
	⁸⁶ Br	55.1 s	2.850×10 ⁻⁴	7.65
	⁸⁷ Br	55.65 s	5.683×10 ⁻⁴	5.41
	⁸⁸ Br	16.34 s	6.250×10 ⁻⁴	5.16
	⁸⁹ Br	4.357 s	7.667×10 ⁻⁴	4.66
	⁹⁰ Br	1.91 s	5.533×10 ⁻⁴	5.49
	⁹¹ Br	0.543 s	5.017×10 ⁻⁴	5.76
	⁹² Br	0.314 s	1.983×10 ⁻⁴	9.17
	⁹³ Br	102 ms	2.183×10 ⁻⁴	8.74
	⁸⁸ Kr	2.825 h	4.733×10 ⁻⁴	5.93
	⁸⁹ Kr	3.15 min	6.350×10 ⁻⁴	5.12
	⁹⁰ Kr	32.32 s	1.062×10 ⁻³	3.96
	⁹¹ Kr	8.57 s	9.050×10 ⁻⁴	4.29
	⁹² Kr	1.840 s	1.055×10 ⁻³	3.97
	⁹³ Kr	1.286 s	4.917×10 ⁻⁴	5.82
	⁹⁴ Kr	212 ms	5.467×10 ⁻⁴	5.52
	⁹⁵ Kr	0.114 s	2.033×10 ⁻⁴	9.05
	⁹⁶ Kr	80 ms	1.967×10 ⁻⁴	9.21
	⁹⁰ Rb	158 s	3.600×10 ⁻⁴	6.80
	⁹¹ Rb	58.2 s	7.767×10 ⁻⁴	4.63
	⁹² Rb	4.48 s	1.043×10 ⁻³	4.00
	⁹³ Rb	5.84 s	1.525×10 ⁻³	3.30
	⁹⁴ Rb	2.702 s	1.012×10 ⁻³	4.06
	⁹⁵ Rb	377.7 ms	1.053×10 ⁻³	3.98

Table 74 Yields of nuclides produced by the nuclear capture of μ^{-} for the target with Z = 92. Produced nuclides from ⁸³As to ¹⁵⁰Ce are fission products.

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	⁹⁶ Rb	203 ms	5.700×10 ⁻⁴	5.41
	⁹⁷ Rb	169.1 ms	5.300×10 ⁻⁴	5.61
	⁹⁸ Rb	115 ms	3.117×10 ⁻⁴	7.31
	⁹⁹ Rb	54 ms	2.050×10 ⁻⁴	9.02
	⁹² Sr	2.611 h	4.100×10 ⁻⁴	6.38
	⁹³ Sr	7.43 min	6.417×10 ⁻⁴	5.10
	⁹⁴ Sr	75.3 s	1.378×10 ⁻³	3.47
	⁹⁵ Sr	23.90 s	1.210×10 ⁻³	3.71
	⁹⁶ Sr	1.07 s	1.622×10 ⁻³	3.20
	⁹⁷ Sr	429 ms	9.433×10 ⁻⁴	4.20
	⁹⁸ Sr	0.653 s	1.148×10 ⁻³	3.81
	⁹⁹ Sr	269 ms	6.167×10 ⁻⁴	5.20
	^{100}Sr	200 ms	6.200×10 ⁻⁴	5.18
	101 Sr	118 ms	2.233×10 ⁻⁴	8.64
	102 Sr	69 ms	1.883×10 ⁻⁴	9.41
	⁹⁴ Y	18.7 min	2.533×10 ⁻⁴	8.11
	⁹⁵ Y	10.3 min	6.333×10 ⁻⁴	5.13
	⁹⁶ Y	5.34 s	9.468×10 ⁻⁴	4.19
	⁹⁷ Y	3.75 s	1.522×10 ⁻³	3.31
	⁹⁸ Y	0.548 s	1.272×10 ⁻³	3.62
	⁹⁹ Y	1.484 s	1.618×10 ⁻³	3.21
	^{100}Y	732 ms	1.292×10 ⁻³	3.59
	^{101}Y	0.45 s	1.058×10 ⁻³	3.97
	^{102}Y	0.36 s	7.433×10 ⁻⁴	4.73
	¹⁰³ Y	0.23 s	4.333×10 ⁻⁴	6.20
	^{104}Y	197 ms	2.250×10 ⁻⁴	8.61
	⁹⁶ Zr	Stable	1.917×10 ⁻⁴	9.33
	⁹⁷ Zr	16.749 h	3.900×10 ⁻⁴	6.54
	⁹⁸ Zr	30.7 s	8.200×10 ⁻⁴	4.51
	⁹⁹ Zr	2.1 s	9.700×10 ⁻⁴	4.14
	100 Zr	7.1 s	1.765×10 ⁻³	3.07
	101 Zr	2.3 s	1.350×10 ⁻³	3.51
	102 Zr	2.9 s	1.658×10 ⁻³	3.17
	¹⁰³ Zr	1.3 s	1.192×10 ⁻³	3.74
	104 Zr	1.2 s	1.147×10 ⁻³	3.81

