地下水流動に対する地質環境の長期的変遷の影響に関する研究
(委託研究)

Study on the Effects of Long-term Evolution of Geological Environment on Groundwater Flow
(Contract Research)

今井 久* 山下 亮* 塚崎 功* 浦野 和彦*
笠 博義* 丸山 能生* 新里 忠史 前川 恵輔

Hisashi IMAI*, Ryou YAMASHITA*, Isao SHOZAKI*, Kazuhiko URANO*
Hitoyoshi KASA*, Yoshio MARUYAMA*, Tadafumi NIZATO and Keisuke MAEKAWA

March 2009
Japan Atomic Energy Agency
日本原子力研究開発機構
国際単位系（SI）

<table>
<thead>
<tr>
<th>物理量</th>
<th>SI 単位</th>
<th>CGS 単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>m</td>
<td>cm</td>
</tr>
<tr>
<td>質量</td>
<td>kg</td>
<td>g</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>min</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>cm/min</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>cm/min²</td>
</tr>
<tr>
<td>温度</td>
<td>K</td>
<td>°C</td>
</tr>
<tr>
<td>光度</td>
<td>cd</td>
<td>lumen</td>
</tr>
<tr>
<td>体積</td>
<td>m³</td>
<td>cm³</td>
</tr>
<tr>
<td>压力</td>
<td>Pa</td>
<td>atm</td>
</tr>
<tr>
<td>电流</td>
<td>A</td>
<td>mA</td>
</tr>
<tr>
<td>電気強度</td>
<td>V/m</td>
<td>N/C</td>
</tr>
<tr>
<td>電気抵抗</td>
<td>Ω</td>
<td>kΩ</td>
</tr>
<tr>
<td>電気容量</td>
<td>F</td>
<td>µF</td>
</tr>
<tr>
<td>磁場強度</td>
<td>T</td>
<td>Gs</td>
</tr>
<tr>
<td>磁気抵抗</td>
<td>Ωm</td>
<td>cm²/G</td>
</tr>
<tr>
<td>磁気導磁率</td>
<td>μ</td>
<td>Gm</td>
</tr>
<tr>
<td>磁気誘導率</td>
<td>μ₀</td>
<td>μ₀</td>
</tr>
</tbody>
</table>

（続き）
地下水流動に対する地質環境の長期的変遷の影響に関する研究

（委託研究）

日本原子力研究開発機構
地層処分研究開発部門 幡延地層研究ユニット

今井 久*，山下 亮*，塩崎 功*，浦野 和彦*，笠 博義*，丸山 能生*

新里 忠史，前川 恵輔

（2009年1月6日受領）

地質環境の長期的な変遷が地下深部の地下水動に及ぼす影響を評価することは、地層処分システムの長期挙動予測の信頼性を向上する観点から必要不可欠である。本研究では、断層活動、隆起・沈降・侵食、気候・海水準変動等の自然現象の影響を考慮した地下水流動のモデル化手法の確立を目的として、①ある現象の影響を考慮した地下水流動解析手法の開発化、②より現実的な地質構造や塩濃度などを反映した地下水流動解析、③地下水流動に影響を及ぼす自然現象の感受性解析を実施し、以下の成果を得た。
①地質環境の変遷が地下水動に与える影響を連続的にモデル化するシステム（SMS）を考案した。その結果、従来の課題であったモデル形状が変化する際の相の不連続性が、タイムステップ数を増やすことにより低減されることを確認した。
②地層の応力状態の変化や堆積過程、氷期のかん養量の設定や地下水に含まれる塩分の密度差が地下水流動に与える影響について解析的検討を行った。その結果、過剰間隙水圧の発生を理解するには間隙率や有効応力に規定される透水係数の設定が重要であること、氷期の塩濃度の設定に伴う影響は丘陵部および沿岸域でみられること、密度差の影響は地形勾配ほど大きくなしが沿岸域の地下水流動に影響を与え、地下深部への淡水の侵入を抑制することが示された。
③断層の2種類の形状について、透水係数に関する感受性解析を实施し、設定した条件では深度500m程度までの影響は顕著でないと示した。

