

JAEA-Data/Code 2024-016 DOI:10.11484/jaea-data-code-2024-016

Elemental Composition Analysis of Main Structural Materials of JMTR

Hiroshi NAGATA, Mami KOCHIYAMA, Marina CHINONE, Naoto SUGAYA Arashi NISHIMURA, Joji ISHIKAWA, Akihiro SAKAI and Hiroshi IDE

Department of Waste Management and Decommissioning Technology Development Oarai Nuclear Engineering Institute

March 2025

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは国立研究開発法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートはクリエイティブ・コモンズ表示 4.0 国際 ライセンスの下に提供されています。 本レポートの成果(データを含む)に著作権が発生しない場合でも、同ライセンスと同様の 条件で利用してください。(<u>https://creativecommons.org/licenses/by/4.0/deed.ja</u>) なお、本レポートの全文は日本原子力研究開発機構ウェブサイト(<u>https://www.jaea.go.jp</u>) より発信されています。本レポートに関しては下記までお問合せください。

国立研究開発法人日本原子力研究開発機構 研究開発推進部 科学技術情報課 〒 319-1112 茨城県那珂郡東海村大字村松 4 番地 49 E-mail: ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency.

This work is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/deed.en).

Even if the results of this report (including data) are not copyrighted, they must be used under the same terms and conditions as CC-BY.

For inquiries regarding this report, please contact Library, Institutional Repository and INIS Section, Research and Development Promotion Department, Japan Atomic Energy Agency.

4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki-ken 319-1112, Japan

E-mail: ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2025

Elemental Composition Analysis of Main Structural Materials of JMTR

Hiroshi NAGATA, Mami KOCHIYAMA⁺¹, Marina CHINONE, Naoto SUGAYA, Arashi NISHIMURA, Joji ISHIKAWA⁺², Akihiro SAKAI⁺¹ and Hiroshi IDE

Department of Waste Management and Decommissioning Technology Development Oarai Nuclear Engineering Institute Japan Atomic Energy Agency Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received December 2, 2024)

The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans. Regarding the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, sufficient data is not available regarding elements other than the major elements. For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.

Keywords: Elemental Composition, Aluminum, Beryllium, Hafnium, Lead, Stainless Steel, JMTR

This work performed by Kobelco Research Institute, Inc. under contract with Japan Atomic Energy Agency.

+1 Radioactive Wastes Disposal Center, Decommissioning and Waste Management Domain

 ± 2 Nuclear Backend Technology Development Department, Nuclear Fuel Cycle Engineering Laboratories

JAEA-Data/Code 2024-016

JMTR の主要構造材の元素組成分析

日本原子力研究開発機構 大洗原子力工学研究所 環境技術開発部

永田 寛、河内山 真美⁺¹、茅根 麻里奈、菅谷 直人、西村 嵐、 石川 譲二⁺²、坂井 章浩⁺¹、井手 広史

(2024年12月2日受理)

原子炉施設の構造材の元素組成は、廃止措置計画の策定などの際に評価を行う放射化計算において、 重要なパラメータの一つとして使用されている。このうち、試験研究炉の構造材として使用されてい るアルミニウム合金などの元素組成については、主要成分以外の元素については十分なデータが得ら れていない。このことから、材料試験炉「JMTR」の主要な構造材として使用されてきたアルミニウ ム合金、ベリリウム、ハフニウムなどから試料を採取し、元素組成の分析を実施した。本報告書は、 令和5年度に取得した78元素の元素組成データについてまとめたものである。

本報告書は、株式会社コベルコ科研が日本原子力研究開発機構との契約により実施した業務成果に関するものである。

大洗原子力工学研究所:〒311-1393 茨城県東茨城郡大洗町成田町 4002 番地

+1 バックエンド領域 埋設事業センター

+2 核燃料サイクル工学研究所 BE 資源・処分システム開発部

Contents

1.	Introduction1								
2.	Sampling Target1								
3.	Analytical Method2								
4.	Results3	;							
5.	Conclusions4	c							
Acl	Acknowledgements5								
Ref	References5								

目 次

1.	よじめに	1
2.	分析対象	1
3.	分析方法	2
4.	分析結果	3
5.	まとめ	4
謝辞		5
参考	文献	5

List of Table

Table 1	Overview of sampling targets	-7
Table 2	Manufacturing history of the aluminum reflector and aluminum plug	-8
Table 3	Chemical components listed in the mill test certificate of aluminum alloy	-9
Table 4	Manufacturing history of the beryllium frame (beryllium plugs)	11
Table 5	Chemical components listed in the mill test certificate of the beryllium	12
Table 6	Manufacturing history of the hafnium	14
Table 7	Chemical components listed in the mill test certificate of the hafnium	15
Table 8	Chemical components listed in the mill test certificate of stainless steel	16
Table 9	Target elements of analysis	17
Table 10	Main specifications of the analyzer used	19
Table 11	Results of elemental composition analysis of the aluminum alloy	20
Table 12	Results of elemental composition analysis of the beryllium	22
Table 13	Results of elemental composition analysis of the hafnium	24
Table 14	Results of elemental composition analysis of the lead and the stainless steel	26

List of Figure

г 1g. 1	Outline diagram of the aluminum reflector and aluminum plug (C-type)28
Fig. 2	Outline diagram of the aluminum reflector and aluminum plug (E-type)28
Fig. 3	Outline diagram of the aluminum reflector and aluminum plug (F-type)29
Fig. 4	Outline diagram of the hydraulic rabbit29
Fig. 5	Outline diagram of the beryllium plug
Fig. 6	Outline diagram of the control rod
Fig. 7	Analysis results and mill sheet values for main component elements of aluminum alloys
	31
Fig. 8	Plot of all elemental composition data including analytical data from other facilities of the
alumin	um alloy
arannin	S2 S2
Fig. 9	Analysis results and mill sheet values for main component elements of beryllium 33
Fig. 9 Fig. 10	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34
Fig. 9 Fig. 10 Fig. 11	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34 Analysis results and mill sheet values for main component elements of hafnium 35
Fig. 9 Fig. 10 Fig. 11 Fig. 12	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34 Analysis results and mill sheet values for main component elements of hafnium 35 Plot of all elemental composition data of the hafnium 36
Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34 Analysis results and mill sheet values for main component elements of hafnium 35 Plot of all elemental composition data of the hafnium 36 Plot of all elemental composition data of the lead 37
Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34 Analysis results and mill sheet values for main component elements of hafnium 35 Plot of all elemental composition data of the hafnium 36 Plot of all elemental composition data of the lead 37 Analysis results and mill sheet values for main component elements of stainless steel
Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14	Analysis results and mill sheet values for main component elements of beryllium 33 Plot of all elemental composition data of the beryllium 34 Analysis results and mill sheet values for main component elements of hafnium 35 Plot of all elemental composition data of the hafnium 36 Plot of all elemental composition data of the lead 37 Analysis results and mill sheet values for main component elements of stainless steel 38

List of Photos

Photo 1	External appearance of the aluminum alloy (Samples No.1-3)40
Photo 2	External appearance of the aluminum alloy (Sample No.4)41
Photo 3	External appearance of the beryllium (Samples No.5-7)42
Photo 4	External appearance of the hafnium (Samples No.8-10)43
Photo 5	External appearance of the lead (Sample No.11)44
Photo 6	External appearance of the stainless steel (Samples No.12-13)44

This is a blank page.

1. Introduction

The elemental composition of the structural materials of nuclear reactor facilities is used as one of the important parameters in activation calculations that are evaluated when formulating decommissioning plans.

Regarding the elemental composition of structural materials widely used in nuclear reactor facilities such as stainless steel, there is data published by the Nuclear Regulatory Commission $(NRC)^{1)2}$ in the United States and analysis data of structural materials by the Fugen Nuclear Power Plant³⁾⁴⁾. It is widely used for activation calculations⁵⁾⁶⁾.

On the other hand, the mill test certificate for structural materials are available for the elemental composition of aluminum alloys and other materials used as structural materials for test and research reactors, but only the major elements are listed. Therefore, sufficient data is not available regarding elements other than the major elements.

For this reason, samples were collected from aluminum alloy, beryllium, hafnium, and other materials that have been used as the main structural materials of JMTR (Japan Materials Testing Reactor), and their elemental compositions were analyzed. This report summarizes the elemental composition data of 78 elements obtained in FY2023.

2. Sampling Target

The sampling targets were aluminum alloy, beryllium, hafnium, lead, and stainless steel, which have been used as the main structural materials of JMTR.

An overview of the sampling targets is shown in **Table 1**, and details are shown below. In the elemental composition analysis, a part of the structural material is collected by mechanical cutting, etc., and the sample is adjusted to be suitable for each analysis method and used as the analysis sample.

(1) Aluminum Alloy

Among the aluminum alloys, samples of A5052, A6061, and A6063 were collected from JMTR core elements such as aluminum reflectors and aluminum plugs that were not used and stored as spare parts. The manufacturing history of the aluminum reflector and aluminum plug is shown in **Table 2**, the outline diagram is shown in **Fig. 1** to **3**, the external appearance is shown in **Photo 1**, and the chemical components listed in the mill test certificate are shown in **Table 3**.

Among the aluminum alloys, sample of A1050 was produced as an irradiation sample for the hydraulic rabbit irradiation device, and was collected from an unused and stored specimen. The outline diagram is shown in **Fig. 4**, the external appearance is shown in **Photo 2**, and the chemical components listed in the mill test certificate are shown in **Table 3**.

