

# 多孔質媒体均質層及び二層不均質層を 対象にした塩淡境界面の挙動

Saltwater-freshwater Interface Behavior for Homogeneous and Double Layer Porous Media Filled with Different Size of Glass Beads

> 高須 民男<sup>\*</sup> 前川 恵輔 澤田 淳 Tamio TAKASU\*, Keisuke MAEKAWA and Atsushi SAWADA

> > 地層処分研究開発部門 システム性能研究グループ

Performance Assessment Research Group Geological Isolation Research and Development Directorate イチュ

March 2008

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp/index.shtml</u>) より発信されています。このほか財団法人原子力弘済会資料センター\*では実費による複写頒布を行っ ております。

〒319-1195 茨城県那珂郡東海村白方白根2番地4 日本原子力研究開発機構 研究技術情報部 研究技術情報課 電話 029-282-6387, Fax 029-282-5920

\*〒319-1195 茨城県那珂郡東海村白方白根2番地4 日本原子力研究開発機構内

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920

© Japan Atomic Energy Agency, 2008

多孔質媒体均質層及び二層不均質層を対象にした塩淡境界面の挙動

日本原子力研究開発機構 地層処分研究開発部門 地層処分基盤研究開発ユニット 高須 民男<sup>\*1</sup>,前川 恵輔<sup>+1</sup>,澤田 淳<sup>+2</sup>

(2008年1月23日受理)

高レベル放射性廃棄物の地層処分における安全評価では、地層中の地下水流動などの地質環境 条件を実際の現象に即して評価することが重要である。沿岸地域などでは、塩水と淡水が混在す る地層中の地下水流動を把握する必要があることから、均質層及び二層不均質層を対象に、模擬 した地層中での塩水(Nacl溶液)の淡水中への進展過程や塩淡境界面の挙動を観察するための室 内試験を、多孔質媒体中水理・物質移行現象可視化装置を用いて 2005 年 12 月から 2007 年 6 月 まで実施した。ビーズ粒径が異なる3種類の均質層及び二層不均質層での各試験における塩水楔 浸入量を整理した結果、今回の動水勾配と塩水濃度が同様の条件下においては、ガラスビーズ粒 径によらず、動水勾配と塩水濃度で塩水楔浸入量の分類ができる可能性が示された。塩水の浸入 長さは塩分濃度に比例し、動水勾配が低い場合には塩分濃度の増加によって浸入長さが著しく大 きくなった。

なお,ビーズ粒径が異なる3種類の均質層について間隙率の測定手順を確認した。また,粒径 1mm 均質層の間隙がガラスビーズ充填後の時間経過によっても大きく影響を受けていないことを 確認した。

核燃料サイクル工学研究所(駐在):〒319-1194 茨城県那珂郡東海村村松 4-33 \*1 検査開発株式会社,核燃料サイクル工学研究所 環境技術管理部 処分技術課(兼務) +1 地層処分研究開発部門 幌延深地層研究ユニット 堆積岩地質環境研究グループ +2 核燃料サイクル工学研究所 環境技術管理部 処分技術課(兼務)

i

# Saltwater-freshwater Interface Behavior for Homogeneous and Double Layer Porous Media Filled with Different Size of Glass Beads

Tamio TAKASU<sup>\*1</sup>, Keisuke MAEKAWA<sup>+1</sup> and Atsushi SAWADA<sup>+2</sup>

Geological Isolation Research Unit Geological Isolation Research and Development Directorate Japan Atomic Energy Agency Tokai-mura Naka-gun, Ibaraki-ken

(Received January 23,2008)

It is important to evaluate relevant processes in geosphere, such as groundwater flow, based on the actual conditions of geological environment. At the coastal area, it is needed to understand groundwater flow under the saltwater and freshwater mixing conditions. We conducted a set of laboratory experiments using mass transport visualization system with flow chamber representing homogeneous sedimentary rock filled with uniform glass beads and double layer filled with different size of glass beads, in order to observe saltwater intrusion process into fresh water and saltwater-freshwater interface behavior. From the horizontal intrusion length of saltwater, the result might not depend on the size of glass beads and might be categorized by the combination of hydraulic gradient and saline concentration. In case of low hydraulic gradient case, the saltwater intrusion length tends to be larger due to saline concentration increase.

Keywords: Saltwater-freshwater Interface, Saltwater Intrusion, Mini-MACRO, Density Driven Flow, Hydraulic Head, Homogeneous Media, Double Layer Porous Media

\*1 Inspection Development Company Ltd.: Waste Isolation Technology Section, Waste Management Department, Nuclear Fuel Cycle Engineering Laboratories (Additional Post)

+1 Sedimentary Environment Research Group, Horonobe Underground Research Unit, Geological Isolation Research and Development Department,

+2 Waste Isolation Technology Section, Waste Management Department, Nuclear Fuel Cycle Engineering Laboratories (Additional Post)

# 目次

| 1. はじめに                                | 1  |
|----------------------------------------|----|
|                                        |    |
| 2. 試験の概要                               | 1  |
| 2.1 装置の概要                              | 1  |
| 2.2 均質層及び二層不均質層での試験の概要                 | 2  |
| <ol> <li>塩水楔試験のための条件・再現性の確認</li> </ol> | 4  |
| 3.1 ガラスビーズ密度及びガラスビーズを充填した媒体槽の間隙率       | 4  |
| 3.2 均質層における塩水楔の形状再現性確認試験               | 6  |
| 4. 均質層の透水係数の測定                         | 7  |
| 4.1 ビーズの粒径 1 ㎜の均質層試験における透水係数の経時変化      | 7  |
| 4.2 ビーズ粒径 0.4 mmの均質層における透水係数の経時変化      | 7  |
| 4.3 小型MACRO推定間隙率の妥当性                   | 8  |
| 5. 塩水の淡水中への進展過程や塩淡境界面の挙動の観察            | 9  |
| 5.1 均質層における塩水楔試験                       | 9  |
| 5.2 均質層における塩水楔浸入に影響される染料浸透試験           | 10 |
| 5.3 ビーズの粒径 0.4 mmの均質層における折り返し塩水楔試験     | 11 |
| 5.4 二層不均質層における塩水楔試験                    | 11 |
| 5.5水頭差と塩分濃度によって決定される定常状態の塩水楔形状         | 13 |
|                                        |    |
| 6. おわりに                                | 14 |
|                                        |    |
| 参考文献                                   | 16 |

#### Contents

| 1. Introduction 1                                                                             |
|-----------------------------------------------------------------------------------------------|
| 2. Outline of the experiments1                                                                |
| 2.1 Basic concept of equipments1                                                              |
| 2.2 Experiments on homogeneous and double layer porous media2                                 |
| 3. Confirmation of condition and reproducibility for salt water intrusion examination4        |
| 3.1 Density of the glass beads and porosity of the flow chamber filled with glass beads - $4$ |
| 3.2 Reproducibility examination of salt water intrusion shape on homogeneous field $6$        |
| 4. Permeability coefficient change measurement of homogeneous field7                          |
| 4.1 Permeability coefficient change of time on homogeneous field (beads size 1mm)7            |
| 4.2 Permeability coefficient change of time on homogeneous field (beads size 0.4mm)7          |
| 4.3 Validity of measured porosity of Mini-MACRO8                                              |
| 5. Observation of intrusion process and saltwater-freshwater interface behavior9              |
| 5.1 Salt water intrusion examination on homogeneous field9                                    |
| 5.2 Dye infiltration examination on homogeneous layer influenced by salt water                |
| intrusion10                                                                                   |
| 5.3 Change of salt water intrusion shape on homogeneous field (beads size                     |
| 0.4mm) 11                                                                                     |
| 5.4 Salt water intrusion examination on double layer porous media 11                          |
| 5.5 Influence of hydraulic head difference and salt water density on steady state             |
| of salt water intrusion shape 13                                                              |
| 6. Conclusions 14                                                                             |
| References 16                                                                                 |

#### 1. はじめに

本報告書は、日本原子力機構が地層処分基盤研究施設において実施している沿岸堆積岩地域に おける地下水流動を適切に把握するための物質移行のモデル化に資するものであり、モデル化に おいては、塩水楔の形成及び塩淡境界面の挙動を的確に予測できる地下密度流解析法を持つこと が重要な問題である。

この密度流試験データ取得の一環として、私たちは多孔質媒体中水理・物質移行現象可視化装置((MAss transport Characterization in host ROck)以下「小型 MACRO」と呼ぶ)の媒体槽に、 粒径が明確なガラスビーズを充填することによって一様な透水係数である均質層、または二種類 のガラスビーズを重ねて充填することによって二層不均質層を作製する。このうち均質層はビー ズ粒径1mm, 0.8mm, 0.4mmの三種類の均質層を作製することとした。試験は、海水浸入の挙動を 模擬して、小型 MACRO の淡水槽を上流とする媒体槽内の淡水の流れに逆行して、あらかじめ赤色 に着色した塩水が小型 MACRO の塩水槽から媒体槽に浸入する様子を観察することより、各々の媒 体槽における塩水浸入形状や塩水の赤色着色変化を比較することによる塩分濃度の変化を把握す る。

高須ら<sup>1)</sup>は、これまでに、装置の基本機能を確認するための塩水楔予察試験を実施し、淡水で 飽和させた粒径 1mm のガラスビーズにより模擬した媒体槽中に食紅で着色した塩水により塩水 楔を再現すると共に、塩水楔試験を実施する上での媒体槽の通水量の変化に起因した留意点とし て以下の項目を示した。

- (1) 試験中における淡水槽の水頭保持
- (2) 媒体槽に浸入する塩水濃度の確認(画像解析など)
- (3) 試験中の塩水供給による塩水槽の塩水濃度の安定性
- (4) 試験中に継続して供給できる塩水の貯水量確保

また,その塩水楔予察試験の結果を用いて,数値モデルによる解析<sup>3)</sup>結果との比較を行い, Fig1.1-1に示すように数値モデルの解析結果と整合的であることが確認できた。(前川ほか<sup>4)</sup>)

本研究では、細粒径のガラスビーズを用いた均質層及び二層不均質層を作製して、上記の留意 点(1)、(3)および(4)に対する透水性に応じた必要な注水流量の確保、(2)に対する塩 水槽2箇所の塩分濃度の測定を施した上で、複数の動水勾配、間隙率の測定、塩水濃度など、よ り多くの条件を設定して塩水楔の形状の変化の特性データを取得し、条件に応じた塩淡境界面の 挙動を把握する。

#### 2. 試験の概要

2.1 装置の概要

小型 MACRO は、ガラスビーズを充填する媒体槽、媒体槽に給水する淡水・塩水をそれぞれ貯 める淡水槽・塩水槽からなる。媒体槽への淡水・塩水の浸入及び止水は、塩水槽側に設けたシ ャッターの手動開閉によって操作できる (Fig. 2.1-1 に小型 MACRO、媒体槽及び充填するガラス ビーズ粒径規格を、Fig. 2.1-2 に淡水槽・塩水槽の構成を示す)。 なお、塩水は純正科学株式会社製の NaCl (ASSAY min. 99.5%)を水溶液として使用いている。

(1) 媒体槽

Fig. 2.1-1 に示す均質層及び Fig. 2.1-2 に示す二層不均質層は以下の手順で作製する。

媒体槽は、長さ52cm、奥行10cm、高さ26cmで容積が約13000cm<sup>3</sup>の透明なアクリル製水 槽(媒体槽)内を水で飽和状態にして、粒径規格の明確なガラスビーズを高さが25cmを超 えるまで充填し、ヘラで表面を平面に近いかまぼこ型にならし、この上に厚さ1cmのシリ コンゴム製シート及び塩ビ製上蓋を載せボルトで締め付けて密封した物(以下「媒体槽」 は「均質層及び二層不均質層」の総称として用いる)である。作製した媒体槽は、ハンマ 一検査(共鳴音で空洞の有無を確認する検査)で上蓋の密封の際に媒体槽上部に生じる可 能性がある気泡及び空洞の無いことを確認する。

(2) 淡水槽, 塩水槽

媒体槽内の淡水の流れは淡水槽,塩水槽間の水位の差(以下「水頭差」と呼ぶ)によっ て生じる。給水中の淡水槽及び塩水槽の水位は,0.1cm の精度で昇降できる可動堰からの 越流水位に一致してサイホン制御され各水槽内を流動している水の水位(以下「任意水位」 と呼ぶ),各水槽内の固定越流堰を超えオーバーフロー区画へ排水される過程で各水槽内を 流動している水の水位(以下「固定水位」と呼ぶ)のいずれかで決定する。水頭差はこの 組み合わせで設定することができる。本室内試験はFig.2.1-2に示すとおり淡水側を任意 水位,塩水槽を媒体槽上端面から10.2cm 高い固定水位に設定して実施し,淡水槽,塩水槽 からの給排水量はFig.2.1-3に示すとおり微小流量計(愛知時計電気株式会社製0F05ZZF 型)が表示する1 cm<sup>3</sup>/min の桁まで,または微小流量計(愛知時計電気株式会社製0F10ZZF 型)が表示する10 cm<sup>3</sup>/min の桁までの瞬時流量を読み取り記録している。

(3) 隔離板, 染料吐出ノズル

媒体槽の両端部の淡水・塩水をそれぞれ貯める淡水槽,塩水槽と媒体槽を連絡するそれ ぞれの開口部は,Fig.2.1-4 に示すパンチング加工を施したステンレス板にナイロン製の メッシュ(網)を取り付けた隔離板で仕切ることでガラスビーズが媒体槽から流出しない 構造と成っている。淡水槽の隔離板の穴に沿って設置したノズルからブリリアントブルー FCF で着色した青色染料水を微小流量ポンプによって 0.01cm<sup>3</sup>/min を最小流量とする任意 流量で吐出すること(以下「染料浸透試験」と呼ぶ)ができる。

(4) 電気伝導率計

塩水槽中の塩水濃度の変化を随時確認するために、4%までの塩水濃度を自動測定できる 電気伝導率計(東亜ディーケーケー株式会社製 CM-21P型)のセンサーを塩水槽底部及び水 面近傍の定位置に設置した。電気伝導率計(CM-21P型)については、Table.2.1-5 および Photo.2.1-1に示すとおり脱気水で4%の濃度に調整し食紅0.1gを加えた着色塩水を原液と して、0.25%毎に希釈した際の電気伝導率と塩水濃度データを取り、値の関係を事前に確認 した。また着色塩水原液の塩水濃度希釈に伴った着色変化を観察した。

2.2 均質層及び二層不均質層での試験の概要

塩水楔試験のための条件として、ガラスビーズを充填した均質層の間隙率は、安定保持し、

塩水楔試験の実施条件下に即した均質層の間隙の平均を示す測定結果が得られる測定方法を確 立しておく必要がある。媒体槽は前述のとおり淡水槽,塩水槽と媒体槽が連絡していてガラス ビーズの間隙中に気泡混入等が無い様に飽和水で満たされている。この各水槽のうちの媒体槽 中の間隙率に相当する平均飽和水量を求めるためのサンプリングにおいて,場を乱し余剰の飽 和水がサンプルに混入しないような簡単な測定手法を選択するため,ビーズの粒径1mm及びビ ーズの粒径0.4mmで製作した媒体槽の素材(充填前の材料)など5種類のサンプル場を用いて 予察測定を実施した。

また、均質層の安定保持に関する塩水楔の形状再現性について、ガラスビーズ充填後数ヶ月の時間経過に伴う充填の差に影響が無いことをビーズの粒径1mmの均質層において合わせて確認した。

次の試験パラメータとして透水係数が重要となる。透水係数は通水試験または、トレーサー 通水試験により測定する。通水試験は各々のガラスビーズ間隙中の透水係数を求めるための短 時間の試験であり、淡水槽、塩水槽からの給排水量が水頭差に応じて適量で、装置計器及び配 管等が健全あることを合わせて確認する試験(以下「通水試験」と呼ぶ)、トレーサー通水試 験は媒体槽を移行する着色水が垂直を保持して淡水槽から塩水槽方向に移行する状態から 各々のガラスビーズが均質に充填されていることを確認するため、及び各々のガラスビーズ間 隙中の透水係数をトレーサー流速から求めるための試験(以下「トレーサー通水試験」と呼ぶ) である。均質層の透水係数の測定は、通水試験による塩水槽からの越流量を元に単位断面あた りの流量を求め動水勾配で除して算出する方法と通水試験による敵下着色淡水の浸透距離/分