本報告書は、株式会社 畑組が独立行政法人 日本原子力研究開発機構との委託研究契約「地質環境の長期的変遷の地下水動に対する影響(3)」により実施した研究成果に関するものである。

畑延地層研究センター（駐在） 〒098-3224 北海道天塩郡畑延町北進 432-2
※ 株式会社 畑組
Evaluation of long-term geological evolution and its impact on groundwater flow is one of the critical issues in order to enhance credibility of long-term behavior estimation of geological disposal system. For the purpose of development of a groundwater flow modeling methodology considering the effects of long-term geological evolution, following three items were studied: a) Upgrade of SMS (Sequential Modeling System of geo-environmental evolution impact on groundwater flow) which was developed in 2006 FY; b) Groundwater flow simulation under more realistic conditions of geological structures and hydrogeological conditions; and c) Sensitivity study of geo-environmental evolution impacts on groundwater flow. The studies showed following suggestive results.

a) Development of a precise time step setting enabled to narrow the gaps in simulated head between time steps in which the model configuration used to deformed.

b) Several aspects have been found from studies on impact factors such as deposition on pore pressure, recharge rate and difference in density of saline groundwater. For evaluation of pore pressure induced by deposition, it is necessary to model the porosity and permeability variation considered the excess pore pressure change. The set of recharge rate during the glacial age impacts the characteristics of groundwater flow in coastal and hilly areas. The density of groundwater is not so influential as topological potential factors, however it is effective for the characteristics of groundwater flow in coastal area and prevents intrusion of recharge from ground surface.

c) The sensitivity study on faulting characteristics indicated that the two types of fault configuration and the hydraulic conductivity setting considered are not influential on the nature of groundwater flow above the depth of 500m.

Keywords: Geological Disposal, Long-term Geological Evolution, Groundwater Flow, Numerical Analysis

This work was performed by HAZAMA CORPORATION under contract with Japan Atomic Energy Agency.

* HAZAMA CORPORATION
目 次

1. はじめに ... 1
2. 天然現象の影響を考慮した地下水流動解析手法の高度化 .. 1
 2.1 SMS の解析手法 ... 1
 2.1.1 SMS の概要 ... 1
 2.1.2 SMS の条件設定 .. 4
 2.1.3 地質構造のモデル化 ... 8
 2.1.4 海水準変動、かん養量変動のモデル化 ... 10
 2.1.5 地下水流動および物質移行解析 ... 13
 2.1.6 SMS を適用した解析結果 ... 18
 2.2 タイムステップ設定の影響 .. 32
 2.3 解析手法の改良 .. 39
 2.4 改良手法による解析結果 .. 41
 2.5 SMS による解析手法のまとめ .. 51
3. より現実的な地質構造やかん養量などを反映した解析の実施 52
 3.1 地層の応力状態の変化や堆積過程が地下水流動に与える影響 52
 3.1.1 地下水流動に与える要因の整理 .. 52
 3.1.2 テクトニックな応力による間隙水圧への影響 .. 54
 3.1.3 堆積過程で発生する過剰間隙水圧についての検討 ... 60
 3.1.4 堆積仮想シミュレータの調査 ... 76
 3.1.5 まとめ .. 87
 3.2 冬期のかん養量設定による影響 .. 89
 3.3 密度差の影響に関する検討 .. 96
4. 地下水流動に影響を及ぼす天然現象の感度解析 ... 100
 4.1 地下水流動に影響を及ぼす天然現象 .. 100
 4.2 断層の影響に関する検討 ... 101
 4.3 海水準変動や冬期におけるかん養量の影響に関する検討 109
 4.4 天然現象の影響に関するまとめ ... 113
5. まとめ .. 114
参考文献 .. 115
Contents

