1/1.8縮尺部分モデルによる原子炉容器内ガス巻込み特性の評価
－ガス巻込み発生マップによる支配因子の把握と発生メカニズムの解明－
Evaluation on Gas Entrainment in Reactor Vessel using 1/1.8th Scaled Model
- Investigation on Dominant Factors based on Occurrence Map
and Mechanism for Gas Entrainment -

木村 暢之 江連 俊樹 飛田 昭 伊藤 眞美*
上出 英樹
Nobuyuki KIMURA, Toshiki EZURE, Akira TOBITA, Masami ITOH* and Hideki KAMIDE

次世代原子力システム研究開発部門
機器開発グループ
Component and Fluid Engineering Group
Advanced Nuclear System Research and Development Directorate

October 2006
Japan Atomic Energy Agency
This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5901

© Japan Atomic Energy Agency, 2006
1/1.8 廃棄物モデルによる原子炉容器内ガス巻込み特性の評価
～ガス巻込み発生マップによる支配因子の把握と発生メカニズムの解明～

日本原子力研究開発機構 次世代原子力システム研究開発部門
FBRシステムユニット
木村 暦之、江連 俊樹、飛田 昭*、伊藤 真美*、上出 英樹

（2006年9月5日受理）

日本原子力研究開発機構ではFBR実用化戦略調査研究の一環として、ナトリウムを冷却材とした高速炉の開発を行っている。その設計では、経済性向上を図るためにプラントシステムのコンパクト化として、原子炉容器径に対する炉出力の増加を検討している。炉出力増加に伴い、冷却材の流速が上昇するため、原子炉容器内の自由液面からガスを巻込むことが懸念されている。そこで、本設計においては、自由液面の下方に水平板（ディッププレート、D/P）を設置することで、液面近傍の流速低下を図ることとしている。

ガス巻込み現象に対し、発生が懸念されている箇所を部分的にモデル化した装置により、試験を実施した。本試験では、波位や流速をパラメータとして、ガス巻込み発生条件マップを作成し、それによってガス巻込みの支配因子の抽出を行った。

ガス巻込みは、発生条件マップにより、大きく分類して2つのパターンで発生し、いずれも実機設計定格条件より大きく離れていることを確認した。一つは、周方向流速（水平流速）が大きくなることによって、コールドレグ配管の後流で発生する渦に起因して発生するものであり、もう一つは、下降流速の増加および液位の低下によって、H/L配管と容器壁の間の領域で発生するものであった。これらについて、粒子画像流速計測法を適用し、詳細な流速計測を行うことにより、発生メカニズムを解明した。

大洗研究開発センター（駐在）〒311-1393茨城県東茨城郡大洗町成田町4002
* 大洗研究開発センター、技術開発部
+ 常陽産業（株）
Evaluation on Gas Entrainment in Reactor Vessel using 1/1.8th Scaled Model
- Investigation on Dominant Factors based on Occurrence Map
and Mechanism for Gas Entrainment-

Nobuyuki KIMURA, Toshiki EZURE, Akira TOBITA*, Masami ITOH* and Hideki KAMIDE

FBR System Engineering Unit
Advanced Nuclear System Research and Development Directorate
Japan Atomic Energy Agency
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received September 5, 2006)

An innovative sodium cooled fast reactor has been investigated in a framework of the FBR feasibility study. A compact reactor vessel is designed to reduce the construction cost, where sodium flow velocity increases. One of the thermal hydraulic issues in this design is gas entrainment at free surface in the reactor vessel (R/V). Dipped plates (D/P) are set below the free surface in order to prevent the gas entrainment.

We performed a water experiment using a partial model where the gas entrainment might occur with large scale. The objectives are to see the occurrence condition and to find the mechanism of gas entrainment. The experimental parameters were water level and flow velocities.

It was found that there were two kinds of the gas entrainment phenomena under the extreme velocity conditions which were quite different from the rated condition in the reactor design. One of the gas entrainments occurred at the wake region of the cold leg (C/L) pipe. The occurrence of the gas entrainment in this type depends on the circumferential (horizontal) velocity. Other one breaks out at the region between the H/L pipe and the R/V wall. The occurrence of this type of gas entrainment depends on the downward velocity at the gap of the D/P and the water level. The mechanisms of the gas entrainment at the two regions were clarified by the transient and detailed measurement of flow velocity field using the Particle Image Velocimetry.

Keywords: FBR Feasibility Study, Innovative Sodium Cooled Fast Reactor, Upper Plenum, Gas Entrainment, Vortex, Particle Image Velocimetry, Occurrence Map

* Technology Development Department, Oarai Research and Development Center
* Joyo Sangyo Industry Co. Ltd.
目次

1. 序論 .. 1
2. 試験の概要 .. 2
 2.1 試験装置の概要 ... 2
 2.1.1 アドバンストループ型 Na 炉の形状 ... 2
 2.1.2 1/1.8 番号部分モデル試験装置の形状 ... 3
 2.2 試験条件と計測条件 .. 5
 2.2.1 試験条件 ... 5
 2.2.2 計測条件 ... 7
3. ガス巻込み発生条件の把握 ... 8
 3.1 ガス巻込み発生条件マップによる支配因子の抽出 8
 3.2 ガス巻込みの発生領域および発生頻度に対する支配因子の影響 9
4. ガス巻込み発生メカニズムの把握 .. 13
5. 結論 ... 16
謝辞 ... 17
参考文献 .. 18
Contents

1. Introduction ... 1

2. Overview of Experiment ... 2
 2.1 Overview of Experimental Apparatus ... 2
 2.1.1 Geometry of Advanced Sodium Cooled Fast Reactor 2
 2.1.2 Geometry of 1/1.8th Scaled Partial Model ... 3
 2.2 Experimental and Measurement Conditions ... 5
 2.2.1 Experimental Condition .. 5
 2.2.2 Measurement Condition ... 7

3. Evaluation on Onset Condition of Gas Entrainment ... 8
 3.1 Investigation on Dominant Factors using Occurrence Map of Gas Entrainment -- 8
 3.2 Effect of Dominant Factors on Region and Repetition 9
 of Occurrence of Gas Entrainment ... 9

4. Evaluation on Mechanism of Gas Entrainment ... 13

5. Conclusion .. 16

Acknowledgements .. 17

References ... 18
表リスト

表 2.1 1/1.8 縮尺部分試験モデルの主要諸元
表 2.2 試験条件とパラメータ

図リスト

図 2.1 原子炉容器構造
図 2.2 ディッププレート形状
図 2.3 1/10 縮尺全体モデルと 1/1.8 縮尺部分モデルの相対関係
図 2.4 1/1.8 縮尺部分モデルの構造
図 2.5 D/P 隙間部の構造（2重 D/P 体系）
図 2.6 D/P 隙間部ノズルならびに周方向流れを与える水平流路
図 2.7 部分モデル試験装置ループ系統
図 2.8 1/10 縮尺モデルで得られた UIS 切り込み側面方向断面内流速分布
図 2.9 1/10 縮尺モデルで得られた DHX 側面方向断面内流速分布
図 2.10 1/10 縮尺モデルで得られた D/P と構造物の隙間部鉛直方向流速の分布
図 2.11 実機流速一致条件としての D/P 隙間部ならびに径方向断面での流速境界条件
図 2.12 ガスコア長と水平断面速度計測の同時計測システム構成
図 3.1 ガス巻込み発生時の可視化画像とガス巻込み発生箇所
図 3.2 ガス巻込み発生マップ（周方向流速—液位）
図 3.3 ガス巻込み発生マップ（D/P 隙間部流速—液位）
図 3.4 ガス巻込み発生形態のパターン分類
図 3.5 H/L 配管前線部で発生するガス巻込み現象に対する周方向流速依存性
図 3.6 H/L 配管前線部で発生するガス巻込み現象に対する D/P 隙間部流速依存性
図 3.7 H/L 配管前線部で発生するガス巻込み現象に対する液位依存性
図 3.8 H/L 配管前線部でのガス巻込み発生頻度
図 3.9 H/L-R/V 間領域で発生するガス巻込み現象に対する周方向流速依存性
図 3.10 H/L-R/V 間領域で発生するガス巻込み現象に対する D/P 隙間部流速依存性
図 3.11 H/L-R/V 間領域で発生するガス巻込み現象に対する液位依存性
図 3.12 H/L-R/V 間領域でのガス巻込み発生頻度
図 3.13 液位と D/P 隙間部流速の比に対する H/L-R/V 間領域でのガス巻込み発生頻度
図 4.1 ガス巻込みの発生なし／発生あり条件における液面近傍の水平方向流況の比較
図 4.2 ガス巻込みの発生なし／発生あり条件における涡発生位置近傍の流速分布の比較
図 4.3 H/L 配管-R/V 壁の間のガス巻込みに対するガスコア速度場同時計測結果
図 4.4 渦とガスコアの発達過程の比較
図 4.5 淡水とガスコアの発達過程の比較
（試験ケース：未発生条件、水平断面計測位置：液面下 100mm）