(平均的な流速)を測定,動水勾配で除して算出する方法を用いる。前者は媒体槽の間隙を通水した平均越流量を示すのに対して,後者は前者の間隙を通水した平均越流量に加えて二層不均質層のような媒体槽の水平方向部分を通水した平均流量を示すための測定方法としても用いることができる。

ビーズの粒径1mmの均質層およびビーズの粒径0.4mmの均質層における通水試験を塩水楔試 験前に組み入れて実施し,透水係数を測定した結果,微少な透水係数の経時変化と変化後の安 定した期間があること確認した。

塩水試験前の通水試験で透水係数が安定した期間の測定値を用いて、先述のとおり得られた 間隙率を評価したところ、5 種類のサンプルの中では作製均質層材を使用して求めたビーズの 粒径 1 mm及びビーズの粒径 0.4 mmの均質層におけるガラスビーズの推定間隙率(λe)が妥当 であった。妥当性は間隙率を用いた算出トレーサー移行時間と、後に実施したトレーサー通水 試験における実測トレーサー移行時間とを比較して示すことができた。

ビーズの粒径 0.4 mmの層の上にビーズの粒径 1 mmの層を水平になるように堆積充填させた二 層不均質層や前述同様に予め作製均質層材を使用して推定間隙率を求めたビーズの粒径 0.8 mm の均質層の 2 種類の媒体槽を作製して,通水試験,トレーサー通水試験を実施した。

前述のビーズの粒径1mm ビーズの粒径0.4mmの均質層,二層不均質層およびビーズの粒径0.8mmの均質層の4種類の媒体槽で塩水楔試験を,ビーズの粒径1mmの均質層を除いた媒体槽で染料浸透試験等を合わせて実施した。さらに、ビーズの粒径0.4mmの均質層では、折り返し 塩水楔試験を実施し拡散による塩水楔の形状変化を観察した。 塩水楔試験は塩水濃度4%,3%及び2%とした密度流試験,染料浸透試験は塩水楔試験における 淡水の流れる様子(染料の分散,瞬時流速の変化)を観察する試験である。

各塩水楔試験における塩水楔の形状を比較した結果,ビーズの粒径の異なる均質層及び二層 不均質層など透水性条件が異なっても動水勾配と塩分濃度の違いによっていくつかのグループ 分けが可能であることを確認した。

3. 塩水楔試験のための条件・再現性の確認

3.1 ガラスビーズ密度及びガラスビーズを充填した媒体槽の間隙率

測定手順及び算出式

① ガラスビーズ密度

体積が既知の容器に均質層材を採取して質量を求める。これを乾燥させたときの質量を はかり、均質層材に含まれる水の容積を求める。

質量を容積で割った値が密度であるから、式は以下の様になる。

2間隙率

「間隙部分の容積」は均質層材に含まれる水の容積を用いる。式は以下の様になる。

媒体槽製作に用いるガラスビーズは、15000cm<sup>3</sup>を正確に採取して、ガラスビーズの間隙を水 で飽和させるために容器(調合容器)に脱気水とともに入れ、一昼夜放置する。このようにし てガラスビーズの間隙を水で飽和したガラスビーズを「均質層材」と呼ぶことにする。

容積が既知である容器に採取したガラスビーズの間隙率の測定を,媒体槽の製作に用いた以 下のサンプルで実施した。また,ガラスビーズ密度の確認を合わせて実施した。

・試験後のビーズの粒径1㎜媒体槽から計量スコップに採取したサンプル

・ビーズ粒径1mmの均質層材入り調合容器から計量スコップに採取したサンプル

・調合容器に準備したビーズ粒径1mmの均質層材

・ビーズ粒径 0.4 mmの均質層材入り調合容器から計量スコップに採取したサンプル

・調合容器に準備したビーズ粒径 0.4 mmの均質層材

「試験後のビーズの粒径1mm媒体槽から計量スコップに採取したサンプル」のサンプリング においては 250 cm<sup>3</sup>及び 100cm<sup>3</sup>計量スコップを使用した。計量スコップ容器の体積が既知であ るため、これをサンプルの容積とした。 「試験後のビーズの粒径1mm媒体槽から計量スコップに採取したサンプル」を例にして,ガ ラスビーズ密度及び媒体槽に充填したガラスビーズの間隙率測定手順をFig. 3.1-1 に,また手 順項目ごとの値をTable. 3.1-1 に示す。

Table.3.1-1の参考欄に示した「乾燥後ビーズ体積」は、250 cm<sup>3</sup>及び 100cm<sup>3</sup>計量スコップで 媒体槽から採取したサンプルをそれぞれ乾燥した後ガラス製メスシリンダーに充填して容積を 求めた結果であるが、ガラス製メスシリンダーに充填する際、振り固めたときと、流し入れた ときでは容積値が異なるため、振り固めながらガラス製メスシリンダーに充填して「固めかさ 密度」を求めた。250 cm<sup>3</sup>のガラスビーズ密度(250cm<sup>3</sup>平均)と 100 cm<sup>3</sup>のガラスビーズ密度(100cm<sup>3</sup> 平均)を求めたた。250 cm<sup>3</sup>の計量スコップ分が計量スコップ体積に対して増量傾向、100cm<sup>3</sup> 計量スコップ分が計量スコップ体積に対して減量傾向となり、2 種類の計量スコップに依存し たサンプル量のばらつきが見られたが、平均値はサンプリング方法による誤差を収束する結果 になった。さらに各サンプルの間隙率を比較すると、媒体槽の上方層のサンプル3及び4でや や低い値を示し、その後採取した中間層及び下方層では高い値を示している。誤差の原因とし て中間層及び下方層はサンプリング時に媒体槽内で数 cm 浸水した状態であり、サンプリング中 にも他の水槽の水位が媒体槽の水位に作用した水の流入があり、この中からのサンプリングに よって、容器を引き上げる際にガラスビーズが浮遊し、計量スコップから溢れて水量を多く含 んだサンプルになった可能性が高い。

Table. 3. 1-2 は,「ビーズ粒径 1 mmの均質層材入り調合容器から計量スコップに採取したサン プル」であるが,Table. 3. 1-1 で使用した均質層材を再利用するため洗浄したもので,ガラス ビーズの間隙部分は水で飽和状態にしてあるが,均質層材外から水が入り込むことはない。サ ンプリングにおいては,サンプル E が,100 cm<sup>3</sup>計量スコップを水平にして垂直に引き上げ採取 したものである。また,サンプル F,G は固めかさ密度を意識して 100 cm<sup>3</sup>計量スコップを引き 上げ前にガラスビーズを揺すってから採取したものであるが,ガラスビーズ密度,間隙率に大 きな値の差は現れなかった。

Table. 3. 1-3 は、「調合容器に準備したビーズ粒径 1 mmの均質層材」であるが、均質層の容積 が小さい装置特性を生かして均質層材の作製過程で容積・質量及び注入水量を容易に測定する ことができたため間隙率を算出できた有効な方法である。作製均質層材の間隙率は 0.02 m<sup>3</sup>バケ ツにガラスビーズ 0.015 m<sup>3</sup>及び脱気水を入れ、ガラスビーズが充分に沈降したことを待って、 ガラスビーズよりも上にある余剰水を吸引して、15000cm<sup>3</sup>の乾燥ガラスビーズに注入した脱気 水の量から吸引した水量を差し引いた水量を「均質層材に含まれる水の容積」として求めた。 結果、ガラスビーズ密度は Table. 3. 1-1 サンプル 3 及び4よりもさらに小さい値が得られ、 Table. 3. 1-3 の間隙率についても 33.9%であり、Table. 3. 1-1 のサンプル 3 及び4 の 36.9%よ りもさらに小さい値が得られた。従って小型 MACRO の均質層における堆積状態に近い固めかさ 密度、圧密状態であると思われる(以下 0.02 m<sup>3</sup>バケツの作製均質層材の間隙率を「推定間隙率」 とよぶ)。

粒径 0.4 mmのガラスビーズ密度及び間隙率についても,Table. 3.1-4 に示す「ビーズ粒径 0.4 mmの均質層材入り調合容器から計量スコップに採取したサンプル」の手順No.項目ごとの値と Table. 3.1-5 示す「調合容器に準備したビーズ粒径 0.4 mmの均質層材」の手順No.項目ごとの値 から前者の間隙率と後者の推定間隙率を比較すると、後者に固めかさ傾向が確認でき、作製均 質層材により得られた推定間隙率が小型 MACRO の均質層における充填状態に近いものと推察で きる。

3.2 均質層における塩水楔の形状再現性確認試験

一度作製した均質層を使用して水頭差や塩分濃度の条件を変えた塩水楔試験を繰り返して実施する際,ガラスビーズの沈降,水の飽和度の変化,水垢の発生・付着等の時間の経過に伴う影響が試験結果に影響を及ぼす可能性がある。小型 MACRO の均質層の約5ヶ月の時間経過に伴う試験結果への影響を調べるため,2005年12月16日の予備試験,及び2006年2月7日から3日間のトレーサー通水試験を経た均質層を用いて,水頭差を1cmとした4%塩水楔試験を2回実施して,合計3回の試験における塩水楔浸入を観察した。

前提条件として,当該均質層は2005年10月20日に充填し装置の機能確認試験を繰り返した ものであること,また,当時の媒体槽はPhoto. 3.2-1に示すとおり構造上透水性に影響を及ぼ す恐れのある部分によって,通水流量が低下する要因はあるが,均質層は現状を保存したまま 塩水楔試験を実施した。

Fig. 3. 2-1 の「4%塩水楔の形状再現性確認試験」に示した3試験の楔高さおよび楔長さの 比較グラフでは、2回目、3回目の塩水楔試験の方が塩水楔の浸入高さ(■,△)は試験開始時 から約1cm低いまま推移している。また、時間経過に対する塩水楔の水平方向浸入長さは、初 回を100%とした場合2回目、3回目の塩水楔試験では28分後に約プラス9%の浸入を確認する 結果となった。

2回目,3回目の試験で初回の試験より塩水楔の高さ浸入が遅れ,水平方向長さ浸入が多少加速した原因として,前述のような媒体槽の構造上の影響が以下の様に重なって生じたと考えられる。

- a. いずれの試験でも、通水量が Photo. 3.2-1の a. に示す隔離板枠の幅 10 mmの梁が Photo.
   3.2-1のb. に示す塩水槽ゲート支持板貫通孔 φ 22 mmと重なった構造に阻まれてガラス ビーズ間の通水量である試験流量を抑制した。また、通水路を塞いだことに加え、シャ ッター開き加減による誤差が生じた。
- b. 塩水置換作業の際のシャッター操作が原因と見られる媒体槽の水位低下により生じた Photo. 3.2-2 のような媒体槽への気泡混入によって、通水経路である一部の間隙部分 を気泡で塞いだことにより淡水の流れを抑制した。または一方では塩水の浸入する長さ を助長した。

塩水楔の浸入を助長する傾向の原因は、Photo. 3.2-1 の a. 隔離板枠の幅 10 mmの梁または Photo. 3.2-1 の b. に示す塩水槽ゲート支持板貫通孔にあると思われる。Table. 3.2-1 のトレ ーサー通水試験及び通水試験の流量の比較によって均質層は5ヶ月程度の時間経過で透水性が 低下する様なガラスビーズの沈降,飽和度低下,水垢付着等が無いことがわかった。

#### 4. 均質層の透水係数の測定

媒体槽の構造について透水性に影響を及ぼすと考えた部分の改善・整備を施した後,2006年7 月28日に製作し2006年8月10日に補充したビーズの粒径1mmの均質層における通水試験を2006 年8月21日から2006年10月12日に実施した塩水楔試験前に組み入れて実施し,試験毎に透水 係数の変化を確認した。また,2006年10月31日に充填を終えたビーズの粒径0.4mmの均質層 を使用した通水試験を2006年11月2日からの塩水楔試験前に組み入れて実施し,試験毎の透水 係数の変化を確認した。透水係数は以下の「透水係数Kの計算式」を用いて算出した。

透水係数 K の計算式は

| 透水係数= | <u>通水流量×均質層長さ</u> | • | • | • | • | • | • | • | • | • | • | • ( . | 4) |
|-------|-------------------|---|---|---|---|---|---|---|---|---|---|-------|----|
| 透小你数一 | 均質層断面積×水頭差        |   |   |   |   |   |   |   |   |   |   |       |    |

K=(Q·L) / (A·Δ d) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(4 ') さらに、各々のガラスビーズが均質に充填されていることを確認するため(以下「トレーサー 通水試験」と呼ぶ)の試験を実施して、ほぼ一様なトレーサーの移行を確認した。合わせて試 験中のトレーサーの移行速度を測定し、媒体槽の間隙部を満たすトレーサー流量と間隙率の関 係を示した。

通水流量Q=均質層の体積V×間隙率λ/トレーサー移行時間T ・・・・・・(5)-1

4.1 ビーズの粒径1mmの均質層試験における透水係数の経時変化

通水流量は淡水槽から塩水槽の塩分及び浮遊物を充分通排水した後,安定した流量を確保し 3 分間継続したときの微小流量計の表示流量を読み取った。Table. 4.1-1 に示す「透水係数の 算出表 - 1」の Q 値のうち 2006 年 10 月 3 日の 3%塩水楔試験前通水試験までは微小流量計 (OF10ZZF 型) で 10 cm<sup>3</sup>/min の桁までの読み取りを,2006 年 10 月 12 日に実施した 2%塩水楔 試験のための通水試験は,微小流量計(OF05ZZF 型)を追加取付けした後に実施したため 1cm<sup>3</sup>/min の桁までの読み取りをしている。したがって,水頭差 0.5cm 及び 0.75cm で実施した 試験のうち,微小流量計(OF10ZZF 型)で読み取った流量測定範囲(350 cm<sup>3</sup>/min)以下の値は 参考値とすると,透水係数は 2006 年 8 月 10 日の均質層材補充以降に微少な変化はしたが,2006 年 9 月 7 日以降の 1 ヶ月間は 1.28~1.30 cm/sec 以内に安定している。

4.2 ビーズの粒径 0.4 mmの均質層における透水係数の経時変化

Table. 4.2-1 に示す「透水係数の算出表 - 2」の通り,通水流量は淡水槽から給水して塩水 槽の塩分及び浮遊物を充分通排水した後,安定した流量を確保し3分間給排水を継続したとき の微小流量計(0F05ZZF型)の表示流量を1cm<sup>3</sup>/minの桁まで読み取った。

結果,透水係数は2006年10月31日の均質層材補充以降約1ヶ月の試験期間中0.094~0.120 cm/sec 以内に安定している。

4.3 小型MACRO推定間隙率の妥当性

Table. 4.3-1 はトレーサー通水試験における「実測トレーサー移行時間 T」 と推定間隙率から導いた「算出トレーサー移行時間 T'」を比較した物である。

Table. 4.3-1に示す「実測トレーサー移行時間 T」の①②③は、ビーズの粒径 1 mmの均質層 補充作製の過程である 2006 年 8 月 2 日から 7 日に繰り返し実施したトレーサー通水試験結果で あり、Photo. 4.3-1の媒体槽ガードに印した 2 つの黄色マークの間を移行するトレーサー先端 が淡水槽に到達した時間を 0.5~2cm の各水頭差においてそれぞれ 3 回確認した値で、移行過程 についてもトレーサー先端位置を 1 min 間隔で追跡読み取りし Table. 4.3-2の「粒径 1 mmの均 質層の着色通水(トレーサ)試験」のように示した。また、ビデオ再生画像によりトレーサー 先端の到達位置の再確認を実施している。Table. 4.3-2 に示す「着色水浸透長さ」欄を見ると 50cm に到達したときの「経過時間」が、10 分 37 秒と記されている。この経過時間は Table. 4.3-1の表に示した「実測トレーサー移行時間 T」の①のうちの「水頭差 1 cm」の欄へ転記した 値である。Table. 4.3-1「実測トレーサー移行時間 T」の②のうちの「水頭差 1 cm」の欄では、 トレーサー移行時間 T が均質層の作製直後に実施した着色通水(トレーサ)試験結果①よりも 多く掛かっている。この値から②の試験においては透水係数の経時変化によって、均質層の作 製直後に実施した着色通水(トレーサ)試験の①よりも、均質層のかさが固まり、安定した均 質層になったため、Photo. 4.3-1 に示す測定箇所におけるトレーサー移行量が低下したものと 判断する。

ただし、2006 年 8 月 10 日に実施したハンマー検査(共鳴音で空洞の有無を確認する検査) 結果をもとに、充填不足箇所への均質層材の補充を実施していることから Table. 4.3-1①②③ は参考値として記載した。