1. Introduction ... 1

2. Development of groundwater flow analysis methodology considering natural process and event .. 1
 2.1 Methodology of SMS .. 1
 2.1.1 Overview .. 1
 2.1.2 Analytical conditions .. 4
 2.1.3 Geological modeling .. 8
 2.1.4 Modeling of change of sea level and recharge rate ... 10
 2.1.5 Groundwater flow and solute transport analysis .. 13
 2.1.6 Analytical results using of SMS .. 18
 2.2 Time step dependence ... 32
 2.3 Upgraded methodology ... 39
 2.4 Results .. 41
 2.5 Summary .. 51

3. Simulations under more realistic conditions .. 52
 3.1 Stress field and deposition to groundwater flow ... 52
 3.1.1 Impact factors to groundwater flow .. 52
 3.1.2 Pore pressure induced by tectonic stress .. 54
 3.1.3 Excess pore pressure by deposition ... 60
 3.1.4 Basin models .. 76
 3.1.5 Summary ... 87
 3.2 Recharge rate at glacial stage .. 89
 3.3 Difference of density .. 96

4. Sensitivity analyses considered long-term geological evolution .. 100
 4.1 Natural process and event to groundwater flow ... 100
 4.2 Fault ... 101
 4.3 Change of sea level and recharge rate ... 109
 4.4 Summary .. 113