図 4.6 淡水とガスコアの発達過程の比較
（試験ケース：未発生条件、水平断面計測位置：液面下 20mm）

図 4.7 淡水とガスコアの発達過程の比較
（試験ケース：発生条件、水平断面計測位置：液面下 100mm）
1. 序論

日本原子力研究開発機構（以下、原子力機構）で実施しているFBR実用化戦略調査研究[1]において、ナトリウム（Na）を冷却材とした高速炉が最も重要な候補として挙げられている。このNa炉においては、安全性を十分確保した上で、将来の軽水炉と同等のコストパフォーマンスを有する炉とするために、近年のNa炉の設計（日本原子力発電株式会社が実施した実証炉設計研究[2]）と比べ、システムを大幅に簡素化・コンパクト化した設計（アドバンストループ型Na炉）が進められている[3]。

その結果、原子炉容器上部プレナム内の流速が実証炉に比べ、大幅に増加するとともに、制御棒guided弁とその支持構造などからなる炉上部機構内部に切り込みがあるために、局所的に流速の大きい領域が生じる。本設計では実証炉と同様に、炉容器上部のデッキを低圧に保つために、上部にはカバーガス空間が設けられており、炉上部プレナムは自由流面を有する体系となっている。これらの点から、液面からのガス巻き込みの発生が懸念されている。

そこで、アドバンストループ型Na炉では、自由流面の下方に水平板（ディッププレート；D/P）を設置し、炉心出口からのナトリウムが大きな流速を維持したまま直接流面に到達することを防止する構造が実装されている。しかしながら、炉上部プレナムには、各種構造物（ホットプレ格配管、コールドレグ配管、など）が上部から挿入されているため、D/Pと構造物の間には、耐熱性の観点から、ある程度の隙間の確保が必要である。同様に、炉容器とD/Pの間においても隙間を有しているため、これらの隙間を通る流れに起因したガス巻き込みの発生を考慮する必要がある。

原子力機構では、アドバンストループ型Na炉のガス巻き込み現象を評価するために、いくつかの試験装置を組み合わせて試験を実施している。ガス巻き込み現象においては、実証炉研究においてスケール効果を実験的に検討[4][5]しており、縮尺の大きい試験で評価する必要があることが示されている。そこで、形状を詳細にモデル化した大スケールの試験ではなく、比較的小規模（1/10縮尺全体モデル[6]）な試験において炉上部プレナム内の流れを最適化した上で、その結果から得られた境界条件を用いてガス巻き込み現象に支配的な領域を部分的に取り出し、種々の条件でガス巻き込みの発生条件を把握できる実規模試験装置（1/1.8縮尺全体モデル[7]）を製作した。すなわち、1/10縮尺全体モデルと1/1.8縮尺部分モデルを組み合わせてガス巻き込み発生条件を求め、アドバンストループ型Na炉においてガス巻き込みを抑制できること並びに現象に対する支配因子の抽出を行うこととした。実証炉設計研究の一環として行われたIHX容器内のガス巻き込み現象に関する研究[4][5]より、ガス巻き込みは1）凝縮波、2）渦込み、3）くぼみのある3形態に分類できるとされている。

特に、くぼみ渦は流速が小さい条件でもガス巻き込みに至ることが指摘されており重要である。本研究でもこれらに着目して現象を評価する。ここでは、上記の目的のために1/1.8縮尺部分モデル試験を実施した結果について報告する。
2. 試験の概要

2.1 試験装置の概要

2.1.1 アドバンストループ型 Na 炉の形状

試験装置について説明する上で、ここで対象としている実機としてのアドバンストループ型炉の炉上部プレナムの構造について簡単に説明する。

図2.1に実機の原子炉容器の構造を示す。本構造は、平成15年度末までにまとめられた設計案8である。炉心径は￥6580mm、炉容器内径は￥9700mmである。一次主冷却系は2ループとなっており、1ループあたり、2本のコールドレグ（C/L）配管と1本のホットレグ（H/L）配管より構成される。すなわち、炉上部プレナムには、4本のC/L配管と2本のH/L配管が設置されている。

C/L配管は、炉容器上部のデッキより、炉上部プレナムを貫通し、炉心下部の高圧プレナムに接続される。C/L配管を通じたNaは、高圧プレナム、炉心を通過し、炉上部プレナムに流入した後に、デッキより炉上部プレナムの中段まで吊り下げられたH/L配管から流出する。さらに、炉上部プレナムには、一次系のNaを純化するためのコールドトラップ（C/T）2本と、崩壊熱除去のための炉内冷却器（DHX）1本が設置されている。制御棒を炉心へ挿入する制御棒案内管、集合体出口温度計装、それらの支持構造などで構成される炉上部機関（UIS）が、炉心の上部に設置されている。UISは、炉上部プレナムのNaインベントリを増加させるために内部にNaが通過することを許容するコラム型となっている。また、燃料交換システムを簡素化し、炉容器径を小さくするため、UISの一部に燃料交換機（FHM）のアームが通過するための切り込みが設けられている。炉心から出た流れが、直接液面にあたるのを防止するために、液面より下方1400mmの位置にディッププレート（D/P）と呼ばれる水平板を設置している。燃料交換時にUISを回転させる必要があるため、D/Pは内側（UIS一体）と外側に分割されている。さらに270°方向外側に、燃料集合体を炉外に出し入れするための燃料出入機案内管が設置されている。

図2.2に内側D/P、外側D/Pの構造、およびD/Pの隙間部構造を示す。両D/Pは、それぞれ上下に2段設置されており、2重化することにより、隙間部の流動抵抗を大きくし炉心からの連続流れが液面に到達しにくい構造となっている。内側D/PのUIS切り込み正面には、FHMを挿入するための貫通孔が設けられている。内側D/Pはコラム型UISの構造強度を保持するパートの一つであるため、内側D/Pと制御棒案内管は溶接等で固定されており、その間には隙間がない構造となっている。外側D/Pは周方向に12分割程度で製作され、炉容器上部のデッキより吊り下げられる構造となっている。外側D/Pには、H/L配管などの炉内構造物が貫通するための穴が設けられている。外側D/Pと炉内構造物および炉容器壁の間には隙間があり、そこをNaが流れ得る構造となっている。内外D/P間においては、内側D/Pが燃料交換時にUISとともに回転するため、構造材の熱膨張や流れによる振動を考慮するとき、30mm程度の隙間を設ける必要がある。できるだけ、D/Pを通して流れを低減するために、内側・外側D/Pの隙間位置を上下の段ずらし、端部をL
字にするラビリンス構造となっている。炉内構造物と外側 D/P 間は、運転時および燃料交換時の動的機能がないため、隙間部の幅を 15mm 程度まで小さくすることとしている。

外側D/Pと炉容器壁間の隙間幅は、70mm 程度が限界とされており、隙間流れを低減する方策として、炉容器壁に L 字状のツバを2段D/Pの間に入るように突きだし、ラビリンスを形成することで、鉛直方向の流れがそのままD/P 上面に抜けない構造が検討されている。また、内側D/P には FHM を挿入するための貫通孔が設けられているが、この穴を塞ぐために貫通孔にプラグを挿入する。プラグの出し入れに支障をきたさないように、D/P とプラグ等の隙間部の幅は少し広く、30mm 程度が限界としている。

2.1.2 1/1.8 縮尺部分モデル試験装置の形状

1 章で述べたように本試験装置のコンセプトはガス巻込み現象のモデルスケール依存性を緩和するため、炉上部プレナムをより大きな縮尺でモデル化することにある。そこで炉上部プレナムの一部を取り出してモデル化した。これまでに実施した 1/10 縮尺炉上部プレナム試験の結果[6]により以下の知見が得られている。

1）D/P の隙間部で気泡を巻き込み運行するには大きな下降流速が必要である。試験で顕著な下降流が生じているのはホットレグ配管（H/L）を中心としたセクターで H/L と D/P の隙間部、炉容器壁と D/P の隙間部である。

2）UIS スリットを通る流れが速いために、この近傍で D/P の上方に到達する流れが多いことから D/P の上部には UIS スリットのある方向（270°）から周方向に壁に沿うように DHX のある位置（90°）に向かう流れが生じている。これが 1）に示したように主として H/L 近傍で D/P 下方へと拡大している。

また、実証炉と大きく異なる点として炉心出口からの速い流れが液面に直接到達するのを防ぐ D/P があり、この D/P により炉上部プレナムは上部に大きく 2 分されており、その間は狭い隙間でつながっている。