Table. 4. 1-1の「ビーズの粒径 1mm の均質層における透水係数の経時変化」に示すとおり, 初期充填状態の通水流量Qについては9月7日以降に実施した塩水楔試験前の通水流量と比べ て約5%~8%多く,媒体槽の空洞部を流れた水量を含んでいることが予想できるため,水頭差 1cm, 1.5cm及び 2cm では均質層間隙部を満たした水量として透水係数値が 1.28~1.30 c m/sec の安 定した状態にあるときの通水流量Qを Table. 4.3-1 に示す「算出トレーサー移行時間 T'」算 出のためのデータとして使用している。

3章1項で得られたビーズの粒径1mmの均質層材における推定間隙率33.9%を用いて,以下により算出トレーサー移行時間 T'を求めたところ,Table.4.3-1に示すようにトレーサー通水 試験で求めた実測トレーサー移行時間Tとほぼ一致していることがわかった。

算出結果からビーズの粒径 1 mmの均質層の透水係数が「透水係数の算出表 - 1」の 1.28~ 1.30cm/sec となり安定した時,推定間隙率は妥当な間隙率(λe)であると言える。

 $Q = V(13000 \text{ cm}^3) \times \lambda \quad (33.9\%) / T \qquad \cdots (5) -2$ 

 $T' = V(13000 \text{ cm}^3) \times \lambda$  (33.9%) /Q

ビーズの粒径 0.4 mmの均質層についても 3 章 1 項の Table. 3.1 - 5 に示す推定間隙率 33.8%を 用いて,以下の方法によりトレーサー移行時間 T″を算出して,Table. 4.3-3 および Photo. 4.3-2 に示すような実測データおよび撮影した画像より求めた「実測トレーサー移行時 間 T」と推定間隙率から算出した「算出トレーサー移行時間 T"」とを比較した。 Q=V(13000cm<sup>3</sup>)×λ (33.8%) /T ・・・・・・・(5) -3 算出時間 T' は T' =V(13000cm<sup>3</sup>)×λ (33.8%) /Q (34cm<sup>3</sup>/min) =129' 14"

Table. 4. 3-3 より実測トレーサー移行時間は 24 分で着色水が約 9.5cm 移行しているから「計算式では着色水が移行して 9.5cm に到達する時間は

着色水浸入が約 9.5cm に達する時間は,算出トレーサー移行時間 T"と実測トレーサー移行時間 (表中では「経過時間」を示す)とでほぼ一致していることがわかった。

5. 塩水の淡水中への進展過程や塩淡境界面の挙動の観察

5.1 均質層における塩水楔試験

小型 MACRO のビーズの粒径 1 mmの均質層中において塩水槽の塩水濃度を 4%, 3%及び 2%にした際の塩水楔試験を,Photo. 5.1-1 に示す。試験は,染料により着色した塩水が淡水槽(右端) に達するまで,あるいは塩水の浸入が進まない定常状態に達するまで実施し,塩水濃度を変えた場合の各水頭差での塩水楔の浸入形状を Fig. 5.1-1, Fig. 5.1-2,及び Fig. 5.1-3 に図示して比較した。Fig. 5.1-4 には Fig. 5.1-1, Fig. 5.1-2,及び Fig. 5.1-3 の中の水頭差 0.75cm の塩水 楔試験における試験記録を用いた経過時間と塩水楔浸入寸法の関係について示す。

また,ビーズの粒径を 0.4 mmに変えた均質層中において塩水槽の塩水濃度を 4%, 3%及び 2% にした際の塩水楔試験を Photo. 5.1-2 に示すとおり,塩水楔が定常状態に達するまで実施した。 塩水濃度を変えた場合の各水頭差での塩水楔の浸入形状を Fig. 5.1-5, Fig. 5.1-6 及び Fig. 5.1-7 に示す。

(1) 水頭差を変えたときの塩水濃度4%楔浸入形状

Fig. 5.1-1 に示した塩水楔の浸入形状においては水頭差0.5cmに設定した試験を除いて, 他の水頭差に設定した試験では塩水楔の浸入が止まり定常状態に達した。水頭差を低くす ると水平方向浸入長さ,浸入高さとも水頭差に反比例して進展しているのがわかる。

(2) 水頭差を変えたときの塩水濃度 3% 楔及び 2% 楔浸入形状

Fig. 5.1-2,及びFig. 5.1-3に示した塩水楔の浸入形状の3%濃度の試験では、水頭差を 0.5cm に設定した試験を除いて他の試験では塩水楔の浸入が止まり定常状態に達した。塩 水と淡水の境界は、塩水の赤と淡水の透明に分かれて多少円弧状の形状をしている。また、 どの濃度においても水頭差に反比例して水平方向浸入長さ及び高さが進展している。ただ し、水頭差を2cmに設定した際には2%塩水の淡水への浸入は全く無かった。

(3) 塩水楔浸入量の塩水濃度変更による影響

Fig. 5.1-4 は前述 Fig. 5.1-1, Fig. 5.1-2, 及び Fig. 5.1-3の中から水頭差 0.75cmの塩水

楔試験について,開始から定常状態に至るまでに塩水が浸入した高さ(H)及び浸入した長さ(L)を4分毎に記録したデータを用いて重ねて比較している。

塩水浸入高さ及び水平方向浸入長さは、2%でH122mm-L188mm、3%でH148mm-L263mm、4%でH189mm-L490mmであり、特に水平方向浸入長さにおいては塩水濃度が濃い方が淡水内に大きく入り込む。2%塩水と3%塩水では2%塩水の浸入量の1.39倍、3%塩水と4%塩水では3%塩水の浸入量の1.86倍までの浸入を示した。

(4) 均質層ビーズの粒径が 0.4 mmのときの楔浸入形状

ビーズの粒径を0.4mmに変えた均質層中において塩水槽の塩水濃度を約4%,3%及び2% にした際の塩水楔試験をFig.5.1-5, Fig.5.1-6およびFig.5.1-7に示したような水頭差 により実施した。Fig. 5.1-5が4%の塩水楔が定常状態に達したときの浸入形状を, Fig.5.1.6が3%Fig.5.1.6が2%の塩水楔が定常状態に達したときの浸入形状を示している。 どの濃度においても水頭差が低くなると水平方向浸入長さ浸入高さとも進展している。ま た、塩水と淡水の境界は塩水の赤と淡水の透明に分かれて多少円弧状の形状をしている。 (5)塩水楔浸入量の均質層のビーズの粒径変更による影響

ビーズの粒径1mmの均質層における試験に比べてビーズの粒径が0.4mmの均質層の試験 はTable.5.1-1のように同じ水頭差でも定常状態に到達するまでの時間が4.6倍から10.5 倍掛かった。

同じ水頭差で実施したビーズの粒径 1 mmの均質層における試験とビーズの粒径が 0.4 mm の均質層における試験の塩水楔形状を相互比較すると、ビーズ粒径が異なることで試験時 間に違いがあるにもかかわらず、塩水楔が定常状態に達した際の形状および到達位置はお およそ近接している。Fig. 5.1-1 と Fig. 5.1-5 の水頭差  $\Delta$  1.5cm 試験, Fig. 5.1-2 と Fig. 5.1-6 の水頭差  $\Delta$  2.0cm 試験および Fig. 5.1-3 と Fig. 5.1-7 の水頭差  $\Delta$  1.0cm 試験結果 は近似している。

定常状態に達したときの塩水楔浸入量は、均質層のビーズの粒径変更による影響よりも 水頭差や塩分濃度によって決定されることを、データ収集を重ねた5項で再度検証するこ ととする。

5.2 均質層における塩水楔浸入に影響される染料浸透試験

塩水槽に対する淡水槽の水頭差を2cmとして通水試験を行い,塩水槽での越流流量が一定(69 cm<sup>3</sup>/min)で水頭設定の再現が正確である事を確認した後,ビーズの粒径0.4 mmの均質層中において塩水楔浸入中の染料浸透試験を以下の条件で実施した。

塩水槽のゲートを閉じ、塩水槽内の淡水を排水した後、濃度4%の塩水で満たし、一方の淡水 槽の底部にはFig.2.1-4に示すように孔径1mmの青色染料水ノズルを設置した。青色染料水ノ ズルより淡水の通水断面積の1/250断面相当あたりの流量である0.14cm<sup>3</sup>/min で染料水を吐出 しながら塩水楔試験を開始した。

その結果, Photo. 5. 2-1 から分かるように 60min にて塩水楔が高さ 6cm×長さ 8cm の定常状態 に達し, 112min に青色染料水が塩淡境界に達した。青色染料水の浸透速度は Fig. 5. 2-1 に示す 様に水平方向長さ 30cm までは約 0. 45cm/min, 水平方向長さ 40cm に至ってから塩水槽に到達す るまでの塩淡境界面に沿った浸透は約0.22cm/minとなって,先端を球状から鋭角な形状に変え, 先端を鋭く屈曲させながら,塩水と混ざることなく塩水槽に至った。更に,140min後では先端 に追随する部分が次第に塩水と接触して塩淡境界面で混合したことを示す紺色に変色した糸状 の線を観察できた。

5.3 ビーズの粒径 0.4 mmの均質層における折り返し塩水楔試験

塩水槽に対する淡水槽の水頭差を1.5cmとして通水試験を行い,塩水槽での越流流量が一定 (41 cm<sup>3</sup>/min)で水頭設定の再現が正確である事を確認したビーズの粒径0.4 mmの均質層中に おいて塩水楔折り返し試験を以下の条件で実施した。

塩水槽のゲートを閉じ塩水槽内の淡水を排水した後,濃度4%の塩水で満たした。Photo.5.3-1 に示すように,塩水楔試験を開始し152minで塩水楔が高さ10.7cm×長さ14.8cmの定常状態に 達した。ここから水頭差を2cm, 2.5cmに変更し,更に1.5cmに戻したときの塩水楔の復旧の様 子を観察した。

試験を開始して 169min 後に水頭差を 2.5cm に変更したところ,楔形状は高さ 7.5 cm×長さ 11.3 cm まで衰退し,それまでなだらかな曲線であった塩淡境界は,楔先端が削れたような鈍角な形状を示した。

水頭差を戻して 1.5cm とした 212min 時点には楔形状は高さ 3.5 cm×長さ 4.7 cm まで衰退した。折り返して塩水楔が浸入した 21 分後には、塩水楔試験を初期の 28 分時点における楔形状とほぼ同じく高さ 7.2 cm×長さ 9 cm 迄戻し、塩水の赤色がぼやけることなく曲線を復旧再現した。

5.4 二層不均質層における塩水楔試験

Fig. 5. 4-1 に示すように小型 MACRO にビーズの粒径 0.4 mmの均質層 5cm を充填後, ビーズの 粒径 1 mmの均質層 20cm を堆積させた二層不均質層を作製して, Fig. 5. 4-2 に示すトレーサー通 水試験を水頭差 2cm で実施した後, Photo. 5. 4-1 に示すように塩水槽の塩水濃度を 4%にした際 の塩水楔試験を水頭差 0.7 cm, 1 cm, 1.5 cm 及び 2cm として実施した。また,塩水濃度を 3% にした際の塩水楔試験を水頭差 1.5 cm 及び 2cm として, さらに,塩水濃度を 2%にした際の塩 水楔試験を水頭差 1 cm として実施した。

以下(1)から(3)では Photo. 5. 4-2 に示すような水頭差 0.75 cm における試験で得られ た結果について紹介する。

塩水槽に対する淡水槽の水頭差を 0.75cm とし通水試験を行い,塩水槽での越流流量が一定 (179 cm<sup>3</sup>/min) で水頭設定の再現が正確である事を確認した後,塩水槽を濃度 4%の塩水で満 たし,淡水槽の底部に設置した孔径 1mm のノズルより青色染料水を流量 0.25cm<sup>3</sup>/min で吐出し ながら塩水楔試験を開始し,3hr44min 間試験を行った。

(1) 下方層への塩水進展過程と楔形状変化及び上方層における染料浸透試験

不均質層における4%塩水楔の形成においては,透水性の高いビーズの粒径1mm層へ先端 を丸めた特徴を持った形状で浸入を開始し,4min程遅れてビーズの粒径0.4mm層への浸入 を開始する。ビーズの粒径0.4mm層への浸入の遅れを補うようにビーズの粒径1mm層から 塩水が滴れる現象が確認できた。開始 72min にはビーズの粒径 1 mm層を 0.5cm 間を 8min (0.625 mm/min) 掛けて進展する塩水楔とビーズの粒径 0.4 mm層を 1.5cm 間を 8min(1.875 mm/min)掛けて進展する塩水楔の浸入長さが並び,二つの鋭角な楔が形成された。178min にはビーズの粒径 1 mm層での塩水楔の進展は停止し定常状態になるが,ビーズの粒径 0.4 mm層では約 1 mm/min で進展することを確認できた。

一方,ビーズの粒径1mm層に浸透する青色染料水は,塩水楔の接近前である24minから 徐々に先端を球状から鋭角な形状に変え,先端を鋭く屈曲させながら,塩水と混ざること なく塩淡境界面に沿って上昇し,塩水槽に至った。

塩水楔の進展過程での注目点として、ビーズの粒径1mm層の塩水楔からビーズの粒径0.4 mm層へ滴れる塩水染料は、時間経過とともにビーズの粒径1mm層を進展する塩水楔の進展 速度に合致して右方向へ平行移動していることから、ビーズの粒径1mm層の塩水楔は先に 浸入した塩水が新たに供給された塩水に塩水層側から順次押し込まれて進展するものと推 察できる。

(2) 下方層から上方層へ浮上する青色染料水の浸入による塩淡境界の着色変化

二層不均質層で2006年12月5日に水頭差2cmでトレーサー通水試験を実施している。 トレーサー通水試験の過程を撮影したFig.5.4-2に示す画像より,ビーズの粒径0.4 mm層 の染料の淡水中での移行速度を確認すると3.2mm/minとなるが,同画像より確認したビー ズの粒径1 mm層における淡水中での染料の移行速度の約70 mm/minに比べて透水性が低い ことが確認できる。

Photo. 5. 4-2 に示すような水頭差 0. 75 cm とした塩水楔試験において, ビーズの粒径 0.4 mm層に浸透する青色染料水は、淡水槽の隔離板面に集中的に吐出させた青色染料水が、直径約 4 cm の大きさになって浸透したものであるが,形状を変える拡散等は無くビーズの粒径 0.4 mm層内を左方向へ平行に移行した。塩水楔に到達した 170min には先端を球状から鋭角な形状に変え,先端を鋭く屈曲させ φ 1 mm層へ浸透,ビーズの粒径 1 mm層に浸透する青色染料水とは 140min まで接触が見られなかった塩淡境界面を透明から青色に変えながら,かつ淡水の流速が速い層への流入により流域を狭めて浮上した。

(3) φ0.4 mm層における青色染料水と塩水である赤色染料との混合域の形成

 $\phi$ 0.4 mm層の青色染料水は170min で塩水楔に接触した。接触直後から $\phi$ 0.4 mm層に浸入 する赤色である塩水楔と重なり合うことで塩水楔の先端を紺色に変色させる混合域が形成 されることを確認した。

225min 経過時における純粋な塩水部分を観察すると φ1 mm層では淡水に押される様に湾曲し, φ0.4 mm層では先端に丸みを持っているように見ることができる。

(4) 水頭差を変えたときの塩水濃度4%における楔浸入形状の比較

塩水楔試験を二層不均質層において Fig. 5. 4-3 に示すような水頭差にして実施した。図

は,各水頭差における塩水楔が淡水の下へ浸入した高さと水平方向の長さを比較するため, 試験で得られた塩淡境界を重ねて示した。すべて塩水楔の進展が止まり定常状態に達した ときの塩淡境界の浸入高さと水平方向の浸入長さを示している。水頭差を低くすると水頭 差に反比例して浸入長さ,高さとも進展しているのがわかる。