5. Conclusions ... 114

References ... 115
<table>
<thead>
<tr>
<th>図目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.2.1-1 幕延地域における地形・地質構造の長期的変遷</td>
</tr>
<tr>
<td>Fig.2.1-2 タイムスケープの設定</td>
</tr>
<tr>
<td>Fig.2.1-3 システム構成とフロー</td>
</tr>
<tr>
<td>Fig.2.1-4 地形・地質構造の変化に応じたモデル化と初期値設定</td>
</tr>
<tr>
<td>Fig.2.1-5 海水準変動と時間ごとのモデル設定</td>
</tr>
<tr>
<td>Fig.2.1-6 種内層（Wk 層）表面侵食部での推定方法</td>
</tr>
<tr>
<td>Fig.2.1-7 声間層（Kt 層）表面侵食部での推定方法</td>
</tr>
<tr>
<td>Fig.2.1-8 Kt 層よりも上位の場合での旧地表再現の概要</td>
</tr>
<tr>
<td>Fig.2.1-9 メッシュ分割概要</td>
</tr>
<tr>
<td>Fig.2.1-10 代表的時間断面の地質構造モデル</td>
</tr>
<tr>
<td>Fig.2.1-11 海水準変動曲線</td>
</tr>
<tr>
<td>Fig.2.1-12 かん養量の設定フロー</td>
</tr>
<tr>
<td>Fig.2.1-13 推定平均気温曲線</td>
</tr>
<tr>
<td>Fig.2.1-14 推定凍土厚曲線</td>
</tr>
<tr>
<td>Fig.2.1-15 推定かん養量曲線</td>
</tr>
<tr>
<td>Fig.2.1-16 地下水流動解析における境界条件</td>
</tr>
<tr>
<td>Fig.2.1-17 設定された海水準とかん養量の時間変化</td>
</tr>
<tr>
<td>Fig.2.1-18 物質移行解析境界条件</td>
</tr>
<tr>
<td>Fig.2.1-19 海底部境界条件設定</td>
</tr>
<tr>
<td>Fig.2.1-20 地質構造区分</td>
</tr>
<tr>
<td>Fig.2.1-21 不飽和特性（飽和度と相対透水係数、飽和度とサクション圧の関係）</td>
</tr>
<tr>
<td>Fig.2.1-22 全水頭分布、濃度分布表示範囲</td>
</tr>
<tr>
<td>Fig.2.1-23 全水頭分布（Case-1）</td>
</tr>
<tr>
<td>Fig.2.1-24 全水頭分布（Case-2）</td>
</tr>
<tr>
<td>Fig.2.1-25 全水頭分布（Case-3）</td>
</tr>
<tr>
<td>Fig.2.1-26 濃度分布（Case-1）</td>
</tr>
<tr>
<td>Fig.2.1-27 濃度分布（Case-2）</td>
</tr>
<tr>
<td>Fig.2.1-28 濃度分布（Case-3）</td>
</tr>
<tr>
<td>Fig.2.1-29 着目位置（海域、沿岸域、丘陵域）</td>
</tr>
<tr>
<td>Fig.2.1-30 表示した各点の差値値の経時変化</td>
</tr>
<tr>
<td>Fig.2.1-31 地層境界における全水頭の経時変化</td>
</tr>
<tr>
<td>Fig.2.1-32 地層境界における全水頭の経時変化</td>
</tr>
<tr>
<td>Fig.2.1-33 地層境界における全水頭の経時変化</td>
</tr>
<tr>
<td>Fig.2.1-34 地層境界における濃度の経時変化</td>
</tr>
<tr>
<td>Fig.2.2-1 地層境界における全水頭の経時変化（海域）</td>
</tr>
<tr>
<td>Fig.2.2-2 地層境界における全水頭の経時変化（沿岸域）</td>
</tr>
</tbody>
</table>
Fig.2.2-3 地層境界における全水頭の経時変化（丘陵部）……………………………35
Fig.2.2-4 地層境界における濃度の経時変化（丘陵部）……………………………36
Fig.2.2-5 全水頭分布…………………………………………………………………37
Fig.2.2-6 濃度分布……………………………………………………………………38
Fig.2.3-1 SMSにおける計算機内でのフォルダ・ファイル構成……………………39
Fig.2.4-1 地層境界における全水頭の経時変化（海域）……………………………42
Fig.2.4-2 地層境界における全水頭の経時変化（沿岸域）…………………………43
Fig.2.4-3 地層境界における全水頭の経時変化（丘陵部）…………………………44
Fig.2.4-4 地層境界における濃度の経時変化…………………………………………45
Fig.2.4-5 地層境界における全水頭の経時変化とかん養量（丘陵部）………………46
Fig.2.4-6 地層境界における全水頭の経時変化とかん養量（丘陵部）………………47
Fig.2.4-7 全水頭分布…………………………………………………………………49
Fig.2.4-8 濃度分布……………………………………………………………………50
Fig.3.1-1 地質・応力状態の地下水流動への影響……………………………………52
Fig.3.1-2 解析領域……………………………………………………………………54
Fig.3.1-3 境界条件……………………………………………………………………55
Fig.3.1-4 過剰間隙水圧の分布…………………………………………………………58
Fig.3.1-5 観測点SK-1における実測値と解析値の比較………………………………59
Fig.3.1-6 Gibsonによる問題の設定(Bethke(1988)より引用)……………………60
Fig.3.1-7 過剰間隙水圧解析結果の比較………………………………………………63
Fig.3.1-8 有効間隙率と深層の関係……………………………………………………65
Fig.3.1-9 基準堆積速度プロファイル…………………………………………………67
Fig.3.1-10 解析フロー…………………………………………………………………68
Fig.3.1-11 過剰間隙水圧分布（その１）……………………………………………71
Fig.3.1-12 過剰間隙水圧分布（その２）……………………………………………72
Fig.3.1-13 間隙率の解析結果と実測値（その１）…………………………………73
Fig.3.1-14 間隙率の解析結果と実測値（その２）…………………………………74
Fig.3.1-15 透水係数の実測値と解析結果………………………………………………75
Fig.3.1-16 堆積層シミュレーションの構成……………………………………………76
Fig.3.1-17 シミュレータ（SIGMA2D/3D）の基本法則（方程式）と構造…………78
Fig.3.1-18 堆積層シミュレータ解析結果のSMSモデル化範囲への展開…………85
Fig.3.1-19 堆積と侵食による有効応力変化の概念…………………………………86
Fig.3.2-1 かん養量設定………………………………………………………………89
Fig.3.2-2 全水頭分布…………………………………………………………………90
Fig.3.2-3 濃度分布（150万年経過時）………………………………………………91
Fig.3.2-4 地層境界における全水頭の経時変化（沿岸域）………………………93
Fig.3.2-5 地層境界における全水頭の経時変化（丘陵部）………………………94
Fig.3.2-6 地層境界における濃度の経時変化（丘陵部）………………………95
Fig.3.3-1 解析モデルの水理地質区分
Fig.3.3-2 地下水動解析域変
Fig.3.3-3 境界水位とかん養量
Fig.3.3-4 物質移行解析境界条件
Fig.3.3-5 全水頭分布
Fig.3.3-6 濃度分布
Fig.4.1-1 帳延地域を想定した地下水流動に影響すると考えられる地質環境要因の
 イメージ
Fig.4.2-1 サロベツ断層のモデル化
Fig.4.2-2 現時点での全水頭の鉛直分布
Fig.4.2-3 全水頭分布
Fig.4.2-4 現時点での全水頭の鉛直分布
Fig.4.2-5 現時点での濃度分布
Fig.4.2-6 粒子追跡解析結果の拡大図（k=1×10^{-8}m/s）
Fig.4.2-7 粒子追跡解析結果
Fig.4.3-1 地層境界と海水準の変動（0.1Ma～現在）
Fig.4.3-2 地層境界と海水準の変動（0.2Ma～0.1Ma）
Fig.4.3-3 地層境界と海水準の変動（0.3Ma～0.2Ma）
Fig.4.3-4 地層境界と海水準の変動（0.4Ma～0.3Ma）
Fig.4.3-5 地層境界と海水準の変動（0.5Ma～0.4Ma）
Fig.4.3-6 地層境界と海水準の変動（0.6Ma～0.5Ma）
Fig.4.3-7 地層境界と海水準の変動（0.8Ma～0.6Ma）
Fig.4.3-8 地層境界と海水準の変動（1.0Ma～0.8Ma）
Fig.4.3-9 地層境界と海水準の変動（1.2Ma～1.0Ma）
Fig.4.3-10 地層境界と海水準の変動（1.5Ma～1.2Ma）
表 目 次