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹⁰⁵ Zr	0.66 s	5.900×10 ⁻⁴	5.31
	¹⁰⁶ Zr	180 ms	4.600×10 ⁻⁴	6.02
	¹⁰⁷ Zr	146 ms	1.767×10 ⁻⁴	9.72
	⁹⁹ Nb	15.0 s	2.650×10 ⁻⁴	7.93
	¹⁰⁰ Nb	1.4 s	4.467×10 ⁻⁴	6.11
	¹⁰¹ Nb	7.1 s	9.483×10 ⁻⁴	4.19
	¹⁰² Nb	4.3 s	1.242×10 ⁻³	3.66
	¹⁰³ Nb	1.5 s	1.923×10 ⁻³	2.94
	¹⁰⁴ Nb	4.8 s	1.490×10 ⁻³	3.34
	¹⁰⁵ Nb	2.91 s	1.728×10 ⁻³	3.10
	¹⁰⁶ Nb	0.93 s	1.027×10 ⁻³	4.03
	¹⁰⁷ Nb	300 ms	1.208×10 ⁻³	3.71
	¹⁰⁸ Nb	0.193 s	5.333×10 ⁻⁴	5.59
	¹⁰⁹ Nb	108 ms	4.250×10 ⁻⁴	6.26
	¹⁰² Mo	11.3 min	3.667×10 ⁻⁴	6.74
	¹⁰³ Mo	67.5 s	5.050×10 ⁻⁴	5.74
	¹⁰⁴ Mo	60 s	1.195×10 ⁻³	3.73
	¹⁰⁵ Mo	36.3 s	1.277×10 ⁻³	3.61
	¹⁰⁶ Mo	8.73 s	1.958×10 ⁻³	2.92
	¹⁰⁷ Mo	3.5 s	1.540×10 ⁻³	3.29
	¹⁰⁸ Mo	1.09 s	1.858×10 ⁻³	2.99
	¹⁰⁹ Mo	0.61 s	1.145×10 ⁻³	3.81
	¹¹⁰ Mo	0.296 s	1.238×10 ⁻³	3.67
	¹¹¹ Mo	186 ms	4.983×10 ⁻⁴	5.78
	¹¹² Mo	120 ms	4.383×10 ⁻⁴	6.17
	¹⁰⁵ Tc	7.64 min	3.533×10 ⁻⁴	6.87
	¹⁰⁶ Tc	35.6 s	6.433×10 ⁻⁴	5.09
	¹⁰⁷ Tc	21.2 s	1.463×10 ⁻³	3.37
	¹⁰⁸ Tc	5.17 s	1.310×10 ⁻³	3.57
	¹⁰⁹ Tc	0.91 s	2.387×10 ⁻³	2.64
	¹¹⁰ Tc	0.900 s	1.597×10 ⁻³	3.23
	¹¹¹ Tc	290 ms	2.167×10 ⁻³	2.77
	¹¹² Tc	271 ms	1.270×10 ⁻³	3.62
	¹¹³ Tc	160 ms	1.232×10 ⁻³	3.68
	¹¹⁴ Tc	100 ms	5.067×10 ⁻⁴	5.74

