JAEA-Research 2008-087

A Study on ROSA/LSTF SB-CL-09 Test Simulating PWR 10% Cold Leg Break LOCA

- Loop-seal Clearing and 3D Core Heat-up Phenomena -

Mitsuhiro SUZUKI and Hideo NAKAMURA

Thermohydraulic Safety Research Group Nuclear Safety Research Center October 2008

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency

2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2008

A Study on ROSA/LSTF SB-CL-09 Test Simulating PWR 10% Cold Leg Break LOCA - Loop-seal Clearing and 3D Core Heat-up Phenomena -

Mitsuhiro SUZUKI and Hideo NAKAMURA

Reactor Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received September 11, 2008)

This report presents major results observed in loss-of-coolant accident (LOCA) SB-CL-09 experiment conducted at the Large Scale Test Facility (LSTF) of ROSA-IV Program simulating a 10% cold leg break in a 4-loop Westinghouse-type pressurized water reactor (PWR). High pressure injection (HPI) system was assumed to be in failure. Observed results are summarized as follows. (1) The primary pressure decreased to lower than the steam generator (SG) secondary pressure within two minutes because of relatively large break size. (2) A loop-seal clearing process started in both loops at about one minute after the break, caused significant core water level depression to almost core bottom and finished at about 80 s with the water level remained at the middle height in the core. The pressure balance due to water accumulation in the U-tube inlet-side more than in the outlet-side caused the water level suppression in the core. (3) The core uncovery in the upper half region continued even after the loop-seal clearing until 42 s later than the core power termination at 111s to limit the rod temperature rise. (4) Local core cooling especially in the intact-loop hot-leg side was observed during the loop-seal clearing process by the fall-back water from the SG. (5) All the core exit thermocouples (CETs) did not detect superheating during the core heat-up mainly due to the water fall-back effects. Applicability of these effects of fall-back water to PWR plant should be carefully analyzed considering differences in the upper plenum configuration.

Keywords: ROSA-IV/LSTF, Simulation Experiment, PWR, LOCA, 10% Cold Leg Break, HPI Failure Assumption, Loop-seal Clearing, Core Heat-up, Data Report

PWR 低温側配管 10%破断 LOCA を模擬する ROSA/LSTF SB-CL-09 実験の考察 ーループシールクリアリングと3次元炉心過熱現象-

日本原子力研究開発機構安全研究センター原子炉施設安全評価研究ユニット 鈴木 光弘、中村 秀夫

(2008年9月11日受理)

ウェスティングハウス社型4ループ加圧水型原子炉(PWR)での低温側配管 10%破断 LOCAを模擬す る ROSA-IV 計画大型非定常試験装置(LSTF)を用いた SB-CL-09 実験の主要な結果をまとめた。実験 では、高圧注入系(HPI)故障を仮定し、以下の様な結果を明らかにした。(1) 比較的破断サイズが大き いため、1 次系圧力は2分以内に蒸気発生器(SG)2次系圧力を下回った。(2)ループシールクリアリング 過程は破断後約1分に両ループで開始し、炉心水位はほぼ炉心下端まで低下したが、約 80 秒のルー プシールクリアリング後も炉心水位はほぼ中央高さ位置にとどまった。これは、SG 伝熱管の下降側より 上昇側により多くの冷却水が滞留したことに起因する圧力バランスの結果である。(3) 上半分の炉心露 出はループシールクリアリング終了後も続き、ヒーター温度上昇を制限するために 111s に炉心出力を 停止させた後も 42s 間継続した。(4)ループシールクリアリング過程において、炉心内では特に健全ルー プ側で SG からの流下水による部分冷却現象が見られた。(5)主にこの流下水の影響により、全ての炉 心出口温度計(CET)は炉心が過熱しても全く過熱温度を検出しなかった。この様な流下水影響を PWR プラントへ適用する場合は、LSTF との上部プレナム形状の相違を考慮した慎重な解析が必要である。

原子力科学研究所(駐在):〒319-1195 茨城県那珂郡東海村白方白根 2-4

CONTENTS

1. Introduction	1
1.1 Background ·····	1
1.2 Objectives	1
2. Facility Description	2
2.1 System Components	2
2.2 Instrumentation	3
3. Experimental Conditions and Data Qualification	4
3.1 Experimental Conditions	4
3.2 Data Qualification	5
4. Results of 10% Cold Leg Break Test, SB-CL-09	7
4.1 Blowdown Process until Accumulator Injection (0-195s)	7
4.1.1 Initial Transients under Limited Core Power (0-42s)	7
4.1.2 Loop-seal Clearing Phenomena and Core Heat-up (42-111s)	10
4.1.3 Later Blowdown Process after Core Power Trip (111-195s)	13
4.2 Refill Process after Accumulator Injection Started (195s-Test End)	14
4.3 Experiment Data Analysis on Typical Phenomena	17
4.3.1 Break Flow and Primary Coolant Mass Inventory	17
4.3.2 Heat-up and Quench Behavior in All Core Region	19
5. Conclusions	22
Acknowledgment	23
References	23
Appendix A Measurement List and Instrument Location for Experiment SB-CL-09	97

1. はじめに	1
1.1 背景	1
1.2 目的	1
2. 試験装置の概要	2
2.1 各種機器	2
2.2 計装	3
3. 実験条件と実験データ品質評価	4
3.1 実験条件	4
3.2 実験データの品質評価	5
4. 低温側配管 10%破断実験 SB-CL-09 の結果	7
4.1 蓄圧注入系作動までのブローダウン過程 (0-195s)	7
4.1.1 炉心出力制約下の初期過渡事象 (0-42s)	7
4.1.2 ループシールクリアリング現象と炉心過熱 (42-111s)	10
4.1.3 炉心出力停止後のブローダウン後期過程 (111-195s)	13
4.2 蓄圧注入系作動後の蓄水過程 (195s-実験終了)	14
4.3 典型的事象に関する実験データ分析	17
4.3.1 破断流と1次系保有水量	17
4.3.2 炉心全体の過熱・クエンチ挙動	19
5. 結言	22
謝辞	23
参考文献	23
付録 A SB-CL-09 実験のデータリストー覧及び計測位置	97

List of Tables

- Table 2-1 Major design characteristics of LSTF compared with four-loop PWR
- Table 2-2 Summary of measurement types and locations
- Table 3-1 Initial conditions in experiment SB-CL-09
- Table 3-2 Control logic for experiment SB-CL-09
- Table 3-3 JAERI core power curve after the scram
- Table 3-4Primary pump coastdown curve after the scram
- Table 4-1 Chronology of major events and procedures
- Table 4-2 Collapsed level and void fraction in PV estimated from DP data (110 200 s)
 - (1) Average void fraction in lower plenum
 - (2) Average void fraction in core
 - (3) Average void fraction in lower downcomer (LDC)
 - (4) Mixture level in upper downcomer based on LDC void fraction
- Table 4-3 Estimated primary coolant mass in experiment SB-CL-09
- Table 4-4Temperature rises of all instrumented heater rods at loop-seal clearing (t = 75s) $\Delta T = TW Tsat (K)$, Tsat = 572.96K
- Table 4-5Temperature rises of all instrumented heater rods before power trip (t = 110s), $\Delta T = TW Tsat (K)$,Tsat = 566.59K

List of Figures

- Fig.2-1 Comparison of LSTF to reference PWR
- Fig.2-2 Flow diagram of LSTF
- Fig.2-3 Comparison of reactor vessel dimensions between LSTF and PWR
- Fig.2-4 LSTF pressure vessel with internal assembly
- Fig.2-5 Pressurizer and heater arrangement
- Fig.2-6 Piping schematic for pressurizer surge line
- Fig.2-7 Hot leg-to-downcomer leak simulation lines
- Fig.2-8 Primary and secondary sides of steam generators (SG-A and SG-B)
- Fig.2-9 Cross-section of core heater rod assembly
- Fig.2-10 Axial power distribution for high-power rod
- Fig.2-11 Radial core power distribution in experiment SB-CL-09
- Fig.2-12 Accumulator tank geometry
- Fig.2-13 Scheme of accumulator injection lines

- (a) ACH injection line to Cold Leg B
- (b) ACC injection line to Cold Leg A
- Fig.2-14 Configuration of break unit for experiment SB-CL-09
- Fig.2-15 Geometry of break orifice
- Fig.3-1 Core power curve in experiment SB-CL-09
- Fig.3-2 Primary coolant pump speeds in experiment SB-CL-09
- Fig.3-3 Pressurizer heater powers in experiment SB-CL-09
- Fig.4-1 System pressure transients and major events in experiment SB-CL-09
- Fig.4-2 Discharged coolant mass and break flow rate at CL-B
- Fig.4-3 Three-beam fluid density at BU line spool piece
- Fig.4-4Differential pressure between throat and inlet of Venturi-flow meter
in BU line during blowdown and refill processes
- Fig.4-5 Collapsed water levels in upper plenum, core and downcomer
- Fig.4-6 Collapsed liquid levels at inlet and outlet sides of SG-B Tube 2
- Fig.4-7 Collapsed liquid levels at upflow and downflow sides of Loop-seal B
- Fig.4-8 Representative heater rod surface temperatures during blowdown
- Fig.4-9 Pressure transients and SG-B secondary water level during blowdown
- Fig.4-10 Flow rates of main feedwater, main steam and RV steam lines at SG-B
- Fig.4-11 Downcomer flow rates at SG-A and SG-B during blowdown
- Fig.4-12 Primary loop flow rates
- Fig.4-13 Fluid temperatures at top, middle and bottom of upper plenum
- Fig.4-14 Fluid temperatures in lower plenum during blowdown
- Fig.4-15 Fluid temperatures at spray and surge lines of pressurizer
- Fig.4-16 Pressurizer water level and surge line fluid density
- Fig.4-17 Three-beam fluid density at HL-A spool piece
- Fig.4-18 Three-beam fluid density at HL-B spool piece
- Fig.4-19 Three-beam fluid density at CL-A spool piece
- Fig.4-20 Three-beam fluid density at CL-B spool piece
- Fig.4-21 Collapsed liquid levels in inlet side of SG-A U-tubes
- Fig.4-22 Collapsed liquid levels in outlet side of SG-A U-tubes
- Fig.4-23 Collapsed liquid levels at upflow and downflow sides of Loop-seal A
- Fig.4-24 Collapsed liquid levels in inlet side of SG-B U-tubes
- Fig.4-25 Collapsed liquid levels in outlet side of SG-B U-tubes
- Fig.4-26 Liquid levels derived from fluid densities in HL-A and CL-A
- Fig.4-27 Differential pressure between top and bottom of PV
- Fig.4-28 Differential pressures across lower plenum, core and upper plenum

- Fig.4-29 Differential pressure between upper head and upper plenum
 Fig.4-30 Differential pressures in upper head and between upper head and downcomer
 Fig.4-31 Differential pressures across primary coolant pumps, PC-A and PC-B
- Fig.4-32 Differential pressure between downcomer and upper plenum
- Fig.4-33 Differential pressures in inlet and outlet sides of SG-A U-tube 2
- Fig.4-34 Differential pressures in inlet and outlet sides of SG-B U-tube 2
- Fig.4-35 Vertical fluid temperatures in high-power bundle (B16)
- Fig.4-36 Vertical fluid temperatures in high-power bundle (B18)
- Fig.4-37 Vertical fluid temperatures in high-power bundle (B20)
- Fig.4-38 Vertical fluid temperatures in middle-power bundle (B22)
- Fig.4-39 Vertical fluid temperatures in middle-power bundle (B24)
- Fig.4-40 Vertical fluid temperatures in low-power bundle (B05)
- Fig.4-41 Vertical fluid temperatures in low-power bundle (B07)
- Fig.4-42 Vertical fluid temperatures in low-power bundle (B10)
- Fig.4-43 Vertical fluid temperatures in low-power bundle (B11)
- Fig.4-44 Horizontal rod temperature distribution at core top (Pos.9)
- Fig.4-45 Horizontal rod temperature distribution at upper core (Pos.8)
- Fig.4-46 Horizontal rod temperature distribution at Position 7
- Fig.4-47 Horizontal rod temperature distribution at Position 6
- Fig.4-48 Horizontal rod temperature distribution at middle core (Pos.5)
- Fig.4-49 Horizontal rod temperature distribution at Position 4
- Fig.4-50 Horizontal rod temperature distribution at Position 3
- Fig.4-51 Horizontal rod temperature distribution at lower core (Pos.2)
- Fig.4-52 Horizontal rod temperature distribution at core bottom (Pos.1)
- Fig.4-53 Core exit temperatures in peripheral and central regions
- Fig.4-54 Core exit temperatures including high-power bundle exits
- Fig.4-55 Fluid temperatures below UCP in peripheral and central regions
- Fig.4-56 Fluid temperatures below UCP including high-power bundle exits
- Fig.4-57 Coolant injection flow rates from accumulator tanks
- Fig.4-58 Pressure, fluid temperatures and liquid level in ACC tank
- Fig.4-59 Pressure, fluid temperatures and liquid level in ACH tank
- Fig.4-60 LPI flow rates to CL-A and CL-B
- Fig.4-61 RWST tank level change under LPI injection related to primary pressure
- Fig.4-62 Total LPI flow rate estimated from RWST mass decreasing rate
- Fig.4-63 Wall temperatures in PV upper head compared with saturation temperature
- Fig.4-64 Wall temperatures in PV upper downcomer compared with saturation temperature
- Fig.4-65 Wall temperatures in PV middle downcomer compared with saturation temperature
- Fig.4-66 Wall temperatures in PV lower downcomer compared with saturation temperature

- Fig.4-67 Wall temperatures at core barrel compared with saturation temperature
- Fig.4-68 Wall temperatures in loop A compared with saturation temperature
- Fig.4-69 Wall temperatures in loop B compared with saturation temperature
- Fig.4-70 Wall temperatures in SG-A plena compared with saturation temperature
- Fig.4-71 Wall temperatures in SG-B plena compared with saturation temperature
- Fig.4-72 Wall temperatures at SG-A vessel inner surfaces
- Fig.4-73 Wall temperatures at SG-B vessel inner surfaces
- Fig.4-74 Transients of primary coolant mass inventory related to major events
- Fig.4-75 Primary pressure mass inventory map for experiment SB-CL-09
- Fig.4-76 Variety of rod heat-up and quench behaviors among high and low power bundles
- Fig.4-77 Horizontal distribution of rod heat-up in core at loop-seal clearing (t = 75s)
- Fig.4-78 Horizontal distribution of rod heat-up in upper half core (t = 110s)
- Fig.4-79Temperature rises of all instrumented heater rods at loop-seal clearing (t = 75s)with respect to horizontal location between two hot legs (refer Table 4-3)
 - (1) Temperature rises at Position 9 (Core top)
 - (2) Temperature rises at Position 8
 - (3) Temperature rises at Position 7
 - (4) Temperature rises at Position 6
 - (5) Temperature rises at Position 5 (Core middle height)
 - (6) Temperature rises at Position 4
 - (7) Temperature rises at Position 3
 - (8) Temperature rises at Position 2
- Fig.4-80 Temperature rises of all instrumented heater rods before power trip (t = 110s) with respect to horizontal location between two hot legs (refer Table 4-4)
 - (1) Temperature rises at Position 9 (Core top)
 - (2) Temperature rises at Position 8
 - (3) Temperature rises at Position 7
 - (4) Temperature rises at Position 6

Acronyms and Abbreviations

- ACC Accumulator for Cold Leg A in Loop with PZR
- ACH Accumulator for Cold Leg B in Loop w/o PZR
- AFW Auxiliary Feedwater
- AIS Accumulator Injection System
- AOV Air Operated Valve
- BU Break Unit
- CET Core Exit Thermocouple
- DC Downcomer
- DP Differential Pressure
- ECCS Emergency Core Cooling System
- EL Elevation Level above Core Bottom
- HPI High Pressure Injection
- ID Inner Diameter
- JAEA Japan Atomic Energy Agency
- JAERI Japan Atomic Energy Research Institute (Former JAEA)
- LOCA Loss-of-Coolant Accident
- LP Lower Plenum
- LPI Low Pressure Injection
- LSC Loop-seal Clearing
- LSTF Large Scale Test Facility
- MSIV Main Steam Isolation Valve
- PC Primary Coolant Pump
- PCT Peak Cladding Temperature
- PV Pressure Vessel
- PWR Pressurized Water Reactor
- PR Pressurizer
- RV Relief Valve
- RWST Refueling Water Storage Tank
- SBLOCA Small Break Loss-of-Coolant Accident
- SG Steam Generator
- SI Safety Injection
- ST Storage Tank
- SV Safety Valve
- UP Upper Plenum
- UH Upper Head

This is a blank page.

1. Introduction

A 10% cold leg break experiment (SB-CL-09) was conducted at the Large-Scale Test Facility (LSTF)^[1,2] on August 28 in 1986, at the early stage of the ROSA-IV Program, simulating a loss-of-coolant accident (LOCA) of a pressurized water reactor (PWR). The LSTF is a full-height and full-pressure simulator of a 4-loop 3423 MWt Westinghouse-type PWR^[3] with 1/48 volumetric-scaling design. Since the break size is relatively large, thermal-hydraulic phenomena including a core flow transient and a loop-seal clearing^[4,5] process with core heat-up should be significantly different from those in small break LOCA (SBLOCA) experiments such as 0.5% cold leg break experiments^[6,7] but rather similar to those in 5% cold leg break experiments (SB-CL-18^[8] referred as an International Standard Problem No.26, and SB-CL-08^[9]). The fast transient would be good for comparison with those of 5-10% hot leg break LOCA experiments.^[10-12] The experimental data shown in these reports and other LSTF experiment data described in published reports^[13-20] are valuable for assessment and development of computer codes.

1.1 Background

The ROSA-IV Program was launched in 1980 soon after the TMI-2 accident^[21] happened in 1979 to conduct integral SBLOCA simulation experiments by designing and using the LSTF. Test parameters of the LSTF experiments include break sizes ranging from 0.1 to 10% equivalent cold leg area, break locations in the primary coolant system such as cold leg, hot leg, pressure vessel (PV) top head, PV bottom head and a stuck open pressurizer (PR) power-operated relief valve (PORV), and failure assumptions on emergency core cooling system (ECCS). The 10% cold leg break experiment (SB-CL-09) was conducted as one of the break size parameter tests with a focus to study effects of the loop-seal clearing phenomena on core cooling in case of a total failure of high pressure injection (HPI) system.

1.2 Objectives

The objective of SB-CL-09 experiment is to clarify thermal-hydraulic phenomena especially for the core cooling conditions during the loop-seal clearing process of 10% cold leg break LOCA. Break orifice with 31.9 mm inner diameter (ID) is used to simulate 10% cold leg break. This report describes major experiment results with all the available experimental data and data analysis results including break flow rate, primary coolant mass inventory and details of core heat-up and quench behaviors.

2. Facility Description

2.1 System Components

The LSTF^[1] simulates a Westinghouse-type 4-loop 3423 MWt PWR by a full-height and 1/48 volumetrically-scaled components in 2-loop system as shown in **Table 2-1** and **Figs.2-1** and **2-2**. **Figure 2-3** compares reactor vessel dimensions between the LSTF and reference PWR. The core height and the elevation of the hot leg top are the same as those of the reference PWR. The core bypass volume in the reference PWR is modeled in the downcomer (DC) volume in order to enlarge the DC gap in the LSTF PV. **Figure 2-4** shows internal configuration of the LSTF PV. The hot and cold legs with 207 mm ID are sized to conserve the volume scaling (2/48) and the ratio of the length to the square root of the diameter to simulate flow regime transitions in the horizontal legs.^[22]

Figures 2-5 and **2-6** show the LSTF PR (4.2 m in inner height) and the surge line piping, respectively. This short-size PR vessel was used in the most of ROSA-IV program experiments.

The LSTF represents the reference PWR bypasses including eight upper head (UH) spray nozzles (3.4 mm ID, see Fig.5.2.6 in Ref.[1]) and the hot leg-to-DC leakage paths (see **Fig.2-7**). The spray nozzles allow bypass flow that amounts to about 0.3% of the total core flow rate during initial steady-state, while the hot leg-to-DC flow is set by the control valve in each line to allow about 0.2% bypass flow.

Figure 2-8 shows primary and secondary sides of both LSTF SG vessels. The height and inner diameter of 141 U-tubes in each SG are the same as those of the reference PWR. The regional volumes of SG primary and secondary sides simulate 2/48-scaled volumes of those in each PWR SG. The free volumes of inlet and outlet plena at both SGs are, however, significantly large compared with those of the scaled PWR SG plena volume due to removal of initially-designed plenum filler blocks^[2] prior to the start of the integral LSTF experiment.

Detailed cross-sectional view of the simulated fuel rod assembly is shown in **Fig.2-9**. The LSTF core consists of 1064 heater rods (9.5 mm in outer diameter) assembled in 24 rod bundles, 104 tie rods simulating control rod guide thimbles in the core, 48 dummy rods in the peripheral region, and surrounding core barrel with 514 mm ID. There are sixteen bundles with 7x7 rod array and eight peripheral bundles in the core. **Figures 2-10** and **2-11** show the axial power distribution of high power rod and radial power distribution, respectively. There are three kinds of heater rod bundles with high, middle and low power densities noted as H, M and L in the horizontal heating zone, respectively. Eight high power bundles with numbers 13 through 20 have a radial peaking factor of 1.51, four middle power bundles in the central region have that of 1.00 and twelve low power bundles in the peripheral region have that of 0.66, respectively. Maximum LSTF electric core power is 10 MW which is 14% of the 1/48 scaled power of the reference PWR rated condition.

Figures 2-12 and 2-13 show structure of the accumulator injection system (AIS) tank and

schematic view of each injection line, respectively. Two AIS tanks for ACC Cold (ACC) and ACC hot (ACH) have the same configuration of 0.95 m ID. Coolant flow from the ACC tank into cold leg A and that from the ACH tank into cold leg B are restricted by an orifice of 50.5 mm ID for ACC (OR4-1) and 26.0 mm ID for ACH (OR4-4), respectively. The LPI system injects cold water into two cold legs through the same injection points of the AIS.

Figure 2-14 shows the break unit (BU) attached to the horizontal N-7k nozzle (87.3 mm ID) at the middle part of cold leg B (see Figs.5.2.33 & 5.2.35 in Ref.[1]). The BU (1.958 m in length) consists of a Venturi flow meter with 64.53 mm ID (Fig.5.4.5 in Ref.[1]), spool piece with instruments including the three-beam gamma-ray densitometer, break orifice and air-operated break valve (AOV 300). An initial primary coolant volume in the horizontal BU line with connecting pipes (600 mm in total length between the cold leg B and BU) is 0.0147 m³. Detail of the break orifice (31.9 mm ID) is shown in **Fig.2-15**.

2.2 Instrumentation

There are two types of data or measurement of interest; directly measured quantities and derived quantities (identified by symbol of RC). Directly measured quantities include temperature (ibid TE or TW), pressure (PE) and differential pressure (DP). Derived quantities result from the combination of two or more directly measured quantities, for example, coolant density (DE) and mass flow rate (FE).

Table 2-2 summarizes the number of directly measured quantities in various regions of the LSTF and major instrumentation locations are shown in **Figs.A.1** through **A.17** in Appendix A. The total number of instrument channels is 2354. Experimental data for this test were recorded using two data acquisition systems YEWCOM 7000 and FACOM 3300. The LSTF data sampling rate depends on the kind of measurement parameter. The sampling rates are generally 2 Hz for thermocouples, 10 Hz for conductance probes and 5 Hz for other instruments.

The experimental data (1842 channels in total) qualified as good and qualitative (*) which includes undetermined uncertainty or lack of calibration are listed in **Table A-1** of Appendix A. The experiment data which were not used in this experiment or showed malfunctions were excluded from **Table A-1**. The derived quantities (RC, 132 channels in total) are additionally listed in the measurement list of **Table A-1**. The derived data from RC 110 to RC 203 are newly added in this report by using the advanced data reduction methodology developed for the ROSA-V program.^[23] The newly added RC data include average fluid densities, collapsed water levels derived from each DP measurement data, tank fluid masses for the AIS, ST and RWST with their mass changing rates (average mass flow rates), liquid levels in hot and cold legs derived from respective density data and saturation temperatures in primary and secondary systems.

3. Experimental Conditions and Data Qualification

3.1 Experimental Conditions

(1) Initial Conditions

Initial steady-state conditions achieved in the experiment were in reasonable agreement with the specified values as shown in **Table 3-1**. Initial steady-state conditions such as PR pressure, fluid temperatures in hot and cold legs were 15.5 MPa, 600 K and 565 K, respectively, according to the reference PWR conditions. As the LSTF initial core power of 10 MW was limited to 14% of the 1/48-scaled PWR rated core power (3423 MW), initial total core flow rate in the LSTF was controlled to approximately 14% of the 1/48-scaled PWR core flow rate in order to equalize their initial coolant enthalpy distribution across the core. An initial coolant mass in the primary system in the previous SB-CL-08 experiment was estimated as 6111 kg^[24] and this value is applied to the SB-CL-09 experiment.

Initial SG secondary pressure was intended to raise up to 7.3 MPa to limit the primary-tosecondary heat transfer rate at 10 MW, while 6.1 MPa is a nominal value in the reference PWR. The secondary pressures were actually about 7.5 MPa. Initial secondary-side liquid levels were set above the top of U-tubes and the main feedwater flow rate was controlled to maintain stable secondary water level. A downcomer flow rate in **Table 3-1** is a sum of mass flow rates in four downcomer pipes for each SG. Initial main steam flow rate was 2.60 kg/s for both SGs and thus, a recirculation ratio that is a total downcomer flow rate divided by main steam flow rate was 6.3-6.4 for both SGs.

Initial pressure and coolant temperature of ACC and ACH tanks were 4.6 MPa and 322-323 K, respectively. Initial and final water levels for ACC and ACH tanks were determined as shown by specified levels in **Table 3-1** to simulate total injection coolant mass of 1.6815 m³ from ACC to cold leg A and 0.5605 m³ from ACH to cold leg B (ratio of 3:1), respectively. The measured tank water levels in **Table 3-1** are shown above a shifted zero level and their initial levels were actually set equal to each specified value. The coolant temperature of LPI system was 310 K.

Proportional heaters in the PR are used to trim the pressure, while backup heaters are used to mitigate system heat losses. The initial powers of the proportional and backup heaters were 6.6 and 21.6 kW, respectively. Many regions of the LSTF are equipped with trace heaters to mitigate environmental heat losses and the heater powers except for the AIS injection lines are tripped off immediately after the break initiation.

(2) Boundary Conditions and Control Logics

Table 3-2 shows the specified control logic, operation set-points and boundary conditions. The experiment is initiated by quickly opening the break valve (AOV 300) in the BU connected to the cold leg B at time zero. At the same time, rotation speed of each primary coolant pump is raised up to 1500 rpm for better simulation of the transient pump coast-down characteristics from the

rated PWR pump speed after the scram signal. Scram and safety injection (SI) signals are generated when the PR pressure decreased to 12.97 MPa and 12.27 MPa, respectively.

The core power maintained at the initial value of 10 MW is changed by the scram signal into transient power curve (**Table 3-3**) which starts to decrease along the power decay simulation curve after 29 s from the scram signal. **Table 3-3** shows the pre-determined core power decay curve (JAERI power curve) after the scram based on calculations considering delayed neutron fission power and stored heat in PWR fuel rod^[25]. The core power was actually controlled as shown in **Fig.3-1** and started to decrease from 10 MW at 42 s after the break initiation. The core power was tripped off at 111 s in this experiment in order to protect heater rods from overheat above 923 K according to the power control logics shown in **Table 3-2**. The threshold temperature for the LSTF core protection and power controlling system is shown in **Table 3-2**.

The primary coolant pump speed is controlled to simulate PWR pump coast-down transient after the scram by the pump speed ratio to 1500 rpm (**Table 3-4**). The pump rotations in two loops were actually controlled as shown in **Fig.3-2** and their electric powers were tripped at 250 s after the scram signal.

Power supply to the proportional and base heaters in the PR was controlled as shown in **Fig.3-3**. The proportional heater was tripped off at 11 s. The base heaters were powered up at 4 s to compensate the pressure decrease and finally tripped off at 15 s.

Turbine trip and main feedwater valve closure concurrent with the scram are simulated in the experiment. Set-point pressures for opening and closure of the SG relief valves (RVs) are 8.03 and 7.82 MPa, respectively, referring to the corresponding values in the reference PWR. Flow area of the SG relief valve (RV) is simulated by using a 19.4 mm i.d. sharp-edged orifice. Set-point pressures for opening and closure of the SG safety valve (SV) are 8.68 and 7.69 MPa, respectively. Auxiliary feedwater (AFW) is assumed to be in failure.

As all the HPI system is assumed to be in failure, available ECCSs are AIS and LPI system. The ECCS injection ratio to the primary loops is set as 3 for the cold leg A assuming three intact primary loops and 1 for the cold leg B simulating a broken loop. The LPI system starts injection by both the SI signal with a time delay of 17 s and the low primary pressure less than 1.29 MPa.

The experiment was finished by closing the break valve. The data recording system was operated from 305 s prior to the break initiation and terminated at 1537 s after the break, covering all the experiment period including steady-state operation.

3.2 Data Qualification

After the data acquisition, some experimental data are calibrated. The high-range pressure data in the PR and upper plenum (UP) are corrected by the low-range pressure data with low uncertainty. The two-phase flow instruments such as gamma-ray densitometers use the conversion equations.^[23] All the density data are calibrated at two points with different fluid conditions such as an initial liquid condition and a steam-filled condition during transient with

known fluid density.

Collapsed water level derived from DP data is calibrated if it includes a zero shift at a clearly steam-filled condition. Actually, some collapsed water levels in SG U-tubes showed apparent zero shifts when water level disappeared at the end of experiment and they were corrected as follows. The collapsed water level at the inlet side of SG-A Tube-3 (RC 144) showed a constant zero shift of -0.25 m at 1100 s and it was corrected to be zero at 1100 s. Similarly, a level shift of -0.36 m at SG-A Tube-2 inlet side (RC 145) was corrected, that of -0.18 m at SG-B Tube-2 inlet side (RC 161) was corrected, that of +0.21 m at SG-B Tube-5 inlet side (RC 164) was corrected, that of +1.2 m at SG-B Tube-3 outlet side (RC 166) was corrected, respectively. The collapsed water level at the SG-B inlet riser region (RC159) showed a slight shift of -0.05 m at 1100 s and it was corrected. Other RC collapsed level data were estimated as good with lower zero-shifts than these corrected RC data.

4. Results of 10% Cold Leg Break Test, SB-CL-09

Thermal-hydraulic phenomena observed in the 10% cold leg break test with an assumption of total HPI failure are characterized by two processes; one is a blowdown process before the AIS start (0 - 195 s) and another one is a refill/reflooding process after the AIS start (195 s - Test end). The blowdown process described in Section 4.1 includes the loop-seal clearing phenomena, followed by core heat-up and core power trip-off to limit heater rod temperature rise. Major refill and reflooding processes described in Section 4.2 include the LPI injection and stored heat release from the pressure vessel wall between 194 and 500 s. Major events and procedures recorded in this test are shown in **Table 4-1**. This test was finished by closing the BU valve at 1042 s. Section 4.3 presents additional results of experimental data analyses with respect to the primary coolant mass inventory and heat-up and quench phenomena in the core.

4.1 Blowdown Process until Accumulator Injection (0 – 195 s)

4.1.1 Initial Transients under Limited Core Power (0 – 42 s)

As shown in Section 3.1, the electric core power in this test simulated 1/48-scaled PWR core decay power with the delayed neutron effects except for initial 29 s after the scram signal generation. Therefore, the initial transients shown below under this limited core power may be atypical to those in the reference PWR LOCA conditions.

(1) Pressure Responses

Figure 4-1 shows the primary and secondary pressures with the timing of major events in the initial 500 s after the break and **Fig.4-9** shows their earlier transients in the first 200 s. The primary pressure began to decrease rapidly when the break valve at cold leg (CL)-B opened at t = 0 s. The scram signal was generated when the primary pressure decreased to 12.97 MPa at 8 s. The SI signal was generated when the primary pressure decreased to 12.27 MPa at 11 s. The scram signal immediately caused the closure of SG main steam isolation valves (MSIVs) at 11 s and the start of primary coolant pumps (PCs) coast-down at 12 s. The SG secondary-side pressures rapidly increased up to about 8 MPa by heat transfer from the primary coolant system under the MSIV closure, and then the relief valve (RV) of both SGs opened at 29 s to regulate the secondary pressure within 8.03-7.82 MPa. The primary pressure was kept higher than the SG secondary pressures until 97 s.

(2) Discharged Primary Coolant Mass and Break Flow Rate

Figure 4-2 shows the primary coolant mass (RC191) discharged from the break at CL-B and break mass flow rate (RC194). These data include large fluctuation due to fluctuation of the ST tank level DP data in both the early blowdown phase and later phase after 300 s. The discharged

coolant mass is used to estimate remaining primary coolant mass by using mass balance equation as shown in Section 4.3.1.

Figure 4-3 shows fluid densities measured by three-beam gamma-densitometer at the horizontal BU line. The three beam densities were nearly the same during the test period indicating rather homogeneous flows. **Figure 4-4** shows DP data between the inlet side and throat of the Venturi-type flow meter in the BU line, suggesting a monotonic decrease in the break flow rate during the initial 50 s similar to that shown in **Fig. 4-2**.

(3) Decreases of Primary Coolant Mass Inventory and Regional Collapsed Water Levels

The coolant mass discharge at the break resulted in the decrease in regional coolant masses in the primary system as shown by collapsed water levels in the core (RC139), upper plenum (RC140) and downcomer (RC142) in **Fig.4-5**. The collapsed water levels derived from each DP data in the pressure vessel include effects of pressure losses caused by the increased primary coolant flow rates during the first 40 s. During the first 60 s, water level was observed in the upper plenum and whole core was covered by mixture level which is also confirmed by no core heat-up (see **Fig.4-8**). The downcomer collapsed water level was maintained higher than 7.8 m in the first 60 s indicating the water level above the cold leg top (EL 5.6 m).

Water level in the PR and fluid density data measured by the single-beam gamma-ray densitometer at the vertical part of surge line (DE 281 in **Fig.2-6**) show transient coolant mass depletion from the PR and surge line (**Fig.4-16**). The PR water level showed sharp increase in a short time after the break probably due to immediate flashing caused by the start of fast depressurization and then rapidly decreased to zero in 20 s after the break. The surge line density data showed abrupt decrease at 22 s after the break indicating that a water level passed the vertical part immediately after the drainage of PR at 20 s. Then the steam inflow from the surge line to HL-A started at 24s.

Figures 4-6 and **4-7** show collapsed water levels in both inlet and outlet sides of No.2 SG-B U-tube, and both downflow and upflow regions of loop B loop-seal region, respectively. The effects of increased primary mass flow rates are also observed in these DP-level transients in the first 40 s. It is shown that the start of collapsed water level decrease was observed in both sides of SG-B U-tube in the first 40 s, while the loop B loop-seal region was filled with water. Similar level decreases were detected in the other instrumented U-tubes of SG-A and SG-B (see **Figs.4-21**, **4-22**, **4-24** and **4-25**).

Fluid density data measured by three-beam gamma-densitometers in the HL-A, HL-B, CL-A and CL-B indicate water level formation or no void in these horizontal legs in the first 40 s (see **Figs.4-17** through **4-20**). It is clear that void formation in HL-A was detected at 4 s after the break and that in HL-B at 8 s, respectively. Thereafter, phase separation and resulted liquid level was observed in the difference of density data among three beams in both hot legs. It should be noted that the beam C data in HL-B showed abnormally high value after 80 s due to failure of detector.

On the other hand, single-phase water flow was detected in both cold leg density data during the initial transients of 40 s. Water levels (RC196 & RC197) derived from the density data in HL-A and CL-A clearly show water level responses in the primary loop (see **Fig.4-26**).

(4) Core Cooling Conditions

Figure 4-8 shows representative heater rod surface temperatures at top (Pos.9) and bottom (Pos.1) of high power rod in Bundle 15 (4,4) and those at Pos.2 through Pos.8 of high power rod in Bundle 16 (4,4). It is shown here that all core region was cooled well under the increased primary loop flow rates (see **Fig.4-12**) and limited core power in the first 40 s.

(5) Transients in SG Secondary System

Typical pressure and water level in SG-B secondary system are shown in **Fig.4-9**. Mass flow rates in the main steam line, main feedwater line and RV line at SG-B are shown in **Fig.4-10**. The SG-B secondary system was isolated at 11 s by the scram signal and steam flow through the RV started at 29 s. Similar responses were also observed in the SG-A secondary system.

Slightly different fluid behavior was observed between the downcomer flows at two SGs in the first 50s (especially between 25 and 40s, see **Fig.4-11).** Four downcomer flow rates showed similar trends at each SG. The SG-B downcomer flow rates turned to decrease after 11s due to closure of the main steam line and also by decreased primary-to-secondary heat transfer under the decreased temperature difference across the SG-B U-tubes. After opening of the SG-B RV at 29s, the SG-B downcomer flows recovered. At 33s, the SG-B downcomer flow almost stopped. On the other hand, the SG-A downcomer flow rates were slightly higher than those of SG-B after 11s and showed no significant decreases at 33s. Additionally, fluid temperatures in the SG-A downcomer pipes slightly increased after 20s whereas those in the SG-B downcomer pipes were almost constant at the initial conditions.

Reasons of these different downcomer flows can be ascribed to different heat transfer conditions at two SGs related to inflow from the pressurizer (PR) to HL-A as shown below. The PR initial water mass of approximately 460 kg at saturation temperature, flowed into HL-A during the first 20s at an average mass flow rate of 23 kg/s which was about 45% of the maximum loop A flow rate at 14s (refer **Figs.4-16 & 4-12**). This PR water inflow slightly increased the loop A mass flow rate as shown in **Fig.4-12** during the first 20s. (Rather smaller difference between two loop flow rates suggests a lowered UP-to-HL-A flow rate by the PR inflow rate in comparison with the UP-to-HL-B flow rate). In addition, steam inflow from the PR surge line into HL-A started at 25s and could contribute to slightly increase the HL-A mass flow rate and its enthalpy compared with those in HL-B. The increased mass flow rate and fluid enthalpy at the SG-A inlet region could result in increased primary-to-secondary heat transfer and therefore result in larger steam uprising flow in the SG-A boiler region, larger SG-A downcomer flow rates and higher SG-A downcomer fluid temperatures in comparison with those in the SG-B secondary sides. The start of

RV steam discharge at 29s in two SGs contributed to recover the SG-B downcomer flow rate resulting in similar downcomer flow rates in two SGs after 40s.

(6) Fluid Temperature Responses in the Primary System

Figures 4-13 and **4-14** show fluid temperatures measured in the upper plenum and lower plenum compared with the primary saturation temperature (RC 200) which was derived from the upper plenum pressure (PE 10). All the fluid temperatures in the upper plenum reached saturation temperature at about 6 s after the break while those in the lower plenum were kept in subcooled conditions in the first 70 s under the forced circulation in the primary loops. The fluid temperatures in the upper plenum are representative of those in the hot primary regions covering the hot legs and SG inlet regions while those in the lower plenum are representative of the cold primary regions covering the SG outlet regions to cold legs.

Fluid temperature in the PR surge line shown in **Fig.4-15** was nearly saturated in the first 40 s while that in the spray line showed subcooled temperature indicating existence of condensed water in the steady state before the start of break.

(7) Large Pressure Differences across the Pressure Vessel after the Break

Pressure differences measured across the pressure vessel and primary loops present typical hydraulic conditions during the initial transient induced by the break flow at CL-B, change in forced primary loop circulation flows and void formation in the primary regions. **Figure 4-27** shows abrupt decrease of DP data (DP47) between the upper head (UH) and lower plenum after 15 s due to start of voiding in the top portion of UH which is connected to downcomer through narrow leak paths; spray nozzles. The flow paths through the control rod guide tubes (CRGTs) connect upper plenum (UP) to UH. Similar changes are detected in the DP data between the UH and UP (DP52 in **Fig.4-29**) and between the UH and downcomer (DP62 in **Fig.4-30**). **Figure 4-28** compares DP data in three regions of core, upper plenum and downcomer, which were used to estimate collapsed water levels in these regions (see **Fig.4-5**). The UH DP data (DP63, **Fig.4-30**) shows gradual water level decrease in the top region of UH.

Figure 4-31 shows DP data across the primary coolant pumps which depended on the transient pump speeds. **Figure 4-32** shows DP data between the upper plenum and downcomer across the core barrel. Two DP data in the inlet and outlet sides of representative U-tube (No.2) are compared in **Fig.4-33** for SG-A and **Fig.4-34** for SG-B, respectively.

4.1.2 Loop-seal Clearing Phenomena and Core Heat-up (42 – 111 s)

The core power started to decrease after 42 s simulating scaled PWR decay heat with delayed neutron effects. The loop-seal clearing phenomena and following core heat-up were observed in this time period as shown below.

(1) Gradual Depressurization under Coolant Mass Depletion in Primary System

The primary depressurization rate became lower than that in the previous period due to decreased heat removal at two SGs, decreased core power and increased steam generation regions in the primary system as shown in **Fig.4-9**. The primary depressurization was enhanced after steam discharge started from the break at 78 s (see **Fig.4-3**).

The collapsed water levels in both sides of U-tubes were estimated from DP data measured between EL 6.264 m in the SG inlet or outlet plenum and each U-tube top (see **Fig.A.11** in Appendix A). It should be noted that these DP measurement ranges include a common plenum height of 1.368 m and thus the U-tube water levels are observed in the range higher than 1.368 m. The collapsed water levels of U-tubes continuously decreased in both SGs, while some coolant accumulation appeared in a few U-tubes from about 40 to 100 s as shown in **Figs.4-21**, **4-22**, **4-24** and **4-25**, probably due to steam condensation in the U-tubes before the pressure crossover at 97 s. The U-tube levels in the inlet sides were higher than those in the outlet sides, and remained slightly even after the completion of coolant drainage from the outlet side at about 100 s.

The hot leg fluid density data showed continuous decrease of water mass (see **Figs.4-17** and **4-18**) while the cold leg fluid density data showed full water conditions until occurrence of the loop-seal clearing (see **Figs.4-19** and **4-20**).

(2) Loop-seal Clearing Phenomena

The steam generation in the core kept hot primary regions pressurized relative to cold leg with the break. The hot primary regions include UP and UH of PV, hot legs, SG plena and U-tubes. The degradation in primary-to-secondary heat transfer may have enhanced this system-wide pressure distribution. The relative pressurization of steam, thus increase in the steam volume, depressed water levels down into the cross-over leg downflow-side and into the core (see **Figs.4-5**, **4-7**, **4-23** and **4-28**) at 62 s, as the primary inventory decreased from the break. The loop-seal clearing (LSC) occurred in the broken loop at 74 s and the water level in the loop-seal upflow side (RC173) started to decrease as shown in **Fig.4-7**. The core water level decreased to the lowest elevation at 75 s. This LSC process completed at 80 s and the core water level recovered.

The cold leg top fluid density (Beam A) started to decrease at 67 s indicating water level formation. The three-beam fluid densities at the BU line showed abrupt decreases at 79 s.

It should be noted that the core water level did not fully recover irrespective of the end of LSC and stopped at the middle height with fluctuation from about 80 to 111 s as shown in **Fig.4-5**. This partial core level recovery may be attributed to the primary loop pressure balance affected by water remaining in the SG U-tube inlet side more than in the outlet side as shown in **Figs.4-21** and **4-22** for loop A and **4-24** and **4-25** for loop B, respectively.

(3) Core Heat-up Behavior

The core heat-up started by the core water level depression during the loop-seal clearing

process and lower half region was quenched when the core water level recovered at 80 s as shown in **Figs.4-5** and **4-8**. **Figures 4-35** through **4-43** show fluid temperature distribution along vertical axis of several heater bundles with three different power levels (three high power bundles, two middle power bundles and four low power bundles). Distribution of heater rod surface temperatures in the same elevation is shown in **Figs.4-44** through **4-52** respectively for nine different elevations (from Position 9 (top) to 1 (bottom)). The observations are summarized as follows; (Further data analysis results on core heat-up behavior appear in Section 4.3.2)

- A. Core heat-up started following the temporary water level depression during the loop-seal clearing process. The earliest temperature increase was detected at 67 s at the middle height (Pos.5) of high power bundles (B15 & B16). The lowest elevation of core heat-up was detected at Position 2 and the core bottom (Pos.1) was kept cooled. The core heat-up diminished in the lower half region after the loop-seal clearing because of the recovery of liquid level. Heat-up of the upper half core region continued temporarily as far as the water level was maintained at the middle core.
- B. Significant distribution appeared in the fluid temperatures and heater rod surface temperatures during the core heat-up process. Measured temperatures in high power bundles below HL-A were far lower than those in the high power bundles below HL-B. Similar temperature distribution was observed among the peripheral bundles with low power level. The local low-temperature below the HL-A can be attributed to the fall-back of condensate in the SG-A into the core region, while the core heat-up below the HL-B indicates lack of fall-back condensate. Steam generated by the local core cooling and boiling under the water level can be mixed with super-heated steam in the core and rise up into UP. Such a three-dimensional core fluid behavior is suggested during the LSC process.
- C. The upper plenum fluid temperatures in **Fig.4-13** showed slightly super-heated conditions at about 85 s indicating arrival of super-heated steam from the core top region.
- D. The core electric power was tripped off at 111 s (see Fig.3-1) when the maximum heater rod temperature reached 923 K. No core power was supplied thereafter. The maximum heater rod surface temperature was 930 K at 112 s at Pos.6 of the high-power rod B16 (4,4).
- E. The core water level rose up after the end of LSC in two steps; rapid level rise by the core power termination at 111 s and gradual level rise until 150 s, which was caused by the primary pressure balance as water mass in the SG inlet plenum depleted (see Figs.4-21 & 4-24). On the other hand, the downcomer water level decreased after the LSC to balance with the core water level. Final core quench was observed at 153 s (42 s after the core power trip) at the top of high power bundles (B15 & B16) before the AIS actuation at 195 s.

(4) No Core Heat-up Detection by Core Exit Thermocouples (CETs)

Figures 4-53 and **4-54** show fluid temperatures measured at the upper surface of upper core plate (UCP) which may show the performance of core exit thermocouples (CETs). **Figures 4-55**

and **4-56** show fluid temperatures measured at the lower surface of UCP. It is shown that no heat-up was detected by CETs during the core heat-up period (67-153 s) and most of the UCP lower surface temperatures remained saturated. Only few among 20 thermocouples at the lower surface of UCP detected super-heating at core central region above middle-power bundle of B23 and above high power bundles B15 & B10 at HL-B side.

The reasons of no core heat-up detection by the CETs can be mainly attributed to water fall-back onto the CETs from hot legs (mainly from the HL-A), and steam generation in the upper core as shown below. Actually, water level remained in the upper plenum until about 70 s (see RC140 in **Fig.4-5**). Water levels in SG-A U-tube inlet sides including inlet plenum water level (see **Fig.4-21**) gradually decreased but remained until about 150s and water level in HL-A higher than 3 cm was formed in a period of 70-170 s (see **Fig.4-26**). These suggest that water hold-up in the SG-A inlet side and HL-A may have been a source of fall-back water onto UCP during the core heat-up period. The fall-back water influenced the local core cooling behavior such that upper half of some heater rods at the HL-A side remained saturated during a period when the water level was located at the middle of core, suggesting steam generated in the core may have enhanced CCFL at the inlet of UCP flow holes.

4.1.3 Later Blowdown Process after Core Power Trip (111 – 195 s)

(1) Further Primary Depressurization under Higher SG Secondary Pressures

Prior to the core power termination, steam discharge started at the break at 78s, making the primary depressurization accelerated as shown in **Fig.4-9**. The primary pressure crossed the SG secondary pressures at 97 s and thereafter it further decreased. Thus, the SG secondary sides became heat sources to the primary fluid and the SG pressure regulation by RV cyclic operation was terminated. The core power termination at 111 s promoted the primary depressurization. The blowdown process continued until the start of AIS at 4.5 MPa (195 s).

The steam discharge through the break (see BU fluid densities in **Fig.4-3**) decreased the primary coolant mass decrease rate (RC191) as shown in **Fig.4-2**. The core was finally quenched during this process at 153 s. The primary coolant pump operation continued until 263 s as shown in **Fig.3-2** under two-phase and steam flow conditions.

(2) Void Fraction in Core, Lower Plenum and Lower Downcomer

Figure 4-5 showed that the core collapsed water level was kept constant at the core middle height in a time period from the final core quench (153 s) to the AIS start (195 s). On the other hand, the UP collapsed water level increased after 155 s while the downcomer collapsed water level continued to decrease until the AIS start time. These fluid conditions are examined below with respect to an average void fraction under each mixture level.

Tables 4-2 (1) through (3) show each collapsed water level and average void fraction in the

lower plenum (LP), core and lower downcomer (LDC), which were estimated from each DP data during the later blowdown phase (110 – 200 s). It is shown here that the LP void fraction increased from 0.0 to about 0.2 during the time period, the LDC void fraction was higher than that in LP and the core void fraction after completion of core quench was the highest ($\alpha_{\rm C} \ge 0.44$) among three regions. The reason of higher LDC void fraction than that in LP can be attributed to void inflow from the LP to the LDC region in addition to steam generation by boiling and metal stored heat release in the LDC region. The reason of the highest core void fraction may be ascribable to accumulation of uprising steam under counter-current flow conditions in addition to steam generation in the core region.

(3) Estimation of Mixture Level in Upper Downcomer

Table 4-2 (4) shows the upper downcomer (UDC) mixture level estimated from DP data (DP58) by assuming the same void fraction as in the LDC. It is shown here that the UDC mixture level was maintained almost constant at or slightly lower than the cold leg bottom elevation (EL 5.399 m) during the blowdown phase (110 – 200 s). If the UDC void fraction were higher than the LDC void fraction, the UDC mixture level could be higher than these results. The estimated UDC mixture level is consistent to almost diminished CL-A water level (see **Fig.4-26**) and small amount of water remained in CL-B (see Beam C density data in **Fig.4-20**). These UDC mixture level and LDC void fraction suggest continuous two-phase fluid discharge from the downcomer to the break during the later blowdown phase irrespective of the significantly lower collapsed water level in all downcomer region (EL -1.8~6.799 m; RC 142 in **Fig.4-5**).

4.2 Refill Process after Accumulator Injection Started (195 s – Test End)

The primary depressurization continued during the refill process as shown in **Fig.4-1** and the primary regions were filled up by cold water injection both from the AIS tanks and LPI pump operation as shown below.

(1) AIS Injection Flow Rates at Two Cold Legs

The accumulator injection system (AIS) started to inject water into two cold legs at 195 s when the primary pressure decreased to about 4.5 MPa. A ratio of AIS injection flow rates (RC192 & RC193) between CL-A and CL-B was about 3:1 as shown in **Fig.4-57**. These AIS flow rates which were derived from water mass decreasing rate at each AIS tank gradually increased as the pressure differences increased between the primary system (see PE 10 in **Fig.4-57**) and each AIS tank (see **Figs.4-58** & **4-59**). The AIS injection was terminated at 315 s in the CL-B (ACH) and at 334 s in the CL-A (ACC), respectively by closing a valve in each injection line. The end time of each AIS injection flow shown in **Fig.4-57**, however, is slightly later than each valve closure time because of time average data at each time.

(2) Increases of Primary Loop Flow Rates and Break Flow Rate

The primary loop mass flow rates (FE 2 & FE 5 in **Fig.4-12**) look increased during periods both after the LSC and AIS injection start. These flow data, however, are incorrect because two-phase flow or steam flow went through the loop-seal upflow side during these periods. The flow rate increase during AIS injection period can be attributed to the increased flow rate of steam toward cold legs in which significant steam condensation occurred on cold AIS water.

Both of the break flow rate (**Fig.4-2**) and fluid density at the BU line (**Fig.4-3**) increased after the AIS actuation indicating that a part of AIS water flowed out from the break. The fluid density rapidly turned to steam density immediately after the termination of AIS injection. The break line fluid density increased again at about 370 s due to arrival of the LPI water.