5.5 水頭差と塩分濃度によって決定される定常状態の塩水楔形状

Fig. 5. 1-1 と Fig. 5. 4-3 の相違点として,同一水頭差とした試験を比較した場合,後者では 二層不均質層のビーズの粒径0.4mmの均質な層とビーズの粒径1mmの均質な層で湾曲した形状 の塩淡境界面がそれぞれ確認でき,若干角度をかえて連なった状態になっている。均質層の場 合と比較すると浸入過程も浸入形状も異なる。塩水楔浸入長さを,Fig. 5. 1-1 の底部 5cm を目 隠しして Fig. 5. 5-1 に示すようにして, Fig. 5. 4-3 の媒体槽における塩淡境界面が若干角度を かえた粒形 1 mm層底部を底辺とする楔と部分比較しても塩水楔浸入長さ,浸入高さに関した形 状の一致点は示せず、各水頭差の試験共に Fig. 5. 4-3 の二層不均質層における塩水楔が定常状 態に達した際の水平方向浸入長さは大きな浸入を示している。逆に Fig. 5. 1-1 と Fig. 5. 4-3 の底部を底辺とする塩水楔浸入長さを比較すると、水頭差 1cm で実施した試験で近似している。

2007 年 6 月までに Fig. 5. 5-2 に示すような「ビーズの粒径 0.8 mmの均質層における間隙率 とトレーサー移行時間の関係」においてビーズの粒径 0.8 mmの均質層における間隙率は,

「34.2%」であることを確認した。また、Photo.5.5-1の「ビーズの粒径 0.8 mmの均質層における塩水楔試験の結果画像一覧」に示すような塩水楔試験を実施した。

ビーズの粒径 0.8 mmの均質層における塩水楔試験から得られたデータと粒径 1 mm 粒径 0.4 mmのガラスビーズをそれぞれ充填した均質層, ビーズの粒径 0.4 mmの層の上にビーズの粒径 1 mmの層を水平になるように堆積充填させた二層不均質層を含めた 4 種類の媒体槽における塩水楔試験結果を Table. 5.5-1 に示して比較するとともに, 定常状態における塩水楔の水平方向 浸入長さに影響を与える要因について Fig. 5.5-3 に示して評価した。1 項の(5) で示したのと 同様に, Table. 5.5-1 においてもビーズ粒径が異なることで「試験時間」に違いがあるにもか かわらず塩水楔が定常状態に達した際の水平方向浸入長さは, Fig. 5.5-3 においても水平方向 浸入長さに影響を与える要因の1つである「塩水の電気伝導率」毎に分布がおおよそ近接して いる。

Fig. 5.5-3 のデータを詳細に比較すると■水頭差(Δh) 0.75cm, ▲水頭差(Δh) 1cm, × 水頭差(Δh) 1.5cm 及び※水頭差(Δh) 2cm のそれぞれが電気伝導率が上昇するにしたがっ て,右上がりの直線で示すこと(ただし,水頭差(Δh) 2cm の×印1つ及び水頭差(Δh) 0.75cm の×印1つを除いた場合。)ができ,水頭差が低下するほど右上がりの直線が急勾配を示して いる。これらの結果から,塩水の電気伝導率の上昇が在っても水頭差が大きいときは塩水楔水 平方向浸入量への影響は比較的小さいものの,水頭差が小さくなると塩水の電気伝導率の上昇 にともなって塩水楔水平方向浸入量への影響が増幅して塩水楔水平方向浸入量の急激な増加 を示すことが分かった。

Fig. 5. 5-3 中の二層不均質層における試験結果は→印を(■水頭差( $\Delta$ h)0. 75cm,  $\land$ 水頭 差( $\Delta$ h) 1cm, ×水頭差( $\Delta$ h) 1. 5cm に)付けた 4 点である。結果は、データ数が少ないこ

と及び図中の分布を見て,各水頭差の均質層における塩水楔水平方向浸入量との関連性を評価 できるものではないが,水頭差が小さい場合には,他の均質層の塩水楔水平方向浸入量より少 ない浸入量を示した。

#### 6. おわりに

沿岸地域の地下においては,淡水に海水が浸入することにより塩水と淡水が共存した領域が 形成される。

多孔質媒体中水理・物質移行現象可視化装置(以下「小型 MACRO」と呼ぶ)を用いて 2005 年12月から 2007 年6月まで実施した均質層及び二層不均質層を対象にした塩水の淡水中への 進展過程や塩淡境界面の挙動観察を行った。

(1) 塩水の淡水中への進展過程観察

塩水の淡水中への進展過程観察においては,媒体槽内での塩水の浸入形状への塩分濃度 と水頭差の違いによる影響が顕著であり,ビーズの粒径 1 mmの均質層における水頭差 0.75cm の塩水楔試験では,定常状態に至るまでに塩水が浸入した高さ(H)及び浸入した 長さ(L)は、2%でH122 mm - L188 mm,3%でH148 mm - L263 mm,4%でH189 mm - L490 mmとな り,特に水平方向浸入長さにおいては2%塩水と3%塩水では2%塩水の浸入量の1.39 倍,3% 塩水と4%塩水では3%塩水の浸入量の1.86 倍までの浸入を示し、塩水濃度が濃い方が淡水 内に大きく入り込む。均質層のビーズの粒径を変えた場合に定常状態に到達する時間は、 ビーズの粒径 1 mmの均質層における試験に比べてビーズの粒径 0.4 mmの均質層における試 験では透水性の低いことが影響して各水頭差とも4.6 倍以上掛かった。一方,同じ水頭差 で実施したビーズの粒径 1 mmの均質層における試験とビーズの粒径が 0.4 mmの均質層にお

るにもかかわらず、塩水楔が定常状態に達した際の形状および到達位置はおおよそ近接し ていた。

(2) 塩淡境界面での挙動観察

①淡水槽から媒体槽に微流量の青色染料水を吐出すことによる塩淡境界面近傍での挙動観察では、以下の様な淡水の流れる様子を観察した。

- ・ 青色染料水である淡水が塩水の浸入した領域を避けるように流れる屈曲現象。
- ・ 淡水中の青色染料水の浸透速度は 0.45cm/min であったが塩水楔と接近するのに伴って (また,塩淡境界面近傍で) 0.22 cm/min に減速。
- ②塩水楔折り返し試験における塩水楔の形状復旧の観察では、以下の様な楔形状の連続した 変化を観察した。
- ・ 楔形状が曲線形状の定常状態に達した後の手動による水頭差上昇によって、塩水楔は先端が削れるような鈍化を伴って衰退。
- ・塩水楔折り返し起点では鈍化が無い曲線形状に戻り,水頭差の降下変更後には時間経過 するに伴って衰退前の塩水楔形状を復旧。
- ③不均質層における試験では、以下のような連続した変化を確認した。

- ・ 楔浸入過程において透水性の異なる上方層と下方層で並んだ二つの鋭角な楔が形成され、
   時間経過に伴って曲線形状がほぼ一体化した擬似楔形状を形成。
- ・透水性の低い下方層を直径約 4cm の固まりとなって流れた青色染料水が透水性の異なる 上方層に至った際は塩水楔の境界面に沿って流域を数ミリまで狭めて浮上。
- ・各試験において、下方層を流れた青色染料水と下方層に浸入した塩水楔の楔先端を覆うように混合域を形成。

以上の結果及びビーズの粒径 0.8 mmの均質層における塩水楔試験の結果を踏まえ,ビーズの 粒径が異なるビーズの粒径 1mm,ビーズの粒径 0.4 mm,ビーズの粒径 0.8 mmの 3 種類の均質層及 び二層不均質層での各試験における塩水楔浸入量を整理して評価した結果,今回の動水勾配と 塩水濃度が同様の条件下においては、ガラスビーズ粒径によらず、動水勾配(/H)、塩分濃度

(density)で塩水楔浸入量の分類ができる見通しが得られた。さらに塩水楔浸入量の特徴として は、塩分濃度の増加にしたがって浸入長さが増す比例関係が成立つ、動水勾配が低いときほど 塩水濃度の増加による影響が著しく浸入長さが大きくなった。

「塩水の淡水中への進展過程や塩淡境界面の挙動観察」に際しては、均質層及び二層不均質 層の環境整備が肝要であると考え、「塩水楔試験のための条件・再現性の確認」を行った。媒体 槽中の間隙率測定方法として、直接サンプリングのように場を乱し余剰の飽和水を混入するサ ンプリング問題を無くす効率的な方法として、均質層の素材(充填前の材料 15000cm<sup>3</sup>または 14000 cm<sup>3</sup>)をサンプルとして用い容積・質量及び注入水量を測定して妥当な間隙率が得られ ることを確認した。結果 3 種類の均質層の間隙率はビーズの粒径 1 mmで λe=33.9%、ビーズの 粒径 0.4 mmで λe=33.8%、ビーズの粒径 0.8 mmで λe=34.2% であった。また、5 ヶ月間経過し た均質層において「塩水楔の形状再現性確認試験」を行い塩水楔形状の再現性に影響するガラ スビーズ層環境の変化は無かった。

今後は、均質層材をサンプルとして求めた推定間隙率をパラメータとして数値解析に活用で きることを逆解析によって同定するとともに、試験で得られた塩水楔水平方向浸入長さや浸入 速度について数値解析シュミレーションにおいて同定することを考えている。小型 MACRO を 用いた研究の継続においては、透水条件を変えた際の塩水楔進展速度の違いによる濃度分散状 況、数値モデルにより水頭の周期的な経時変化などが拡散領域の増減に影響を及ぼす可能性が 示唆されている <sup>®</sup>ことを踏まえ、水頭の経時変化などが拡散現象に及ぼす影響などを確認する ための Photo. 5. 3-1 に示すような折り返し試験を繰り返した間欠的動水勾配変更による塩水 楔の境界条件の変動における濃度拡散状況、及び数種類の不均質層パーツ作製による塩水 楔水平方向浸入のデータ収集を継続する必要がある。以降、塩淡境界面における挙動観察に よる経験を基に二層流理論の理解を深めると共に、数値解析手法(TOUGH2等)<sup>3</sup>によるモデル 評価結果と比較することを通じて、更にモデルの検証を実施する。並行して解析プログラム (Dtransu)<sup>5</sup> を使用した塩淡境界把握のための数値解析的検討を進める予定である。

#### 参考文献

- 1)高須民男,前川恵輔:多孔質媒体中水理・物質移行現象可視化装置(小型 MACRO)の開発及び 予察試験結果, JAEA-Technology2006-061 (2007)
- 2) 畑中耕一郎, 亘真吾, 金澤康夫, 内田雅大, 石黒勝彦, 石川博久: 不均質多孔質媒体中の水理 /物質移動に関する研究(I), PNC TN8410 95-377 (1995)
- K. Pruess, C. Oldenburg, G. Moridis: "TOUGH2 User's Guide", Lawrence Berkeley National Laboratory Report, LBNL-43134 (1999)
- 4)前川恵輔, 唐崎健二, 伊藤一誠: "地層中の塩淡境界評価に関する一考察", 第22回日本原 子力学会バックエンド部会夏期セミナー資料集(2006).
- 5) 菱谷智幸,西垣誠,橋本学: "物質移動を伴う密度依存地下水流の 3 次元数値解析手法に関 する研究",土木学会論文集 No. 638/Ⅲ-49, pp.59-69 (1999).
- 6) K. Maekawa, K. Karasaki and T. Takasu: "Laboratory Experiment for Seawater Intrusion into Freshwater Aquifer", 2006 AGU Fall Meeting (2006).
- 7) K. Maekawa, K. Karasaki and T. Takasu: "Laboratory Experiments for Seawater Intrusion into Freshwater Aquifer with Heterogeneity", 2007 AGU Fall Meeting (2007).
- 8) K. Karasaki, K. Ito and K. Maekawa: "Simulation of Salt Water Intrusion", Proceedings, TOUGH Symposium 2006 (2006).
- 9) 井上博之,石黒健, 久慈雅栄, 吉野尚人: 堆積岩地域の特徴を考慮した地下水流動現象の解明と モデル化に関する研究概要報告書, 核燃料サイクル開発機構 業務委託報告書 JNC TJ8400 2004-013 (2004)

#### Table. 2.1-5 電気伝導率と塩水濃度の関係

NaCl標準溶液による電気伝導率測定手順

2006年1月31日 室温16℃

1 電気伝導率10.67mS/cm(=1.067S/m)の標準溶液によるCM-21P型ポータブル電気伝導率計の指示値確認。

2 4%NaC1標準溶液を10作り、CM-21P型ポータブル電気伝導率計で電気伝導率及び塩水濃度を測定。

3 4%NaCl標準溶液を食紅0.1gで着色した後に電気伝導率及び塩水濃度を測定。

4 以下0.25%づつ希釈した着色NaC1標準溶液15点に対する電気伝導率及び電気伝導率計の塩水濃度を測定。

5 電気伝導率(S/m)と本標準溶液の関係グラフを作成。

|            | 電気伝    | 導率計   | の塩水湯  | 農度換算  | 筸値    |       |       |       | 測定機   | 器<br>は<br>CM | I-21P型 | ポータフ  | リル伝導  | 率計    |       |       | I      |
|------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|--------|-------|-------|-------|-------|-------|--------|
| 塩水濃度       | 0.27%  | 0.53% | 0.79% | 1.05% | 1.31% | 1.57% | 1.84% | 2.09% | 2.35% | 2.60%        | 2.86%  | 3.12% | 3.36% | 3.61% | 3.86% | 4.11% |        |
|            | 4%NaCl | 標準溶   | 液を基に  | こ希釈し  | た塩水の  | の電気伤  | 云導率と  | 塩水濃   | 度データ  | 7            |        |       |       |       |       |       | (参考)   |
| 標準塩水濃度(%   | 0.25   | 0.50  | 0.75  | 1.00  | 1.25  | 1.50  | 1.75  | 2.00  | 2.25  | 2.50         | 2.75   | 3.00  | 3.25  | 3.50  | 3.75  | 4.00  | 4%の蒸留水 |
| 電気伝導率(S/m) | 0.515  | 0.971 | 1.419 | 1.842 | 2.26  | 2.66  | 3.06  | 3.44  | 3.84  | 4.21         | 4.59   | 4.97  | 5.32  | 5.7   | 6.04  | 6.42  | 6.32   |
| 溶液温度(℃)    | 14.2   | 14.4  | 14.5  | 14.5  | 14.6  | 14.6  | 14.7  | 14.5  | 14.4  | 14.4         | 14.3   | 14.2  | 14.2  | 14.1  | 14    | 13.4  | 15.7   |
|            | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10           | 11     | 12    | 13    | 14    | 15    | 16    |        |

\*NaC1標準溶液の希釈に使用する脱気水は、水道水をフィルターに通して500Lタンクに10日間貯水したものであり

電気伝導率 y 14℃は180 µ S/cm (=1.8×10<sup>-2</sup>S/m) 程度である。

\*電気伝導率10.67mS/cm(=1.067S/m)の標準溶液によるCM-21P型ポータブル電気伝導率計の指示値は、y16.1℃=1.080S/m



表とグラフから標準溶液塩分(左)と電気伝導率計の塩分値(右)が最大0.11%濃度誤差を含むものの、近似した比例関係にあることが検証できた。

Table. 3.1-1 試験後のビーズ粒径 1 mm媒体槽から計量スコップに採取したサンプル

| 手順No.項目               | 3-1)          | 1                          | 10     | 11)                | 10                                       | 4                                  | 参考                                 | 3                    | 1)                   |              | 8                 |
|-----------------------|---------------|----------------------------|--------|--------------------|------------------------------------------|------------------------------------|------------------------------------|----------------------|----------------------|--------------|-------------------|
| 項目<br>サンプル<br>番号      | 均質層材<br>質量(g) | ビーズ密度<br>g/cm <sup>3</sup> | 間隙率(%) | 乾燥ビー<br>ズ質量<br>(g) | 均質層材中<br>の水の容積<br>(1g=1cm <sup>3</sup> ) | 採取均質<br>層材容積<br>(cm <sup>3</sup> ) | 乾燥後ビー<br>ズ体積<br>(cm <sup>3</sup> ) | 擦切り均<br>質層材質<br>量(g) | 空計量ス<br>コップ質<br>量(g) | 乾燥後質<br>量(g) | 空バット<br>質量<br>(g) |
| 250cm <sup>3</sup> 平均 | 480.95        | 2.53                       | 39.6   | 382.1              | 98.9                                     | <b>≒</b> 250                       | 254                                | 526.5                |                      | 966.6        |                   |
| 100cm <sup>3</sup> 平均 | 185.61        | 2.42                       | 38.2   | 147.4              | 38.2                                     | ≒100                               | 98                                 | 209.9                |                      | 904.6        |                   |
| サンプル1                 | 471.36        | 2.43                       | 38.0   | 376.29             | 95.07                                    | 250                                | 250                                | 516.97               | 45.61                | 958.39       | 582.10            |
| サンプル2                 | 483.37        | 2.54                       | 39.4   | 384.83             | 98.54                                    | 250                                | 256                                | 528.95               | 45.58                | 971.76       | 586.93            |
| サンプル3                 | 185.57        | 2.36                       | 36.9   | 148.71             | 36.86                                    | 100                                | 98                                 | 209.96               | 24.39                | 839.85       | 691.14            |
| サンプル4                 | 183.32        | 2.32                       | 36.9   | 146.47             | 36.85                                    | 100                                | 97                                 | 207.45               | 24.13                | 1175.50      | 1029.03           |
| サンプル5                 | 484.40        | 2.57                       | 40.3   | 383.70             | 100.70                                   | 250                                | 254                                | 530.01               | 45.61                | 965.80       | 582.10            |
| サンプル6                 | 484.68        | 2.58                       | 40.5   | 383.42             | 101.26                                   | 250                                | 255                                | 530.26               | 45.58                | 970.35       | 586.93            |
| サンプル7                 | 188.64        | 2.46                       | 39.2   | 149.44             | 39.20                                    | 100                                | 99                                 | 213.03               | 24.39                | 840.58       | 691.14            |
| サンプル8                 | 185.11        | 2.39                       | 38.8   | 146.33             | 38.78                                    | 100                                | 96.5                               | 209.24               | 24.13                | 1175.53      | 1029.20           |
| サンプル9                 | 187.39        | 2.44                       | 39.2   | 148.20             | 39.19                                    | 100                                | 98                                 | 211.67               | 24.28                | 730.30       | 582.10            |
| サンプル10                | 185.43        | 2.39                       | 38.4   | 147.01             | 38.42                                    | 100                                | 97                                 | 209.56               | 24.13                | 733.95       | 586.94            |
| サンプル11                | 183.84        | 2.36                       | 38.3   | 145.55             | 38.29                                    | 100                                | 97                                 | 208.20               | 24.36                | 836.65       | 691.10            |
| 平均                    |               | 密度g/cm <sup>3</sup>        | 間隙率(%) |                    |                                          |                                    |                                    | サンプル都                | 話号とサンフ               | リング位置        |                   |
| 1                     |               | 2 44                       | 38 7   |                    |                                          |                                    |                                    | サンプリン                | ゲ順·432               | 1567891      | 011               |