(2) Beryllium

Beryllium samples were collected from beryllium plugs that were manufactured as plugs for the beryllium frame, which are core elements of JMTR, that were not used and were stored as spare parts. The manufacturing history of the beryllium frame (beryllium plugs) is shown in **Table 4**, the outline diagram is shown in **Fig. 5**, the external appearance is shown in **Photo 3**, and the chemical components listed in the mill test certificate are shown in **Table 5**.

(3) Hafnium

Hafnium samples were collected from control rods that were manufactured as JMTR core elements, which were stored as spare parts, and from welding test pieces produced during control rod manufacturing. The manufacturing history of the hafnium is shown in **Table 6**, the outline diagram is shown in **Fig. 6**, the external appearance is shown in **Photo 4**, and the chemical components listed in the mill test certificate are shown in **Table 7**.

(4) Lead

The ex-core test equipment at the OGL-1 irradiation facility uses lead as a shielding material, and a lead sample was collected from the dismantled equipment. The external appearance is shown in **Photo 5**.

(5) Stainless Steel

Samples of stainless steel (SUS304 and SUS630) were collected from one component of the control rod. The manufacturing history and outline diagram are the same as (3) above. The external appearance is shown in **Photo 6**, and the chemical components listed in the mill test certificate are shown in **Table 8**.

3. Analytical Method

(1) Target Elements of Analysis

The target elements of analysis were selected for approximately 78 naturally occurring elements, excluding noble gases. These elements were set to include the parent elements of the 33 main nuclides for which clearance levels⁷ have been set, the elements targeted for analysis by NUREG¹⁾², and the elements analyzed in structural materials of the Fugen Nuclear Power Plant³. The target elements of analysis are shown in **Table 9**.

(2) Analytical Method

The analysis method used was GD-MS (Glow Discharge Mass Spectrometer)⁸⁾, and gas analysis and chemical analysis were used for some elements. The analysis method used are shown in **Table 9** and the main specifications of the analyzer used are shown in **Table 10**.

GD-MS is a method for mass spectrometry by ionizing elements sputtered from a sample by

glow discharge, that is used to analyze structural materials of the Fugen Nuclear Power Plant³⁾ as well as various metals⁹⁾¹⁰⁾¹¹⁾. The analytical value is determined from the IBR (Ion Beam Ratio) and RSF (Relative Sensitivity Factors) of the main component element and target element and represents a semi-quantitative value.

(3) Preparation of Analysis Sample

Samples used for GD-MS and gas analysis were adjusted to samples for measurement using a high-speed precision cutting machine, hand saw, etc. Samples used for chemical analysis was collected from chips produced by cutting with an end mill, drill, etc. Furthermore, the surface of samples used for GD-MS was dissolved by heating with dilute hydrochloric acid, washed with pure water, and then polished to obtain a measurement sample.

4. Results

(1) Aluminum Alloy

The results of elemental composition analysis of the aluminum alloy are shown in **Table 11** and a comparison of the analysis results of the main component elements and the mill sheet values are shown in **Fig. 7**.

Out of a total of 78 elements analyzed, detection values for 58 elements and lower detection limits for 19 elements were obtained. The analysis results and mill sheet values generally agreed. In addition, the coefficient variation (SD/Avg) by the average value (Avg) and standard deviation (SD) of the analysis results obtained this time varied widely, ranging from 5 to 150%. In particular, the variation exceeded 100% for Be, F, Na, Mg, Cl, Cr, Cu, Se, Br, Sr, Ru, Pd, Sb, Gd, and Dy. This seems to be due to the difference in the materials of A5052, A6061, A6063, and A1050.

A plot of all elemental composition data including analytical data from other facilities³⁾⁴⁾⁵⁾¹²⁾ are shown in **Fig. 8**. A comparison with analytical data from other facilities showed good agreement for A6061 at the Rikkyo University Reactor and JMTR, especially in Fe, Co, Cu, and U, but differences were seen in many elements at the Fugen Nuclear Power Plant. Since the material of the Fugen Nuclear Power Plant is unknown, so it may be a different material from the A6000 series, A5000 series, and A1000 series analyzed this time.

(2) Beryllium

The results of elemental composition analysis of the beryllium are shown in **Table 12**, a comparison of the analysis results of the main component elements and the mill sheet values are shown in **Fig. 9**, and a plot of all elemental composition data are shown in **Fig. 10**.

Of the 78 elements analyzed, detection values for 48 elements and lower detection limits for 29 elements were obtained. In comparing the analysis results and mill sheet values, the analysis results showed lower values for some elements, but when other mill sheet values were included,

they were within that range and generally matched. In addition, the coefficient variation (SD/Avg) by the average value (Avg) and standard deviation (SD) of the analysis results obtained this time varied widely, ranging from 4 to 156%. In particular, the variation exceeded 100% for Li, K, Br, Sn, Au, Bi, and Th. This is considered to be due to differences between manufacturers of the material as shown in **Table 4**.

(3) Hafnium

The results of elemental composition analysis of the hafnium are shown in **Table 13**, a comparison of the analysis results of the main component elements and the mill sheet values are shown in **Fig. 11**, and a plot of all elemental composition data are shown in **Fig. 12**.

Of the 78 elements analyzed, detection values for 29 elements and lower detection limits for 48 elements were obtained. The analysis results and mill sheet values generally agreed. Although the analysis results for some elements are lower, the mill sheet value is lower detection limits and this is considered to be a difference in accuracy depending on the analysis method. In addition, the coefficient variation (SD/Avg) by the average value (Avg) and standard deviation (SD) of the analysis results obtained this time varied widely, ranging from 19 to 169%. In particular, the variation exceeded 100% for P, Ti, V, Cr, Mn, Fe, Co, As, and Mo. This is thought to be due to differences in manufacturing lots, as one (Sample No.9) of the three analysis results has a different value from the other two (Sample No.8, Sample No.10).

(4) Lead

The results of elemental composition analysis of the lead are shown in **Table 14** and a plot of all elemental composition data are shown in **Fig. 13**. Of the 78 elements analyzed, detection values for 19 elements and lower detection limits for 58 elements were obtained.

(5) Stainless Steel

The results of elemental composition analysis of the stainless steel are shown in **Table 14** and a comparison of the analysis results of the main component elements and the mill sheet values are shown in **Fig. 14**. Of the 78 elements analyzed, detection values for 49 elements and lower detection limits for 29 elements were obtained. The analysis results and mill sheet values generally agreed.

A plot of all elemental composition data including analytical data from other facilities¹⁾²⁾³⁾⁴⁾ are shown in **Fig. 15**. The elemental composition data for SUS304 generally agreed with data of the Fugen Nuclear Power Plant.

5. Conclusions

In this report, samples were collected from the main structural materials of JMTR, and their elemental compositions data used in activation calculations of structural materials of nuclear reactor facilities were analyzed. The detection values and lower detection limits for the 78 elements analyzed were obtained. In the future, the elemental composition data are continued to obtain through sample collection and analysis of other structural materials.

Acknowledgements

The authors would like to express their gratitude to Mr. Hirokazu Hayashi of The Japan Atomic Power Company, Mr. Toshiki Sasaki and other related parties of Decommissioning and Waste Management Domain for his useful advice in performing the elemental composition analysis. The authors are greatly indebted to Mr. Kazuaki Tsuboi of JMTR Engineering Section and other related parties of JMTR Reactor Section for his valuable advice and cooperation when selecting analytical samples. The authors are greatly indebted to Mr. Kunihiko Tsuchiya of Department of Waste Management and Decommissioning Technology Development for his valuable comments on the manuscript. The analysis in this report were performed at Kobelco Research Institute, Inc. The authors would like to express their gratitude who performed the analysis work.

References

- 1) J. C. Evans et al., Long-Lived Activation Products in Reactor Materials, NUREG/CR-3474, 1984, 131p.
- 2) H. D. Oak et al., Technology, Safety and Costs of Decommissioning a Reference Boiling Water Reactor Power Station, NUREG/CR-0672, 1980, 44p.
- 3) N. Kawata et al., Analysis of Elemental Composition of Main Construction Materials in the Nuclear Power Plant "FUGEN", Transactions of the Atomic Energy Society of Japan, Vol.9, No.4, 2010, pp.405-418, (in Japanese).
- 4) Nuclear Safety Technology Center, http://www.nustec.or.jp/anzenjissho/introduction/ga1_4.html#ga5 (accessed 2024-01-18).
- K. Kishimoto, K. Arigane, Evaluation on Activation Activity of Reactor in JRR-2 Applied 3 Dimensional Model to Neutron Flux Calculation, JAERI-Tech 2005-016, 2005, 83p.(in Japanese).
- 6) H. Nagata et al., Evaluation on Activation Activity of Radioactive Materials Remaining in JMTR Reactor Facility, JAEA-Technology 2022-017, 2022, 113p.(in Japanese).
- 7) Atomic Energy Society of Japan, Kuriaransu No Handanhouhou 2005, 2005, 257p.(in Japanese).
- K. Iwasaki, Glow Discharge Mass Spectrometric Analysis, KINZOKU, Vol.64, No.9, 1994, pp.4-10, (in Japanese).
- 9) S. Itoh et al., Glow Discharge Mass Spectrometric Analysis of Nickel-based Heat-resisting Alloys, BUNSEKI KAGAKU, Vol.45, No.6, 1996, pp.529-536, (in Japanese).
- 10) S. Itoh et al., Analysis of Zirconium–Based Alloys by Glow Discharge Mass Spectrometry, Journal of the Japan Institute of Metals and Materials, Vol.65, No.1, 2001, pp.53-59, (in

Japanese).