これかから、部分モデルとして D/P より上方、ホットレグを中心とした 1/4 セクターを取るようになった。モデル縮尺は大さいに越れたことはないものの、これまでの実証炉研究で、実機縮尺 1/3 以上であれば、ほぼ実機流速一致条件でガス巻込みの初生条件が判定できること（実証炉 IHX 容器）[4][5]、および当該研究所で最大のスケールには実証炉 IHX 容器の 1/1.6 があることから、1/2 より大きくすることを目標とし、装置設置上の制約や後述する大型アルミ板の入手などの制限から 1/1.8 とした。流速の境界条件としては、セクターに切った径方向断面を通過する流れ（UIS 切り込み側と DHX 側の 2 面）、D/P の隙間部について与える必要がある。これらは 1/10 縮尺炉上部プレナムモデルにより得る。1/10 縮尺モデルと 1/1.8 縮尺部分モデルの関係を図 2.3 に示す。前述したように、UIS 切り込み部周辺の D/P 隙間部から上昇した流れは、吸い込み配管（H/L 配管）周辺の D/P 隙間部より下降する。ガス巻込みは、何らかの要因で流体中に巻き込まれた気泡が、系統内を循環することにより、その影響が顕在化する。故に、D/P を通過する下降流速が発生する箇所
で液面からの気泡が系統内に進入する可能性があることから、H/L配管を中心とした90度セクターでモデル化した。1/1.8縮尺部分モデルの形状を図2.4に示す。装置は長辺4mの変則6角形で、前面は4m×1mのアクリル板により可視化できるようにした。変形を防ぐため補強用のステンレス製の柱をアクリル壁に取り付け、さらにその位置を可変にすることで死角をなくした。炉容器壁をモデル化するため透明の板厚2mmのポリカーボネイト板を曲げ、上下支持によって4mを越える1/4セクター円筒面を形成し、かつ炉容器壁と4×1mのアクリル板の間を水で満たすことによって、炉容器壁に静水圧が負荷されない構造とした。これによって、炉容器壁での屈折の影響が低減され、外部からの可視化計測を容易にした。UIS側は1/10縮尺モデルにおいて、破の発生等が見られなかったため、UISそのものをモデル化せず、アクリル壁を設けることでUIS側からの観察を可能にした。H/Lと2本のC/Lはアクリルの円筒でモデル化した。D/PとH/Lなど各構造物との隙間のモデル形状を図2.5に示す。D/Pと炉壁の間では、設計で採用した炉壁側から延びるL字状のバンドを削り出し、より隙間部の流れが強くなるようにした。D/PとH/L等の貫通構造物との隙間部でも、設計で採用したコの字形状のラビリンス付加用の構造物を削除した。内側D/Pと外側D/Pの隙間部では、付加的な構造物がないことから設計と同等な形状とした。L字状およびコの字形状ラビリンスを設置しないことで、ガス巻き込み現象においては、設計体系に比べて、安全側の評価となり得る。

また、既報[7]において、ガス巻込みに対するD/P2重化の効果を検討し、D/Pを2重に設置することで、下段D/P隙間部から上昇する流れが、上段D/Pと下段D/Pの間を通過し、下段D/P隙間部に吸い込まれることを確認した。その結果として、上段D/P隙間部からの下降流速が低減し、ガス巻込みの発生に対して2重D/Pが大きな抑制効果を有することを明らかにした。そこで、ガス巻込みに対する指針を策定するにあたり、ガス巻込みの支配因子の抽出および発生メカニズムを把握する必要があることから、より厳しい条件である1重D/P体系で本試験を実施した。

流れの境界条件を与えるセクター境界の径方向断面には水平流路1ならびに2を設け、UIS切り込み側からDHXに向かう周方向の流れを与えることができるようになった。D/Pの隙間部については、図2.6に示すように吹き出しまたは吸い込みに流れ方向を変えるとともにその流速を任意に与えることができる円弧状のノズルを複数設けた。炉壁とD/Pの隙間部は周方向に3分割し、それぞれに独立のノズルを設けた。H/Lを囲む隙間には周方向に4分割、2本のC/Lは2分割のノズルを設けた。さらに、内側D/Pと外側D/Pの境界にも3分割してノズルを設けた。これらのノズルによりD/P隙間部の下降流速の強さを分布を模擬することができる。また、「くぼみ渦」の原因となる循環の形成に影響を与える剪断流れを作る水平流路の流れは水平流路1から2へ向かう流れで調節することができる。図2.7に本試験装置のループシステムを示す。循環ポンプから送出された流体は、一部温度調節ラインを通じ、入口バッファに流入する。入口バッファから、周方向流れ、D/P隙間部流れに、それぞれ分岐して流出し、試験体に流入する。各配管の流量は、それぞれのラインに設置
された電磁流量計により計測されるにもとづく。各ラインの流量調節弁によって設定値に調節する。試験体から流出した流れは、出口パッファに集約され、循環ポンプに戻る。

表 2.1 に試験装置の主要諸元を示す。流速の設定範囲は流速 1 からの水平方向流れについて、断面平均流速で最大 20cm/s 強であり、後述する実機条件の 6 倍の流速まで可能である。D/P 隙間部の流速は最大 60cm/s で、隙間の場所に依存するが最大で実機条件の 4 倍に達する。また、液位は 1/1.8 縮尺での相似位置から D/P 位置まで制御することができる。

水平流路 1、ならびに各隙間部ノズルの流量は電磁流量計で計測する。各電磁流量計の測定レンジを表 2.1 に示す。なお、流量計の計測精度は FS（測定レンジのフルスケール）±5%である。

2.2 試験条件と計測条件

2.2.1 試験条件

まず、1/1.8 縮尺部分モデル試験で必要な境界条件を求めるために 1/10 縮尺全体モデル試験によって、部分モデルの境界にあたる断面での流速測定を行なった。測定は D/P より上方で UIS 切り込み側の径方向断面ならびに DHX 側の径方向断面については PIV（粒子画像流速測定法）を用いた。D/P の隙間部については UVP（超音波流速分布計測装置）を用いて鉛直方向流速成分を測定した。試験条件は炉心出口平均流速を代表流速とした Fr 数を実機設計と一致させた条件とした。1/10 縮尺炉上部プレナム水冷流試験装置の形状の詳細は既報[6]を参照されたい。

1/10 縮尺炉上部プレナムモデルは D/P が 1 段のみで設計形状の 2 段に比べ少ない上に、ラビリンス形状をなくしていることから、D/P 隙間部を抜ける流速が実機設計条件よりも大きくなると予測される。形状が完全に相似であったとしても隙間部を抜ける流速が相似となるためには流量抵抗係数が一致している必要があり、モデル縮尺が 1/10 と小さく Na に比べて動粘度係数が約 3 倍大きい常温の水を使うこの試験体系では流速を実機設計と一致させたとしても Re 数に 30 倍程度の差があるため抵抗係数や乱流状態を一致させることは困難である。そこで、このように隙間の形状を流れ易いもの（1.4 D/P 体系、ラビリンスなし）とすることで流速を保有的に評価でき、流面形状が一致すると期待できる Fr 数一致条件で試験を行った。

試験結果より図 2.8 から 2.10 に、それぞれ UIS 切り込み側の径方向断面、DHX 側の径方向断面、D/P の隙間部（対称性を仮定して UIS の切り込みから 180 度分）の時間平均流速分布を示す。に述べたように D/P 隙間部の下降流速が H/L の近傍で大きいことがわかる。また、UIS 切り込みを通り、D/P を通過する流れが速い（流量が大きい）ことから、UIS 切り込み側では、H/L 配管方向に向かって流れ込む。一方、DHX 側では H/L 配管から DHX に向かって流れ去る方向の流速ベクトルが多く見られる。すなわち、UIS 切り込み側から DHX 方向への周方向流れが見られる。
試験で得られた流速は \(Fr \) 数一致条件での結果であることから、これを以下の式に従って実機流速に換算した。

\[
Fr = \frac{u_m}{\sqrt{gL_m}} = \frac{u_R}{\sqrt{gL_R}} \\
u_R = u_m \sqrt{\frac{L_R}{L_m}} = \sqrt{10} u_m
\]

(2.1)

部分モデル試験装置は、縮尺 1/1.8 であるが、境界条件が不確定な側面を考慮して縮尺比して、より速い実機条件に相当する流速を与えることによりガス巻込みの発生を評価することとした。実証炉での研究[4][5]で示された実機流速一致条件でガス巻込みの発生を評価できるとする知見に沿ったものである。試験結果より推定した実機流速分布から、部分モデルで設定した各境界に割り当てた結果を図 2.11 に示す。このように設定した流速を各流路の断面積で積分することによって、各流路に与える流量とした。試験部への流入／流出流量は補正なしで 90%一致し、残りは水平流路の流量で補正することで両者を一致させた。H/L 配管の周りの領域では、D/P 上面の流れが H/L 配管に吸い込まれる場合より、吸い込み方向流れとなる。一方、UIS 切り込み側の C/L 配管、内側／外側 D/P 隣間部、RV 壁隙間部では、炉心出口から UIS 切り込みを上昇したあと D/P に衝突する流れと、UIS から径方向に吹き出して RV 壁に衝突する流れの影響を受けて、D/P 隣間部を上昇する流れとなっている。また、DHX 側 C/L 配管の DHX 側では、UIS から径方向に吹き出して RV 壁に衝突する流れの影響を受けて、やはり D/P 隣間部を上方に通過する流れとなっている。

H/L 配管近傍では、UIS からの径方向流れは直接 H/L 配管に吸い込まれるため、このような上昇流は見られていない。加えて、留出すべき点として本体系での D/P 隣間部流速は全てが吸い込み方向（負の値）ではなく、一部に吹き出し（正の値）となる領域がある。90°セクタの径方向断面にあたる境界での流速は水平流路 1, 2 でえび、UIS 切り込み側にあたる流路 1 から流路 2 に向かう周方向流れを模擬した。