(3) Recovery of Water Levels in Primary System

The collapsed water levels in the downcomer, core and UP after the AIS actuation are shown in **Fig.4-5**. The downcomer collapsed water level (RC142) gradually increased showing large fluctuations after the AIS start at 195 s. These fluctuation can be resulted mostly from steam condensation in the cold legs. The collapsed water level in the core (RC139), however, rather decreased after the AIS start suggesting transport of coolant mass from the core to downcomer due to condensation depressurization at the cold legs. In addition, the UP collapsed water level (RC140) increased after the AIS start. As the HL-A water level was lower than 0.02 m at the time of AIS start, the increase of UP water mass can not be a result of mass inflow from HL-A but may suggest coolant mass extraction from the core as the same result of rapid condensation depressurization in two cold legs.

The AIS injection flow rates gradually increased as shown in **Fig.4-57** and the LPI actuation at 303 s also contributed to fill up the primary coolant system (refer primary coolant mass recovery shown in Section 4.3.1). The loop-seal in loop A was formed again after about 430 s while that in loop B was kept empty till the end of test.

(4) LPI Injection Flow Rates

Figure 4-60 shows LPI injection flow rates measured by each nozzle-type flow meter at each ECCS injection line. The LPI injection started at 303 s by quickly opening each air-operated valve in each injection line to CL-A or CL-B. The LPI injection flow rate ratio to CL-A and CL-B was planned to 3:1 by using orifices in the injection lines. The actual LPI flow rates to cold legs, however, were different from the plan as shown in this figure. The LPI flow to CL-B rapidly decreased at 332 s and on the contrary, that to CL-A rapidly increased. In addition, these flow data apparently include zero shifts (-0.44 kg/s for FE 49 to CL-A and -1.26 kg/s for FE 50 to CL-B) in a time period prior to the injection start. Therefore, the meaning of these flow data, reasons of rapid change observed in two LPI flow rates and correct total LPI injection flow rate estimated from

RWST tank water level decrease rate are studied as shown below.

Figure 4-61 shows the RWST tank water level (LE 17) during the LPI injection period and the primary pressure in the UP (PE 10). The UP pressure was 1.27 MPa at the start of LPI actuation at 303 s. The LE 17 data decreased almost constantly with an average level decreasing rate of -3.76×10^{-4} [m/s] between 310 and 500 s. A total LPI flow rate (RC195) was estimated as shown in **Fig.4-62** by using the RWST tank mass decreasing rate, and an average value of W=3.93 kg/s which was determined by the average level decreasing rate, RWST tank flow area (10.464 m²) and the tank water density, agreed well with the RC195 data. Thus, an average value of total LPI flow rate to two cold legs is determined as W=3.93 kg/s between 310 and 500 s.

Next, the meaning of each LPI flow rate after 332 s is checked below. An average value of LPI flow rate to CL-A (FE 49) in a period between 332 and 500 s gives a value of 3.22 kg/s by simply adding the zero shift to the mean value of FE 49 while an average value of that to CL-B similarly gives a value of 0.26 kg/s indicating a total of 3.48 kg/s which is 0.45 kg/s lower than the average value of total LPI flow rate. Thus, a part of this value of 0.45 kg/s should be added to FE 49 and FE 50. If this is added to only FE 50, the flow rate ratio of FE 49 and added FE 50 becomes 3.22: 0.71 = 4.5 : 1. On the contrary, if that is added only to FE 49, the ratio of added FE 49 and FE 50 becomes 3.67 : 0.26 = 14.1 : 1. Therefore, it can be concluded that the LPI flow rate to CL-A can be larger than three times of that to CL-B in a time period after 332 s and correct flow distribution ratio between CL-A and CL-B is still uncertain.

Lastly, the reason of abrupt flow change at 332 s between the CL-A and CL-B is shown below. As these LPI flows were pumped by a single pump (PL), actual flows were dependent on both each friction loss along the injection line and the local pressure condition at CL-A and CL-B. Immediately after the AIS termination at 315 s, the CL-B water-filled condition beame steam-filled conditions (similar changes are observed in the break line fluid density data, **Fig.4-3**) and the LPI water injection could cause steam condensation in CL-B. On the other hand, the CL-A was still filled with water until the AIS termination at 334 s. Thus, the pressure in CL-B became lower than that in CL-A resulting in larger CL-B LPI flow and less CL-A LPI flow than their planned flows until 334 s. On the other hand, more strong steam condensation by larger LPI flow could occur in the CL-A immediately after the AIS termination at 334 s resulting in change of flow distribution between the CL-B and CL-A. Therefore, the abrupt LPI flow change occurred between two cold legs depending on their local pressure conditions which were influenced by different termination times of AIS injection and start of LPI actuation between two cold legs.

(5) Slight Pressure Recovery after LPI Actuation

It is also shown in **Fig.4-61** that the primary pressure gradually increased between 380 and 450 s under the conditions of no core power and continuing coolant discharge from the break. This pressure increase can be attributed to stored heat release from the metal structures especially from the thick metal parts of PV walls. The metal inner surface temperatures measured at various

locations of PV walls, primary loop piping and SG plenum walls are shown in **Figs.4-63** through **4-71**. The following are shown in these metal temperature data.

The PV walls below the cold leg nozzle level (especially wall at EL 3.6m) showed subcooled temperatures when the AIS injection flow rates increased. On the other hand, upper PV wall temperatures at EL 6.0m showed fluctuation between saturated temperature and super-heated temperatures in a period between 220 and 420s indicating repeated dryout of PV wall above decreased water level and repeated rewet under rose-up water level. The PV wall temperatures in the UH region (EL 8.0m) were almost kept in super-heated conditions during the test period except for a short period between 300 and 400s in which the hot PV wall was temporarily cooled. The primary loop wall temperatures showed rather complicated transients including significant subcooling at the CL-A PV side during the AIS and LPI actuation periods, change from super-heated temperature to saturated temperature at the CL-A pump side, similar but limited temperatures in both hot legs. It is shown in these temperature transients that stored heat release from these walls continued in the refill process with some intermittent way.

Figures 4-72 and **4-73** show inner wall metal temperatures of the SG vessel secondary sides compared with the saturation temperatures at two SGs (RC202 and RC203). A temperature distribution was observed between the upper region at almost saturation conditions and lower region at subcooled conditions at two SGs during all test period.

4.3 Experiment Data Analysis on Typical Phenomena

Data analysis were made in this Section on the primary coolant mass transient in relation to the loop-seal clearing (LSC), core dryout and primary loop water level transients, and on the three-dimensional fluid behavior related to the fall-back water during the LSC and remained core heat-up/quench period after the LSC.

4.3.1 Break Flow and Primary Coolant Mass Inventory

(1) Mass Balance Equation for Primary Coolant System

A total coolant mass (M_R [kg]) remained in the primary system was estimated for the initial 300 s by a following mass balance equation among the initial total coolant mass (M_O), discharged coolant mass into ST tank (M_D) and injected coolant mass (M_I) from AIS tanks.

$$M_{\rm R} = M_{\rm O} - M_{\rm D} + M_{\rm I} \tag{1}$$

The initial primary coolant mass estimated as $M_0 = 6111 \text{ kg}^{[24]}$ for SB-CL-08: the previous test with 5% cold leg break, was applied to this test because of similar initial test conditions and the same facility configuration. The discharged mass of M_D is given by the estimated data of RC191. The amount of injected water mass is given by a sum of AIS injected mass (difference from the initial

water mass for each AIS tank by using the data of RC189 and RC190).

(2) Primary Coolant Mass Inventory

Table 4-3 show the results of primary mass balance during initial 300 s after the break including the primary coolant mass of M_R and its ratio of M_R/M_O . **Figure 4-74** shows transient of the primary coolant mass related to the major events. The following are derived.

The first core heat-up started at 67 s at the middle core height (Pos.5) of high power bundles at $M_R/M_O = 0.445$ when the coolant mass partly remained in most of the primary regions including upper plenum, core, hot legs, SG inlet and outlet plenum, SG U-tube inlet and outlet sides, loop-seals, cold legs, downcomer, lower plenum and UH of PV. At the times of core power trip (111 s) and final core quench (153 s), the mass inventory ratios were $M_R/M_O = 0.320$ and 0.274, respectively.

The lowest primary inventory ratio ($M_R/M_O = 0.233$) was observed when the AIS started at 195 s. Thereafter, the primary coolant mass gradually recovered to $M_R/M_O = 0.387$ at 300 s (just before the LPI actuation). Therefore, an amount of net primary mass increase of $\Delta M/M_O = 0.154$ during the refill process (195 – 300 s) is equivalent to only 39% of the total AIS water mass of 2419 kg ($M_I/M_O = 0.396$). This means that about 60% of the injected AIS water mass flowed out through the break in this period.

(3) Primary Water Level Transients Related to Coolant Mass Inventory

The water level transients is related to the transient coolant mass inventory as shown below.

The pressurizer water level diminished within 20 s after the break initiation while the primary coolant mass decreased to 78.9% of M_O . The LSC process started at 62 s when the mass inventory ratio was M_R/M_O = 0.467, which was detected by the water level decrease at the SG outlet region, and ended at about 80 s when the inventory ratio was M_R/M_O = 0.395.

The upper plenum (UP) collapsed water level (see **Fig.4-5**) started to decrease at 5 s after the break, reached the hot leg elevation at 15 s, further decreased below the hot leg elevation at 20 s and reached the UP bottom at 70 s. These timings of UP level decrease below the hot leg elevation and arrival at UP bottom correspond to the primary mass inventory ratio of $M_R/M_O = 0.789$ and 0.432, respectively. It is interesting to note that the first core heat-up detected by heater rod thermocouples was at 67 s; slightly earlier than the UP water level arrival at the bottom.

(4) Primary Pressure – Mass Inventory Map

Figure 4-75 shows a map of the primary coolant mass inventory ratio (M_R/M_O) in terms of the primary pressure (PE10) during 300 s after the break in 10% cold leg break LOCA experiment. The core heat-up start during the LSC process is shown in this figure by M_R/M_O = 0.445 and the primary pressure at 8.7 MPa. On the other hand, similar map was generated for a 0.5% cold leg break LOCA test (SB-CL-24^[7]) in which temporary core heat-up was observed repeatedly in three

LSC processes (at the primary inventory ratio of $M_R/M_O = 0.33$) and significant core heat-up started during boil-off process (at $M_R/M_O = 0.27$). This comparison indicates that the LSC process in 10% cold leg break LOCA test started at significantly higher mass inventory conditions than that in 0.5% cold leg break LOCA test. The boil-off core heat-up start (at $M_R/M_O = 0.27$) in the 0.5% cold leg break LOCA test is similar to those in two 0.5% PV bottom break LOCA test of SB-PV-03^[14] (at $M_R/M_O = 0.26$) and SB-PV-01^[6] (at $M_R/M_O = 0.25$). It should be noted that these boil-off core heat-up conditions in three 0.5% LOCA tests are similar irrespective of their slightly different facility conditions; SB-PV-01 test with the first core assembly in the early ROSA-IV program (in Dec. 1986), SB-CL-24 test with the second core assembly (in March 1990) and SB-PV-03 test with the fourth core assembly in the ROSA-V program (in Nov. 2002).

It can be concluded that the primary mass inventory ratio related to the core heat-up start in 10% cold leg break experiment is significantly higher than those during boil-off process in 0.5% SBLOCA experiments as a result of larger coolant masses remaining in the primary loops during blowdown.

4.3.2 Heat-up and Quench Behavior in All Core Region

Both axial and horizontal behaviors of core heat-up and quench were investigated by using temperature measurement data as shown below.

(1) Axial Distribution of Heat-up and Quench in Bundles below HL-A and HL-B

Figure 4-76 compares the heat-up and quench propagation behavior along heater rods in different bundles with high- and low-power. The earliest heat-up was measured at 67 s during the LSC process at the middle height with maximum axial power density of high-power rods in B15 and B16 bundles located below HL-B. The temperature excursion portion extended both upward and downward covering most of the rods within 4 s, while the bottom of core (Pos.1) remained unheated. Similar heat-up behavior was observed for high-power rods in bundle B20 located below HL-A, but with a slight time delay from those in B15 and B16, probably because of water fall-back from the HL-A.

The heat-up of low-power rods occurred later than those of high-power rods generally irrespective of HL-A and -B sides. The low-power rod heat-up in HL-B side (B10), however, was significantly later in the upper core region and rather earlier in the lower core region than those of B07. This different heat-up behaviors between two low-power bundles may suggest different distribution of fall-back water between two peripheral bundles.

All the heater rods were quenched simultaneously in the lower half core (from Pos.2 to Pos.5) by the water level recovery after the LSC, while the core quench in the upper half core was significantly later than the timing of LSC. The low-power rods (B07 & B10) in the upper half core were quenched earlier than high-power rods and the final core quench was observed at the top of

high-power rod of B20 at 153 s.

It is concluded that the heat-up and quench behavior of heater rods depend basically on the core water level transients but under strong influences of fall-back water from hot leg, which resulted wide variety in the behavior especially in the peripheral bundles of slender LSTF core.

(2) Horizontal Distribution of Local Cooling in the Core

Figures 4-77 and **4-78** show horizontal distribution of rod heat-up and quench at two timings of 75 s (just after the LSC) and 110 s (just before the core power trip), respectively. The colored circles are 53 heater rods with surface temperature measurements while white circles are non-instrumented heater rods (1011 rods) in addition to 104 tie rods (gray circles) and 48 dummy rods (black circles). All these heater rods and tie rods are arranged in 24 bundles (B01 through B24) with three different radial power distribution as shown in the figure. The red-, orange- and blue-colored circles respectively mean a heater rod with all heated, one of partly-quenched and one with completely-quenched, above the quench fronts for high-power rods in **Fig.4-76**.

At the time of LSC, completely-quenched heater rods were observed in two high-power bundles (B19 & B20), two middle-power bundles (B21 & B24) and seven low-power bundles (B01, B02, B03, B06, B07, B08, B09); total 17 rods that are 32% of all instrumented heater rods. These heater rods should have been cooled by the fall-back water, considering that the major core-quench mechanism is bottom-up flooding after the LSC. The partly-quenched heater rods were observed in two high power bundles (B18 & B20), one middle-power bundle (B24) and six low-power bundles (B02, B03, B06, B10, B11 & B12); 15 rods that are 28% of all, ibid. On the other hand, the completely heated heater rods were observed in five high-power bundles (B13, B14, B15, B16 & B17), two middle-power bundles (B22 & B23) and four low-power bundles (B03, B04, B05 & B11); 21 rods that are 40% of all, ibid. Although a ratio of instrumented heater rods is only 5% of all heater rods (1064 in total), it is shown from these results that the effects of fall-back water on heater rod cooling clearly appear in a half region of core; HL-A side, suggesting larger influences of fall-back water from HL-A rather than those from HL-B because two-phase flow in HL-B toward the CL-B break through the SG-B U-tubes may be dominant during the blowdown phase and a reverse flow to the UP may be less than that in HL-A. There was no quenched heater rods observed in a quarter upper half region between 35 degree and 125 degree in Fig.4-77.

At the time of 110 s in **Fig.4-78**, most of the instrumented heater rods were completely heated-up especially in high- and middle-power bundles; 39 rods that are 74% of all, ibid. The completely-quenched heater rods, however, were observed only in five peripheral bundles (B01, B02, B05, B06 & B08); 6 rods that are 11% of all, ibid. There was no cooled heater rod in low-power bundles of B09, B10, B11 and B12, which are located inside of these five peripheral bundles. The partly-quenched heater rods were observed in one high-power bundle (B19) located in the HL-A side and three peripheral bundles (B02, B03 & B07); 8 rods that are 15% of all, ibid. These results indicate that most of the upper half core was highly heated up at this time except for

local cooling of heater rods which were observed mainly in the peripheral region. This suggests that smaller amount of the fall-back water continued even after the completion of LSC especially in the peripheral core.

(3) Radial Temperature Distribution of Heater Rods at Nine Elevations

The spatial distribution of heat-up and quench portions in the core (shown in **Figs.4-77** and **4-78**) is quantitatively analyzed in terms of heater rod temperature rise above saturation temperature ($\Delta T = TW - T_{SAT}$ [K]) with respect to (a) horizontal rod location between two hot legs and (b) three radial power levels as shown below. **Tables 4-4** and **4-5** show amount of temperature rise of all instrumented heater rods at two timings of 75 s at LSC and 110 s (just before the core power trip), respectively. The horizontal location of each instrumented heater rod is defined on a one-dimensional line between HL-A and HL-B and its relative location (Rel. Loc) is shown in the Tables between -1.0 at the core peripheral location just under the HL-A center line and 1.0 at that just under the HL-B center line. An average temperature rise is estimated in the same power level bundles at the same vertical elevation.

These data are shown in **Figs.7-79 (1)** through **(8)** for eight elevations (from Pos.9 to Pos.2) of three power density bundles at the time of LSC. Similarly, **Figs.4-80 (1)** through **(4)** show the data at four elevations from Pos.9 to Pos.6 at 110 s. An average temperature rise is shown in each figure in addition to an inclination of temperature rises between two hot legs. The following are derived from these results.

The temperature rise of heater rods at the LSC showed clear dependence on horizontal location between two hot legs; lower rises in the HL-A side and higher rises in the HL-B side. The temperature rises were also dependent on the local power density based on the axial and radial power distribution. The maximum heat-up at 75 s was observed at the middle core height at Pos.5 of high-power rod B14(4,4) as $\Delta T = 114.01$ K. No heat-up was observed more at the rods in low-power bundles rather than those in high-power bundles.

The temperature rises at 110 s shown in **Fig.4-80** were significantly higher than those at the LSC and the maximum heat-up of $\Delta T = 358.92$ K was observed at Pos.6 of high-power rod B16(4,4). The temperature rises were slightly dependent on the horizontal location between two hot legs indicating earlier start of heat-up in HL-B side than in HL-A side as those in the LSC time.

Consequently, heater rod temperature rises at two timings may indicate three-dimensional distribution of core cooling conditions during the LSC process (62-80 s) and the following heat-up period (80-153 s). It should be noted that the LSTF core diameter of 0.514 m is significantly scaled to that of 4-loop PWR with core diameter of 3.759 m and the height between the hot leg bottom and top of the upper core plate (UCP) is 1.3551 m for LSTF while that is 0.8255 m in the reference PWR. This atypicality of LSTF upper plenum configuration should be taken into account to estimate fall-back water effects on local core cooling conditions in the reference PWR.

5. Conclusions

A 10% cold leg break LOCA simulation experiment of SB-CL-09 (SC9) was conducted at the LSTF of ROSA-IV Program with an assumption of total HPI failure. The data obtained in the present experiment are good for the assessment of predictability of computer codes and models for the system integral analyses. Major observations in SC9 experiment are summarized as follows.

- The relatively large break size resulted in a fast primary depressurization and early pressure crossover with SG secondary pressure within two minutes than in the other LSTF cold leg SBLOCA experiments. The accumulator injection system (AIS) and low-pressure injection (LPI) system started at 195 s and 303 s, respectively.
- 2. Loop-seal clearing (LSC) process started at about one minute after the break in both loops, caused significant core water level depression to almost the bottom of core at 75 s and finished at 80 s with the water level recovered only to the core middle height. A primary coolant mass inventory at the end of LSC was about 40% of the initial inventory. The incomplete core water level recovery is resulted from water head due to more water level in the U-tube inlet-side than in the outlet-side.
- 3. Core heat-up started during the LSC process especially in the broken-loop (loop-B) hot-leg side. The core heat-up in the intact-loop (loop-A) side was limited due to fall-back water from the hot leg. The core heat-up continued in the upper half of the core after the end of LSC until the electric core power was tripped off at 111 s to limit the maximum heater rod temperature at 923 K. The maximum heater rod temperature was observed at Position 6 around middle elevation in loop-B hot leg side. Rather three-dimensional core heat-up and quench behavior was observed in the LSTF core during blowdown phase before the AIS actuation.
- 4. All the core exit thermocouples (CETs) detected no super-heat temperature during the core heat-up mainly due to the water fall-back from the hot legs. The influences of fall-back water on CET performance as well as the core heat-up and quench behavior (distribution) in a PWR core should be carefully analyzed with respect to their different configuration including the core diameter and upper plenum height.

Acknowledgment

The authors are grateful to all ROSA members for their contribution to conduct Test SB-CL-09 and to Ms. K.TOYODA of IT-TEC Inc. for her contribution to experimental data processing.

References

- [1] The ROSA IV Group, "ROSA-IV Large Scale Test Facility (LSTF) System Description", JAERI-M 84-237, January 1985.
- [2] The ROSA IV Group, "Supplemental Description of ROSA-IV/LSTF with No.1 Simulated Fuel Rod Assembly", JAERI-M 89-113, September 1989.
- [3] Japan Nuclear Power Company, "Tsuruga Hatsudensho Genshiro-secchihenkou-kyoka Shinseisho (#2, Zousetsu)", 1979 (in Japanese).
- [4] M.OSAKABE, et al., "Core Liquid Level Depression Due to Manometric Effect during PWR small Break LOCA, Effect of Break Area", J.Nucl.Sci.Technol., Vol.24, No.2, pp103-110, (1987).
- [5] Y.KOIZUMI, et al., "Temporary Core Liquid Level Depression during Cold-Leg Small-Break LOCA – Effect of Break Size and Power Level", Fourth International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Karlsruhe, FRG, October 1989.
- [6] M.SUZUKI, "Break Location Effects on PWR Small Break LOCA Phenomena Inadequate Core Cooling in Lower Plenum Break Test at LSTF", JAERI-M 88-271, January 1989.
- [7] M.SUZUKI, et al., "ROSA/LSTF Experiment Report for RUN SB-CL-24, Repeated Core Heatup Phenomena during 0.5% Cold Leg Break LOCA", JAERI-Tech 2000-016, March 2000.
- [8] H.KUMAMARU, et al., "ROSA-IV LSTF 5% Cold Leg Break LOCA Experiment RUN SB-CL-18 Data Report", JAERI-M 89-027, March 1989.
- [9] Y.KUKITA, et al., "Data Report for ROSA-IV LSTF 5% Hot Leg Break LOCA Experiment RUN SB-HL-01", JAERI-M 89-225, January 1990.
- [10] Y.KUKITA, et al., "Data Report for ROSA-IV LSTF 10% Hot Leg Break LOCA Experiment RUN SB-HL-02", JAERI-M 90-039, March 1990.
- [11] Y.KUKITA, et al., "Data Report for ROSA-IV LSTF 5% Cold Leg Break LOCA Experiment RUN SB-CL-08", JAERI-M 89-220, January 1990.
- [12] Y.KUKITA, et al., "Data Report for ROSA-IV LSTF 10% Hot Leg Break LOCA Experiment RUN SB-HL-04", JAERI-M 91-040, March 1991.
- [13] T.YONOMOTO, et al., "Data Report for ROSA-IV LSTF Gravity-Driven Safety Injection Experiment RUN SB-CL-27", JAERI-M 94-069, March 1994.

- [14] M.SUZUKI, et al., "Experimental Study on Secondary Depressurization Action for PWR Vessel Bottom Small Break LOCA with HPI failure and Gas Inflow (ROSA-V/LSTF Test SB-PV-03)", JAERI-Research 2005-014, June 2005.
- [15] M.SUZUKI, et al., "An Experimental Study on Effective Depressurization Actions for PWR Vessel Bottom Small Break LOCA with HPI failure and Gas Inflow (ROSA-V/LSTF Test SB-PV-04)", JAERI-Research 2006-018, March 2006.
- [16] M.SUZUKI, et al., "A Study on Effective System Depressurization during a PWR Vessel Bottom Break LOCA with HPI failure and Gas Inflow Prevention (ROSA-V/LSTF Test SB-PV-05)", JAERI-Research 2006-072, November 2006.
- [17] M.SUZUKI, et al., "A Study on Timing of Rapid Depressurization Action during PWR Vessel Bottom Break LOCA with HPI failure and AIS-Gas Inflow (ROSA-V/LSTF Test SB-PV-06)", JAERI-Research 2007-037, March 2007.
- [18] C.CHAULIAC, et al., "Post-Test Analysis with RELAP5/MOD2 of ROSA-IV/LSTF Natural Circulation Test ST-NC-02", JAERI-M 88-215, October 1988.
- [19] T.WATANABE, et al., "Analysis of ROSA-IV/LSTF Experiment Simulating the MIHAMA Unit-2 Steam Generator U-tube Rupture Incident by Using RELAP5/MOD2 Code", JAERI-M 93-008, February 1993. (in Japanese).
- [20] T.WATANABE, et al., "Analysis of ROSA-IV/LSTF Experiment Simulating a Steam Generator Tube Rupture Design Basis Incident by Using RELAP5/MOD2 Code", JAERI-M 93-039, March 1993. (in Japanese).
- [21] Nuclear Technology, TMI Special Volume, Vol.87, No.1-4, August 1989.
- [22] Zuber, N., "Problems in Modeling of Small Break LOCA", NUREG-0724 (1980).
- [23] Roy A.SHAW, et al., Private communication, "A description of the instrumentation used during ROSA/AP600 experiments in LSTF," November 1995.
- [24] M.SUZUKI, Private communication, March 1990.
- [25] H.KUMAMARU, et al., "Recalculation of Simulated Post-Scram Core Power Decay Curve for Use in ROSA-IV/LSTF Experiments on PWR Small-Break LOCAs and Transients", JAERI-M 90-142, August 1990.
| ltem | (Unit) | LSTF*1 | PWR | Ratio |
|-----------------------------|---------------------|----------|----------|---------|
| Rated Condition | | | | |
| Pressure | (MPa) | 16 | 16 | 1/1 |
| Hot Leg Temperature | (K) | 598 | 598 | 1/1 |
| Primary Fluid Volume (V)*2 | (m³) | 8.0 | 354 | 1 / 44 |
| Core Thermal Design | | | | |
| Number of Fuel Rods | | 1064 | 50952 | 1 / 48 |
| Thermal Core Power (P) | (MW) | 10 | 3423 | 1 / 342 |
| (P/V) | (MW/m³) | 1.25 | 9.67 | 1 / 7.7 |
| Core Inlet Flow Rate | (kg/s) | 48.8 | 16700 | 1 / 342 |
| Core Height | (m) | 3.66 | 3.66 | 1 / 1 |
| Core Flow Area | (m²) | 0.1134 | 4.75 | 1 / 42 |
| Downcomer Gap | (m) | 0.053 | 0.260 | 1 / 4.9 |
| Primary Loop Design | | | | |
| Number of Primary Loops | | 2 | 4 | 1 / 2 |
| Hot Leg Diameter (D) | (m) | 0. 207 | 0.737 | 1 / 3.6 |
| Hot Leg Length (L) | (m) | 3.69 | 6.99 | 1 / 1.9 |
| (L/√D) | (m ^{1/2}) | 8.15 | 8.15 | 1/1 |
| $\pi D^2 L/4$ | (m³) | 0.124 | 2.98 | 1 / 24 |
| Hot Leg Top Elevation*3 | (m) | EL 5.606 | EL 5.606 | 1 / 1 |
| Loopseal Bottom Elevation*3 | 3 (m) | EL 1.701 | EL 1.7 | 1/1 |
| Pressurizer Design | | | | |
| Pressurizer Fluid Volume | (m³) | 1.147 | 51 | 1 / 44 |
| Pressurizer Height | (m) | 4. 2 | 15.5 | 1 / 3.7 |
| Steam Generator Design | | | | |
| Number of SGs | | 2 | 4 | 1/2 |
| One SG Vessel Fluid Volume | (m³) | 7.0 | 163.1 | 1 / 23 |
| Number of U-tubes per One S | SG | 141 | 3382 | 1 / 24 |
| U-tube Inner Diameter | (mm) | 19.6 | 19.6 | 1/1 |
| Average U-tube Length | (m) | 20.2 | 20.2 | 1/1 |

Table 2-1 Major design characteristics of LSTF compared with four-loop PWR

*1 Large-scale Test Facility (LSTF) with the first core assembly.

 $\ast 2$ Active dead volumes in connected pipes (Ref. [2]) are not included .

*3 Elevation above the core bottom (EL 0.0 m).

Instrument/Measurement	Symbol	Pressure Vessel	Primary System	Steam Generators	Pressurizer	Secondary System	Surpression Tank and Break Units	Total
Fluid Temperature	TE	310	37	22	23	12	26	430
Wall Temperature (All)	TWA & TWB	1003	25	198	10			1236
Conductivity	CE	1						1
Conduction Probe	CP	112			10		1	123
Conduction Probe with TC	CPT		50	212			15	277
Optical Liquid Level Detector	OP		10					10
Flow Rate	F		9	8	5	10	ø	37
Reflux Flow Meter	RF		2					2
Cross-Correlation Velocimeter	CF		2					2
Pitot-Tube Velocimeter	PIT		2				2	4
Liquid Level	Г	1		8	1	1	4	15
Pressure	Ъ	ę	12	2	ø	4	14	43
Differential Pressure	DP	14	59	22	ę		12	110
l Beam Densitometer	GD1		e		e			6
3 Beam Densitometer	GD ₃		9				3	6
Drag Disk Flow Meter	DD		22		9		6	34
Drag Disk Turbine Flow Meter	DTT	4						4
Video Probe	VP		4					4
Rotation Speed	RE		2					2
Pump Oscillation	VE		2					2
Pump Torque	ТQ		5					2
Total		1448	246	472	69	27	16	2354

Table 2-2 Summary of measurement types and locations

-26 -

JAEA-Research 2008-087

Region and Items	(Unit)	Specified	Measured (Accuracy*1)
Pressure vessel: Core power (MI 17) UH temperature (MidBot./Top Lower plenum Temperature	(MW)) (K) (K)	10.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Primary loops (A-Loop / B-Loop Hot leg temperature Cold leg temperature Mass flow rate (kg/ Downcomer-to-HL byp.flow (kg/): (K) (K) s/loop) s/loop)	598.1 562.4 24.3 0.049	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Pressurizer: Pressure (PE 13) Water level above bottom ^{* 3}	(MPa) (m)	15.52 2.7	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Steam generators (A-Loop / B-L Pressure Water level Main feedwater flow rate Total downcomer flow rate*4 Main feedwater temperature	oop): (MPa) (m) (kg/s) (kg/s) (K)	7.30 10.3 2.74 495	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Accumulators (ACC to CLA / ACH Initial pressure Water temperature Initial water level*4 Final water level*4	to CLB) (MPa) (K) (m) (m)	4.51 / 4.51 320 / 320 5.76 / 6.43 3.38 / 5.64	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Low pressure injection system: Water temperature	(K)	310	310.1 (± 1.90)
Pressurizer heater Power Proportional heater power Base heater power	(kW) (kW)		$\begin{array}{cccc} 6.6 & (\pm \ 0.15 \) \\ 21.6 & (\pm \ 2.25 \) \end{array}$

Table 3-1 Initial conditions in experiment SB-CL-09

*1 See measurement list in Appendix-A

*2 The downcomer-to-HL leak simulation flow in each loop is controlled by the flow control valve (HCV010 or HCV150).

*3 Bottom of the pressurizer level meter at DL 0.095 m.

*4 Specified water level is presented above bottom of level meter (DL 200mm) while measured water levels are shown above shifted levels (DL 3170 mm for ACC and DL 3400 mm for ACH, respectively).

Event	Cause	Delay Time
Break signal	Time = 0.0 s	
Pressurizer heater power off	$L_{PZR} < 1.0$ m	
Scram signal	$P_{PZR} \leq 12.97 \text{ MPa}$	
SI signal	$P_{PZR} \leq 12.27 \text{ MPa}$	
Core power tripped to decay curve	Scram signal	
Core power limitation to prevent heater rod overheat	75 % for Rod Temp. ≥ 908 K 50 % for Rod Temp. ≥ 918 K 25 % for Rod Temp. ≥ 919 K 10 % for Rod Temp. ≥ 920 K 0 % for Rod Temp. ≥ 923 K	
Primary pumps speed-up (1500 rpm) Primary pumps decay start Primary pumps stopped	Break signal Scram signal Pump decay start	250 s
Turbine trip	Scram signal	
Main feedwater valve closure	Scram signal	
SG-RV setpoint to open SG-RV setpoint to close RV orifice ID SG-SV setpoint to open SG-SV setpoint to close	Pss ≧ 8.03 MPa Pss ≦ 7.82 MPa 19.4 mm Pss ≧ 8.68 MPa Pss ≦ 7.69 MPa	
Auxiliary feedwater (AFW)	Failure	
AlS injection pressure Injection ratio*' End of AlS injection* ²	4.51 MPa 3 (CL-A) : 1 (CL-B) Setpoint at each tank level	
High pressure injection (HPI)	Failure	
Low pressure injection (LPI) Injection ratio	SI signal + 17s and LP pressure ≦ 1.29 MPa 3 (CL-A) : 1 (CL-B)	
End of experiment	BU valve closure	

Table 3-2 Control logic for experiment SB-CL-09

*1 Amount of AIS injected water is specified as 1.6815 $\rm m^3$ for ACC and 0.5605 $\rm m^3$ for ACH, respectively.

*2 AlS injection is terminated by closing control valve in each injection line at lower end level setpoint for each AlS tank (see Table 3-1).

Time (s)	Power (MW)	Time (s)	Power (MW)	Time (s)	Power (MW)	Time (s)	Power (MW)
0	10.000	150	3.632	1500	1.280	19980	0.592
29	10.000	200	2.848	2000	1.200	60000	0.464
40	8.912	400	1.776	4000	0.992	100020	0.368
60	7.344	600	1.568	6000	0.848		
80	6.128	800	1.488	7980	0.784		
100	5.200	1000	1.424	10020	0.784		

Table 3-3 JAERI core power curve after the scram

Table 3-4 Primary pump coastdown curve after the scram

Time (s)	Pump Speed Ratio	Time (s)	Pump Speed Ratio	Time (s)	Pump Speed Ratio
0	1.000	30	0.280	80	0.125
2	0.850	40	0.220	90	0.110
5	0.730	50	0.185	100	0.100
10	0.540	60	0.160	250	0.000
20	0.370	70	0.140		

The pump speed ratio is normarized by the maximun pump speed of about 1500 rpm.

Event	Time (s)
·Start of data recording	- 305
·Break initiation	0
 Primary pump started to power-up 	0
 Hot leg top fluid saturated 	4-8
 Scram signal generation (at 12.97 MPa) 	8
 PZR heaters tripped off by low PZR level 	11-15
·SI signal generation (at 12.27 MPa)	11
•Main steam line valve closed	11
 Start of pumps coast-down 	12
•Main Feedwater pump stopped	15
 Pressurizer water level out of range 	20
 Core power decreased from 10 MW 	42
•Water level decreased in SG outlet plena	62
•Core heat-up started	67
·Cold leg top fluid saturated	67
·Loop-seal clearing	74
·Steam discharge at break unit	78
 Reversal of primary/secondary pressures 	97
 Core power supply terminated 	111
 Core finally quenched 	153
 Accumulator injection system started 	195
 Primary coolant pumps stopped 	263
·LPI system actuated	303
 Accumulator injection system terminated 	315-334
 End of LPI injection to two loops 	1039-1051
 Break valve closure (End of experiment) 	1042
•End of data recording	1537

Table 4-1 Chronology of major events and procedures

	(1)	Average voi	d fraction in	lower plenu	ım (EL -1.80) ~ -0.106 r	n)
Time	Pressure	Av.Temp.	Dif.Pres.	Density	Density	Level	Void F.
(s)	PE12(MPa)	(K)	DP48(kPa)	$\rho_{\rm L}(\rm kg/m^3)$	$\rho_{\rm G}(\rm kg/m^3)$	EL (m)	α _{LP} (-)
110	7.830	565.28	12.50	728.30	41.47	-0.106	0.0
120	7.401	563.61	11.48	732.90	38.89	-0.206	0.037
130	7.008	560.02	10.95	739.88	36.58	-0.298	0.092
140	6.594	556.06	10.78	747.36	34.18	-0.338	0.117
150	6.166	551.58	10.64	755.23	31.76	-0.372	0.137
160	5.745	546.92	10.58	763.17	29.41	-0.395	0.151
170	5.354	542.33	10.67	770.71	27.27	-0.398	0.153
180	4.978	537.73	10.67	778.16	25.24	-0.410	0.160
190	4.628	533.29	10.70	785.28	23.39	-0.418	0.165
200	4.259	528.25	10.36	793.07	21.44	-0.477	0.201

Table 4-2 Collapsed level and void fraction in PV estimated from DP data (110 - 200 s)

(2) Average void fraction in core (EL 0.0237 \sim 3.945 m)

Time	Pressure	Av. Temp.	Dif.Pres.	Density	Density	Level	Void F.
(s)	PE12(MPa)	(K)	DP50(kPa)	ρ∟(kg/m³)	$\rho_{\rm G}(\rm kg/m^3)$	EL (m)	α c (-)
110	7.830	599.74	10.53	725.38	41.47	1.356	-
120	7.401	583.90	13.38	732.90	38.89	1.771	-
130	7.008	560.24	14.12	739.88	36.58	1.867	_
140	6.594	555.75	14.72	747.36	34.18	1.940	1
150	6.166	551.36	15.93	755.23	31.76	2.097	
160	5.745	546.72	16.62	763.17	29.41	2.176	0.451
170	5.354	542.27	16.99	770.71	27.27	2.210	0.442
180	4.978	537.61	17.04	778.16	25.24	2.200	0.445
190	4.628	533.17	17.20	785.28	23.39	2.205	0.444
200	4.259	528.15	16.72	793.07	21.44	2.125	0.464

(3) Average void fraction in lower downcomer (LDC; EL 0.0 \sim 3.66 m)

Time	Pressure	Av.Temp.	Dif.Pres.	Density	Density	Level	Void F.
(s)	PE12(MPa)	(K)	DP57(kPa)	ρ _ι (kg/m³)	ρ _α (kg/m³)	EL (m)	lpha LDC (-)
110	7.830	566.76	26.25	725.38	41.47	3.660	0.0
120	7.401	562.82	23.21	732.90	38.89	3.204	0.125
130	7.008	559.07	22.00	739.88	36.58	2.998	0.181
140	6.594	554.99	20.70	747.36	34.18	2.784	0.239
150	6.166	550.55	20.06	755.23	31.76	2.666	0.272
160	5.745	545.86	19.52	763.21	29.41	2.565	0.299
170	5.354	541.15	19.27	771.10	27.27	2.507	0.315
180	4.978	536.69	18.81	778.32	25.24	2.423	0.338
190	4.628	532.04	18.51	785.68	23.39	2.363	0.354
200	4.259	526.83	18.68	793.70	21.44	2.363	0.354

(4) $Mix[u] = Ievel III upper downcomer based on EDC volu fraction (EE 3.00 ^{\circ} 0.75$	(4)	Mixture level in uppe	r downcomer based o	n LDC void fraction	(EL 3.66 ~ 6.799)
--	-----	-----------------------	---------------------	---------------------	-------------------

Time	Dif.Pres.	Void F.	Level	Time	Dif.Pres.	Void F.	Level
(s)	DP58(kPa)	α_{LDC} (-)	EL (m)	(s)	DP58(kPa)	α LDC (-)	EL (m)
110	12.89	0.0	5.391	160	9.03	0.299	5.270
120	11.59	0.125	5.405	170	8.67	0.315	5.227
130	10.67	0.181	5.349	180	8.33	0.338	5.204
140	9.99	0.239	5.339	190	8.00	0.354	5.167
150	9.41	0.272	5.292	200	9.73	0.354	5.512

Time after	Discharged	Injected	Injected	Remained	Mass
Break (s)	Mass,	Mass, ACC	Mass, ACH	Mass,	Ratio
	M₀ (kg)	Miac (kg)	Miah (kg)	M _R (kg)	Mr/ Mo
0	0	0	0	6111	1.000
10	713	0	0	5398	0.883
20	1288	0	0	4823	0.789
30	1786	0	0	4325	0.708
40	2213	0	0	3898	0.638
50	2848	0	0	3263	0.534
60	3204	0	0	2907	0.476
70	3468	0	0	2643	0.432
80	3698	0	0	2413	0.395
90	3836	0	0	2275	0.372
100	4025	0	0	2086	0.341
110	4150	0	0	1961	0.321
120	4193	0	0	1918	0.314
130	4274	0	0	1837	0.301
140	4353	0	0	1758	0.288
150	4415	0	0	1696	0.278
160	4484	0	0	1627	0.266
170	4566	0	0	1545	0.253
180	4633	0	0	1478	0.242
190	4670	0	0	1441	0.236
200	4702	66.5	21.4	1497	0.245
210	4816	158.5	59.9	1513	0.248
220	4880	256.1	98.7	1586	0.260
230	4967	369.4	144.5	1658	0.271
240	5116	500.7	198.7	1694	0.277
250	5218	646.4	259.7	1799	0.294
260	5442	814.6	328.0	1812	0.297
270	5660	1016.4	414.1	1942	0.318
280	5802	1230.7	502.2	2042	0.334
290	6029	1471.4	602.1	2156	0.353
300	6164	1715.5	703.6	2366	0.387

Table 4-3 Estimated primary coolant mass in experiment SB-CL-09

 $M_{\text{R}}=M_0-M_0+M_1,$ where $M_0=6111~kg$ and $M_1=M_{1\text{AC}}+M_{1\text{AH}}$.

1										
Hi-P. Rod	Loc. (mm)	Rel. Loc.	Pos.9	Pos.8	Pos.7	Pos.6	Pos.5	Pos.4	Pos.3	Pos.2
D00 D	00.0	0.500	Rods (10)	Rod (13)	Rods (13)	Rods (13)	Rods (18)	Rods (13)	Rods (5)	Rods (13)
B20 Rod(1,1)	-20.0	-0.536	1.00	4.39	3.00	2.79	1.81	2.27	2.00	3.11
B19 Rod(4,4)	-20.0	-0.520	1.89	4.40	464	1.28	0.//	2.05	3.88	2.02
B19 Rod(4,3)	-23.5	-0.485	2.00	0.76	4.04	21 50	8.20	3.80	0 1 0	3.8Z
B20 Rod(4,3)	-23.3	-0.400	2.00	9.70	22.70	21.09	20.50	26.14	0.12	15.20
B18 Rod(4,4)	-14.5	-0.200	2.02	/ 12	33.75	8.23	45.51	20.14	61.21	10.00
B18 Rod(3.4)	-14.0	-0.289	2.40	7.12	2.88	0.20	6.62	74 56	01.21	33.85
B13 Rod(4.4)	-1.0	-0.021	2.00	17.73	74.73	85 58	80.20	65.07		31.64
B17 Rod(4.4)	1.0	0.021		39.12	67.66	87.89	100.23	105.45		37.37
B17 Rod(1.7)	10.0	0.206		47.14	62.29	90.02	107.43	78.68		35.15
B14 Rod(5.4)	14.0	0.289	17.22		52.27		107.34	96.17		34.07
B14 Rod(4,4)	14.5	0.299	17.40	42.83		90.50	114.01		63.93	
B16 Rod(4,4)	21.0	0.433		59.10	88.02	84.08	109.03	96.65		39.16
B14 Rod(1,7)	23.5	0.485		20.97	71.26	87.34	84.15	76.44		33.61
B15 Rod(4,4)	25.5	0.526	26.37		80.92		111.21	110.02		41.12
B15 Rod(4,5)	28.5	0.588	23.04	49.92		87.16	107.13		62.76	
B16 Rod(1,7)	30.0	0.619		35.78	62.18	78.27	103.01	99.94		33.76
B15 Rod(1,7)	35.0	0.722		35.97	73.77	89.72	111.96	101.39		37.27
	Average		9.99	28.56	52.16	63.11	70.39	72.05	39.98	29.18
			Pos 9	Pos 8	Pos 7	Pos 6	Pos 5	Pos 4	Pos 3	Pos 2
Mid-P. Rod	Loc. (mm)	Rel. Loc.	Rods (8)	Rods (7)	Rods (7)	Rods (7)	Rods (11)	Rods (7)	Rods (4)	Rods (7)
B24 Rod(7.1)	-18.5	-0.381	,,	1.60	2.58	2.17	3.42	4.38	\./	6.31
B24 Rod(4.4)	-10.0	-0.206	2.80	16.49	2.00	23.81	27.16		27.47	0.01
B21 Rod(1.1)	-10.0	-0.206		2.77	2.90	3.05	3.62	2.80		2.16
B24 Rod(3,4)	-9.5	-0.196	1.86		25.81		12.58	20.04		15.16
B21 Rod(5,4)	-6.0	-0.124	2.70	2.62		2.18	4.40		3.28	
B21 Rod(4,4)	-5.5	-0.113	1.57		3.18		4.44	3.95		3.95
B23 Rod(4,4)	5.5	0.113	8.82		51.92		61.41	53.65		23.23
B23 Rod(4,5)	8.0	0.165	9.12	18.62		62.24	68.08		40.86	
B22 Rod(5,4)	9.5	0.196	10.43		31.27		34.23	29.23		5.52
B22 Rod(4,4)	10.0	0.206	10.15	13.68		30.19	32.56		8.15	
B22 Rod(1,7)	18.5	0.381		14.05	11.25	29.07	73.32	60.92		21.74
	Average		5.93	9.97	18.41	21.82	29.56	25.00	19.94	11.15
Low-P. Rod			Pos.9	Pos.8	Pos.7	Pos.6	Pos.5	Pos.4	Pos.3	Pos.2
	Loc. (mm)	Rel. Loc.	Pos.9 Rods (12)	Pos.8 Rods (18)	Pos.7 Rods (18)	Pos.6 Rods (18)	Pos.5 Rods (24)	Pos.4 Rods (18)	Pos.3 Rods (6)	Pos.2. Rods (18)
B07 Rod(8,4)	Loc. (mm) -44.0	Rel. Loc. -0.907	Pos.9 Rods (12)	Pos.8 Rods (18) 2.77	Pos.7 Rods (18) 3.52	Pos.6 Rods (18) 1.69	Pos.5 Rods (24) 4.07	Pos.4 Rods (18) 4.29	Pos.3 Rods (6)	Pos.2. Rods (18) 2.67
B07 Rod(8,4) B07 Rod(4,3)	Loc. (mm) -44.0 -39.5	Rel. Loc. -0.907 -0.814	Pos.9 Rods (12) 2.41	Pos.8 Rods (18) 2.77 2.19	Pos.7 Rods (18) 3.52	Pos.6 Rods (18) 1.69 1.07	Pos.5 Rods (24) 4.07 4.58	Pos.4 Rods (18) 4.29	Pos.3 Rods (6) 3.42	Pos.2. Rods (18) 2.67
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2)	Loc. (mm) -44.0 -39.5 -37.5	Rel. Loc. -0.907 -0.814 -0.773	Pos.9 Rods (12) 2.41 1.15	Pos.8 Rods (18) 	Pos.7 Rods (18) 3.52 1.68	Pos.6 Rods (18) 1.69 1.07	Pos.5 Rods (24) 4.07 4.58 3.12	Pos.4 Rods (18) 4.29 3.11	Pos.3 Rods (6) 3.42	Pos.2. Rods (18) 2.67 3.17
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3)	Loc. (mm) -44.0 -39.5 -37.5 -34.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711	Pos.9 Rods (12) 2.41 1.15	Pos.8 Rods (18) 2.77 2.19 1.65	Pos.7 Rods (18) 3.52 1.68 2.71	Pos.6 Rods (18) 1.69 1.07 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73	Pos.4 Rods (18) 4.29 3.11 3.36	Pos.3 Rods (6) 3.42	Pos.2 Rods (18) 2.67 3.17 2.84
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670	Pos.9 Rods (12) 2.41 1.15 2.38	Pos.8 Rods (18) 2.77 2.19 1.65 12.87	Pos.7 Rods (18) 3.52 1.68 2.71	Pos.6 Rods (18) 1.69 1.07 2.19 4.43	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41	Pos.4 Rods (18) 4.29 3.11 3.36	Pos.3 Rods (6) 3.42 6.50	Pos.2 Rods (18) 2.67 3.17 2.84
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619	Pos.9 Rods (12) 2.41 1.15 2.38 1.93	Pos.8 Rods (18) 2.77 2.19 1.65 12.87	Pos.7 Rods (18) 3.52 1.68 2.71 15.08	Pos.6 Rods (18) 1.69 1.07 2.19 4.43	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72	Pos.4 Rods (18) 4.29 3.11 3.36 15.93	Pos.3 Rods (6) 3.42 6.50	Pos.2 Rods (18) 2.67
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567	Pos.9 Rods (12) 2.41 1.15 2.38 1.93	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72	Pos.3 Rods (6) 3.42 6.50	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8) B06 Rod(3,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 1.93	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72	Pos.3 Rods (6) 3.42 6.50 	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8) B06 Rod(3,4) B06 Rod(2,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43	Pos.4 Rods (18) 4.29 	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,4) B06 Rod(3,4) B06 Rod(2,4) B09 Rod(4,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 4
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,4) B06 Rod(3,4) B06 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 1.3.56	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,4) B06 Rod(3,4) B06 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4) B01 Rod(3,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 1.3.56 4.25	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,4) B06 Rod(4,4) B06 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 13.56 4.25 12.49	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 46.12	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8) B06 Rod(4,8) B06 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -17.5 -17.0 -3.0 3.0 6.0 17.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 13.56 4.25 12.49 26.65	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 46.12 40.75	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8) B06 Rod(2,4) B09 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4) B02 Rod(2,4) B02 Rod(2,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 -17.5 -17.0 -3.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.062 0.062 0.124 0.351 0.351 -0.351	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 13.56 4.25 12.49 26.65	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 46.12 40.75 20.22	Pos.3 Rods (6) 3.42 6.50 10.53	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(4,8) B06 Rod(4,8) B06 Rod(2,4) B09 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(2,4) B02 Rod(2,4) B02 Rod(2,4) B02 Rod(2,4) B02 Rod(2,4) B04 Rod(4,4) B05 Rod(2,4) B05 Rod(2,4) B05 Rod(2,4) B05 Rod(2,4) B07 Rod(2,4) B07 Rod(4,4) B07 R	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 -3.5 -1.5 -1.7 -1.5 -1.7 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -3.0 -1.7 -3.0 -3.0 -3.0 -3.0 -1.7 -3.0 -1.7 -3.0 -1.7 -3.0 -1.7 -3.0 -1.7 -3.0 -1.7	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.381 -0.351 -0.351 -0.351 -0.351 -0.351 -0.351 -0.555	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 4.01 1.61 13.56 4.25 12.49 26.65 2.20	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 46.12 40.75 20.22	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(3,4) B06 Rod(2,4) B09 Rod(4,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4) B02 Rod(2,4) B02 Rod(3,4) B11 Rod(1,7) B11 Rod(1,7)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.381 0.326 0.526	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 2.60 19.49	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16	Pos.4 Rods (18) 4.29 	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(3,4) B06 Rod(3,4) B09 Rod(4,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4) B02 Rod(2,4) B02 Rod(3,4) B11 Rod(1,7) B02 Rod(4,4) B02 Rod(4,4) B04 Rod(4,4) B05 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B02 Rod(4,4) B04 R	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 27.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.331 0.331 0.526 0.567 0.667	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 3.37	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 28.30 1.86	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 4.84 4.84	Pos.4 Rods (18) 4.29 	Pos.3 Rods (6) 3.42 6.50 10.53 4.25	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(3,4) B06 Rod(2,4) B09 Rod(2,4) B05 Rod(2,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(4,4) B02 Rod(2,4) B11 Rod(1,7) B11 Rod(1,7) B02 Rod(4,8) B10 Rod(4,4) B10 Rod(4,4) B11 R	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 22.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.331 0.526 0.567 0.567 0.619	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 3.37	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 28.30 1.86 34.37	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 4.84 4.9.37	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44	Pos.3 Rods (6) 3.42 6.50 10.53 4.25	Pos.2 Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67 16.62
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(2,4) B06 Rod(2,4) B09 Rod(2,4) B05 Rod(2,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(4,4) B02 Rod(2,4) B11 Rod(1,7) B11 Rod(1,7) B02 Rod(4,8) B10 Rod(4,4) B10 Rod(4,4) B10 Rod(4,4) B10 Rod(4,5) B04 Ro (4,2)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 32.5 24.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.331 0.526 0.567 0.619 0.670 0.670	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 3.37 	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 28.30 1.86 34.37	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 49.37 52.95 5.02	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25 4.25 28.65	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67 16.62
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(2,4) B06 Rod(2,4) B05 Rod(2,4) B05 Rod(2,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(3,4) B02 Rod(4,4) B11 Rod(1,7) B11 Rod(1,7) B11 Rod(4,4) B02 Rod(4,4) B10 Rod(4,5) B04 R	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 32.5 34.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.331 0.526 0.567 0.619 0.670 0.670 0.619 0.670	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 2.60 19.49 3.37 9.78 24.55	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 2.72 38.88 33.56 3.70 28.30 1.86 34.37 	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 49.37 52.95 52.91	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 24.32 24.32 24.32 44.49 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44	Pos.3 Rods (6) 3.42 6.50 	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67 16.62
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(2,4) B06 Rod(2,4) B09 Rod(2,4) B05 Rod(2,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4) B02 Rod(2,4) B11 Rod(1,7) B02 Rod(4,8) B11 Rod(1,7) B02 Rod(4,8) B10 Rod(4,4) B10 Rod(4,5) B04 Rod(4,3) B03 Rod(4,3) B03 Rod(4,2) B03 Rod(4,2) B04 Rod(4,3) B04 Rod(4,3) B03 Rod(4,2) B04 Rod(4,3) B04 Rod(4,3) B04 Rod(4,3) B04 Rod(4,3) B04 Rod(4,3) B05 Rod(4,2)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 32.5 34.5 34.5 37.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.351 0.351 0.351 0.351 0.381 0.526 0.567 0.619 0.670 0.711 0.773 0.614	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 7.31 6.97 4.41 3.06 2.52 3.77 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 2.28 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 3.37 9.78 24.55	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 2.72 38.88 33.56 3.70 28.30 1.86 34.37 	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 49.37 52.95 52.91 49.14	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 24.32 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44 9 50.38 45.01	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25 28.65	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67 16.62 17.62 16.11
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,2) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(2,4) B06 Rod(2,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(3,4) B02 Rod(4,4) B11 Rod(1,7) B02 Rod(4,4) B11 Rod(1,7) B02 Rod(4,4) B10 Rod(4,4) B10 Rod(4,5) B04 Rod(4,3) B03 Rod(4,2) B03 R	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 32.5 34.5 34.5 37.5 39.5 39.5 34.5	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.367 0.619 0.670 0.619 0.670 0.619 0.670 0.619 0.62 0.567 0.619 0.62 0.351 0.352 0.620 0.567 0.619 0.620 0.567 0.619 0.351 0.373 0.670 0.773 0.814 0.773 0.814 0.907 0.907 0	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 7.31 6.97 4.41 3.06 2.52 3.77 	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 19.99 19.99 1.61 13.56 4.25 12.49 26.65 12.49 26.65 12.49 26.65 12.49 2.60 19.49 3.337 9.78 24.55 7.95	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 28.30 1.86 34.37 36.54 36.54	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 49.37 52.95 52.91 49.14 4.7.38	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44 50.38 45.01	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25 28.65	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 2.48 6.87 3.03 14.20 4.90 14.04 13.64 2.51 8.37 3.67 16.62 17.62 16.11
B07 Rod(8,4) B07 Rod(4,3) B07 Rod(4,3) B08 Rod(4,3) B12 Rod(4,3) B12 Rod(4,3) B12 Rod(4,4) B06 Rod(3,4) B06 Rod(3,4) B09 Rod(4,4) B05 Rod(3,4) B05 Rod(3,4) B05 Rod(3,4) B01 Rod(3,4) B05 Rod(1,7) B11 Rod(4,4) B02 Rod(4,4) B11 Rod(1,7) B02 Rod(4,4) B11 Rod(1,7) B02 Rod(4,4) B10 Rod(4,4) B10 Rod(4,5) B04 Rod(4,3) B03 Rod(4,2) B03 Rod(4,3) B03 Rod(4,3) B03 Rod(4,4)	Loc. (mm) -44.0 -39.5 -37.5 -34.5 -32.5 -30.0 -27.5 -18.5 -17.5 -17.0 -3.0 3.0 6.0 17.0 17.5 18.5 25.5 27.5 30.0 32.5 34.5 37.5 39.5 44.0	Rel. Loc. -0.907 -0.814 -0.773 -0.711 -0.670 -0.619 -0.567 -0.381 -0.351 -0.351 -0.062 0.062 0.124 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.526 0.567 0.619 0.670 0.711 0.773 0.814 0.907	Pos.9 Rods (12) 2.41 1.15 2.38 1.93 7.31 6.97 7.31 6.97 4.41 3.06 2.52 3.77 7.61 3.99	Pos.8 Rods (18) 2.77 2.19 1.65 12.87 2.28 19.99 19.99 1.61 13.56 4.25 12.49 26.65 2.60 19.49 3.37 9.78 24.55 9.92 9.92 7.85	Pos.7 Rods (18) 3.52 1.68 2.71 15.08 1.93 22.69 3.31 26.96 2.72 38.88 33.56 3.70 28.30 1.86 34.37 36.54 36.54 36.74	Pos.6 Rods (18) 1.69 1.07 2.19 4.43 	Pos.5 Rods (24) 4.07 4.58 3.12 3.73 12.41 24.72 2.50 7.55 16.43 3.22 44.20 4.46 53.12 55.61 17.61 4.51 3.16 4.84 49.37 52.95 52.91 49.14 47.38	Pos.4 Rods (18) 4.29 3.11 3.36 15.93 3.72 24.32 3.74 44.49 3.74 44.49 3.74 46.12 40.75 20.22 45.56 4.68 48.44 50.38 48.44	Pos.3 Rods (6) 3.42 6.50 10.53 10.53 4.25 28.65 28.65	Pos.2. Rods (18) 2.67 3.17 2.84 3.06 3.06 3.06 3.03 14.20 4.90 14.04 13.64 2.51 3.67 16.62 17.62 16.11 3.90