2006年6月14日採取 粒径1mmガラスビーズ密度及び均質層のサンプルの間隙率測定



Table. 3.1-2 ビーズ粒径 1 mmの均質層材から計量スコップに採取したサンプル

| 2006年7月27日再生棋体 | 粒径1mmガラスビーズ密度及び均質層材のサンプルの間隙率測定 |
|----------------|--------------------------------|
| 2006年7月27日再生媒体 | 新径1mmガラスビーズ密度及び均質層材の+          |

| 手順No.項目    | 3-1           | (1)                        | 10         | (1)                | 10                                       | 4                                  | 参考                                 | 3                    | 1)                       |                  | 8                 |
|------------|---------------|----------------------------|------------|--------------------|------------------------------------------|------------------------------------|------------------------------------|----------------------|--------------------------|------------------|-------------------|
| 項目<br>サンプル | 均質層材<br>質量(g) | ビーズ密度<br>g/cm <sup>3</sup> | 間隙率<br>(%) | 乾燥ビー<br>ズ質量<br>(g) | 均質層材中<br>の水の容積<br>(1g=1cm <sup>3</sup> ) | 採取均質<br>層材容積<br>(cm <sup>3</sup> ) | 乾燥後ビー<br>ズ体積<br>(cm <sup>3</sup> ) | 擦切り均<br>質層材質<br>量(g) | 空計量ス<br>コップ<br>質量<br>(g) | 乾燥後<br>質量<br>(g) | 空バット<br>質量<br>(g) |
| サンプルE      | 180.75        | 2.28                       | 37.0       | 143.78             | 36.97                                    | 100                                | 95                                 | 205.03               | 24.28                    | 725.88           | 582.10            |
| サンプルF      | 191.01        | 2.46                       | 37.6       | 153.44             | 37.57                                    | 100                                | 100                                | 215.14               | 24.13                    | 740.53           | 587.09            |
| サンプルG      | 191.66        | 2.48                       | 37.9       | 153.74             | 37.92                                    | 100                                | 101                                | 216.02               | 24.36                    | 845.03           | 691.29            |
| 亚均         |               | 密度g/cm <sup>3</sup>        | 間隙率(%)     |                    |                                          |                                    |                                    |                      |                          |                  |                   |
| 1 20       |               | 2.41                       | 37.5       |                    |                                          |                                    |                                    |                      |                          |                  |                   |

Table.3.1-3 調合容器に準備したビーズ粒径1mmの均質層材

2005年10月20日充填媒体 2006年6月1日~6月16日 粒径1mmガラスビーズ密度及び調合容器の均質層材の間隙率測定

| 項目<br>サンプル | 均質層材<br>質量<br>(g) | ビーズ密度<br>(g /cm <sup>3</sup> ) | 推定間隙率(%) | 乾燥ビー<br>ズ質量<br>(g) | 均質層材中<br>の水の容積<br>(1g=1cm <sup>3</sup> ) | 採取均質<br>層材容積<br>(cm <sup>3</sup> ) | 乾燥後tǐ-<br>ズ体積<br>(cm <sup>3</sup> ) | 調合均質<br>層材質量<br>(g) | 空30Lバ<br>ケツ・2<br>Lメスシ質量<br>(g) |
|------------|-------------------|--------------------------------|----------|--------------------|------------------------------------------|------------------------------------|-------------------------------------|---------------------|--------------------------------|
| 均質層材       | 27, 540. 18       | 2.27                           | 33.9     | 22, 450            | 5090.18                                  | 15000                              | 15000                               | 31350               | 909.82                         |

Table. 3.1-4 ビーズ粒径 0.4 mmの均質層材から計量スコップに採取したサンプル

| 20001      | 十10月18日       |                            | 赵佺0.4Ⅲ□刀 | <u>フスヒース省</u>  | <u> </u>                                 | 『村のサンノ                             | ルの间隙                               | <b>牟</b> 測正          |                      |              |               |
|------------|---------------|----------------------------|----------|----------------|------------------------------------------|------------------------------------|------------------------------------|----------------------|----------------------|--------------|---------------|
| 手順No.項目    | 3-1)          | 1)                         | 10       | 1)             | 10                                       | 4                                  | 参考                                 | 3                    | (1)                  |              | 8             |
| 項目<br>サンプル | 均質層材<br>質量(g) | ビーズ密度<br>g/cm <sup>3</sup> | 間隙率(%)   | 乾燥ビーズ<br>質量(g) | 均質層材中<br>の水の容積<br>(1g=1cm <sup>3</sup> ) | 採取均質<br>層材容積<br>(cm <sup>3</sup> ) | 乾燥後<br>ビーズ体<br>積(cm <sup>3</sup> ) | 擦切り均<br>質層材質<br>量(g) | 空計量ス<br>コップ質<br>量(g) | 乾燥後<br>質量(g) | 空バット<br>質量(g) |
| サンプルC      | 203.87        | 2.680                      | 38.2     | 165.70         | 38.17                                    | 100                                | 108                                | 228.26               | 24.39                | 1194.90      | 1029.20       |
| サンプルD      | 197.02        | 2.576                      | 38.4     | 158.60         | 38.42                                    | 100                                | 102                                | 221.15               | 24.13                | 1187.80      | 1029.20       |
| サンプルE      | 194.17        | 2.518                      | 38.0     | 156.20         | 37.97                                    | 100                                | 100                                | 218.45               | 24.28                | 738.30       | 582.10        |
| サンプルF      | 192.37        | 2.498                      | 38.3     | 154.05         | 38.32                                    | 100                                | 98                                 | 216.5                | 24.13                | 741.03       | 586.98        |
| サンプルG      | 197.09        | 2.634                      | 40.6     | 156.50         | 40, 59                                   | 100                                | 101                                | 221.45               | 24.36                | 847.70       | 691.20        |
| 亚均         |               | 密度g/cm <sup>3</sup>        | 間隙率(%)   |                |                                          |                                    |                                    |                      |                      |              |               |
| 1.11       |               | 2.53                       | 38.2     | サンプルの          | 最小値C及び                                   | 最大値Gを防                             | いて算出                               | した。                  |                      |              |               |

2006年10月18日 粒径0.4mmガラスビーズ密度及び均質層材のサンプルの間隙率測定

Table. 3.1-5 調合容器に準備したビーズ粒径 0.4 mmの均質層材

| 2006年10月17日        | 3                            | <u>粒径0.4mmガラ</u> | ラスビーズ密度        | 夏及び調合容器                                   | の均質層を                        | すの間隙率測定                                                                                                 |
|--------------------|------------------------------|------------------|----------------|-------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------|
| 手順No.項目 ⑪+⑩*       | (1)                          | 10               | 11)            | 10*                                       | <b>(4</b> )*                 | ④*は、未使用のガラスビーズを                                                                                         |
| 項目<br>均質層<br>類量(g) | † ビーズ密<br>度g/cm <sup>3</sup> | 推定間隙率<br>(%)     | 乾燥ビーズ<br>質量(g) | 均質層材に<br>含む水の容<br>積(1g=1cm <sup>3</sup> ) | 均質層材<br>容積(cm <sup>3</sup> ) | 2Lポリビーカを用いて量り採取<br>⑩*は、水6300cm <sup>3</sup> を④に注入,振<br>動を加え、均質層材が浸水してか<br>ら上積み2cmの余剰水分を除いた<br>際の均質層中の水分 |
| 均質層材 3011          | 0 2.43                       | 33.8             | 24137.00       | 5070.12                                   | 15000                        | 余剰水分の容量                                                                                                 |
|                    |                              |                  |                | -                                         |                              | =バケツ半径 $^2$ ×円周率×高さ                                                                                     |

 $=14^2 \times 3.14 \times 2$ 

=1229.88 cm<sup>3</sup>

#### Table. 3. 2-1 小型MACRO装置の通水流量

| 2005年10月20日作製               | 2005年10月20日作製-ビーズ粒径1㎜の均質層 |       |      |     |     |  |  |  |  |  |  |  |
|-----------------------------|---------------------------|-------|------|-----|-----|--|--|--|--|--|--|--|
| 2006年2月7日~2月9日 トレーサー通水試験    |                           |       |      |     |     |  |  |  |  |  |  |  |
| データ項目 小型MACRO               |                           |       |      |     |     |  |  |  |  |  |  |  |
| $\Delta d$ :水頭差 (cm)        | 0.5                       | 0.75  | 1    | 1.5 | 2   |  |  |  |  |  |  |  |
| 均質層断面積cm <sup>2</sup>       | 250                       | 250   | 250  | 250 | 250 |  |  |  |  |  |  |  |
| A•.Δd                       | 125                       | 187.5 | 250  | 375 | 500 |  |  |  |  |  |  |  |
| L:均質層長さcm                   | 52                        | 52    | 52   | 52  | 52  |  |  |  |  |  |  |  |
| Q: 通水流量cm <sup>3</sup> /min | 110                       |       | 220  | 330 | 480 |  |  |  |  |  |  |  |
| 2006年5月24日~ 4%塩水楔試験前の通水     |                           |       |      |     |     |  |  |  |  |  |  |  |
| 0.通水滋景om <sup>3</sup> /min  |                           |       | 180* |     |     |  |  |  |  |  |  |  |

Q: 通水加量cm / min / 1000 \*は20分実施した通水試験の最初の10分間の結果で180cm<sup>3</sup>/minとした。後半 10分間は220cm<sup>3</sup>/minとなった。

|                             | ~                                                                                         |       |        | (Q値;( | DF10ZZF型 | 流量計) |
|-----------------------------|-------------------------------------------------------------------------------------------|-------|--------|-------|----------|------|
| データ項目                       |                                                                                           | )     | 小型MACF | RO    |          | ĺ    |
| Δd:水頭差(cm)                  | 0.5                                                                                       | 0.75  | 1      | 1.5   | 2        |      |
| 均質層断面積cm <sup>2</sup>       | 250                                                                                       | 250   | 250    | 250   | 250      | Ĩ    |
| A•.∆d                       | 125                                                                                       | 187.5 | 250    | 375   | 500      | ĺ    |
| L:均質層長さcm                   | 52                                                                                        | 52    | 52     | 52    | 52       | ĺ    |
| Q:通水流量cm <sup>3</sup> /min  | 220                                                                                       | 300   | 390    | 600   |          | Í    |
| Q':通水流量cm <sup>3</sup> /sec | 3.67                                                                                      | 5.00  | 6.50   | 10.00 |          |      |
| 透水係数 K(cm/sec)              | 1.53                                                                                      | 1.39  | 1.35   | 1.39  |          |      |
| 2006年9月7日~ 2% 塩             | 水楔試験前                                                                                     | の通水   |        |       |          | -    |
| Q:通水流量cm <sup>3</sup> /min  | 220                                                                                       |       | 370    |       | 750      |      |
| Q':通水流量cm <sup>3</sup> /sec | 3.67                                                                                      |       | 6.17   |       | 12.50    |      |
| 透水係数 K(cm/sec)              | 1.53                                                                                      |       | 1.28   |       | 1.30     |      |
| 2006年9月28日~ 4%共             | <u> </u> | 試験前のi | 恿水ःःःः |       |          |      |
| Q:通水流量cm <sup>3</sup> /min  | 220                                                                                       | 300   | 370    | 560   |          |      |
| Q':通水流量cm <sup>3</sup> /sec | 3.67                                                                                      | 5.00  | 6,17   | 9.33  |          |      |
| 透水係数 K(cm/sec)              | 1.53                                                                                      | 1.39  | 1.28   | 1.29  |          |      |
| 2006年10月3日 3% 塩水            | 、楔試験前の                                                                                    | D通水   |        |       |          |      |
| Q:通水流量cm <sup>3</sup> /min  |                                                                                           |       |        |       | 750      |      |
| Q':通水流量cm <sup>3</sup> /sec |                                                                                           |       |        |       | 12.50    |      |
| 透水係数 K(cm/sec)              |                                                                                           |       |        |       | 1.30     |      |
| 2006年10月12日 2% 塩            | 水楔試験前                                                                                     | の通水   |        | (Q値;( | DF05ZZF型 | 流量計) |
| Q:通水流量cm <sup>3</sup> /min  |                                                                                           | 255   |        |       |          |      |
| Q':通水流量cm <sup>3</sup> /sec |                                                                                           | 4.25  |        |       |          |      |
| 透水係数 K(cm/sec)              |                                                                                           | 1.18  |        |       |          |      |