- 11) S. Itoh et al., Selection of Discharge Gases for Analysis of Aluminum Alloys by Glow Discharge Mass Spectrometry, Tetsu-to-Hagane, Vol.97, No.2, 2011, pp.94-97, (in Japanese).
- 12) M. Murakami et al., Study on the Evaluation Method to Determine the Radioactivity Concentration in Radioactive Waste Generated from the Dismantling of Research Reactors, JAEA-Technology 2019-003, 2019, 50p.(in Japanese).
- 13) Japan Atomic Energy Research Institute, JMTR Sekkei Oyobi Koji No Houhou (Aluminum reflector type E), 1976.4, (in Japanese).
- 14) Japan Atomic Energy Research Institute, JMTR Sekkei Oyobi Koji No Houhou (Aluminum reflector type F), 1979.3, (in Japanese).
- 15) Japan Atomic Energy Research Institute, JMTR Irradiation Handbook, JAERI-M 83-053, 1983, 296p.(in Japanese).

No.	Material	Structural material name	Shape (mm) Quantity	Remarks
1	Aluminum Alloy (A6063)	Aluminum reflector 1 hole C type 42 φ FR (C007)	$\Box 77 \times L1188$ 1 rod	Fig. 1 Photo 1
2	Aluminum Alloy (A5052)	Aluminum plug 1 hole E type 67 φ FR (E005)	$\phi65\! imes\!\mathrm{L1039}$ 1 rod	Fig. 2 Photo 1
3	Aluminum Alloy (A6061)	Aluminum plug 1 hole F type 62 φ FR (F04F)	$\phi 60 \! imes \mathrm{L1039}$ 1 rod	Fig. 3 Photo 1
4	Aluminum Alloy (A1050)	Hydraulic rabbit (RM-4897)	$\phi 32 \! imes \! \mathrm{L150}$ 1 piece	Fig. 4 Photo 2
5	Beryllium	Beryllium plug ϕ 38Be for Be-frame (No.21)	$\phi 36 \! imes \! \mathrm{L820}$ 1 rod	Fig. 5 Photo 3
6	Beryllium	Beryllium plug φ 38Be for Be-frame (No.52)	$\phi 36 \! imes \! \mathrm{L820}$ 1 rod	Fig. 5 Photo 3
7	Beryllium	Beryllium plug φ 42Be for Be-frame (No.79)	$\phi 40 imes L820$ 1 rod	Fig. 5 Photo 3
8	Hafnium	Control rod (Hf-24)	$\Box 63 \times L830$ 1 rod	Fig. 6 Photo 4
9	Hafnium	Control rod (Hf-27)	$\Box 63 \times L830$ 1 rod	Fig. 6 Photo 4
10	Hafnium	Preliminary welding test piece of control rod	$\Box 65 \times L150$ 1 piece	Photo 4
11	Lead	Lead shielding block	$150 \times 150 \times 40$ 1 piece	Photo 5
12	Stainless Steel (SUS304)	(Same as No.9)	(Same as No.9)	Photo 6
13	Stainless Steel (SUS630)	(Same as No.9)	(Same as No.9)	Photo 6

Table 1 Overview of sampling targets

No.	Structural material name	Quantity	Main material	Manufacturing year	Manufacturer
	1 hole 42 φ FR (A001F-A010F)	11			
	1 hole 42 φ FR (A011-A130)	120			
A63-1	4 hole 32 φ FR (A001F-A005F)	5		S42 (1967)	
	4 hole 32 φ RR (A006-A030)	25	A6063		Sumitomo Light Metal Industries, Ltd.
	1 hole W type 64 φ RR (W001-W020)	20			
A63-2	1 hole C type $42 \phi FR$ (C001-C007) ^{**} ₁	7		$\mathbf{S45}$	
A63-3	1 hole D type 38 φ FR (D001-D004)	4		(1970)	
459-1	1 hole E type 67 φ FR (E001-E003)	3		S51	
A52-1	1 hole F type 62 φ FR (F001)	1		(1976)	Kobe Steel, Ltd.
A52-2	4 hole 32 φ FR (A006F-A009F)	4	A5052	S52 (1977)	
A F O O	1 hole E type $67 \phi FR$ (E004-E005) ^{**2}	2		S53	Sumitomo Light Metal
A52-3	1 hole F type 62 φ FR (F002-F003)	2		(1978)	Kobe Steel, Ltd.
A61-1	1 hole F type 62 φ FR (F01F-F02F)	2		S54 (1979)	
A61-2	1 hole F type 62 φ FR (F03F-F04F) [%] 3	2		H2 (1990)	
A C1 9	1 hole F type 62 φ FR (F05F-F08F)	4		H13	Kobe Steel, Ltd.
A61-3	1 hole E type 67 φ FR (E006)	1	A6061	(2001)	
A61-4	1 hole E type 67 φ FR (E007)	1		H16 (2004)	
A61-5	1 hole E type 67 φ FR (E008-E009)	2		H21 (2009)	Nikkeikin Aluminium Core Technology Company, Ltd.

 Table 2
 Manufacturing history of the aluminum reflector and aluminum plug

1: Sample No.1

2: Sample No.2

※3∶Sample No.3

: %6 d value Upper 0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	: %	d value A63-1 A63-2 A63-3	Upper — — — Reflector Plug Lower plug Reflector Plug	0.9 0.57 0.63 0.64 0.64 0.6 0.6 0.6 0.62 0.62 0.58 0.55 0.59 0.55 0.55		0.6 0.36 0.41 0.39 0.38 0.39 0.39 0.39 0.4 0.4 0.42 0.43 0.42 0.42 0.42 0.42 0.42 0.42	0.1	0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.35 0.22 0.21 0.23 0.2 0.2 0.23 0.23 0.23 0.24 0.22 0.21 0.18 0.23 0.22 0.18	0.1 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.02	0.1 0.02 0.01 0.02 0.02 0.02 0.02 0.02 0	85414 85454 85450 85451 85452 85451 85450 85454 85452 69539 69537 69538 69538	69540	008-07389 004-01499 008-05788 004-01497 004-01498 004-01355 008-07279 004-01357 004-01356 008-05313 004-05497 004-05928 008-05314 004-0592	
	A6063 > Unit: %			0.57		0.36		0.01	0.01	0.22	0.01	0.02	85414		008-07389	
		Stand	Lower	Mg = 0.45		Si 0.2	Ti —	Cr —	Mn —	Fe —	Cu —	– uZ		Domod	NetHark	

Table 3Chemical components listed in the mill test certificate of aluminum alloy (1/2)

Г

Sample No.1

 $<\!A5052\!>\!Unit:\%$

2-3	Plug et al	2.6	_	60'0		0.26	0.01	0.26	20.0	0.01	004-09615 ※
A5.	Reflector	2.39				0.21	0.06		0.05	0.03	83831
A52-2		2.63		0.127		0.239	0.034	0.192	0.055	0.038	83046
2-1		2.46		0.082		0.217	0.056	0.299	0.038	0.01	41800
A5:		2.53		0.123		0.205	0.048	0.235	0.06	0.04	40600
d value	Upper	2.8		0.25		0.35	0.1	0.4	0.1	0.1	
Standar	Lower	2.2				0.15					temark
	Flements	Mg	Al	\mathbf{Si}	Ti	\mathbf{Cr}	Mn	Fe	Cu	Zn	R

Sample No.2

JAEA-Data/Code 2024-016

		ower plug	1.0		0.66	0.01	0.08	0.01	0.2	0.34	0.01	9320100
	A61-5	Plug	0.9		0.65	002	0.07	0.01	0.2	0.33	0.01	484261900 4
		Reflector	1.0		0.66	0.01	0.08	0.01	0.2	0.34	0.01	493231100
	A61-4	Lower plug	0.88		0.68	0.04	0.08	0.02	0.35	0.22	<0.01	E13629
		Reflector	0.93		0.74	0.02	0.04	0.01	0.2	0.32	0.02	120618
	A61-3		0.92		0.58	0.03	0.08	0.03	0.34	0.2	0.05	136405
		Plug	0.87		0.63	0.04	0.09	0.02	0.34	0.24	0.02	$\begin{array}{c} 48561 \\ \end{array}$
	A61-2	Lower plug	0.86		0.54	0.04	0.07	0.02	0.31	0.22	0.04	91590
		Reflector	0.94		0.66	0.03	0.07	0.02	0.34	0.2	0.06	92397
			1		0.61	0.04	0.19	0.04	0.36	0.24	0.05	43447
	A61-1		1.04		0.56	0.04	0.21	0.06	0.41	0.32	0.06	44337
			1.06		0.56	0.04	0.27	0.05	0.37	0.23	0.06	44494
• 70	rd value	Upper	1.2		0.8	0.15	0.35	0.15	0.7	0.4	0.25	
	Standaı	Lower	0.8		0.4		0.04			0.15		temark
TOUOA		Flements	Mg	Al	Si	Τï	\mathbf{Cr}	Mn	Fe	Cu	Zn	R

Table 3Chemical components listed in the mill test certificate of aluminum alloy (2/2)