Table 4-4 Temperature rises of all instrumented heater rods at loop-seal clearing (t=75s) Δ T=TW-Tsat (K), Tsat=572.96K

	<u></u>	Touc	(iv), it	uc 000	. 051					
Hi-P. Rod	Loc. (mm)	Rel. Loc.	Pos.9 Rods (10)	Pos.8 Rods (13)	Pos.7 Rods (13)	Pos.6 Rods (13)	Pos.5 Rods (18)	Pos.4 Rods (13)	Pos.3 Rods (5)	Pos.2 Rods (1
B20 Rod(1,1)	-26.0	-0.536		95.64	168.23	212.18	6.67	2.88		2.
B19 Rod(4,4)	-25.5	-0.526	2.10	3.51		278.96	5.17		3.00	
B19 Rod(4,5)	-23.5	-0.485	2.79		104.60		6.88	4.27		3.
B20 Rod(4,3)	-23.5	-0.485	75.64	163.61		285.39	5.23		3.89	
B20 Rod(4,4)	-21.0	-0.433	103.27		267.33		4.10	5.50		2
B18 Rod(4,4)	-14.5	-0.299	82.87	182.10		284.36	5.13		3.42	
B18 Rod(3,4)	-14.0	-0.289	100.70		258.45		4.73	4.00		3
B13 Rod(4,4)	-1.0	-0.021		216.92	287.22	328.35	5.50	3.54		1
B17 Rod(4,4)	1.0	0.021		217.64	296.45	336.59	2.53	4.83		3
B17 Rod(1,7)	10.0	0.206		242.80	295.70	335.73	3.35	3.84		3
B14 Rod(5,4)	14.0	0.289	151.51		287.99		3.60	3.04		2
B14 Rod(4,4)	14.5	0.299	130.88	235.62		344.29	5.20		3.26	
B16 Rod(4,4)	21.0	0.433		276.48	318.90	358.92	3.56	1.24		3
B14 Rod(1,7)	23.5	0.485		92.35	203.33	286.95	5.47	5.37		3
B15 Rod(4,4)	25.5	0.526	161.90		308.96		4.12	8.52		4
B15 Rod(4.5)	28.5	0.588	141.87	237.17		343.12	4.61		3.94	
B16 Rod(17)	30.0	0.619		210.90	257.51	294 16	4 34	4 86		2
B15 Rod(17)	35.0	0.010		127.57	213.30	295.17	6.39	4.37		
		0.722	95 35	177.10	251 38	306.47	4.81	4.37	3 50	
	Average		90.00	177.10	201.00	300,47	4.01	4.55	3.50	
			Pos.9	Pos.8	Pos.7	Pos.6	Pos.5	Pos.4	Pos.3	Pos.
MIG-P. Rod	Loc. (mm)	Rel. Loc.	Rods (8)	Rods (7)	Rods (7)	Rods (7)	Rods (11)	Rods (7)	Rods (4)	Rods
B24 Rod(7.1)	-18.5	-0.381		35.51	176.45	184.49	2.84	2.49		1
B24 Rod(44)	-10.0	-0.206	88.88	152.83		206 57	2 52		2 87	
B21 Rod(1.1)	-10.0	-0.206		139.35	172 25	185.39	2.89	2 37	2.07	1
B24 Rod(3.4)	9.5	-0.196	90.50	100.00	198.05	100.00	2.00	1.09		
B21 Rod(5,4)	-6.0	-0.124	81.45	125.45	100.00	173 33	2.00	1.00	2.82	`
$D_2 \cap \operatorname{Rod}(J,4)$	-5.5	-0.112	42.22	125.45	151.70	175,55	4.10	2 70	2.02	
$D_{21} = A(4,4)$	-5.5	-0.113	42.23		100.20		4.19	3.70		
	5.5	0.113	104.40	164.20	190.30	020.20	3.17	3.10	2.00	
	8.0	0.100	105.40	104.39	100.10	232.30	2.95	0.00	2.00	
B22 Rod(5,4)	9.5	0.196	105.43	450.50	188.18	01454	2.84	2.06	4.70	
B22 Rod(4,4)	10.0	0.206	102.25	103.52	000.10	214.51	3.10	0.77	1.79	
B22 R00(1,7)	18.0	0.381_	00.00	100.74	202.19	221.89	3.20	2.77	0.07	
	Average		90.80	133.97	183.88	202.04	3.00	2.52	2.37	
			Pos.9	Pos.8	Pos.7	Pos.6	Pos.5	Pos.4	Pos.3	Pos
Low-P. Rod	Loc. (mm)	Rel. Loc.	Rods (12)	Rods (18)	Rods (18)	Rods (18)	Rods (24)	Rods (18)	Rods (6)	Rods (
B07 Rod(84)	-44.0	-0.907		83.23	110.73	123.67	3.45	3.64		
B07 Rod(0,4)	-20.5	_0.907	1 07	2 25	110.75	120.07	2.45	3.04	2 2 7	4
	-39.5	-0.772	1.87	2.23	04.00	130.49	3.00	2.21	2.07	
D07 R00(4,2)	-37.5	-0.773	0.03	1.60	04.00	0.41	3.01	2.31		
	-34.5	-0.711	50.70	1.03	2.41	2.41	3.37	3.01	0.00	
	-32.5	-0.070	50.76	89.90	111.00	133,58	3.32	0.50	3.33	<u> </u>
D12 KOd(4,4)	-30.0	-0.619	43.38	05 40	111.93	70.00	4.01	3.53		
BUG Rod(4,8)	-27.5	-0.567		35.46	58.63	72.86	2.06	2.74		
BU6 Rod(3,4)	-18.5	-0.381	2.28	1.94		0.24	2.49		2.19	
BU6 Rod(2,4)	-17.5	-0.351	2.39		3.22		3.52	3.40		<u> </u>
B09 Rod(4,4)	-17.0	-0.351		76.77	105.35	126.46	2.90	2.76		ļ
B05 Rod(3,4)	-3.0	-0.062		0.81	0.99	2.31	3.60	3.74		
B01 Rod(3,4)	3.0	0.062		2.81	2.07	8.62	3.66	3.21		4
B05 Rod(1,7)	6.0	0.124		11.59	97.94	140.48	3.22	3.37		1
B11 Rod(4,4)	17.0	0.351		127.02	140.34	159.95	3.84	3.61		2
B02 Rod(2,4)	17.5	0.351	3.58		43.53		2.44	3.05		1
B02 Rod(3,4)	18.5	0.381	2.36	1.68		33.12	3.56		2.81	
B11 Rod(1,7)	25.5	0.526		120.78	137.70	151.65	1.87	2.32		1
B02 Rod(4,8)	27.5	0.567		3.03	0.85	0.61	3.52	3.39		1
B10 Rod(4.4)	30.0	0.619	30.01		76.11		3.58	3.76		
B10 Rod(4.5)	32.5	0.670	25.96	57.46		144.66	3.61		2.45	
	34.5	0.711	_0.00	111.78	139 21	159 46	3.99	3 86		
B04 Rod(4.3)							0.00	0.00		
B04 Rod(4,3) B03 Rod(4,2)	375	0 773	26.40		105.09		3.21	1 3.23		
B04 Rod(4,3) B03 Rod(4,2) B03 Rod(4,2)	37.5	0.773	26.40	64.09	105.08	125.00	3.21	3.23	0 50	
B04 Rod(4,3) B03 Rod(4,2) B03 Rod(4,3) B02 Rod(4,3)	37.5	0.773	26.40 3.50	64.06	105.08	125.06	3.21 4.05	3.23	2.52	
B04 Rod(4,3) B03 Rod(4,2) B03 Rod(4,3) B03 Rod(8,4)	37.5 39.5 44.0	0.773 0.814 0.907	26.40 3.50	64.06 3.22	105.08 7.44	125.06	3.21 4.05 2.64	3.23 3.25	2.52	

Table 4-5 Temperature rises of all instrumented heater rods before power trip (t=110s) $\Delta T = TW - Tsat$ (K), Tsat=566.59K

Comparison of reactor vessel dimensions between LSTF and PWR Fig. 2–3

JAEA-Research 2008-087

Fig. 2-4 LSTF pressure vessel with internal assembly

Fig. 2-5 Pressurizer and heater arrangement

Fig. 2-6 Piping schematic for pressurizer surge line

tion*)	Steam Outlet Nozzle (N-4) EL+25658.8
Location(direc EL+6363.9(325) EL+ 7843.9(90) EL+ 6263.9(36.5) Top of Steam Dome EL+17661.9(90, 270 EL+17011.9(90, 270 EL+17011.9(90, 270 EL+19386.9(216.5) 163.5° for SG-B, re	Vessel Top Section Steam Dryer
Vozzle Name cak Nozzle Vent Nozzle for SG-B cak Nozzle vacuum Vent Nozzle rumentation Nozzle rumentation Nozzle rumentation SG-A and	Swirl Vane Feedwater Ring Feedwater Inlet Nozzle (N-3) Swirl Vane Steam Dome Steam Separator EL+20811.1
7 1) U tube Bro or Gas Air supply Air supply n Level Inst n n n n n n dicated -16.5° f	EL+19761.4 EL+19163.9 EL+19115.4
e No. Size 4B Sch.16(1 1/2B Sch 1 1/2B Sch 1 1/2B Sch b 1 1/2B Sch 5 f n n 1 1/2B Sch 6 direction zero in	EL+18263.9 (Normal Water Level)
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Vessel Mid Section
Location(direction SG Inlet Plenum(36.5 SG Outlet Plenum(143 EL+19761.4(326.5) Top of Steam Dome <i>"</i> EL+19846.6(146.5) EL+19163.9(4, 69,184 EL+8843.9 (4, 69,184 EL+7843.9(180) EL+7761.9(180) e EL+7843.9(180)	Support Plates EL+14358.4 EL+13075.7 EL+11793.0
Nozzle Name . Coolant Inlet Nozzle eedwater Inlet Nozzle eedwater Inlet Nozzle team Outlet Nozzle afety Valve Nozzle W Break Line owncomer Piping Nozzle owncomer Piping Nozzle owncomer Piping Nozzle eowncomer Nozzle evel Instrumentation Nozzl	Flow Distributor EL+8843.9
Size Size 206 mm I.D. P 168.2 mm I.D. P 3B Sch.80 F 3B Sch.80 S 2B " S 2B " F 4B " F 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 Sch.80 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 Sch.80 1 " 1 Sch.80 1 "	EL+8313.9 EL+7963.9 Tube Sheet
Nozzle No N-1 N-2 N-3 N-4 N-5 N-7a-d N-7c-h N-7c-h N-8 N-7	EL+5818.9

List of Nozzle at SG Vessel

Fig. 2-8

-8 Primary and secondary sides of steam generators (SG-A and SG-B)

Fig. 2-10 Axial power distribution for high-power rod

	BUI	NDLE	ENO. <u>HEAT ZONE</u>	HEAT	PIECE		CASE 3
		1	2 2 L1	ZONE		PEAK Factor	HEATER OUTPUT
2 15	9 1 20 2	3 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L 1	144		9.69kW/ROD ×0.66×144 =921kW
7	19 2 12 1	8 1	23 16 4 17 11 L3 H2 L3	L 2	144	0.66	9.69kW/ROD ×0.66×144 =921kW
	6	125	5 125°	L 3	180		9.69kW/ROD ×0.66×180 =1151kW
	HEAT Z	ONE	MAX. HEATER OUTPUT (DESIGN VALUE)	H 1	180	1 51	9.69k\/ROD ×1.51×180 =2634k\
	LOW	L 1 L 3	11.0 kW/ROD x468 ROD = 5.148 MW	H 2	180	1. 91	9.69k\/ROD ×1.51×180
	HIGH	H 1 H 2	16.6 kW/ROD x360 ROD = 5.976 MW				=2634k₩
	MEAN	M	11.0 kW/ ROD x180 ROD = 1.980 MW	Ж	180	1.00	9.69k\/ROD ×1.00×180 =1744k\
	TOT	AL.	1008 ROD 13.104 MW	TOTAL	1008		10.005MW

Fig. 2-11 Radial core power distribution in experiment SB-CL-09

Do = 31.9°

Fig. 2-14 Configuration of break unit for experiment SB-CL-09

— 47 —

Fig. 2-15 Geometry of break orifice

JAEA-Research 2008-087

Fig. 3-2 Primary coolant pump speeds in experiment SB-CL-09

Fig. 4-2 Discharged coolant mass and break flow rate at CL-B

Fig. 4-4 Differential pressure between throat and inlet of Venturi-flow meter in BU line during blowdown and refill processes

Fig. 4-6 Collapsed liquid levels at inlet and outlet sides of SG-B Tube 2

Fig. 4-7 Collapsed liquid levels at upflow and downflow sides of Loop-seal B

Fig. 4-8 Representative heater rod surface temperatures during blowdown

Fig. 4-10 Flow rates of main feedwater, main steam and RV steam lines at SG-B

Fig. 4-12 Primary loop flow rates

Fig. 4-13 Fluid temperatures at top, middle and bottom of upper plenum

Fig. 4-14 Fluid temperatures in lower plenum during blowdown

Fig. 4-15 Fluid temperatures at spray and surge lines of pressurizer

Fig. 4-16 Pressurizer water level and surge line fluid density

Fig. 4-17 Three-beam fluid density at HL-A spool piece

Fig. 4-22 Collapsed liquid levels in outlet side of SG-A U-tubes

Fig. 4-23 Collapsed liquid levels at upflow and downflow sides of Loop-seal A

Fig. 4-24 Collapsed liquid levels in inlet side of SG-B U-tubes

Fig. 4-25 Collapsed liquid levels in outlet side of SG-B U-tubes

Fig. 4-26 Liquid levels derived from fluid densities in HL-A and CL-A

Fig. 4-27 Differential pressure between top and bottom of PV

Fig. 4-28 Differential pressures across lower plenum, core and upper plenum

Fig. 4-29 Differential pressure between upper head and upper plenum

Fig. 4-30 Differential pressures in upper head and between upper head and downcomer

Fig. 4-31 Differential pressures across primary coolant pumps, PC-A and PC-B

Fig. 4-32 Differential pressure between downcomer and upper plenum

Fig. 4-33 Differential pressures in inlet and outlet sides of SG-A U-tube 2

Fig. 4-34 Differential pressures in inlet and outlet sides of SG-B U-tube 2

Fig. 4-35 Vertical fluid temperatures in high-power bundle (B16)

Fig. 4-36 Vertical fluid temperatures in high-power bundle (B18)

Fig. 4-37 Vertical fluid temperatures in high-power bundle (B20)

Fig. 4-38 Vertical fluid temperatures in middle-power bundle (B22)

Fig. 4-39 Vertical fluid temperatures in middle-power bundle (B24)

Fig. 4-40 Vertical fluid temperatures in low-power bundle (B05)

Fig. 4-41 Vertical fluid temperatures in low-power bundle (B07)

Fig. 4-42 Vertical fluid temperatures in low-power bundle (B10)

Fig. 4-43 Vertical fluid temperatures in low-power bundle (B11)

Fig. 4-44 Horizontal rod temperature distribution at core top (Pos. 9)

Fig. 4-45 Horizontal rod temperature distribution at upper core (Pos. 8)

Fig. 4-46 Horizontal rod temperature distribution at Position 7

Fig. 4-47 Horizontal rod temperature distribution at Position 6

Fig. 4-48 Horizontal rod temperature distribution at middle core (Pos. 5)

Fig. 4-49 Horizontal rod temperature distribution at Position 4

Fig. 4-50 Horizontal rod temperature distribution at Position 3

Fig. 4-51 Horizontal rod temperature distribution at lower core (Pos. 2)

Fig. 4-52 Horizontal rod temperature distribution at core bottom (Pos. 1)

Fig. 4-53 Core exit temperatures in peripheral and central regions

Fig. 4-54 Core exit temperatures including high-power bundle exits

Fig. 4-55 Fluid temperatures below UCP in peripheral and central regions

Fig. 4-56 Fluid temperatures below UCP including high-power bundle exits

□ PE 31 PE650-ACC ○ TE 89 TE650-ACC △ LE 14 LE650-ACC

Cold Acc Tank Cold Acc Tank Bottom Cold Acc Tank

Fig. 4-58 Pressure, fluid temperatures and liquid level in ACC tank

Fig.4-60 LPI flow rates to CL-A and CL-B

Fig.4-61 RWST tank level change under LPI injection related to primary pressure

Fig. 4-63 Wall temperatures in PV upper head compared with saturation temperature

Fig. 4-64 Wall temperatures in PV upper downcomer compared with saturation temperature

Fig. 4-66 Wall temperatures in PV lower downcomer compared with saturation temperature

Fig. 4-67 Wall temperatures at core barrel compared with saturation temperature

Fig. 4-68 Wall temperatures in loop A compared with saturation temperature

Fig. 4-69 Wall temperatures in loop B compared with saturation temperature

Fig. 4-70 Wall temperatures in SG-A plena compared with saturation temperature

Fig. 4-71 Wall temperatures in SG-B plena compared with saturation temperature

Fig. 4-72 Wall temperatures at SG-A vessel inner surfaces

Fig. 4-73 Wall temperatures at SG-B vessel inner surfaces

Fig. 4-74 Transients of primary coolant mass inventory related to major events

Fig. 4-75 Primary pressure - mass inventory map for experiment SB-CL-09

Fig. 4-76 Variety of rod heat-up and quench behaviors among high and low power bundles

This is a blank page.

— 91 —

— 96 —
Appendix-A Measurement List and Instrument Location for Experiment SB-CL-09

A list of available measurements for experiment SB-CL-09 is presented in **Table A.1**. The experiment data of 1842 channels and 132 derived (RC) quantities are available for this experiment. The data channel with (*) means qualitative data. Measurement locations are presented below in **Figs.A.1** through **A.17** (refer [1]).

List of Table and Figures

Table A.1 List of available measurements for experiment SB-CL-09 (25 sheets)

- Fig.A.1 Instruments in primary loop A
 - (1) Pressure, temperature, fluid density and others
 - (2) Differential pressure and flow rate
- Fig.A.2 Instruments in primary loop B
 - (1) Pressure, temperature, fluid density and others
 - (2) Differential pressure and flow rate
- Fig.A.3 Location of instruments in two primary loops
 - (1) Horizontal location of instruments
 - (2) Vertical location of loop-seal instruments
- Fig.A.4 Instruments in pressure vessel (PV) except for core
 - (1) Vertical location of upper PV instruments
 - (2) Vertical location of middle PV instruments
 - (3) Vertical location of lower PV instruments
- Fig.A.5 Instruments in pressure vessel (PV) in plane view
 - (1) Horizontal location of upper head instruments
 - (2) Horizontal location of upper plenum instruments
 - (3) Horizontal location of core exit part instruments
 - (4) Horizontal location of core inlet part instruments
 - (5) Horizontal location of lower plenum instruments
- Fig.A.6 Temperature measurement location in core heater rod assembly
- Fig.A.7 Instruments in steam generator (SG) steam lines
- Fig.A.8 Instruments in SG feedwater and condenser system
- Fig.A.9 Location of fluid temperature measurements in SG-A/B
- Fig.A.10 Location of wall temperature and temperature difference in SG-A/B
- Fig.A.11 Location of pressure and DP measurements in SG-A/B

- Fig.A.12 Location of liquid levels and flow rates in SG-A/B
- Fig.A.13 Location of conduction probe measurements in SG-A/B
- Fig.A.14 Instruments for pressurizer and associated lines
- Fig.A.15 Location of selected instruments for pressurizer
- Fig.A.16 Typical instruments for break unit and break flow storage tank
- Fig.A.17 Gamma-densitometer setup for single-beam and three-beam types

	Function	_		Rar	nge		Uncer	taintv
SEQ No.	ID	Tagname	Location	10	HI	Unit	+ABS	+%FR
	TT 1	TEOTON ULA	ULA Versel Side CDT	0.7005.00	7 2005.02	V	2 2075.00	7 2505 01
	IE I	TEUTUA~HLA	HLA Vessel Side OPT	2. 700E+02	7.200E+02	N K	3. 307E+00	7. 350E-01
2	IE 2	TE010B-HLA	HLA Vessel Side CPI	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
3	TE3	TE010C-HLA	HLA Vessel Side CPT	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
4	TE 4	TE010D-HLA	HLA Vessel Side CPT	2. 700E+02	7.200E+02	ĸ	3. 307E+00	7.350E-01
5	TE 5	TE010E-HLA	HLA Vessel Side CPT	2. 700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
6	TE 6	TE020C-HLA	HLA Fluid at Pipe Top	2.700E+02	7. 200E+02	К	3. 307E+00	7.350E-01
7	TE 7	TE020D-HLA	HLA Fluid at Pipe Bottom	2.700F+02	7.200F+02	К	3 307F+00	7.350F-01
	TE 8	TE030C-HLA	HIA Fluid at Pipe Top	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
0			HLA Fluid at Pipe Rettom	2.700E+02	7.200E+02	- K	2 2075+00	7.2505-01
	1E 9	TEOSODENLA	HLA FIGIU AL PIPE BOLLOM	2.700E+02	7.200E+02	<u> </u>	3. 307E+00	7.350E-01
10	IE 15	TEUSUG-LSA	LSA Fluid	2. 700E+02	7.200E+02	K	3.30/E+00	7.350E-01
11	TE 16	TE070C-CLA	CLA Fluid at Pipe Top	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
12	TE 17	TE070D-CLA	CLA Fluid at Pipe Bottom	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
13	TE 18	TE080C-CLA	CLA Fluid at Pipe Top	2.700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
14	TE 19	TE080D-CLA	CLA Fluid at Pipe Bottom	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
15	TE 25	TE100-HLA	HIA-CIA Average	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
16	TE 26	TE150A-HLR	HLB Vessel Side CPT	2.700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
17	TE 27			2.700L+02	7.2000-02	K	3.3072.00	7.3500 01
			HLD Vessel Side OPT	2. 700E+02	7.200E+02	<u> </u>	3.307E+00	7.350E-01
18	IE 28	IE150C-HLB	HLB Vessel Side CPI	2. 700E+02	7.200E+02	<u>K</u>	3.30/E+00	7.350E-01
19	TE 29	TE150D-HLB	HLB Vessel Side CPT	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
20	TE 30	TE150E-HLB	HLB Vessel Side CPT	2. 700E+02	7. 200E+02	I K	3.307E+00	7.350E-01
21	TE 31	TE160C-HLB	HLB Fluid at Pipe Top	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
22	TE 32	TE160D-HLB	HIB Fluid at Pipe Bottom	2.700E+02	7.200F+02	К	3.307F+00	7.350E-01
23	TE 33	TE170C-HIB	HIB Fluid at Pipe Top	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
20	TE 24	TE1700-HLB	HIS Fluid at Ding Pottom	2.7000-02	7 2005-02	N N	3 3075-00	7 2505-01
	TE OF			2. 700E+02	7. 200E+02	N	3. 30/E+00	7 000E-01
25	IE 35	TELOUA-HLD		2. /UUE+02	1. 200E+02	N	3. 30/E+00	1.350E-01
26	IE 36	IE180B-HLB	HLB SG Side CPT	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
27	TE 37	TE180C-HLB	HLB SG Side CPT	2. 700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
28	TE 38	TE180D-HLB	HLB SG Side CPT	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
29	TE 39	TE180E-HLB	HLB SG Side CPT	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
30	TF 40	TE190C-LSB	ISB Fluid	2 700F+02	7 200F+02	К	3 307F+00	7 350F-01
	TE /1	TE210C-CLB	CLB Fluid at Pine Top	2 7005+02	7 2005+02	к.	3 307E±00	7 2505-01
	TE 40		CLD Fluid at Pipe Potter	2.7000-02	7.2002.02	K	3. 3072-00	7.3501-01
	TE 42			2. 700E+02	7.200E+02	<u> </u>	3.307E+00	7.350E-01
33	IE 43	TE220G-GLB	CLB Fluid at Pipe Top	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
34	TE 44	TE220D-CLB	CLB Fluid at Pipe Bottom	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
35	TE 45	TE230A-CLB	CLB Vessel Side CPT	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
36	TE 46	TE230B-CLB	CLB Vessel Side CPT	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
37	TE 47	TE230C-CLB	CLB Vessel Side CPT	2.700E+02	7.200E+02	К	3.307F+00	7.350E-01
38	TF 48	TE230D-CLB	CLB Vessel Side CPT	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
	TE /0	TE230E_CLB	CLB Vessel Side CPT	2 700E+02	7.200E+02	K	2 207E+00	7 2505-01
40	TE 50			2.7001+02	7.2000-02		3.307E+00	7.350E-01
40	TE 50	1 12240-11LD	HLD-OLD AVerage	2.700E+02	7.200E+02	N. K	3.307E+00	7.350E-01
41	1E 51	TE270G-PR	PR Spray Line	2. 700E+02	7.200E+02	ĸ	3.30/E+00	7.350E-01
42	IE 52	IE280C-PR	PR Surge Line	2. 700E+02	7.200E+02	К	3.307E+00	7.350E-01
43	TE 55	TE430-SGA	SGA Feedwater Line	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
44	TE 56	TE440-SGA	SGA Main Steam Line	2. 700E+02	6. 700E+02	К	3.108E+00	7.770E-01
45	TE 57	TE450-SGA	SGA Relief Valve Line	2.700E+02	6.700E+02	К	3, 108E+00	7.770E-01
46	TE 59	TE470-SGB	SGB Feedwater Line	2.700F+02	6 700F+02	K	3 108E+00	7 770F-01
47	TE 60	TE480-SGB	SGR Main Steam Line	2 700E+02	6 700E+02	ĸ	3 109E±00	7 7705-01
47	TE 61	TE400 SCB	SCP Poliof Value Line	2.700L+02	6.700L+02	N N	3.100E+00	7.7700-01
40		TEC10 CU	Sub Reflet valve Line	2.700E+02	6. 700E+02	<u> </u>	3.108E+00	7.770E-01
49	IE 63	1E510-SH	MSL Steam Header	2. /00E+02	6. /00E+02	K	3.108E+00	7.770E-01
50	TE 64	TE520-JC	JC Hot Water	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
51	TE 65	TE530–JC	PF Suction Line	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
52	TE 66	TE540-JC	JC Spray Water	2.700E+02	6. 700E+02	К	3.108E+00	7.770E-01
53	TE 67	TE550-JC	JC Steam Vent Line	2.700E+02	6. 700E+02	К	3.108E+00	7.770E-01
54	TE 68	TE431-SGA	SGA Downcomer A	2.700F+02	6.700F+02	ĸ	3.108F+00	7.770E-01
55	TF 69	TE432-SGA	SGA Downcomer B	2 700F+02	6 700F+02	K	3 108E+00	7 7705-01
	TE 70	TE433-SGA	SGA Downcomer C	2 700E±02	6 700E+02	K	3 100E+00	7 7705-01
50	TE 71	TE434_SCA	SGA Downcomer D	2. 7005-02	6 700E+02	N	3. TUOETUU	7 7705 01
	TC 70	1E434-30A	SGR DOWICOILIEF D	2. /UUE+U2	0. /UUE+U2	ĸ	3. 108E+00	1. //UE-U1
58	1E /2	1E4/1-50B	Sub Downcomer A	2. /U0E+02	6. /00E+02	ĸ	3.108E+00	1. //0E-01
59	IE 73	1E4/2-SGB	SGB Downcomer B	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
60	TE 74	TE473-SGB	SGB Downcomer C	2. 700E+02	6. 700E+02	К	3.108E+00	7.770E-01
61	TE 75	TE474-SGB	SGB Downcomer D	2. 700E+02	6. 700E+02	ĸ	3.108E+00	7.770E-01
62	TE 76	TE560C-BU	BU No.1 Upstream Top	2.700E+02	7.200E+02	К	3.307E+00	7, 350E-01
63	TE 77	TE560D-BU	BU No.1 Upstream Bottom	2,700F+02	7.200F+02	K	3.307F+00	7.350F-01
64	TE 78	TE570C-BU	Bll No. 1 Downstream Top	2 7005+02	7 2005102	K	3 307E±00	7 3505-01
70	TE 70	TE570D_BU	RIE No. 1 Downstream Patter	2.7000-02	7.2000-002	n K	2.307E-00	7.3500-01
60	TE /9	TEGTOD-DU	ST Latat L	2. 700E+02	1. ZUUE+02	N	3. 307E+00	1.350E-01
66	11 84	16000-51	SI INIET LINE	Z. /UUE+02	4. /00E+02	K	2.304E+00	1.152E+00
67	TE 85	IE610-ST	SI Bottom Region	2. 700E+02	4. 700E+02	K	2. 304E+00	1.152E+00
68	TE 86	TE620-ST	ST Middle Region	2.700E+02	4. 700E+02	К	2. 304E+00	1.152E+00
69	TE 87	TE630-ST	ST Top Region	2.700E+02	4. 700E+02	K	2.304E+00	1.152E+00
70	TE 88	TE640-ST	ST Spray Line	2,700E+02	4, 700E+02	ĸ	2.304F+00	1.152F+00
71	TE 89	TE650-ACC	Cold Acc Tank Bottom	2 700E+02	4 700E+02	ĸ	2 304E±00	1 1525+00
72	TE ON	TE660-ACC	Cold Acc Tank Ton	2 7005+02	4 7005-02	IV IV	2.0040.00	1 1525-00
72	TE 01	TE670-400	Cold Acc Line to CLA	2.7002+02	4. 7000+02	n v	2.3040+00	1.102E+UU
73	TE 00	TEGOD ACH	Vota Aug Line LO ULA	2. /UUE+UZ	4. /UUE+U2	N. K	2.3042+00	1.152E+00
14	1E 93	10090-AUT	HUL ACC LANK BOTTOM	Z. 700E+02	5. /UUE+02	K	2. /06E+00	9.020E-01
/5	IE 94	IE/UU-ACH	not Acc lank lop	2. 700E+02	5. /00E+02	K	2. 706E+00	9.020E-01
76	TE 97	IE730-HLA	HLA ECCS Nozzle	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
77	TE 98	TE740-LSA	LSA ECCS Nozzle	2. 700E+02	6.700E+02	К	3.108E+00	7.770E-01
78	TE 99	TE750-CLA	CLA ECCS Nozzle	2.700E+02	6.700E+02	K	3.108E+00	7.770E-01
*79	TE 100	TE760-HLB	HLB FCCS Nozzle	2 700E+02	6 700F+02	ĸ	3 108E+00	7 770E-01
80	TE 101	TE770-LSB	LSB ECCS Nozzle	2.700E+02	6.700E+02	ĸ	3 108E+00	7 770F-01

Table A-1List of available measurements for experiment SB-CL-09(1/25)

Table A.1(Cont'd) (2/25)

SEO No	Function	Tagname	Location	Rar	ige	Unit	Uncert	tainty
OLG NO.	ID.	ragname	Location	LO	HI	Unit	±ABS.	±%FR
81	TE 102	TE780-CLB	CLB ECCS Nozzle	2.700E+02	6. 700E+02	K	3.108E+00	7.770E-01
82	TE 104	TE800-PV	PV Top ECCS Nozzle	2.700E+02	6. 700E+02	К	3.108E+00	7.770E-01
	TE 112	TE880-RWST	RWST Tank Lower Region	2.700E+02	3. 700E+02	K	1.902E+00	1.902E+00
	TE 113	TE890-RWST	RWST Tank Middle Region	2.700E+02	3. 700E+02	K	1.902E+00	1.902E+00
85	TE 115	TE-E066F-PV	Upper Head Bottom	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
86	TE 116	TE-W066F-PV	Upper Head Bottom	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
87	IE 11/		Upper Head Middle	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
88	IE 118	TE-W075F-PV	Upper Head Middle	2. 700E+02	9.700E+02	K	4.312E+00	6, 160E-01
89	TE 119		Upper Head Top	2. 700E+02	9.700E+02	N N	4. 312E+00	6.160E-01
90	TE 120		Opper nead Top	2.700E+02	9.700E+02	<u>к</u>	4.312E+00	6 160E-01
91	TE 121	TE-20000-FV	CR Guide Tube Top	2.700E+02	9.700E+02	<u>к</u>	4.312E+00	6 160E-01
92	TE 122			2 700E+02	9 700E+02	K	4.312E+00	6 160E-01
94	TE 120	TE-W049E-PV	Upper Plenum Bottom	2 700E+02	9 700E+02	К	4.012E+00	6 160E-01
95	TE 124	TE-E055E-PV	Upper Plenum Middle	2 700E+02	9 700E+02	ĸ	4 312E+00	6 160E-01
96	TE 126	TE-W055F-PV	Upper Plenum Middle	2.700E+02	9, 700E+02	K	4. 312E+00	6.160E-01
97	TE 127	TE-E060F-PV	Upper Plenum Top	2.700E+02	9, 700E+02	К	4.312E+00	6.160E-01
98	TE 128	TE-W060F-PV	Upper Plenum Top	2.700E+02	9. 700E+02	К	4.312E+00	6.160E-01
99	TE 129	TE-IN038-B09-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
100	TE 130	TE-IN038-B11-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
101	TE 131	TE-IN038-B01-UCP	Below Upper Core Plate	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
102	TE 132	TE-1N038-B03-UCP	Below Upper Core Plate	2. 700E+02	9. 700E+02	К	4. 312E+00	6.160E-01
103	TE 133	TE-IN038-B05-UCP	Below Upper Core Plate	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
104	TE 134	TE-IN038-B07-UCP	Below Upper Core Plate	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
105	TE 135	TE-IN038-B21-UCP	Below Upper Core Plate	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
106	TE 136	TE-IN038-B23-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
107	TE 137	TE-IN038-B02-UCP	Below Upper core Plate	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
108	TE 138	TE-IN038-B06-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
109	TE 139	TE-IN038-B14-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
110	TE 140	TE-IN038-B15-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
111	TE 141	TE-IN038-B18-UCP	Below Upper Core Plate	2.700E+02	9. 700E+02	К	4.312E+00	6.160E-01
112	TE 142	TE-IN038-B19-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
113	TE 143	TE-IN038-B10-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
114	TE 144	TE-IN038-B12-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	<u>K</u>	4. 312E+00	6.160E-01
115	TE 145	TE-IN038-B04-UCP	Below Upper Core Plate	2.700E+02	9.700E+02	<u>K</u>	4.312E+00	6.160E-01
116	TE 146	1E-1N038-B08-UCP	Below Upper Core Plate	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
117	TE 147	TE-IN038-B22-UCP	Below Upper Core Plate	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
118	IE 148	TE-IN038-B24-UCP	Below Upper Core Plate	2. 700E+02	9. 700E+02	K	4.312E+00	6. 160E-01
119	TE 149	TE-EX040-B09-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	N N	4.312E+00	6.160E-01
120	TE 150		Above Upper Core Plate	2.700E+02	9.700E+02	N N	4.312E+00	6.100E-01
121	TE 152	TE-EX040-D01-00P	Above Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6 160E-01
122	TE 152	TE-EX040-B05-UCP	Above Upper Core Plate	2.700E+02	9 700E+02	<u>к</u>	4.312E+00	6 160E-01
123	TE 154	TE-EX040-B03-UCP	Above Upper Core Plate	2.700E+02	9 700E+02	К К	4.312E+00	6 160E-01
124	TE 155	TE-EX040-B01-UCP	Above Upper Core Plate	2 700E+02	9 700E+02	к	4.312E+00	6 160E-01
126	TE 156	TE-EX040-B23-UCP	Above Upper Core Plate	2 700E+02	9 700E+02	ĸ	4 312E+00	6 160E-01
127	TE 157	TE-EX040-B02-UCP	Above Upper Core Plate	2.700E+02	9,700E+02	ĸ	4.312E+00	6.160E-01
128	TE 158	TE-EX040-B06-UCP	Above Upper Core Plate	2.700E+02	9, 700E+02	K	4. 312E+00	6, 160E-01
129	TE 159	TE-EX040-B14-UCP	Above Upper Core Plate	2,700E+02	9.700E+02	К	4.312E+00	6.160E-01
130	TE 160	TE-EX040-B15-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
131	TE 161	TE-EX040-B18-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
132	TE 162	TE-EX040-B19-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
133	TE 163	TE-EX040-B10-UCP	Above Upper Core Plate	2.700E+02	9, 700E+02	K	4. 312E+00	6.160E-01
134	TE 164	TE-EX040-B12-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
135	TE 165	TE-EX040-B04-UCP	Above Upper Core Plate	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
136	TE 166	TE-EX040-B08-UCP	Above Upper Core Plate	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
137	TE 167	TE-EX040-B22-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
138	TE 168	TE-EX040-B24-UCP	Above Upper Core Plate	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
139	TE 169	TE-IN-002B02-LCPP	Below Lower Core Plate	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
140	TE 170	TE-IN-002B03-LCPP	Below Lower Core Plate	2.700E+02	7.200E+02	K	3. 307E+00	1.350E-01
141	TE 171	IE-IN-002B06-LCPP	Below Lower Core Plate	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
142	TE 172	TE-IN-002B07-LCPP	Below Lower Core Plate	2. 700E+02	7.200E+02	<u>K</u>	3.307E+00	7.350E-01
143	TE 173	IE-IN-002B09-LCPP	Below Lower Core Plate	2. 700E+02	7.200E+02	K	3.30/E+00	7.350E-01
144	TE 174	IE-IN-002B11-LCPP	Below Lower Core Plate	2. /00E+02	7.200E+02	K	3.30/E+00	7.350E-01
145	IE 175	IE-IN-002B14-LCPP	Below Lower Core Plate	2. /00E+02	7.200E+02	K	3.30/E+00	1.350E-01
146	1 IE 1/6		Below Lower Gore Plate	2.700E+02	7.200E+02	K	3. 30/E+00	7.350E-01
14/	IE 1//		Delow Lower Core Plate	2.700E+02	7.200E+02	N N	3. 30/E+00	7.350E-01
148	IE 1/8		Pelow Lower Core Plate	2. 700E+02	7.200E+02		3, 307E+00	7.350E-01
149	TE 100		Balaw Lower Core Plate	2.700E+02	7 2005+02	N N	3. 307E+00	7 3505-01
150	TE 180	TE-EX-000000 LODD	Above Lower Core Plate	2. 700E+02	7 2005-02	<u> </u>	3.307E+00	7 3505-01
151	TE 100	TE_EX_000002_LOPP	Above Lower Core Plate	2.7000+02	7 2005+02	r K	3 2075+00	7 3505-01
152	TE 102	TE-EX-000003-LOPP	Above Lower Core Plate	2. 700E+02	7 2000+02	r v	3 3075+00	7 3505-01
100	TE 103	TE-EX-000000-LOFF	Above Lower Core Plate	2 7005+02	7 2000-02	ĸ	3 3075+00	7 350E-01
104	TE 104		Above Lower Core Plate	2.700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
100	TE 100	TE-EX-000009-LOFF	Above Lower Core Plate	2.700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
150	TE 100	TE-EX-000B14-1 CPP	Above Lower Core Plate	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
150	TE 10/	TE-EX-000B16-LOPP	Above Lower Core Plate	2 7005+02	7 200E+02	ĸ	3 307E+00	7 350E-01
150	TF 190	TE-EX-000B18-1 CPP	Above Lower Core Plate	2. 700E+02	7.200E+02	к	3, 307F+00	7, 350F-01
160	TE 190	TE-EX-000B20-I CPP	Above Lower Core Plate	2.700F+02	7.200E+02	К	3. 307E+00	7. 350E-01
.00								

Table A.1(Cont'd) (3/25)

	Function	_		Ran	ige		Uncer	tainty
SEQ No.	ID.	lagname	Location	LO	HI	Unit	±ABS.	±%FR
161	TE 191	TE-EX-000B21-LCPP	Above Lower Core Plate	2.700E+02	7. 200E+02	К	3, 307E+00	7.350E-01
162	TE 192	TE-EX-000B23-LCPP	Above Lower Core Plate	2.700E+02	7. 200E+02	K	3.307E+00	7.350E-01
163	TE 193	TE-NOOOC-DC	"Downcomer EL. O. Om, North"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
164	TE 194	TE-S000C-DC	"Downcomer EL. O. Om, South"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
165	TE 195	TE-E000C-DC	"Downcomer EL. O. Om, East"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
166	TE 196	TE-WOOOC-DC	"Downcomer EL. O. Om, West"	2.700E+02	7. 200E+02	K	3, 307E+00	7.350E-01
167	TE 197	TE-N018C-DC	"Downcomer EL. 1. 8m, North"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
168	TE 198	TE-S018C-DC	"Downcomer EL. 1. 8m, South"	2. 700E+02	7. 200E+02	К	3.307E+00	7.350E-01
169	TE 199	TE-E018C-DC	"Downcomer EL. 1. 8m, East"	2.700E+02	7. 200E+02	К	3. 307E+00	7.350E-01
170	TE 200	TE-W018C-DC	"Downcomer EL. 1. 8m, West"	2. 700E+02	7.200E+02	К	3.307E+00	7.350E-01
171	TE 201	TE-N036C-DC	"Downcomer EL. 3. 6m, North"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
172	TE 202	TE-S036C-DC	"Downcomer EL. 3. 6m, South"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
173	TE 203	TE-E036C-DC	"Downcomer EL. 3. 6m, East"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
174	TE 204	TE-W036C-DC	"Downcomer EL. 3. 6m, West"	2, 700E+02	7. 200E+02	К	3. 307E+00	7.350E-01
175	TE 205	TE-N060C-DC	"Downcomer EL. 6. Om, North"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
176	TE 206	TE-S060C-DC	"Downcomer EL. 6. Om, South"	2.700E+02	7. 200E+02	К	3. 307E+00	7.350E-01
177	TE 207	TE-E060C-DC	"Downcomer EL. 6. Om, East"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
178	TE 208	TE-W060C-DC	"Downcomer EL. 6. Om, West"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
179	TE 209	TE-N055C-DC	"Downcomer EL. 5, 5m, North"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
180	TE 210	TE-S055C-DC	"Downcomer EL. 5, 5m, South"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
181	TE 211	TE-C-021-LP	"Lower Plenum EL2. 1m. C"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
182	TE 212	TE-C-018-LP	"Lower Plenum EL1.8m.C"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
183	TE 213	TE-C-015-LP	"Lower Plenum EL1.5m.C"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
184	TE 214	TE-C-012-LP	"Lower Pienum EL1. 2m. C"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
185	TE 215	TE-C-009-LP	"Lower Plenum EL0.9m.C"	2.700E+02	7.200E+02	К	3, 307E+00	7.350E-01
186	TE 216	TE-C-006-LP	"Lower Plenum EL0.6m,C"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
187	TE 217	TE-C-005-LP	"Lower Plenum EL0.5m,C"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
188	TE 218	TE-C-003-LP	"Lower Plenum EL0.3m, C"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
189	TE 219	TE-B18621	"B18 Rod (6, 2) Pos. 1, Fluid"	2. 700E+02	9. 700E+02	К	4. 312E+00	6.160E-01
190	TE 220	TE-B18622	"B18 Rod (6, 2) Pos. 2, Fluid"	2.700E+02	9. 700E+02	К	4. 312E+00	6.160E-01
191	TE 221	TE-B18623	"B18 Rod (6, 2) Pos. 3, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
192	TE 222	TE-B18624	"B18 Rod(6, 2) Pos. 4, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
193	TE 223	TE-B18625	"B18 Rod(6, 2) Pos. 5, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
194	TE 224	TE-B18626	"B18 Rod(6, 2) Pos. 6, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
195	TE 225	TE-B18627	"B18 Rod(6, 2) Pos. 7, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
196	TE 226	TE-B18628	"B18 Rod(6, 2) Pos. 8, Fluid"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
197	TE 227	TE-B18629	"B18 Rod(6, 2) Pos. 9, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
198	TE 228	TE-B01221	"B01 Rod(2,2) Pos.1,Fluid"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
199	TE 229	TE-B01223	"B01 Rod(2, 2) Pos. 3, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
200	TE 230	TE-B01225	"B01 Rod(2, 2) Pos. 5, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
201	TE 231	TE-B01226	"B01 Rod(2,2) Pos.6,Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
202	TE 232	TE-B01227	"B01 Rod(2, 2) Pos. 7, Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
203	TE 233	TE-B01229	"B01 Rod(2,2) Pos.9,Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
204	TE 234	TE-B14262	"B14 Rod(2,6) Pos. 2, Fluid"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
205	TE 235	TE-B14264	"B14 Rod(2, 6) Pos. 4, Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
206	TE 236	TE-B14268	"B14 Rod(2,6) Pos.8,Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
207	TE 237	TE-B05261	"B05 Rod(2,6) Pos.1, Fluid"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
208	TE 238	TE-B05263	"B05 Rod (2, 6) Pos. 3, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
209	TE 239	TE-B05265	"B05 Rod(2,6) Pos.5,Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
210	TE 240	TE-B05266	"B05 Rod (2, 6) Pos. 6, Fluid"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
211	TE 241	TE-B05267	"B05 Rod (2, 6) Pos. 7, Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
212	TE 242	TE-B05269	"B05 Rod(2,6) Pos.9,Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
213	TE 243	TE-B04221	"B04 Rod(2,2) Pos.1,Fluid"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
214	TE 244	TE-B04223	"B04 Rod(2,2) Pos. 3, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
215	TE 245	TE-B04225	"B04 Rod(2,2) Pos.5,Fluid"	2. 700E+02	9. 700E+02	К	4. 312E+00	6.160E-01
216	TE 246	TEB04226	"B04 Rod(2, 2) Pos. 6, Fluid"	2. 700E+02	9. 700E+02	K	4.312E+00	6.160E-01
217	TE 247	IE-B04227	B04 Rod (2, 2) Pos. 7, Fluid"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
218	TE 248	IE-B04229	B04 Rod (2, 2) Pos. 9, Fluid"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
219	TE 249	IE-B07621	B07 Rod (6, 2) Pos. 1, Fluid"	2.700E+02	9.700E+02	<u> </u>	4.312E+00	6.160E-01
220	IE 250	IE-80/623	BU/ Rod (6, 2) Pos. 3, Fluid"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
221	IE 251	IE-807625	BU/ Rod (6, 2) Pos. 5, Fluid"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
222	IE 252	IE-807626	BU/ Rod (6, 2) Pos. 6, Fluid"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
223	1E 253	IE-80/62/	BU/ Rod (6, 2) Pos. 7, Fluid"	2. 700E+02	9. 700E+02	K	4.312E+00	6.160E-01
224	IE 254	TE-B07629	"B07 Rod (6, 2) Pos. 9, Fluid"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
225	1E 255	IE-809661	BU9 Rod (6, 6) Pos. 1, Fluid"	2.700E+02	9.700E+02	<u>K</u>	4.312E+00	6.160E-01
226	IE 256	1E-809663	BU9 Kod (6, 6) Pos. 3, Fluid"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
227	1E 25/	IE-809000	BUY KOG (b, b) Pos. 5, Fluid	2. /U0E+02	9. /U0E+02	K	4.312E+00	6. 160E-01
228	TE 258	1E-BU9000	BUY KOD (b, b) Pos. 6, Fluid	2. /U0E+02	9. /U0E+02	K	4.312E+00	6.160E-01
229	TE 259	1E-80900/	BU9 KOG (b, 6) Pos. /, Fluid"	2. /UUE+02	9, /00E+02	K K	4.312E+00	6.160E-01
230	TE 260	1E-809009	BU9 KOd(b, b) Pos. 9, Fluid	2. /U0E+02	9. /00E+02	<u> </u>	4.312E+00	6.160E-01
231	TE 201	1E-010021	DIV KOG (0, 2) Pos. 1, Fluid	2. /UUE+02	9. /00E+02	<u>K</u>	4.312E+00	6.160E-01
232	TE 202	1E-D10023	DIV KOG (0, 2) POS. 3, Fluid	2. /UUE+02	9. /UOE+02	<u> </u>	4.312E+00	6.160E-01
233	TE 203	TE-R10620	"PIO Pod (6, 2) Pos. 5, Fluid	2. /UUE+U2	9. 700E+02	K	4.312E+00	6. 160E-01
234	TE 204	TE-B10627	DIV KOG (0, 2) POS. 6, Fluid	2. /UUE+02	9. /UUE+02	K V	4.312E+00	6. 160E-01
235	TE 200	TE-D10027	"PIO Pod(0, 2) POS. /, Fluid	2. /UUE+U2	9. /UUE+02	K K	4.312E+00	0.160E-01
230	TE 200	TE-B11221	"B11 Rod(2, 2) Pos 1 Fluid"	2. 700E+02	9. 700E+02	K v	4. 312E+00	D. IDUE-UI
231	TE 207	TE-B11221	"Bit Rod (2, 2) Pop 2 5443"	2. 700E+02	9. /UUE+U2	K v	4.312E+00	D. IDUE-UI
230	TE 200	TE_B11225	"R11 Pod (2, 2) Pos. 3, F[U]0	2. /UUE+UZ	9. 700E+02	N V	4.312E+00	D. IDUE-UI
203	TE 200	TE-B11226	"B11 Rod (2 2) Pos 6 Eluid"	2. TUUE+U2	9. 700E+02	<u>к</u>	4. 3120+00	0. 100E-01
24V			1 DIL NUU (2, 2) PUS. 0, FIUIO	1 Z. /UUE+UZ	9. /UUE+UZ	i N	4. 31ZE+00	U. 1000-01