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹¹⁵ Tc	78 ms	3.283×10 ⁻⁴	7.13
	¹⁰⁸ Ru	4.55 min	4.883×10 ⁻⁴	5.84
	¹⁰⁹ Ru	34.4 s	7.967×10 ⁻⁴	4.57
	¹¹⁰ Ru	12.04 s	1.728×10 ⁻³	3.10
	¹¹¹ Ru	2.12 s	1.590×10 ⁻³	3.24
	¹¹² Ru	1.75 s	2.587×10 ⁻³	2.54
	¹¹³ Ru	0.80 s	1.742×10 ⁻³	3.09
	¹¹⁴ Ru	0.52 s	2.183×10 ⁻³	2.76
	¹¹⁵ Ru	318 ms	1.123×10 ⁻³	3.85
	¹¹⁶ Ru	204 ms	1.035×10 ⁻³	4.01
	¹¹⁷ Ru	151 ms	3.567×10 ⁻⁴	6.83
	¹¹⁸ Ru	99 ms	2.950×10 ⁻⁴	7.52
	¹¹⁰ Rh	3.35 s	2.117×10 ⁻⁴	8.88
	¹¹¹ Rh	11 s	7.067×10 ⁻⁴	4.86
	¹¹² Rh	3.6 s	1.050×10 ⁻³	3.98
	¹¹³ Rh	2.80 s	1.958×10 ⁻³	2.92
	114 Rh	1.85 s	1.830×10 ⁻³	3.02
	¹¹⁵ Rh	0.99 s	2.778×10 ⁻³	2.45
	¹¹⁶ Rh	0.68 s	1.848×10 ⁻³	3.00
	¹¹⁷ Rh	0.44 s	1.967×10 ⁻³	2.91
	¹¹⁸ Rh	286 ms	1.037×10 ⁻³	4.01
	¹¹⁹ Rh	171 ms	8.350×10 ⁻⁴	4.47
	¹²⁰ Rh	132 ms	3.183×10 ⁻⁴	7.23
	¹²¹ Rh	151 ms	2.500×10 ⁻⁴	8.16
	¹¹³ Pd	93 s	3.200×10 ⁻⁴	7.22
	¹¹⁴ Pd	2.42 min	1.033×10 ⁻³	4.01
	¹¹⁵ Pd	25 s	1.185×10 ⁻³	3.75
	¹¹⁶ Pd	11.8 s	2.412×10 ⁻³	2.63
	¹¹⁷ Pd	4.3 s	1.783×10 ⁻³	3.05
	¹¹⁸ Pd	1.9 s	2.670×10 ⁻³	2.50
	¹¹⁹ Pd	0.92 s	1.725×10 ⁻³	3.11
	¹²⁰ Pd	0.5 s	1.792×10 ⁻³	3.05
	121 Pd	285 ms	7.933×10 ⁻⁴	4.58
	122 Pd	175 ms	6.550×10 ⁻⁴	5.04
	¹²³ Pd	109 ms	2.367×10 ⁻⁴	8.39

Table 74 (Continued).