< A6061 > IInit: %

‰Sample №3

 $<\!A1050\!>\!Unit:\%$

HR			0.01	99.62	0.09	0.01			0.26	0.01	0.01	*	
76F-4A				99.64	0.1				0.26				
75F-5A	Heat	medium		99.66	60'0				0.25				
-4A	Heat	medium	0.01	99.55	0.09	0.01			0.29	0.03	0.02		
75F	Spacer	$_{\rm block}$		99.7	0.06	0.01			0.17	0.01	0.01	20307	
d value	IImon	opper	0.05		0.25	0.03		0.05	0.4	0.05	0.05		
Standar	T ourow	Lower		99.5								emark	
	Elements		Mg	Al	\mathbf{Si}	Τi	\mathbf{Cr}	Mn	Fe	Cu	\mathbf{Zn}	R	

Sample No.4

No.	Structural material name	Quantity	Main material	Manufacturing year	Manufacturer
Be-1	Beryllium frame (1st gen) Beryllium plug No.1-17(ϕ 32) No.18-24(ϕ 38) ^{*1}	24		S42 (1967)	NGK Insulators, Ltd. (NGK)
Be-2	Beryllium frame (2nd gen) Beryllium plug No.31-46(ϕ 32) No.47-52(ϕ 38) ^{$**_2$}	22		S50 (1976)	Kawecki Berylco Industries (KBI)
Be-3	Beryllium frame (3rd gen)	—		S56 (1981)	
Be-4	Beryllium frame (4th gen) Beryllium plug No.53-74(ϕ 40)	22	Be	H1 (1989)	
Be-5	Beryllium frame (5th gen) Beryllium plug No.75-79(\$\phi 40) ^{**3}	5		H8 (1996)	Brush Wellman (BRUSH)
Be-6	Beryllium frame (6th gen)	—		H13 (2001)	
Be-7	Beryllium frame (7th gen) Beryllium plug	22		H21 (2009)	

Table 4Manufacturing history of the beryllium frame (beryllium plugs)

%1∶Sample No.5

₩2 : Sample No.6

3∶Sample No.7

Table 5Chemical components listed in the mill test certificate of the beryllium (1/2)

(Unit	:	Be%,	others	ppm)
-------	---	------	--------	------

Elemente	Standar	rd value			No.Be-2						
Elements	Lower	Upper	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	
Be	98	_	98.67	98.41	98.44	98.36	98.41	98.36	98.65	98.64	
Fe		1600	960	1020	740	700	800	930	1230	1210	
С		1500	950	810	1050	930	1030	920	650	650	
Al		1000	430	500	230	260	250	220	240	270	
Mg		500	40	50	70	70	80	90	30	30	
Si	_	800	260	240	210	280	210	190	260	280	
Ν		500	280	290	290	330	310	320	200	200	
Mn		150	50	50	60	80	50	50	80	80	
Cr		200	60	60	50	60	50	50	100	100	
Ni		300	140	120	120	150	120	100	170	160	
Ag		10	7	8	7	8	7	8	<1	<1	
Ca		200	70	70	60	80	60	60	<200	<200	
Co		$5 \sim 10$	<5	<5	<5	<5	<5	<5	<5	<5	
Cu		150	80	60	80	60	70	80	50	50	
Cd	_	2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
Mo		20	<8	<8	<8	<8	<8	<8	<10	<10	
Pb		20	<5	<5	<5	<5	<5	<5	10	3	
Li	_	3	1.1	1	1.2	1.1	1.2	1.1	<1	<1	
В		$2\sim\!\!5$	<2	<2	<2	<2	<2	<2	<1	<1	
Cl	_	400	28	30	22	72	22	18	<50	<50	
т			P-3(1	E2W)	P-4	(E1)	P-5(1	E3W)	Lot No.628		
1	vemarks		*	(1	*	1	*	(1	*	2	

%1 : Sample No.5

&2: Sample No.6

Table 5Chemical components listed in the mill test certificate of the beryllium (2/2)

(Unit : B	e%, others	ppm)
-----------	------------	------

Elemente	Standar	rd value	No.	Be-3	No.	Be-4	No.	Be-5	No.	Be-6
Elements	Lower	Upper	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom
Be	98	—	99.0	98.9	99.29	99.24	98.86	98.96	99.14	99.01
Fe	—	1600	730	722	890	890	990	995	1030	1050
С	—	1500	1400	1060	1040	850	1250	730	520	680
Al	—	1000	380	380	300	300	375	380	420	260
Mg	—	500	260	290	100	295	100	270	130	160
Si	—	800	300	270	280	280	275	270	280	255
Ν	—	500	242	254	245	195	250	240	240	235
Mn	_	150	45	50	50	50	80	80	85	100
Cr	—	200	75	70	70	70	85	90	65	65
Ni	—	300	100	100	90	95	120	120	125	125
Ag	—	10	<3	<3	<3	<3	<3	<3	<3	<3
Ca	—	200	<85	<85	<20	<20	<20	<20	<20	<20
Со	_	$5 \sim 10$	9	9	7	8	4	5	4	4
Cu	_	150	50	55	20	15	65	60	50	50
Cd	—	2	<2	<2	<2	<2	<2	<2	<2	<2
Mo	_	20	10	10	<20	<20	<8	<8	<20	<20
Pb	_	20	<6	<6	<20	<20	<6	<6	<20	<20
Li	—	3	<3	<3	<3	<3	<3	<3	<3	<3
В	_	$2\sim\!\!5$	3	2.7	<2	<2	<2	<2	<2	<2
Cl		400	<25	<25	<5	<5	50	35	<400	<400
I	Remarks		Lot N	0.2318	Lot N	0.4283	Lot N ×	0.4996 <3	Lot N	o.5113

₩3 : Sample No.7

No	Structural	Quantity	Main	Manufacturing	Manufacturar
110.	material name	quantity	material	year	Manufacturei
	Control rod			S49-	
—	(Neutron absorber)	10		(1067)	
	(No.1-10)			(1967-)	
	Control rod			S45-	Nuclear Meterials and
—	(Neutron absorber)	2		(1070-)	Fauinment Corneration
	(No.11-12)			(1970)	Equipment Corporation
	Control rod			SAC-	
—	(Neutron absorber)	1		546^{-1}	
	(No.13)			(1971)	
	Control rod			CC2-U2	
Hf-1	(Neutron absorber)	5	Hf	563°FI2 (1088-1000)	
	(No.14-18)			(1988-1990)	
	Control rod			119-114	
	(Neutron absorber)	3		П3 ⁻ П4 (1001-1009)	
IICO	$(No.19-21)^{st_1}$			(1991-1992)	0
HI-Z	Control rod			117-110	Cezus
	(Neutron absorber)	3		П/-П8 (1005 1000)	
	(No.22-24) ^{**} 2			(1995-1996)	
	Control rod			U10-U11	
Hf-3	(Neutron absorber)	3		HIU-HII (1000-1000)	
	(No.25-27) ^{**} 3			(1998-1999)	

Table 6 Manufacturing history of the hafnium

%1: Sample No.10. The analysis sample is a preliminary welding test piece made from the same lot.

₩2 : Sample No.8

¾3∶Sample No.9

\sim -																													
, Others ppm		Bottom	>95.3	0.47	<10		45	°5 ℃	<10	9	<10	<10	о Ч	17	<50	<10	250		<10	<30	<50	<10	<0.5	<10	<15	<10	317	<30	
nit : Hf, Zr%,	Hf-3	Middle	>95.3	0.49	<10		40	Å Ö	<10	3	<10	<10	x	21	<50	<10	320		<10	<30	<50	10	<0.5	<10	21	<10	350	<30	246459×2
(U)		Top	>95.3	0.59	<10		36	ю V	<10	5	<10	<10	ы Ч	14	<50	<10	300		<10	<30	<50	10	<0.5	<10	<15	<10	311	<30	
		Bottom	>95.3	0.83	<10		27	ю У	<10	33	<10	<10	о Ч	26	<50	<10	240		<10	<25	<50	<10	<0.5	<10	<10	<10	<20	<30	
		M-Bottom	>95.3	0.86	<10		18	ло V	<10	<3	<10	<10	ло С	16	<50	<10	280		<10	<25	<50	<10	<0.5	<10	<10	<10	<20	<30	
	Hf-2	M-Middle	>95.3	0.87	<10	<0.4	13	ло V	10	4	<10	<10	ы Ч	27	<50	<10	270	2°	<10	<25	<50	<10	<0.5	<10	<10	<10	<20	<30	240672×1
		M-Top	>95.3	0.86	<10	<0.4	13	22 V	10	6 2	<10	<10	ъ	30	09>	<10	270	2>	<10	<25	<50	<10	2.0>	<10	<10	<10	<20	<30	
		Top	>95.3	0.8	<10	<0.4	21	NO V	17	3	<10	<10	9	31	<50	<10	280	<u>?</u> >	<10	<25	<50	<10	<0.5	<10	14	<10	<20	<30	
	-1	Bottom	>98	1.05	<10		25	N V	<10	6	<10	<10	ло V	34	<50	<10	330		<10	<25	<50	<10	<0.5	<10	<10	<10	43	<30	437
	Hf	Top	>98	1.05	<10		36	ې ۲	<10	9	<10	<10	N N	25	<50	<10	210		<10	<25	<50	<10	<0.5	<10	<10	<10	41	<30	222
	d value	Upper		4.5	100		150		100	25			20	100	100	50	400			100	200	100	10	50	150	100	$250{\sim}500$	50	
	Standar	Lower	95.3						_						_		_			_			_						Remarks
	Flomonto	FIEIDER	Hf	Zr	Al	В	C	ပိ	Cu	Η	Mg	Mn	M_{O}	z	Nb	Ni	0	Ь	Pb	\mathbf{Si}	Ta	Ti	U	Λ	M	\mathbf{Cr}	Fe	Sn	
	-									·			•	•								· · · · · ·		· · · · · ·	· · · · · ·				