Table A.1	(Cont'd)	(4/25)
-----------	----------	--------

		1					r	
SEQ No.	Function	Tagname	Location	Ran	ige	Unit	Uncer	
	IU.				0 7007 00		± ADS.	±%FK
241	TE 2/1	TE DI1000	"D11 Pod(2, 2) Pos. 7, Fluid	2. 700E+02	9. 700E+02	N N	4.312E+00	6. 160E-01
242	TE 272	TE-B1/261	"B14 Rod (2, 6) Pos. 1, Fluid"	2.700E+02	9.700E+02	к К	4.312E+00	6 160E-01
243	TE 274	TE-B14263	"B14 Rod (2, 6) Pos. 3, Fluid"	2 700E+02	9 700E+02	ĸ	4.312E+00	6 160E-01
244	TE 275	TE-B14265	"B14 Rod (2, 6) Pos 5 Fluid"	2 700E+02	9 700E+02	ĸ	4.312E+00	6 160E-01
246	TE 276	TE-B14266	"B14 Rod (2, 6) Pos. 6. Fluid"	2.700E+02	9, 700E+02	ĸ	4.312E+00	6.160E-01
247	TE 277	TE-B14267	"B14 Rod (2, 6) Pos. 7. Fluid"	2.700E+02	9.700E+02	ĸ	4.312E+00	6. 160E-01
248	TE 278	TE-B14269	"B14 Rod (2, 6) Pos. 9. Fluid"	2.700E+02	9.700E+02	к	4.312E+00	6, 160E-01
249	TE 279	TE-B15261	"B15 Rod (2, 6) Pos, 1, Fluid"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
250	TF 280	TE-B15263	"B15 Rod (2, 6) Pos. 3. Fluid"	2,700E+02	9.700E+02	К	4.312E+00	6.160E-01
251	TE 281	TE-B15265	"B15 Rod (2, 6) Pos. 5. Fluid"	2.700E+02	9, 700E+02	ĸ	4.312E+00	6, 160E-01
252	TE 282	TE-B15266	"B15 Rod (2, 6) Pos. 6. Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
253	TE 283	TE-B15267	"B15 Rod (2, 6) Pos, 7, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
254	TE 284	TE-B15269	"B15 Rod (2, 6) Pos. 9. Fluid"	2, 700E+02	9.700E+02	к	4.312E+00	6.160E-01
255	TE 285	TE-B16221	"B16 Rod (2, 2) Pos. 1. Fluid"	2.700E+02	9.700E+02	ĸ	4.312E+00	6.160E-01
256	TE 286	TE-B16223	"B16 Rod (2, 2) Pos. 3. Fluid"	2. 700E+02	9.700E+02	к	4.312E+00	6.160E-01
257	TE 287	TE-B16225	"B16 Rod (2, 2) Pos, 5, Fluid"	2.700E+02	9.700E+02	к	4.312E+00	6.160E-01
258	TE 288	TE-B16226	"B16 Rod (2, 2) Pos. 6, Fluid"	2.700E+02	9. 700E+02	к	4.312E+00	6.160E-01
259	TE 289	TE-B16227	"B16 Rod (2, 2) Pos. 7, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
260	TE 290	TE-B16229	"B16 Rod (2, 2) Pos. 9, Fluid"	2. 700E+02	9.700E+02	к	4.312E+00	6.160E-01
261	TE 291	TE-B15262	"B15 Rod (2, 6) Pos. 2, Fluid"	2.700E+02	9.700E+02	к	4.312E+00	6. 160E-01
262	TE 292	TE-B15264	"B15 Rod (2, 6) Pos. 4, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
263	TE 293	TE-B15268	"B15 Rod (2, 6) Pos. 8, Fluid"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
264	TE 294	TE-B23221	"B23 Rod(2, 2) Pos. 1, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
265	TE 295	TE-B23223	"B23 Rod (2, 2) Pos. 3, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
266	TE 296	TE-B23225	"B23 Rod (2, 2) Pos. 5, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6. 160E-01
267	TE 297	TE-B23226	"B23 Rod (2, 2) Pos. 6, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
268	TE 298	TE-B23227	"B23 Rod(2, 2) Pos. 7, Fluid"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
269	TE 299	TE-B23229	"B23 Rod(2, 2) Pos. 9, Fluid"	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
270	TE 300	TE-B20661	"B20 Rod(6,6) Pos.1,Fluid"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
271	TE 301	TE-B20662	"B20 Rod (6, 6) Pos. 2, Fluid"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
272	TE 302	TE-B20663	"B20 Rod (6, 6) Pos. 3, Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
273	TE 303	TE-B20664	"B20 Rod (6, 6) Pos. 4, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
274	TE 304	TE-B20665	"B20 Rod (6, 6) Pos. 5, Fluid"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
275	TE 305	TE-B20666	"B20 Rod (6, 6) Pos. 6, Fluid"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
276	TE 306	TE-B20667	"B20 Rod(6,6) Pos.7,Fluid"	2. 700E+02	9.700E+02	К	4.312E+00	6.160E-01
277	TE 307	TE-B20668	"B20 Rod (6, 6) Pos. 8, Fluid"	2. 700E+02	9.700E+02	к	4.312E+00	6.160E-01
278	TE 308	TE-B20669	"B20 Rod (6, 6) Pos. 9, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6. 160E-01
279	TE 309	TE-B22661	"B22 Rod (6, 6) Pos. 1, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6. 160E-01
280	TE 310	TE-B22662	"B22 Rod (6, 6) Pos. 2, Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
281	TE 311	TE-B22663	"B22 Rod(6,6) Pos.3,Fluid"	2. 700E+02	9.700E+02	К	4. 312E+00	6. 160E-01
282	TE 312	TE-B22664	"B22 Rod (6, 6) Pos. 4, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6. 160E-01
283	TE 313	TE-B22665	"B22 Rod (6, 6) Pos. 5, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6. 160E-01
284	TE 314	TE-B22666	"B22 Rod (6, 6) Pos. 6, Fluid"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
285	TE 315	TE-B22667	"B22 Rod(6,6) Pos.7.Fluid"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
286	TE 316	TE-B22668	"B22 Rod(6, 6) Pos. 8, Fluid"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
287	TE 317	TE-B22669	"B22 Rod (6, 6) Pos. 9, Fluid"	2.700E+02	9. 700E+02	<u>К</u>	4. 312E+00	6.160E-01
288	TE 318	TE-B24621	"B24 Rod (6, 2) Pos. 1, Fluid	2. 700E+02	9. 700E+02	K	4.312E+00	6.160E-01
289	TE 319	TE-B24623	B24 Rod (6, 2) Pos. 3, Fluid	2. 700E+02	9. 700E+02	ĸ	4.312E+00	6. 160E-01
290	TE 320	TE-B24625	B24 Rod (6, 2) Pos. 5, Fluid	2. 700E+02	9. 700E+02	K	4.312E+00	6. 160E-01
291	IE 321	IE-B24626	B24 Rod (6, 2) Pos. 6, Fluid	2.700E+02	9. 700E+02	ĸ	4.312E+00	6. 160E-01
292	IE 322	TE-B24627	B24 Rod (6, 2) Pos. 7, Fluid	2. 700E+02	9. 700E+02	ĸ	4. 312E+00	6. 160E-01
293	TE 323	TE IN0641 CCA	D24 KOG (0, 2) POS. 9, FIUID	2. 700E+02	3. 700E+02	N N	4. 312E+00	7 250E-01
294	TE 324		SGA INTEL PIENUM	2. 700E+02	7.2000-02	n v	3.307E+00	7.350E-01
295	TE 325	TE IN0042-30A	Sua Intel Flenum	2. 700E+02	7 2005-02	r v	2 2075-00	7 3505-01
290	TE 207	TE-EY0641-SCA	SGA Outlet Plenum	2. TOUETUZ	7 200E±02	ĸ	3 3075+00	7 350E-01
297	TE 200	TE-EX0041-30A	SGA Outlet Plenum	2.7002+02	7 2005-02	ĸ	3 307E+00	7.350E-01
290	TE 220	TE-EY0642-30A	SGA Dutlet Plenum	2.700E+02	7 2000+02	ĸ	3 307E+00	7 350E-01
299	TE 329	TE-IN0861_904	"SGA U-Tube (1 IN) Dog 1"	2.700E+02	7 2000-02	ĸ	3 307E+00	7 350E-01
201	TE 221	TE-IN0862-564	"SGA H-Tube (2 IN) Doe 1"	2.7002+02	7 2005+02	к к	3 307E+00	7 350E-01
301	TE 222	TE-IN0862-90A	"SGA 11-Tube (2 IN) Doe 1"	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350F-01
202	TE 332	TE-100003-30A	"SGA II-Tube (J. IN) Pos. 1"	2.700E+02	7.200E+02	<u>к</u> .	3 307E+00	7.350E-01
203	TE 224	TE-10004-30A	"SGA II-Tube (5 IN) Doe 1"	2 700E+02	7 200E+02	к К	3. 307E+00	7, 350E-01
205	TE 225	TE-1N0866-96A	"SGA II-Tube (6 IN) Pos 1"	2 700E+02	7 200E+02	ĸ	3 307F+00	7.350F-01
300	TE 335	TE-EX0861-SGA	"SGA U-Tube (1 FX) Poe 1"	2. 700E+02	7. 200E+02	ĸ	3, 307F+00	7, 350F-01
300	TF 337	TE-EX0862-SGA	"SGA U-Tube (2 FX) Pos 1"	2,700F+02	7, 200E+02	ĸ	3, 307F+00	7.350F-01
301	TF 228	TE-EX0863-S6A	"SGA II-Tube (3 FX) Pos 1"	2 700E+02	7 200E+02	ĸ	3. 307E+00	7.350F-01
300	TF 330	TE-EX0864-SGA	"SGA U-Tube (4 FX) Poe 1"	2.700F+02	7, 200F+02	ĸ	3, 307F+00	7.350F-01
310	TF 340	TE-EX0865-SGA	"SGA II-Tube (5 FX) Pos 1"	2.700F+02	7. 200F+02	ĸ	3, 307E+00	7.350E-01
311	TE 341	TE-EX0866-SGA	"SGA U-Tube (6 FX) Pos 1"	2,700F+02	7, 200F+02	ĸ	3, 307F+00	7.350F-01
312	TF 342	TE-IN0931-SGA	"SGA U-Tube (1, IN) Pos. 2"	2.700E+02	7. 200E+02	к	3, 307E+00	7.350E-01
313	TF 343	TE-1N0932-SGA	"SGA U-Tube (2, IN) Pos 2"	2,700F+02	7. 200F+02	K	3, 307E+00	7.350E-01
314	TE 344	TE-IN0933-SGA	"SGA U-Tube (3. IN) Pos. 2"	2.700E+02	7. 200E+02	K	3.307E+00	7.350E-01
315	TE 345	TE-IN0934-SGA	"SGA U-Tube (4, IN) Pos. 2"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
316	TE 346	TE-IN0935-SGA	"SGA U-Tube (5. IN) Pos. 2"	2.700E+02	7. 200E+02	K	3.307E+00	7.350E-01
317	TE 347	TE-IN0936-SGA	"SGA U-Tube (6, IN) Pos. 2"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
318	TE 348	TE-IN0991-SGA	"SGA U-Tube(1, IN) Pos. 3"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
319	TE 349	TE-EX0991-SGA	"SGA U-Tube(1.EX) Pos. 3"	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
320	TE 350	TE-IN0992-SGA	"SGA U-Tube(2, IN) Pos. 3"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01

Table A.1(Cont'd)	(5/25)
-------------------	--------

050 N	Function	т		Range	11-1-1	Uncert	tainty
SEQ No.	ID.	lagname	Location	LO HI		±ABS.	±%FR
321	TE 351	TE-EX0992-SGA	"SGA U-Tube(2, EX) Pos. 3"	2, 700E+02 7, 200E+02	K	3.307E+00	7.350E-01
322	TE 352	TE-IN0993-SGA	"SGA U-Tube(3, IN) Pos. 3"	2, 700E+02 7, 200E+02	K	3.307E+00	7.350E-01
323	TE 353	TE-EX0993-SGA	"SGA U-Tube (3, EX) Pos, 3"	2.700E+02 7.200E+02	К	3.307E+00	7.350E-01
324	TE 354	TE-IN0994-SGA	"SGA U-Tube (4, IN) Pos. 3"	2.700E+02 7.200E+02	K	3.307E+00	7.350E-01
325	TE 355	TE-EX0994-SGA	"SGA U-Tube (4, EX) Pos. 3"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
326	TE 356	TE-IN0995-SGA	"SGA U-Tube (5, IN) Pos. 3"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
327	TF 357	TEEX0995-SGA	"SGA U-Tube (5, FX) Pos. 3"	2.700E+02 7.200E+02	К	3.307E+00	7.350E-01
328	TF 358	TE-IN0996-SGA	"SGA U-Tube (6, IN) Pos. 3"	2,700E+02 7,200E+02	K	3. 307E+00	7.350E-01
329	TF 359	TE-EX0996-SGA	"SGA U-Tube (6 EX) Pos 3"	2.700F+02 7.200F+02	K	3.307E+00	7.350E-01
330	TE 360	TE-IN1051-SGA	"SGA U-Tube (1 IN) Pos 4"	2 700F+02 7 200F+02	К	3.307E+00	7.350E-01
331	TE 361	TE-IN1052-SGA	"SGA II-Tube (2 IN) Pos 4"	2 700E+02 7 200E+02	К	3 307F+00	7 350F-01
332	TE 362	TE-1N1053-SGA	"SGA II-Tube (3 IN) Pos 4"	2 700E+02 7 200E+02	к К	3 307E+00	7 350E-01
333	TE 363	TE-1N1054-SGA	"SGA II-Tube (A IN) Pos 4"	2 700E+02 7 200E+02	<u>к</u>	3 307E+00	7 350E-01
224	TE 364	TE-1N1055-SCA	"SGA II-Tube (5, IN) Pos. 4"	2.700E+02 7.200E+02	ĸ	3.307E+00	7 3505-01
225	TE 265	TE-1N1056-SCA	"SGA H-Tube (6 IN) Pos. 4	2.700E+02 7.200E+02	K	3.307E+00	7 3505-01
333	TE 303	TE 1N1101 SCA	"SCA II Tube (1 IN) Pos. 4	2.700E+02 7.200E+02	K K	3.307E+00	7.350E-01
207	TE 300		"SCA II Tube (1, TW) Pos. 5	2.7000+02 7.2000+02	K K	3.3072+00	7.3500-01
	TE 30/		SGA U-TUDE (1, EX) POS. 5	2.700E+02 7.200E+02	K K	3.307E+00	7.3505-01
338	TE 300	TE EX1122 SUA	SGA U-TUDE (2, TN) POS. 5	2.700E+02 7.200E+02	N	3. 307E+00	7.3500-01
339	TE 309	TE-EAT122-SGA	SGA U-TUDE (2, EX) POS. 5	2.700E+02 7.200E+02	N K	3.307E+00	7.350E-01
340	TE 370	TE-INIT23-SGA	SGA U-1000(3, IN) POS. 5	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
341	TE 3/1	TE-EXTIZ3-SGA	SGA U-Tube (3, EX) Pos. 5	2. 700E+02 7. 200E+02	K	3.30/E+00	7.350E-01
342	IE 3/2	IE-INI124-SGA	SGA U-Tube (4, TN) Pos. 5	2. 700E+02 7. 200E+02	K	3.30/E+00	7.350E-01
343	TE 373	TE-EX1124-SGA	SGA U-Tbue (4, EX) Pos. 5"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
344	TE 374	TE-IN1125-SGA	"SGA U-Tube (5, IN) Pos. 5"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
345	TE 375	TE-EX1125-SGA	"SGA U-Tube (5, EX) Pos. 5"	2. 700E+02 7. 200E+02	К	3. 307E+00	7.350E-01
346	TE 376	TE-IN1126-SGA	"SGA U-Tube(6, IN) Pos. 5"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
347	TE 377	TE-EX1126-SGA	"SGA U-Tube (6, EX) Pos. 5"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
348	TE 378	TE-IN1251-SGA	"SGA U-Tube(1, IN) Pos. 6"	2. 700E+02 7. 200E+02	К	3. 307E+00	7.350E-01
349	TE 379	TE-EX1251-SGA	"SGA U-Tube(1,EX) Pos.6"	2.700E+02 7.200E+02	K	3. 307E+00	7.350E-01
350	TE 380	TE-IN1252-SGA	"SGA U-Tube(2, IN) Pos. 6"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
351	TE 381	TE-EX1252-SGA	"SGA U-Tube(2, EX) Pos. 6"	2.700E+02 7.200E+02	К	3. 307E+00	7.350E-01
352	TE 382	TE-IN1253-SGA	"SGA U-Tube(3, IN) Pos. 6"	2. 700E+02 7. 200E+02	К	3. 307E+00	7.350E-01
353	TE 383	TE-EX1253-SGA	"SGA U-Tube (3, EX) Pos. 6"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
354	TE 384	TE-IN1254-SGA	"SGA U-Tube (4, IN) Pos. 6"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
355	TE 385	TE-EX1254-SGA	"SGA U-Tube (4, EX) Pos. 6"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
356	TE 386	TE-IN1255-SGA	"SGA U-Tube (5, IN) Pos. 6"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
357	TE 387	TE-EX1255-SGA	"SGA U-Tube (5, EX) Pos. 6"	2. 700E+02 7. 200E+02	К	3.307E+00	7.350E-01
358	TE 388	TE-IN1256-SGA	"SGA U-Tube(6, IN) Pos. 6"	2.700E+02 7.200E+02	К	3.307E+00	7.350E-01
359	TE 389	TE-EX1256-SGA	"SGA U-Tube(6, EX) Pos. 6"	2.700E+02 7.200E+02	K	3.307E+00	7.350E-01
360	TE 390	TE-IN1371-SGA	"SGA U-Tube(1, IN) Pos. 7"	2.700E+02 7.200E+02	К	3.307E+00	7.350E-01
361	TE 391	TE-EX1371-SGA	"SGA U-Tube (1, EX) Pos. 7"	2.700F+02 7.200F+02	K	3.307E+00	7.350E-01
362	TE 392	TE-IN1372-SGA	"SGA U-Tube (2, IN) Pos. 7"	2.700F+02 7.200F+02	K	3.307F+00	7.350F-01
363	TE 393	TE-EX1372-SGA	"SGA U-Tube (2, FX) Pos. 7"	2 700F+02 7 200F+02	K	3.307F+00	7.350F-01
364	TE 394	TE-IN1373-SGA	"SGA II-Tube (3 IN) Pos 7"	2 700E+02 7 200E+02	ĸ	3 307E+00	7.350E-01
365	TE 395	TE-FX1373-SGA	"SGA II-Tube (3 EX) Pos 7"	2 700E+02 7 200E+02	к к	3 307E+00	7 350E-01
366	TE 396	TE-IN1374-SGA	"SGA II-Tube (A IN) Pos 7"	2 700E+02 7 200E+02	K K	3 307E+00	7.350E-01
367	TE 397	TE-FX1374-SGA	"SGA U-Tube (4 EX) Pos 7"	2 700E+02 7 200E+02	K	3 307E+00	7 350E-01
368	TE 398	TE-IN1375-SGA	"SGA U-Tube (5 IN) Pos 7"	2 700E+02 7 200E+02	K	3 307E+00	7 350E-01
369	TE 399	TE-FX1375-SGA	"SGA U-Tube (5 EX) Pos 7"	2 700E+02 7 200E+02	ĸ	3 307E+00	7 350E-01
370	TE 400	TE-IN1376-SGA	"SGA U+Tube (6 IN) Pos 7"	2 700E+02 7 200E+02	ĸ	3 307E+00	7.350E-01
371	TE 401	TE-FX1376-SGA	"SGA II-Tube (6 EX) Pos 7"	2 700E+02 7 200E+02	ĸ	3 307E+00	7.350E-01
372	TE 402	TE-IN1501-SGA	"SGA II-Tube (1 IN) Pos 8"	2 700E+02 7 200E+02	ĸ	3 307E+00	7.350E-01
373	TE 402	TE-EX1501-SGA	"SGA U-Tube (1 EX) Pos 8"	2 700E+02 7 200E+02	ĸ	3.307E+00	7.3505-01
374	TF 404	TE-IN1502-SGA	"SGA II-Tube (2 IN) Pos 8"	2 700E+02 7 200E+02	ĸ	3 307E±00	7 3505-01
375	TE 404	TE-EX1502-SGA	"SGA U-Tube (2, FX) Poc. 8"	2.700E+02 7.200E+02	K	3.307E+00	7.3505-01
376	TE 406	TE-IN1502-SGA	"SGA II-Tube (2 IN) Doc 9"	2 700E+02 7 200E+02	ĸ	3 207E±00	7 350E-01
377	TE 400	TE-EX1503-SGA	"SGA II-Tube (3, FY) Pos. 8"	2 700E+02 7 200E+02	K K	3 307E±00	7 3505-01
370	TE 407	TE-IN1504-964	"SGA II-Tube (A IN) Dog 0"	2.700E+02 7.200E+02	N N	3.3070+00	7 2505-01
370	TE 400	TE-EX1504-90A	"SGA II-Tube (4, IN) FUS. 0	2 700E+02 7 200E+02	r r	3.3075+00	7 3505-01
200	TE 409	TE-IN1505-004	"SGA U-TUDO (4, EA) MOS. 0	2.700E+02 7.200E+02		3.3070+00	7 2505 01
201	TE 410	TE_EV1505_00A	"SGA IL-Tube (5, FV) Dec 9"	2. 700E+02 7. 200E+02		3. 30/E+00	7.350E-01
			SGA U-TUDE (S, EX) POS. 8	2.700E+02 7.200E+02	N K	3.307E+00	7.350E-01
202	TE 412	TE_EY1506-004	SUA U-TUDE (0, IN) YOS. 8	2. 700E+02 7. 200E+02	N V	3. 30/E+00	7.350E-01
203	1E 413	TE INTER OF	SOA U-TUDE (0, EA) POS. 8	2. /UVETUZ /, 200E+02	N N	3. 30/E+00	1. 350E-01
384	FE 414	10-1N1032-30A	SUA U-TUDE(Z, IN) POS. 9	2. /UUE+UZ /. 200E+02	K V	3. 30/E+00	7.350E-01
200	TE 415	TE 101622 804	SUA U-TUDE(Z, EA) POS. 9	2. /UUE+UZ /. 200E+02	<u> </u>	3.30/E+00	7.350E-01
380	TE 410	TE EV1600 004	SUA U-TUDE(3, IN) POS. 9	2. /UUE+UZ /. 200E+02	K	3. 30/E+00	7.350E-01
387	IE 41/	1E-EA1033-56A	SUA U-TUDE (3, EX) Pos. 9	2. /UUE+02 7. 200E+02	K	3.30/E+00	7.350E-01
388	1E 418	1E-INI034-56A	SUA U-TUDE (4, IN) POS. 9	2. /UUE+UZ /. 200E+02	K	3.30/E+00	7.350E-01
389	IE 419	1E-EA1034-SGA	SUA U-TUDE (4, EX) Pos. 9"	2. /UUE+02 7. 200E+02	K	3.30/E+00	1.350E-01
390	1E 420	TE-INID35-SGA	SGA U-Tube (5, IN) Pos. 9	Z. /00E+02 7. 200E+02	K	3.307E+00	7.350E-01
391	11 421	IE-EXI035-SGA	SGA U-Tube (5, EX) Pos. 9"	2. /00E+02 7. 200E+02	K	3. 307E+00	7.350E-01
392	IE 422	1E-IN1/01-SGA	SGA U-Tube (1, IN) Pos. 10"	2. 700E+02 7. 200E+02	K	3.307E+00	7.350E-01
393	IE 423	1E-IN1706-SGA	SGA U-Tube (6, 1N) Pos. 10"	2. 700E+02 7. 200E+02	K	3.307E+00	7.350E-01
394	IE 424	IE-IN1782-SGA	SGA U-Tube (2, IN) Pos. 10"	2. 700E+02 7. 200E+02	K	3.307E+00	7.350E-01
395	TE 425	TE-IN1785-SGA	"SGA U-Tube (5, IN) Pos. 10"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
396	TE 426	IE-IN1863-SGA	"SGA U-Tube(3, IN) Pos. 11"	2. 700E+02 7. 200E+02	K	3. 307E+00	7.350E-01
397	TE 427	TE-IN1864-SGA	"SGA U-Tube(4, IN) Pos. 11"	2.700E+02 7.200E+02	K	3. 307E+00	7.350E-01
398	TE 428	TE-223D-SGA	SGA Steam Dome	2. 700E+02 6. 700E+02	К	3.108E+00	7.770E-01
399	TE 429	TE-086C-SGA	SGA Boiling Section Pos.1	2. 700E+02 6. 700E+02	K	3.108E+00	7.770E-01
400	TE 430	TE-099C-SGA	SGA Boiling Section Pos.3	2.700E+02 6.700E+02	ĸ	3.108E+00	7.770E-01

able A.1(Cont'd)	(6/25)
------------------	--------

SEO No	Function	Tagname	location	Rar	ige	Unit	Uncert	ainty
JLG NO.	ID.	Tagnamo	Logarion	LO	HI	onne	±ABS.	±%FR
401	TE 421	TE_1120_SCA	SCA Bailing Section Bos 5	2 700E±02	6 700E±02	ĸ	3 108E+00	7 770E-01
401	TE 400	TE-1120-30A	Sur Dorring Section Fos. 5	2.7001.02	C. 700E+02	ĸ	3.1000-00	7.7700 01
402	TE 432	1E-1250-SGA	SGA BOILING SECTION POS. 6	Z. 700E+02	6. 700E+02	<u>N</u>	3.108E+00	7.770E-01
403	TE 433	TE-137C-SGA	SGA Boiling Section Pos.7	2. /00E+02	6. /00E+02	<u> </u>	3.108E+00	7.770E-01
404	TE 434	TE-150C-SGA	SGA Boiling Section Pos.8	2. 700E+02	6. 700E+02	К	3.108E+00	7.770E-01
405	TE 435	TE-163C-SGA	SGA Boiling Section Pos.9	2. 700E+02	6.700E+02	К	3.108E+00	7.770E-01
406	TE 436	TE-178C-SGA	SGA Boiling Section Pos 10	2 700F+02	6 700F+02	К	3 108F+00	7.770E-01
407	TE 427	TE-102E-SCA	SGA Boiling Section	2 700E±02	6 700E±02		3 108E±00	7 770E-01
407	TE 407	TE-1921-30A	Sur Dorring Section	2.7001402	0.7002+02		0. 100E-00	7.7700 01
408	IE 438	TE-208F-SGA	SGA Separator	2. 700E+02	6. 700E+02	N	3. 108E+00	7.770E-01
409	TE 439	TE-192C-SGA	SGA Downcomer	2.700E+02	6. 700E+02	K	3.108E+00	7.770E-01
410	TE 440	TE-208C-SGA	SGA Downcomer	2.700E+02	6. 700E+02	К	3.108E+00	7.770E-01
411	TE 441	TE-223C-SGA	SGA Steam Dome	2.700E+02	6.700E+02	К	3.108E+00	7.770E-01
412	TE 442	TE-245C-SGA	SGA Steam Dome	2 700F+02	6 700F+02	К	3 108F+00	7.770F-01
412	TE 442	TE-INOGA1-SCP	SCP Inlot Planum	2 7005+02	7 2005+02	K	3 735E±00	8 300E-01
413	TE 443	TE-110041-30D		2.700L102	7.2002102	<u> </u>	0.7055.00	0.0000 01
414	IE 444	IE-INU642-SGB	SGB Inlet Plenum	2. 700E+02	7.200E+02	<u> </u>	3. 735E+00	8.300E-01
415	TE 445	TE-IN0643-SGB	SGB Inlet Plenum	2.700E+02	7.200E+02	<u> </u>	3. 735E+00	8.300E-01
416	TE 446	TE-EX0641-SGB	SGB Outlet Plenum	2.700E+02	7. 200E+02	К	3. 735E+00	8. 300E-01
417	TE 447	TE-EX0642-SGB	SGB Outlet Plenum	2.700E+02	7.200E+02	K	3.735E+00	8.300E-01
418	TE 448	TE-EX0643-SGB	SGB Outlet Plenum	2 700F+02	7 200E+02	К	3 735E+00	8 300F-01
410	TE 440	TE-IN0961-SCP	"SCR II-Tube (1 IN) Pog 1"	2 700E+02	7 2005+02	K	3 307E±00	7 350E-01
419	TE 449	TE-110001-30D	300 0-100e (1, 11) Pos. 1	2.700E+02	7.2002+02	K	3, 3072100	7.0500 01
420	IE 450	TE-IN0862-SGB	SGB U-Tube (2, IN) Pos. I	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
421	TE 451	TE-IN0863-SGB	"SGB U-Tube (3, IN) Pos. 1"	2. 700E+02	7.200E+02	<u> </u>	3. 307E+00	7.350E-01
422	TE 452	TE-IN0864-SGB	"SGB U-Tube (4, IN) Pos. 1"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
423	TE 453	TE-IN0865-SGB	"SGB U-Tube (5, IN) Pos. 1"	2.700E+02	7.200E+02	К	3. 307E+00	7.350E-01
424	TF 454	TE-IN0866-SGB	"SGB U-Tube (6, IN) Pos. 1"	2.700F+02	7.200E+02	к	3, 307E+00	7.350E-01
405	TE ASS	TE-EY0861-908	"SGB II-Tube (1 FY) Poo 1"	2 700E+02	7 200E+02	<u>к</u>	3 307F+00	7 350E-01
423	TE 450	TE-EV0060 000	"SCR II_Tube (2 EV) D 1"	2.7002+02	7 2005-02	IN IN	3 2072-00	7 2505 01
426	1E 456	11-11-11-11-11-11-11-11-11-11-11-11-11-	SUB U-TUDE (Z, EX) POS. 1	2. /UUE+U2	1. ZUUE+U2	N.	3. 30/E+00	1. 350E-01
427	TE 457	TE-EX0863-SGB	"SGB U-Tube (3, EX) Pos. 1"	2.700E+02	7.200E+02	<u> </u>	3.307E+00	7.350E-01
428	TE 458	TE-EX0864-SGB	"SGB U-Tube (4, EX) Pos. 1"	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
429	TE 459	TE-EX0865-SGB	"SGB U-Tube (5, EX) Pos, 1"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
430	TE 460	TE-EX0866-SGB	"SGB II-Tube (6 EX) Pos 1"	2 700E+02	7 200F+02	К	3 307E+00	7.350F-01
400	TE 400	TE IN0021 CCP	"SCP (I Tube (1, IN) Pee 2"	2 7005+02	7 200E+02	- K	2 207E±00	7 3505-01
431	TE 401	TE-100931-30D	30D 0-100e(1,1W) Pos. 2	2.700L+02	7.2002+02	<u> </u>	3.3072.00	7.3500 01
432	IE 462	TE-INU932-SGB	SGB U-TUDE (Z, TN) POS. Z	Z. 700E+02	7.200E+02	<u> </u>	3. 307E+00	7.350E-01
433	TE 463	TE-IN0933-SGB	SGB U-Tube (3, TN) Pos. 2	2. 700E+02	7.200E+02	. К	3.307E+00	7.350E-01
434	TE 464	TE-IN0934-SGB	"SGB U-Tube(4, IN) Pos. 2"	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
435	TE 465	TE-1N0935-SGB	"SGB U-Tube (5, 1N) Pos. 2"	2.700E+02	7. 200E+02	к	3. 307E+00	7.350E-01
436	TF 466	TE-1N0936-S6B	"SGB U-Tube (6, 1N) Pos. 2"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
427	TE 467	TE-100001-SCB	"SGB II-Tube (1 IN) Pos 3"	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
437	TE 407	TE 50001 000	"COD II Tube (1, TN) 103.3	2.7000.02	7.2000.02	N	2, 207E+00	7 2505 01
438	IE 468	IE-EX0991-SGB	SGB U-Tube (T, EX) Pos. 3	2.700E+02	7.200E+02	<u> </u>	3.307E+00	7.350E-01
439	TE 469	TE-IN0992-SGB	"SGB U-Tube(2, IN) Pos. 3"	2. /00E+02	7.200E+02	ĸ	3.30/E+00	7.350E-01
440	TE 470	TE-EX0992-SGB	"SGB U-Tube(2, EX) Pos. 3"	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
441	TE 471	TE-IN0993-SGB	"SGB U-Tube (3, IN) Pos. 3"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
442	TE 472	TE-EX0993-S68	"SGB U-Tube (3, FX) Pos. 3"	2.700E+02	7.200E+02	К	3. 307E+00	7.350E-01
442	TE 472	TE-IN0004-SCR	"SCR II-Tube (4, IN) Post 2"	2 700E+02	7 200E+02	K	3 307E+00	7 350E-01
443	IE 4/3	TE-1N0994-30D	300 0-Tube (4, TW) Pos. 3	2.7001.02	7.2001.02		0.0072.00	7.0500 01
444	IE 4/4	TE-EX0994-SGB	SGB U-Tube (4, EX) Pos. 3	Z. 700E+02	7.200E+02	<u> </u>	3.307E+00	1.350E-01
445	TE 475	TE-IN0995-SGB	"SGB U-Tube (5, TN) Pos. 3"	2. /00E+02	7.200E+02	К	3.307E+00	7.350E-01
446	TE 476	TE-EX0995-SGB	"SGB U-Tube (5, EX) Pos. 3"	2.700E+02	7.200E+02	<u> </u>	3.307E+00	7.350E-01
447	TE 477	TE-IN0996-SGB	"SGB U-Tube (6, IN) Pos. 3"	2.700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
448	TE 478	TE-EX0996-SGB	"SGB U-Tube (6, EX) Pos, 3"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
449	TE 479	TE-IN1051-SGB	"SGB II-Tube (1 IN) Pos 4"	2 700E+02	7 200E+02	К	3 307F+00	7 350E-01
445	TE 400		"SCR II Tube (2, IN) Pag 4"	2.700E+02	7.200E+02	ĸ	3 307E+00	7 350E-01
400	TE 400	TE-IN1052-30D	"COD U Tele (2, 11) Pos. 4	2.7001.02	7.2000-02	K	2 2075-00	7.0000 01
451	IE 481	1E-IN1053-56B	Sub U-Tube (3, TN) Pos. 4	2.700E+02	7.200E+02	<u> </u>	3, 307E+00	7.350E-01
452	TE 482	TE-IN1054-SGB	SGB U-Tube (4, 1N) Pos. 4	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
453	TE 483	TE-IN1055-SGB	"SGB U-Tube (5, 1N) Pos. 4"	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
454	TE 484	TE-IN1056-SGB	"SGB U-Tube(6, IN) Pos. 4"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
455	TE 485	TE-IN1121-SGB	"SGB U-Tube(1, IN) Pos.5"	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
456	TE 486	TE-EX1121-SGB	"SGB U-Tube(1.EX) Pos.5"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
457	TF 497	TE-IN1122-SGB	"SGB U-Tube (2 IN) Pos 5"	2,700F+02	7,200F+02	К	3, 307F+00	7.350F-01
457	TE 400	TE-EY1122-000	"SGB II-Tube (2, FY) Poc. 5"	2 7005+02	7 200E+02	K	3 307E+00	7 350E-01
408	TE 400	TE 101102 000	"COD II Tube (2, LA) 100.0	2.7002.02	7 2005-02	N N	2 2075-00	7 2505 01
459	11: 489	1E-INI123-368	300 U-1008(3, IN) POS.5	2. 700E+02	7.2002+02	N	0.0075.00	7.3000-01
460	IE 490	IE-EXII23-SGB	SGB U-Tube (3, EX) Pos. 5	Z. /UUE+02	1.200E+02	K	3.30/E+00	1.350E-01
461	TE 491	TE-IN1124-SGB	"SGB U-Tube(4, IN) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
462	TE 492	TE-EX1124-SGB	"SGB U-Tube (4, EX) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
463	TE 493	TE-IN1125-SGB	"SGB U-Tube (5, IN) Pos. 5"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
464	TF 494	TE-EX1125-SGB	"SGB U-Tube (5, FX) Pos 5"	2.700F+02	7.200F+02	ĸ	3, 307E+00	7.350E-01
	TE 405	TE-IN1126-SGR	"SGB II-Tube (6 IN) Poe 5"	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350F-01
400	TE 490	TE EV1106 000		2.7000-02	7 2005-02	N N	3 207E+00	7 2505 01
400	11: 490	1E-EX1120-SUD	300 U-1008 (0, EA) MOS. 5	2. 700E+02	7.2000102	N. K	0.0075.00	7.0000-01
467	TE 497	IE-IN1251-SGB	SGB U-Tube(1, IN) Pos. 6"	2. /00E+02	7.200E+02	K	3.30/E+00	7.350E-01
468	TE 498	TE-EX1251-SGB	"SGB U-Tube(1, EX) Pos. 6"	2.700E+02	7. 200E+02	K	3.307E+00	7.350E-01
469	TE 499	TE-IN1252-SGB	"SGB U-Tube (2, 1N) Pos. 6"	2. 700E+02	7. 200E+02	К	3.307E+00	7.350E-01
470	TE 500	TE-EX1252-SGB	"SGB U-Tube (2. EX) Pos. 6"	2,700E+02	7.200E+02	К	3.307E+00	7.350E-01
470	TE 501	TE-IN1253-SGP	"SGB II-Tube (3 IN) Poe 6"	2 700E+02	7 200F+02	к	3 307F+00	7.350E-01
4/1		TE EV1252 000	"CCD (L_Tube (2, TN) FUS. 0	2.7001.02	7 2005-02	N V	3 2075-00	7 2505 01
4/2	TE 502	1E-EX1200-500	Sup U-TUDE (3, EX) MOS. 0	2. /UUE+UZ	7.200E+02	N	3. 30/ETUU	7.0500-01
473	IE 503	IE-IN1254-SGB	Sub U-Tube (4, IN) Pos. 6	Z. /U0E+02	1.200E+02	K	3. 30/E+00	1.350E-01
474	TE 504	TE-EX1254-SGB	"SGB U-Tube (4, EX) Pos. 6"	2.700E+02	7.200E+02	K	3. 307E+00	/. 350E-01
475	TE 505	TE-IN1255-SGB	"SGB U-Tube (5, IN) Pos. 6"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
476	TE 506	TE-EX1255-SGB	"SGB U-Tube (5, EX) Pos. 6"	2.700E+02	7. 200E+02	К	3. 307E+00	7.350E-01
	TE 507	TE-IN1256-SGB	"SGB U-Tube (6 IN) Pos 6"	2.700F+02	7,200F+02	К	3, 307F+00	7,350F-01
	TE ENO	TE_EY1256_CCD	"SGB II-Tube (6 EY) Dog 6"	2 7005+02	7 2005+02	ĸ	3 307E+00	7 350E-01
4/8	TE 500	TE 101231 000		2.7001.02	7 2005-02	r r	2 2075-00	7 2505 01
4/9	IE 509	IE-INI3/I-SGB	Sub U-tube (I, IN) Pos. /	2. /UUE+02	1. 200E+02	Ň	3. 30/E+00	1.350E-01
480	I TE 510	1 1E-EX1371-SGB	SGBU-lube(1,EX) Pos. 7"	2.700E+02	1 /. 200E+02	I K	3.30/E+00	J 7.350E-01

Table A.1(Cont'd) (7/25)

	Function			Range			Uncert	ainty
SEQ No.	ID	Tagname	Location	LO	HI	Unit	±ABS.	±%FR
491	TE 511	TE-IN1372-SGB	"SGB II-Tube(2 IN) Pos 7"	2 700E+02 7	200E+02	ĸ	3 307E+00	7 350E-01
401	TE 512	TE-EX1372-SGB	"SGB II-Tube (2, FX) Pos 7"	2 700E+02 7	200E+02	ĸ	3 307E+00	7.350E-01
402	TE 512	TE-EN1372-SGD	"SGB II-Tube (2, LA) POS. 7"	2 7005+02 7	2005+02	K	3 307E+00	7.350E-01
400	TE 513	TE_EV1272_CCD	"SGR II-Tube (2, FY) Pop 7"	2.7000-02 7	2002-02	K	3.3075+00	7 2505-01
484	TE 514	TE 101074 SOD	"CCD II Tube (4, IN) Dec 7"	2.700E+02 7	200E+02	N	3.307E+00	7.3500-01
400	TE 313	TE EV1274 SCP	"SCP II Tube (4, FX) Pos. 7"	2.700E+02 7	2005+02	K K	2 207E+00	7.350E-01
480	IE 510	1E-EX1374-Sub	SGD U-TUDE (4, EX) POS. /	2.700E+02 7	200E+02	N	3.307E+00	7.350E-01
487	IE 517	TE-IN13/5-Sub	SGB U-TUDE (5, TN) POS. 7	2.700E+02 7	. 200E+02	ĸ	3.307E+00	7.3505-01
488	TE 518	1E-EX1375-SGB	Sub U-Tube (5, EX) Pos, 7	2.700E+02 7	, 200E+02	Ň	3.307E+00	7.350E-01
489	IE 519	IE-INI376-SGB	Sub U-Tube (b, TN) Pos. 7	2.700E+02 7	. 200E+02	N. K	3.307E+00	7.350E-01
490	TE 520	TE-EX1376-SGB	SGB U-Tube (6, EX) Pos. 7	2. /00E+02 /	200E+02	ĸ	3.307E+00	7.350E-01
491	IE 521	IE-IN1501-SGB	SGB U-Tube (1, IN) Pos. 8	2. /00E+02 /	. 200E+02	K	3.307E+00	7.350E-01
492	IE 522	IE-EX1501-SGB	SGB U-Tube (1, EX) Pos. 8	2. /00E+02 /	. 200E+02	ĸ	3.307E+00	7.350E-01
493	TE 523	TE-IN1502-SGB	"SGB U-Tube(2, IN) Pos. 8"	2. 700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
494	TE 524	TE-EX1502-SGB	"SGB U-Tube(2, EX) Pos. 8"	2.700E+02 7	. 200E+02	K	3. 307E+00	7.350E-01
495	TE 525	TE-IN1503-SGB	"SGB U-Tube(3, IN) Pos. 8"	2. 700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
496	TE 526	TE-EX1503-SGB	"SGB U-Tube (3, EX) Pos. 8"	2. 700E+02 7	. 200E+02	ĸ	3.307E+00	7.350E-01
497	TE 527	TE-IN1504-SGB	"SGB U-Tube(4, IN) Pos. 8".	2.700E+02 7	. 200E+02	ĸ	3.307E+00	7.350E-01
498	TE 528	TE-EX1504-SGB	"SGB U-Tube (4, EX) Pos. 8"	2. 700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
499	TE 529	TE-IN1505-SGB	"SGB U-Tube (5, IN) Pos. 8"	2. 700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
500	TE 530	TE-EX1505-SGB	"SGB U-Tube (5, EX) Pos. 8"	2. 700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
501	TE 531	TE-IN1506-SGB	"SGB U-Tube(6, IN) Pos. 8"	2.700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
502	TE 532	TE-EX1506-SGB	"SGB U-Tube (6, EX) Pos. 8"	2.700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
503	TE 533	TE-IN1632-SGB	"SGB U-Tube(2, IN) Pos, 9"	2.700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
504	TE 534	TE-EX1632-SGB	"SGB U-Tube (2, EX) Pos, 9"	2.700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
505	TE 535	TE-IN1633-SGB	"SGB U-Tube (3, IN) Pos, 9"	2.700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
506	TE 536	TE-EX1633-SGB	"SGB U-Tube (3 EX) Pos 9"	2 700F+02 7	200F+02	K	3 307F+00	7 350F-01
507	TF 537	TE-IN1634-SGB	"SGB 11-Tube (4 IN) Pos 9"	2 700F+02 7	200F+02	K	3 307F+00	7.350F-01
508	TE 538	TE-EX1634-SGB	"SGB II-Tube (4 EX) Pos 9"	2 700E+02 7	200E+02	ĸ	3 307E+00	7 350E-01
509	TE 539	TE-IN1635-SGB	"SGB II-Tube (5 IN) Pos 9"	2 700E+02 7	200E+02	ĸ	3 307E+00	7.350E-01
510	TE 540	TE-FX1635-SGB	"SGB II-Tube (5 EX) Pos 9"	2 700E+02 7	200E+02	ĸ	3 307E+00	7 350E-01
511	TE 541	TE-IN1701-SGB	"SGB II-Tube (1, IN) Pos. 10"	2 700E+02 7	200E+02	ĸ	3 307E+00	7.350E-01
512	TE 542	TE-IN1706-SGB	"SGB II-Tube (6, IN) Pos 10"	2 700E+02 7	2005+02	K	3.307E+00	7.350E-01
512	TE 542	TE-IN1782-SGB	"SGB II-Tube (2, IN) Pos. 10"	2 700E+02 7	200E+02	K	3 307E+00	7.350E-01
514	TE 544	TE-IN1785-SGB	"SGB II-Tube (5, IN) Pos, 10"	2 700E+02 7	2005+02	K	3.307E+00	7.350E-01
 	TE 544	TE-IN1962-SCB	"SGP II-Tube (2, IN) Pos. 10"	2 700E+02 7	2002-02	ĸ	2 207E+00	7 2505-01
510	TE 545	TE_IN1964_SCP	"SGP II-Tube (4, IN) Pos. 11"	2.700E+02 7	2000-02		2 207E+00	7.350E-01
510 517	TE 540	TE-2220_SCP	SGD 0-Tube (4, Th) FOS. TT	2.700E+02 7	. 200E+02	r.	3. 307E+00	7.330E-01
	TE 547	TE-0960 SCP	SCP Pailing Section Pool	2.700E+02 0	7005-02	r v	3. 100E+00	7.770E-01
 	1E 548	1E-0800-SUB	CCP Pailing Section Post	2.700E+02 0	700E+02	K	3.108E+00	7.770E-01
519	1E 549	1E-0990-50D	Sub Bolling Section Pos. 3	2.700E+02 0	. 700E+02	K	3.108E+00	7. 770E-01
520	1E 550	TE-1120-SUB	Sub Bolling Section Pos. 5	2.700E+02 0	. 700E+02	K	3.108E+00	7.770E-01
521	1E 001	1E-1230-30D	Sub bolling Section Pos. 6	2.700E+02 0	. 700E+02	<u> </u>	3.108E+00	7. 770E-01
522	TE 552	1E-1370-SGB	Sub Bolling Section Pos. /	2. 700E+02 6	. 700E+02	<u> </u>	3. 108E+00	7. 770E-01
523	IE 553	TE-1500-SGB	Sub Boiling Section Pos. 8	2. 700E+02 6	. 700E+02	ĸ	3. 108E+00	7. 770E-01
524	IE 554	TE-163C-SGB	SGB Boiling Section Pos. 9	2. /00E+02 6	5. 700E+02	K	3.108E+00	7.770E-01
525	IE 555	IE-1/8C-SGB	SGB Boiling Section Pos. 10	2. /00E+02 6	i. /00E+02	K	3.108E+00	7.770E-01
526	TE 556	TE-192F-SGB	SGB Boiling Section	2.700E+02 6	5. 700E+02	K	3.108E+00	7.770E-01
527	TE 557	TE-208F-SGB	SGB Separator	2.700E+02 6	5. 700E+02	K	3.108E+00	7.770E-01
528	TE 558	TE-192C-SGB	SGB Downcomer	2. 700E+02 6	i. 700E+02	K	3.108E+00	7.770E01
529	TE 559	TE-208C-SGB	SGB Downcomer	2. 700E+02 6	5. 700E+02	K	3.108E+00	7.770E-01
530	TE 560	TE-223C-SGB	SGB Steam Dome	2. 700E+02 6	5. 700E+02	K	3.108E+00	7.770E01
531	TE 561	TE-245C-SGB	SGB Steam Dome	2. 700E+02 6	5. 700E+02	K	3.108E+00	7.770E-01
532	TE 562	TE-211C-PR	PR Fluid	2. 700E+02 7	. 200E+02	K	3. 307E+00	7.350E-01
533	TE 563	TE-194C-PR	PR Fluid	2. 700E+02 7	. 200E+02	K	3. 307E+00	7. 350E-01
534	TE 564	TE-177C-PR	PR Fluid	2.700E+02 7	. 200E+02	K	3. 307E+00	7.350E-01
535	TE 596	TE-177D-PR	PR Fluid	2.700E+02 7	. 200E+02	К	3. 307E+00	7.350E-01
536	TE 597	TE-181D-PR	PR Fluid	2.700E+02 7	. 200E+02	K	3. 307E+00	7.350E-01
537	TE 598	TE-185D-PR	PR Fluid	2.700E+02 7	. 200E+02	K	3. 307E+00	7.350E01
538	TE 599	TE-189D-PR	PR Fluid	2.700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
539	TE 600	TE-192D-PR	PR Fluid	2.700E+02 7	. 200E+02	К	3.307E+00	7.350E-01
540	TE 601	TE-196D-PR	PR Fluid	2.700E+02 7	. 200E+02	К	3. 307E+00	7.350E-01
541	TE 602	TE-200D-PR	PR Fluid	2.700E+02 7	. 200E+02	K	3. 307E+00	7.350E-01
542	TE 603	TE-204D-PR	PR Fluid	2.700E+02 7	. 200E+02	К	3. 307E+00	7.350E-01
543	TE 604	TE-207D-PR	PR Fluid	2.700E+02 7	. 200E+02	K	3.307E+00	7.350E-01
544	TE 605	TE-211D-PR	PR Fluid	2.700E+02 7	200E+02	K	3.307E+00	7.350E-01
545	TE 606	TE011A-HLA	HLA Spool Piece Top	2,700F+02 7	200F+02	ĸ	3.307F+00	7.350F-01
546	TE 607	TE011B-HLA	HLA Spool Piece Side	2.700E+02 7	, 200E+02	K	3, 307E+00	7.350E-01
547	TE 608	TE011C-HLA	HLA Spool Piece Bottom	2,700F+02 7	200F+02	ĸ	3.307F+00	7.350E-01
548	TE 609	TE012C-HLA	"HLA Spool Piece'Top	2,700F+02 7	200F+02	К	3. 307F+00	7, 350E-01
549	TE 610	TE012D-HI A	HLA Spool Piece Bottom	2.700F+02 7	200F+02	K	3 307F+00	7 350E-01
550	TF 611	TE051A-LSA	ISA Spool Piece Fast	2 700E+02 7	200E+02	K	3 307E+00	7 3505-01
551	TF 612	TE051B-LSA	ISA Spool Piece South	2 700E+02 7	200E+02	K	3 307E±00	7.350E-01
557	TF 613	TEO51C-LSA	ISA Spool Piece West	2 7005+02 7	2005-02	K	3 3075+00	7 3505-01
552	TF 614	TE051D-I SA	ISA Spool Piece North	2 700E+02 7	200E+02	K IV	3 307E±00	7 250E-01
554	TE 615	TE052-I SA	ISA Spool Piece	2 700E±02 7	200L+02	ĸ	3.3075+00	7 3505-01
555	TE 616		CLA Spool Piece Top	2 7005+02 7	200E+02	K I	3.3075+00	7 3505-01
500	TE 617	TEO718-01A		2. TOUETUZ /	200E+02	N.	3. 30/E+00	7.350E-01
530	TE 210	TEO710-OLA	CLA Spool Piece Side	2.7005+02 7	. 200E+02	<u>Γ</u>	3. 307E+00	7.350E-01
50/	TE 610	TE0720-014	CLA Spool Piece Bottom	2.700E+02 7	. ZUUE+UZ	Ň	3. 307E+00	7.350E-01
558		TEOTOD OLA	ULA Spool Piece lop	2. /UUE+02 7	. ZUUE+02	K	3.30/E+00	7.350E-01
559	10 020	IEV/ZU-ULA	ULA SPOOL Piece Bottom	Z. /UUE+02 7	. 200E+02	K	3.30/E+00	7.350E-01
560	1E 621	IEISIA-HLB	HLB Spool Piece lop	2. /00E+02 7	. 200E+02	K	3. 307E+00	7.350E-01

Table A.1(Cont'd) (8/25)

.