本試験では、2.1.2 篇で示したように、ガス巻込みの発生においてより下降流速が大きく厳しい条件である 1 重 D/P 体系で試験を実施した。

表 2.2 に試験パラメータを示す。まず、ガス巻込みの支配因子の抽出を行うために、周方向流速（水平流路 1 流速）、下降流速（D/P 隣間部流速）、液位をパラメトリックに変更し、ガス巻込みの発生マップを作成するための試験を実施した。ガス巻込みの支配因子の抽出により、ガス巻込みの発生には、2 つの形態が明らかとなった（詳細は後述）。そこで、それぞれに分けて、PIV により流れ場の定量的な把握を行った（速度場計測試験 A と B）。

本試験では、実機の炉上部プレラム内のナトリウムインベントリを維持することを前提としたため、定格時の液位を、上段下段 D/P の間隔合取り外した上段 D/P の上厚分、高く定義した（実体系定格：1510mm、1/1.8 縮尺試験の定格：835mm）。つまり、液位は、下段 D/P 上面から液面までの高さとして定義した。
2.2.2 計測条件

本試験では、主たる計測項目は流速であり、くぼみ渦によるガス巻込みに着目していることから、非定常で発生する渦の挙動を把握する必要がある。また、接触型の流速計測方法のため、計測に用いるプローブ自身が渦の生成要因となってしまうことから、ここでは、非接触の流速計測方法を適用した。非定常で発生する渦の挙動を把握するためには、1点での計測ではなく、2次元平面内の瞬時の流速場を計測する必要があることから、この条件を満たす粒子画像流速測定法（PIV）[8]を本試験に適用した。

特に、表2.2(3)の速度場計測試験Bでの計測においては、くぼみ渦のくぼみ（ガスコア）の成長過程と水平断面速度計測を同時に実施し、流体中の渦の成長とガスコアの発達の時間関係を明らかにした。本計測は、PIVとデジタルカメラ（640×482ピクセル）を用いた可視化を組み合わせて実施した。図2.12に同時計測のシステム構成を示す。PIV計測に関しては、試験体の側面よりレーザーを射出し、試験体の下側から、粒子画像の撮影を行った。使用したレーザー光源はダブルパルスNd・YAGレーザーである。また、速度ベクトルのサンプリング周波数は30Hzとし、計測を実施した。一方、ガスコアの可視化計測は、レーザー射出側にデジタルカメラ（648×482ピクセル）を配置し、側面から通常光（アイランプ）による照明を行った。通常光は、PIV計測に対してノイズとなるため、その影響を最小限にするため、PIVのカメラのシャッターをレーザーの発光を捉える最小限の露出時間のみオープンとするように設定した。収録は、ガス巻き込みが発生し、消減した時点でエンドトリガを入力することにより行った。これにより、トリガ投入前の約50秒間のガス巻き込み渦の画像を収録することが可能となった。

ガス巻き込みの発生の判断方法として、本試験では、10分間目視で観察し、その間に1回以上液面から気泡が水中に離脱した場合（くぼみ渦の場合、ガスコアの先端から気泡がちぎられた場合）をガス巻き込みの発生とした。つまり、ちぎられた気泡がD/Pの下部への到達、およびループ内への侵入の有無によらず、その可能性のある気泡が生成された時点を発生のしきい値とすることで、安全側の評価とした。
3．ガス巻込み発生条件の把握

3.1 ガス巻込み発生条件マップによる支配因子の抽出

既報[7]において、実機流速－事故条件ではガス巻込みの発生は見られないことを明らかにした。ここでは、ガス巻込みが発生する流量条件、流速を広範囲の条件で把握し、ガス巻込みの発生条件を求めるとともに支配因子の抽出を行った。

図3.1にガス巻込みが発生した際の液面近傍の可視化画像と、ガス巻込み発生箇所を示す。周方向流速を実機条件に比べ非常に大きくした場合（実機条件に対する比：4.8倍）、H/L配管の前線部でガス巻込みの発生が見られた（右上写真）。このガス巻込みは、切り込み側C/L配管（図3.1のH/L配管の右側C/L配管）の後流に発生する渦に起因すると考えられる。この後流渦に対して、周方向流れがH/L配管前線部に衝突することにより局所的に発生した下降流が作用することにより、ガス巻込みが発生したと考えられる。ガスコアの形状としては、気液界面でのガスコア径は大きいが、ガスコア先端までの距離は小さく、なだらかな界面形状となっていた。ガスコアの形状の時間変化は激しく、乱れの影響で先端から気泡が離脱することにより、ガス巻込みが発生する様子が観察された。離脱した気泡は、大部分は液面に戻り、D/P下面まで吸い込まれることはほとんどなかった。後流渦に起因するタイプのガス巻込みは、周方向流速が実機条件に比べ非常に大きい場合にのみ観察された。ただし、一部の条件（図3.6参照）で連続的に離脱した気泡がD/P下面まで到達したケースがあるが、これは、離脱した気泡が直下のD/P隙間部に吸い込まれたのではなく、水中を気泡が移動し、遠くのD/P隙間部に吸い込まれるの観察されたためである。

一方、液位を実機相当条件より大幅に低下させ、D/P隙間部で発生する下降流速を実機条件より大きくした場合（実機相当条件に対する液位比：0.26倍、実機条件に対するD/P隙間部流速比：1.5倍）、H/L配管と炉容器壁（R/V壁）との間にガス巻込みの発生が見られ（右下写真）。このガス巻込みは、H/L配管とR/V壁の間に発生する水平流が、構造物等との剪断により発生した渦と、D/P隙間部での下降流速の相互作用により発生すると考えられる。ガスコアの形状としては、ガスコア先端が長く伸びた様相であった。ガスコアの発生・成長は、H/L配管前線部に発生するガスコアに比べて、長い時間を要していた。ガスコアは、発達の過程で先端から離脱した気泡、あるいはガスコアが途中で千切れたことによる気泡がD/P隙間部に吸い込まれる場合と、ガスコアそのものがD/P隙間部に到達する場合があり、途中で千切られる場合にも、千切られた気泡の一部は液面に戻るが、大部分はD/P隙間部まで到達した。これは、渦の下方にD/P隙間部からの下降流速が存在していることを示している。ガスコア先端が長く伸びるタイプのガス巻込みは、低液位の場合あるいはD/P隙間部流速を増加させた場合に観察された。

図3.2に周方向流速と液位に対するガス巻込み発生マップを示す。横軸は実機条件に対する周方向流速比、縦軸は、実機相当条件に対する液位比である。周方向流速比1、液位比1が実機定格条件に対応する。赤塗りのシンボルがガス巻込みの発生した条件を示し、白抜きのシンボルがガス巻込みの発生がなかった条件を示す。これによると、実機定格条件
は、ガス巻込みの発生条件から大きく離れており、実機でのガス巻込みの発生の可能性は非常に低いことがわかる。H/L 配管前線部のガス巻込み（青帯背景部分）は、液位によらず、周方向流速比が実機条件の約4倍以上になると発生することがわかる。このことから、H/L 配管前線部に発生するガス巻込みに対しては、周方向流速が支配因子であることがわかる。一方、H/L 配管－R/V 壁間で発生するガス巻込みに対しては、低液位での発生に限られているが、周方向流速が大きいと発生しにくい傾向が見られる。つまり、H/L 配管－R/V 壁の間で発生するガス巻込みについては、別の因子に支配されていると考えられる。

図3.3にH/L配管－R/V壁の間で発生するガス巻込みについて、D/P隙間部流速と液位で整理したガス巻込み発生マップを示す。横軸は実機条件に対するD/P隙間部流速比であり、縦軸は実機相当条件に対する液位比である。シンボルの色分けは図3.2と同様である。実機定格条件は本図の範囲外であるが、D/P隙間部流速比１と液位比１の交点に相当する。本図から、D/P隙間部流速が増加するために従って、より高液位でガス巻込みが発生することがわかる。すなわち、H/L配管－R/V壁の間でのガス巻込みの発生の支配因子は、D/P隙間部流速（下降流速に相当）と液位であることがわかった。

3.2 ガス巻込みの発生領域および発生頻度に対する支配因子の影響

ガス巻込み発生の様子にはいくつかのパターンがあるが、図3.2で示したガス巻込み発生マップは、くぼみ渦の先端からの気泡離脱の有無によって、ガス巻込みの発生の有無を分類していた。また、発生場所に関しては、大きくH/L配管前線部領域とH/L配管－R/V壁間領域の2箇所に大きく分類したが、両領域でのガス巻込み発生に対する支配因子の影響度合いについて、定量的に評価する必要がある。

そこで、ガス巻込みが発生する条件において、支配因子（周方向流速、D/P隙間部流速、液位）の依存性について、ガス巻込みの発生形態ならびに発生場所、およびガス巻込みの発生頻度の計測を行った。