Table 7Chemical components listed in the mill test certificate of the hafnium

※1 : Sample No.8, 10※2 : Sample No.9

JAEA-Data/Code 2024-016

- 15 -

	Standar	rd value	GLIGBOA	Standar	rd value	CLICADO	
Elements	Lower	Upper	SUS304	Lower	Upper	202030	
С	—	0.08	0.05	_	0.07	0.05	
Si	—	1.00	0.28	_	1.00	0.19	
Mn	—	2.00	1.73	_	1.00	0.92	
Р	_	0.045	0.038	_	0.040	0.020	
S	_	0.030	0.026	_	0.030	0.003	
Ni	8.00	8.00 10.50		3.00	5.00	4.36	
\mathbf{Cr}	18.00	20.00	18.83	15.00	17.50	15.04	
Cu	_	_	_	3.00	5.00	3.46	
Nb	_	_	_	0.15	0.45	0.28	
			N111693			N981547	
Kemarks	-	_	₩1	-	₩2		

 Table 8
 Chemical components listed in the mill test certificate of stainless steel

(Unit:%)

※1 : Sample No.12

2: Sample No.13

JAEA-Data/Code 2024-016

		Target		Analytical method
Atomic	Chemical	elements	CD MC	
No.	symbol	of analysis	GD-MS	Others
1	TT	\sim		Inert gas fusion - Thermal conductivity method
1	п	0		(Reference specification: JIS H 1619)
2	He			
3	Li	0	0	
4	Be	0	0	
5	В	0	0	
C	C	\bigcirc		Combustion - Infrared absorbing method
6	C	0		(Reference specification: JIS G 1211)
				Inert gas fusion - Thermal conductivity method
7	N	\bigcirc		(Reference specification: JIS G 1228) ^{**2}
1	IN	\bigcirc		Ammonia distillation separation indophenol blue absorptiometry
				(Reference specification: JIS G 1228) ^{**3}
0	0	\bigcirc		Inert gas fusion - Infrared absorbing method
0	0	0		(Reference specification: JIS G 1239)
9	F	\bigcirc^{*_1}	\bigcirc	
10	Ne			
11	Na	0	0	
12	Mg	0	0	
13	Al	0	0	
14	Si	0	0	
15	Р	0	0	
16	S	0	0	
17	Cl	0	0	
18	Ar			
19	K	0	0	
20	Ca	0	0	
21	Sc	0	0	
22	Ti	0	0	
23	V	0	0	
24	Cr	0	0	
25	Mn	0	0	
26	Fe	Õ	Õ	
27	Со	Õ	Õ	
28	Ni	Õ	Õ	
29	Cu	Õ	Õ	
30	Zn	Õ	Õ	
31	Ga	0	Õ	
32	Ge	Õ	Õ	
33	As	Õ	Õ	
34	Se	0	$\widetilde{\bigcirc}$	
35	Br	0	$\widetilde{\bigcirc}$	
36	Kr		<u> </u>	
37	Rb	0	\bigcirc	
38	Sr	0	0	
39	Y	<u> </u>	$\overline{\bigcirc}$	
40	Zr	0	0	
41	Nh	0	$\overline{\bigcirc}$	
42	Mo	0	0	
43	Te	\bigcirc	\cup	
44	Ru	0	\bigcirc	
45	Rh	0	0	
46	Pd	<u> </u>	$\overline{\bigcirc}$	

Table 9 Ta	arget elements	of analysis (1/2
------------	----------------	------------------

JAEA-Data/Code 2024-016

Atomio	Chamical	Target		Analytical method
No.	symbol	elements of analysis	GD-MS	Others
47	Ag	0	0	
48	Cd	0	0	
49	In	0	0	
50	Sn	0	0	
51	Sb	0	0	
52	Te	0	0	
53	Ι	\bigcirc^{*1}	0	
54	Xe			
55	Cs	0	0	
56	Ba	0	0	
57	La	0	0	
58	Се	0	0	
59	Pr	0	0	
60	Nd	0	0	
61	Pm			
62	Sm	0	0	
63	Eu	0	0	
64	Gd	0	0	
65	Tb	0	0	
66	Dy	0	0	
67	Ho	0	0	
68	Er	0	0	
69	Tm	0	0	
70	Yb	0	0	
71	Lu	0	0	
72	Hf	0	0	
73	Ta	0	0	
74	W	0	0	
75	Re	0	0	
76	Os	0	0	
77	Ir	0	0	
78	Pt	0	0	
79	Au	0	0	
80	Hg	0	0	
81	Tl	0	0	
82	Pb	0	0	
83	Bi	0	0	
84	Po			
85	At			
86	Rn			
87	<u>Fr</u>			
88	Ra			
89	Ac			
90	Th	0		Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
91	Pa			
92	U	0		Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
%1 : Exce	ept Sample I	No.1		

Table 9Target elements of analysis (2/2)

Glow Discharge Mass Spectrometer (GD-MS)						
Analyzer	Glow Discharge Mass Spectrometer					
	Astrum (Nu Instruments)					
Gas discharge	High-purity argon					
Discharge condition	2mA 1kV					
Resolution	About 4000					
Reset time	Faraday cup: 100 msec $\times 100$ ch $\times 1$ scan					
	Multiplier : $100 \sim 320$ msec $\times 100$ ch $\times 1 \sim 5$ scan					

Table 10 Main specifications of the analyzer used

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)						
Analyzer Inductively Coupled Plasma Mass Spectrometry						
	Agilent 7700x (Agilent Technologies)					

Inert gas fusion - Thermal conductivity method or Infrared absorbing method						
Analyzer	Hydrogen analyzer RH-404 (LECO)					
	Oxygen nitrogen argon analyzer					
EMGA-920 type-Ar (HORIBA, Ltd.)						

Combustion - Infrared absorbing method							
Analyzer	Carbon sulfur analyzer						
	CS-844 (LECO)						

Ammonia distillation separation indophenol blue absorptiometry							
Analyzer	Ultraviolet and visible spectrophotometer						
UV-2600 (Shimadzu Corporation)							

Atomio	Chamical				Result	s (pp	m)			A	CD.	CD/Arra
No	ormhol	Sar	nple No.1	San	nple No.2	Sar	nple No.3	San	nple No.4	Avg (nnm)	(nnm)	SDIAvg
10.	symbol	(A6063)	((A5052)		A6061)	(A1050)	(ppm)	(ppm)	(%)
1	Н	<	1	<	1	<	1	<	1	1		_
2	He											
3	Li		0.05	<	0.01	<	0.01		0.05	0.03	0.02	77.0
4	Be		0.06		0.54		0.94		0.01	0.39	0.44	113.3
5	В		1.2		1.8		2		2.9	2.0	0.7	35.7
6	С	<	50	<	50	<	50	<	50	50		—
7	Ν	<	10	<	10	<	10	<	10	10	—	_
8	0	<	50	<	50	<	50	<	50	50		—
9	F		_		0.02^{*1}		0.03^{*1}		$0.51^{st_{1}}$	0.19	0.28	150.0
10	Ne											
11	Na		0.70		0.03		0.07		0.27	0.27	0.31	114.7
12	Mg		5000		24000		8400		92	9373	10330	110.2
13	Al		Matrix		Matrix		Matrix		Matrix			
14	Si		4200		1000		6500		920	3155	2703	85.7
15	Р		1.7		3.2		1.4		1.9	2.1	0.8	38.7
16	S		0.20		0.97		0.45		0.15	0.44	0.38	84.8
17	Cl		0.11^{*1}		$2.9^{\%1}$		1^{*1}		0.05^{*1}	1.0	1.3	131.0
18	Ar											
19	Κ	<	0.01		0.05		0.05		0.08	0.05	0.03	60.5
20	Ca		0.67	<	0.01		0.29		1.1	0.52	0.47	91.4
21	Sc		0.08		0.04		0.06		0.04	0.06	0.02	34.8
22	Ti		48		51		430		190	179.8	179.5	99.9
23	V		55		37		73		74	60	18	29.3
24	Cr		37		2600		1100		11	937	1219	130.1
25	Mn		110		170		340		32	163	131	80.3
26	Fe		2000		2700		3600		2600	2725	660	24.2
27	Со		0.92		0.71		1.6		0.56	0.95	0.46	48.5
28	Ni		25		21		64		34	36	19	54.0
29	Cu		210		650		2200		90	788	972	123.4
30	Zn		200		110		320		62	173	113	65.6
31	Ga		110		120		120		110	115	6	5.0
32	Ge		1.1		0.56		0.58		0.6	0.7	0.3	36.7
33	As		0.06		0.02		0.04		0.04	0.04	0.02	40.8
34	Se	<	0.01		0.12	<	0.01	<	0.01	0.04	0.06	146.7
35	Br	<	0.01^{*1}		0.17^{*1}		0.08^{*1}	<	0.01^{*1}	0.07	0.08	112.4
36	Kr											
37	Rb	<	0.01^{*1}	<	0.01^{*1}	<	0.01^{*1}	<	0.01^{*1}	0.01		
38	\mathbf{Sr}		0.14		0.12		1.4		0.75	0.603	0.607	100.7
39	Y		0.17		0.06		0.16		0.06	0.11	0.06	54.0
40	Zr		12		7.3	İ	36		5.8	15	14	92.1
41	Nb		0.21		0.3		0.39		0.19	0.27	0.09	33.7
42	Mo		0.22		1.2		3.3		1.9	1.7	1.3	78.3
43	Tc											
44	Ru	<	0.01		0.05		0.1	<	0.01	0.043	0.043	100.5
45	Rh		0.65		0.76		0.51		0.87	0.7	0.2	22.1
46	Pd	<	0.01	<	0.01		0.09		0.02	0.03	0.04	118.8

 Table 11
 Results of elemental composition analysis of the aluminum alloy (1/2)

%1 : GD-MS is RSF (Relative Sensitivity Factors) converted concentration expressed with Al as 100%. For elements whose RSF is unknown, analysis values are calculated using ionic strength.