Table.4.1-1透水係数の算出表-1 2006年8月10日補充作製-ビーズ粒径1mmの均質層における透水係数の経時変化

#### Table.4.2-1透水係数算出表-2

| 2006年10月31日作製-                                                      | ビーズ粒径  | <b>圣0.4mm</b> の均 | <b>う質層にお</b> | ける透水停 | 系数の経時 | 変化 |
|---------------------------------------------------------------------|--------|------------------|--------------|-------|-------|----|
| 2006年11月2日~ 4%塩水楔試験前の通水 (Q値:CF05ZZF型流量計)                            |        |                  |              |       |       |    |
| データ項目                                                               |        | 小                | 型MACR        | RO    |       |    |
| $\Delta d$ :水頭差(cm)                                                 | 0.5    | 0.75             | 1            | 1.5   | 2     |    |
| 均質層断面積cm <sup>2</sup>                                               | 250    | 250              | 250          | 250   | 250   |    |
| A•.Δd                                                               | 125    | 187.5            | 250          | 375   | 500   |    |
| L:均質層長さcm                                                           | 52     | 52               | 52           | 52    | 52    |    |
| Q:通水流量cm <sup>3</sup> /min                                          |        |                  |              | 41    | 62    |    |
| Q':通水流量cm <sup>3</sup> /sec                                         |        |                  | 0.57         | 0,68  | 1.03  |    |
| 透水係数 K                                                              |        |                  | 0.118        | 0.095 | 0.107 |    |
| 2006年11月14日~ 4%                                                     | 塩水楔再詞  | 、験前の通            | 水            |       |       |    |
| Q:通水流量cm <sup>3</sup> /min                                          |        |                  |              |       | 55    |    |
| Q':通水流量cm <sup>3</sup> /sec                                         |        |                  |              | 0.68  | 0.92  |    |
| 透水係数 K                                                              |        |                  |              | 0.095 | 0.095 |    |
| 2006年11月16日~ 3%。                                                    | 、2%塩水楔 | 再試験前の            | り通水          |       |       |    |
| Q:通水流量cm <sup>3</sup> /min                                          |        |                  |              |       |       |    |
| Q':通水流量cm <sup>3</sup> /sec                                         |        |                  | 0.45         | 0.68  | 0.92  |    |
| 透水係数 K                                                              |        |                  | 0.094        | 0.095 | 0.095 |    |
| 2006年11月27日 染料浸透試験のための確認通水 Ad:1cm<br>2006年11月28日 4%塩水楔試験前の通水 Ad:2cm |        |                  |              |       |       |    |
| Q:通水流量cm <sup>3</sup> /min                                          |        |                  |              |       | 69    |    |
| Q':通水流量cm <sup>3</sup> /sec                                         |        |                  | 0.45         |       | 1.15  |    |
| 透水係数 K                                                              |        |                  | 0.094        |       | 0.120 |    |
| K,Ave                                                               |        |                  | 0.102        | 0.095 | 0.104 |    |

| データ項目                             | 小型MACRO值 |         |        |        |
|-----------------------------------|----------|---------|--------|--------|
| 均質層の長さ L (cm)                     |          | 5       | 2      |        |
| 均質層の高さ H (cm)                     |          | 2       | 5      |        |
| 均質層の奥行 ₩ (cm)                     |          | 1       | 0      |        |
| 均質層の断面積 A (cm <sup>2</sup> )      |          | 25      | 50     |        |
| 均質層の体積 V (cm <sup>3</sup> )       |          | 130     | 000    |        |
| 推定間隙率 λe(%)                       |          | 33      | . 9    |        |
| 水頭差 Δd(cm)                        | 0.5      | 1       | 1.5    | 2      |
| 通水流量 Q(cm <sup>3</sup> /min)      | 220      | 370     | 560    | 750    |
| Q' (cm <sup>3</sup> /sec)         | 3.667    | 6.17    | 9.33   | 12.5   |
| 算出トレーサー移行時間 T'                    |          |         |        |        |
| (min)                             | 20′ 02″  | 11′ 55″ | 7' 52" | 5′ 53″ |
|                                   |          | 11 00   | . 01   | 0 00   |
|                                   |          |         |        |        |
| 実測トレーサー移行時間                       |          |         | =/     | _/ //  |
| T (min) (1)                       | 18′35″   | 10' 37" | 7' 40" | 5′ 55″ |
| 参考 (2)                            | 21' 25"  | 11' 45" | 7′ 30″ | 5' 40" |
| 3                                 | 21' 18"  | 12' 20" | 7'     | 5' 20" |
| 透水係数 K(cm/sec)                    | 1.53     | 1.28    | 1.29   | 1.30   |
| 水頭差 Δ d′ (cm)                     | 0. 50    | 1.00    | 1. 50  | 2.00   |
| $\Delta$ d' = Q' L/AK · · · (4 ") |          |         |        |        |
| $A = H \cdot W$                   |          |         |        |        |

Table.4.3-1 小型MACRO推定間隙率とトレーサー移行時間の関係表

算出結果からビーズ粒径 1 mmの均質層の透水係数が「透水係数の算出表 - 1」の 1.28~ 1.30cm/sec となり安定した時、推定間隙率は妥当な間隙率 (λe) であると言える。

 $T' = V(13000 \text{ cm}^3) \times \lambda$  (33.9%) /Q

| 粒径1mm均    | 質層の着色通       | 水(トレー  | -サ)試験 | 2006年8月                | 月2日  |
|-----------|--------------|--------|-------|------------------------|------|
| 通水置換排水    | 量(3分後):0.30L | _/ min | 淡水槽のフ | <li>&lt;温 ℃(CM-2)</li> | 1P)  |
| K(算出参考透   | 水係数):        |        | 淡水槽淡水 | 〈電気伝導率: 「              | nS∕m |
| 水頭差:1.0 c | m(182—192)   |        | 試験開始前 | 試験開始前のタンク淡水量:          |      |
| 淡水堰指針:    | 36 mm        |        |       |                        |      |
| 経過時間      | 着色水浸透長さ      | 淡水給水–  | –排水   | 塩水槽越流排水                |      |
| min       | ∆cm          | L⁄min  |       | L⁄min                  |      |
| 1回目 0     | 0            | 0.7    | 0.46  | 0.3                    |      |
| 1         | 4.5          | 0.71   | 0.56  | 0.26                   |      |
| 2         | 10.5         | 0.71   | 0.41  | 0.3                    |      |
| 3         | 15.5         | 0.75   | 0.41  | 0.3                    |      |
| 4         | 21           | 0.75   | 0.41  | 0.3                    |      |
| 5         | 23           | 0.71   | 0.41  | 0.3                    |      |
| 6         | 27           | 0.71   | 0.45  | 0.3                    |      |
| 7         | 33           | 0.75   | 0.45  | 0.3                    |      |
| 8         | 37           | 0.75   | 0.45  | 0.3                    |      |
| 9         | 40           | 0.75   | 0.41  | 0.3                    |      |
| 10        | 50           | 0.75   | 0.45  | 0.26                   |      |
| 10'37″    | 50           |        |       |                        |      |
|           |              |        |       |                        |      |

# Table.4.3-2 均質層の透水係数の測定

Table. 4.3-3 均質層の透水係数の測定

| 粒径0.4mm均質    | 層の着色通水                         | (トレーサ  | ▶)試験     |               | 2006年11月1日 |  |
|--------------|--------------------------------|--------|----------|---------------|------------|--|
|              |                                |        |          |               |            |  |
| 通水置換排水量(3)   | ,<br>分後): <b>0~</b> 0.043l     | _/ min | 淡水槽のフ    | k温 20.5℃(CM-2 | 21P)       |  |
| K(算出参考透水係    | 数):                            |        | 淡水槽淡水    | k電気伝導率:18.4   | l4mS∕m     |  |
|              |                                |        |          |               |            |  |
| 水頭差:1 cm(18) | 2—192)                         |        | 試験開始育    | 前のタンク淡水量:4    | 425L       |  |
| 淡水堰指針: 34 п  | nm                             |        |          |               |            |  |
|              |                                |        |          |               |            |  |
| 経過時間         | 着色水浸透長さ                        | 淡水給水–  | –排水      | 塩水槽越流排水       | 塩水可動堰から    |  |
| min          | ∆cm                            | L⁄min  |          | L⁄min         | の高さ(≒cm)   |  |
| 2回目 0        | 0                              | 0.227  | 0.22     | 0.304         |            |  |
| 2            | -0.5                           | 0.22   | 0.172    | 0             |            |  |
| 4            | 0.5>1                          | 0.22   | 0.179    | 0.041         |            |  |
| 8            | >3                             | 0.22   | 0.186    | 0.034         |            |  |
| 12           |                                |        |          |               |            |  |
| 16           | >7.5                           | 0.22   | 0.179    | 0.034         |            |  |
| 20           |                                |        |          |               |            |  |
| 24           | 9.5>10.5                       | 0.22   | 0.186    | 0.034         |            |  |
|              |                                |        |          |               | L          |  |
|              | 1回目の通水試験                       | 験は、媒体権 | 曹内蓋(シリコ) | /ゴム製)の420タイ   | ſ          |  |
|              | │プを使用し、2回目の通水試験は、同460タイプを使用した。 |        |          |               |            |  |
|              | 2回目の通水試験                       | 験において  | まぼ満足する   | る着色水の浸透が      |            |  |
|              | 見られた。                          |        |          |               |            |  |
|              |                                |        |          |               |            |  |

|      |      |             |           |              | - 12 + 12 + 1 |
|------|------|-------------|-----------|--------------|---------------|
| 塩水濃度 | 水頭差∆ | 粒径 1 ㎜均質層   | 双方の試      | 粒径 0.4 mm均質層 | 備考            |
| (%)  | (cm) | 定常状態到達時     | 験時間比      | 定常状態到達時間     |               |
|      |      | 間 [A] (min) | [A] : [B] | [B] (min)    |               |
| 4    | 1    | 40          | 1:4.8     | 194          |               |
| 4    | 1.5  | 16          | 1:4.6     | 112          | Fig.2とFig.6参照 |
| 4    | 2    | 12          | 1:7       | 84           |               |
| 3    | 1.5  | 8           | 1:8       | 64           |               |
| 3    | 2    | 4           | 1:10.5    | 42           | Fig.3とFig.7参照 |
| 2    | 1    | 16          | 1:6.3     | 101          | Fig.4とFig.8参照 |
| 1    |      |             |           |              |               |

Table.5.1-1 塩水楔試験条件毎の定常状態到達時間の比較表

|              | Table-5.5-1 4種類の媒体槽における塩水楔試験結果比較 |       |               |      |      |  |
|--------------|----------------------------------|-------|---------------|------|------|--|
|              |                                  |       |               |      |      |  |
|              | 試験の水頭差                           | 試験時間  | 塩水電気伝導率       | 楔高さ  | 楔長さ  |  |
| 媒体槽          | (cm)                             | (min) | S/m (塩分%)     | (cm) | (cm) |  |
| 均質0.4mm      |                                  |       |               |      |      |  |
| 均質1mm        | 0.5                              | 21    | 6.23 (3.99%)  | 21.0 | 51.0 |  |
| 不均質1mm/0.4mm |                                  |       |               |      |      |  |
|              |                                  |       |               |      |      |  |
| 均質0.4mm      |                                  |       |               |      |      |  |
| 均質0.8mm      | 0.75                             | 100   | 6.43          | 19.4 | 51   |  |
| 均質1mm        | 0.75                             | 52    | 6.07          | 18.6 | 49   |  |
| 不均質1mm/0.4mm | 0.75                             | 224   | 6.27          | 17.7 | 43.3 |  |
| 均質0.8mm      | 0.75                             | 170   | 4.87          | 1.85 | 50.5 |  |
| 均質0.8mm      | 0.75                             | 90    | 3.37          | 11.2 | 14.7 |  |
| 均質1mm        | 0.75                             | 48    | 3, 38         | 12.2 | 18.8 |  |
|              |                                  |       |               |      |      |  |
| 均質0.4mm      | 1                                | 198   | 6.3           | 16.5 | 31.6 |  |
| 均質0.8mm      | 1                                | 85    | 6.42          | 17.5 | 33.5 |  |
| 均質1mm        | 1                                | 45    | 6. 1          | 14.3 | 25.2 |  |
| 不均質1mm/0.4mm | 1                                | 220   | 6. 35         | 14.2 | 27.8 |  |
| 均質0.8mm      | 1                                | 84    | 4.84          | 13.4 | 21.5 |  |
| 均質0.4mm      | 1                                | 104   | 3. 31         | 4.4  | 5.9  |  |
| 均質0.8mm      | 1                                | 36    | 3, 35         | 6    | 6.8  |  |
|              |                                  |       |               |      |      |  |
| 均質0.4mm      | 1.5                              | 124   | 6.14          | 8.5  | 11.5 |  |
| 均質0.4mm      | 1.5                              | 148   | 6.49          | 10.8 | 14.8 |  |
| 均質0.8mm      | 1.55                             | 53    | 6. 4          | 10.4 | 13.2 |  |
| 均質1mm        | 1.5                              | 16    | 5.99          | 8.1  | 11.3 |  |
| 不均質1mm/0.4mm | 1.5                              | 124   | 6.24          | 10   | 14   |  |
| 均質0.4mm      | 1.5                              | 80    | 4.86          | 4.5  | 6    |  |
| 均質0.8mm      | 1.5                              | 55    | 4.83          | 6.2  | 7.4  |  |
| 不均質1mm/0.4mm | 1.5                              | 60    | 4.83          | 6.5  | 6.5  |  |
|              |                                  |       |               |      |      |  |
| 均質0.4mm      | 2                                | 92    | 6.5           | 6    | 8    |  |
| 均質0.4mm      | 2                                | 135   | 6, 19(3, 97%) | 5.7  | 7.7  |  |
| 均質0.4mm      | 2                                | 100   | 6. 64         | 6    | 8.1  |  |
| 均質0.8mm      | 2                                | 21    | 6.24(4%)      | 5.5  | 6. 6 |  |
| 均質1mm        | 2                                | 12    | 5.97(3.81%)   | 4.0  | 5.9  |  |
| 不均質1mm/0.4mm | 2                                | 96    | 6.26          | 6.8  | 8.3  |  |
| 均質0.4mm      | 2                                | 44    | 4.84          | 1.8  | 2.9  |  |
| 均質0.8mm      | 2                                | 20    | 4.81          | 2    | 3    |  |
| 均質1mm        | 2                                | 4     | 4.63          | 1.8  | 3.0  |  |
| 不均質1mm/0.4mm | 2                                | 108   | 3. 37         | 6.3  | 6.4  |  |









Fig. 2. 1-1 装置の媒体槽



Fig. 2.1-2 装置の淡水槽、塩水槽

| 流量計         | OF10ZZF 型             | 0F05ZZF 型             |
|-------------|-----------------------|-----------------------|
| 測定範囲(L/min) | 0.35~5                | 0.05~0.85             |
| 表示桁 (L/min) | 1/100                 | 1/1000                |
| 精度          | $\pm 2\% \mathrm{RS}$ | $\pm 2\% \mathrm{RS}$ |
|             | $\pm 0.04$ L/min      | $\pm 0.007$ L/min     |

(矢印は越流水の流れ)



Fig. 2.1-3 装置の流量表示



Fig. 2.1-4 隔離板と染料浸透試験の様子

計量スコップを用いた試験後の粒径1mmの媒体層からのサンプルリング(例)



①~①;手順No項目

Fig. 3.1-1 ガラスビーズ密度及び媒体槽に充填したガラスビーズの間隙率測定手順

|          |    | Table. 1 | 3試験の権 | 製高さ及び | 楔長さのヒ | 比較表(単位 | ī: mm) |
|----------|----|----------|-------|-------|-------|--------|--------|
| 時間経過(min | )  | 高さ初回     | 高さ2回  | 高さ3回  | 長さ初回  | 長さ2回   | 長さ3回   |
|          | 4  | 115      | 100   | 98    | 130   | 125    | 130    |
|          | 8  | 130      | 115   | 110   | 180   | 180    | 190    |
|          | 12 | 140      | 125   | 124   | 215   | 215    | 225    |
|          | 16 | 140      | 127   | 129   | 240   | 250    | 250    |
|          | 20 | 145      | 132   | 132   | 255   | 270    | 275    |
|          | 24 | 148      | 138   | 136   | 270   | 290    | 295    |
|          | 28 | 151      | 138   | 138   | 282   | 310    | 308    |
|          | 32 |          | 140   | 140   |       | 325    | 325    |
|          | 36 |          | 142   | 142   |       | 340    | 332    |
|          | 40 |          | 144   |       | -     | 355    |        |
|          | 44 |          | 145   |       |       | 365    |        |
|          | 48 |          | 147   |       |       | 378    |        |
|          | 52 |          | 150   |       |       | 388    |        |



Fig. 3. 2-1 4%塩水楔の形状再現性確認試験



Fig. 5.1-3 ビーズ粒径1mm均質層の2%塩水楔浸入形状比較



Fig. 5.1-4 塩水楔浸入量の塩水の濃度差による影響

ビーズ粒径1mmの均質層を用いた水頭差0.75cmで実施した塩水楔試験では、塩水濃度を2%、3%および4%に変えた条件下において塩水濃度が上昇するほど塩水楔の高さ(H)と塩水楔の長さが大きな形状となる。



Fig. 5.1-7 ビーズ粒径 0.4 mm均質層の 2%塩水楔浸入形状



Fig. 5. 2-1 均質層における塩水楔浸入中の染料浸透試験

ビーズ粒径 0.4 mmの均質層において、塩水槽側からは塩水濃度 4%とした赤色の塩水を給水しながら、淡水槽に設置したノズルからは青色の染料水を吐出させて水頭差を 2cm として塩水楔試験 を行った。



Fig. 5.4-1 二層不均質層における水頭差 0.75cm 塩水楔試験(塩水浸透開始時)



Fig. 5.4-2二層不均質層におけるトレーサー通水試験(粒径1mm層より粒径0.4mm層の透水性が低い)