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹¹⁵ Ag	20.0 min	2.267×10 ⁻⁴	8.58
	¹¹⁶ Ag	237 s	4.167×10 ⁻⁴	6.32
	¹¹⁷ Ag	72.8 s	1.228×10 ⁻³	3.68
	¹¹⁸ Ag	3.76 s	1.388×10 ⁻³	3.46
	¹¹⁹ Ag	2.1 s	2.203×10 ⁻³	2.75
	¹²⁰ Ag	1.23 s	2.127×10 ⁻³	2.80
	¹²¹ Ag	0.78 s	2.562×10 ⁻³	2.55
	¹²² Ag	0.529 s	1.417×10 ⁻³	3.43
	¹²³ Ag	0.299 s	1.328×10 ⁻³	3.54
	^{124}Ag	0.172 s	6.400×10 ⁻⁴	5.10
	¹²⁵ Ag	159 ms	4.200×10 ⁻⁴	6.30
	¹¹⁸ Cd	50.3 min	3.167×10 ⁻⁴	7.25
	¹¹⁹ Cd	2.69 min	5.033×10 ⁻⁴	5.75
	¹²⁰ Cd	50.80 s	1.542×10 ⁻³	3.29
	¹²¹ Cd	13.5 s	1.458×10 ⁻³	3.38
	¹²² Cd	5.24 s	2.437×10 ⁻³	2.61
	¹²³ Cd	2.10 s	1.793×10 ⁻³	3.05
	¹²⁴ Cd	1.25 s	2.292×10 ⁻³	2.69
	¹²⁵ Cd	0.68 s	1.212×10 ⁻³	3.71
	¹²⁶ Cd	0.514 s	1.062×10 ⁻³	3.96
	¹²⁷ Cd	0.37 s	4.167×10 ⁻⁴	6.32
	¹²⁸ Cd	0.28 s	2.867×10 ⁻⁴	7.63
	¹²¹ In	23.1 s	3.833×10 ⁻⁴	6.59
	¹²² In	1.5 s	6.717×10 ⁻⁴	4.98
	¹²³ In	6.15 s	1.510×10 ⁻³	3.32
	¹²⁴ In	3.12 s	1.515×10 ⁻³	3.31
	¹²⁵ In	2.36 s	2.227×10 ⁻³	2.73
	¹²⁶ In	1.53 s	1.628×10 ⁻³	3.20
	¹²⁷ In	1.09 s	1.835×10 ⁻³	3.01
	¹²⁸ In	0.84 s	1.035×10 ⁻³	4.01
	¹²⁹ In	611 ms	8.450×10 ⁻⁴	4.44
	¹³⁰ In	0.29 s	3.183×10 ⁻⁴	7.23
	¹²⁴ Sn	Stable	5.767×10 ⁻⁴	5.38
	¹²⁵ Sn	9.64 d	7.467×10 ⁻⁴	4.72
	¹²⁶ Sn	2.18×10 ⁵ v	1.637×10 ⁻³	3.19

Table 74 (Continued).

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹²⁷ Sn	2.10 h	1.510×10 ⁻³	3.32
	¹²⁸ Sn	59.07 min	2.248×10 ⁻³	2.72
	¹²⁹ Sn	2.23 min	1.552×10 ⁻³	3.27
	¹³⁰ Sn	3.72 min	1.693×10 ⁻³	3.13
	¹³¹ Sn	56.0 s	8.067×10 ⁻⁴	4.54
	¹³² Sn	39.7 s	4.733×10 ⁻⁴	5.93
	¹²⁶ Sb	12.35 d	2.100×10 ⁻⁴	8.91
	¹²⁷ Sb	3.85 d	6.817×10 ⁻⁴	4.94
	¹²⁸ Sb	9.05 h	8.667×10 ⁻⁴	4.38
	¹²⁹ Sb	4.366 h	1.640×10 ⁻³	3.19
	¹³⁰ Sb	39.5 min	1.643×10 ⁻³	3.18
	¹³¹ Sb	23.03 min	2.180×10 ⁻³	2.76
	¹³² Sb	2.79 min	1.522×10 ⁻³	3.31
	¹³³ Sb	2.34 min	1.278×10 ⁻³	3.61
	¹³⁴ Sb	0.78 s	3.700×10 ⁻⁴	6.71
	¹³⁵ Sb	1.679 s	2.683×10 ⁻⁴	7.88
	¹²⁹ Te	69.6 min	2.367×10 ⁻⁴	8.39
	¹³⁰ Te	Stable	6.667×10 ⁻⁴	5.00
	¹³¹ Te	25.0 min	9.800×10 ⁻⁴	4.12
	¹³² Te	3.204 d	1.783×10 ⁻³	3.05
	¹³³ Te	12.5 min	1.777×10 ⁻³	3.06
	¹³⁴ Te	41.8 min	2.207×10 ⁻³	2.75
	¹³⁵ Te	19.0 s	9.433×10 ⁻⁴	4.20
	¹³⁶ Te	17.63 s	7.683×10 ⁻⁴	4.66
	¹³⁷ Te	2.49 s	3.633×10 ⁻⁴	6.77
	¹³⁸ Te	1.4 s	2.300×10 ⁻⁴	8.51
	¹³² I	2.295 h	2.700×10 ⁻⁴	7.86
	¹³³ I	20.83 h	7.900×10 ⁻⁴	4.59
	¹³⁴ I	52.5 min	1.230×10 ⁻³	3.68
	¹³⁵ I	6.58 h	2.107×10 ⁻³	2.81
	¹³⁶ I	83.4 s	1.165×10 ⁻³	3.78
	¹³⁷ I	24.5 s	1.343×10 ⁻³	3.52
	¹³⁸ I	6.26 s	8.617×10 ⁻⁴	4.40
	¹³⁹ I	2.280 s	6.700×10 ⁻⁴	4.99
	¹⁴⁰ I	0.86 s	3.050×10^{-4}	7.39