Atomia	Chomical				Result	s (pp	m)			Δυσ	SD	SD/Aug
No	oumbol	Sar	nple No.1	Sar	nple No.2	Sar	nple No.3	Sar	nple No.4	(nnm)	(nnm)	(04)
110.	Symbol	(A6063)	(A5052)	(A6061)	(A1050)	(ppiii)	(ppiii)	(70)
47	Ag		0.08		0.04		0.19		0.03	0.09	0.07	86.2
48	Cd		0.40		0.14		0.41		0.24	0.3	0.1	43.9
49	In		0.22		0.15		0.09		0.22	0.2	0.1	36.9
50	Sn		12		6.6		7.2		2	7	4	58.9
51	Sb		0.03	<	0.01		0.08	<	0.01	0.03	0.03	101.7
52	Te	<	0.01	<	0.01	<	0.01	<	0.01	0.01	—	_
53	Ι		_	<	0.01^{st_1}	<	0.01^{st_1}	<	0.01^{st_1}	0.01		
54	Xe											
55	\mathbf{Cs}	<	0.01^{st_1}	<	0.01^{st_1}	<	0.01^{*1}	<	0.01^{st_1}	0.01		
56	Ba	<	0.01	<	0.01	<	0.01		0.02	0.013	0.005	40.0
57	La		0.46		0.08		0.26		0.15	0.24	0.17	69.8
58	Се		0.56		0.11		0.43		0.27	0.34	0.20	57.0
59	Pr		0.08		0.02		0.05		0.04	0.05	0.03	52.6
60	Nd		0.27		0.12		0.2		0.13	0.18	0.07	38.8
61	Pm		0.21		011				0110	0110	0101	00.0
62	Sm		0.02	<	0.01	<	0.01	<	0.01	0.013	0.005	40.0
63	Eu	<	0.01	<	0.01	<	0.01	<	0.01	0.010		
64	Gd	-	0.01	<	0.01		0.01	<	0.01	0.01	0.03	111 1
65	Th	<	0.00	~	0.01	<	0.01	~	0.01	0.02	0.00	
66	Dy	`	0.01	~	0.01		0.01	~	0.01	0.01	0.02	100.0
67	Но	/	0.00	~	0.01	~	0.01	~	0.01	0.02	0.02	100.0
68	Fr	`	0.01	~	0.01	_	0.01		0.01	0.01	0.005	40.0
60	Tm	/	0.02	~	0.01	/	0.01	~	0.01	0.013	0.005	40.0
70	Vh	`	0.01	~	0.01	~	0.01		0.01	0.01		
70	10	/	0.01	< _	0.01	\ _	0.01	\ _	0.01	0.01		
71	Lu Lf	/	0.01	`	0.01	<u> </u>	0.01	`	0.01	0.01	0.26	07.9
72	<u>п</u> і	_	1.82	-	0.16		0.41	_	0.15	0.41	0.36	81.3
73	1a w	<	0.50	<	2.~2	<	0.5 ⁻²	<	0.9**2	1.1	0.6	58.0 20.0
74	W D.	-	0.00	-	0.28		0.45		0.24	0.38	0.15	39.0
75	Re	<	0.01	<	0.01	<	0.01	<	0.01	0.01		
76	Us	<	0.01*1	<	0.01	<	0.01	<	0.01	0.01		
77	lr Di	<	0.01	<	0.01	<	0.01	<	0.01	0.01		
78	Pt	<	0.01	<	0.01	<	0.01	<	0.01	0.01		
79	Au	<	0.01	<	0.01		0.02	<	0.01	0.013	0.005	40.0
80	Hg	<	0.01	<	0.01	<	0.01	<	0.01	0.01		
81	TI		0.20		0.14		0.11		0.42	0.22	0.14	64.4
82	Pb		16		25		21		25	22	4	19.6
83	Bi		1.3		5.1		4.7		0.05	2.8	2.5	89.6
84	Po											
85	At											
86	Rn											
87	Fr											
88	Ra											
89	Ac											
90	Th		0.086		0.13		0.12		0.072	0.10	0.03	26.9
91	Pa											
92	U		0.81		1.7		0.8		0.44	0.94	0.54	57.2

Table 11Results of elemental composition analysis of the aluminum alloy (2/2)

%1: GD-MS is RSF (Relative Sensitivity Factors) converted concentration expressed with Al as 100%. For elements whose RSF is unknown, analysis values are calculated using ionic strength.

2 : Regarding Ta, the analysis value includes contamination from discharge cells, etc.

Atomia	Chomical		Res	ults (ppm)			Δυσ	SD	SD/Avg
No	symbol	Sample No.5	Sai	mple No.6	Sar	nple No.7	(nnm)	(nnm)	(%)
140.	Symbol	(Be)		(Be)		(Be)	(ppiii)	(ppiii)	(70)
1	Н	< 1		1		1	1		
2	He								
3	Li	0.67	<	0.01	<	0.01	0.2	0.4	165.7
4	Be	Matrix		Matrix		Matrix			
5	В	0.59		0.47		1.2	0.8	0.4	52.0
6	С	1200		600		800	867	306	35.3
7	N	< 500	<	500	<	500	500		
8	0	5900		6200		7100	6400	624	9.8
9	F	0.18^{*1}		0.05^{*1}		0.09^{*1}	0.11	0.07	62.4
10	Ne								
11	Na	0.25		0.07		0.15	0.16	0.09	57.6
12	Mg	120		1.8		100	74	63	85.6
13	Al	210		120		140	157	47	30.2
14	Si	190		120		120	143	40	28.2
15	Р	2.7		1.8		0.54	1.7	1.1	64.6
16	S	6.8		9.9		9.3	8.7	1.6	19.0
17	Cl	6.2^{*1}		3.7^{*1}		7.5^{*1}	5.8	1.9	33.3
18	Ar								
19	K	0.44	<	0.01		1	0.48	0.50	102.7
20	Ca	7		3.8		1.7	4.2	2.7	64.1
21	Sc	1.4		0.59		0.14	0.7	0.6	89.9
22	Ti	41		17		7.9	22	17	77.8
23	V	1.3		0.68		2	1.3	0.7	49.8
24	Cr	38		41		40	40	2	3.9
25	Mn	22		25		30	26	4	15.7
26	Fe	360		470		330	387	74	19.1
27	Co	1.6		3		1.8	2.1	0.8	35.5
28	Ni	69		78		50	66	14	21.8
29	Cu	31		33		26	30	4	12.0
30	Zn	0.1		0.38		0.43	0.3	0.2	58.6
31	Ga	0.22	-	0.08		0.13	0.14	0.07	49.5
32	Ge	< 0.01	<	0.01	<	0.01	0.01		
33	As	0.03	-	0.02		0.03	0.03	0.01	21.7
34	Se	< 0.01	<	0.01	<	0.01	0.01		
35	Br	3.9^{*1}	_	16^{*1}		0.58^{*1}	7	8	118.9
36	Kr	×.		a. a.t. ¥4		0.01×1			
37	Rb	< 0.01*1	<	0.01*1	<	0.01*1	0.01		
38	Sr	0.11		0.06		0.02	0.06	0.05	71.2
39	Y	< 0.01		0.03		0.06	0.03	0.03	75.5
40	Zr	2.1		1.4		8.6	4.0	4.0	98.4
41	Nb	0.21	-	0.18		0.12	0.17	0.05	27.0
42	Mo	4.7		3		3	4	1	27.5
43	Tc			0.01		0.61	0.01		
44	Ku Fl	< 0.01	<	0.01	<	0.01	0.01		
45	Kh	< 0.01	<	0.01	<	0.01	0.01		
46	Pd	< 0.01	<	0.01	<	0.01	0.01		

 Table 12
 Results of elemental composition analysis of the beryllium (1/2)

1 : GD-MS is RSF (Relative Sensitivity Factors) converted concentration expressed with Be as 100%. For elements whose RSF is unknown, analysis values are calculated using ionic strength.