.

	Function	_		Range	Т		Uncert	ainty
SEQ No.	ID	Tagname	Location	10	н	Unit	+ ABS	+%FR
561	TE 622	TE151R-HIR	HIR Spool Piece Side	2 700E+02 7 2	200E+02	ĸ	3 307E+00	7 350E-01
562	TE 623	TE151C-HLB	HLB Spool Piece Bottom	2 700E+02 7 2	200E+02	K	3 307E+00	7.350E-01
562	TE 624	TE1570-HLB	HLB Spool Piece Jorton	2.700E+02 7.2	2000-02	ĸ	3.307E+00	7.350E-01
564	TE 625	TE1520 HED	HLB Speel Rices Rettom	2 7005+02 7 2	2005-02	K	3.3075+00	7.350E-01
504	TE 626		ISP Speel Bioge West	2.700E+02 7.2	2002+02	ĸ	2 2075+00	7.350E-01
566	TE 627	TE1019_1 CP	LSB Spool Piece West	2 7005+02 7.2	2000-102	ĸ	3.307E+00	7.350E-01
500	TE 627	TE1910-LOD	LSD Spool Piece North	2.7000002 7.2	2000-02	N N	3. 307E+00	7.350E~01
567	TE 628	TETATO FOR	LSB Spool Piece East	2.700E+02 7.2	2002+02	K	3. 307E+00	7.350E-01
568	TE 629	TE191D-LSB	LSB Spool Piece South	2.700E+02 7.2	2002+02	ĸ	3.307E+00	7.350E-01
569	IE 630	TE192-LSB	LSB Spool Piece	2. 700E+02 7. 2	200E+02	K	3.307E+00	7.350E-01
570	IE 631	IE211A-CLB	CLB Spool Piece Top	2. /00E+02 /. 2	200E+02	K	3.307E+00	7.350E-01
571	TE 632	TE211B-CLB	CLB Spool Piece Side	2.700E+02 7.2	200E+02	K	3.307E+00	7.350E-01
572	TE 633	TE211C-CLB	CLB Spool Piece Bottom	2.700E+02 7.2	200E+02	K	3. 307E+00	7.350E-01
573	TE 634	TE212C-CLB	CLB Spool Piece Top	2.700E+02 7.2	200E+02	К	3. 307E+00	7.350E-01
574	TE 635	TE212D-CLB	CLB Spool Piece Bottom	2. 700E+02 7. 2	200E+02	ĸ	3. 307E+00	7.350E-01
575	TE 638	TE301C-PR	PR Safety Valve Line	2.700E+02 7.2	200E+02	K	3. 307E+00	7.350E-01
576	TE 639	TE301D-PR	PR Safety Valve Line	2. 700E+02 7. 2	200E+02	K	3. 307E+00	7.350E-01
577	TE 644	TE571C-BU	BU No. 1 S. P	2.700E+02 7.2	200E+02	К	3. 307E+00	7.350E-01
578	TE 645	TE571D-BU	BU No. 1 S. P	2.700E+02 7.2	200E+02	К	3. 307E+00	7.350E-01
579	TE 662	TE-N-006-DC	PV Downcomer DTT North	2.700E+02 7.2	200E+02	К	3. 307E+00	7.350E-01
580	TE 663	TE-S-006-DC	PV Downcomer DTT South	2.700E+02 7.2	200E+02	К	3.307E+00	7.350E-01
581	TE 664	TE-E-006-DC	PV Downcomer DTT East	2.700E+02 7.2	200E+02	К	3. 307E+00	7.350E-01
582	TE 665	TE-W-006-DC	PV Downcomer DTT West	2.700E+02 7.2	200E+02	К	3.307E+00	7.350E-01
583	DT 1	DTE020A-HLA	HLA Pipe Wall 1/0	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
584	DT 2	DTE020B-HLA	HLA Pipe Wall to Fluid	-1.500E+02 1.5	500F+02	K	6.240E+00	2.080E+00
585	DT 3	DTE030A-HLA	HLA Pipe Wall 1/0	-1 500E+02 1 5	500E+02	K	6 240F+00	2 080F+00
586	DT 4	DTE030B-HLA	HLA Pipe Wall to Fluid	-1 500E+02 1 5	500E+02	к	6 240E+00	2 080F+00
587		DTE0504-LSA	ISA Pine Wall 1/0	-1 500E+02 1 5	500E+02	ĸ	6 240E+00	2 080E+00
588		DTE050R-I SA	ISA Pine Wall Fluid	-1 500E+02 1 5	500E+02	ĸ	6 240E+00	2.080E+00
580		DTE060A-PCA	PCA Wall 1/0	-1 500E+02 1 F	500E+02	к	6 240E+00	2.080E+00
500			CLA Pine Wall 1/0	-1 500E+02 1 5	500E+02	к	6 240E+00	2.080E+00
590			CLA Pipe Wall to Eluid	-1.500E+02 1.5	5005+02	ĸ	6 2405+00	2.0000100
502	DT 10		CLA Pipe Wall 1/0	-1.500E+02 1.5	5005+02	ĸ	6 240E+00	2.0805+00
502			OLA Fipe Wall to Fluid	1 E00E+02 1.	5005.02	ĸ	6 240E+00	2.0805+00
593				-1.500E+02 1.5	500E+02	ĸ	0.240E+00	2.000E+00
594	DI 12	DIEIUU-HLA		-1.500E+02 1.5	500E+02	N K	2.490E+00	8.300E-01
595	DI 13	DIEIGUA-HLB	HLB Pipe Wall 1/0	-1.500E+02 1.5	500E+02	ĸ	6. 240E+00	2. 080E+00
596	DI 14	DIE160B-HLB	HLB Pipe Wall to Fluid	-1.500E+02 1.5	500E+02	ĸ	6.240E+00	2.080E+00
597	DI 15	DIE170A-HLB	HLB Pipe Wall 1/0	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
598	DI 16	DTE170B-HLB	HLB Pipe Wall to Fluid	-1.500E+02 1.5	500E+02	<u>K</u>	6.240E+00	2.080E+00
599	DT 17	DTE190A-LSB	LSB Pipe Wall 1/0	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
600	DT 18	DTE190B-LSB	LSB Pipe Wall to Fluid	-1.500E+02 1.5	500E+02	ĸ	6.240E+00	2.080E+00
601	DT 19	DTE200A-PCB	PCB Wall I/O	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
602	DT 20	DTE210A-CLB	CLB Pipe Wall I/O	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
603	DT 21	DTE210B-CLB	CLB Pipe Wall to Fluid	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
604	DT 22	DTE220A-CLB	CLB Pipe Wall 1/0	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
605	DT 23	DTE220B-CLB	CLB Pipe Wall to Fluid	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
606	DT 24	DTE240-HLB	HLB-CLB	-1.500E+02 1.5	500E+02	к	2. 490E+00	8. 300E-01
607	DT 25	DTE270A-PR	PR Spray Line	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
608	DT 26	DTE280A-PR	PR Surge Line	-1.500E+02 1.5	500E+02	к	6.240E+00	2.080E+00
609	DT 27	DTE-E-015A-PV	PV Wall I/O-E at L. Pienum	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
610	DT 28	DTE-W-015A-PV	PV Wall I/O-W at L. Plenum	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
611	DT 29	DTE-N000A-PV	PV Wall I/O-N at DC Bottom	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
612	DT 30	DTE-S000A-PV	PV Wall I/O-S at DC Bottom	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
613	DT 31	DTE-E000A-PV	PV Wall 1/0-E at DC Bottom	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
614	DT 32	DTE-WOODA-PV	PV Wall I/O-W at DC Bottom	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
615	DT 33	DTE-N018A-PV	PV Wall I/O-N at DC Middle	-1.500E+02 1.5	500E+02	К	6.240E+00	2.080E+00
616	DT 34	DTE-S018A-PV	PV Wall I/O-S at DC Middle	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
617	DT 35	DTE-E018A-PV	PV Wall I/O-E at DC Middle	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
618	DT 36	DTE-W018A-PV	PV Wall I/O-W at DC Middle	-1.500E+02 1.5	500E+02	K	6.240E+00	2.080E+00
619	DT 37	DTE-N036A-PV	PV Wall I/O-N at Upper DC	-1.500E+02 1	500E+02	K	6.240E+00	2.080E+00
620	DT 38	DTE-S036A-PV	PV Wall 1/0-S at Upper DC	-1.500E+02 1	500E+02	K	6.240E+00	2.080E+00
621	DT 39	DTE-E036A-PV	PV Wall 1/0-F at Upper DC	-1.500E+02 1	500E+02	K	6,240F+00	2.080E+00
622	DT 40	DTE-W036A-PV	PV Wall 1/0-W at Upper DC	-1.500E+02 1	500F+02	ĸ	6.240F+00	2.080F+00
622	DT /1	DTE-N0604-PV	PV Wall 1/0-N at DC Ton	-1 500E+02 1	500F+02	К	6 240F+00	2 080E+00
UZ3 604	DT 41		DV Wall 1/0-S at DC Top	-1 500E+02 1	500E+02	K	6 2405+00	2 0805+00
024 605	DT 42		PV Wall 1/0-5 at DC Top	-1 500E+02 1	500E+02	K	6 2405+00	2 0805+00
020	DT 43		DV Wall 1/0 W at DO T	-1 5005+02 1.	500E+02	N	6 240E+00	2.0000000
020	DT 44			1 500E+02 1.	500E+02	ĸ	6 240ETUU	2.0000000
627	UI 45	DIE-EUSUA-PV	DV Wall 1/0-E at DC Head	-1. DUUE+U2 1.		N	0. 240E+00	2.0000000
628	UI 46	DIE-WUSUA-PV	PV Wall I/U-W at DC Head	-1. DUUE+U2 1.	5005-00	K.	0. 240E+00	2.0802+00
629	01 47	DIE-NOODB-PV	PV/DC Fluid at DC Bottom	-1.500E+02 1.5	500E+02	N	6. 240E+00	2.080E+00
630	DT 48	DTE-SOOOB-PV	PV/DC Fluid at DC Bottom	-1.500E+02 1.	500E+02	K	6.240E+00	2. 080E+00
631	DT 49	DTE-E000B-PV	PV/DC Fluid at DC Bottom	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00
632	DT 50	DTE-WOOOB-PV	PV/DC Fluid at DC Bottom	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00
633	DT 51	DTE-N018B-PV	PV/DC Fluid at DC Middle	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00
634	DT 52	DTE-S018B-PV	PV/DC Fluid at DC Middle	-1.500E+02 1.	500E+02	K	6. 240E+00	2.080E+00
635	DT 53	DTE-E018B-PV	PV/DC Fluid at DC Middle	-1.500E+02 1.1	500E+02	K	6. 240E+00	2.080E+00
636	DT 54	DTE-W018B-PV	PV/DC Fluid at DC Middle	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00
637	DT 55	DTE-N036B-PV	PV/DC Fluid at Upper DC	-1.500E+02 1.	500E+02	К	6.240E+00	2.080E+00
638	DT 56	DTE-S036B-PV	PV/DC Fluid at Upper DC	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00
639	DT 57	DTE-E036B-PV	PV/DC Fluid at Upper DC	-1.500E+02 1.	500E+02	K	6.240E+00	2.080E+00

Table A.1(Cont'd)	(9/25)
	(

	Function			Ran	ge		Uncert	ainty
SEQ No.	ID.	Tagname	Location	LO	<u>во</u> Н1	Unit	±ABS.	±%FR
640	DT 58	DTE-W036B-PV	PV/DC Eluid at Hoper DC	-1 500E+02	1 500E+02	К	6 240E+00	2 080E+00
641	DT 59	DTE-N060B-PV	PV/DC Fluid at DC Ton	-1 500E+02	1.500E+02	ĸ	6 240E+00	2 080E+00
642	DT 60	DTE-S060B-PV	PV/DC Fluid at DC Top	-1 500E+02	1.500E+02	ĸ	6 240E+00	2 080E+00
643	DT 61	DTE-E060B-PV	PV/DC Fluid at DC Top	-1 500E+02	1.500E+02	к – – – – – – – – – – – – – – – – – – –	6 240E+00	2.080E+00
644	DT 62	DTE-W060B-PV	PV/DC Fluid at DC Top	-1 500E+02	1 500E+02	ĸ	6 240E+00	2 080E+00
645	DT 63	DTE-N000C-PV	CB/DC Fluid at DC Bottom	-1 500E+02	1.500E+02	к	6 240E+00	2 080E+00
646	DT 64	DTE-S000C-PV	CB/DC Fluid at DC Bottom	-1 500E+02	1.500E+02	ĸ	6 240E+00	2 080E+00
647	DT 65	DTE-E000C-PV	CB/DC Fluid at DC Bottom	-1 500E+02	1 500E+02	ĸ	6 240E+00	2 080E+00
649	DT 66	DTE-W000C-PV	CB/DC Fluid at DC Bottom	-1 500E+02	1.500E+02	ĸ	6 240E+00	2.080E+00
640	DT 67	DTE-N019C-DV	CB/DC Fluid at DC Niddle	-1 500E+02	1.500E+02	ĸ	6 240E+00	2.0805+00
650	D1 07	DTE-SO19C-DV	CB/DC Fluid at DC Middle	-1. 500E+02	1.500E+02	K	6 240E+00	2.080E+00
651		DTE_50100-FV	CB/DC Fluid at DC Middle	-1.500E+02	1.500E+02	ĸ	6 240E+00	2.0800+00
650	DT 70		CB/DC Fluid at DC Middle	-1. 500E+02	1.500E+02	ĸ	6.240E+00	2.080E+00
652	DT 70		CB/DC Fluid at Upper DC	1 500E+02	1.5000002	ĸ	6.240E+00	2.080E+00
003	DI /1	DIE-NU30U-PV	OB/DC Fluid at Upper DC	1 -1. 500E+02	1. 500E+02	N. N	6. 240E+00	2. 080E+00
004	DT 72		CB/DC Fluid at Upper DC	1 E00E+02	1.5000+02	ĸ	0.240E+00	2.0000000
000	DT 74		CB/DC Fluid at Upper DC	-1.500E+02	1.500E+02	ĸ	0.240E+00	2.080E+00
000	DT 75		CB/DC Fluid at upper DC	1 500E+02	1.500E+02	<u> </u>	6.240E+00	2.080E+00
100	DT 70		CD/DC Fluid at DC Top	-1.500E+02	1. 500E+02	N K	6. 240E+00	2. 080E+00
658	DI 76	DIE-SUBUC-PV	CB/DC Fluid at DC Top	-1.500E+02	1.500E+02	ĸ	6. 240E+00	2.080E+00
659	DI //	DIE-E060C-PV	CB/DC Fluid at DC Top	-1.500E+02	1.500E+02	<u> </u>	6.240E+00	2.080E+00
660	DI 78	DIE-W060C-PV	CB/DC Fluid at DC lop	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
661	DT 79	DTE-N000E-PV	CB Wall 1/0 at DC Bottom	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
662	DT 80	DTE-S000E-PV	CB Wall 1/O at DC Bottom	-1.500E+02	1.500E+02	ĸ	6.240E+00	2.080E+00
663	DT 81	DTE-E000E-PV	CB Wall 1/O at DC Bottom	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
664	DT 82	DTE-WOODE-PV	CB Wall I/O at DC Bottom	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
665	DT 83	DTE-N010E-PV	CB Wall I/O at Lower DC	-1.500E+02	1.500E+02	ĸ	6. 240E+00	2.080E+00
666	DT 84	DTE-S010E-PV	CB Wall I/O at Lower DC	-1.500E+02	1.500E+02	ĸ	6.240E+00	2.080E+00
667	DT 85	DTE-E010E-PV	CB Wall I/O at Lower DC	-1.500E+02	1.500E+02	К	6.240E+00	2.080E+00
668	DT 86	DTE-W010E-PV	CB Wall I/O at Lower DC	-1.500E+02	1.500E+02	К	6.240E+00	2.080E+00
669	DT 87	DTE-N018E-PV	CB Wall I/O at DC Middle	-1.500E+02	1.500E+02	К	6.240E+00	2.080E+00
670	DT 88	DTE-S018E-PV	CB Wall I/O at DC Middle	-1. 500E+02	1. 500E+02	К	6.240E+00	2.080E+00
671	DT 89	DTE-E018E-PV	CB Wall I/O at DC Middle	-1.500E+02	1.500E+02	К	6.240E+00	2.080E+00
672	DT 90	DTE-W018E-PV	CB Wall I/O at DC Middle	-1.500E+02	1.500E+02	К	6.240E+00	2.080E+00
673	DT 91	DTE-N026E-PV	CB Wall I/O at DC Center	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
674	DT 92	DTE-S026E-PV	CB Wall I/O at DC Center	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
675	DT 93	DTE-E026E-PV	CB Wall I/O at DC Center	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
676	DT 94	DTE-W026E-PV	CB Wall 1/0 at DC Center	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
677	DT 95	DTE-N036E-PV	CB Wall 1/0 at Upper DC	-1. 500E+02	1.500E+02	K	6.240E+00	2.080E+00
678	DT 96	DTE-S036E-PV	CB Wall 1/0 at Upper DC	-1.500E+02	1.500F+02	K	6.240F+00	2.080F+00
679	DT 97	DTE-E036E-PV	CB Wall 1/0 at Upper DC	-1 500F+02	1.500F+02	ĸ	6.240F+00	2 080E+00
680	DT 98	DTE-W036E-PV	CB Wall 1/0 at Upper DC	-1 500E+02	1 500E+02	ĸ	6 240F+00	2 080E+00
681	DT 99	DTF-N049E-PV	CB Wall 1/0 below Nozzle	-1 500E+02	1 500E+02	к	6 240E+00	2 080E+00
682	DT 100	DTF-S049F-PV	CB Wall 1/0 below Nozzle	-1 500E+02	1 500F+02	K	6 240E+00	2 080F+00
683	DT 101	DTE-F049E-PV	CB Wall 1/0 below Nozzle	-1 500E+02	1 500E+02	ĸ	6 240E+00	2 080E+00
684	DT 102	DTE-W049E-PV	CB Wall 1/0 below Nozzle	-1 500E+02	1 500E+02	ĸ	6 240E+00	2 080E+00
685	DT 102	DTE-N060E-PV	CB Wall 1/0 at DC Top	-1 500E+02	1.500E+02	ĸ	6 240E+00	2.080E+00
686	DT 104	DTE-S060E-PV	CB Wall 1/0 at DC Top	-1 500E+02	1 500E+02	к	6 240E+00	2.080E+00
687	DT 105	DTE-E060E-PV	CB Wall 1/0 at DC Top	-1 500E+02	1 500E+02	K	6 240E+00	2.080E+00
688	DT 106	DTE-W060E-PV	CB Wall 1/0 at DC Top	-1 500E+02	1 500E+02	к	6 240E+00	2.080E+00
689	DT 107	DTE-040-809-11CP	In/Out Fluid across IICP	-1 500E+02	1.500E+02	K .	6 240E+00	2.080E+00
690	DT 108	DTE-040-B11-UCP		-1 500E+02	1.500E+02	ĸ	6 240E+00	2.080E+00
691	DT 109	DTE-040-B01-UCP	In/Out Fluid across IICP	-1 500E+02	1.500E+02	к 	6 240E+00	2.080E+00
692	DT 110	DTE-040-B03-UCP	In/Out Fluid across IICP	-1 500E+02	1 500E+02	<u>к</u>	6 240E+00	2.080E+00
693	DT 111	DTE-040-B05-UCP	In/Out Fluid across IICP	-1 500E+02	1.500E+02	ĸ	6 240E+00	2.080E+00
694	DT 112	DTF-040-807-IICP	In/Out Fluid across IICP	-1 500E+02	1 5005+02	K	6 2405+00	2 0805+00
695	DT 113	DTE-040-R21-IICP	In/Out Fluid across HCP	-1 500E+02	1 500F+02	K	6 240F+00	2 080F+00
696	DT 114	DTE-040-B23-IICP	In/Out Fluid across IICP	-1 500E+02	1 500E+02	K	6 240F+00	2 0805+00
600	DT 115	DTE-040-R02-IICP	In/Out Fluid across HCP	-1 500E+02	1 500F+02	K	6 240E+00	2 0805+00
608	DT 116	DTF-040-B15-UCP	In/Out Fluid across UCP	-1 5005+02	1 5005-02	K	6 240E+00	2 0805-00
600	DT 117	DTF-040-R06-UCP	In/Out Fluid across HCD	-1 500E+02	1 5005-02	K	6 240E±00	2.0000100
700	DT 119	DTF-040-R14-UCP	In/Out Fluid across UCP	-1 5005+02	1 5005-02	K.	6 240E+00	2.0001-00
701	DT 110	DTF-040-R18-HCP	In/Out Fluid across UCD	-1 500E+02	1 5001+02	K IV	6 2405:00	2.0000000
702	DT 120	DTE-040R10-100	In/out Fluid across UCP	-1 5005+02	1.5000-02	N	6 240E+00	2.0000000
702	DT 120	DTE-040-810-100	In/out Fluid screet UCD	-1 5005+02	1.5000+02	n V	6 240E+00	2.0000000
703	DT 122	DTE_040_B12_U00	In/out Fluid across UCP	-1.500E+02	1. JUUE+UZ	r v	0. 240E+00	2.0805+00
705	DT 122	DTE-040-D12*00P	In/out Fluid across UCP	-1.500E+02	1.500E+02	N.	0.240E+00	2. 080E+00
100	DT 104	DTE-040-004-06P	In/Out Fluid across UCP	-1. DUUE+UZ	1. DUUE+02	N V	0.240E+00	2. U8UE+00
700	DT 105	DTE_040_000_00P	In/out Fluid across UCP	-1. 500E+02	1.500E+02	N	0.2402+00	2. U8UE+UU
107	DT 100	DTE 040 024 UOD	In/Out Fluid across UCP	-1. 500E+02	1.500E+02	K	0.240E+00	2. 080E+00
708	DT 107	DTE 000 000 LOD	In/out Fluid across UCP	-1.500E+02	1.500E+02	K	6.240E+00	2.080E+00
709	DT 100	DTE 000 B02 LOP	In Out Fluid across LCP	-4. UUUE+UI	4. UUUE+01	K	1.004E+00	2. 080E+00
/10	DT 128	DTE-000-B03-L0P	In/UUT Fluid across LCP	-4. 000E+01	4. UUUE+01	K	1.664E+00	2. 080E+00
/11	DT 129		In/ULE FILLE across LCP	-4.000E+01	4. U00E+01	<u>K</u>	1.664E+00	2. 080E+00
/12	DI 130	DIE-000-807-LCP	In/Uut Fluid across LCP	-4.000E+01	4.000E+01	K	1.664E+00	2.080E+00
/13	UI 131	DIE-000-B09-LCP	In/Uut Fluid across LCP	-4.000E+01	4.000E+01	K	1.664E+00	2.080E+00
714	DI 132	DIE-000-BI1-LCP	In/Uut Fluid across LCP	-4.000E+01	4.000E+01	К	1.664E+00	2.080E+00
715	DT 133	DIE-000-B14-LCP	In/Out Fluid across LCP	-4.000E+01	4.000E+01	K	1.664E+00	2.080E+00
716	DT 134	DTE-000-B16-LCP	In/Out Fluid across LCP	-4. 000E+01	4.000E+01	К	1.664E+00	2. 080E+00
717	DT 135	DIE-000-B18-LCP	In/Out Fluid across LCP	-4. 000E+01	4. 000E+01	К	1.664E+00	2. 080E+00
718	DT 136	DTE-000-B20-LCP	In/Out Fluid across LCP	-4.000E+01	4. 000E+01	К	1.664E+00	2.080E+00
719	DT 137	DTE-000-B21-LCP	In/Out Fluid across LCP	-4. 000E+01	4. 000E+01	К	1.664E+00	2.080E+00

Table A.1(Cont'd)	(10/25)
	(10/20)

	Function	T		Pa			Uncort	aintu
SEQ No.	ID	Tagname	Location	10	иge HI	Unit	-+ ARS	
720	DT 120	DTE-000-822-1-00	In/Out Eluid scross LCP	_4 000E+01	1 000E+01	ĸ	1 6645+00	2 0805-00
720	DT 130			-4.000E+01	4.000E+01		1.004E+00	2.000E+00
121	DI 139	DIE-U86A-SGA	SGA Wall 1/U Pos. I	-4.000E+01	4.000E+01	K	1.664E+00	2.080E+00
722	DI 140	DIE-13/A-SUA	SGA Wall 1/0 Pos. /	-4.000E+01	4.000E+01	N	1,004E+00	2.080E+00
723	DI 141	DIE-1/8A-SUA	SuA Wall 1/0 Pos. 10	-4.000E+01	4.000E+01	N.	1.004E+00	2.080E+00
/24	DI 142	DIE-223A-SGA	SGA Steam Dome Wall 1/0	-4.000E+01	4.000E+01	K	1.664E+00	2.080E+00
725	DT 143	DTE-IN0861-SGA	SGA U-Tube (1, IN) Pos. 1	~1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
726	DT 144	DTE-EX0861-SGA	"SGA U-Tube (1, EX) Pos. 1"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
727	DT 145	DTE-IN0862-SGA	"SGA U-Tube (2, IN) Pos. 1"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
728	DT 146	DTE-EX0862-SGA	"SGA U-Tube (2, EX) Pos. 1"	-1.000E+02	1.000E+02	K	1,660E+00	8. 300E-01
729	DT 147	DTE-IN0863-SGA	"SGA U-Tube (3, IN) Pos. 1"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
730	DT 148	DTE-EX0863-SGA	"SGA U-Tube (3, EX) Pos. 1"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
731	DT 149	DTE-IN0991-SGA	"SGA U-Tube(1, IN) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
732	DT 150	DTE-EX0991-SGA	"SGA U-Tube (1, EX) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
733	DT 151	DTE-IN0992-SGA	"SGA U-Tube (2, IN) Pos. 3"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
734	DT 152	DTE-EX0992-SGA	"SGA U-Tube (2, EX) Pos. 3"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
735	DT 153	DTE-IN0993-SGA	"SGA U-Tube (3, IN) Pos. 3"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
736	DT 154	DTE-EX0993-SGA	"SGA U-Tube (3, EX) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
737	DT 155	DTE-IN1121-SGA	"SGA U-Tube(1, IN) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
738	DT 156	DTE-EX1121-SGA	"SGA U-Tube(1, EX) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
739	DT 157	DTE-IN1122-SGA	"SGA U-Tube(2, IN) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
740	DT 158	DTE-EX1122-SGA	"SGA U-Tube (2, EX) Pos. 5"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
741	DT 159	DTE-IN1123-SGA	"SGA U-Tube (3, IN) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
742	DT 160	DTE-EX1123-SGA	"SGA U-Tube (3. EX) Pos. 5"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
743	DT 161	DTE-IN1371-SGA	"SGA U-Tube (1, IN) Pos. 7"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
744	DT 162	DTE-EX1371-SGA	"SGA U-Tube (1. EX) Pos. 7"	-1.000F+02	1.000E+02	K	1.660E+00	8. 300E-01
745	DT 163	DTE-IN1372-SGA	"SGA U-Tube (2, IN) Pos. 7"	-1,000F+02	1,000F+02	K	1.660E+00	8. 300E-01
746	DT 164	DTE-EX1372-SGA	"SGA U-Tube (2, FX) Pos 7"	-1,000F+02	1,000F+02	к	1,660F+00	8, 300F-01
747	DT 165	DTE-IN1373-SGA	"SGA U-Tube (3 IN) Pos 7"	-1,000F+02	1,000F+02	ĸ	1,660F+00	8, 300F-01
749	DT 166	DTE EX1373 SGA	"SGA II-Tube (3, FX) Pos 7"	-1.000E+02	1.000F+02	ĸ	1.660F+00	8. 300F-01
740	DT 167	DTE-IN1632-S64	"SGA U-Tube (2 IN) Pos 9"	-1,000E+02	1.000F+02	ĸ	1,660F+00	8, 300F-01
750	DT 168	DTE-EX1632-SGA	"SGA II-Tube (2 FX) Pos 9"	-1 000E+02	1.000F+02	ĸ	1.660E+00	8.300F-01
751	DT 160	DTE-IN1633-SCA	"SGA II-Tube (3 IN) Poe 0"	-1 000E+02	1 000E+02	ĸ	1 660E+00	8 300F-01
752	DT 170	DTE-FX1633-SGA	"SGA II-Tube (3 EX) Pos 9"	-1 000E+02	1 000F+02	K	1 660F+00	8 300F-01
752	DT 170	DTE_IN1701_SGA	"SGA II-Tube (1 IN) Pos 10"	-1.000E+02	1.000E+02	ĸ	1.660E+00	8 300E-01
753	DT 172	DTE-IN1702-SCA	"SGA II-Tube (2, IN) Pos. 10"	-1.000E+02	1.000E+02	K	1.660E+00	8 300E-01
704	DT 172	DTE IN1062 CCA	"CCA II Tube (2, IN) Pos. 10	-1.000E+02	1.0005-02	ĸ	1.000E+00	0.300E-01
700	DT 174	DIE-INI803-SUA	SUA U-TUDE (S, TN) POS. TT	-1.000E+02	1.000E+02	ĸ	1.000E+00	3. 300E-01
700	DT 174	DIE-U80A-SUD		-4.000E+01	4.000E+01	<u> </u>	1.004E+00	2.080E+00
/5/	DI 175	DIE-13/A-SUB	SGB Wall 1/0 Pos. /	-4.000E+01	4.000E+01	N	1.004E+00	2.080E+00
758	DT 170	DIE-1/8A-SUD	Sub mail 1/0 Pos. 10	-4.000E+01	4.000E+01	ĸ	1.004E+00	2.000000
/59	DI 1//	DIE-223A-SUB	SGB Steam Dome Wall 1/U	-4.000E+01	4.000E+01	N. K	1.004E+00	2.080E+00
/60	DI 178	DIE-IN0861-SGB	SGB U-Tube (1, IN) Pos. 1	-1.000E+02	1.000E+02	K K	1.000E+00	8.300E-01
/61	DI 1/9	DIE-EX0861-SGB	SGB U-Tube (1, EX) Pos. 1	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
/62	DI 180	DIE-IN0862-SGB	SGB U-Tube (2, IN) Pos. 1	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
763	DI 181	DIE-EX0862-SGB	SGB U-Tube (2, EX) Pos. 1	-1.000E+02	1.000E+02	ĸ	1.660E+00	8.300E-01
764	DI 182	DIE-IN0863-SGB	SGB U-Tube (3, TN) Pos. 1	-1.000E+02	1.000E+02	ĸ	1.660E+00	8.300E-01
765	DT 183	DTE-EX0863-SGB	"SGB U-Tube (3, EX) Pos. 1"	-1.000E+02	1.000E+02	<u>K</u>	1.660E+00	8.300E-01
766	DT 184	DTE-IN0991-SGB	"SGB U-Tube (1, IN) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
767	DT 185	DTE-EX0991-SGB	"SGB U-Tube (1, EX) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
768	DT 186	DTE-IN0992-SGB	SGB U-Tube (2, IN) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
769	DT 187	DTE-EX0992-SGB	"SGB U-Tube(2, EX) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
770	DT 188	DTE-IN0993-SGB	"SGB U-Tube (3, IN) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
771	DT 189	DTE-EX0993-SGB	"SGB U-Tube (3, EX) Pos. 3"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
772	DT 190	DTE-IN1121-SGB	"SGB U-Tube(1, IN) Pos.5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
773	DT 191	DTE-EX1121-SGB	"SGB U-Tube(1, EX) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
774	DT 192	DTE-IN1122-SGB	"SGB U-Tube (2, IN) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
775	DT 193	DTE-EX1122-SGB	"SGB U-Tube (2, EX) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
776	DT 194	DTE-IN1123-SGB	"SGB U-Tube (3, IN) Pos. 5"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
777	DT 195	DTE-EX1123-SGB	"SGB U-Tube (3, EX) Pos. 5"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E01
778	DT 196	DTE-IN1371-SGB	"SGB U-Tube(1, IN) Pos. 7"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
779	DT 197	DTE-EX1371-SGB	"SGB U-Tube (1, EX) Pos. 7"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
780	DT 198	DTE-IN1372-SGB	"SGB U-Tube(2, IN) Pos. 7"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
781	DT 199	DTE-EX1372-SGB	"SGB U-Tube(2, EX) Pos. 7"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
782	DT 200	DTE-IN1373-SGB	"SGB U-Tube (3, IN) Pos. 7"	-1.000E+02	1.000E+02	К	1.660E+00	8. 300E-01
783	DT 201	DTE-EX1373-SGB	"SGB U-Tube (3, EX) Pos. 7"	-1.000E+02	1.000E+02	K	1.660E+00	8. 300E-01
784	DT 202	DTE-IN1632-SGB	"SGB U-Tube(2, IN) Pos. 9"	-1.000E+02	1.000E+02	K	1.660E+00	8.300E-01
785	DT 203	DTE-EX1632-SGB	"SGB U-Tube (2, EX) Pos. 9"	-1.000E+02	1.000E+02	К	1.660E+00	8.300E-01
786	DT 204	DTE-IN1633-SGB	"SGB U-Tube (3. IN) Pos. 9"	-1.000F+02	1.000E+02	K	1.660E+00	8. 300E-01
787	DT 205	DTE-EX1633-SGB	"SGB U-Tube (3, EX) Pos. 9"	-1.000E+02	1,000E+02	K	1.660E+00	8. 300E-01
788	DT 206	DTE-IN1701-SGB	"SGB U-Tube (1. IN) Pos 10"	-1,000F+02	1,000F+02	K	1.660E+00	8.300E-01
780	DT 207	DTE-IN1782-SGR	"SGB 11-Tube (2 IN) Post 10"	-1 000E+02	1 000F+02	ĸ	1.660F+00	8, 300F-01
705	DT 200	DTE-IN1863-SCR	"SGB II-Tube (3 IN) Pos 11"	-1 000E+02	1 000E+02	ĸ	1,660F+00	8. 300E-01
190	DI 200		040 0 1406 (0, 18) F05. 11	1.0002.02	1.000L'0Z	<u>n</u>	1.0002.00	0.0002 01
701	тш +	TWEODOR ULA	MA Ding Inner Well	2 7005.02	7 2005-02	¥	3 3075+00	7 3505-01
/91				2.7000+02	7.200E+02	×	3.307E+00	7 3505-01
/92				2.7000+02	7 2005-02	r r	3 3075+00	7 3505-01
/93	111 3	TWE050B-LSA	LSA Pipe inner Wall	2. /UUE+U2	7.200E+02	Ň	3. 30/E+00	7 2505 01
/94	11/ 4	IWEUDUB-PCA	PUA Inner Wall	2. 700E+02	7. 200E+02	A v	3. 30/E+00	7.350E-01
795	11/ 5	IWEU/UB-CLA	ULA Pipe Inner Wall	Z. /UUE+02	7. 200E+02	K	3. 307E+00	7.350E-01
796	TW 6	TWE080B-CLA	ULA Pipe Inner Wall	2. /00E+02	7.200E+02	<u> </u>	3.307E+00	1.350E-01
797	1₩ 7	IWE160B-HLB	HLB Pipe Inner Wall	2. 700E+02	1.200E+02	K	3.30/E+00	1.350E-01
798	TW 8	TWE170B-HLB	HLB Pipe Inner Wall	2. 700E+02	7. 200E+02	<u> </u>	3.307E+00	[/. 350E-01

Table A.	1(Cont'd)	(11/25)
----------	-----------	---------

SEQ No.	Function	Tagname	Location	Ran	ige H I	Unit	Uncer + ABS	
700	TW Q	TWEIDOR-LCR	ISB Pipe Inper Wall	2 7005+02	7 2005+02	ĸ	2 207E+00	7 350E-01
800	TW 10	TWE2008-PCB	PCB Inner Wall	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
801	TW 11	TWE210B-CLB	CLB Pine Inner Wall	2 700E+02	7 200E+02	к 	3 307E+00	7.350E-01
802	TW 12	TWE220B-CLB	CLB Pipe Inner Wall	2,700E+02	7. 200E+02	ĸ	3. 307E+00	7.350E-01
803	TW 13	TWE280B-PR	PR Surge Line	2. 700E+02	7. 200E+02	K	3.307E+00	7. 350E-01
804	TW 14	TWE431A-SGA	SGA Downcomer A Wall	2.700E+02	6. 700E+02	К	3.108E+00	7.770E-01
805	T₩ 15	TWE432A-SGA	SGA Downcomer B Wall	2.700E+02	6. 700E+02	K	3.108E+00	7.770E-01
806	TW 16	TWE433A-SGA	SGA Downcomer C Wall	2. 700E+02	6.700E+02	K	3.108E+00	7.770E-01
807	TW 17	TWE434A-SGA	SGA Downcomer D Wall	2.700E+02	6.700E+02	K	3.108E+00	7.770E-01
808	TW 18	TWE471A-SGB	SGB Downcomer A Wall	2. 700E+02	6. 700E+02	K	3.108E+00	7.770E-01
809	TW 19	TWE472A-SGB	SGB Downcomer B Wall	2.700E+02	6. 700E+02	K	3.108E+00	7.770E-01
810	TW 20	TWE473A-SGB	SGB Downcomer C Wall	2. 700E+02	6. 700E+02	<u> </u>	3.108E+00	7.770E-01
811	1¥ 21	TWE4/4A-SGB	SGB Downcomer D Wall	2. 700E+02	6. 700E+02	ĸ	3.108E+00	7.770E-01
812	TW 22		"DV Inner Wall EL1.5m, E	2. 700E+02	7.200E+02	K K	3.30/E+00	7.350E-01
010	TW 24	TWE_NOODR_DV	"PV Inner Wall EL O Om N"	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
815	TW 25	TWE-SOOD-PV	"PV Inner Wall EL 0.0m S"	2 700E+02	7.200E+02	K ·	3.307E+00	7.350E-01
816	TW 26	TWE-F0008-PV	"PV Inner Wall FL 0 0m F"	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
817	TW 27	TWE-WOOOB-PV	"PV Inner Wall FL. 0. 0m. W"	2.700E+02	7. 200E+02	к	3. 307E+00	7.350E-01
818	TW 28	TWE-N018B-PV	"PV Inner Wall EL. 1. 8m. N"	2.700E+02	7. 200E+02	K	3.307E+00	7. 350E-01
819	TW 29	TWE-S018B-PV	"PV Inner Wall EL. 1. 8m, S"	2.700E+02	7. 200E+02	K	3.307E+00	7.350E-01
820	TW 30	TWE-E018B-PV	"PV Inner Wall EL.1.8m,E"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
821	TW 31	TWE-W018B-PV	"PV Inner Wall EL.1.8m,W"	2. 700E+02	7.200E+02	К	3.307E+00	7. 350E-01
822	TW 32	TWE-N036B-PV	"PV Inner Wall EL, 3, 6m, N"	2.700E+02	7. 200E+02	К	3.307E+00	7.350E-01
823	TW 33	TWE-S036B-PV	"PV Inner Wall EL. 3. 6m, S"	2. 700E+02	7. 200E+02	К	3.307E+00	7. 350E-01
824	TW 34	TWE-E036B-PV	"PV Inner Wall EL. 3. 6m, E"	2.700E+02	7. 200E+02	K	3.307E+00	7. 350E-01
825	IW 35	IWE-W036B-PV	PV Inner Wall EL. 3. 6m, W"	2. 700E+02	7. 200E+02	<u>K</u>	3.307E+00	7.350E-01
826	TW 35		"PV Inner Wall EL. 6. Um, N	2. /UUE+02	7.200E+02	K K	3.30/E+00	7.350E-01
827	TW 20	TWE-50608-PV	"PV Inner Wall EL. 6. 0m 5"	2.700E+02	7. 200E+02	<u> </u>	3.307E+00	7.350E-01
820	TW 30	TWE-WOGOB-PV	"PV Inner Wall Et 6 0m W"	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
830	TW 40	TWE-E080B-PV	"PV Inner Wall El 8 0m F"	2 700E+02	7 200E+02	К	3 307E+00	7 350E-01
831	TW 41	TWE-W080B-PV	"PV Inner Wall EL. 8. Om. W"	2.700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
832	TW 42	TWE-N000D-CB	"CB Outer Wall EL. O. Om, N"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
833	TW 43	TWE-SOOOD-CB	"CB Outer Wall EL. O. Om, S"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
834	TW 44	TWE-E000D-CB	"CB Outer Wall EL.O.Om, E"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
835	TW 45	TWE-WOOOD-CB	"CB Outer Wall EL.O.Om, W"	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
836	TW 46	TWE-N010D-CB	"CB Outer Wall EL.1.Om,N"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
837	TW 47	TWE-S010D-CB	"CB Outer Wall EL. 1. Om, S"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
838	TW 48	TWE-E010D-CB ·	"CB Outer Wall EL. 1. Om, E"	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
839	1W 49	TWE-WOTOD-CB	CB Outer Wall EL. 1. Um, W	2. 700E+02	9. /00E+02	K	4.312E+00	6.160E-01
041	TW 51		"CR Outer Wall EL I 8m, N	2. 700E+02	9. 700E+02	K	4.312E+00	6.160E-01
842	TW 52	TWE-E018D-CB	"CB Outer Wall EL 1 8m F"	2.700E+02	9.700E+02	ĸ	4.312E+00	6 160E-01
843	TW 53	TWE-W018D-CB	"CB Outer Wall EL 1 8m W"	2 700E+02	9 700E+02	K	4.312E+00	6 160E-01
844	TW 54	TWE-N026D-CB	"CB Outer Wall EL. 2. 6m. N"	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
845	TW 55	TWE-S026D-CB	"CB Outer Wall EL.2.6m,S"	2. 700E+02	9. 700E+02	K	4. 312E+00	6. 160E-01
846	TW 56	TWE-E026D-CB	"CB Outer Wall EL.2.6m,E"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
847	TW 57	TWE-W026D-CB	"CB Outer Wall EL.2.6m,W"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
848	TW 58	TWE-N036D-CB	"CB Outer Wall EL.3.6m,N"	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
849	TW 59	TWE-S036D-CB	"CB Outer Wall EL. 3. 6m, S"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
850	TW 60	IWE-E036D-CB	CB Outer Wall EL. 3. 6m, E"	2.700E+02	9.700E+02	K	4.312E+00	6. 160E-01
851	1W 61		CB Outer Wall EL. 3. 6m, W"	2. /00E+02	9. /00E+02	K	4.312E+00	6. 160E-01
205		TWE-S0400-00	"CB Outer Wall El 4 0m S"	2. /UUE+U2	9. 700E+02	K K	4. 312E+00	0. 100E-01
0J3 85A	TW 64	TWE-E0490-00	"CB Outer Wall F! A Om F"	2. 700E+02	9.700E+02	K	4. 312E+00	6 160E-01
855	TW 65	TWE-W049D-CB	"CB Outer Wall FL 4 9m W"	2.700F+02	9. 700E+02	K	4. 312E+00	6. 160F-01
856	TW 66	TWE-NO60D-CB	"CB Outer Wall EL. 6. Om. N"	2.700E+02	9. 700E+02	K	4.312E+00	6. 160E-01
857	TW 67	TWE-SO60D-CB	"CB Outer Wall EL.6.0m.S"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
858	TW 68	TWE-E060D-CB	"CB Outer Wall EL.6.0m,E"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
859	TW 69	TWE-W060D-CB	"CB Outer Wall EL. 6. Om, W"	2. 700E+02	9. 700E+02	K	4.312E+00	6.160E-01
860	TW 70	TWE-NOOOE-CB	"CB Inner Wall EL. O. Om, N"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
861	TW 71	TWE-SOODE-CB	"CB Inner Wall EL. O. Om, S"	2.700E+02	9. 700E+02	K	4.312E+00	6.160E-01
862	TW 72	TWE-E000E-CB	"CB Inner Wall EL. O. Om, E"	2.700E+02	9.700E+02	K	4.312E+00	6. 160E-01
863	1W/73	TWE-WOUDE-CB	UB Inner Wall EL. 0. 0m, W"	2. 700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
004	111 /4 TW 75	TWE-\$010E-08	CR Inner Wall EL. I. Um, N	2. /UUE+02	9. /UUE+02	K v	4.312E+00	6.160E-01
C00 338	1π /3 TW 76	TWE-E010E-CR	"CB Inner Wall EL 1.0m, S	2.700E+02	9. /UUE+UZ	N K	4.312E+00	6 160E-01
867	T₩ 77	TWE-W010F-CB	"CB Inner Wall FI 1 0m W"	2. 7002+02 2 700E+02	9 700E+02	K	4.312E+00	6 160E-01
868	TW 78	TWE-N018E-CB	"CB Inner Wall EL 1 8m N"	2. 700F+02	9, 700E+02	ĸ	4. 312E+00	6. 160F-01
869	T₩ 79	TWE-S018E-CB	"CB Inner Wall EL. 1.8m.S"	2. 700E+02	9. 700E+02	ĸ	4.312E+00	6. 160E-01
870	TW 80	TWE-E018E-CB	"CB Inner Wall EL. 1.8m,E"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
871	TW 81	TWE-W018E-CB	"CB Inner Wall EL. 1.8m, W"	2.700E+02	9. 700E+02	К	4.312E+00	6.160E-01
872	TW 82	TWE-N026E-CB	"CB Inner Wall EL. 2. 6m, N"	2. 700E+02	9. 700E+02	К	4.312E+00	6.160E-01
873	TW 83	TWE-S026E-CB	"CB Inner Wall EL. 2.6m, S"	2. 700E+02	9. 700E+02	К	4.312E+00	6.160E-01
874	TW 84	TWE-E026E-CB	"CB Inner Wall EL. 2. 6m, E"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
8/5	1W 85	IWE-WO26E-CB	UB Inner Wall EL. 2. 6m, W"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
8/0	111 80 TW 07	TWE_SOOSE_OP	CB Inner Wall EL. 3. 6m, N	2. /00E+02	9. /U0E+02	K	4.312E+00	6.160E-01
011		TWE-E036E-0P	CR Inner Wall EL 3, 0m, S	2. /UUE+UZ	9. /UUE+U2	K	4.312E+00	0. 100E-01
0/0	111 00	INL_LVOUL_UD	UD THE HALL EL. J. ON, E	1 Z. /UUE+UZ }	3. 100E+02	I IN	4. 312E+UU	0.1002-01

Table A.1(Cont'd) (12/25)