媒体槽ガラスビーズ粒径:0.4mm&1mm不均質層

Fig. 5.4-3 二層不均質層の4%塩水楔浸入形状比較



Fig. 5.5-1 4%塩水楔が浸入したビーズ粒径 1 mm均質層うち底部 5 cm を目隠し

| 充填ガラスビーズ密度及び間隙率                                     | <u>測定結果</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|
| 項目                                                  | 湿潤媒体<br>重量(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 密度g/cm <sup>3</sup>     | 推定間隙率<br>(%) | 乾燥ビーズ<br>重量(g) | 採取媒体内湿<br>潤水容積(1g<br>=1cm <sup>3</sup> ) | 採取媒体<br>容積(ml)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 採取媒体重量<br>(g) | 空20レ <sup>、</sup> ケツ<br>(g)            |
| 粒径0.8mm均質層材(媒体と言う)                                  | 27,902.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.651                   | 34.2         | 23,112.50      | 4790.00                                  | 14000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30615.50      | 2713                                   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                | 1                                        | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | バケツ蓋:346                               |
| 2007年5月15日作製粒径0.8mm                                 | 贸質層     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □     □    □ |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | バケツA:910                               |
| 2007年5月24日 トレーサー連                                   | 1水試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ハケツB:1111                              |
| フーク項日<br>A 4 · 水 西 主 ( om )                         | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                    |              | 1 5            | 9                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1000                                   |
| Δα. 水頭左 (Cll)<br>均原同応元建 <sup>2</sup>                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.75                    | 250          | 1. 0           | 250                                      | THE OWNER OF THE OWNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5 × × ×       | 1 1 1 million 1                        |
| 以復唐町面積cm<br>A・Ad                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 187.5                   | 250          | 375            | 230                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 5min                                   |
| A Au<br>I・均質届長さcm                                   | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52                      | 52           | 52             | 52                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| Avo通水流号om <sup>3</sup> /min                         | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02                      | 165          | 02             | 02                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1                                      |
| 0: 通水cm <sup>3</sup> /sec                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 2.75         |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 100 A                                  |
| Q. L                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 143          |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| 透水係数 K                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 0.572        |                |                                          | FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 1                                      |
| T':時間 (min)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 29' 02"      |                |                                          | and the second s |               | 10000000000000000000000000000000000000 |
| $T' = V (14000 \text{ cm}^3) \times \lambda$ (34.21 | 4%) /Q (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35cm <sup>3</sup> /min) |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 実試験時間                   | 29'20"       | トレーサー通水        | 試験写真参照                                   | E H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  |
| 2007年6月14日~ 塩水楔試験前の                                 | D通水試験                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 10min                                  |
| Ave通水流量cm <sup>3</sup> /min                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 124                     | 172          | 255            | 324                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| Q:通水cm <sup>3</sup> /sec                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.07                    | 2.87         | 4.25           | 5.40                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                                      |
| Q. L                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107.5                   | 149.1        | 221.0          | 280.8                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -                                      |
| 透水係数 K                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.573                   | 0.596        | 0.589          | 0.562                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Ĩ.                                     |
| Ave通水流量cm <sup>3</sup> /min                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117                     | 165          | 255            | 331                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| Q:通水cm <sup>3</sup> /sec                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.95                    | 2.75         | 4.25           | 5.52                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| Q. L                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101.4                   | 143.0        | 221.0          | 286.9                                    | and the second s | 1 × 1 × 1     |                                        |
| 透水係数 К                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.541                   | 0.572        | 0.589          | 0.574                                    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 20min                                  |
| <u>^</u>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                        |
| Ave通水流量cm <sup>3</sup> /min                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 138                     | 165          |                |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 1                                      |
| Q:通水cm³/sec                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.30                    | 2.75         |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| Q. L                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.6                   | 143.0        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
| 透水係数 【                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.638                   | 0.572        |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                                      |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1 (monoconcernant)                     |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 7/11                                   |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | Reference -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 29min20sec                             |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Lonniegoood                            |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                                      |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | Concession of the local division of the loca |               | in the second second second            |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                        |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          | 日 トレー                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | サー通水詞         | 忒験状況 ┝──                               |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |              |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | I                                      |

Fig. 5.5-2 ビーズ粒径 0.8 mm均質層における間隙率とトレーサー移行時間の関係

ビーズ粒径 0.8 mm均質層における間隙率を用いて算出トレーサー移行時間 T'を求めた (29'02")ところ、トレーサー通水試験で求めた実側トレーサー移行時間 T (29'20") とほぼ一致した。



Fig. 5.5-3 水頭差や塩水濃度によって決定される塩水楔形状







塩分 2.00%



Photo. 2. 1-1 電気伝導率計



Photo. 3. 2-1 構造上透水性に影響を及ぼすと考えた部分の写真



Photo. 3. 2-2 試験前の作業で気泡が混入した均質層の状況



Photo. 4. 3-1 均質層の透水係数の測定 2006 年 7 月 28 日に製作し 8 月 2 日に水頭差 1cm で実施したトレーサー通水試験の状況

<sup>□</sup>内はビーズ粒径1mmの均質層試験における実測トレーサー移行時間T



Photo. 4. 3-2 均質層の透水係数の測定

2006 年 10 月 31 日に補充製作、当日に水頭差 1cm で実施した 1 回目通水試験の状況 □内はビーズ粒径 0.4 mmの均質層における実測トレーサー移行時間 T

小型MACRO 試験結果一覧 ◆均質層ビーズ粒径:1mm ◆写真は, 試験終了時の状態。

| 水頭差(cm | <u> 塩水濃度 4(%)</u>                                       | <u>塩水濃度3(%)</u>                                        | 塩水濃度 2 (%)                                                      |
|--------|---------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------|
| 2.0    | 2006年10月2日実施。                                           | 2006年10月3日実施。                                          | 2006年.9月14日実施                                                   |
|        | 染料により着色した塩水が楔形状に進                                       | 染料により着色した塩水が楔形状に進                                      | 隔離板を境界に塩水と淡水が別れ、                                                |
|        | 行し、定常状態に達した。                                            | 行し、定常状態に達した。                                           | 塩水楔の形成がない。                                                      |
| 1.5    | 2006年9月29日実施                                            | 2006年8月24日実施                                           | 2006年9月14日実施                                                    |
|        | 染料により着色した塩水が楔形状に進                                       | 染料により着色した塩水が楔形状                                        | 染料により着色した塩水が楔形状                                                 |
|        | 行し、定常状態に達した。                                            | に進行し、定常状態に達した。                                         | に進行し、定常状態に達した。                                                  |
| 1.0    | 2006年10月2日実施。<br>染料により着色した塩水が楔形状に進行し、ほぼ定常状態に達した。        | 2006年8月21日実施<br>染料により着色した塩水が楔形状<br>に進行し、定常状態に達した。      | 2006年9月7日実施<br>染料により着色した塩水が楔形状<br>に進行し、定常状態に達した。                |
| 0.75   | 2006年9月28日実施                                            | 2006年8月29日実施                                           | 2006年10月12日実施                                                   |
|        | 染料により着色した塩水が楔形状に進                                       | 染料により着色した塩水が楔形状                                        | 染料により着色した塩水が楔形状                                                 |
|        | 行し、定常状態に達した。                                            | に進行し、ほぼ定常状態に達した。                                       | に進行し、ほぼ定常状態に達した。                                                |
| 0.5    | 2006年10月3日実施。<br>染料により着色した塩水が楔形状に進<br>行し、淡水槽に至る。定常状態に未到 | 2006年8月24日実施<br>楽料により着色した塩水が楔形状に進<br>行し、淡水槽に至る。定常状態に未到 | 2006年9月8日実施<br>2006年9月8日実施<br>染料により着色した塩水が楔形状<br>に進行し、定常状態に達した。 |

Photo.5.1-1 均質層における塩水楔試験結果画像一覧

| 小型MACRO                     | 試験結果一覧                                       |                                                                                          |                                   |
|-----------------------------|----------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|
|                             |                                              |                                                                                          |                                   |
| ◆ 保1 本 増 刀 つ<br>▲ 写 直 (+ 封) | 7人ビー人社住: Ø U.4mm<br>『                        |                                                                                          |                                   |
| ▼→美は、山                      |                                              |                                                                                          |                                   |
| 水頭差(cm)                     | 塩水濃度 4(%)                                    | 塩水濃度 3 (%)                                                                               | 塩水濃度 2 (%)                        |
| 2.0                         | 2006年11月14日実施<br>染料により着色した塩水が楔形状に進行          | 近大画像     拡大画像     並えのの     はの     立たの     はの     なの     により     着色した     塩水が     楔形状に 進行 |                                   |
|                             | し、定常状態に達した。                                  | し、定常状態に達した。                                                                              |                                   |
| 1.5                         |                                              |                                                                                          |                                   |
|                             | 2006年11月7日実施                                 | 2006年11月16日実施                                                                            |                                   |
|                             | 染料により着色した塩水が楔形状に進行<br>し、定常状態に達した。            | 染料により着色した塩水が楔形状に進行<br>し、定常状態に達した。                                                        |                                   |
| 1.0                         | 100-0002<br>100-0002<br>100-0002<br>100-0002 |                                                                                          |                                   |
|                             | 2006年11月2日実施                                 |                                                                                          | 2006年11月17日実施                     |
|                             | 染料により着色した塩水が楔形状に進行<br>し、ほぼ定常状態に達した。          |                                                                                          | 染料により着色した塩水が楔形状に進行<br>し、定常状態に達した。 |
|                             |                                              |                                                                                          |                                   |

Photo. 5.1-2 均質層における塩水楔試験結果画像一覧 2/2



Photo. 5. 2-1 均質層における塩水楔浸入中の染料浸透試験の詳細



2006年12月4日作成

① 水頭差 1.5cm

試験 154 分、塩水濃度 4.15%



④水頭差 1.5cm に変更

製状態:折り返し試験進行起点 試験 212 分、塩水濃度 4.15%、



楔形状:H3.5×L4.7

Photo. 2. 3-1 ビーズ粒径 0. 4 mmの均質層における折り返し塩水楔試験

# 小型MACRO 試験結果一覧

◆二層不均質層ガラスビーズ粒径:1/0.4mm ◆写真は,試験終了時の状態。

| 水頭差(cm) | 塩水濃度 4(%)                                                                                                           | 塩水濃度 3 (%)                                                                          | 塩水濃度 2 (%)                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2.0     | 2006年12月6日実施<br>2006年12月6日実施<br>染料により着色した塩水が上方層と下<br>方層に各々楔形状に進行し、定常状態<br>に達した。青色淡水の浸透過程で屈曲                         | 拡大画像         12134567799         2007年1月10日実施         染料により着色した塩水が楔形状に進行し、定常状態に達した。 |                                                                                         |
| 1.5     |                                                                                                                     |                                                                                     |                                                                                         |
| 1.0     | 2006年12月13日実施         染料により着色した塩水が上方層と下         方層に各々楔形状に進行し、定常状態         (ご達した。)         ・                         | 2006年12月25日実施<br>染料により着色した塩水が上方層と下<br>方層に各々楔形状に進行し、定常状態<br>に達した。                    | 拡大画像                                                                                    |
|         | 2006年12月14日実施<br>染料により着色した塩水が上方層と下<br>方層に各々楔形状に進行し、定常状態<br>に達した。二層への青色淡水浸透過程<br>で屈曲と混合を確認した。                        |                                                                                     | 2007年1月11日実施<br>染料により着色した塩水が上方層と下<br>方層に各々楔形状に進行し、定常状態<br>に達した。青色淡水浸透過程で屈曲と<br>混合を確認した。 |
| 0.75    |                                                                                                                     |                                                                                     |                                                                                         |
|         | 2006年12月22日実施<br>染料により着色した塩水が上方層と下<br>方層に各々楔形状に進行し、ほぼ(下<br>方は1cm/8min進行あり)定常状態に<br>達した。二層への青色淡水浸透過程で<br>屈曲と混合を確認した。 |                                                                                     |                                                                                         |

Photo. 5.4-1 二層不均質層における塩水楔試験の結果画像一覧



| 小型MACF  | RO 試験結果一覧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ◆媒体層フ   | ブラスビーズ粒径: 0.8mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ◆写真は,   | 試験終了時の状態。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| k頭差 (cm | 塩水濃度 4(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 塩水濃度 3 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 塩水濃度 2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.0     | MILT Y MILT Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 111-1-1112-12-2 (10)<br>- 111-12-12-2 (10)<br>- 12-2 美術家の語<br>- 12-2 美術家の語                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 2007年6月1日実施(21min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2007年6月11日実施(20min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.5     | WALK<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>MARKA<br>M |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 2007年6月1日実施(53min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2007年6月8日実施(55min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/2 4.2<br>1/2 (2.4)<br>2/2 (2. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 2007年5月28日実施(85min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2007年6月6日実施(92min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2007年6月13日実施(36min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.75    | The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | And the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177.4.99<br>17.1.4.99<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1.2.8.45<br>1. |
|         | 2007年5月30日実施(108min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2007年6月7日実施(170min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2007年6月14日実施(98min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 染料により着色した塩水が楔形状に進行し、<br>塩水槽に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 染料により着色した塩水が楔形状に進行し、<br>定常状態に達した。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Photo. 5. 5-1 ビーズ粒径 0.8 mmの均質層における塩水楔試験の結果画像一覧

This is a blank page.

| 表1.SI 基本単位 |  |
|------------|--|
|------------|--|

| 甘木县   | SI 基本i | SI 基本単位 |  |  |  |
|-------|--------|---------|--|--|--|
| 巫平里   | 名称     | 記号      |  |  |  |
| 長     | さメートル  | m       |  |  |  |
| 質量    | 量キログラム | kg      |  |  |  |
| 時 『   | 間 秒    | S       |  |  |  |
| 電     | 流アンペア  | А       |  |  |  |
| 熱力学温度 | 度ケルビン  | Κ       |  |  |  |
| 物質量   | 量モ ル   | mo1     |  |  |  |
| 光月    | 度カンデラ  | cd      |  |  |  |

| 组合量       | SI 基本単位      |                    |  |  |  |
|-----------|--------------|--------------------|--|--|--|
| 和立里       | 名称           | 記号                 |  |  |  |
| 面 積       | 平方メートル       | m <sup>2</sup>     |  |  |  |
| 体積        | 立法メートル       | m <sup>3</sup>     |  |  |  |
| 速 さ , 速 度 | メートル毎秒       | m/s                |  |  |  |
| 加 速 度     | メートル毎秒毎秒     | $m/s^2$            |  |  |  |
| 波 数       | 毎メートル        | m-1                |  |  |  |
| 密度(質量密度)  | キログラム毎立法メートル | $kg/m^3$           |  |  |  |
| 質量体積(比体積) | 立法メートル毎キログラム | m <sup>3</sup> /kg |  |  |  |
| 電流密度      | アンペア毎平方メートル  | $A/m^2$            |  |  |  |
| 磁界の強さ     | アンペア毎メートル    | A/m                |  |  |  |
| (物質量の)濃度  | モル毎立方メートル    | $mo1/m^3$          |  |  |  |
| 輝 度       | カンデラ毎平方メートル  | $cd/m^2$           |  |  |  |
| 屈 折 率     | (数 の) 1      | 1                  |  |  |  |

| 表 5. SI 接頭語 |     |    |            |      |    |  |  |  |  |
|-------------|-----|----|------------|------|----|--|--|--|--|
| 乗数          | 接頭語 | 記号 | 乗数         | 接頭語  | 記号 |  |  |  |  |
| $10^{24}$   | ヨタ  | Y  | $10^{-1}$  | デシ   | d  |  |  |  |  |
| $10^{21}$   | ゼタ  | Z  | $10^{-2}$  | センチ  | с  |  |  |  |  |
| $10^{18}$   | エクサ | Е  | $10^{-3}$  | ミリ   | m  |  |  |  |  |
| $10^{15}$   | ペタ  | Р  | $10^{-6}$  | マイクロ | μ  |  |  |  |  |
| $10^{12}$   | テラ  | Т  | $10^{-9}$  | ナノ   | n  |  |  |  |  |
| $10^{9}$    | ギガ  | G  | $10^{-12}$ | ピコ   | р  |  |  |  |  |
| $10^{6}$    | メガ  | Μ  | $10^{-15}$ | フェムト | f  |  |  |  |  |
| $10^{3}$    | キロ  | k  | $10^{-18}$ | アト   | а  |  |  |  |  |
| $10^{2}$    | ヘクト | h  | $10^{-21}$ | ゼプト  | Z  |  |  |  |  |
| $10^{1}$    | デ カ | da | $10^{-24}$ | ヨクト  | v  |  |  |  |  |