図3.4にガス巻込み発生形態のパターン分類を示す。以下にそのパターンの詳細を示す。

(1) 液面にくぼみ渦が発生していない状態。
(2) 移動するくぼみ渦が形成されているが、先端から気泡が離脱しない状態。
(3) 移動するくぼみ渦が形成され、先端から気泡が離脱する状態。離脱気泡は、液面に戻る。
(4) 移動するくぼみ渦が形成され、先端から気泡が離脱する状態。離脱気泡は、D/P下面まで到達する。
(5) 移動するくぼみ渦が形成され、先端から連続的に気泡が離脱する状態。
(6) 移動しないくぼみ渦が形成されるが、先端から気泡が離脱しない状態。
(7) 移動しないくぼみ渦が形成され、先端から気泡が離脱する状態。離脱気泡は、液面に戻る。
(8) 移動しないくぼみ渦が形成され、先端から気泡が離脱する状態。離脱気泡は、
D/P 下面まで到達する。

(9) 移動しないくぼみ渦が形成され、先端から連続的に気泡が離脱する状態。

(10) 移動しないくぼみ渦が形成され、その先端が D/P まで到達する状態。

ここで、ガス巻込みが発生していないパターンは、(1), (2), (6)であり、それ以外のパターンは、全てガス巻込み発生とされた。ここで、「移動しない」という言葉の意義としては、完全に静止しているわけではなく、ある位置を中心に動いていることを示している。一方、「移動する」渦という言葉の意味は、ある方向に流れ去っていくことを示す。移動するくぼみ渦に対するパターン(2)〜(5)は、ほとんどが H/L 配管前縁部領域で観察され、移動しないくぼみ渦に対するパターン(6)〜(10)は、ほとんどが H/L 配管 - R/V 壁間領域で観察された。連続的気泡離脱が観察されるパターン(5)と(9)については、発生頻度は一つのガスコアに起因するものは、1図としてカウントした。

図 3.5 に H/L 配管前縁部で発生するガス巻込み現象に対する周方向流速依存性を示す。比較したケースは、実機定格相当条件に対する液位比 0.658、実機定格条件に対する D/P 隙間部流速比 2.0 で、実機定格条件に対する周方向流速比を 4.1, 4.8, 5.5 と変えたケースである。ガス巻込みの発生場所は、周方向流速比が大きくなるにつれて、H/L 配管の内側 (UIS 側) に沿った下流側に移動することがわかる。これは、周方向流れが UIS 切り込み側 C/L 配管（図中右側 C/L 配管）を通過する際に発生する物体後流渦（カルマン渦状）が、周方向流れによって、下流側に流れることによって、発生位置が変化していると考えられる。また、ガス巻込みの発生様子としては、本試験の範囲では周方向流速比によらず、くぼみ渦の先端から気泡の離脱するパターン(3)の形態が観察された。また、ガス巻込みの発生頻度は、周方向流速比が増加するにつれて、増加する傾向が得られた。なお、周方向流速比が 4.0 以下では、ガス巻込みの発生は観察されなかった。

図 3.6 に H/L 配管前縁部で発生するガス巻込み現象に対する D/P 隙間部流速依存性を示す。比較したケースは、実機定格相当条件に対する液位比 0.658、実機定格条件に対する周方向流速比 4.8 で、実機定格条件に対する D/P 隙間部流速比 1.0, 2.0, 4.0 と変えたケースである。ガス巻込みの発生場所は、D/P 隙間部流速比の違いによって、わずかに異なるものののはっきりした傾向は観察されなかった。ガス巻込みの発生挙動として、D/P 隙間部流速比 1.0 のケースで、くぼみ渦の先端から気泡が連続的に発生するパターン(5)に相当する様相が観察され、発生頻度も D/P 隙間部流速比 1.0 のケースが最も高かった。このパターン(5)のガス巻込みは、3.1 節で示したとおり、連続して発生した気泡が、発生場所直下の D/P 隙間部に到達するのではなく、周方向流速によって流れ去って、別の D/P 隙間部に吸い込まれたものである。D/P 隙間部流速比 2.0 と 4.0 においては、ガス巻込み発生パターンは(3)で同じであったが、発生頻度は D/P 隙間部流速比 4.0 のケースの方が、2.0 のケースに比べて高くなっていた。この理由は明らかではないが、推定として以下のことが考えられる。D/P 隙間部流速比が 1.0 と 2.0 を比較すると、周方向流速比は 4.8 で固定であるが、D/P 隙間部に吸い込まれる流量が、D/P 隙間部流速比 1.0 に比べて 2.0 の方が大きい。すなわち、周方向
向から流入した流体が、下降流速に転じる量が、D/P 隙間部流速比 1.0 に比べて 2.0 の方が大きいため、相対的に周方向流速が低下していると考えられる。すなわち、図 3.5 で示したように、周方向流速が小さくなると、ガス巻込みの発生頻度が低下する影響が、D/P 隙間部流速比を大きくすることで、D/P 隙間部流速比 1.0 と 2.0 の間で見られている可能性がある。また、D/P 隙間部流速比 2.0 と 4.0 の間では、前述した周方向流速が下降流速に転じることによる影響に比べ、下降流速が増加することによるガス巻込み発生頻度の増加の影響の方が顕著であると考えられる。しかしながら、今後、上記の推定について、さらに検証していいく必要がある。

図 3.7 に H/L 配管前縁部で発生するガス巻込み現象に対する液位依存性を示す。ガス巻込みの発生場所に関しては、液位の違いによる明確な差は見られないことがわかる。しかしながら、液位比が最も大きい 0.789 のケースのみ、H/L 配管の後流部でガス巻込みが発生している。ガス巻込みの発生頻度は比較的小さいと考えられるが、原因については今後検討する必要がある。H/L 配管前縁部については、液位比による明確な違いは見られなかった。

上記の結果、H/L 配管前縁部で発生するガス巻込みは、図 3.5 で示した周方向流速に対する依存性が最も大きいことが確認された。

図 3.8 に H/L 配管前縁部でのガス巻込みの発生頻度に対する周方向流速依存性を示す。凡例は、実機定格相当条件に対する液位比である。図 3.2 に示したように、周方向流速比が 4 を超えた条件で、ガス巻き込みが発生し、周方向流速が増加するにつれて、ガス巻込みの発生頻度が増加することがわかる。しかしながら、ガス巻込み発生頻度が急激に増加したあたりは、ある程度の発生頻度となり、その後は周方向流速の影響は小さくなった。これにより、H/L 配管前縁部で発生するガス巻込みは、周方向流速比 4 付近に明確なしきい値があることが明らかとなった。

図 3.9 に H/L 配管と R/V 壁間の領域で発生するガス巻込み現象に対する周方向流速依存性を示す。比較したケースは、実機定格相当条件に対する液位比 0.230、実機定格条件に対する D/P 隙間部流速比 1.3 の固定条件で、実機定格条件に対する周方向流速比を、2.1～4.1 の範囲で変化させたケースである。ガス巻込みの発生位置に関して、周方向流速が増加するにつれて、H/L・R/V 間領域でのガス巻込みは、下流側（流れは図中の右側から左側方向）へシフトすることがわかる。これは、周方向流速が増加するにつれて、UIS 切り込み側 C/L と H/L 配管の間の領域を R/V 壁に向かう流れが強く、その流れの影響で、ガス巻込み発生位置が、下流側にシフトしていると考えられる。ガス巻込みの発生パターンは、周方向流速の違いによって発生パターン (8) と (9) が見られたが、この違いは目視観察における誤差範囲内であると考える。また、ガス巻込み発生頻度は、周方向流速が大きくなるにつれて、低下した。周方向流速の増加に伴い、流れの乱れ成分が増加すると考えられるが、乱れ成分がガス巻込みの発生を抑制している可能性がある。未だ[9]の試験において同様の傾
向が観察されていることから、今後、流体中および液面の乱れの影響評価を行う必要がある。

図 3.10 に H/L 配管と R/V 壁間の領域で発生するガス巻込み現象に対する D/P 隙間部流速依存性を示す。比較したケースは、実機定格相当条件に対する液位比 0.230、実機定格条件に対する周方向流速比 3.4 の固定条件で、実機定格条件に対する D/P 隙間部流速比を、1.2 と 1.3 に変化させたケースである。ガス巻込みの発生位置に関して、D/P 隙間部流速が小さい方が H/L・R/V 間領域の下流側（流れは図中の右側から左側方向）となっていた。周方向流速が同じで、D/P 隙間部流速が大きい場合、図 3.6 で示したように、H/L・R/V 間領域のような局所位置での周方向流速は低下する可能性がある。すなわち、D/P 隙間部流速の増加は周方向流速の減少に相当していると考えられ、図 3.9 と同様の傾向が見られていることが推定される。ガス巻込みのパターンは、D/P 隙間部流速に対して大きく変化していないが、D/P 隙間部流速が増加した場合、発生頻度は大きくなっていることがわかる。

図 3.11 に H/L 配管と R/V 壁間の領域で発生するガス巻込み現象に対する液位依存性を示す。比較したケースは、実機定格条件に対する周方向流速比 3.4、D/P 隣間部流速比 1.3 の固定条件で、実機定格相当条件に対する液位比を 0.296～0.164 の範囲で変化させたケースである。ガス巻込みの発生位置に関しては、液位の違いによらずほぼ同じであることがわかる。ガス巻込みの発生パターンは、(8)ないし(9)のパターンであり、液位の違いによる明確な差は確認できなかった。一方、ガス巻込みの発生頻度については、液位低下に伴い、頻度が増加していることがわかる。