050 11	Function	T	1	Ran	ge	11.14	Uncert	ainty
SEU NO.	ID.	lagname	Location	1.0	HI	UNIt	±ABS.	±%FR
879	TW 89	TWE-W036E-CB	"CB Inner Wall EL.3.6m,W"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
880	TW 90	TWE-N049E-CB	"CB inner Wall EL.4.9m,N"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
881	TW 91	TWE-S049E-CB	"CB inner Wall EL.4.9m,S"	2.700E+02	9. 700E+02	K	4. 312E+00	6.160E-01
882	TW 92	TWE-E049E-CB	"CB inner Wall EL. 4.9m, E"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
883	TW 93	TWE-W049E-CB	"CB Inner Wall EL. 4. 9m, W"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
884	11/ 94	TWE-N060E-CB	CB Inner Wall EL. 6. Om, N	2.700E+02	9.700E+02	K	4. 312E+00	6. 160E-01
885	TW 95	TWE-SOBOE-CB	CB Inner Wall EL. 6. Um, S	2.700E+02	9. 700E+02	K	4.312E+00	6. 160E-01
000	TW 07		"CB Inner Wall EL 6 0m W"	2.700E+02	9. 700E+02	ĸ	4.312E+00	6.160E-01
888	TW 08	TWE-IN038802-UCPP	"IICP I Surf EL 3 8m BO2"	2.700E+02	9.700E+02	ĸ	4.312E+00	6 160E-01
889	TW 99	TWE-IN038804-UCPP	"IICP 1 Surf EL 3 8m B04"	2 700E+02	9 700E+02	К К	4.312E+00	6 160E-01
890	TW 100	TWE-IN038B06-UCPP	"UCP L. Surf. EL. 3. 8m. B06"	2.700E+02	9. 700E+02	K	4. 312E+00	6. 160E-01
891	TW 101	TWE-IN038B08-UCPP	"UCP L. Surf. EL. 3. 8m, B08"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
892	TW 102	TWE-IN038B21-UCPP	"UCP L.Surf. EL.3.8m,C"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
893	TW 103	TWE-EX040B02-UCPP	"UCP U.Surf. EL.4.Om, B02"	2.700E+02	9.700E+02	ĸ	4. 312E+00	6.160E-01
894	TW 104	TWE-EX040804-UCPP	"UCP U.Surf. EL.4.0m, B04"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
895	TW 105	TWE-EX040B06-UCPP	"UCP U. Surf. EL. 4. Om, B06"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
896	T₩ 106	TWE-EX040B08-UCPP	"UCP U.Surf. EL.4.0m, B08"	2. 700E+02	9.700E+02	К	4. 312E+00	6.160E-01
897	TW 107	TWE-EX040B21-UCPP	"UCP U. Surf. EL. 4. Om, C"	2.700E+02	9.700E+02	<u>K</u>	4.312E+00	6.160E-01
898	TW 108	TWE-063-B09-UCSP	"UCSP L. Surf. EL. 6.3m, B09"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
899	TW 109	TWE-065-809-065P	UCSP U. Surt. EL. 6. 5m, B09	2.700E+02	9.700E+02	K	4. 312E+00	6. 160E-01
900	TW 111		"IIP Str. Surf. EL. 4. 7m West"	2.700E+02	9.700E+02	ĸ	4.312E+00	6 160E-01
902	TW 112	TWE-E056G-UP	"IIP Str Surf EL 5 6m East"	2 700E+02	9 700E+02	K	4.312E+00	6 160E-01
903	TW 113	TWE-W056G-UP	"IIP Str. Surf. EL 5.6m West"	2.700E+02	9.700E+02	ĸ	4. 312E+00	6. 160E-01
904	TW 114	TWE-080G-UH	"UH Str. Surf. EL.8.0m.C"	2.700E+02	9, 700E+02	ĸ	4. 312E+00	6. 160E-01
905	TW 115	TWE-B01342	"B01 Rod (3, 4) Pos. 2"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
906	TW 116	TWEB01344	"B01 Rod (3, 4) Pos. 4"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
907	TW 117	TWE-B01345	"B01 Rod (3, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
908	TW 118	TWE-B01346	"B01 Rod (3, 4) Pos. 6"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
909	TW 119	TWE-B01347	"B01 Rod(3,4) Pos.7"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
910	TW 120	TWE-B01348	"B01 Rod (3, 4) Pos. 8"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
911	TW 121	TWE-B20431	"B20 Rod (4, 3) Pos. 1"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
912	TW 122	TWE-B20433	"B20 Rod (4, 3) Pos. 3"	2. 700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
913	TW 123	TWE-B20435	B20 Rod (4, 3) Pos. 5	2.700E+02	1.4/0E+03	ĸ	6.444E+00	5.370E-01
	TW 125	TWE-B20430	"B20 Rod (4, 3) Pos. 6	2.700E+02	1.470E+03	ĸ	6 444E+00	5.370E-01
915	TW 125	TWE-B20430	"B20 Rod (4, 3) Pos. 8	2.700E+02	1 470E+03	K	6 444E+00	5 370E-01
917	TW 120	TWE-B02241	"B02 Rod (2, 4) Pos 1"	2.700E+02	1.470E+03	K	6.444F+00	5.370E-01
918	TW 128	TWE-B02242	"B02 Rod (2, 4) Pos. 2"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
919	TW 129	TWE-B02244	"B02 Rod (2, 4) Pos. 4"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E01
920	TW 130	TWE-B02245	"B02 Rod (2, 4) Pos. 5"	2.700E+02	1.470E+03	К	6. 444E+00	5.370E-01
921	TW 131	TWE-B02247	"B02 Rod (2, 4) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
922	TW 132	TWE-B02249	"B02 Rod (2, 4) Pos. 9"	2. 700E+02	1.470E+03	К	6. 444E+00	5. 370E-01
923	TW 133	TWE-B02341	"B02 Rod (3, 4) Pos. 1"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
924	TW 134	TWE-B02343	"B02 Rod (3, 4) Pos. 3"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
925	TW 135	TWE-B02345	B02 Rod (3, 4) Pos. 5	2. 700E+02	1.4/0E+03	K	6.444E+00	5. 370E-01
926	TW 130	TWE-B02340	BUZ ROD (3, 4) POS. 6	2.700E+02	1.470E+03	<u>к</u>	6.444E+00	5.370E-01
927	TW 139	TWE	"B02 Rod (3, 4) Pos. 6	2.700E+02	1.470E+03	K	6 444E+00	5 370E-01
929	TW 139	TWE-B02482	"B02 Rod (4, 8) Pos 2"	2 700E+02	1 470E+03	K	6 444F+00	5.370E-01
930	TW 140	TWEB02484	"B02 Rod (4, 8) Pos. 4"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
931	TW 141	TWE-B02485	B02 Rod (4.8) Pos. 5	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
932	TW 142	TWE-B02486	"B02 Rod (4, 8) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
933	TW 143	TWE-B02487	"B02 Rod (4, 8) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
934	TW 144	TWE-B02488	"B02 Rod (4, 8) Pos. 8"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
935	TW 145	TWE-B03421	"B03 Rod (4, 2) Pos. 1"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
936	IW 146	1WE-B03422	BU3 Rod (4, 2) Pos. 2"	2. /00E+02	1.4/0E+03	K V	6.444E+00	5.3/0E-01
937	1W 14/	INE-BU3424	"B03 K00(4, 2) Pos. 4	2. /UUE+U2	1.4/02+03	к v	0.444E+00	5.370E-01
938	TW 148	TWE_B03420	B03 Rod(4, 2) Pos. 5	2.700E+02	1.4/UE+U3	K 1	0.444E+00 6 444E+00	5.370E-01
939	TW 150	TWE-B03429	"B03 Rod (4, 2) Pos 9"	2.700E+02	1. 470F+03	K	6. 444F+00	5. 370F-01
941	TW 151	TWE-B03431	"B03 Rod (4, 3) Pos. 1"	2.700E+02	1.470F+03	ĸ	6.444E+00	5. 370E-01
942	TW 152	TWE-B03433	"B03 Rod (4, 3) Pos. 3"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
943	TW 153	TWE-B03435	"B03 Rod (4, 3) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
944	TW 154	TWE-B03436	"B03 Rod (4, 3) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
945	T₩ 155	TWE-B03438	"B03 Rod (4, 3) Pos. 8"	2.700E+02	1.470E+03	К	6. 444E+00	5. 370E-01
946	TW 156	TWE-B03439	"B03 Rod (4, 3) Pos. 9"	2.700E+02	1.470E+03	К	6.444E+00	5.370E-01
947	TW 157	TWE-B03842	"B03 Rod (8, 4) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
948	TW 158	TWE-B03844	B03 Rod (8, 4) Pos. 4"	2.700E+02	1.470E+03	K	6.444E+00	5.3/0E-01
949	TW 159	IWE-B03845	BU3 Rod (8, 4) Pos. 5"	2. /00E+02	1.4/0E+03	K	6.444E+00	5.3/0E-01
950	IW 160	INE-BU3840	BUJ KOD(8, 4) POS. 6	2. 700E+02	1.4/0E+03	<u>к</u>	0.444E+00	5.370E-01
951		TWE-B03849	"B03 Rod (8 4) Poc 9"	2.700E+02	1 470E+03	K K	0.444E+00	5.370E-01
952	TW 163	TWE	"B04 Rod (4 3) Pos 2"	2 700E+02	1 470E+03	K	6 444F+00	5.370E-01
954	TW 164	TWE-B04434	"B04 Rod (4, 3) Pos. 4"	2,700F+02	1. 470E+03	K	6, 444F+00	5, 370E-01
955	TW 165	TWE-B04435	"B04 Rod (4. 3) Pos. 5"	2.700E+02	1. 470E+03	K	6.444E+00	5. 370E-01
956	TW 166	TWE-B04436	"B04 Rod (4, 3) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
957	TW 167	TWE-B04437	"B04 Rod (4, 3) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
958	TW 168	TWE-B04438	"B04 Rod (4, 3) Pos. 8"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01

Table A.1(Cont'd)	(13/25)
-------------------	---------

	Function		1	Rar	17P		Uncert	ainty
SEQ No.	ID	Tagname	Location	10	н	Unit		+ %FR
050	TW 100		"DOE D- 1/2 () D 0"	0.7005.00	1 4705-02	V		N
959	10 169	TWE-805342	BU5 Rod (3, 4) Pos. 2	2. 700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
960	10 170	TWE-805344	BU5 Rod (3, 4) Pos. 4	2.700E+02	1.4/0E+03	K	6.444E+00	5. 370E-01
961	10 1/1	TWE-805345	B05 Rod (3, 4) Pos. 5	2.700E+02	1.4/0E+03	<u> </u>	6.444E+00	5.370E-01
962	10/172	TWE-B05346	B05 Rod (3, 4) Pos. 6	2. /00E+02	1.4/0E+03	K	6.444E+00	5.3/0E-01
963	TW 173	TWE-B05347	"B05 Rod (3, 4) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
964	<u>TW 174</u>	TWE-B05348	"B05 Rod (3, 4) Pos. 8"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
965	TW 175	TWE-B05172	"B05 Rod(1,7) Pos.2"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
966	TW 176	TWE-B05174	"B05 Rod(1, 7) Pos. 4"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
967	TW 177	TWE-B05175	"B05 Rod (1, 7) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
968	TW 178	TWE-B05176	"B05 Rod(1,7) Pos.6"	2. 700E+02	1.470E+03	К	6.444E+00	5. 370E-01
969	TW 179	TWE-B05177	"B05 Rod (1, 7) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
970	TW 180	TWE-B05178	"B05 Rod(1,7) Pos.8"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
971	TW 181	TWE-B06241	"B06 Rod (2, 4) Pos. 1"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
972	TW 182	TWE-B06242	"B06 Rod (2, 4) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
973	TW 183	TWEB06244	"B06 Rod (2, 4) Pos. 4"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01
974	TW 184	TWE-B06245	"B06 Rod (2, 4) Pos. 5"	2, 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
975	TW 185	TWE-B06247	"B06 Rod (2, 4) Pos 7"	2,700E+02	1.470F+03	K	6.444F+00	5.370F-01
976	TW 186	TWE-B06249	"B06 Rod (2 4) Pos 9"	2 700E+02	1 470E+03	ĸ	6 444E+00	5 370E-01
977	TW 187	TWE-B06341	"B06 Rod(3 A) Pos 1"	2 700E+02	1.470E+03	ĸ	6 444E+00	5 370E-01
978	TW 188	TWE-806343	"B06 Rod (3, 4) Pos 3"	2.700E+02	1.470E+03	K	6 444E+00	5 370E-01
070	TW 180	TWE_B06345	"B06 Rod(3,4) Pos.5"	2.7000-02	1.470E+03	ĸ	6 444E+00	5.370E-01
000	TW 100	THE 000343	"PO6 Ped(2,4) Pee 6"	2.7000-02	1.4702+03	N N	6.444E+00	5.370E-01
	TW 101	THE D00340	"PO6 P=d(2,4) Pec 0"	2.700E+02	1,470E+03	n	0.444E+00	5.3705-01
901	TW 100	TWE_D00340	"DOB Pod(2,4) P== 0"	2.7000-02	1.4/UE+U3	N.	0.444E+00	5. 370E-01
982	TW 102	THE DOG49	"DUO RUU(3, 4) POS. 9	2. /UUE+U2	1.4/UE+U3	N V	0.444E+00	5.3/UE-UI
303	TW 104		"DOG Dead(4, 0) Pros. 2	2. /UUE+UZ	1.470E+03	N	0.444E+00	5. 370E-01
984	TW 105	TWE_D06405	DUO KOG(4,8) POS.4	2. /UUE+U2	1.4/0E+03	K.	6.444E+00	5. 3/UE-UI
980	TW 100	TWE-D00400	DUO ROO(4, 8) POS. 5	2. TUUE+U2	1.4/0E+03	N V	0.444E+00	5. 370E-01
980	TW 107	TWE-D00480	DUD ROO(4,8) POS.0	2. /UUE+U2	1.4/0E+03	K.	0.444E+00	5. 3/UE-UI
987	11 197	1WE~B06487	BU6 R00(4, 8) Pos. /	2.700E+02	1.4/0E+03	<u>K</u>	6.444E+00	5.370E-01
988	10 198	1WE-B06488	B06 Rod (4, 8) Pos. 8	2.700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
989	IW 199	1WE-B07421	"B07 Rod (4, 2) Pos. 1"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
990	TW 200	TWE-B07422	"B07 Rod (4, 2) Pos. 2"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
991	TW 201	TWE-B07424	"B07 Rod (4, 2) Pos. 4"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
992	TW 202	TWE-B07425	"B07 Rod (4, 2) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
993	TW 203	TWE-B07427	"B07 Rod (4, 2) Pos. 7"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
994	TW 204	TWE-B07429	"B07 Rod (4, 2) Pos. 9"	2. 700E+02	1.470E+03	ĸ	6.444E+00	5. 370E-01
995	TW 205	TWEB07431	"B07 Rod (4, 3) Pos. 1"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
996	TW 206	TWE-B07433	"B07 Rod (4, 3) Pos. 3"	2.700E+02	1. 470E+03	K	6. 444E+00	5. 370E-01
997	TW 207	TWE-B07435	"B07 Rod (4, 3) Pos. 5"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
998	TW 208	TWE-B07436	"B07 Rod (4, 3) Pos. 6"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
999	TW 209	TWE-807438	"B07 Rod (4, 3) Pos. 8"	2.700E+02	1.470E+03	К	6.444E+00	5.370E-01
1000	TW 210	TWE-807439	"B07 Rod (4, 3) Pos. 9"	2. 700E+02	1.470E+03	К	6.444E+00	5. 370E-01
1001	TW 211	TWE-B07842	"B07 Rod (8, 4) Pos. 2"	2.700E+02	1.470E+03	К	6. 444E+00	5. 370E-01
1002	TW 212	TWE-B07844	"B07 Rod (8, 4) Pos. 4"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1003	TW 213	TWE-B07845	"B07 Rod (8, 4) Pos. 5"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01
1004	TW 214	TWE-B07846	"B07 Rod (8, 4) Pos. 6"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01
1005	TW 215	TWE-B07847	"B07 Rod (8, 4) Pos, 7"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01
1006	TW 216	TWE-B07848	"B07 Rod (8, 4) Pos. 8"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1007	TW 217	TWE-B08222	"B08 Rod (2, 2) Pos. 2"	2.700F+02	9 700F+02	K	4 312E+00	6 160F-01
1008	TW 218	TWE-B08224	"B08 Rod (2, 2) Pos. 4"	2.700F+02	9 700E+02	ĸ	4 312E+00	6 160E-01
1009	TW 219	TWE-B08225	"B08 Rod (2, 2) Pos. 5"	2.700F+02	9 700E+02	ĸ	4 312E+00	6 160E-01
1010	TW 220	TWE-B08226	"B08 Rod (2, 2) Pos. 6"	2 700E+02	9 700E+02	<u> </u>	4.312E+00	6 160E-01
1011	TW 221	TWE-B08227	"B08 Rod (2 2) Pos 7"	2 700E+02	9 700E+02	<u>к</u>	4 312E+00	6 160E-01
1012	TW 222	TWE-B08228	"B08 Rod(2, 2) Pos 8"	2 700E+02	9 700E+02	ĸ	4.312E+00	6 1605-01
1013	TW 223	TWE-B08432	"B08 Rod (4 3) Pos 2"	2 700E+02	1 470E+02		6 444E+00	5 370E-01
1014	TW 224	TWE-B08434	"B08 Rod (4, 3) Pos 4"	2 7005+02	1 4705+02	K	6 444E+00	5 370E-01
1015	TW 225	TWE-B08435	"B08 Rod (4, 3) Pos 5"	2 7005+02	1 4705+02		6 44/E±00	5.370E-01
1016	TW 226	TWE-B08436	"B08 Rod (4, 3) Pos 6"	2 700E+02	1 4705+02	K	6 44AE±00	5.370E-01
1017	TW 227	TWE-B08437	"B08 Rod (4, 3) Pos 7"	2.7000+02	1 4705+02	K	6 444E±00	5 370E-01
1018	TW 228	TWE-B08438	"B08 Rod (4, 3) Pos 8"	2.7000-02	1 4705+02		6 444E+00	5.370E-01
1010	TW 220	TWE-B00440	"B09 Rod (4, 4) Pos 2"	2.7000-02	1 4705+02	- N	6 444E+00	5.370E-01
1020	TW 220	THE 009442	"P00 Ped(4, 4) Pee 4"	2.700E+02	1.470E+03	<u> </u>	0.444E+00	5. 3705-01
1020	TW 221	TWE	"R00 Rod (4, 4) Pos. 4	2. /UUE+UZ	1.470E+03		6 444E+00	5. 3/0E-01
1021	TW 222	TWE_R00446	"R00 Rod (4, 4) Pos. 3	2. /UUE+UZ	1.4705.00		0.444E+00	5. STUE-UI
1022	TW 202	TWE_R00447	"B09 Rod (4, 4) Pos. 0	2. 700E+02	1.4705-02	N	0.444E+UU	5. 370E-01
1023	TW 224	TWE_B00449	"PO0 Pod (4, 4) Pos. /	2.7000+02	1.4/UE+U3	<u> </u>	0.444E+00	5. 3/UE-UI
1024	TW 204	TWE-R10441	"P10 Pod (4, 4) Pos. 6	2. /UUE+UZ	1.470E+03	N	0.444E+UU	5. 370E-01
1020	111 Z33	111E*D10441	DIU KOQ (4, 4) POS. 1	2. /UUE+U2	1.4/0E+03	K	0.444E+00	5. 3/0E-01
1020	TW 207	TWE-D10442	DIU KOG (4, 4) POS. 2	2. /UUE+U2	1.4/0E+03	K	6.444E+00	5. 3/0E-01
1027	<u>1π 23/</u> TW 000		DIU KOG (4, 4) POS. 4	2. /00E+02	1.4/0E+03	K	6.444E+00	5.3/0E-01
1028	11 238	INE-BIU445	BIU Kod (4, 4) Pos. 5	2. /U0E+02	1.4/0E+03	K	6. 444E+00	5. 370E-01
1029	111 239	INE-BIU44/	BIU Rod (4, 4) Pos. 7"	2. 700E+02	1.470E+03	<u> </u>	6.444E+00	5. 370E-01
1030	1W 240	IWE-B10449	BIU Rod (4, 4) Pos. 9"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1031	IW 241	IWE-B10451	B10 Rod (4, 5) Pos. 1"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1032	IW 242	IWE-B10453	B10 Rod (4, 5) Pos. 3"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1033	1₩ 243	IWE-B10455	B10 Rod (4, 5) Pos. 5"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1034	1₩ 244	IWE-B10456	B10 Rod (4, 5) Pos. 6"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1035	1₩ 245	IWE-B10458	B10 Rod (4, 5) Pos. 8"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1036	IW 246	IWE-B10459	"B10 Rod (4, 5) Pos. 9"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1037	IW 247	IWE-B11442	"B11 Rod (4, 4) Pos. 2"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1038	T₩ 248	IWE-B11444	"B11 Rod(4, 4) Pos. 4"	2. 700E+02	1.470E+03	ĸ	6. 444E+00	5. 370E-01

T11 A 1(0 (21)	(14/25)	
Table A. I (Cont'd)	(14/25)	

	Funation			Dom	σe		Incort	ainty
SEQ No.	FUNCTION	Tagname	Location		ы П	Unit		(CD
	10.			LU	пі		TADS.	100 K
1039	TW 249	TWE-B11445	"B11 Rod (4, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1040	TW 250	TWE-B11446	"B11 Rod (4, 4) Pos. 6"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1041	TW 251	TWE-B11447	"B11 Rod (4, 4) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1042	TW 252	TWE-B11448	"B11 Rod (4, 4) Pos. 8"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1043	TW 253	TWE-B11172	"B11 Rod (1, 7) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1044	TW 254	TWE-B11174	"B11 Rod (1 7) Pos 4"	2 700F+02	1.470E+03	К	6.444E+00	5.370E-01
1044	TW 255	TWE-D11175	"B11 Rod (1, 7) Pop. 5"	2 700E+02	1.470E+03	ĸ	6 444E+00	5 370E-01
1045	111 200	111C-D11173	"D11 D- 4(1, 7) Pos. 5	2.7000-02	1.4700.00	ĸ	6 444E+00	5 270E-01
1046	111 256	IWE-BIII/6	BII Rod (1, 7) Pos. 6	2. 700E+02	1.4702+03	K	0.444E+00	5.3700-01
1047	TW 257	TWE-B11177	"B11 Rod (1, 7) Pos. 7	2. 700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1048	T₩ 258	TWE-B11178	"B11 Rod(1, 7) Pos. 8"	2.700E+02	1.470E+03	<u> </u>	6.444E+00	5.370E-01
1049	TW 259	TWE-B12262	"B12 Rod (2, 6) Pos. 2"	2. 700E+02	9.700E+02	K	4. 312E+00	6.160E-01
1050	TW 260	TWE-B12264	"B12 Rod (2, 6) Pos. 4"	2. 700E+02	9.700E+02	K	4.312E+00	6.160E-01
1051	TW 261	TWE-B12265	"B12 Rod (2, 6) Pos, 5"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
1052	TW 262	TWE-B12266	"B12 Rod (2, 6) Pos 6"	2 700E+02	9 700F+02	К	4.312F+00	6.160E-01
1052	TH 202	TWE D12200	"P12 Rod (2, 6) Pop. 7"	2 700E+02	0.700E+02	K	4 312E+00	6 160E-01
1033	TH 203	THE D12207	"D12 Rod (2, 0) Pos. 7	2.7001.02	0.700E+02	ĸ	4.012E+00	6 160E-01
1054	11 264	TWE-B12268	B12 R0d (2, 6) P05.8	2. 700E+02	9. 700E+02	K	4. 312E+00	0.100L-01
1055	TW 265	TWE-B12441	B12 Rod (4, 4) Pos. 1	2. 700E+02	1.470E+03	ĸ	6.444E+00	5. 370E-01
1056	TW 266	TWE-B12442	"B12 Rod (4, 4) Pos. 2"	2. 700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
1057	TW 267	TWE-B12444	"B12 Rod (4, 4) Pos. 4"	2. 700E+02	1. 470E+03	K	6. 444E+00	5. 370E-01
1058	TW 268	TWE-B12445	"B12 Rod (4, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1059	TW 269	TWEB12447	"B12 Rod (4, 4) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1060	TW 270	TWEB12449	"B12 Rod (4 4) Pos 9"	2 700F+02	1 470F+03	К	6.444E+00	5.370E-01
1000	TH 270	TWE_P12421	"B12 Rod (4, 3) Pos. 1"	2 700E+02	1 470E+03	ĸ	6 444E+00	5 370E-01
1000	TW 070	TWE_012401	"B12 Rod (4 2) Doc 2"	2 7005-02	1 4705-02	ĸ	6 444E±00	5 370E-01
1062	11 272	1WE-B12433	B12 R0d (4, 3) POS. 3	2. 700E+02	1.470E+03	N	0.444E+00	5.370E-01
1063	TW 273	1WE-B12435	BIZ ROD (4, 3) POS. 5	2. /UUE+U2	1.4/0E+03	ĸ	0.444E+UU	5. 370E-01
1064	TW 274	TWE-B12436	"B12 Rod (4, 3) Pos. 6"	2.700E+02	1.470E+03	К	6. 444E+00	5.3/0E-01
1065	TW 275	TWE-B12438	"B12 Rod (4, 3) Pos. 8"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1066	TW 276	TWE-B12439	"B12 Rod (4, 3) Pos. 9"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1067	TW 277	TWE-B13662	"B13 Rod (6, 6) Pos, 2"	2,700E+02	9.700E+02	ĸ	4. 312E+00	6.160E-01
1068	TW 278	TWE-B13664	"B13 Rod (6, 6) Pos 4"	2 700F+02	9.700E+02	К	4.312E+00	6.160E-01
1000	TW 270	TWE-P12665	"B13 Rod (6, 6) Pos. 5"	2 700E+02	9 700E+02	ĸ	4 312E+00	6 160E-01
1009	111 2/9	THE-D10000	013 ROU(0, 0) POS. 3	2.7000102	0.700E+02	ĸ	4.0122.00	6 160E-01
1070	11 280	1WE-B13666	BI3 ROD (0, 6) POS. 6	2. 700E+02	9. 700E+02	<u> </u>	4. 312E+00	0. 100E-01
1071	TW 281	TWE-B13667	B13 Rod (6, 6) Pos. /	2. 700E+02	9. 700E+02	<u>N</u>	4. 312E+00	6.160E-01
1072	TW 282	TWE-B13668	"B13 Rod (6, 6) Pos. 8"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
1073	TW 283	TWE-B13442	"B13 Rod (4, 4) Pos. 2"	2.700E+02	1. 470E+03	K	6.444E+00	5. 370E-01
1074	TW 284	TWE-B13444	"B13 Rod (4, 4) Pos. 4"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1075	TW 285	TWE-B13445	"B13 Rod (4, 4) Pos, 5"	2.700E+02	1.470E+03	К	6.444E+00	5.370E-01
1076	TW 286	TWE-B13446	"B13 Rod (4 4) Pos 6"	2 700F+02	1.470E+03	К	6.444E+00	5.370E-01
1077	TW 200	TWE_010440	"B13 Pod (A A) Pos 7"	2 700E+02	1 470E+03	ĸ	6 444F+00	5 370E-01
1077	TH 207	TWE 010447	"P12 Pod (4, 4) Pop 9"	2 700E+02	1.470E+03	K	6 444E+00	5.370E-01
1078	11 288	1WE-B13448	DI3 R00(4, 4) PUS. 8	2.700E+02	1.4700-03	K	6.444E+00	5.370E 01
1079	IW 289	IWE-B14541	B14 Rod (5, 4) Pos. 1	2. 700E+02	1.470E+03	N N	0.444E+00	5. 370E-01
1080	TW 290	TWE-B14542	B14 Rod (5, 4) Pos. 2	2.700E+02	1.4/0E+03	<u> </u>	6.444E+00	5.370E~01
1081	TW 291	TWE-B14544	"B14 Rod (5, 4) Pos. 4"	2. 700E+02	1.470E+03	K	6. 444E+00	5.3/0E-01
1082	TW 292	TWE-B14545	"B14 Rod (5, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1083	TW 293	TWE-B14547	"B14 Rod (5, 4) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1084	TW 294	TWF-B14549	"B14 Rod (5, 4) Pos, 9"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1085	TW 205	TWE-B14441	"B14 Rod (4 4) Pos 1"	2 700F+02	1 470F+03	К	6.444E+00	5.370E-01
1005	TH 200	TWE D14441	"P14 Rod (4, 4) Poc. 2"	2 700E+02	1.470E+03	к	6 444E+00	5 370E-01
1080	111 290	THE-D14443	B14 R00(4, 4) F05.5	2.7002.02	1.470E+03	N N	6 444E+00	5 270E-01
1087	IW 297	IWE-B14445	B14 Rod (4, 4) Pos. 5	2. 700E+02	1.470E+03	K	0.444E+00	5.3700-01
1088	TW 298	TWE-B14446	B14 Rod (4, 4) Pos. 6	2. 700E+02	1.4/0E+03	<u> </u>	6.444E+00	5.370E-01
1089	TW 299	TWEB14448	"B14 Rod (4, 4) Pos. 8"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1090	TW 300	TWE-B14449	"B14 Rod (4, 4) Pos. 9"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1091	TW 301	TWE-B14172	"B14 Rod (1, 7) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1092	TW 302	TWE-B14174	"B14 Rod (1, 7) Pos. 4"	2.700E+02	1.470E+03	к	6.444E+00	5.370E-01
1093	TW 303	TWE-B14175	"B14 Rod(1,7) Pos.5"	2.700E+02	1.470E+03	К	6.444E+00	5.370E-01
1004	TW 304	TWE-B14176	"B14 Rod (1 7) Pos 6"	2,700F+02	1.470F+03	К	6.444E+00	5.370E-01
1005	TW 205	TWE	"B14 Rod(1 7) Pos 7"	2 700E+02	1.470F+03	к	6,444E+00	5.370E-01
1095	TW 200	TWE_01/170	"Bt/ Rod(1,7) Doc 9"	2 7005+02	1 470F+02	ĸ	6 444E+00	5 370E-01
1096	11/ 306	18E-D141/8	D14 RUU(1, 7) PUS. 8	2. 7005+02	1.470ETU3	N	6 444E-00	5 270E 01
1097	11/ 307	IWE-015441	B15 KOG (4, 4) POS. 1	2. /UUE+U2	1.4/02+03		U. 444E+UU	5.370E-01
1098	TW 308	TWE-B15442	"B15 Rod (4, 4) Pos. 2"	2. /00E+02	1.4/0E+03	K	b. 444E+00	5.3/0E-01
1099	TW 309	TWE-B15444	"B15 Rod (4, 4) Pos. 4"	2. 700E+02	1.470E+03	K K	6. 444E+00	5.370E-01
1100	TW 310	TWE-B15445	"B15 Rod (4, 4) Pos. 5"	2.700E+02	1.470E+03	К	6.444E+00	5.370E-01
1101	TW 311	TWE-B15447	"B15 Rod (4, 4) Pos. 7"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1102	TW 312	TWEB15449	"B15 Rod (4, 4) Pos 9"	2,700E+02	1.470E+03	K	6.444E+00	5.370E-01
1102	TW 212	TWE-B15451	"B15 Rod (4 5) Pos 1"	2 700E+02	1 470F+03	к	6.444F+00	5.370F-01
1103	TW 014	TWE_D10401	"R15 Pod (4, 5) Pog. 2"	2 700E+02	1 470E+02	ĸ	6 444E+00	5 370E-01
1104	111 314	INC-D10403	D10 R00 (4, 0) P05. 3	2. TUUETUZ	1.4705-00		6 AAAF . 00	5 270E 01
1105	1₩ 315	IWE-B15455	B15 K00 (4, 5) Pos. 5	2. /UUE+U2	1.4/0E+03	N	0.444E+00	5.370E-01
1106	TW 316	TWE-B15456	"B15 Rod (4, 5) Pos. 6"	2.700E+02	1.4/0E+03	K	6.444E+00	5.3/0E-01
1107	T₩ 317	TWE-B15458	"B15 Rod (4, 5) Pos. 8"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1108	TW 318	TWE-B15459	"B15 Rod (4, 5) Pos. 9"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1109	TW 319	TWE-B15172	"B15 Rod (1. 7) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1110	TW 320	TWE-B15174	"B15 Rod (1, 7) Pos 4"	2,700E+02	1.470E+03	K	6.444E+00	5.370E-01
1110	TW 201	TWE-R15175	"B15 Rod (1 7) Pos 5"	2 700E+02	1 470F+03	ĸ	6,444F+00	5.370F-01
	TW 000	TWE	"P15 Pod (1, 7) Pos. 6"	2 700E±02	1 470E+02	ĸ	6 444E+00	5 370E-01
1112	1 M 322	INC-DI01/0	010 RUG(1, 7) POS. 0	2. 700E+02	1.470ETU3	- N	6 4445-00	5 270E-01
1113	11 323	IWE-BI51//	BID KOG(1, /) POS. /	2. /UUE+02	1.4/0E+03		0.444E+00	5.370E-01
1114	TW 324	TWE-B15178	"B15 Rod (1, 7) Pos. 8"	2. /00E+02	1.4/0E+03	K	b. 444E+00	5.3/0E-01
1115	TW 325	TWE-B16442	"B16 Rod (4, 4) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
1116	TW 326	TWE-B16444	"B16 Rod (4, 4) Pos. 4"	2.700E+02	1.470E+03	<u>к</u>	6.444E+00	5. 370E-01
1117	TW 327	TWE-B16445	"B16 Rod (4. 4) Pos. 5"	2.700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1118	TW 328	TWE-B16446	"B16 Rod (4, 4) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01

Table A.1	(Cont'd)	(15/25)
-----------	----------	---------

		Function		1	Ran	σe		lincert	ainty
SE	Q No.	ID	Tagname	Location	10	<u>ьс</u> НІ	Unit		+ %FR
	1110	TH 200	TWE DICAAT	"P16 Pad(4 4) Pag 7"	2 7005,02	1 4705+02	V	6 444E+00	E 270E-01
	1119	11 329	TWE-B16447	BIG ROG(4, 4) POS. 7	2. 700E+02	1.470E+03	ĸ	0.444E+00	5. 370E-01
	1120	TW 330	TWE-B16448	B16 Rod (4, 4) Pos. 8	2.700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
	1121	TW 331	TWE-B16172	B16 Rod (1, 7) Pos. 2	2. /00E+02	1.4/0E+03	<u>K</u>	6.444E+00	5.370E-01
	1122	TW 332	TWE-B16174	"B16 Rod(1, 7) Pos. 4"	2. 700E+02	1.470E+03	K	6. 444E+00	5, 370E-01
	1123	TW 333	TWE-B16175	"B16 Rod(1, 7) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1124	TW 334	TWE-B16176	"B16 Rod(1, 7) Pos. 6"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1125	TW 335	TWE-B16177	"B16 Rod (1, 7) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1126	TW 336	TWE-B16178	"B16 Roc (1, 7) Pos. 8"	2. 700E+02	1.470E+03	ĸ	6. 444E+00	5.370E-01
	1127	TW 337	TWE-B17442	"B17 Rod (4, 4) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1128	TW 338	TWE-B17444	"B17 Rod (4, 4) Pos. 4"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1129	TW 339	TWE-B17445	"B17 Rod (4, 4) Pos. 5"	2,700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1130	TW 340	TWE-B17446	"B17 Rod (4, 4) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1131	TW 341	TWF-B17447	"B17 Rod (4 4) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1132	TW 342	TWE-B17448	"B17 Rod (4 4) Pos 8"	2 700E+02	1 470E+03	ĸ	6 444F+00	5 370E-01
	1122	TW 3/3	TWE-B17172	"B17 Rod (1, 7) Pos. 2"	2 700E+02	1 470E+03	K	6 444E+00	5 370E-01
	1134	TW 344	TWE-B17174	"B17 Rod (1, 7) Pos. 4"	2 700E+02	1.470E+03	ĸ	6 444E+00	5 370E-01
	1125	TW 245	TWE_017175	"R17 Rod (1, 7) Ros 5"	2 700E+02	1.470E+03	K K	6 444E+00	5.070E-01
	1100	TW 040	TWE 817176	"P17 Rod (1, 7) Pos. 5	2.7001702	1.470E+03	K	6 444E+00	5.370E-01
	1130	TW 247	TWE D17177	"P17 Rod (1, 7) P08.0	2.700E+02	1.470E+03	ĸ	0.444E+00	5.370E-01
	1137	111 347	111E-D1/1//	D17 R00(1,7) P0S.7	2. 700E+02	1.470E+03	<u> </u>	0.444E+00	5. 370E-01
	1138	111 348	IWE-BI/I/8	B1/ Rod (1, /) Pos. 8	2. 700E+02	1.470E+03	<u> </u>	6.444E+00	5. 370E-01
	1139	11 349	IWE-B18341	B18 Rod (3, 4) Pos. 1	2. /00E+02	1.4/0E+03	K	6.444E+00	5.3/0E-01
	1140	11/ 350	IWE-B18342	B18 Rod (3, 4) Pos. 2"	2. /00E+02	1.4/0E+03	K	6. 444E+00	5. 370E-01
	1141	TW 351	IWE-B18344	B18 Rod (3, 4) Pos. 4"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
-	1142	TW 352	TWE-B18345	"B18 Rod (3, 4) Pos. 5"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1143	TW 353	TWE-B18347	B18 Rod (3, 4) Pos. 7"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1144	TW 354	TWE-B18349	"B18 Rod (3, 4) Pos. 9"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1145	TW 355	TWE-B18441	"B18 Rod (4, 4) Pos. 1"	2.700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1146	TW 356	TWE-B18443	"B18 Rod (4, 4) Pos. 3"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
	1147	TW 357	TWE-B18445	"B18 Rod (4, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1148	TW 358	TWE-B18446	"B18 Rod (4, 4) Pos. 6"	2. 700E+02	1.470E+03	К	6.444E+00	5.370E-01
	1149	TW 359	TWE-B18448	"B18 Rod (4, 4) Pos. 8"	2. 700E+02	1.470E+03	К	6.444E+00	5.370E-01
	1150	TW 360	TWE-B18449	"B18 Rod (4, 4) Pos. 9"	2.700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
	1151	TW 361	TWE-B19451	"B19 Rod (4, 5) Pos. 1"	2.700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
	1152	TW 362	TWE-B19452	"B19 Rod (4, 5) Pos. 2"	2.700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
	1153	TW 363	TWE-B19454	"B19 Rod (4, 5) Pos. 4"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1154	TW 364	TWE-B19455	"B19 Rod (4, 5) Pos. 5"	2.700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
	1155	TW 365	TWE-B19457	"B19 Rod (4, 5) Pos. 7"	2.700E+02	1.470E+03	К	6,444E+00	5.370E-01
	1156	TW 366	TWE-B19459	"B19 Rod (4, 5) Pos, 9"	2, 700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1157	TW 367	TWE-B19441	"B19 Rod (4, 4) Pos, 1"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1158	TW 368	TWE-B19443	"B19 Rod (4, 4) Pos, 3"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1159	TW 369	TWE-B19445	"B19 Rod (4, 4) Pos. 5"	2,700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1160	TW 370	TWE-B19446	"B19 Rod (4, 4) Pos. 6"	2.700E+02	1.470E+03	ĸ	6.444E+00	5.370E-01
	1161	TW 371	TWE-B19448	"B19 Rod (4 4) Pos 8"	2 700F+02	1 470F+03	ĸ	6 444F+00	5 370E-01
	1162	TW 372	TWE-B19449	"B19 Rod (4 4) Pos 9"	2 700E+02	1 470E+03	ĸ	6 444F+00	5 370E-01
	1163	TW 373	TWE-B20441	"B20 Rod (4, 4) Pos. 1"	2 700E+02	1 470E+03	ĸ	6 444E+00	5 370E-01
	1164	TW 374	TWE-B20442	"B20 Rod (4, 4) Pos 2"	2 700E+02	1 470E+03	<u>к</u>	6 444E+00	5 370E-01
	1165	TW 375	TWE-B20444	"B20 Rod (4, 4) Pos. 2"	2 700E+02	1.470E+03		6 444E+00	5 370E-01
	1166	TW 376	TWE-820445	"B20 Rod (4, 4) Pos. 4	2.700E+02	1.470E+03	K	6 444E+00	5.370E-01
	1167	TW 277	TWE_P20447	"P20 Rod (4, 4) Pos. 3	2.7002+02	1.470E+02	K	6 444E+00	5.370L 01
	1160	TW 270	TWE-P20440	"P20 Rod(4, 4) Pop 0"	2.7002102	1.470E+03		6 444L+00	5.370L-01
	1160	TW 270	TWE-D20449	"P21 Pod(4, 4) Pos. 9	2.700E+02	1.470E+03	r v	6.444E+00	5.370E-01
	1170	TW 200	TWE DO1440	DZT ROU(4, 4) FUS. 1	2.7002+02	1.470E+03	N N	0.444E+00	5.370E-01
	1170	TW 201	TWE D01444	"P21 Pod(4,4) P 4"	2. 700E+0Z	1.470E+03	<u>n</u>	0.444E+00	5. 370E-01
	1170	TW 200	TWE 021444	"P01 Pod (4, 4) P05, 4	2. /UUE+UZ	1.4/UE+U3	N V	0.444E+00	5.370E-01
	1172	11 382	I INE-D21440	D21 R00 (4, 4) POS. 5	2. 700E+02	1.4/0E+03	N. K	0.444E+00	5. 370E-01
	11/3	11 383	IWE-BZ144/	DZI KOG (4, 4) POS. /	Z. 700E+02	1.4/0E+03	K	b. 444E+00	5. 370E-01
	11/4	1W 384	IWE-B21449	B21 Rod (4, 4) Pos. 9	2. /U0E+02	1.4/0E+03	<u> </u>	6.444E+00	5.370E-01
	11/5	1₩ 385	IWE-821541	B21 Rod (5, 4) Pos. 1"	2. /00E+02	1.4/0E+03	K	6.444E+00	5.370E-01
	11/6	1W 386	IWE-B21543	B21 Rod (5, 4) Pos. 3"	2. /U0E+02	1.4/0E+03	<u> </u>	6.444E+00	5.3/0E-01
	1177	IW 387	1WE-B21545	B21 Rod (5, 4) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1178	TW 388	IWE-B21546	B21 Rod (5, 4) Pos. 6"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1179	TW 389	TWE-B21548	"B21 Rod (5, 4) Pos. 8"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1180	TW 390	TWE-B21549	"B21 Rod (5, 4) Pos. 9"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1181	TW 391	TWE-B21662	"B21 Rod (6, 6) Pos. 2"	2.700E+02	9.700E+02	K	4. 312E+00	6. 160E-01
	1182	TW 392	TWE-B21664	"B21 Rod (6, 6) Pos. 4"	2.700E+02	9.700E+02	K	4.312E+00	6.160E-01
	1183	TW 393	TWE-B21665	"B21 Rod(6, 6) Pos. 5"	2.700E+02	9.700E+02	К	4.312E+00	6.160E-01
	1184	T₩ 394	TWE-B21666	"B21 Rod(6, 6) Pos. 6"	2.700E+02	9.700E+02	К	4. 312E+00	6.160E-01
	1185	TW 395	TWE-B21667	"B21 Rod(6, 6) Pos. 7"	2.700E+02	9. 700E+02	К	4. 312E+00	6.160E-01
	1186	TW 396	TWE-B21668	"B21 Rod (6, 6) Pos. 8"	2.700E+02	9.700E+02	K	4. 312E+00	6.160E-01
	1187	TW 397	TWE-B21112	"B21 Rod(1, 1) Pos. 2"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1188	TW 398	TWE-B21114	"B21 Rod(1, 1) Pos. 4"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1189	TW 399	TWE-B21115	"B21 Rod(1, 1) Pos. 5"	2.700E+02	1.470E+03	K	6.444E+00	5. 370E-01
	1190	TW 400	TWE-B21116	"B21 Rod(1, 1) Pos. 6"	2.700E+02	1.470E+03	К	6.444E+00	5. 370E-01
	1191	TW 401	TWE-B21117	"B21 Rod(1, 1) Pos. 7"	2.700E+02	1.470E+03	K	6.444E+00	5.370E-01
	1192	TW 402	TWE-B21118	"B21 Rod(1, 1) Pos. 8"	2,700E+02	1,470E+03	K	6.444E+00	5.370E-01
	1193	TW 403	TWE-B22541	"B22 Rod (5, 4) Pos. 1"	2,700E+02	1,470E+03	K	6,444E+00	5.370E-01
	1194	T₩ 404	TWE-B22542	"B22 Rod (5, 4) Pos. 2"	2,700F+02	1.470E+03	K	6,444F+00	5.370E-01
	1195	TW 405	TWE-B22544	"B22 Rod (5, 4) Pos 4"	2.700F+02	1 470F+03	ĸ	6 444F+00	5 370F-01
	1196	TW 406	TWE-B22545	"B22 Rod (5, 4) Pos 5"	2.700F+02	1 470E+03	к	6 444F+00	5 370E-01
	1197	TW 407	TWE-B22547	"B22 Rod (5 4) Pos 7"	2 7005+02	1 470E+02	K	6 444F+00	5 370E-01
	1198	TW 408	TWE-B22549	"B22 Rod (5, 4) Pos 9"	2 700E+02	1 470E+03	K	6 444F+00	5. 370F-01
									v. v.

Table A.1(Cont'd) (16/25)

SEO No	Function	Tognama	Loostian	Rar	ige	12-14	Uncert	ainty
SEU NO.	ID.	ragitalle	Location	LO	HI	Unit	±ABS.	±%FR
1100	00h WT	TWE_020441	"P22 Rod(4 4) Pop 1"	2 7005+02	1 4705+02	ĸ	6 4445+00	5 3705-01
1133	111 403	THE 022441	022 R00(4, 4) P08.1	2. 700L+02	1.4702+00	N K	0.4441+00	5. 370L-01
1200	TW 410	TWE-B22443	B22 Rod (4, 4) Pos. 3	2. 700E+02	1.470E+03	<u> </u>	6.444E+00	5.370E-01
1201	TW 411	TWE-B22445	"B22 Rod (4, 4) Pos. 5"	2. 700E+02	1.470E+03	K	6.444E+00	5.370E-01
1202	TW 412	TWE-B22446	"B22 Rod (4, 4) Pos. 6"	2, 700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1203	TW /12	TWE_822448	"B22 Rod (1 4) Pos 8"	2 700E+02	1 170E+03	K	6 444E+00	5 370E-01
1203	111 413	1#E-D22448	022 Rou (4, 4) Pos. 8	2. 700L+02	1.470L+03	N	0.4441700	5. 570L-01
1204	11 414	TWE-B22449	B22 Rod (4, 4) Pos. 9	2. /00E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1205	TW 415	TWE-B22172	"B22 Rod(1,7) Pos.2"	2.700E+02	1.470E+03	K K	6.444E+00	5.370E-01
1206	TW 416	TWE-B22174	"B22 Rod(1 7) Pos 4"	2 700E+02	1 470E+03	к	6 444F+00	5 370E-01
1200	TH 417	TWE 000176	"B22 Rod (1, 7) Post 4	2.7000.02	1.4705.00		C 444E 00	E 270E 01
1207	11/ 417	TWE-BZZ175	BZZ ROD(1, 7) POS. 5	Z. 700E+0Z	1.4/02+03	л	6.444E+00	5.370E-01
1208	T₩ 418	TWE-B22176	"B22 Rod(1,7) Pos.6"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1209	TW 419	TWE-B22177	"B22 Rod(1 7) Pos 7"	2 700F+02	1 470E+03	К	6 444F+00	5 370F-01
1210	TIN 420	TWE_022170	"P22 Rod (1, 7) Pop. 9"	2.700E+02	1 4705+02	ĸ	6 444E+00	5 270E-01
1210	117 420	THE-DZZ170	BZZ ROU(1, 7) FUS. 0	Z. 700E+02	1.4705-03	n	0,4446.700	5. 370E-01
1211	TW 421	TWE-B23441	"B23 Rod (4, 4) Pos. 1"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1212	TW 422	TWE-B23442	"B23 Rod (4, 4) Pos. 2"	2.700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1212	TW 423	TWE_822444	"B23 Red (4, 4) Pos 4"	2 700E+02	1 470E+03	K	6 444E+00	5 370E-01
1213	111 423	111E-D23444	B23 ROU (4, 4) FUS. 4	2. 700E+02	1.470E+03	K	0.4446+00	5. 370E-01
1214	IW 424	IWE-B23445	B23 Rod (4, 4) Pos. 5	2. /00E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1215	TW 425	TWE-B23447	"B23 Rod (4, 4) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1216	TW 426	TWE-823440	"B23 Rod (1 1) Pos 9"	2 700E+02	1 470E+03	К	6 444E+00	5 370E-01
1210	111 42.0	THE 020445	D23 N00 (4, 4) 103.3	2.7002.02	1.4702.00		0.4442.00	5.0705.04
1217	111 427	IWE~B23451	B23 Rod (4, 5) Pos. 1	2. 700E+02	1.4/0E+03	. К	6.444E+00	5.370E-01
1218	TW 428	TWE-B23453	"B23 Rod (4, 5) Pos. 3"	2. 700E+02	1.470E+03	K	6.444E+00	5. 370E-01
1219	TW 429	TWE-B23455	"823 Rod (4 5) Pos 5"	2 700E+02	1 470E+03	К	6 444F+00	5 370F-01
1000	711 420	THE DECTOR	"Deo Red (4, 5) Dec. 6"	0.7000.00	1.4705.00	K K	C. 444E.00	E 270E 01
1220	111 430	111E-D23430	D23 R00 (4, 3) POS. 0	2. /UUE+UZ	1.470E+03	n i	0.444E+00	5. 370E-01
1221	TW 431	TWE-B23458	"B23 Rod (4, 5) Pos. 8"	2. 700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1222	TW 432	TWE-B23459	"B23 Rod (4, 5) Pos. 9"	2.700E+02	1, 470E+03	К	6.444E+00	5.370E-01
1000	TW 422	TWE_820112	"B20 Rod(1 1) Rog 2"	2 700E+02	1 4705+02		6 4445±00	5 3705-01
1223	11 433		020 R00(1, 1) POS. 2	2. 700E+02	1.4/UE+U3	<u>۸</u>	0.444ET00	J. 370E-01
1224	TW 434	IWE-B20114	B20 Rod(1, 1) Pos. 4"	2. 700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1225	T₩ 435	TWE-B20115	"B20 Rod(1, 1) Pos. 5"	2. 700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1226	TW 436	TWE-B20116	"B20 Bod (1 1) Pos 6"	2 700E+02	1 470E+03	к	6 444E+00	5 370E-01
1220	111 400		D20 1100 (1, 1) 103.0	2.7002.02	1. 4702.00	K	0. 444E 00	0.070L 01
1227	IW 437	IWE-B20117	B20 Rod (1, 1) Pos. 7	2. /00E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1228	TW 438	TWE-B20118	"B20 Rod(1,1) Pos.8"	2. 700E+02	1. 470E+03	K	6. 444E+00	5. 370E-01
1229	TW 439	TWE-B24341	"R24 Rod (3 4) Pos 1"	2 700E+02	1 470F+03	К	6 444F+00	5 370E-01
1000	TH 400	THE D04040	"DO4 D 1/0 4) D 0"	0.7000.00	1. 4705.00	K K	C. 444E.00	C. 070E 01
1230	IW 440	TWE-B24342	B24 ROD (3, 4) POS. 2	Z. 700E+02	1.4/0E+03	N	0.444E+00	5.370E-01
1231	TW 441	TWE-B24344	"B24 Rod (3, 4) Pos. 4"	2. 700E+02	1. 470E+03	K	6. 444E+00	5. 370E-01
1232	TW 442	TWE-824345	"B24 Rod (3, 4) Pos. 5"	2. 700E+02	1. 470E+03	К	6.444E+00	5. 370E-01
1202	TH 442	TWE 004047	"P24 Red(2,4) Res 7"	2.700E+02	1 4705+02	N N	6 444E+00	5 270E-01
1233	111 443	1WE-BZ4347	BZ4 ROD (3, 4) POS. 7	2. 700E+02	1.4/0E+03	n	0.444E+00	5.370E-01
1234	TW 444	TWE-B24349	"B24 Rod (3, 4) Pos. 9"	2. 700E+02	1.470E+03	K	6. 444E+00	5.370E-01
1235	TW 445	TWE-B24441	"B24 Rod (4, 4) Pos. 1"	2.700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1226	TW 446	TWE_824443	"B24 Rod (4 4) Pos 3"	2 700E+02	1 470E+03	K	6 444E+00	5 370E-01
1230	111 440	THE-D24443	B24 Rod (4, 4) P08.3	2. 700L+02	1.4702+03	N N	0.4442,00	5. 5702 01
1237	IW 44/	IWE-B24445	B24 Rod (4, 4) Pos. 5	2. /00E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1238	TW 448	TWE-B24446	"B24 Rod (4, 4) Pos. 6"	2. 700E+02	1. 470E+03	K	6.444E+00	5. 370E-01
1239	TW 449	TWE-B24448	"B24 Rod (4 4) Pos 8"	2 700E+02	1 470E+03	К	6 444F+00	5 370F-01
1040	TH 450	THE D24440	"DOA D. 1/4 4) D 0"	0.7005.02	1. 4705.00		C. 444E.00	E 2705 01
1240	11 450	TWE-BZ4449	BZ4 ROD (4, 4) POS. 9	Z. 700E+02	1.470E+03	N	0.444E+00	5.370E-01
1241	TW 451	TWE-B24712	"B24 Rod(7, 1) Pos. 2"	2. 700E+02	1. 470E+03	K	6. 444E+00	5. 370E-01
1242	TW 452	TWE-B24714	"B24 Rod (7 1) Pos 4"	2,700E+02	1. 470E+03	K	6.444E+00	5.370E-01
1242	TW 452	TWE_024716	"B24 Rod (7, 1) Por 5"	2 700E±02	1 4705+03	ĸ	6 444E+00	5 370E-01
1243	111 400	1#E-D24713	D24 NOU(7, 1) POS. 5	2.700L102	1.4702100	N N	0.444L-00	5. 570L 01
1244	TW 454	TWE-B24716	"B24 Rod (7, 1) Pos. 6"	2. 700E+02	1.4/0E+03	K	6.444E+00	5.370E-01
1245	TW 455	TWE-B24717	"B24 Rod (7, 1) Pos. 7"	2. 700E+02	1.470E+03	K	6. 444E+00	5. 370E-01
1246	TW 456	TWE-B24718	"B24 Rod (7 1) Pos 8"	2.700F+02	1.470F+03	К	6.444E+00	5.370E-01
1017	TH 100	THE INOCAL SCA	SCA Intet Dianum	2 7005.02	7 2005-02	N N	2 2075.00	7 2505-01
1247	111 457	THE-THU041-SUA	SUA INTEL PTENUM	2. 700E+02	1. 200E+02	<u> </u>	3. 307E+00	7.330E-01
1248	T₩ 458	TWE-IN0642-SGA	SGA Inlet Plenum	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
1249	T₩ 460	TWE-EX0641-SGA	SGA Outlet Plenum	2. 700E+02	7. 200E+02	K	3. 307E+00	7. 350E-01
1250	TW 461	TWE-EX0642-SGA	SGA Outlet Plenum	2 700F+02	7 200F+02	ĸ	3.307F+00	7.350F-01
1200	TH 401			0.7005.00	7 1005.00		2 2075.00	7 2505 01
1251	IW 462	INE-EXU043-SGA	SUA UUTIET PIENUM	2.700E+02	7. 200E+02	Ň	3. 30/E+00	1.350E-01
1252	TW 463	TWE-086B-SGA	SGA Inner Wall Pos. 1	2.700E+02	6.700E+02	<u> </u>	3.108E+00	7. 770E-01
1253	TW 464	TWE-137B-SGA	SGA Inner Wall Pos. 7	2.700F+02	6, 700E+02	K	3.108E+00	7.770E-01
1254	TW 465	TWE-178B-SGA	SGA Inner Wall Pos 10	2 700E+02	6 700F+02	ĸ	3 108E+00	7 770E-01
1204	111 400	TWE 0000 001		0.7000-02	6 7005-00		2 1005.00	7 7705 01
1255	11/ 466	INE-223B-SUA	SUA INNER WALL	2. /UUE+02	0. /UUE+U2	N	3. TUBE+00	1.110E-01
1256	TW 467	TWE-IN0861-SGA	"SGA U-Tube(1, IN) Pos. 1"	2. 700E+02	7. 200E+02	K	3.307E+00	7.350E-01
1257	TW 468	TWE-EX0861-SGA	"SGA U-Tube(1, FX) Pos. 1"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
1050	TW 460	TWE-IN0862-90A	"SGA II-Tube (2 IN) Pos 1"	2 7005+02	7 200E+02	ĸ	3 307E+00	7 3505-01
1208	111 409	THE-THUODZ-SUA	Jan u-Tube(2, IN) POS. 1	2. /UUE+UZ	7.2000102	N	0.0075-00	7.0001-01
1259	IW 470	IWE-EXU862-SGA	SGA U-Tube (2, EX) Pos. 1"	2. /00E+02	7.200E+02	K	3.307E+00	1.350E-01
1260	TW 471	TWE-IN0863-SGA	"SGA U-Tube(3, IN) Pos. 1"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1261	TW 472	TWE-EX0863-SGA	"SGA U-Tube (3 FX) Pos 1"	2.700F+02	7.200F+02	ĸ	3.307F+00	7.350F-01
1000	TW 470	TWE 100001 001	"COA II Tube (1 14) D 0"	2.7000.02	7 2005-02		2 2075.00	7 2505 01
1262	11/ 4/3	INE-IN0991-SGA	SuA U-TUDE (T, IN) POS. 3	2.700E+02	7.200E+02	N	3. 30/E+00	1. 350E-01
1263	<u>TW 4</u> 74	I WE-EX0991-SGA	SGA U-Tube(1, EX) Pos. 3"	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1264	TW 475	TWE-IN0992-SGA	"SGA U-Tube(2, IN) Pos. 3"	2. 700E+02	7.200E+02	К	3. 307E+00	7.350E-01
1000	TW 476	TWE-EY0002-SCA	"SGA IL-Tube (2 EV) Dog 2"	2 7005+02	7 200E±02	K	3 307E+00	7 3505-01
1200	111 4/0	THE LAUSSE OUA	""""""""""""""""""""""""""""""""""""""	2. 700ET0Z	7. 2000-102	11	0.0072.00	7.0000 01
1266	IW 477	IWE-IN0993-SGA	SGA U-Tube (3, IN) Pos. 3"	2. /00E+02	7.200E+02	ĸ	3.30/E+00	1.350E-01
1267	TW 478	TWE-EX0993-SGA	"SGA U-Tube (3, EX) Pos. 3"	2.700E+02	7. 200E+02	K	3. 307E+00	7.350E-01
1269	TW 470	TWE-IN1121-SGA	"SGA II-Tube(1 IN) Pos 5"	2 700F+02	7.200E+02	к	3. 307E+00	7.350F-01
1200	TH 400		"004 II T.L. (1 EV) D E"	2.7002.02	7 0005.00	- P	2 2075.00	7 2505 01
1269	11/ 480	INE-EXIIZI-SGA	SUA U-TUDE(I, EX) Pos. 5	2. /UUE+UZ	7.200E+02	<u> </u>	3. 30/E+00	1. 350E-01
1270	TW 481	TWE-IN1122-SGA	"SGA U-Tube(2, IN) Pos. 5"	2.700E+02	7.200E+02	I K	3. 307E+00	7.350E-01
1271	TW 482	TWE-EX1122-SGA	"SGA U-Tube(2, EX) Pos. 5"	2.700F+02	7.200E+02	K	3.307E+00	7.350E-01
1070	TW 402	TWE_IN1102_004	"SGA IL-Tube (2 IN) Dee E"	2 700E+02	7 2005+02	ĸ	3 207E+00	7 350E-01
12/2	111 483	111E-111123-30A	Jun u-Tube (J, IN) POS. J	2. /UUE+UZ	7.2002+02		0.0075-00	7.0000-01
1273	TW 484	IWE-EX1123-SGA	SGA U-Tube (3, EX) Pos. 5"	2. 700E+02	1.200E+02	<u>K</u>	3.30/E+00	7.350E-01
1274	TW 485	TWE-IN1371-SGA	"SGA U-Tube(1, IN) Pos. 7"	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1275	TW ARE	TWE-EX1371-SGA	"SGA H-Tube (1 FY) Pos 7"	2 700F+02	7 200E+02	к	3 307F+00	7.350E-01
1210	TH 400	TWE 111070 001	"COA 11 Tube /0 141) D	2 7005-02	7 2005-02		2 2075.00	7 2505 01
12/6	IW 48/	INE-INI3/2-SGA	SuA U-TUDE (Z, IN) Pos. /	Z. /UUE+U2	1.200E+02	N N	3. 30/E+00	1.350E-01
1277	TW 488	TWE-EX1372-SGA	"SGA U-Tube (2, EX) Pos. 7"	2.700E+02	7.200E+02	I K	3. 307E+00	7.350E-01
1278	TW 489	TWE-IN1373-SGA	"SGA U-Tube (3, IN) Pos. 7"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01