Atomic	Chomical			Res	ults (ppm)			Δνα	SD	SD/Avg
No	symbol	Sar	nple No.5	Sai	nple No.6	Sar	nple No.7	(nnm)	(nnm)	(%)
110.	symbol		(Be)		(Be)		(Be)	(ppiii)	(ppiii)	(70)
47	Ag		1.4		0.45		0.15	0.67	0.65	97.9
48	Cd	<	0.01	<	0.01	<	0.01	0.01		
49	In		2.4		1.3		0.04	1.25	1.18	94.7
50	Sn		2.3		0.3		0.13	0.9	1.2	132.6
51	Sb		0.05		0.07		0.17	0.10	0.06	66.5
52	Te	<	0.01	<	0.01	<	0.01	0.01		
53	Ι		0.01^{st_1}		0.02^{*1}		0.01^{*1}	0.013	0.006	43.3
54	Xe									
55	Cs	<	0.01^{st_1}	<	0.01^{*1}	<	0.01^{*1}	0.01		
56	Ba	<	0.01	<	0.01	<	0.01	0.01		
57	La	<	0.01	<	0.01	<	0.01	0.01		
58	Се		0.02	<	0.01		0.06	0.030	0.026	88.2
59	Pr	<	0.01	<	0.01	<	0.01	0.01		
60	Nd	<	0.01	<	0.01		0.04	0.020	0.017	86.6
61	Pm									
62	Sm	<	0.01	<	0.01	<	0.01	0.01		
63	Eu	<	0.01	<	0.01	<	0.01	0.01		
64	Gd	<	0.01	<	0.01	<	0.01	0.01		
65	Tb	<	0.01	<	0.01	<	0.01	0.01		
66	Dv	<	0.01	<	0.01	<	0.01	0.01		
67	Ho	<	0.01	<	0.01	<	0.01	0.01		
68	Er	<	0.01	<	0.01	<	0.01	0.01		
69	Tm	<	0.01	<	0.01	<	0.01	0.01		
70	Yh	<	0.01	<	0.01	<	0.01	0.01		
71	Lu	<	0.01	<	0.01	<	0.01	0.01		
72	Hf		0.05		0.05	-	0.13	0.01	0.05	60.2
73	Та	<	5^{*2}	<	5^{*2}	<	6*2	5.3	0.6	10.8
74	W		85		51	-	53	6	2	30.3
75	Re	<	0.01	<	0.01	<	0.01	0.01		00.0
76	08	<	0.01 ^{%1}	<	0.01 ^{%1}	<	0.01 ^{*1}	0.01		
77	Ir	<	0.01	<	0.01	<	0.01	0.01		
78	Pt		0.09		0.06	<	0.01	0.05	0.04	75.8
79	Au	<	0.01		0.25		3.6	1.3	2.0	156.0
80	Hø	<	0.01	<	0.01	<	0.01	0.01		10010
81	 T1	<	0.01	<	0.01	<	0.01	0.01		
82	Ph		0.52		0.99		0.24	0.6	0.4	65.0
83	Bi		0.34		21	<	0.01	0.8	11	137.6
84	Po		5.51				5.01	0.0		_00
85	At									
86	Rn									
87	Fr									
88	Ra									
89	Ac									
90	Th		0.82		0.19		0.1	0.37	0.39	106.0
91	Ря		0.04		0.10		0.1	0.01	5.60	100.0
92	U		6		30		55	30	25	80.8
~-		1	5	1	00	1	00			00.0

Table 12Results of elemental composition analysis of the beryllium (2/2)

 $\%1: {\rm GD-MS} \ {\rm is} \ {\rm RSF} \ ({\rm Relative \ Sensitivity \ Factors}) \ {\rm converted \ concentration \ expressed \ with \ Be \ as} \ 100\%. \ {\rm For \ elements \ whose \ RSF} \ {\rm is \ unknown, \ analysis \ values \ are \ calculated \ using \ ionic \ strength}.$

2 : Regarding Ta, the analysis value includes contamination from discharge cells, etc.

Atomic	Chemical			Resi	ults (ppm)			Δνσ	SD	SD/Avg
No	symbol	Sar	nple No.8	Sar	nple No.9	Sar	nple No.10	(nnm)	(nnm)	(%)
110.	Symbol		(Hf)		(Hf)		(Hf)	(ppiii)	(ppiii)	(70)
1	Н		2		3	<	1	2	1	50.0
2	He									
3	Li	<	0.01	<	0.01	<	0.01	0.01		
4	Be	<	0.01	<	0.01	<	0.01	0.01		
5	В		0.02		0.05		0.02	0.03	0.02	57.7
6	С	<	20		50	<	20	30	17	57.7
7	N	<	50	<	50	<	50	50		
8	0		280		340		260	293	42	14.2
9	F		0.05^{*1}		0.31^{*1}		0.22^{*1}	0.19	0.13	68.3
10	Ne									
11	Na	<	0.01	<	0.01		0.01	0.01		
12	Mg	<	0.01	<	0.01	<	0.01	0.01		
13	Al		0.98		1.6		0.31	1.0	0.6	67.0
14	Si		4.1		9.1		4.7	6.0	2.7	45.8
15	Р		0.08		0.8		0.21	0.4	0.4	105.6
16	S		3.5		4.4		2.9	3.6	0.8	21.0
17	Cl		0.03^{*1}		0.07^{*1}		0.02^{*1}	0.04	0.03	66.1
18	Ar									
19	K	<	0.01	<	0.01	<	0.01	0.01		
20	Ca	<	0.01	<	0.01	<	0.01	0.01		
21	Sc		0.2		0.06		0.11	0.12	0.07	57.5
22	Ti		1.3		16		1.4	6.2	8.5	135.7
23	V		0.03		0.19		0.04	0.087	0.090	103.4
24	Cr		0.14		5.5		0.11	1.9	3.1	161.9
25	Mn	<	0.01		0.13	<	0.01	0.05	0.07	138.6
26	Fe		2.7		600		11	205	342	167.4
27	Co	<	0.01		1.6		0.02	0.5	0.9	168.4
28	Ni		2.2		13		3.4	6.2	5.9	95.5
29	Cu		1.5		1.9		2.3	1.9	0.4	21.1
30	Zn	<	0.01	<	0.01	<	0.01	0.01		
31	Ga	<	0.01	<	0.01	<	0.01	0.01		
32	Ge	<	0.01	<	0.01	<	0.01	0.01		
33	As	<	0.01		0.06	<	0.01	0.027	0.029	108.3
34	Se	<	0.01	<	0.01	<	0.01	0.01		
35	Br	<	0.01^{*1}	<	0.01^{*1}	<	0.01^{*1}	0.01		
36	Kr									
37	Rb	<	0.01^{*1}	<	0.01**1	<	0.01^{*1}	0.01		
38	Sr	<	0.01		0.03	<	0.01	0.02	0.01	69.3
39	Y	<	0.01	<	0.01	<	0.01	0.01		
40	Zr		12000		5300		13000	10100	4187	41.5
41	Nb		0.68		4.4		5.9	3.7	2.7	73.4
42	Mo		2.7		17		2.2	7.3	8.4	115.1
43	Tc									
44	Ru	<	0.01	<	0.01	<	0.01	0.01		
45	Rh	<	0.01	<	0.01	<	0.01	0.01		
46	Pd		0.04	<	0.01	<	0.01	0.020	0.017	86.6

 Table 13
 Results of elemental composition analysis of the hafnium (1/2)

1 : GD-MS is RSF (Relative Sensitivity Factors) converted concentration expressed with Hf as 100%. For elements whose RSF is unknown, analysis values are calculated using ionic strength.

Atomia	Chomical		Results (ppm)					Δ	SD	SD/Avg
No	symbol	Sar	nple No.8	Sai	nple No.9	Sar	nple No.10	(nnm)	(nnm)	(%)
110.	symbol		(Hf)		(Hf)		(Hf)	(ppiii)	(ppiii)	(70)
47	Ag	<	0.01	<	0.01	<	0.01	0.01		
48	Cd	<	0.01	<	0.01	<	0.01	0.01		
49	In	<	0.01	<	0.01	<	0.01	0.01		
50	Sn		0.15		0.37		0.13	0.2	0.1	61.5
51	Sb	<	0.01	<	0.01	<	0.01	0.01		
52	Te	<	0.01	<	0.01	<	0.01	0.01		
53	Ι	<	0.01^{st_1}	<	0.01^{st_1}	<	0.01^{st_1}	0.01		
54	Xe									
55	Cs	<	0.01^{st_1}	<	0.01^{*1}	<	0.01^{st_1}	0.01		
56	Ba	<	0.01	<	0.01	<	0.01	0.01		
57	La	<	0.01	<	0.01	<	0.01	0.01		
58	Се	<	0.01	<	0.01	<	0.01	0.01		
59	Pr	<	0.01	<	0.01	<	0.01	0.01		
60	Nd	<	0.01	<	0.01	<	0.01	0.01		
61	Pm									
62	Sm	<	0.01	<	0.01	<	0.01	0.01		
63	Eu	<	0.01	<	0.01	<	0.01	0.01		
64	Gd	<	0.01	<	0.01	<	0.01	0.01		
65	Th	<	0.01	<	0.01	<	0.01	0.01		
66	Dv	<	0.01	<	0.01	<	0.01	0.01		
67	Ho	<	0.01	<	0.01	<	0.01	0.01		
68	Er	<	0.01	<	0.01	<	0.01	0.01		
69	Tm	<	0.01	<	0.01	<	0.01	0.01		
70	Yh	<	0.01	<	0.01	<	0.01	0.01		
71	Lu	<	0.01	<	0.01	<	0.01	0.01		
72	Hf	-	Matrix		Matrix		Matrix	0.01		
73	Тя	<	4 ^{%2}	<	8 ^{%2}	<	7*2	6.3	2.1	32.9
74	W	-	12		34		11	19	13	68.4
75	Re	<	0.01	<	0.01	<	0.01	0.01	10	00.1
76	08	<	0.01 ^{%1}	<	0.01 ^{%1}	<	0.01 ^{%1}	0.01		
77	Ir	<	0.01	<	0.01	<	0.01	0.01		
78	Pt	<	0.01	<	0.01	<	0.01	0.01		
79	Au	<	0.01	<	0.01	<	0.01	0.01		
80	Ня	<	0.01	<	0.01	<	0.01	0.01		
81		<	0.01	<	0.01	<	0.01	0.01		
82	Ph	<	0.01	<	0.01	<	0.01	0.01		
83	Bi	<	0.01	<	0.01	<	0.01	0.01		
84	Po		0101		0101		0101	0101		
85	At									
86	Rn									
87	Fr									
88	Ra									
89	Ac									
90	Th		0.09		0.1		0.08	0.09	0.01	11 1
91	Pa		0.05		0.1		0.00	0.05	0.01	11.1
02	II	<	0.005	<	0.005	<	0.005	0.005		
54	0		0.000	1	0.000	L ~	0.000	0.000	1	1

Table 13Results of elemental composition analysis of the hafnium (2/2)

 $\%1: {\rm GD-MS} \text{ is RSF} ({\rm Relative \ Sensitivity \ Factors}) \text{ converted \ concentration \ expressed \ with \ Hf \ as } 100\%.$ For elements whose RSF is unknown, analysis values are calculated using ionic strength.