<table>
<thead>
<tr>
<th>Table</th>
<th>内容</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1-1</td>
<td>150万年間を10ステップに分割した際のステップ間・内での変化事項の整理</td>
<td>5</td>
</tr>
<tr>
<td>2.1-2</td>
<td>最終氷期最寒冷期と現在の年平均気温の差</td>
<td>11</td>
</tr>
<tr>
<td>2.1-3</td>
<td>透水係数、間隙率、比貯留係数</td>
<td>16</td>
</tr>
<tr>
<td>2.1-4</td>
<td>齢和度と相対透水係数、サクションの関係</td>
<td>17</td>
</tr>
<tr>
<td>2.1-5</td>
<td>解析ケース</td>
<td>17</td>
</tr>
<tr>
<td>2.2-1</td>
<td>タイムストップ設定</td>
<td>32</td>
</tr>
<tr>
<td>3.1-1</td>
<td>解析条件の設定方針</td>
<td>54</td>
</tr>
<tr>
<td>3.1-2</td>
<td>解析に用いる変形係数、ポアソン比、密度</td>
<td>56</td>
</tr>
<tr>
<td>3.1-3</td>
<td>解析に用いる透水係数、間隙率</td>
<td>56</td>
</tr>
<tr>
<td>3.1-4</td>
<td>解析ケース一覧</td>
<td>57</td>
</tr>
<tr>
<td>3.1-5</td>
<td>比較解析に用いたパラメータ</td>
<td>63</td>
</tr>
<tr>
<td>3.1-6</td>
<td>湿潤密度</td>
<td>64</td>
</tr>
<tr>
<td>3.1-7</td>
<td>間隙率・透水係数のパラメータ例</td>
<td>65</td>
</tr>
<tr>
<td>3.1-8</td>
<td>各地層の透水係数</td>
<td>66</td>
</tr>
<tr>
<td>3.1-9</td>
<td>検討ケース</td>
<td>69</td>
</tr>
<tr>
<td>3.1-10</td>
<td>既存のシミュレーションコードの一覧</td>
<td>77</td>
</tr>
<tr>
<td>3.1-11</td>
<td>調査したシミュレータ</td>
<td>79</td>
</tr>
<tr>
<td>3.1-12</td>
<td>地層に関する主な入力パラメータ（SigmaBasin）</td>
<td>80</td>
</tr>
<tr>
<td>3.1-13</td>
<td>流体に関する主な入力パラメータ（SigmaBasin）</td>
<td>81</td>
</tr>
<tr>
<td>3.1-14</td>
<td>Basin2で考慮される現象</td>
<td>82</td>
</tr>
<tr>
<td>3.1-15</td>
<td>堆積物シミュレータで必要となる主なパラメータ（Basin2）</td>
<td>83</td>
</tr>
<tr>
<td>3.1-16</td>
<td>考慮できる現象</td>
<td>84</td>
</tr>
<tr>
<td>3.1-17</td>
<td>過剰間隙水圧に関する検討結果の整理</td>
<td>87</td>
</tr>
<tr>
<td>3.3-1</td>
<td>透水係数、間隙率、比貯留係数</td>
<td>96</td>
</tr>
<tr>
<td>4.4-1</td>
<td>各天然現象と地下水流動への影響</td>
<td>113</td>
</tr>
</tbody>
</table>
1. はじめに