Table A.1(Cont'd)	(17/25)
-------------------	---------

	Function	-		Rar	ige	11-14	Uncert	tainty
SEQ No.	ID.	lagname	Location	LO	HI	Unit	±ABS.	±%FR
1279	TW 490	TWE-EX1373-SGA	"SGA U-Tube (3, EX) Pos. 7"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
1280	TW 491	TWF-IN1632-SGA	"SGA U-Tube (2, IN) Pos. 9"	2.700E+02	7.200E+02	K	3, 307E+00	7.350E-01
1281	TW 492	TWF-FX1632-SGA	"SGA U-Tube (2, EX) Pos. 9"	2.700E+02	7.200E+02	К	3, 307E+00	7.350E-01
1282	TW 493	TWE-IN1633-SGA	"SGA U-Tube (3 IN) Pos 9"	2 700E+02	7 200F+02	ĸ	3.307E+00	7.350E-01
1283	TW 404	TWE-EX1633-S64	"SGA II-Tube (3 EX) Pos 9"	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
1200	TW /05	TWE-IN1701-SGA	"SGA U-Tube (1, IN) Pos. 10"	2 700E+02	7.200E+02	ĸ	3 307E+00	7 350E-01
1204	TW 405	TWE_IN1702_SGA	"SGA H-Tube (2 (N) Pos 10"	2.700E+02	7.200E+02	ĸ	3 307E+00	7 350E-01
1200	111 490 TH 497	TWE 111002 COA	"COA 11 Tube (2, 111) PUS. 10	2.700E+02	7.2000-02	<u>к</u>	3.307E+00	7.3500 01
1280	111 497	THE-INI803-SUA	SGA U-TUDE (3, TN) POS. 11	2.700E+02	7.2000+02	N N	3. 307E+00	7.350E-01
1287	IW 498	TWE-TN0641-SGB	SGB Inlet Plenum	2.700E+02	7.200E+02	K	3. 735E+00	8.300E-01
1288	TW 499	TWE-IN0642-SGB	SGB Inlet Plenum	2. 700E+02	7.200E+02	K	3. /35E+00	8.300E-01
1289	TW 500	TWE-IN0643-SGB	SGB Inlet Plenum	2.700E+02	7.200E+02	K	3. 735E+00	8. 300E-01
1290	TW 501	TWE-EX0641-SGB	SGB Outlet Plenum	2.700E+02	7.200E+02	К	3. 735E+00	8.300E-01
1291	TW 502	TWE-EX0642-SGB	SGB Outlet Plenum	2.700E+02	7.200E+02	к	3.735E+00	8. 300E-01
1292	TW 503	TWE-EX0643-SGB	SGB Outlet Plenum	2.700E+02	7.200E+02	K	3.735E+00	8. 300E-01
1293	TW 504	TWE-086B-SGB	SGB Inner Wall Pos. 1	2.700E+02	6.700E+02	К	3.108E+00	7.770E-01
1294	TW 505	TWE-137B-SGB	SGB Inner Wall Pos 7	2 700E+02	6 700F+02	K	3 108F+00	7 770E-01
1205	TW 506	TWE-1788-SGB	SGB Inner Wall Pos 10	2 700E+02	6 700E+02	ĸ	3 108E+00	7 770E-01
1295	TW 500		SCP Inner Wall	2.700E+02	6 700E+02	K	2 1095+00	7 7705-01
1290	11 507	THE-223D-30D		2.700E+02	0. 700E+02	K	3.100L+00	7.7701-01
1297	TW 508	IWE-INU861-SGB	SGB U-TUDE (T, TN) POS. T	Z. 700E+02	7.200E+02	ĸ	3. 307E+00	7.350E-01
1298	IW 509	IWE-EX0861-SGB	SGB U-Tube (1, EX) Pos. 1	2. /00E+02	7.200E+02	K	3.307E+00	7.350E-01
1299	TW 510	TWE-IN0862-SGB	"SGB U-Tube(2, IN) Pos. 1"	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
1300	T₩ 511	TWE-EX0862-SGB	"SGB U-Tube(2, EX) Pos. 1"	2.700E+02	7.200E+02	ĸ	3. 307E+00	7.350E-01
1301	T₩ 512	TWE-IN0863-SGB	"SGB U-Tube (3, IN) Pos. 1"	2.700E+02	7.200E+02	К	3. 307E+00	7.350E-01
1302	TW 513	TWE-EX0863-SGB	"SGB U-Tube (3, EX) Pos. 1"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1303	TW 514	TWE-IN0991-SGB	"SGB U-Tube(1, IN) Pos, 3"	2.700E+02	7.200E+02	К	3. 307E+00	7.350E-01
1304	TW 515	TWE-EX0991-SGB	"SGB U-Tube(1, EX) Pos. 3"	2,700F+02	7, 200F+02	K	3, 307E+00	7.350E-01
1305	TW 516	TWF-IN0992-SGB	"SGB U-Tube (2 IN) Pos 3"	2,700F+02	7.200E+02	ĸ	3.307F+00	7.350E-01
1205	TW 517	TWE_EY0002_CCD	"SGR II-Tube/2 EV) Doc 2"	2.7000-02	7 2000-02	ν γ	3 307E±00	7 3505-01
1007		TWE_100002 000	"SCP II_Tube (2, 14) D 0"	2. TUDETUZ	7.200E+02	1\ V	2 207E-00	7 2505 01
1307	81C ht	THE-THU993-50B	30D U-TUDE (3, TN) POS. 3	2. /UUE+U2	7.2002+02	N	3. 30/E+00	7.350E-01
1308	IW 519	TWE-EX0993-SGB	SGB U-Tube (3, EX) Pos. 3	2. /00E+02	7.200E+02	K	3.307E+00	7.350E-01
1309	TW 520	TWE-IN1121-SGB	"SGB U-Tube(1, IN) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1310	TW 521	TWE-EX1121-SGB	"SGB U-Tube(1, EX) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1311	TW 522	TWE-IN1122-SGB	"SGB U-Tube(2, 1N) Pos. 5"	2.700E+02	7.200E+02	К	3. 307E+00	7.350E-01
1312	TW 523	TWE-EX1122-SGB	"SGB U-Tube(2, EX) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1313	TW 524	TWE-IN1123-SGB	"SGB U-Tube(3, 1N) Pos, 5"	2.700E+02	7.200E+02	K	3, 307E+00	7.350E-01
1314	TW 525	TWE-EX1123-SGB	"SGB U-Tube (3, EX) Pos. 5"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1315	TW 526	TWE-IN1371-SGB	"SGB II-Tube (1 IN) Pos 7"	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
1216	TW 527	TWE_EY1271_SCR	"SGR II-Tube (1 EY) Poc 7"	2.700E+02	7.200E+02	ĸ	2 2075+00	7 350E-01
1010	TW 527	TWE_1N1272_CCP	"SCP II-Tube (2, 1N) Pos. 7	2.700E+02	7.2000-02	<u>к</u>	3.307E+00	7.3500-01
1010	TH 520	TWE EX1070 000	30D U-Tube(2, 1N) FUS. 7	2. 700E+02	7.200E+02	N K	3. 307E+00	7.350E-01
1318	11 529	TWE-EX1372-SGB	SGB U-TUDE (2, EX) POS. 7	2. 700E+02	7.200E+02	ĸ	3. 30/E+00	7.350E-01
1319	IW 530	IWE-IN13/3-SGB	SGB U-Tube (3, TN) Pos. 7	2. 700E+02	7.200E+02	<u> </u>	3.30/E+00	7.350E-01
1320	TW 531	IWE-EX1373-SGB	SGB U-Tube(3, EX) Pos. 7	2.700E+02	7.200E+02	K	3.307E+00	7.350E-01
1321	TW 532	TWE-IN1632-SGB	"SGB U-Tube(2, IN) Pos. 9"	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1322	TW 533	TWE-EX1632-SGB	"SGB U-Tube(2, EX) Pos. 9"	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1323	TW 534	TWE-IN1633-SGB	"SGB U-Tube(3, IN) Pos. 9"	2. 700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1324	TW 535	TWE-EX1633-SGB	"SGB U-Tube (3, EX) Pos. 9"	2.700E+02	7.200E+02	K	3. 307E+00	7.350E-01
1325	TW 536	TWE-IN1701-SGB	"SGB U-Tube(1, IN) Pos, 10"	2.700E+02	7.200E+02	К	3.307E+00	7.350E-01
1326	TW 537	TWF-IN1782-SGB	"SGB LI-Tube(2, IN) Pos 10"	2 700E+02	7.200F+02	К	3 307F+00	7.350E-01
1327	TW 538	TWE-IN1863-SGB	"SGB II-Tube (3 IN) Pos 11"	2 700E+02	7 200E+02	K	3 307E+00	7 350E-01
1328	TW 539	TWE-211A-PR	PR Outer Wall	2 700E+02	7 200E+02	ĸ	3 307E+00	7 350E-01
1320	TW 540	TWE_2118_PP	PR Inner Wall	2.700E+02	7.200E+02	ĸ	3.307E+00	7.350E-01
1220	TW 540	TWE-104A-DD	PR Outer Woll	2.700LT02	7 2002102	N IV	3 2075-00	7 2505 01
1000	TW 540	TWE_1040-00		2. TOUETUZ	7.200ETUZ	N N	3.3070700	7.3500-01
1001	111 042	111E-134D-PK		2.700E+02	1.200E+02	N	3. 30/E+00	7.350E-01
1332	11 543	111E-1//A-PK	PR ULTER WALL	2.700E+02	7.200E+02	Ň	3.30/E+00	7.350E-01
1333	11 544	IWE-1//B-PR	rk Inner Wall	2. 700E+02	7.200E+02	K	3.307E+00	7.350E-01
1334	TW 545	IWE270A-PR	PR Spray Line Outer Wall	0.0	1.500E+03	K	6. 030E+00	4.020E-01
1335	FE 1	FE010-HLA	HLA Leakage(Positive)	0.0	4.000E-01	kg/s	6.480E-03	1.620E+00
1336	FE 2	FE020A-LSA	Primary Loop A (High)	0.0	9.000E+01	kg/s	1.008E+00	1.120E+00
1337	FE 3	FE020B-LSA	Primary Loop A (Low)	0.0	1.581E+01	kg/s	1.771E-01	1.120E+00
1338	FE 4	FE150-HLB	HLB Leakage(Positive)	0.0	4.000F-01	kg/s	6,480F-03	1.620E+00
1339	FE 5	FE160A-LSB	Primary Loop B (High)	0.0	9.000F+01	kg/s	1.008F+00	1.120E+00
13/0	FF 6	FE160B-LSB	Primary Loop B (Low)	0.0	1 581F+01	ka/e	1 771F-01	1 120E+00
+13/1	FE 9		PR Surge Line (Forward)	0.0	5 000E+01	kg/3	9 1005-01	1.620E+00
±10/0		FE2000 FIL	DD Surgo Lino (Pourses)	-1.0005.01	J. UUULTUI	ng/5	1 6005 01	1.02007-00
±1342			rn surge Line (Keverse)	~1.000E+01	0.0	Kg/S	1.020E-01	1. 020E+00
1343	FE 13	FE430-SGA	SuA Feedwater	0.0	4.000E+00	kg/s	6. 480E-02	1.620E+00
1344	FE 14	FE431-SGA	SGA Downcomer	0.0	7.000E+00	kg/s	1.134E-01	1.620E+00
1345	FE 15	FE432-SGA	SGA Downcomer	0.0	7.000E+00	kg/s	1.134E-01	1.620E+00
1346	FE 16	FE433-SGA	SGA Downcomer	0.0	7.000E+00	kg/s	1.134E-01	1.620E+00
1347	FE 17	FE434-SGA	SGA Downcomer	0.0	7.000E+00	kg/s	1.134E-01	1.620E+00
1348	FE 18	FE440-SGA	SGA Steam Line	0.0	5.000E+00	kg/s	1.145E-01	2.290E+00
1349	FE 19	FE450-SGA	SGA Relief Valve Line	0.0	4,000F+00	kg/s	9,160F-02	2,290E+00
1350	FF 21	FF470-SGB	SGB Feedwater	0.0	4 000F+00	kg/e	6 480F-02	1 6205+00
1351	FF 22	FF471-SGB	SGB Downcomer	0.0	7 0005+00	ka/e	1 13/5_01	1 6205+00
1352	FF 22	FF472-SGR	SGB Downcomer	0.0	7.0000-100	ng/0	1 124E_01	1 6205+00
1002	EE 04	EE472_SCD		0.0	7.0000000	ng/S	1.134E-UI	1.02007-00
1353	FE 24	FE4/3-300	Sub Downcomer	0.0	7.000E+00	Kg/S	1.134E-01	1.620E+00
1354	FE 25	rt4/4-SGB	SGB Downcomer	0.0	7.000E+00	kg/s	1.134E-01	1.620E+00
1355	FE 26	FE480-SGB	SGB Steam Line	0.0	5.000E+00	kg/s	1.145E-01	2. 290E+00
1356	FE 27	FE490-SGB	SGB Relief Valve Line	0.0	4.000E+00	kg/s	9.160E-02	2.290E+00
1357	FE 29	FE510-SH	Steam Header	0.0	1.000E+01	kg/s	2.290E-01	2.290E+00

Table A.1(Cont'd) (18/25)

SEO No	Function	Tognama	Location	Rar	nge	llnit	Uncert	tainty
SEQ NO.	ID.	ragname	Location	LO	HI	UNIL	±ABS.	±%FR
1358	FE 30	FE520-PA	Auxiliary Feedwater	0.0	1.500E+00	kg/s	3. 435E-02	2.290E+00
*1359	FE 31	FE560A-BU	BU No. 1 Venturi (High)	0.0	1.000E+02	kg/s	1.120E+00	1.120E+00
1361	FE 37	FE680-ACH	Hot Acc Flow to CLR	0.0	1.000E+01	kg/s	2 290E-01	2.290E+00
*1362	FE 48	FE820-PL	RHR Outlet (High)	0.0	1.500E+01	kg/s	3. 435E-01	2. 290E+00
*1363	FE 49	FE830-PL	LPI Flow to CLA(High)	0.0	1.500E+01	kg/s	3. 435E-01	2. 290E+00
*1364	FE 50	FE840-PL	LPI Flow to CLB(High)	0.0	1.500E+01	kg/s	3. 435E-01	2. 290E+00
*1365	FE 62	FE010B-HLA	HLA Leakage (Negative)	4.000E-01	0.0	kg/s	-1.280E-03	3.200E-01
*1366	FE 63	FE150B-HLB	HLB Leakage (Negative)	4.000E-01	0.0 1.000E+01	kg/s	-1.280E-03	3.200E-01
*1368	FE 66	FE2000-FR	SGA Turbine Bypass Flow	0.0	2 000E+01	kg/s	6 400E-02	3 200E-01
*1369	FE 68	FE491-SGB	SGB Turbine Bypass Flow	0.0	2.000E+01	kg/s	6. 400E-02	3. 200E-01
1370	PE 1	PE561-BU	BU No.1 Venturi	0.0	2.000E+01	MPa	6.400E-02	3. 200E-01
1371	PE 3	PE010-SGA	SGA Inlet Plenum	0.0	2.000E+01	MPa	6.400E-02	3. 200E-01
1372	PE 4	PE020-LSA	PCA Suction	0.0	2.000E+01	MPa	6.400E-02	3. 200E-01
1373	PE 5	PEUSU-GLA	SGB Inlet Plenum	0.0	2.000E+01	MPa	6 400E-02	3.200E-01
1375	PE 7	PE160-LSB	PCB Suction	0.0	2.000E+01	MPa	6. 400E-02	3. 200E-01
1376	PE 8	PE170-CLB	PCB Delivery	0.0	2.000E+01	MPa	6. 400E-02	3.200E-01
1377	PE 9	PE290-PV	PV Upper Head	0.0	2.000E+01	MPa	6. 400E-02	3. 200E-01
1378	PE 10	PE280A-PV	PV Upper Plenum(High)	0.0	2.000E+01	MPa	6. 400E-02	3.200E-01
1379	PE 11	PE280B-PV	PV Upper Plenum (Low)	0.0	5.000E+00	MPa ND-	1.600E-02	3.200E-01
1380	PE IZ	PE2/U-PV	PV Lower Pienum PR (High Pange)	0.0	2.000E+01	MPa MPa	6.400E-02	3.200E-01
1382	PF 14	PE300B-PR	PR (Low Range)	0.0	5.000E+00	MPa	1. 600E-02	3. 200E-01
1383	PE 19	PE430-SGA	SGA Steam Dome	0.0	1.000E+01	MPa	3. 200E-02	3. 200E-01
1384	PE 20	PE440-SGA	SGA Steam Line	0.0	1.000E+01	MPa	3. 200E-02	3. 200E-01
1385	PE 21	PE450-SGB	SGB Steam Dome	0.0	1.000E+01	MPa	3. 200E-02	3.200E-01
1386	PE 22	PE460-SGB	SGB Steam Line	0.0	1.000E+01	MPa	3.200E-02	3.200E-01
1387	PE 23	PE470-SH PE490_IC	Steam Header	0.0	1.000E+01	MPa	3.200E-02	3.200E-01
1389	PE 25	PE610-ST	Suppression Tank	0.0	1.000E+01	MPa	3.200E-02	3. 200E-01
1390	PE 26	PE560-BU	BU No.1 Orifice Upstream	0.0	2.000E+01	MPa	6.400E-02	3. 200E-01
1391	PE 27	PE570-BU	BU No.1 Orifice Downstream	0.0	2.000E+01	MPa	6.400E-02	3. 200E-01
1392	PE 30	PE600-ST	Blowdown Piping	0.0	2.000E+01	MPa	6.400E-02	3. 200E01
1393	PE 31	PE650-ACC	Cold Acc Tank	0.0	1.000E+01	MPa	3.200E-02	3.200E-01
1394	PE 32	PE660-ACH	Hot Acc Jank	0.0	1.000E+01	MPa	3.200E-02	3.200E-01
1395	PE 35	PEUTI-RLA	CLA Spool Piece	0.0	2.000E+01	MPa	6 410E-02	3 205E-01
1397	PF 37	PF151-HLB	HIB Spool Piece	0.0	2.000E+01	MPa	6. 410E-02	3. 205E-01
1398	PE 38	PE211-CLB	CLB Spool Piece	0.0	2.000E+01	MPa	6. 410E-02	3. 205E-01
1399	PE 39	PE291-PR	PR Relief Valve S.P	0.0	2.000E+01	MPa	0.0	0.0
1400	PE 40	PE301-PR	PR Safety Valve Line	0.0	2.000E+01	MPa	6.400E-02	3.200E-01
1401	PE 41	PE311-PR	PV-PR Vent Line	0.0	2.000E+01	MPa	6.400E-02	3.200E-01
1402	PE 43	PE501-BU	BU NO. I S. P BII NO. 2 S. P	0.0	2.000E+01	MPa	6 400E-02	3.200E-01
1404	PE 46	PE820-RHR	PL Delivery	0.0	2.000E+01	MPa	6. 400E-02	3. 200E-01
1405	MI 1	RE010-PCA	PCA (Rotation Speed)	0.0	7.000E+01	Hz	0.0	0.0
1406	MI 2	RE150-PCB	PCB (Rotation Speed)	0.0	7.000E+01	Hz	0.0	0.0
1407	MI 3	OPE270-PR	PR Spray (HCV270)	0.0	1.000E+02	% *	5.400E-01	5.400E-01
1408	MI D	0PE430-56A	SGB Feedwater (FCV430)	0.0	1.000E+02	%	5 400E-01	5 400E-01
1410	MI 8	OPE510-SH	Steam Flow (FCV510)	0.0	1.000E+02	%	5. 400E-01	5. 400E-01
1411	M1 9	OPE820-PL	RHR Flow (FCV820)	0.0	1.000E+02	%	5.400E-01	5. 400E-01
1412	MI 11	VBE010-PCA	PCA (Vibration)	0.0	2.000E+01	um	1.420E+00	7.100E-01
1413	MI 12	VBE150-PCB	PCB (Vibration)	0.0	2.000E+01	um	1.420E+00	7. 100E-01
*1414	MI 13	TOF150-PCA	PCR (Torque)	0.0	1.000E+02	um	4. U2UE-U1	4. 020E-01
1415	MI 14	AE010-PCA	PCA (Electric Current)	0.0	1.500E+02	A	7. 500E-01	5, 000E-01
1417	MI 16	AE150-PCB	PCB (Electric Current)	0.0	1.500E+02	A	7.500E-01	5.000E-01
1418	MI 17	WE270A-T	Total Core Power	0.0	1.600E+01	MM	1.152E-01	7.200E-01
1419	MI 18	WE270B-M	Middle Heat Flux Region	0.0	2.000E+00	MW	1.440E-02	7.200E-01
1420	MI 19	WE270C-H1	High Heat Flux Region	0.0	4.000E+00	MW	2.880E-02	7.200E-01
1421	MI 20	WE270D-H2	High Heat Flux Region	0.0	4.000E+00	MW	Z. 880E-02	7.200E-01
1422	MI 21	WE270E-L1	Low Heat Flux Region	0.0	2.000E+00 2.000E+00	MW	1 440E-02	7.200E-01
1423	MI 22	WE270G-L3	Low Heat Flux Region	0.0	2.000E+00	MW	1.440E-02	7. 200E-01
1425	MI 24	WE280A-PR	PR Proportional Heater	0.0	1.000E+01	k₩	1.500E-01	1.500E+00
1426	MI 25	WE280B-PR	PR Base Heater	0.0	1.500E+02	k₩	2.250E+00	1.500E+00
1427	MI 26	WE010-PCA	PCA	0.0	3.000E+01	k₩	4.500E-01	1.500E+00
1428	MI 27	WE150-PCB	PCB	0.0	3.000E+01	k₩	4.500E-01	1.500E+00
*1429	MI 98	VE030A-ULA	CLA PITOT Tube					
*1430	MI 101	VE010A-HLA	HIA Pitot Tube					
*1432	MI 102	VE010B-HLA	HLA Pitot Tube					
*1433	MI 104	VE020B-LSA	LSA Pitot Tube					
1434	LE 1	LE270-PV	PV	0.0	1.100E+01	l m	3.520E-02	3. 200E-01

Table A.1	(Cont'd)	(19/25)
	\	· · · · · · · · · · · · · · · · · · ·

SEO No	Function	Tagnama	Location	Rai	ige	Unit	Uncert	tainty
3EG NO.	1D.	Табланс	Loozeron	LO	HI	Unite	±ABS.	±%FR
1435	LE 2	LE280-PR	PR	0.0	5.000E+00	m	1.600E-02	3.200E-01
1436	LE 3	LE430-SGA	SGA Wide Range	0.0	1. /00E+01	m	5.440E-02	3.200E-01
1437	LE 4	LE440-SUA	SGA Boiling Section	0.0	1 100E+00	m	3 520E-02	3 200E-01
1439	IF 6	LE441 GGA	SGB Wide Range	0.0	1. 700E+01	m	5. 440E-02	3. 200E-01
1440	LE 7	LE460-SGB	SGB Narrow Range	0.0	6.000E+00	m	1.920E-02	3. 200E-01
1441	LE 8	LE461-SGB	SGB Boiling Section	0.0	1.100E+01	m	3.520E-02	3.200E-01
1442	LE 9	LE470-JC	JC	0.0	5.500E+00	m	1.760E-02	3.200E-01
1443	LE 10	LE560-ST	ST Wide Range	0.0	1.200E+01	m	3.840E-02	3.200E-01
1444	LE 11	LE570-ST	ST Low Level	0.0	4.000E+00	m	1.280E-02	3.200E-01
1445	LE 12	LE580-SI	SI Middle Level	0.0	4.000E+00	m	1.280E-02	3.200E-01
1440	LE IS	LE090-31	Cold Acc Tank	0.0	7 000E+00	m	1.200E-02	3.200E-01
1447	LE 14	LE660-ACH	Hot Acc Tank	0.0	7.000E+00	m	2.240E-02	3.200E-01
1449	LE 17	LE830-RWST	RWST	0.0	1.000E+01	m	3.200E-02	3. 200E-01
1450	LE 18	LE442-SGA	SGA Downcomer	0.0	1.200E+01	m	3.840E-02	3. 200E-01
1451	LE 19	LE462-SGB	SGB Downcomer	0.0	1.200E+01	m	3.840E-02	3. 200E-01
1452	DP 1	DPE010-HLA	Upper Plenum - HLA Nozzle	-4.000E+01	4.000E+01	kPa	2.560E-01	3. 200E-01
1453	DP 2	DPE020-HLA	HLA Nozzle - HLA Break	-4.000E+01	4.000E+01	kPa	2.560E-01	3.200E-01
1404	DP 4		ALA Break - SuA Iniet	-4.000E+01	4.000E+01	KPa kPo	2.500E-01	3. 200E-01
1455	DP 6	DPE050R-SGA	SGA Inlet - Tube 2 Top	-1.500E+02	5.000E+01	kPa	6 400E-03	3 2005-01
1457	DP 7	DPE050C-SGA	SGA Inlet - Tube 1 Top	-1.500E+02	5.000E+01	kPa	6. 400E-01	3. 200E-01
1458	DP 8	DPE050D-SGA	SGA Inlet - Tube 4 Top	-1.500E+02	5.000E+01	kPa	6. 400E-01	3.200E-01
1459	DP 9	DPE050E-SGA	SGA Inlet - Tube 5 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1460	DP 10	DPE050F-SGA	SGA Inlet - Tube 6 Top	-1.500E+02	5. 000E+01	kPa	6. 400E-01	3.200E-01
1461	DP 11	DPE060A-SGA	SGA Outlet - Tube 3 Top	-1.500E+02	5.000E+01	kPa	6. 400E-01	3.200E-01
1462	DP 12	DPE060B-SGA	SGA Outlet - Tube 2 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1463	DP 13	DPE060C-SGA	SGA Outlet - Tube 1 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1464	DP 14	DPEODOD-SGA	SGA Outlet - lube 4 lop	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1400	DP 15	DPE060E-SGA	SGA Outlet - Tube 5 10p	-1.500E+02	5.000E+01	KPa kPa	6.400E-01	3.200E-01
1400	DP 10	DPE000F-SGA	SGA Outlet - ISA Bottom	-5 000E+01	5.000E+01	kPa	3 200E-01	3 200E-01
1468	DP 18	DPE080-I SA	ISA Bottom - PCA Suction	-5 000E+01	5 000E+00	kPa	3 200E-01	3 200E-01
1469	DP 19	DPE090-PCA	PCA Suction - Delivery	-5,000E+01	5.000E+00	kPa	3.200E-01	3. 200E-01
1470	DP 20	DPE100-CLA	PR Spray Line	-2.000E+02	2.000E+02	kPa	1.280E-00	3.200E-01
1471	DP 21	DPE110-CLA	PCA Delivery - CLA Break	~5.000E+01	5.000E+00	kPa	3.200E-01	3.200E-01
1472	DP 22	DPE120-CLA	CLA Break - CLA Nozzle	-5. 000E+01	5.000E+00	kPa	3. 200E-01	3.200E-01
1473	DP 23	DPE130-CLA	CLA Nozzle - Downcomer	-5. 000E+01	5.000E+00	kPa	3.200E-01	3.200E-01
1474	DP 24	DPE140-HLA	Upper Plenum - Downcomer	-5.000E+01	5.000E+01	kPa	3.200E+01	3. 200E-01
14/5	DP 25	DPE150-HLB	Upper Plenum - HLB Nozzle	-3.000E+01	3.000E+01	kPa	1.920E-01	3.200E-01
1470	DP 20		HLB Brook - SCB Brook	-3.000E+01	3.000E+01	KPa	1.920E-01	3. 200E-01
1477	DP 28	DPE180-HLB	SGB Break - SGB Inlet	-3.000E+01	3.000E+01	kPa	1.920E-01	3 200E-01
1479	DP 29	DPE190A-SGB	SGB Inlet - Tube 3 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3. 200E-01
1480	DP 30	DPE190B-SGB	SGB Inlet - Tube 2 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1481	DP 31	DPE190C~SGB	SGB Inlet - Tube 1 Top	-1.500E+02	5.000E+01	kPa	6. 400E-01	3.200E-01
1482	DP 32	DPE190D-SGB	SGB Inlet - Tube 4 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1483	DP 33	DPE190E-SGB	SGB Inlet - Tube 5 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1484	DP 34	DPE190F-SGB	SGB Inlet - Tube 6 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1485	DP 35	DPE200A-SUB	SGB Outlet - Tube 3 Top	-1.500E+02	5.000E+01	KPa	6.400E-01	3.200E-01
1487	DP 37	DPE200D-SGB	SGB Outlet - Tube 1 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3.200E-01
1488	DP 38	DPE200D-SGB	SGB Outlet - Tube 4 Ton	-1.500E+02	5,000E+01	kPa	6, 400E-01	3, 200E-01
1489	DP 39	DPE200E-SGB	SGB Outlet - Tube 5 Top	-1.500E+02	5.000E+01	kPa	6.400E-01	3. 200E-01
1490	DP 40	DPE200F-SGB	SGB Outlet - Tube 6 Top	-1.500E+02	5.000E+01	kPa	6. 400E-01	3.200E-01
1491	DP 41	DPE210-LSB	SGB Outlet - LSB Bottom	-5.000E+01	5.000E+01	kPa	3. 200E-01	3.200E-01
1492	DP 42	DPE220-LSB	LSB Bottom - PCB Suction	-5.000E+01	5.000E+01	kPa	3.200E-01	3.200E-01
1493	DP 43	DPE250-CLR	CLP Proofs CLP Name	~5.000E+01	5.000E+01	kPa	3. 200E-01	3.200E-01
1494	DP 45	DPE260-0LD	CLB Nozzle - Democraci	-2.000E+01	2.000E+01	KPa kPa	1.280E-01	3. 200E-01
1495	DP 40	DPE270-PV	PV Bottom - Top	-1.000E+01	4 000E+01	kPa	1.280E-01	3 200E-01
1497	DP 48	DPE280-PV	PV Lower Plenum	-5 000E+01	1 000E+02	kPa	4 800E-01	3 200E-01
1498	DP 49	DPE290PV	Lower Core Support Plate	-5.000E+01	1.000E+02	kPa	4.800E-01	3. 200E-01
1499	DP 50	DPE300-PV	Core(Elevation -35 - 3945)	-5.000E+01	1.000E+02	kPa	4.800E-01	3.200E-01
1500	DP 51	DPE320-PV	Upper Plenum	-5. 000E+01	1.000E+02	kPa	4.800E-01	3. 200E-01
1501	DP 52	DPE330-PV	Upper Head	-5.000E+01	1.000E+02	kPa	4.800E-01	3. 200E-01
1502	DP 53	DPE310-PV	Upper Core Support Plate	-1.000E+02	1.000E+02	kPa	6.400E-01	3.200E-01
1503	<u>UP 54</u>	DESEOR DV	Guide Tube Top Orifice	-1.000E+02	1.000E+02	kPa	6.400E-01	3. 200E-01
1504	DP 55	DPE360-PV	BV Downcomer	-1.000E+02	1.000E+02	kPa	6.400E-01	3. 200E-01
1505	0F 50	DPE370-PV	Lower Downcomer	-1.000E+02	3. UUUE+02	KPa kPa	1.280E+00	3. 200E-01
1507	DP 58	DPE380-PV	Upper Downcomer	-5. 000F+01	1. 500E+02	kPa	6. 400E-01	3 200E-01
1508	DP 59	DPE390-PV	Simulated Check Valve A	-5.000E+01	1.000E+02	kPa	4. 800E-01	3. 200E-01
1509	DP 60	DPE400-PV	Simulated Check Valve B	-5.000E+01	1.000E+02	kPa	4.800E-01	3. 200E-01
1510	DP 61	DPE410-PV	Check Valve Control	-5.000E+01	1.000E+02	kPa	4.800E-01	3.200E-01
1511	DP 62	DPE332-PV	Upper Head - Downcomer	-1.000E+02	1.000E+02	kPa	6. 400E-01	3.200E-01
1512	DP 63	DPES31-PV	Upper Head	-1.000E+02	1.000E+02	kPa	6. 400E-01	3.200E-01
1513	DP 64	DPE560A-BU	FE560A (BU 1 High)	0.0	5.000E+02	kPa	1.600E+00	3.200E-01

Table A.1(Cont'd) (20/25)

	Function			Rai	19e	[Incer [.]	tainty
SEQ No.	ID.	Tagname	Location	LO	HI	Unit	±ABS.	±%FR
*1514	DP 65	DPE560B-BU	FE560B (BU 1 Low)	0.0	5.000E+00	kPa	1.600E-02	3. 200E-01
1515	DP 66	DPE570-BU	BU No.1 Venturi	0.0	5.000E+02	kPa	1.600E+00	3. 200E-01
1516	DP 70	DPE030B-HLA	PR Surge Line (Low)	-3.000E+02	3.000E+02	kPa	1.920E+00	3.200E-01
1517	DP /1	DPE072-LSA	LSA (SG Side)	-1.000E+01	1.000E+01	kPa I-D-	6.400E-02	3.200E-01
1510	DP 73	DPE073-LSA	LSA (SG Side)	-1.000E+01	1.000E+01	kPa	6 400E-02	3.200E-01
1520	DP 74	DPE075-LSA	LSA (SG Side)	-1.000E+01	1.000E+01	kPa	6. 400E-02	3. 200E-01
1521	DP 75	DPE076-LSA	LSA (SG Side)	-1.000E+01	1.000E+01	kPa	6. 400E-02	3. 200E-01
1522	DP 76	DPE212-LSB	LSB (SG Side)	-1.000E+01	1.000E+01	kPa	6.400E-02	3. 200E-01
1523	DP 77	DPE213-LSB	LSB (SG Side)	-1.000E+01	1.000E+01	kPa	6.400E-02	3.200E-01
1524	DP 78	DPE214-LSB	LSB (SG Side)	-1.000E+01	1.000E+01	kPa kPa	6.400E-02	3.200E-01
1526	DP 80	DPE215-LSB	LSB (SG Side)	-1 000E+01	1.000E+01	kPa	6 400E-02	3.200E-01
*1527	DP 81	DPE430-SGA	SGA Boiling Section	-2. 500E+01	5.000E+00	kPa		0.2002 01
*1528	DP 82	DPE431-SGA	SGA Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1529	DP 83	DPE432-SGA	SGA Boiling Section	~2. 500E+01	5.000E+00	kPa		
*1530	DP 84	DPE433-SGA	SGA Boiling Section	-2, 500E+01	5.000E+00	kPa kPa		
*1532	DP 85	DPE434-SGA	SGA Boiling Section	-2.500E+01	5.000E+00	kPa kPa		
*1533	DP 87	DPE436-SGA	SGA Boiling Section	-2. 500E+01	5.000E+00	kPa	1	
*1534	DP 88	DPE437-SGA	SGA Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1535	DP 89	DPE438-SGA	SGA Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1536	DP 90	DPE439-SGA	SGA Boiling Section	-2.500E+01	5.000E+00	kPa		
*153/	DP 91	DPE440-SGA	SGR Boiling Section	-2.500E+01	5.000E+00	KPa kPa		
*1539	DP 93	DPE451-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1540	DP 94	DPE452-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1541	DP 95	DPE453-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1542	DP 96	DPE454-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1543	DP 97	DPE455-SGB	SGB Boiling Section	-2.500E+01	5.000E+00	kPa kPa		
*1544	DP 98	DPE450-SGB	SGB Boiling Section	-2.500E+01	5.000E+00	kPa		
*1546	DP 100	DPE458-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1547	DP 101	DPE459-SGB	SGB Boiling Section	-2. 500E+01	5.000E+00	kPa		
*1548	DP 102	DPE460-SGB	SGB Boiling Section	-2.500E+01	5.000E+00	kPa		0.0055.04
1549	DP 103	DPE011-HLA	HLA Spool Piece	-1.000E+01	1.000E+01	kPa kPa	6.410E-02	3. 205E-01
1551	DP 104	DPE071-CLR	CLA Spool Piece	-1.000E+01	1.000E+01	kPa	6 410E-02	3.205E-01
*1552	DP 107	DPE571-BU	BU No. 1 Spool Piece	0.0	2.000E+02	kPa	6.410E-01	3. 205E-01
*1553	DP 109	DPE041-PR	PR Diff. Press.	0.0	6. 492E+00	kpa		
*1554	DP 110	DPE042-PR	PR Diff. Press.	0.0	7.355E+00	kpa		
*1555	DP 111	DPE043-PR	PR Diff. Press.	0.0	3.677E+00	kpa		
*1000	DP 112	DPE044-PR	PR Diff Press	0.0	3.077E+00	kpa kna		· · · · ·
*1558	DP 114	DPE046-PR	PR Diff. Press.	0.0	7. 355E+00	kpa		
1559	DP 115	DPE101-PR	PR-CLA Diff. Press.	-2.000E+02	2.000E+02	kpa		
*1560	MF 1	MEEDIIA-HLA	HLA Spool Piece Top			V V		
*1562	MF 3	MEEOTID-HLA	HLA Spool Piece Bottom			v		
*1563	MF 4	MFE051A-LSA	LSA Spool Piece East			V		
*1564	MF 5	MFE051B-LSA	LSA Spool Piece South			٧		
*1565	MF 6	MFE051C-LSA	LSA Spool Piece West			V		
*1565	MF /	MEEO/TA-GLA	CLA Spool Piece Side			v v		
*1568	MF 9	MFE071C-CLA	CLA Spool Piece Bottom			v		
*1569	MF 10	MFE151A-HLB	HLB Spool Piece Top			٧		
*1570	MF 11	MFE151B-HLB	HLB Spool Piece Side			٧		
*1571	MF 12	MFE151C-HLB	HLB Spool Piece Bottom			V	+	
*1572	MF 14	MEE1918-LSB	Lab apoor Frede West			V V	<u> </u>	
*1574	MF 15	MFE191C-LSB	LSB Spool Piece East			v		
*1575	MF 16	MFE211A-CLB	CLB Spool Piece Top			٧		
*1576	MF 17	MFE211B-CLB	CLB Spool Piece Side			٧		
*1577	MF 18	MFE211C-CLB	CLB Spool Piece Bottom			V	-	
*1570	MF 21 MF 22	MEEO21-ILA	ISA Spool Piece North(Low)			v	+	
*1580	MF 23	MFE161-HLB	SGB Inlet	1		v		
*1581	MF 24	MFE191D-LSB	LSB Spool Piece South(Low)			٧		
*1582	MF 25	MFE-N-006-DC	PV Downcomer DTT North			V	<u> </u>	
*1583	MF 26	MFE-S-006-DC	PV Downcomer DIT South			V V		
*1585	MF 28	MFF-W-006-DC	PV Downcomer DTT West			v	+	
*1586	MF 31	MFE571A-BU	BU No. 1 S. P (High)			Ŷ		
*1587	MF 32	MFE571B-BU	BU No. 1 S. P (Low)			٧		
*1588	MF 35	MFE061A-LSA	LSA Spool Piece			V	<u> </u>	
*1589	MF 36	MEEUDIB-LSA	LSA Spool Piece	1		V V	<u> </u>	<u> </u>
*1590	MF 38	MFE201B-LSB	LSB Spool Piece			v		
			, , , , , , , , , , , , , , , , , , , ,	1			1	

Table A.1(Cont'd) (21/25)

SEQ No.	Function	Tagname	Location	Rar	nge	Unit	Uncer	tainty
	ID.			LO	HI		± ABS.	<u>±%FR</u>
1592	DE 1	DEOTTA-HLA	HLA S. P Beam A			V		
1593	DE 2	DEOTID-HLA	HIASP Beam C			V		
1595	DE 4	DE051A-LSA	LSA S. P Beam A			v		
1596	DE 5	DE051B-LSA	LSA S.P Beam B			V		
1597	DE 6	DE051C-LSA	LSA S.P Beam C			٧		
1598	DE 7	DE071A-CLA	CLA S. P Beam A			V		
	DE 8	DE071B-CLA	CLA S. P Beam B			V		
1600	DE 9	DE071C-CLA	CLA S. P Beam C			V		
1601			HLB S. P Beam A			V		
*1603	DE 12	DE1510-HLB	HIB S P Beam C			v		
1604	DE 13	DE191A-LSB	LSB S. P Beam A			v	1	
1605	DE 14	DE191B-LSB	LSB S.P Beam B			٧		
1606	DE 15	DE191C-LSB	LSB S.P Beam C			٧		
1607	DE 16	DE211A-CLB	CLB S. P Beam A			V		
1608	DE 17	DE211B-CLB	CLB S. P Beam B			V		
1609	DE 18	DE211C-CLB	CLB S. P Beam C			V		
1611	DE 19	DE102-LSA	PCB Suction			V V		
1612	DE 20	DE192-L30	PR Surge Line			v		
1612	DE 25	DE431-SGA	SGA Downcomer			v		
1614	DE 26	DE471-SGB	SGB Downcomer			V		
1615	DE 30	DE571A-BU	BU S.P Beam A			٧		
1616	DE 31	DE571B-BU	BU S. P Beam B			٧		
1617	DE 32	DE571C-BU	BU S.P Beam C			V		
1618	CP 1	CPE_E_0120_DC	"Downcomer E L -1 2m East"	0.0	1 0005+02	۵′	· · · · · · · · · · · · · · · · · · ·	
1619	CP 2	CPE-E-006C-DC	"Downcomer E L -0 6m East"	0.0	1.000E+02	70		
1620	CP 3	CPE-E000C-DC	"Downcomer E. L. O. Om, East"	0.0	1.000E+02	%	· · · ·	
1621	CP 4	CPE-E006C-DC	"Downcomer E.L.O.6m, East"	0.0	1.000E+02	e,		
1622	CP 6	CPE-E018C-DC	"Downcomer E. L. 1. 8m. East"	0.0	1.000E+02	%		
1623	CP 7	CPE-E024C-DC	"Downcomer E. L. 2. 4m, East"	0.0	1.000E+02	%		
1624	CP 8	CPE-E031C-DC	"Downcomer E. L. 3. 1m, East"	0.0	1.000E+02	. %		
1625	CP 10	CPE-E0430-DC	Downcomer E. L. 4. 3m, East	0.0	1.000E+02	70 N		
1627	CP 12	CPE-E0490-D0	"Downcomer E L 5 5m East"	0.0	1.000E+02	70 4		
1628	CP 14	CPE-E067C-DC	"Downcomer F.L. 6. 7m Fast"	0.0	1.000E+02	%		
*1629	CP 17	CPE-E069F-UH	"Upper Head E.L. 6.9m, East"	0.0	1.000E+02	%		
1630	CP 20	CPE-W072F-UH	"Upper Head E. L. 7. 2m, West"	0.0	1.000E+02	%		
1631	CP 27	CPE-E066H-GT	"Guide Tube E.L.6.6m,East"	0.0	1.000E+02	%		
1632	CP 30	CPE-W072H-GT	"Guide Tube E.L. 7. 2m, West"	0.0	1.000E+02	%		
1633	CP 40	CPE-W054H-GI	Guide Tube E.L. 5. 4m, West	0.0	1.000E+02	%		
1635	CP 42	CPE-W042-UP	"linner Plenum E L 4 2m West"	0.0	1.000E+02			
1636	CP 45	CPE-E043-UP	"Upper Plenum F.I. 4.3m Fast"	0.0	1 000E+02			·
1637	CP 57	CPE-E060-UP	"Upper Plenum E.L. 6. 0m, East"	0.0	1.000E+02	%		
*1638	CP 61	CPE-C-015-LP	Lower Plenum E.L1.5m	0.0	1.000E+02	%		
1639	CP 69	CPE-B08002	In-Core West Pos.2	0.0	1.000E+02	%		
*1640	CP 71	CPE-B08004	In-Core West Pos. 4	0.0	1.000E+02	%		
1642	CP 73	CPE-B08006	In-Core West Pos. 6	0.0	1.000E+02	%		
1643	CP 74	CPE-B15661	"B15 Rod(6, 6) Pos 1"	0.0	1.000E+02	70 N		
*1644	CP 78	CPE-B15662	"B15 Rod(6, 6) Pos. 1	0.0	1.000E+02	70		
*1645	CP 82	CPE-B15666	"B15 Rod (6, 6) Pos. 6"	0.0	1.000E+02	 %		
*1646	CP 83	CPE-B15667	"B15 Rod (6, 6) Pos. 7"	0.0	1.000E+02	%		
*1647	CP 84	CPE-B15668	"B15 Rod(6, 6) Pos. 8"	0.0	1.000E+02	%		
*1648	CP 87	CPE-B04002	In-Core East Pos. 2	0.0	1.000E+02	%		
*1650	CP 90	CPE-B04005	In-Core East Pos. 5	0.0	1.000E+02	%		
1651	CP 95	CPE-B20621	"B20 Rod(6 2) Pos 1"	0.0	1.000E+02	%		
1652	CP 97	CPE-B20623	"B20 Rod (6, 2) Pos. 1"	0.0	1.000E+02	<u>, n</u> %		
*1653	CP 100	CPE-B20626	"B20 Rod (6, 2) Pos. 6"	0.0	1.000E+02	%		
*1654	CP 101	CPE-B20627	"B20 Rod (6, 2) Pos. 7"	0.0	1.000E+02	%		
1655	CP 107	CPE-B22624	"B22 Rod (6, 2) Pos. 4"	0.0	1.000E+02	%		
*1656	CP 110	CPE-B22627	"B22 Rod (6, 2) Pos. 7"	0.0	1.000E+02	%		
*1657	CP 111	CPE-B22628	"B22 Rod (6, 2) Pos. 8"	0.0	1.000E+02	<u>%</u>		
*1008	CP 112	CPE-B22029	BZZ ROD (b, Z) POS. 9	0.0	1.000E+02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1660	CP 121	CPE-181-PR	Pressurizer Pos 2	0.0	1.000E+02	70 92		
1661	CP 123	CPE-086C-SGA	SGA Boiling Section Pos. 1	0.0	1.000E+02	%		
1662	CP 124	CPE-099C-SGA	SGA Boiling Section Pos.3	0.0	1.000E+02	%		
1663	CP 125	CPE-112C-SGA	SGA Boiling Section Pos.5	0.0	1.000E+02	Ķ		
1664	CP 126	CPE-125C-SGA	SGA Boiling Section Pos. 6	0.0	1.000E+02	%		
1665	CP 127	CPE-137C-SGA	SGA Boiling Section Pos. 7	0.0	1.000E+02	%		
1666	CP 128	CPE-150C-SGA	SGA Boiling Section Pos. 8	0.0	1.000E+02	%		
1669	CP 129	CPE-1780-SGA	SGA Boiling Section Pos. 9	0.0	1.000E+02	15 N		
1669	CP 133	CPE-1920-SGA	Downcomer Pos 12	0.0	1.000E+02	70 9 <u>4</u>		
1670	CP 134	CPE-208C-SGA	Downcomer Pos. 13	0.0	1. 000E+02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
				0.0	1,0002.02	14		· ···-

Table A.1(Cont'd) (22/25)