2 : Regarding Ta, the analysis value includes contamination from discharge cells, etc.

A	(1)			Results (ppm)				
Atomic	Chemical	Sar	nple No.11	Sample No.12	Sar	nple No.13		
INO.	symbol		(Pb)	(SUS304)	((SUS630)		
1	Н	<	1	2	<	1		
2	He				-			
3	Li	<	0.01	< 0.01	<	0.01		
4	Be	<	0.01	< 0.01	<	0.01		
5	В	<	0.01	1.4		2.3		
6	С		10	540		780		
7	Ν	<	50	830		480		
8	0	۷	50	80		26		
9	F	<	0.01^{*1}	$< 0.01^{*1}$	<	0.01^{st_1}		
10	Ne							
11	Na	۷	0.01	0.01	۷	0.01		
12	Mg	<	0.01	0.36		0.01		
13	Al		0.36	5.2		55		
14	Si	<	0.01	2100		1700		
15	Р	<	0.01	300		170		
16	S		0.15	210		26		
17	Cl		$0.05^{st_{1}}$	0.03^{*1}		0.02^{st_1}		
18	Ar							
19	Κ	<	0.01	0.01	<	0.01		
20	Ca	<	0.01	0.49		0.09		
21	Sc	<	0.01	0.03		0.03		
22	Ti	<	0.01	2.4		3.1		
23	V	<	0.01	1000		360		
24	Cr		0.02	150000		120000		
25	Mn	<	0.01	14000		7200		
26	Fe		0.06	790000		850000		
27	Со	<	0.01	1400		380		
28	Ni		0.02	70000		40000		
29	Cu		2.4	3500		27000		
30	Zn	<	0.01	4.5		3.6		
31	Ga	<	0.01	54		42		
32	Ge	<	0.01	31		20		
33	As		0.08	31		19		
34	Se	<	0.01	0.13	<	0.01		
35	Br	<	0.01^{*1}	< 0.01 ^{**} 1	<	0.01^{st_1}		
36	Kr							
37	Rb	<	0.01^{*1}	0.02^{*1}		0.02^{st_1}		
38	\mathbf{Sr}	<	0.01	0.4		0.19		
39	Y	<	0.01	0.09		0.06		
40	Zr		0.14	27		13		
41	Nb	<	0.01	120		2200		
42	Mo	<	0.01	2200		1600		
43	Tc							
44	Ru	<	0.01	0.22		0.16		
45	Rh	<	0.01	0.05		1.3		
46	Pd	<	0.01	0.24		0.21		

Table 14Results of elemental composition analysis of the lead and the stainless steel (1/2)

 46
 Pd
 < 0.01</td>
 0.24
 0.21

 %1 : GD-MS is RSF (Relative Sensitivity Factors) converted concentration expressed with Pb or Fe+Cr+Ni as 100%. For elements whose RSF is unknown, analysis values are calculated using ionic strength.

A	01			Results (ppm)					
Atomic	Chemical	Sar	nple No.11	San	nple No.12	San	nple No.13		
INO.	symbol		(Pb)	(SUS304)	G	SUS630)		
47	Ag		1.5		0.52		0.22		
48	Cd		0.08	<	0.01		0.02		
49	In		0.12	<	0.01		0.02		
50	Sn		170		110		18		
51	Sb		1.2		15		3.3		
52	Te		0.01	<	0.01	<	0.01		
53	Ι	<	0.01^{st_1}	<	0.01^{st_1}	<	$0.01^{\%1}$		
54	Xe								
55	Cs	<	0.01^{*1}	<	0.01^{*1}	<	0.01^{st_1}		
56	Ba	۷	0.01	<	0.01	<	0.01		
57	La	<	0.01	<	0.01	<	0.01		
58	Се	<	0.01	<	0.01	<	0.01		
59	Pr	<	0.01	<	0.01	<	0.01		
60	Nd	<	0.01	<	0.01	<	0.01		
61	Pm								
62	Sm	<	0.01	<	0.01	<	0.01		
63	Eu	<	0.01	<	0.01	<	0.01		
64	Gd	<	0.01	<	0.01	<	0.01		
65	Tb	<	0.01	<	0.01	<	0.01		
66	Dy	<	0.01	<	0.01	<	0.01		
67	Ho	<	0.01	<	0.01	<	0.01		
68	Er	<	0.01	<	0.01	<	0.01		
69	Tm	<	0.01	<	0.01	<	0.01		
70	Yb	<	0.01	<	0.01	<	0.01		
71	Lu	<	0.01	<	0.01	<	0.01		
72	Hf	۷	0.01	<	0.01	<	0.01		
73	Та	<	0.01^{st_2}	<	1^{*2}	<	5^{st_2}		
74	W	<	0.01		240		60		
75	Re	۷	0.01		0.54		0.17		
76	Os	<	0.01^{st_1}		$0.06^{st_{1}}$		0.05^{st_1}		
77	Ir	۷	0.01		0.1		0.06		
78	Pt	<	0.01		0.37		0.16		
79	Au		0.01		0.06		0.02		
80	Hg	<	0.01	<	0.01	<	0.01		
81	Tl		2.6	<	0.01	<	0.01		
82	Pb		Matrix		0.06		0.31		
83	Bi		13	<	0.01	<	0.01		
84	Po								
85	At								
86	Rn								
87	Fr								
88	Ra								
89	Ac								
90	Th	<	0.005	<	0.005	<	0.005		
91	Pa								
92	U	<	0.005	<	0.005	<	0.005		

Table 14Results of elemental composition analysis of the lead and the stainless steel (2/2)

Section 2 1 C 1 C 0.003 C 0.003 C 0.003 S 0.005 S

*2 : Regarding Ta, the analysis value includes contamination from discharge cells, etc.

Fig. 1 Outline diagram of the aluminum reflector and aluminum plug (C-type) (from drawing and specification)

Fig. 2 Outline diagram of the aluminum reflector and aluminum plug (E-type) (from literature¹³⁾)

Fig. 3 Outline diagram of the aluminum reflector and aluminum plug (F-type) (from literature¹⁴⁾)

Fig. 4 Outline diagram of the hydraulic rabbit (from drawing and specification)

Fig. 5 Outline diagram of the beryllium plug (from drawing and specification)

Fig. 7 Analysis results and mill sheet values for main component elements of aluminum alloys

Fig. 8 Plot of all elemental composition data including analytical data from other facilities of the aluminum $alloy^{3)4)5)12)}$

Fig. 9 Analysis results and mill sheet values for main component elements of beryllium

Fig. 10 Plot of all elemental composition data of the beryllium

Fig. 11 Analysis results and mill sheet values for main component elements of hafnium

Fig. 12 Plot of all elemental composition data of the hafnium

Fig. 13 Plot of all elemental composition data of the lead

Fig. 14 Analysis results and mill sheet values for main component elements of stainless steel

Fig. 15 Plot of all elemental composition data of the stainless steel¹⁾²⁾³⁾⁴⁾

Sample No.1	Sample No.2	Sample No.3				
Aluminum reflector	Aluminum plug	Aluminum plug				
1 hole C type 42ϕ FR (C007) 1	hole E type 67 ϕ FR (E005)	1 hole F type 62ϕ FR (F04F)				

Photo 1 External appearance of the aluminum alloy (Samples No.1-3)

Photo 2 External appearance of the aluminum alloy (Sample No.4)

Sample No.5	Sample No.6	Sample No.7
Beryllium plug	Beryllium plug	Beryllium plug
ϕ 38Be for Be-frame (No.21)	ϕ 38Be for Be-frame (No.52)	ϕ 42Be for Be-frame (No.79)

Photo 3 External appearance of the beryllium (Samples No.5-7)

Sample No.8	Sample No.9	Sample No.10
Control rod (Hf-24)	Control rod (Hf-27)	Preliminary welding test piece
		of control rod
		CARACTER DE LA CONTRACTER DE LA C

Photo 4 External appearance of the hafnium (Samples No.8-10)

Photo 5 External appearance of the lead (Sample No.11)

Photo 6 External appearance of the stainless steel (Samples No.12-13)