Target (Z)	Produced nuclide	Half-life	Yield $[/\mu^-]$	Relative error [%]
	141 I	0.418 s	2.150×10 ⁻⁴	8.80
	¹³⁴ Xe	Stable	1.717×10 ⁻⁴	9.85
	¹³⁵ Xe	9.14 h	3.767×10 ⁻⁴	6.65
	¹³⁶ Xe	Stable	1.017×10 ⁻³	4.05
	¹³⁷ Xe	3.818 min	9.615×10 ⁻⁴	4.16
	¹³⁸ Xe	14.14 min	1.440×10 ⁻³	3.40
	¹³⁹ Xe	39.68 s	1.000×10 ⁻³	4.08
	¹⁴⁰ Xe	13.60 s	1.200×10 ⁻³	3.73
	¹⁴¹ Xe	1.73 s	6.067×10 ⁻⁴	5.24
	¹⁴² Xe	1.23 s	5.050×10 ⁻⁴	5.74
	¹⁴³ Xe	0.511 s	1.917×10 ⁻⁴	9.33
	¹³⁷ Cs	30.08 y	2.083×10 ⁻⁴	8.94
	¹³⁸ Cs	32.5 min	3.733×10 ⁻⁴	6.68
	¹³⁹ Cs	9.27 min	6.717×10 ⁻⁴	4.98
	¹⁴⁰ Cs	63.7 s	8.350×10 ⁻⁴	4.47
	¹⁴¹ Cs	24.84 s	1.105×10 ⁻³	3.88
	¹⁴² Cs	1.684 s	8.683×10 ⁻⁴	4.38
	¹⁴³ Cs	1.791 s	8.783×10 ⁻⁴	4.36
	¹⁴⁴ Cs	0.994 s	3.833×10 ⁻⁴	6.59
	¹⁴⁵ Cs	0.587 s	3.233×10 ⁻⁴	7.18
	140 Ba	12.751 d	2.017×10 ⁻⁴	9.09
	¹⁴¹ Ba	18.27 min	2.867×10 ⁻⁴	7.63
	¹⁴² Ba	10.6 min	6.033×10 ⁻⁴	5.25
	¹⁴³ Ba	14.5 s	6.200×10 ⁻⁴	5.18
	¹⁴⁴ Ba	11.5 s	7.433×10 ⁻⁴	4.73
	145 Ba	4.31 s	5.650×10 ⁻⁴	5.43
	¹⁴⁶ Ba	2.21 s	4.733×10 ⁻⁴	5.93
	¹⁴⁷ Ba	0.894 s	2.767×10 ⁻⁴	7.76
	¹⁴⁴ La	40.8 s	2.133×10 ⁻⁴	8.84
	¹⁴⁵ La	24.8 s	3.917×10 ⁻⁴	6.52
	¹⁴⁶ La	6.1 s	3.467×10 ⁻⁴	6.93
	¹⁴⁷ La	4.06 s	4.583×10 ⁻⁴	6.03
	¹⁴⁸ La	1.26 s	2.567×10 ⁻⁴	8.06
	¹⁴⁹ La	1.091 s	2.817×10 ⁻⁴	7.69
	¹⁴⁸ Ce	56.8 s	2.433×10 ⁻⁴	8.27