図 3.12 に H/L 配管と R/V 壁間領域でのガス巻込みの発生頻度に対する D/P 隣間部流速比の影響を示す。これによると、液位の変化によらず、D/P 隣間部流速が増加するにつれて、ガス巻込みの発生頻度が増加していた。また、液位が低下するにつれて、ガス巻込みの発生頻度が大きくなることがわかった。図 3.3 に、H/L 配管と R/V 壁間領域においては、D/P 隣間部流速と液位に依存してガス巻込みの発生が見られることを示したが、ガス巻込みの発生頻度においても、D/P 隣間部流速と液位に依存していることが明らかとなった。

図 3.13 に液位と D/P 隣間部流速の比に対する H/L 配管と R/V 壁間領域でのガス巻込みの発生頻度を整理したものを示す。横軸は、以下の式に示す D/P 隣間部流速比に対する液位比を取ったものである。

\[
 r = \left(\frac{\text{液位比}}{D/P \text{隙間部流速比}} \right)
\] (3.1)

これによると、r が 0.23 以下になるとガス巻込みが発生し、ガス巻込みの発生頻度は、r が小さくなるほど大きくなることがわかる。発生頻度は、r の減少とともに線形的に増加することがわかった。実機条件は、r=1 であることから、H/L 配管と R/V 壁間領域でのガス巻込みの発生に対する実機定格条件の適用度は、4 倍以上あると考えられる。
4. ガス巻込み発生メカニズムの把握

3.2 節において、H/L 前綫部で発生する水平方向流れが大きい流動場でのガス巻込みの初生は、液位および D/P 隣間部の吸込流れに依存せず、周方向流速（水平方向流れ）によってのみ支配されているとした。そこで、ガス巻込みが発生するメカニズムを明らかにするために、水平断面および鉛直断面の流速計測を粒子画像法流速計測法（PIV）により実施した。ガス巻込みの有無による流況の比較を行うために、ガス巻込みが発生するときの流動条件と発生しないときの流動条件の 2 ケースに対し、PIV 計測を実施した。その際の試験条件は、表 2.2 の(2)に示す。

図 4.1 にガス巻込みの発生なし、および発生ありの両条件における液面近傍の水平方向流速ベクトルを示す。計測箇所は、液面から 20mm 下方の水平断面であり、レーザーを当該水平面に照射するとともにカメラを上部に設置し、可視化画像を収録した。上部からのカメラによる画像収録では、液面の変形に伴う画像の歪みが考えられるが、液面とカメラの間の距離をできるだけ小さくすることにより、液面変形による画像の歪みの発生をできるだけ抑制した。ガス巻込みありの条件では、UIS 切り込み側 C/L 配管と H/L 配管の間にガス巻込みの発生が観察された。流速ベクトルは、水平流路 1 の断面平均流速 V の大きさで長さ・色を規格化して示している。フローバターンは、H/L 配管の上部の流速値が若干異なるものの、ガス巻込みの発生によらず、全体的にはほぼ同じであることがわかる。つまり、周方向流速を大きくしたことによるガス巻込みの発生は、フローバターンが変わったことによるものではなく、周方向流速の絶対値が変わったことによるものであると考えられる。

図 4.2 にガス巻込みの発生の有無による渦発生位置近傍の流速分布の比較を示す。ガス巻込みなしの条件では、UIS 切り込み側 C/L 配管に近い側で、ガス巻込みありの条件では、H/L 配管に近い側で、大きな循環を持つ渦の発生が観察された。よって、それぞれ大きな循環が観察された場所での流速ベクトルを示す。流速ベクトル図から渦の中心を通る位置の±50mm の上下方向（図中 Y 方向）の流速値をそれぞれ右図にプロットした。渦の循環は次式で定義されるが、ここでは、渦を円（半径：R）と仮定し、渦の中心を通る水平位置（図中 Y=0mm の線）での Y 方向流速の最大値（渦の接線方向流速）を v として全周一定、その位置の半径を R とした。

\[
\Gamma = \int |v| \cdot ds \approx \nu \cdot 2\pi R
\] (4.1)

ここで、C は流れの閉曲線、ds は C に沿った微小部分の長さ、v は ds 部の速度である。

ガス巻込みの発生の有無で循環を比較すると、ガス巻込み発生なしのケースの循環（9.4 \times 10^3 m^2/s）に比べて、ガス巻込み発生ありのケースの循環は、約 5 倍（47.1 \times 10^3 m^2/s）となっていた。これは、ガス巻込みあり／なしの間での周方向流速の違い（5 倍）に対応している。つまり、ガス巻込みの発生は、周方向流速の増加につれて、循環が増加することに関係すると考えられる。
次に、H/L 配管と R/V 壁の間のガス巻込みに対して、図 2.12 のガスコア―水平速度場同時計測システムを用いて測定した結果の一例を図 4.3 に示す。左図は通常光による可視化結果、右図は可視化結果と同時刻の水平断面流速ベクトルである。左図の右上に見られてい るガスコアに対応する循環が右図の中央左下より現れていることがわかる。流れの様相 としては、R/V 壁に沿う遅い流れが、H/L 配管側から切り込み側 C/L 配管側に向かって発 生していることがわかる。この流れの発生要因としては、切り込み側からの周方向流れ（水 平流路 1 からの流れ）が H/L 配管と DHX 側 C/L 配管の間を R/V 壁に向かい、その一部が R/V 壁に沿って回り込んだと考えられる。右図において H/L 配管に近い領域は、比較的流 れが遅く、R/V 壁に沿う遅い流れと H/L 近傍の遅い流れの剪断により渦が発生したと考え られる。ガス巻込みを発生させるフローパターンとしては、構造物の後流域や対向する流 れなどいくつかのケースが考えられるが、実機形状をベースにした本モデルによる試験の 結果、比較的遅い流れと流れのようにだっ領域との間で剪断に伴う渦を形成する流れ場では ガス巻込みが発生することが明らかとなった。

この同時計測を、表 2.2(3)に示すガス巻込みが発生した場合（D/P 隈間部流速比 1.5）と ガス巻込みが発生しなかった場合（D/P 隈間部流速比 1.0）の条件に適用し、ガスコアと水 平断面流速の両情報を同時刻に取得することによって、ガスコアと水平断面流速の関係を 検討した。

図 4.4 にガス巻込み未発生条件における渦とガスコアの発達過程の比較を示す。試験条件 は、実機定格条件に対する周方向流速比 2.1、D/P 隈間部流速比 1.0、液位比 0.24（実液位 : 200mm に対応）である。水平断面の流速計測位置は、液面より 100mm 下である。画像として は、ガスコアの消滅を十分確認した後に、エンドトリガーをカメラに入力することで、 トリガー入力前の約 55 秒のデータを収録した。ここでは、ガスコアの成長が確認された時 刻（41.9 秒）からガスコアが画面上で消滅確認された時刻（51.9 秒）まで、1 秒毎のデータ を示した。ガスコアの成長が始まる 41.9 秒では、既に渦周りに大きな周方向流速が発生し ていることがわかる。ガスコアは 46 秒付近で最大長さとなるが、その時刻を経過すると急 激に渦周りの周方向流速が小さくなることがわかった。