	Function			Rar	17e		lincer	tainty
SEQ No.	ID.	Tagname	Location	LO	HI	Unit	±ABS.	±%FR
1671	CP 135	CPE-223C-SGA	Drver Pos. 14	0.0	1.000E+02	%		
*1672	CP 137	CPE-IN0861-SGA	"SGA U-Tube(1, IN) Pos. 1"	0.0	1.000E+02	%		
1673	CP 138	CPE-EX0861-SGA	"SGA U-Tube(1, EX) Pos. 1"	0.0	1.000E+02	%		
1674	CP 140	CPE-EX0862-SGA	"SGA U-Tube(2, EX) Pos. 1"	0.0	1.000E+02	%		
1675	CP 142	CPE-EX0863-SGA	"SGA U-Tube (3, EX) Pos. 1"	0.0	1.000E+02	%		
1676	CP 143	CPE-IN0864-SGA	"SGA U-Tube(4, IN) Pos. 1"	0.0	1.000E+02	%		
1677	CP 144	CPE-EX0864-SGA	"SGA U-Tube(4, EX) Pos. 1"	0.0	1.000E+02	%		
1678	CP 145	CPE-IN0865-SGA	"SGA U-Tube (5, IN) Pos. 1"	0.0	1.000E+02	%		
*1679	CP 150	CPE-IN0932-SGA	"SGA U-Tube (2, IN) Pos. 2"	0.0	1.000E+02	%		<u> </u>
*1680	CP 151	CPE-IN0933-SGA	SGA U-Tube (3, TN) Pos. 2	0.0	1.000E+02	%		
1600	CP 152	OPE-IN0934-SGA	SGA U-TUDE (4, IN) POS. Z	0.0	1.000E+02	70 V		
1692	CP 153	CPE-IN0935-30A	SGA U-Tube (1, IN) Pos. 2	0.0	1.000E+02	70 0/		
1694	CP 155	CPE-IN0002-SGA	"SGA 11-Tube(2, IN) Pos. 3"	0.0	1.000E+02	70	· · · · · · · · · · · · · · · · · · ·	<u> </u>
1685	CP 158	CPE-FY0992-SGA	"SGA II-Tube(2 FX) Pos 3"	0.0	1.000E+02	70 K		
1686	CP 159	CPE-IN0993-SGA	"SGA II-Tube (3, IN) Pos 3"	0.0	1.000E+02	¥		
*1687	CP 160	CPE-EX0993-SGA	"SGA U-Tube (3, EX) Pos. 3"	0.0	1.000E+02	× ×		
1688	CP 161	CPE-IN0994-SGA	"SGA U-Tube (4, IN) Pos. 3"	0.0	1.000E+02	%		
1689	CP 162	CPE-EX0994-SGA	"SGA U-Tube (4, EX) Pos. 3"	0.0	1.000E+02	%		
1690	CP 163	CPE-IN0995-SGA	"SGA U-Tube(5, IN) Pos. 3"	0.0	1.000E+02	%		
1691	CP 164	CPE-EX0995-SGA	"SGA U-Tube (5, EX) Pos, 3"	0.0	1.000E+02	%		
1692	CP 168	CPE-IN1052-SGA	"SGA U-Tube(2, IN) Pos. 4"	0.0	1.000E+02	%		
1693	CP 170	CPE-IN1054-SGA	"SGA U-Tube(4, IN) Pos. 4"	0.0	1.000E+02	%		
1694	CP 171	CPE-IN1055-SGA	"SGA U-Tube (5, 1N) Pos. 4"	0.0	1.000E+02	%		
1695	CP 178	CPE-EX1123-SGA	"SGA U-Tube (3, EX) Pos. 5"	0.0	1.000E+02	%		
1696	CP 180	CPE-EX1124-SGA	"SGA U-Tube (4, EX) Pos. 5"	0.0	1.000E+02	%		<u> </u>
*1697	CP 181	CPE-IN1125-SGA	"SGA U-Tube (5, IN) Pos, 5"	0.0	1.000E+02	%		
1698	CP 182	CPE-EX1125-SGA	SGA U-Tube (5, EX) Pos. 5	0.0	1.000E+02	%		
1699	CP 184	CPE-EXTI26-SGA	SGA U-Tube (6, EX) Pos. 5	0.0	1.000E+02	% *		
1700	CP 186	OPE-EXIZOI-SUA	SUA U-TUDE(I, EX) POS. 0	0.0	1.000E+02	70 e/		
+1702	OP 187	OPE-INIZOZ-SGA	SUA U-TUDE (2, IN) POS. 0	0.0	1.000E+02	76		
1702	CP 109	CPE-FY1253-SGA	"SGA U-Tube (3, TH) POS. 0	0.0	1.000E+02	70		
1704	CP 191	CPE-IN1254-SGA	"SGA II-Tube (4 IN) Pos 6"	0.0	1 000E+02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
1705	CP 192	CPE-EX1254-SGA	"SGA II-Tube (4 FX) Pos 6"	0.0	1 000E+02	%		
1706	CP 195	CPE-IN1256-SGA	"SGA U-Tube (6, IN) Pos. 6"	0.0	1.000E+02	%		
1707	CP 197	CPE-IN1371-SGA	"SGA U-Tube (1, IN) Pos. 7"	0.0	1.000E+02	%		
1708	CP 200	CPE-EX1372-SGA	"SGA U-Tube(2, EX) Pos. 7"	0.0	1.000E+02	%		
1709	CP 203	CPE-IN1374-SGA	"SGA U-Tube (4, IN) Pos. 7"	0.0	1.000E+02	%		
1710	CP 207	CPE-IN1376-SGA	"SGA U-Tube(6, IN) Pos. 7"	0.0	1.000E+02	%		
*1711	CP 208	CPE-EX1376-SGA	"SGA U-Tube(6, EX) Pos, 7"	0.0	1.000E+02	%		
1712	CP 211	CPE-IN1502-SGA	"SGA U-Tube (2, IN) Pos. 8"	0.0	1.000E+02	%		
1713	CP 212	CPE-EX1502-SGA	"SGA U-Tube (2, EX) Pos. 8"	0.0	1.000E+02	%		
1714	CP 214	CPE-EX1503-SGA	"SGA U-Tube (3, EX) Pos. 8"	0.0	1.000E+02	%		
1715	CP 215	CPE-IN1504-SGA	"SGA U-Tube (4, IN) Pos. 8"	0.0	1.000E+02	%		
1716	CP 219	CPE-IN1506-SGA	"SGA U-Tube (6, IN) Pos. 8"	0.0	1.000E+02	%		
1717	CP 221	CPE-IN1632-SGA	"SGA U-Tube (2, IN) Pos. 9"	0.0	1.000E+02	%		<u> </u>
1/18	CP 222	CPE-EX1632-SGA	SGA U-Tube $(2, EX)$ Pos. 9	0.0	1.000E+02	<u>%</u>		
1700	OP 223	OPE-INI033-SGA	SGA U-TUDE (3, TN) POS. 9	0.0	1.000E+02	70 N		
1720	0P 224	OPE-EX1033-SUA	"SGA U-Tube (J, EA) Pos. 9	0.0	1.000E+02	70		<u> </u>
1721	OF 225	OPE-EX1634-SGA	"SGA II-Tube (4, 114) POS. 5	0.0	1.000E+02	70 84		
1722	CP 220	CPE-IN1785-SGA	"SGA II-Tube (5, IN) Pos 10"	0.0	1.000E+02	% %		
1724	CP 233	CPE-IN1863-SGA	"SGA II-Tube (3, IN) Post 11"	0.0	1.000E+02	%		
1725	CP 234	CPE-IN1864-SGA	"SGA U-Tube (4, IN) Pos. 11"	0.0	1.000E+02	%		
1726	CP 235	CPE-086C-SGB	SGB Boiling Section Pos. 1	0.0	1.000E+02	%		
1727	CP 236	CPE-099C-SGB	SGB Boiling Section Pos.3	0.0	1.000E+02	%		
1728	CP 237	CPE-112C-SGB	SGB Boiling Section Pos.5	0.0	1.000E+02	%		
1729	CP 238	CPE-125C-SGB	SGB Boiling Section Pos.6	0.0	1.000E+02	%		
1730	CP 239	CPE-137C-SGB	SGB Boiling Section Pos.7	0.0	1.000E+02	%		
1731	CP 240	CPE-150C-SGB	SGB Boiling Section Pos.8	0.0	1.000E+02	%		
1732	CP 241	CPE-163C-SGB	SGB Boiling Section Pos.9	0.0	1.000E+02	%		ļ
1733	CP 242	CPE-178C-SGB	SGB Boiling Section Pos. 11	0.0	1.000E+02	%		
1734	CP 243	CPE-192F-SGB	SGB Boiling Section Pos. 12	0.0	1.000E+02	%		
1735	CP 244	CPE-208F-SGB	SGB Separator Pos. 13	0.0	1.000E+02	<u>%</u>		
1/36	UP 245	UPE-1920-SGB	Sub Downcomer Pos. 12	0.0	1.000E+02	% e/		<u> </u>
1/3/	UP 246	UPE-2080-SGB	Sub Downcomer Pos. 13	0.0	1.000E+02	70 N		
1720	CP 247	0FE-2230-348	SGB Steam Dome Dog 15	0.0	1.000E+02	7b 0/	<u> </u>	
1739	CP 250	0FL-2400-300	"SGR U-Tube (1 EY) Dog 1"	0.0	1 00000002	70 Q2		
1740	CP 251	CPE-IN0862-SGR	"SGB II-Tube(2, IN) Pos 1"	0.0	1 000E+02	70 9 <u>4</u>		<u> </u>
*17/9	CP 254	CPE-EX0863-SGB	"SGB U-Tube (3 FX) Pos 1"	0.0	1.000E+02	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>
1743	CP 255	CPE-IN0864-SGR	"SGB U-Tube (4, IN) Pos. 1"	0.0	1.000E+02	%		<u> </u>
1744	CP 257	CPE-IN0865-SGB	"SGB U-Tube (5, IN) Pos. 1"	0.0	1. 000E+02	%		
1745	CP 258	CPE-EX0865-SGB	"SGB U-Tube (5, EX) Pos. 1"	0.0	1.000E+02	%		
1746	CP 259	CPE-IN0866-SGB	"SGB U-Tube(6, IN) Pos. 1"	0.0	1.000E+02	%		
*1747	CP 261	CPE-IN0931-SGB	"SGB U-Tube(1, IN) Pos. 2"	0.0	1.000E+02	%		
1748	CP 262	CPE-IN0932-SGB	"SGB U-Tube(2, IN) Pos. 2"	0.0	1.000E+02	%		
1749	CP 263	CPE-IN0933-SGB	"SGB U-Tube(3, IN) Pos. 2"	0.0	1.000E+02	%		
1750	CP 264	CPE-IN0934-SGB	"SGB U-Tube (4, IN) Pos. 2"	0.0	1.000E+02	%		

Table A	A.1(Cont'd)	(23/25)
---------	-------------	---------

050 11	Function	T	1 +	Ran	ge	11	Uncer	tainty
SEU NO.	ID.	ragname	Location	LO	HI	UNIC	±ABS.	±%FR
1751	CP 265	CPE-1N0935-SGB	"SGB U-Tube (5, IN) Pos. 2"	0.0	1 000F+02	%		[
1752	CP 266	CPE-1N0936-SGB	"SGB U-Tube (6, IN) Pos. 2"	0.0	1.000E+02	%	1	
*1753	CP 267	CPE-IN0991-SGB	"SGB II-Tube (1 IN) Pos 3"	0.0	1 000E+02	%		
1754	CP 270	CPE-EX0992-SGB	"SGB II-Tube (2 EX) Pos 3"	0.0	1 000E+02	%		
1755	CP 272	CPE-EX0003-SGB	"S68 II-Tube (3 EY) Post 3"	0.0	1.000E+02	04		
1756	CP 272		"SGB II-Tube (4 IN) Pos 3"	0.0	1.000E+02	02		<u> </u>
1750	0P 273		"Sop II Tube (4, TN) Pos. 3	0.0	1.000E+02	70		
1757	0P 270	OPE INCOME SOR	"Sub U-Tube (5, EX) Pos. 3	0.0	1.0002+02	70		<u> </u>
1758	GP 277	CPE-IN0996-SGB	SGB U-Tube (6, IN) Pos. 3	0.0	1.000E+02	%		
1759	CP 278	CPE-EX0996-SGB	"SGB U-Tube (6, EX) Pos. 3"	0.0	1.000E+02	%		
1760	CP 280	CPE-IN1052-SGB	"SGB U-Tube(2, IN) Pos. 4"	0.0	1.000E+02	%	<u> </u>	
1761	CP 285	CPE-IN1121-SGB	"SGB U-Tube(1, IN) Pos. 5"	0.0	1.000E+02	%		
1762	CP 286	CPE-EX1121-SGB	"SGB U-Tube(1, EX) Pos. 5"	0.0	1.000E+02	%		
1763	CP 288	CPE-EX1122-SGB	"SGB U-Tube(2, EX) Pos. 5"	0.0	1.000E+02	%		
1764	CP 289	CPE-IN1123-SGB	"SGB U-Tube(3, IN) Pos. 5"	0.0	1.000E+02	%		
1765	CP 290	CPE-EX1123-SGB	"SGB U-Tube (3, EX) Pos, 5"	0.0	1.000E+02	%		
1766	CP 291	CPE-IN1124-SGB	"SGB U-Tube(4 IN) Pos 5"	0.0	1 000F+02	%	1	
1767	CP 292	CPE-EX1124-SGB	"SGB II-Tube (4 EX) Pos 5"	0.0	1.000E+02	e e		
1768	CP 205	CPE-IN1126-SGB	"SGB II-Tube (6 IN) Pos 5"	0.0	1.000E+02	 e_		
1700	OF 295		"SOB U Tube (0, TN) POS. 5	0.0	1.000E+02	70		
1709	OP 290	OPE-EXTIZE-SUD	Sub 0-100e(0, EX) Pos. 5	0.0	1.000E+02	78		
*1770	CP 297	CPE-INI251-SGB	SGB U-Tube (T, TN) Pos. 6	0.0	1.000E+02	*		
1//1	CP 299	CPE-IN1252-SGB	SGB U-Tube (2, TN) Pos. 6	0.0	1.000E+02	%		
*1772	CP 300	CPE-EX1252-SGB	SGB U-Tube (2, EX) Pos. 6"	0.0	1.000E+02	%	ļ	
1773	CP 301	CPE-IN1253-SGB	"SGB U-Tube(3, IN) Pos. 6"	0.0	1.000E+02	%		
1774	CP 302	CPE-EX1253-SGB	"SGB U-Tube (3, EX) Pos. 6"	0.0	1.000E+02	%		
1775	CP 303	CPE-IN1254-SGB	"SGB U-Tube(4, IN) Pos. 6"	0.0	1.000E+02	%		
1776	CP 304	CPE-EX1254-SGB	"SGB U-Tube(4, EX) Pos. 6"	0.0	1.000E+02	%		
*1777	CP 305	CPE-IN1255-SGB	"SGB U=Tube(5, IN) Pos. 6"	0.0	1.000E+02	%		
1778	CP 307	CPE-IN1256-SGB	"SGB U-Tube (6 IN) Pos 6"	0.0	1.000F+02	9 <u>4</u>	[
1770	CP 308	CPE-EX1256-SGR	"SGB II-Tube (6 EX) Pog 6"	0.0	1 000E+02	02 10	<u> </u>	
1790	CP 200	CPE-IN1371-SCR	"SGB II-Tube (1 IN) Pos 7"	0.0	1 0005+02	20 20		
1701	00 000	ODE_EV1372_CCD	"SGB II_Tube(2 EV) Dec 7"	0.0	1.0000002	/b 0/		
1701	0P 312	OPE-EX1372-SUD	Sub U-Tube (2, EX) Pos. 7	0.0	1.000E+02	%		
1/82	CP 313	CPE-INT3/3-SGB	SGB U-Tube (3, IN) Pos. 7	0.0	1.000E+02	%	ļ	
1783	CP 315	CPE~IN13/4~SGB	SGB U-Tube (4, IN) Pos. 7	0.0	1.000E+02	%		
1784	CP 316	CPE-EX1374-SGB	"SGB U-Tube (4, EX) Pos. 7"	0.0	1.000E+02	%		
1785	CP 318	CPE-EX1375-SGB	"SGB U-Tube (5, EX) Pos. 7"	0.0	1.000E+02	%		
1786	CP 319	CPE-IN1376-SGB	"SGB U-Tube (6, IN) Pos. 7"	0.0	1.000E+02	%		l
1787	CP 323	CPE-IN1502-SGB	"SGB U-Tube(2, IN) Pos. 8"	0.0	1.000E+02	%		
1788	CP 324	CPE-EX1502-SGB	"SGB U-Tube(2, EX) Pos, 8"	0.0	1.000E+02	×.		
*1789	CP 325	CPE-1N1503-SGB	"SGB U-Tube(3, IN) Pos. 8"	0.0	1.000E+02	%		
1790	CP 326	CPE-EX1503-SGB	"SGB II-Tube (3 EX) Pos 8"	0.0	1 000E+02	4		
1791	CP 329	CPE1N1505-SGB	"SGB II-Tube (5, IN) Pos. 8"	0.0	1.000E+02	N.		
1792	CP 330	CPE-EX1505-SGB	"SGB II-Tube (5, FX) Pos. 9"	0.0	1.000E+02	/0 10/	<u> </u>	
1702	00 221	OPE INTEGE COR	"SCP II Tube (G IN) Dec 0"	0.0	1.000E+02	70		
1793	00 200		SGD U-TUDE (0, TN) POS. 8	0.0	1.000E+02	70		
*1/94	UP 332	CPE-EX1506-SGB	SGB U-Tube (6, EX) Pos. 8	0.0	1.000E+02	%	ļ	<u> </u>
1795	CP 333	CPE-IN1632-SGB	SGB U-Tube (2, TN) Pos. 9	0.0	1.000E+02	%	L	ļ
1796	CP 334	CPE-EX1632-SGB	"SGB U-Tube(2, EX) Pos. 9"	0.0	1.000E+02	%		
1797	CP 335	CPE-IN1633-SGB	"SGB U-Tube(3, IN) Pos. 9"	0.0	1.000E+02	%	[]	
1798	CP 337	CPE-IN1634-SGB	"SGB U-Tube(4, IN) Pos. 9"	0.0	1.000E+02	%		
1799	CP 338	CPE-EX1634-SGB	"SGB U-Tube (4, EX) Pos. 9"	0.0	1.000E+02	%		
1800	CP 339	CPE-IN1635-SGB	"SGB U-Tube(5, IN) Pos. 9"	0,0	1.000E+02	%		
1801	CP 340	CPE-EX1635-SGB	"SGB U-Tube (5, EX) Pos. 9"	0.0	1.000E+02	%		
1802	CP 341	CPE-IN1701-SGB	"SGB U-Tube(1, IN) Pos. 10"	0.0	1.000E+02	%		
1803	CP 343	CPE-IN1782-SGB	"SGB U-Tube(2, IN) Pos, 10"	0.0	1.000E+02	%		
1804	CP 344	CPE-IN1785-SGB	"SGB U-Tube (5, IN) Pos 10"	0.0	1.000F+02	%	I	
1805	CP 346	CPE-IN1864-SGB	"SGB U-Tube (4 IN) Pos 11"	0.0	1.000F+02	e,		
1806	CP 347	CPF-010A-HI A	HIA Vessel Side CPT	0.0	1 000E+02	ey.		
1807	CP 348	CPE-010B-H! A	HLA Vessel Side CPT	0.0	1 0005+02	RL N		
1808	CP 350	CPE-010D-H! A	HIA Vessel Side OFT	0.0	1 0005+02	N		
1000	01 000		HLA Vessel Side OFT	0.0	1.0000000	70 N		
1010	00 200		HLA VESSEL STUE UPT	0.0	1.000E+02	70	ļļ	
1010	00 302	OPE 150A-HLB		0.0	1.000E+02	70	ļl	
1811	CP 363	UPE-150B-HLB	HLB Vessel Side CPT	0.0	1.000E+02	*	ļ	
1812	CP 366	CPE-150E-HLB	HLB Vessel Side CPT	0.0	1.000E+02	%		
1813	CP 367	CPE-180A-HLB	HLB SG Side CPT	0.0	1.000E+02	%		
1814	CP 368	CPE-180B-HLB	HLB SG Side CPT	0.0	1.000E+02	%		
1815	CP 369	CPE-180C-HLB	HLB SG Side CPT	0.0	1.000E+02	%		
1816	CP 370	CPE-180D-HLB	HLB SG Side CPT	0.0	1.000E+02	%		
1817	CP 372	CPE-230A-CLB	CLB Vessel Side CPT	0.0	1.000E+02	%		
1818	CP 373	CPE-230B-CLB	CLB Vessel Side CPT	0.0	1.000E+02	%		
1819	CP 374	CPE-230C-CLB	CLB Vessel Side CPT	0.0	1.000F+02	ý,		
1820	CP 375	CPE-230D-CLB	CLB Vessel Side CPT	0.0	1 000E+02			
1821	CP 376	CPE-230E-018	CIB Vessel Side CPT	0.0	1 0005+02	n Q		<u></u>
1927	CP 379	CPE0514-LSA		0.0	1.0000-02	n V	j	
1022	CP 270	OPENSIR-LOA		0.0	1.000E+02	70		
1020	CD 200	OPEOFIC LSA		0.0	1.000E+02	70 0/		
1024	OP 380	OFEUGIU-LOA		0.0	1.000E+02	%		
1825	UP 381	UPEUDID-LSA	LSA (SG SIde)	0.0	1.000E+02	%		
1826	CP 382	GPE051E-LSA	LSA (SG Side)	0.0	1.000E+02	%	L]	
1827	CP 383	CPE051F-LSA	LSA (SG Side)	0.0	1.000E+02	%		
1828	CP 384	CPE051G-LSA	LSA (SG Side)	0.0	1.000E+02	%		
1829	CP 385	CPE051H-LSA	LSA (SG Side)	0.0	1.000E+02	%		
1830	CP 386	CPE0511-LSA	LSA (SG Side)	0.0	1.000E+02	%		

Table A.1(Cont'd) (24/25)

	Function	1		Pa			Uncost	
SEQ No.	runction	Tagname	Location		ige ui	Unit		
	I IV.						± AD3.	±%rk
1831	CP 388	CPE191A-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1832	CP 390	CPE191C-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1833	CP 391	CPE191D-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1834	CP 392	CPE191E-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1835	CP 393	CPE191F-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1836	CP 394	CPE191G-LSB	LSB (SG Side)	0.0	1.000E+02	%		
1837	CP 395	CPE191H-LSB	ISB (SG Side)	0.0	1 000F+02	%		
1838	CP 396	CPE1911-LSB	LSB (SG Side)	0.0	1 000E+02	٩٢.		
1830	CP 307	CPE101 I-I SB		0.0	1.000E+02	0/	-	
1035	OF 357			0.0	1.000E+02	70		
1040	0P 408	GEZ / O-PV		0.0	1.000E+02	70		
1841	CP 409	CP-VALVE-T	Break Signal for TENCOM	0.0	1.000E+02	%		
1842	CP 410	CP-VALVE-S	Break Signal for FACOM	0.0	1.000E+02	%		
*1843	RC 1	MFE011A-HLA-EU	HLA Spool Piece Top	-1. 300E+04	1. 300E+04	kg/ms2	8. 2E+01	
*1844	RC 2	MFE011B-HLA-EU	HLA Spool Piece Side	-1.300E+04	1.300E+04	kg/ms2	8.8E+01	
*1845	RC 3	MFE011C-HLA-EU	HLA Spool Piece Bottom	-1. 300E+04	1. 300E+04	kg/ms2	8.0E+01	
*1846	RC 4	MFE051A-LSA-EU	LSA Spool Piece East	-1. 300E+04	1.300E+04	kg/ms2		
*1847	RC 5	MFE051B-LSA-EU	LSA Spool Piece South	-1, 300E+04	1.300E+04	kg/ms2		
*1848	RG 6	MEE051C-LSA-EU	ISA Spool Piece West	-1 300F+04	1 300F+04	kg/ms2		·
*1840	RC 7		CLA Speel Piece Top	-1 300E+04	1 300E+04	kg/me2	7.4E+01	
+1950	PC 9		CLA Speel Piece Side	-1.300E+04	1.300E+04	kg/ms2	0.05-01	
+10F1			CLA Speel Diago Potto-	-1 2005-04	1 2005-04	ng/11152	0.05701	
+1001	NU 9	MEELETA ULD EU		1 2005-01	1.300E+04	kg/mSZ	8.0E+U1	······
*1852	KU 10	MELIDIA-HLB-EU	ILD Spool Piece lop	-1.300E+04	1.300E+04	Kg/ms2	8.3E+01	
*1853	RC 11	MFE151B-HLB-EU	HLB Spool Piece Side	-1.300E+04	1.300E+04	kg/ms2	6.9E+01	
*1854	RG 12	MFE151C-HLB-EU	HLB Spool Piece Bottom	-1.300E+04	1.300E+04	kg/ms2	6.6E+01	
*1855	RC 13	MFE191A-LSB-EU	LSB Spool Piece West	-1.300E+04	1.300E+04	kg/ms2		
*1856	RC 14	MFE191B-LSB-EU	LSB Spool Piece North	-1.300E+04	1.300E+04	kg/ms2		
*1857	RC 15	MFE191C-LSB-EU	LSB Spool Piece East	-1. 300E+04	1.300E+04	kg/ms2		
*1858	RC 16	MFE211A-CLB-EU	CLB Spool Piece Top	-1.300E+04	1.300E+04	kg/ms2	7. 1E+01	
*1859	RC 17	MFE211B-CLB-EU	CLB Spool Piece Side	-1.300E+04	1.300E+04	kg/ms2	8, 0E+01	
*1860	RC 18	MEE211C-CLB-EU	CLB Spool Piece Bottom	-1.300F+04	1.300F+04	kg/ms?	6 8F+01	
*1861	RC 19		SGA Inlet	-2 800E+03	2 890E+03	kg/mc2	0.02.01	
+1001	RC 10		ISA Speel Bigge North (Low)	-2.090E+03	2.090000	kg/mo2		
+1002	R0 20		COD talat	-2.090E+03	2.090E+03	Kg/1152	· · · · · · · · · · · · · · · · · · ·	
*1803	RG 21	MFEI0I-HLB-EU	Sub Inlet	-2.890E+03	2.890E+03	Kg/msz		
*1864	RG 22	MFE191D-LSB-E0	LSB Spool Piece South(Low)	-2.890E+03	2.890E+03	kg/ms2		
*1865	RC 23	MFE-E-006-DC-EU	PV Downcomer DTT East	-1. 400E+04	1.400E+04	kg/ms2		
*1866	RC 24	MFE-S-006-DC-EU	PV Downcomer DTT South	-1. 400E+04	1. 400E+04	kg/ms2		
*1867	RC 25	MFE-W-006-DC-EU	PV Downcomer DTT West	-1. 400E+04	1.400E+04	kg/ms2		
*1868	RC 26	MFE-N-006-DC-EU	PV Downcomer DTT North	-1. 400E+04	1.400E+04	kg/ms2		
*1869	RC 27	VE-E-006-DC-EU	PV Downcomer East	-9.000E+00	9.000E+00	m/s		
*1870	RC 28	VE-S-006-DC-EU	PV Downcomer South	-9.000E+00	9.000E+00	m/s		
*1871	RC 29	VE-W-006-DC-EU	PV Downcomer West	-9.000E+00	9.000E+00	m/s		
*1972	RC 30	VE-N-006-DC-EU	PV Downcomer North	-9 000E+00	9 000E+00	m/s		
1072	PC 21			0.000	1 000E+03	ka/m3	2 75+01	
1073			HLA S. P. Deam R	0.0	1.000E+02	kg/m2	2.72101	
1075	RU 32		HLA S. P Deam D	0.0	1.000E+03	Kg/mo	2.0E+01	
1875	RC 33	DEUTIG-HLA-EU	HLA S. P Beam G	0.0	1.000E+03	Kg/m3	Z. 2E+01	
1876	RC 34	DE15TA-HLB-EU	HLB S. P Beam A	0.0	1.000E+03	kg/m3	2. /E+01	
1877	RC 35	DE151B-HLB-EU	HLB S. P Beam B	0.0	1.000E+03	kg/m3	2.0E+01	
*1878	RC 36	DE151C-HLB-EU	HLB S.P Beam C	0.0	1.000E+03	kg/m3	2.2E+01	
1879	RC 37	DE071A-CLA-EU	CLA S.P Beam A	0.0	1.000E+03	kg∕m3	9. 48E+01	
1880	RC 38	DE071B-CLA-EU	CLA S. P Beam B	0.0	1.000E+03	kg/m3	9. 48E+01	
1881	RC 39	DE071C-CLA-EU	CLA S.P Beam C	0.0	1.000E+03	kg/m3	9.48E+01	
1882	RC 40	DE211A-CLB-EU	CLB S. P Beam A	0.0	1.000E+03	kg/m3	9.48E+01	
1883	RC 41	DE211B-CLB-FU	CLB S. P Beam B	0.0	1.000E+03	kg/m3	9, 48E+01	
1884	RC 42	DE211C-CLB-FU	CLBSP Beam C	0.0	1.000F+03	kg/m3	9 48F+01	
1995	RC 42		BIL No. 1 S. P. Reem A	0.0	1 000E+02	kg/m?	9 48F+01	
1996	RC 40	DE5718-BU-EN	BIL No. 1 S. P. Beam R	0.0	1 000E+02	kg/m2	9 48F+01	
1000			BIL No. 1 S. P. Poom C	0.0	1 0000-02	N5/110	0.400.01	
1007	R0 40			U.U	E 0205-04	ng/113	3.40C+UI	
*1888	<u>πυ 4b</u>		110m RU 1 Z 3 31 32 33	-5.83UE+01	0.030E+01	Kg/S	1.05.01	
1889	KG 4/	DAE-UTI-HLA	Trom KC 31 32 33	0.0	1.000E+03	Kg/m3	1.3E+01	
*1890	RC 48	FKE-151-HLB	Trom RC 10 11 12 34 35 36	-5.830E+01	5.830E+01	kg/s		
*1891	RC 49	DAE-151-HLB	trom RC 34 35 36	0.0	1.000E+03	kg/m3	1.3E+01	
*1892	RC 50	FRE-071-CLA	from RC 7 8 9 37 38 39	-5.830E+01	5.830E+01	kg/s		
*1893	RC 51	FRE-211-CLB	from RC 16 17 18 40 41 42	-5.830E+01	5.830E+01	kg/s		
1894	RC 52	DAE-071-CLA	from RC 37 38 39	0.0	1.000E+03	kg/m3	5.563E+01	
1895	RC 53	DAE-211-CLB	from RC 40 41 42	0.0	1.000E+03	kg/m3	5.563E+01	
*1896	RC 54	MFE571A-BU-EU	BU No.1 S.P (High)	-1.000E+01	1.000E+01	kg/ms2	1.2955E+04	
*1897	RC 55	MFE571B-BU-FU	BU No. 1 S. P (Low)	-1,000F+01	1,000E+01	kg/ms2	3,037F+03	
1898	RC 56	DE051A-1 SA-EU	ISA S P Beam A	0.0	1 000F+03	kg/m3	9 48F+01	
1900	RC 57	DE051B-I SA-EU	ISA S P Ream R	0.0	1 000E±02	ka/m2	9 /8F±01	······································
1000		DEGELO-LOA EN		0.0	1.0000000	ng/110	0.40E-01	
1900	KU 58	DEUDIU-LOA-EU	LOA S. P Beam U	0.0	1.000E+03	Kg/M3	9.482+01	······
1901	KC 59	DE191A-LSB-EU	LSB S. P Beam A	0.0	1.000E+03	Kg/m3	9.48E+01	
1902	RC 60	DE191B-LSB-EU	LSB S. P Beam B	0.0	1.000E+03	kg/m3	9.48E+01	
1903	RC 61	DE191C-LSB-EU	LSB S.P Beam C	0.0	1.000E+03	kg/m3	9.48E+01	
1904	RC 62	DE052-LSA-EU	LSA Bottom	0,0	1.000E+03	kg/m3	9.48E+01	
1905	RC 63	DE192-LSB-EU	PCB Suction	0.0	1.000E+03	kg/m3	9.48E+01	
1906	RC 64	DE281-PR-EU	PR Surge Line	0.0	1.000E+03	kg/m3	9.48E+01	
1907	RC 68	DE431-SGA-EU	SGA Downcomer	0.0	1.000E+03	kg/m3		
1908	RC 69	DE471-SGB-FU	SGB Downcomer	0.0	1.000E+03	kg/m3		
*1000	RC 76	MEE061A_I \$A_E0	ISA Spool Piece	0.0	1 2305+04	kg/mc?		
	10 70	I IN LOUIN LON-EU	Eon apoor ricud	0.0	1.2032104	NB/ 1110Z	L	

Table A.1(Cont'd) (25/25)

	Function		1	Ra	nge		lincar	tainty
SEQ No.	ID.	Tagname	Location	LO	HI	Unit	+ ABS	
*1910	RC 77	MFE061B-LSA-EU	LSA Spool Piece	0.0	1 239F+04	kg/ms2		
*1911	RC 78	MFE201A-LSB-EU	LSB Spool Piece	0.0	1.239E+04	kg/ms2		
*1912	RC 79	MFE201B-LSB-EU	LSB Spool Piece	0.0	1, 239E+04	kg/ms2		
*1913	RC 110	FRE-051-LSA	Cross Over Leg A Flow Rate			kg/s		
*1914	RC 111	FRE-191-LSB	Cross Over Leg B Flow Rate			kg/s		
1915	RC 112	DAE-051-LSA	Cross Over Leg A Ave. Dens.			kg/m3		
1916	RC 113	DAE-191-LSB	Cross Over Leg B Ave. Dens.			kg/m3		
*1917	RC 114	FRE-061-LSA	"from RC 76, 77, 56, 57, 58"			kg/s		
*1918	RC 115	FRE-201-LSB	"from RC 78, 79, 59, 60, 61"			kg/s		
*1919	RC 116	FRE-571A-BU	"from RC 54, 43, 44, 45"			kg/s		
*1920	RC 117	FRE-571B-BU	"from RC 55, 43, 44, 45"			kg/s		
1921	RC 120	DAE-051-LSA-TY	"from RC 56, 57, 58"			kg/m3		
1922	RC 121	DAE-191-LSB-TY	"from RC 59,60,61"			kg/m3		
1923	RC 122	DAE-571A-BU	"from RC 43, 44, 45"			kg/m3		
1924	RC 133	TWE-PCT	Peak Cladding Temp.			K	5. 31E+00	
1925	RG 134	TWE-PUILUC	Location of PCI			Channel		
1926	RG 139	CL-GUKE	Core (EL35 - 3945)			m	2.16E-01	
1927	RC 140		Upper Plenum (EL. 4060 - 6135)			m	1.9/E-01	<u> </u>
1920	RC 141		Upper Head (EL. /834 - 9653)			m	(2.10E-01)	
1929	PC 142		UN Riccar Dert			m	7.46E-01	
1930	RC 143	CL-TUA-U3	SGA Tube 3 Inlat - Top			m	(1.81E-01)	
1932	RC 145		SGA Tube 2 Inlet - Top			m	(4.30E-01)	
1933	RC 146		SGA Tube 1 Inlet - Top			m	(4.20E-01)	
1934	RC 147		SGA Tube 4 Inlet - Top				(4.13E-01)	
1935	RC 148	CL-TUA-U5	SGA Tube 5 Inlet - Top				(4.30E-01)	<u> </u>
1936	RC 149	CI -TUA-U6	SGA Tube 6 Inlet - Top				(4.200-01)	
1937	RC 150	CL-TUA-D3	SGA Tube 3 Outlet - Top				(4. 23E 01)	
1938	RC 151	CL-TUA-D2	SGA Tube 2 Outlet - Top			m	(4.31E-01)	
1939	RC 152	CL-TUA-D1	SGA Tube 1 Outlet - Top			m	(4, 22E-01)	
1940	RC 153	CL-TUA-D4	SGA Tube 4 Outlet - Top			m	(4, 42E-01)	
1941	RC 154	CL-TUA-D5	SGA Tube 5 Outlet - Top			m	(4.31E-01)	
1942	RC 155	CL-TUA-D6	SGA Tube 6 Outlet - Top			m	(4.22E-01)	
1943	RC 156	CL-LSA-D	SGA Out.Plenum - LSA Bottom			m	(2.07E-01)	
1944	RC 157	CL-LSA-U	LSA Bottom - PCA Suction			m	1.88E-01	
1945	RC 159	CL-HLB-SGB	HLB Riser Part			m	(1.79E-01)	
1946	RC 160	CL-TUB-U3	SGB Tube 3 Inlet - Top			m	(4.45E-01)	
1947	RC 161	CL-TUB-U2	SGB Tube 2 Inlet - Top			m	(4.33E-01)	
1948	RC 162	CL-TUB-U1	SGB Tube 1 Inlet - Top			m	(7.30E-01)	
1949	RG 163	CL-TUB-U4	SGB lube 4 Inlet - lop			m	(7.40E-01)	
1950	RG 104		SGB Tube 5 Inlet - Top			<u>m</u>	(7.34E-01)	
1951	RC 105		SGP Tube 2 Outlat Tan				(7.30E-01)	
1952	RC 167	CL-TUB-D3	SGR Tube 2 Outlet - Top			m	(9.51E-01)	
1954	RC 168	CL-TUB-D2	SGB Tube 1 Outlet - Top			<u>m</u>	(7.40E-01)	
1955	RC 169	CL-TUB-D4	SGB Tube 4 Outlet - Top			m	(7.30E-01) (7.47E-01)	
1956	RC 170	CL-TUB-D5	SGB Tube 5 Outlet - Top			n	(7.4/E-01)	
1957	RC 171	CL-TUB-D6	SGB Tube 6 Outlet - Top			n	(7.35F-01)	
1958	RC 172	CL-LSB-D	SGB Out. Plenum - LSB Bottom			m	(2,07E-01)	
1959	RC 173	CL-LSB-U	LSB Bottom - PCB Suction			m	1,88E-01	
1960	RC 189	MS-ACC	Acc-Cold Tank			kg	3.926E+01	
1961	RC 190	MS-ACH	Acc-Hot Tank			kg	7.426E+01	
1962	RC 191	MS-ST	Break Flow Supp. Tank			kg	3.236E+02	
1963	RC 192	DM-ACC	Acc-Cold Tank			kg/s	1.355E+01	
1964	RC 193	DM-ACH	Acc-Hot Tank			kg/s	2.608E+01	
1965	RC 194	IM-ST	Break Flow Supp. Tank			kg/s	3.35E+00	
1966	RC 195	DM-RWST	RWST			kg/s	5.19E+01	
1967	RC 196	LG-HLA	HLA Water Level			m	1.20E-02	
1968	RC 197	LG-CLA	CLA Water Level			m	2.80E-02	
1969	RC 198		HLB Water Level			m	1.20E-02	
19/0	KG 199	Lu-ULB	ULB Water Level			m	2.80E-02	
19/1	RG 200		upper Plenum			<u>K</u>	1.764E+01	
1072	RC 201	TS-SGA	Steam Constator			<u>к</u>	1. /64E+01	······································
1974	RC 202	TS-SGR	Steam Generator-B			N N	7.82E+00	
13/4	110 200	10,000	occall ucherator "D	I		n	1.02E+00	

*The data is qualified as Qualitative because it includes large uncertainty or undefined trend.
Incertainty ranges of CP and RC data are revised to those for the LSTF system with the third and fourth core assembly (JAERI-Tech 2003-037). The bracketed values in the uncertainty range are to be revised for the experiment SB-CL-09 conditions with different level measuring ranges from those of the third and fourth LSTF core assembly.

-124 -

Fig. A. 1 Instruments in primary loop A (2) Differential pressure and flow rate

- GD_3 : 3 beams γ densitometer
- DD : Drag disk flow meter
- PIT : Pitot tube velocimeter
- OP5 : Optical liquid Level detector
- CP10 : Conductance probe
- RF : Reflux tlow meter
- DP : Differential pressure
- P : Pressure
- CPT₅ : Conductance probe with TC
- TE : Fluid temperature
- TW : Outside wall temperature
- TW : Inside wall temperature
- RE : Rotation speed
- VE : Pump oscillation
- TQ : Pump torque

Fig. A. 2 Instruments in primary loop B (1) Pressure, temperature, fluid density and others

Fig. A. 2 Instruments in primary loop B

(2) Differential pressure and flow rate

Fig. A. 3 Location of instruments in two primary loops(2) Vertical location of loop-seal instruments

Fig.A.4 Instruments in pressure vessel (PV) except for core (3) Vertical location of lower PV instruments

Fig. A. 5 Instruments in pressure vessel (PV) in plane view (1) Horizontal location of upper head instruments

Fig.A.6 Temperature measurement location in core heater rod assembly

Fig.A.8 Instruments in SG feedwater and condenser system

-139 -

Fig.A.9 Location of fluid temperature measurements in SG-A/B

Fig. A. 10 Location of wall temperature and temperature difference in SG-A/B

Fig.A.11 Location of pressure and DP measurements in SG-A/B

Fig.A.12 Location of liquid levels and flow rates in SG-A/B $\,$

Fig. A. 13 Location of conduction probe measurements in SG-A/B

Fig.A.14 Instruments for pressurizer and associated lines

Fig. A. 15 Location of selected instruments for pressurizer

-147 -

JAEA-Research 2008-087

Fig.A.17 Gamma-densitometer setup for single-beam and three-beam types

RSV1~3 / Horiz.

45.0

14.0

12.0 14.0

130.0

*DE591A~d 114.3 |

DE33~35

*DE571A~C 114.3

8.08

165.5

DE591A~C was equipped breaj unit from Exp. AP-SG-01

Note: DE571A~C was equipped ADS1~3 line and

LSB / Vertical

SGA / Horiz.

45.0 50.0

12.3

18.1

190.9 87.3 87.3

DE451A~C 216.3

12.2

15.10

240.0 240.0

168.2

240.2

DE191A~C

DE13~15 DE27~29 DE30~32

Break Unit

-148 -

Function ID No. DE19

DE20 DE21 DE40 DE41

表1	SI 基本单位	Ζ			
甘木昌	SI 基本ì	SI 基本単位			
本平里	名称	記号			
長 さ	メートル	m			
質 量	キログラム	kg			
時 間	1 秒	S			
電 济	瓦アンペア	А			
熱力学温度	モケルビン	Κ			
物質量	セール	mol			
光 度	カ ンデラ	cd			

表2.基本単位を用いて表されるSI	組立単位の例
-------------------	--------

성구由	SI 基本単位			
和立里	名称	記号		
面 積	平方メートル	m^2		
体積	立法メートル	m ³		
速さ、速度	メートル毎秒	m/s		
加 速 度	メートル毎秒毎秒	m/s^2		
波 数	毎メートル	m-1		
密度 (質量密度)	キログラム毎立法メートル	kg/m^3		
質量体積(比体積)	立法メートル毎キログラム	m ³ /kg		
電流密度	アンペア毎平方メートル	A/m^2		
磁界の強さ	アンペア毎メートル	A/m		
(物質量の)濃度	モル毎立方メートル	$mo1/m^3$		
輝 度	カンデラ毎平方メートル	cd/m^2		
屈 折 率	(数 の) 1	1		

表 5. SI 接頭語								
乗数	接頭語	記号	乗数	接頭語	記号			
10^{24}	ヨタ	Y	10^{-1}	デシ	d			
10^{21}	ゼタ	Z	10^{-2}	センチ	с			
10^{18}	エクサ	E	10^{-3}	र <u>प</u>	m			
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ			
10^{12}	テラ	Т	10^{-9}	ナノ	n			
10^{9}	ギカ	G	10^{-12}	ピョ	р			
10^{6}	メカ	M	10^{-15}	フェムト	f			
10^{3}	キロ	k	10^{-18}	アト	а			

d۶

10² \sim ク ŀ h

 10^{1}

表3. 固有の名称とその独自の記号で表されるSI組立単位

细 宁 畄.

			51 和立平臣	
組立量	名称	記号	他のSI単位による	SI基本単位による
	ED.		表し万	表し万
平 面 角	ラジアン ^(a)	rad		$m \cdot m^{-1} = 1^{(b)}$
立 体 角	ステラジアン ^(a)	$sr^{(c)}$		$m^2 \cdot m^{-2} = 1^{(b)}$
周 波 数	ヘルツ	Hz		s ⁻¹
力	ニュートン	Ν		m•kg•s ⁻²
圧力,応力	パスカル	Pa	N/m^2	$m^{-1} \cdot kg \cdot s^{-2}$
エネルギー,仕事,熱量	ジュール	J	N•m	$m^2 \cdot kg \cdot s^{-2}$
工 率 , 放射 束	ワット	W	J/s	$m^2 \cdot kg \cdot s^{-3}$
電荷,電気量	クーロン	С		s•A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$
電気抵抗	オーム	Ω	V/A	$m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$
コンダクタンス	ジーメンス	S	A/V	$m^{-2} \cdot kg^{-1} \cdot s^3 \cdot A^2$
磁束	ウエーバ	Wb	V·s	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-1}$
磁束密度	テスラ	Т	Wb/m^2	$kg \cdot s^{-2} \cdot A^{-1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 \cdot kg \cdot s^{-2} \cdot A^{-2}$
セルシウス温度	セルシウス度 ^(d)	°C		K
光束	ルーメン	1m	cd • sr ^(c)	$m^2 \cdot m^{-2} \cdot cd = cd$
照度	ルクス	1 x	1m/m^2	$m^2 \cdot m^{-4} \cdot cd = m^{-2} \cdot cd$
(放射性核種の)放射能	ベクレル	Bq		s
吸収線量,質量エネル	H V I	Gw	T/ka	m ² • a ⁻²
ギー分与, カーマ		0 y	J/ Kg	ш - 5
線量当量,周辺線量当				0 0
量,方向性線量当量,個	シーベルト	Sv	J/kg	m ² • s ⁻²
人線重当重,組織線重当				

(a) ラジアン及びステラジアンの使用は、同じ次元であっても異なった性質をもった量を区 別するときの組立単位の表し方として利点がある。組立単位を形作るときのいくつかの

用例は表4に示されている。 (b)実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位として の記号"1"は明示されない。 (c)測光学では、ステラジアンの名称と記号srを単位の表し方の中にそのまま維持している。 (d)この単位は、例としてミリセルシウス度m℃のようにSI接頭語を伴って用いても良い。

表4.単位の中に固有の名称とその独自の記号を含むSI組立単位の例

名子中		SI 組立単	单位
和业里	名称	記号	SI 基本単位による表し方
粘度	パスカル秒	Pa•s	$m^{-1} \cdot kg \cdot s^{-1}$
力のモーメント	ニュートンメートル	N•m	$m^2 \cdot kg \cdot s^{-2}$
表 面 張 力	ニュートン毎メートル	N/m	kg • s ⁻²
角 速 度	ラジアン毎秒	rad/s	$m \cdot m^{-1} \cdot s^{-1} = s^{-1}$
角 加 速 度	ラジアン毎平方秒	rad/s^2	$m \cdot m^{-1} \cdot s^{-2} = s^{-2}$
熱流密度, 放射照度	ワット毎平方メートル	W/m^2	$kg \cdot s^{-3}$
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 \cdot kg \cdot s^{-2} \cdot K^{-1}$
質量熱容量(比熱容量), 質量エントロピー	ジュール毎キログラム 毎ケルビン	J/(kg \cdot K)	$m^2 \cdot s^{-2} \cdot K^{-1}$
質量エネルギー (比エネルギー)	ジュール毎キログラム	J/kg	$m^2 \cdot s^{-2} \cdot K^{-1}$
熱 伝 導 率	ワット毎メートル毎ケ ルビン	W/(m•K)	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-3} \cdot \mathbf{K}^{-1}$
体積エネルギー	ジュール毎立方メート ル	J/m^3	m ⁻¹ • kg • s ⁻²
電界の強さ	ボルト毎メートル	V/m	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-3} \cdot \mathbf{A}^{-1}$
体 積 電 荷	クーロン毎立方メート ル	C/m^3	$m^{-3} \cdot s \cdot A$
電 気 変 位	クーロン毎平方メート ル	C/m^2	m ⁻² •s•A
誘 電 率	ファラド毎メートル	F/m	$m^{-3} \cdot kg^{-1} \cdot s^4 \cdot A^2$
透 磁 率	ヘンリー毎メートル	H/m	$\mathbf{m} \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{A}^{-2}$
モルエネルギー	ジュール毎モル	J/mol	$m^2 \cdot kg \cdot s^{-2} \cdot mol^{-1}$
モルエントロピー, モ ル 熱 容 量	ジュール毎モル毎ケル ビン	J∕(mol ⋅ K)	$\mathbf{m}^2 \cdot \mathbf{kg} \cdot \mathbf{s}^{-2} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ • s • A
吸収線量率	グレイ毎秒	Gy/s	$m^{2} \cdot s^{-3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 \cdot m^{-2} \cdot kg \cdot s^{-3} = m^2 \cdot kg \cdot s^{-3}$
放 射 輝 度	ワット毎平方メートル 毎ステラジアン	$W/(m^2 \cdot sr)$	$m^2 \cdot m^{-2} \cdot kg \cdot s^{-3} = kg \cdot s^{-3}$

国際単位系と併用されるが国際単位系に属さない単位 表6.

 10^{-21}

<u>10</u>⁻²⁴

ゼプ

x

Z

名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
日	d	1 d=24 h=86400 s				
度	0	$1^{\circ} = (\pi / 180)$ rad				
分	,	1' = $(1/60)^{\circ}$ = $(\pi/10800)$ rad				
秒	"	1" = $(1/60)$ ' = $(\pi/648000)$ rad				
リットル	1, L	$11=1 \text{ dm}^3 = 10^{-3} \text{m}^3$				
トン	t	1t=10 ³ kg				
ネーパ	Np	1Np=1				
ベル	В	1B=(1/2)ln10(Np)				

表7.国際単位系と併用されこれに属さない単位で SI単位で表される数値が実験的に得られるもの					
名称	記号	SI 単位であらわされる数値			
電子ボルト	eV	1eV=1.60217733(49)×10 ⁻¹⁹ J			
統一原子質量単位	u	1u=1.6605402(10)×10 ⁻²⁷ kg			
天 文 単 位	ua	1ua=1.49597870691(30)×10 ¹¹ m			

表8. 国際単位系に属さないが国際単位系と

伊用されるその他の単位					
名称	記号	SI 単位であらわされる数値			
海 里		1 海里=1852m			
ノット		1 ノット=1 海里毎時=(1852/3600)m/s			
アール	а	$1 a=1 dam^2 = 10^2 m^2$			
ヘクタール	ha	$1 \text{ ha}=1 \text{ hm}^2=10^4 \text{m}^2$			
バール	bar	1 bar=0.1MPa=100kPa=1000hPa=10 ⁵ Pa			
オングストローム	Å	1 Å=0. 1nm=10 ⁻¹⁰ m			
バーン	b	$1 \text{ b}=100 \text{ fm}^2=10^{-28} \text{m}^2$			

表9. 固有の名称を含むCGS組立単位

	秋···四日5月4月6日8000000五十匹					
	名称		記号	SI 単位であらわされる数値		
Ŧ	ル	グ	erg	1 erg=10 ⁻⁷ J		
ダ	イ	\sim	dyn	1 dyn=10 ⁻⁵ N		
ポ	ア	ズ	Р	1 P=1 dyn•s/cm²=0.1Pa•s		
ス	トーク	ス	St	1 St $=1 \text{ cm}^2/\text{s}=10^{-4} \text{m}^2/\text{s}$		
ガ	ウ	ス	G	1 G ≙10 ⁻⁴ T		
工	ルステッ	K	0e	1 Oe ≙(1000/4π)A/m		
$\overline{\mathbf{A}}$	クスウェ	N	Mx	1 Mx ≙10 ⁻⁸ Wb		
ス	チル	ブ	sb	1 sb = $1 cd/cm^2 = 10^4 cd/m^2$		
朩		ŀ	ph	1 ph=10 ⁴ 1x		
ガ		ル	Gal	1 Gal =1 cm/s ² =10 ⁻² m/s ²		

	表10. 国際単位に属さないその他の単位の例					
	名称		記号	SI 単位であらわされる数値		
キュ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
レン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$		
ラ		ド	rad	1 rad=1cGy=10 ⁻² Gy		
ν		ム	rem	1 rem=1 cSv=10 ⁻² Sv		
X 線	単	位		1X unit=1.002×10 ⁻⁴ nm		
ガ	ン	\triangleleft	γ	$1 \gamma = 1 nT = 10^{-9}T$		
ジャン	ンスキ		Jy	$1 \text{ Jy}=10^{-26} \text{W} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}$		
フェ	ル	11		1 fermi=1 fm=10 ⁻¹⁵ m		
メートノ	レ系カラン	ット		1 metric carat = 200 mg = 2×10^{-4} kg		
F		ル	Torr	1 Torr = (101 325/760) Pa		
標準	大 気	圧	atm	1 atm = 101 325 Pa		
力 口	IJ	-	cal			
3 17	17	~	11	$1 \dots -1 \dots -1 0^{-6}$		