#### 表3. 固有の名称とその独自の記号で表されるSI組立単位

|               | 51 租立单位               |            |                     |                                                      |  |  |  |
|---------------|-----------------------|------------|---------------------|------------------------------------------------------|--|--|--|
| 組立量           | 名称                    | 記号         | 他のSI単位による           | SI基本単位による                                            |  |  |  |
|               |                       |            | 表し万                 | 表し万                                                  |  |  |  |
| 平 面 角         | ラジアン <sup>(a)</sup>   | rad        |                     | $m \cdot m^{-1} = 1^{(b)}$                           |  |  |  |
| 立 体 角         | ステラジアン <sup>(a)</sup> | $sr^{(c)}$ |                     | $m^2 \cdot m^{-2} = 1^{(b)}$                         |  |  |  |
| 周 波 数         | ヘルツ                   | Hz         |                     | s <sup>-1</sup>                                      |  |  |  |
| 力             | ニュートン                 | Ν          |                     | $\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2}$ |  |  |  |
| 圧力,応力         | パスカル                  | Pa         | $N/m^2$             | $m^{-1} \cdot kg \cdot s^{-2}$                       |  |  |  |
| エネルギー, 仕事, 熱量 | ジュール                  | J          | N•m                 | $m^2 \cdot kg \cdot s^{-2}$                          |  |  |  |
| 工 率 , 放射 束    | ワット                   | W          | J/s                 | $m^2 \cdot kg \cdot s^{-3}$                          |  |  |  |
| 電荷, 電気量       | クーロン                  | С          |                     | s•A                                                  |  |  |  |
| 電位差(電圧),起電力   | ボルト                   | V          | W/A                 | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$             |  |  |  |
| 静電容量          | ファラド                  | F          | C/V                 | $m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$           |  |  |  |
| 電気抵抗          | オーム                   | Ω          | V/A                 | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$             |  |  |  |
| コンダクタンス       | ジーメンス                 | S          | A/V                 | $m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$           |  |  |  |
| 磁東            | ウエーバ                  | Wb         | V•s                 | $m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$             |  |  |  |
| 磁束密度          | テスラ                   | Т          | $Wb/m^2$            | $kg \cdot s^{-2} \cdot A^{-1}$                       |  |  |  |
| インダクタンス       | ヘンリー                  | Н          | Wb/A                | $m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$             |  |  |  |
| セルシウス温度       | セルシウス度 <sup>(d)</sup> | °C         |                     | K                                                    |  |  |  |
| 光東            | ルーメン                  | lm         | $cd \cdot sr^{(c)}$ | $m^2 \cdot m^{-2} \cdot cd = cd$                     |  |  |  |
| 照度            | ルクス                   | 1x         | $1 \text{m/m}^2$    | $m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$        |  |  |  |
| (放射性核種の)放射能   | ベクレル                  | Bq         |                     | s <sup>-1</sup>                                      |  |  |  |
| 吸収線量, 質量エネル   | H L I                 | Crr        | T /lra              | 22                                                   |  |  |  |
| ギー分与, カーマ     |                       | Gy         | J/Kg                | m•s                                                  |  |  |  |
| 線量当量,周辺線量当    |                       |            | 6                   |                                                      |  |  |  |
| 量,方向性線量当量,個   | シーベルト                 | Sv         | J/kg                | $m^2 \cdot s^{-2}$                                   |  |  |  |
| 人線量当量,組織線量当   |                       |            |                     | l                                                    |  |  |  |

(a) ラジアン及びステラジアンの使用は、同じ次元であっても異なった性質をもった量を区別するときの組立単位の表し方として利点がある。組立単位を形作るときのいくつかの用例は表4に示されている。
 (b)実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号"1"は明示されない。
 (c) 測光学では、ステラジアンの名称と記号srを単位の表し方の中にそのまま維持している。

(d)この単位は、例としてミリセルシウス度m℃のようにSI接頭語を伴って用いても良い。

表4. 単位の中に固有の名称とその独自の記号を含むSI組立単位の例

|      |                                         | 衣4.  | . 半世            | LUT      | - Y - | 回伯の     | 白小こ        | -2074    | <u> 田</u> 4 | ノ記方を召せ             | 531祖立单位07例                                                                 |
|------|-----------------------------------------|------|-----------------|----------|-------|---------|------------|----------|-------------|--------------------|----------------------------------------------------------------------------|
| 和立量  |                                         |      |                 |          |       | SI 組立単位 |            |          |             |                    |                                                                            |
| 和立里  |                                         |      |                 |          |       |         | 名称         |          |             | 記号                 | SI 基本単位による表し方                                                              |
| 粘    |                                         |      |                 |          | 度     | パス      | 、力         | ル        | 秒           | Pa•s               | $m^{-1} \cdot kg \cdot s^{-1}$                                             |
| 力    | のモ                                      | -    | メ               | $\sim$   | ŀ     | ニュー     | ・トン        | メー       | トル          | N•m                | $m^2 \cdot kg \cdot s^{-2}$                                                |
| 表    | 面                                       |      | 張               |          | 力     | ニュー     | トン毎        | ミメー      | トル          | N/m                | kg $\cdot s^{-2}$                                                          |
| 角    |                                         | 速    |                 |          | 度     | ラジ      | 7:         | ン毎       | : 秒         | rad/s              | $m \cdot m^{-1} \cdot s^{-1} = s^{-1}$                                     |
| 角    | 加                                       |      | 速               |          | 度     | ラジフ     | アン有        | ₩ 平 ⊅    | 方 秒         | $rad/s^2$          | $m \cdot m^{-1} \cdot s^{-2} = s^{-2}$                                     |
| 熱    | 流密度                                     | ,    | 放 射             | 照        | 度     | ワット     | 毎平方        | メー       | トル          | $W/m^2$            | kg $\cdot$ s <sup>-3</sup>                                                 |
| 熱    | 容量,                                     | エン   | トロ              | ιĽ       | ļ     | ジュー     | ・ル毎        | ケル       | ビン          | J/K                | $m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$                                   |
| 質    | 量熱容量                                    | : (比 | 熱容              | :量)      | ,     | ジュー     | ル毎キ        | ログ       | ラム          | T/(1-K)            | 2 -2 -2 -1                                                                 |
| 質    | 量 エ .                                   | ント   | · D             | F        | 1     | 毎ケル     | ビン         |          |             | J/ (Kg • K)        | m•s•K                                                                      |
| 質    | 量 エ                                     | ネ    | N               | ギ        | ļ     |         | ルケキ        | , n h    | = 1         | т /1               | 2 -2 -1                                                                    |
| (    | 比エノ                                     | ネ ル  | / ギ             |          | )     | 21-     | ルサイ        | - 11 - 2 | 14          | J/Kg               | m•s•K                                                                      |
| 勑    | 伝                                       |      | 道               |          | 굻     | ワット     | 毎メー        | ・トル      | 毎ケ          | W/(m•K)            |                                                                            |
| 5753 | 14                                      |      | - <del></del> - |          | 4.    | ルビン     |            |          |             | w/ (III · IX)      | m·kg·s·k                                                                   |
| 休    | 穑 工                                     | ネ    | ル               | ギ        | Į     | ジュー     | ル毎立        | 方メ       | ート          | $T/m^3$            | $m^{-1}$ · kg · $g^{-2}$                                                   |
| 14-  | 1,8                                     | . 1. |                 | `        |       | ル       |            |          |             | J/ III             | iii · Kg · S                                                               |
| 電    | 界                                       | の    | 強               | i        | さ     | ボルー     | 卜毎>        | ~        | トル          | V/m                | $\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-3} \cdot \mathbf{A}^{-1}$ |
| 体    | 秸                                       |      | 雷               |          | 荷     | クーロ     | ン毎立        | 方メ       | ート          | $C/m^3$            | m <sup>-3</sup> • s • A                                                    |
|      |                                         |      |                 |          | 1.4   | ル       |            |          |             | 07 11              | 111 5 A                                                                    |
| 雷    | 気                                       |      | 変               |          | 位     | クーロ     | ン毎平        | 方メ       | ート          | $C/m^2$            | m <sup>-2</sup> • s • A                                                    |
| HE I | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | _    | 2               |          | 1.11. | ル       |            |          |             | 0/11               |                                                                            |
| 誘    |                                         | 電    |                 |          | 率     | ファラ     | ド毎         | メー       | トル          | F/m                | $m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$                                 |
| 透    |                                         | 磁    |                 |          | 率     | ヘンリ     | 一毎         | メー       | トル          | H/m                | $\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-2}$ |
| モ    | ルエ                                      | ネ    | ル               | ギ        | 1     | ジュ      | - <i>N</i> | 毎1       | Εル          | J/mo1              | $m^2 \cdot kg \cdot s^{-2} \cdot mo1^{-1}$                                 |
| モ    | ルエン                                     | / ト  | 다 만             | <u>_</u> | ,     | ジュー     | ル毎モ        | ル毎       | ケル          | I/(mo1 ⋅ K)        | $m^2 \cdot k\sigma \cdot s^{-2} \cdot K^{-1} \cdot mol^{-1}$               |
| モ    | <i>I</i> V                              | 烈    | 谷               |          | 量     | ピン      |            |          |             | 5, (moi m)         | in Kg 5 K mor                                                              |
| 照    | 射線量(                                    | X 線  | 及び              | γ 線      | )     | クーロ     | ン毎キ        | ーログ      | ラム          | C/kg               | kg <sup>-1</sup> • s • A                                                   |
| 吸    | 収                                       | 緑    | 量               |          | 率     | クレ      | 1          |          | 秒           | Gy/s               | m <sup>2</sup> • s <sup>-3</sup>                                           |
| 放    | 射                                       |      | 強               |          | 度     | ワット     | 毎ステ        | ラジ       | アン          | W/sr               | $m^4 \cdot m^{-2} \cdot kg \cdot s^{-3} = m^2 \cdot kg \cdot s^{-3}$       |
| 放    | 射                                       |      | 輝               |          | 度     | ワット:    | 毎平方<br>ラジア | メー       | トル          | $W/(m^2 \cdot sr)$ | $m^2 \cdot m^{-2} \cdot kg \cdot s^{-3} = kg \cdot s^{-3}$                 |

#### 表6. 国際単位系と併用されるが国際単位系に属さない単位

| 名称   | 記号   | SI 単位による値                                 |
|------|------|-------------------------------------------|
| 分    | min  | 1 min=60s                                 |
| 時    | h    | 1h =60 min=3600 s                         |
| 日    | d    | 1 d=24 h=86400 s                          |
| 度    | 0    | $1^{\circ} = (\pi / 180)$ rad             |
| 分    | ,    | 1' = $(1/60)^{\circ}$ = $(\pi/10800)$ rad |
| 秒    | "    | 1" = $(1/60)$ ' = $(\pi/648000)$ rad      |
| リットル | 1, L | $11=1 \text{ dm}^3=10^{-3}\text{m}^3$     |
| トン   | t    | 1t=10 <sup>3</sup> kg                     |
| ネーパ  | Np   | 1Np=1                                     |
| ベル   | В    | $1B=(1/2)\ln 10(Np)$                      |

| 表7.国際単位系と併用されこれに属さない単<br>SI単位で表される数値が実験的に得られ |          |    |                                          |  |  |  |  |  |
|----------------------------------------------|----------|----|------------------------------------------|--|--|--|--|--|
|                                              | 名称       | 記号 | SI 単位であらわされる数値                           |  |  |  |  |  |
|                                              | 電子ボルト    | eV | 1eV=1.60217733(49)×10 <sup>-19</sup> J   |  |  |  |  |  |
|                                              | 統一原子質量単位 | u  | $1u=1.6605402(10) \times 10^{-27} kg$    |  |  |  |  |  |
|                                              | 天 文 単 位  | ua | 1ua=1.49597870691(30)×10 <sup>11</sup> m |  |  |  |  |  |

表8. 国際単位系に属さないが国際単位系と

| 併用されるその他の単位 |     |                                                    |  |  |  |  |  |
|-------------|-----|----------------------------------------------------|--|--|--|--|--|
| 名称          | 記号  | SI 単位であらわされる数値                                     |  |  |  |  |  |
| 海 里         |     | 1 海里=1852m                                         |  |  |  |  |  |
| ノット         |     | 1ノット=1海里毎時=(1852/3600)m/s                          |  |  |  |  |  |
| アール         | a   | $1 \text{ a=} 1 \text{ dam}^2 = 10^2 \text{m}^2$   |  |  |  |  |  |
| ヘクタール       | ha  | $1 \text{ ha}=1 \text{ hm}^2=10^4 \text{m}^2$      |  |  |  |  |  |
| バール         | bar | 1 bar=0.1MPa=100kPa=1000hPa=10 <sup>5</sup> Pa     |  |  |  |  |  |
| オングストローム    | Å   | 1 Å=0. 1nm=10 <sup>-10</sup> m                     |  |  |  |  |  |
| バーン         | b   | $1 \text{ b}=100 \text{ fm}^2=10^{-28} \text{m}^2$ |  |  |  |  |  |

表9 固有の名称を含むCGS組立単位

|              | 衣9. 固有の名称を含むUGS組立単位 |               |     |                                                              |  |  |  |  |  |
|--------------|---------------------|---------------|-----|--------------------------------------------------------------|--|--|--|--|--|
|              | 名称                  |               | 記号  | SI 単位であらわされる数値                                               |  |  |  |  |  |
| エ            | ル                   | グ             | erg | 1 erg=10 <sup>-7</sup> J                                     |  |  |  |  |  |
| ダ            | イ                   | $\sim$        | dyn | 1 dyn=10 <sup>-5</sup> N                                     |  |  |  |  |  |
| ポ            | T                   | ズ             | Р   | 1 P=1 dyn⋅s/cm²=0.1Pa・s                                      |  |  |  |  |  |
| ス            | トーク                 | ス             | St  | 1 St =1cm <sup>2</sup> /s=10 <sup>-4</sup> m <sup>2</sup> /s |  |  |  |  |  |
| ガ            | ウ                   | ス             | G   | 1 G ≙10 <sup>-4</sup> T                                      |  |  |  |  |  |
| 工            | ルステッ                | F             | 0e  | 1 Oe ≙(1000/4π)A/m                                           |  |  |  |  |  |
| $\checkmark$ | クスウェ                | N             | Mx  | 1 Mx ≙10 <sup>-8</sup> Wb                                    |  |  |  |  |  |
| ス            | チル                  | ブ             | sb  | $1 \text{ sb} = 1 \text{ cd/cm}^2 = 10^4 \text{ cd/m}^2$     |  |  |  |  |  |
| 朩            |                     | ŀ             | ph  | 1 ph=10 <sup>4</sup> 1x                                      |  |  |  |  |  |
| ガ            |                     | $\mathcal{N}$ | Gal | $1 \text{ Gal } = 1 \text{ cm/s}^2 = 10^{-2} \text{ m/s}^2$  |  |  |  |  |  |

| 表10. 国際単位に属さないその他の単位の例 |    |       |        |      |                                                                           |
|------------------------|----|-------|--------|------|---------------------------------------------------------------------------|
| 名称                     |    |       |        | 記号   | SI 単位であらわされる数値                                                            |
| キ                      | ユ  | IJ    | ĺ      | Ci   | 1 Ci=3.7×10 <sup>10</sup> Bq                                              |
| $\scriptstyle  u$      | ン  | トゲ    | $\sim$ | R    | $1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$                           |
| ラ                      |    |       | F      | rad  | 1 rad=1cGy=10 <sup>-2</sup> Gy                                            |
| $\boldsymbol{\nu}$     |    |       | Д      | rem  | 1 rem=1 cSv=10 <sup>-2</sup> Sv                                           |
| Х                      | 線  | 単     | 位      |      | 1X unit=1.002×10 <sup>-4</sup> nm                                         |
| ガ                      |    | ン     | 7      | γ    | $1 \gamma = 1 nT = 10^{-9}T$                                              |
| ジ                      | ヤン | / ス キ | -      | Jy   | $1 \text{ Jy}=10^{-26} \text{W} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$ |
| フ                      | I. | ル     | 111    |      | 1 fermi=1 fm=10 <sup>-15</sup> m                                          |
| メートル系カラット              |    |       |        |      | 1 metric carat = 200 mg = $2 \times 10^{-4}$ kg                           |
| ŀ                      |    |       | ル      | Torr | 1 Torr = (101 325/760) Pa                                                 |
| 標                      | 準  | 大 気   | 圧      | atm  | 1 atm = 101 325 Pa                                                        |
| 力                      | D  | IJ    | -      | cal  |                                                                           |
| Ξ                      | ク  | П     | $\sim$ | μ    | $1 \ \mu = 1 \ \mu m = 10^{-6} m$                                         |

а а

s s

.

≂ €

8