Target (Z)	Produced nuclide	Half-life	Yield [/µ ⁻]	Relative error [%]
	¹⁴⁹ Ce	5.12 s	1.933×10 ⁻⁴	9.29
	¹⁵⁰ Ce	4.0 s	2.450×10 ⁻⁴	8.25
	²³⁴ Ac	44 s	4.150×10 ⁻⁴	6.34
	²³⁵ Ac	62 s	1.053×10 ⁻³	3.98
	²³⁶ Ac	1.2 min	6.583×10 ⁻⁴	5.03
	²³² Th	Stable	8.467×10 ⁻⁴	4.44
	²³³ Th	21.83 min	3.947×10 ⁻³	2.05
	²³⁴ Th	24.10 d	1.866×10 ⁻²	0.937
	²³⁵ Th	7.1 min	2.922×10 ⁻²	0.744
	²³⁶ Th	37.5 min	4.930×10 ⁻²	0.567
	²³⁷ Th	4.8 min	1.577×10 ⁻²	1.02
	²³² Pa	1.32 d	8.117×10 ⁻⁴	4.53
	²³³ Pa	26.975 d	7.478×10 ⁻³	1.49
	²³⁴ Pa	6.70 h	3.104×10 ⁻²	0.721
	²³⁵ Pa	24.4 min	1.245×10 ⁻¹	0.342
	²³⁶ Pa	9.1 min	2.073×10 ⁻¹	0.253
	²³⁷ Pa	8.7 min	2.722×10 ⁻¹	0.211
	²³⁸ Pa	2.28 min	5.180×10 ⁻²	0.552

Table 74 (Continued).

Table 75 Comparison between calculated yields per captured μ^2 and experimental data for silicon and iron targets.

Target (Z)	Produced nuclide	Calculation (C)	Experiment (E)	C/E
Si (14)	²⁴ Na	2.118 ± 0.008	3.4±0.2	$0.62{\pm}0.04$
	²⁶ Al	$5.013 {\pm} 0.012$	2.1±0.2	$2.4{\pm}0.2$
	²⁸ Al	$18.09{\pm}0.02$	22.8±2.5	$0.793{\pm}0.087$
Fe (26)	⁵³ Mn	$6.389{\pm}0.012$	$8.3{\pm}1.0$	$0.77{\pm}0.09$
	⁵⁴ Mn	$20.94{\pm}0.02$	$18.7{\pm}1.1$	$1.12{\pm}0.07$
	⁵⁶ Mn	12.38 ± 0.01	$17.4{\pm}1.0$	$0.711 {\pm} 0.041$

Target (Z)	Radionuclide	Half-life	$A(t_{\rm irr})$ [Bq]
Li (3)	³ H	12.32 y	3.53×10 ⁻³
	⁶ He	806.7 ms	7.27×10^{1}
Ti (22)	³⁸ C1	37.230 min	7.97
	³⁹ Ar	268 y	1.12×10 ⁻⁵
	⁴¹ Ar	109.61 min	1.28×10^{1}
	⁴² Ar	32.9 y	1.76×10 ⁻⁴
	⁴² K	12.355 h	1.30×10 ²
	⁴³ K	22.3 h	2.91×10 ⁻³
	⁴⁴ K	22.13 min	9.97×10 ¹
	⁴⁵ K	17.81 min	9.18×10 ¹
	⁴⁶ K	105 s	7.18×10^{1}
	⁴⁵ Ca	162.61 d	3.63
	⁴⁷ Ca	4.536 d	1.26×10 ²
	⁴⁹ Ca	8.718 min	9.48×10 ¹
	⁴³ Sc	3.891 h	8.40×10^{1}
	⁴⁴ Sc	4.0420 h	1.42×10 ³
	⁴⁶ Sc	83.79 d	6.50×10 ¹
	⁴⁷ Sc	3.3492 d	3.07×10 ³
	⁴⁸ Sc	43.71 h	2.45×10 ³
	⁴⁹ Sc	57.18 min	6.23×10 ³
	⁵⁰ Sc	102.5 s	8.63×10 ²
O (8)	⁸ Li	839.9 ms	2.15×10 ²
	$^{10}\mathrm{Be}$	1.51×10 ⁶ y	6.18×10 ⁻⁸
	¹¹ Be	13.76 s	1.30×10 ¹
	$^{12}\mathbf{B}$	20.20 ms	1.33×10 ³
	¹⁴ C	5700 y	3.58×10 ⁻⁴
	¹⁵ C	2.449 s	2.40×10 ²
	¹³ N	9.965 min	2.81×10 ²
	^{16}N	7.13 s	4.91×10 ²
Total			1.77×10 ⁴

Table 76 Estimated radioactivities of $Li_4Ti_5O_{12}$ irradiated by μ ⁻.

This is a blank page.