図 4.5 にガス巻込み未発生条件における渦とガスコアの発達過程の比較を別の断面で示 す。試験条件は、図 4.4 と同様であり、流速計測位置は液面より 20mm 下である。図 4.4 と同様に、ガスコアの成長確認時刻（40.3 秒）からガスコアの消滅確認時刻（51.3 秒）ま でを 1 秒おきに示す。43 秒付近までは、水平断面流速ベクトルにくぼみ渦が画面上に存在 していない。対象としている渦が、水平流速ベクトル図内に入ってくる 44 秒時点では、 既にガスコアが成長し、渦周りの周方向流速も大きくなっていることがわかる。ガスコア長 は、47 秒程度で最も長くなるが、その時点での渦周りの周方向流速は、小さくなりつつあ る。(10)の 49 秒付近では、周方向流速は既に小さくなっているが、ガスコアはある程度の 形状を維持していた。すなわち、渦周りの周方向流速が低下した後に、遅れてガスコアの
消滅に至ることが明らかとなった。
図 4.6 にガス巻込み発生条件における湯とガスコアの発達過程の比較を示す。試験条件は、
周方向流速と液位については、ガス巻込み末発生条件（図 4.4、図 4.5 参照）と同じ（実機
定格条件に対する周方向流速比 2.1、液位比 0.24（実液位：200mm に対応））であり、D/P
隙間部流速比を 1.5 とした。水平断面流速計測位置は、D/P 上面と液面の中間位置である液
面下 100mm である。前図と同様に、ガスコアの成長確認時刻（38.6 秒）からガスコアの
消減確認時刻（51.6 秒）までを 1 秒おきに示す。ガス巻込みの発生と判断するガスコア先
端からの気泡破脱は、43 秒〜48 秒の間で断続的に発生していた。流速計測に、多くの誤ベ
クトルが見られるが、これはレーザー強度とトレーサ密度が必ずしも最適でなかったと考え
られる。フローパターンとしては、切り込み側 C/L 配管と H/L 配管の間を通った流れが
流れと炉壁近傍の比較的遅い流れが存在し、その両者の流れの剪断でガス巻込みに至る湯が
成長すると考えられる。このフローパターンは、D/P 隙間部流速のみが異なる図 4.4 とほぼ
同じ様相を示している。ガス巻込みが発生する（43 秒）前に、満周回の周方向流速は大き
くなっており（(5)参照）、周方向流速により決定される循環の増加が、ガスコアの成長に先
立って見られる。ガス巻込みは 48 秒程度までは流動的に発生していたが、発生が終了すると
急激に周方向流速が小さくなった（(12)参照）。
図 4.7 にガス巻込み発生条件における湯とガスコアの発達過程の比較を別の断面で示す。
試験条件は、図 4.6 と同じであり、流速計測位置は液面下 20mm の断面とした。図 4.4 と
同様に、ガスコアの成長確認時刻（35.1 秒）からガスコアの消滅確認時刻（51.1 秒）まで
を 1 秒おきに示す。主たる流れは、炉容器壁に沿って DHX 側 C/L 配管側から切り込み側
C/L 配管の方向へ、全体の周方向流速に逆方向の流れが発生していた。この流れは、UIS
切り込み側からの周方向流れが、DHX 側 C/L 配管と H/L 配管の間を炉容器壁方向に向か
って通過したものの方であった。全体的なフローパターンは、D/P 隙間部流速が異なるこ
とによりガス巻込みが発生しない図 4.5 の場合とほぼ同様であることがわかる。炉容器壁に
沿う流れと H/L 配管近傍の遅い流れの剪断により湯が成長していることがわかる。ガスコ
アが発生した時点では、すでに満周回の周方向流速は大きくなっていた ((2)参照)。その後、
時刻 45 秒付近 ((11)参照) でガスコアは最大長となっており、その直後にガスコア先端か
らの気泡破脱が確認された。その時点では、満周回の周方向流速は、既に低下しつつある
ことがある。46 秒以降では、ガスコアは徐々に減衰していくが、満周回の周方向流速は、
ガスコア減衰よりも急激に小さくなっていることが観測された。
これらの結果より、ガスコアは剪断により満周回の周方向流速が十分大きくなった後に
成長を開始し、満周回の周方向流速が急激に減少した後は、徐々に減衰することが明らか
となった。
5. 結論

ガス巻込み現象評価のため、実機形状を大規模縮尺で模擬した1/1.8縮尺部分モデル試験を実施し、以下の結果を得た。

・1/10縮尺炉容器全体モデル試験結果により推定した実機流速一致条件においては、ガス巻込みの発生は見られないことがわかった。

・実機流速一致条件から離れ、流速や液位を変えて、ガス巻込みを意図的に発生させた場合、以下の場面にガス巻込みが発生する可能性があることが明らかとなった。
 ➢ H/L配管の前縁部（UIS切り込み側）
 ・実機定格条件に対して、
 （UIS切り込み側からDHX側に向かう周方向流速比）＞4で発生
 ➢ H/L配管とR/V壁の隙間部
 ・液位比とD/P隙間部流速の比で整理できることが明らかとなった。
 実機定格条件に対して（液位比）/（D/P隙間部流速比）<0.23で発生
 ・発生頻度は、（液位比）/(D/P隙間部流速比)が減少するとともに大きくなることがわかった。

・H/L前縁部でのガス巻込みは、周方向流速が大きくなることにより発生した。詳細な流速計測により、この領域でのガス巻込みの発生は、周方向の流れが切り込み側C/L配管を通過する際に生じる後流渦に起因し、周方向の流れがH/L配管に衝突することによって生じる局所的な下降流により顕在化することがわかった。

・H/L配管とR/V壁の隙間部でのガス巻込みは、液位とD/P隙間部での下降流速に依存して発生することが明らかとなった。この領域でのガス巻込みは、R/V壁に沿う速い流れと、H/L配管近傍の流れ域との剪断により発生する渦が、D/P隙間部での下降流に吸込まれることによりガスコアの成長に至ることがわかった。

・ガス巻込み発生のメカニズムの把握として、ガスコアの可視化と水平断面流速計測を同時に行い、渦周りの周方向流速が大きくなった後に、ガスコアの成長が見られることが明らかとなった。また、ガスコア長の減衰は、渦周りの周方向流速の急激な低下が発生した後に、起こることがわかった。
謝辞

本研究を実施するにあたり、東京大学　岡本孝司先生、京都大学　松本資政先生、名古屋大学　辻義之先生、筑波大学　文住秀明先生にご助言を賜りました。財団法人電力中央研究所　江口謙上席研究員、川崎重工（株）　西村元彦氏にご意見を頂き、議論させて頂きました。また、ここに深く感謝致します。

試験装置の運転、データ取得と整理において常陽産業（株）の試験・運転員の方々に大変な協力を頂きました。ここに深く感謝いたします。
参考文献

[5] 山本一彦、江口謙、他、トップエントリー型ループ型炉の中間熱交換器ガス巻き込み試験、日本機械学会論文集（B編）59巻565号
[9] 辻先生の水平流速増加により、ガス巻き込みが抑制される結果の外発
表 2.1 1/1.8 縮尺部分試験モデルの主要諸元

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>縮尺</td>
<td>1/1.8</td>
</tr>
<tr>
<td>主ポンプ最大流量</td>
<td>800 m³/h（ヘッド 40m）</td>
</tr>
<tr>
<td>水平流路1、2 流量計</td>
<td>電磁流量計：0-1200 m³/h</td>
</tr>
<tr>
<td>D/P 隣間部 各流量計</td>
<td>電磁流量計：0-70.6 m³/h（正逆流計測可）</td>
</tr>
</tbody>
</table>

表 2.2 試験条件とパラメータ

(1)ガス巻き込み発生マップ試験

<table>
<thead>
<tr>
<th>ケース名</th>
<th>D/P 段数</th>
<th>D/P 隣間部流速（下降流速）</th>
<th>水平流路1 流速（周方向流速）</th>
<th>液位 (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2重 D/P 実機流速一致条件</td>
<td>1</td>
<td>実機流速一致の1〜4倍</td>
<td>実機流速一致の1〜8倍</td>
<td>700〜100mm（実機定格の0.84〜0.12倍）</td>
</tr>
</tbody>
</table>

(2)速度場計測試験 A

<table>
<thead>
<tr>
<th>発生ケース</th>
<th>1</th>
<th>実機流速一致の4倍</th>
<th>実機流速一致の5倍</th>
<th>455mm（実機定格の0.54倍）</th>
</tr>
</thead>
<tbody>
<tr>
<td>未発生ケース</td>
<td>1</td>
<td>実機流速一致の1倍</td>
<td>実機流速一致の1倍</td>
<td>815mm（実機定格の0.98倍）</td>
</tr>
</tbody>
</table>

(3)速度場計測試験 B

<table>
<thead>
<tr>
<th>発生ケース</th>
<th>1</th>
<th>実機流速一致の1.5倍</th>
<th>実機流速一致の2.1倍</th>
<th>200mm（実機定格の0.24倍）</th>
</tr>
</thead>
<tbody>
<tr>
<td>未発生ケース</td>
<td>1</td>
<td>実機流速一致の1.0倍</td>
<td>実機流速一致の2.1倍</td>
<td>200mm（実機定格の0.24倍）</td>
</tr>
</tbody>
</table>
図2.1 原子炉容器構造

(a) 立面図
(b) 上部配置図
図2.2 ディッププレート形状
図2.3 1/10縮尺全体モデルと1/1.8縮尺部分モデルの相対関係
図2.4 1/1.8縮尺部分モデルの構造
図2.5 D/P隙間部の構造（2重D/P体系）
下段D/P下面に円弧状ノズルを設置
各ノズルの流量は独立に設定可能
隙間部ノズルの分割
- 内側D/P－外側D/P: 3分割(30° 毎)
- 外側D/P－炉容器壁: 3分割(30° 毎)
- 外側D/P－H/L配管: 4分割(90° 毎)
- 外側D/P－C/L配管: 2分割(180° 毎)

図2.6 D/P隙間部ノズルならびに周方向流れを与える水平流路
図2.7 部分モデル試験装置ループ系統
図2.8 1/10縮尺モデルで得られたUIS切り込み側断面内流速分布

D/P支柱
図2.9 1/10縮尺モデルで得られたDHX側径方向断面内流速分布
実機流速一致条件
- 1/10プレナム試験（Fr数一致、1重D/P体系）のD/P隙間部・切り込み側からの水平流れの流速計測結果を実機流速に外挿（10^{1/2}倍）
- 液位：D/P＋760mm（実機液位：1400mm、1/1.8液位：780mm）
（水平流路液面有）

図2.11 実機流速一致条件としてのD/P隙間部ならびに径方向断面での流速境界条件
図2.12 ガスコア長と水平断面速度計測の同時計測システム構成
＜試験条件＞
D/P隙間部流速比: 1.0
周方向流速比: 4.79
液位比: 0.641

＜試験条件＞
D/P隙間部流速比: 1.5
周方向流速比: 2.74
液位比: 0.256

図3.1 ガス巻込み発生時の可視化画像とガス巻込み発生箇所
試験パラメータ:
• 周方向流速
• D/P隙間部流速
• 液位

表1 実機定格条件に対するD/P隙間部流速比

<table>
<thead>
<tr>
<th>D/P隙間部流速比</th>
<th>ガス巻込みあり</th>
<th>ガス巻込みなし</th>
</tr>
</thead>
<tbody>
<tr>
<td>1倍</td>
<td>●</td>
<td>◇</td>
</tr>
<tr>
<td>1.5倍</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>2倍※</td>
<td>▲</td>
<td>△</td>
</tr>
<tr>
<td>4倍※</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

※D/PのR/V隙間部中央位置の流速比は1倍に固定（装置の制約）

图3.2 ガス巻込み発生マップ（周方向流速－液位）
実機定格条件に対する周方向流速比

<table>
<thead>
<tr>
<th>流速比</th>
<th>ガス巻込みあり</th>
<th>ガス巻込みなし</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00倍</td>
<td>(該当無)</td>
<td>◇</td>
</tr>
<tr>
<td>1.37倍</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>2.05倍</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>2.74倍</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>3.42倍</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4.11倍</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

図3.3 ガス巻込み発生マップ（D/P隙間部流速－液位）

R/V-H/L間でのガス巻込みの発生領域は、D/P隙間部流速（下降流速）と液位に依存して発生します。

実機条件に対するD/P隙間部流速比

実機条件に対する液位比
図3.4 ガス巻込み発生形態のパターン分類
＜ガス巻込み発生形態と頻度＞
・周方向流速比4.1: エンザイム3、頻度3回/10分
・周方向流速比4.8: エンザイム3、頻度8回/10分
・周方向流速比5.5: エンザイム3、頻度18回/10分

＜試験ケース＞
・液位比: 0.658
・D/P隙間部流速比: 2.0
・周方向流速比: 4.1〜5.5

図3.5 H/L配管前緣部で発生するガス巻込み現象に対する周方向流速依存性
パターン3（ガス巻き有）
・くぼみが発生し、気泡離れ
（滴は移動）

パターン5（ガス巻き有）
・離脱気泡が連続発生し、
D/P下面に到達（滴は移動）

＜ガス巻込みの発生箇所＞

D/P隙間部流速比: 4.0
D/P隙間部流速比: 2.0
D/P隙間部流速比: 1.0

＜ガス巻込み発生形態と頻度＞
• D/P隙間部流速比1.0: パターン5、頻度40回／10分
• D/P隙間部流速比2.0: パターン3、頻度8回／10分
• D/P隙間部流速比4.0: パターン3、頻度19回／10分

＜試験ケース＞
• 液位比: 0.658
• D/P隙間部流速比: 1.0～4.0
• 周方向流速比: 4.8

図3.6 H/L配管前縁部で発生するガス巻込み現象に対するD/P隙間部流速依存性
<ガス巻込みの発生箇所>

<試験ケース>
・液位比: 0.789 ~ 0.526
・D/P隙間部流速比: 2.0
・周方向流速比: 4.8

<ガス巻込み発生形態と頻度>
・液位比0.789: パターン5、頻度6回/10分（場所①）
 パターン3、頻度3回/10分（場所②）
・液位比0.658: パターン3、頻度8回/10分
・液位比0.526: パターン4、頻度9回/10分

図3.7 H/L配管前縁部で発生するガス巻込み現象に対する液位依存性
図3.8 H/L配管前縁部でのガス巻込み発生頻度
ケース8（ガス巻き有）
・離脱気泡がD/P下面に到達（渦は静定）
ケース9（ガス巻き有）
・離脱気泡が連続発生し、D/P下面に到達（渦は静定）

＜ガス巻込み発生箇所＞
水平流速比：3.4
水平流速比：2.7
水平流速比：2.1
水平流速比：4.1

＜試験ケース＞
・液位比：0.230
・D/P隙間部流速比：1.3
・周方向流速比：2.1～4.1

＜ガス巻込み発生形態と頻度＞
・周方向流速比2.1：パターン8、頻度16回／10分
・周方向流速比2.7：パターン9、頻度10回／10分
・周方向流速比3.4：パターン9、頻度8回／10分
・周方向流速比4.1：パターン8、頻度4回／10分

図3.9　H/L-R/V間領域で発生するガス巻込み現象に対する周方向流速依存性
図3.11 H/L-R/V間領域で発生するガス巻込み現象に対する液位依存性
図3.12 H/L-R/V間領域でのガス巻込み発生頻度

図3.13 液位とD/P隙間部流速の比に対するH/L-R/V間領域でのガス巻込み発生頻度
V: 水平流路1の断面平均流速
V_r: 実機設計定格条件相当の周方向流速

図4.1 ガス巻き込みの発生なし/発生あり条件における液面近傍の水平方向流況の比較
ガス巻き込みなし (20秒の時間平均流速値)
周方向流速: 実機流速一致 (V=0.037m/s)

ガス巻き込みあり (1.3秒の時間平均流速値)
周方向流速: 実機流速の5.1倍 (V=0.19m/s)

ガス巻込みの発生は、周方向流速に比例した循環の強度に依存

図4.2 ガス巻き込みの発生なし/発生あり条件における渦発生位置近傍の流速分布の比較
図4.3 H/L配管—R/V壁の間のガス巻込みに対するガスコア－速度場同時計測結果
図4.4 渦とガスコアの発達過程の比較（1/2）
（試験ケース：未発生条件、水平断面計測位置：液面下100mm）
図4.4 渦とガスコアの発達過程の比較（2/2）
（試験ケース：未発生条件、水平断面計測位置：液面下100mm）
図4.5 渦とガスコアの発達過程の比較（2/2）
（試験ケース：未発生条件、水平断面計測位置：液面下20mm）
図4.6 渦とガスコアの発達過程の比較（1/3）
（試験ケース：発生条件、水平断面計測位置：液面下100mm）
図4.6 渦とガスコアの発達過程の比較（2/3）
（試験ケース：発生条件、水平断面計測位置：液面下100mm）
図4.6 渦とガスコアの発達過程の比較（3/3）
（試験ケース：発生条件、水平断面計測位置：液面下100mm）
図4.7　渦とガスコアの発達過程の比較（1/3）
（試験ケース：発生条件、水平断面計測位置：液面下20mm）
図4.7 渦とガスコアの発達過程の比較（2/3）
（試験ケース：発生条件、水平断面計測位置：液面下20mm）
図4.7 渦とガスコアの発達過程の比較（3/3）
（試験ケース：発生条件、水平断面計測位置：液面下20mm）
国際単位系（SI）

<table>
<thead>
<tr>
<th>表 1. SI 基本単位表（長）</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本量</td>
</tr>
<tr>
<td>長さ</td>
</tr>
<tr>
<td>質量</td>
</tr>
<tr>
<td>時間</td>
</tr>
<tr>
<td>電流</td>
</tr>
<tr>
<td>テンポラリー</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 2. SI 基本単位表（角）</th>
</tr>
</thead>
<tbody>
<tr>
<td>基本量</td>
</tr>
<tr>
<td>角度</td>
</tr>
<tr>
<td>フラッジ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 3. 国際単位系と区別される国際単位系に属さない単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>単位</td>
</tr>
<tr>
<td>kg/m³</td>
</tr>
</tbody>
</table>

本レポートは日本原子力研究開発機構が不定期に発行する成果報告書です。
本レポートの入手および著作権利用に関するお問い合わせは、下記にご連絡ください。
なお、本レポートの全文は日本原子力研究開発機構ホームページ（http://www.jaea.go.jp/index.shtml）
より発行されています。このほか财団法人原子力ふれあいセンターで実務による複写版を行っ
ております。

〒319-1195 茨城県取手市粟生町白方白根 2番地4

日本原子力研究開発機構 研究技術情報部 研究技術情報課
電話 029-282-6387, Fax 029-282-5920

This report is issued irregularly by Japan Atomic Energy Agency.
Enquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5901

© Japan Atomic Energy Agency, 2006
1/1.8縮尺部分モデルによる原子炉容器内ガス巻込み特性の評価
－ガス巻込み発生マップによる支配因子の把握と発生メカニズムの解明－
Evaluation on Gas Entrainment in Reactor Vessel using 1/1.8th Scaled Model
- Investigation on Dominant Factors based on Occurrence Map and Mechanism for Gas Entrainment -

木村 暢之 江連 俊樹 飛田 昭 伊藤 真美* 上出 英樹
Nobuyuki KIMURA, Toshiki EZURE, Akira TOBITA, Masami ITOH* and Hideki KAMIDE

次世代原子力システム研究開発部門
機器開発グループ
Component and Fluid Engineering Group
Advanced Nuclear System Research and Development Directorate

October 2006
Japan Atomic Energy Agency 日本原子力研究開発機構