幌延深層研究計画では、地質環境の長期安定性に関する研究を実施している。この研究は、地層処分システムの長期進捗の理解という目標を踏まえたものであり、地下水流動の評価においても地質環境の長期的変遷を含めた検討が必要である。

これまで、地質環境の長期変動や気候変動が重要と認識しつつも、現在の地質環境に関する情報をベースにした地下水流動を把握するための解析を進めてきた。これまでの研究から、現在の地下水流動の概況は理解されつつあるが、地下水中の塩分濃度や一部で確認されている地下水の異常高圧については検討が十分とはいえない。

このような背景から、本研究では、地質環境や気候変動などの長期的な変遷を考慮した地下水流動のモデル化手法を確立することを目的として以下の検討を実施した。

① 天然現象の影響を考慮した地下水流動解析手法の高度化
② より現実的な地質構造やかん養量などを反映した解析の実施
③ 地下水流動に影響を及ぼす天然現象の感度解析

本報告書は上記検討結果を取りまとめたものである。

2. 天然現象の影響を考慮した地下水流動解析手法の高度化

本章では、「地下水流動に影響を与える地質環境の変遷を連続的にモデル化するシステム：SMS (Sequential Modeling System of geo-environmental evolution impact on groundwater flow)」を用いた地下水流動解析手法の高度化について示す。

一定のタイムステップ毎に解析モデルを修正することにより地形地質構造の変遷を考慮する解析手法である SMS では、地形地質構造が変化する際の水圧や塩化物イオン濃度の受け渡しが課題となる。そこで、地質構造を変化させる時間ステップを短くすることにより、連続的な水圧変動をより精密に表現するための解析手法の高度化を実施した。また、求められた全水頭分布や塩化物イオン濃度分布、流線などについて、タイムステップの違いによる影響を検討し、手法の適用性を評価した。

2.1 SMS の解析手法
2.1.1 SMS の概要

SMS は、Fig.2.1-1 に示すような長期期間における地形・地質などの変形や物性の変化を考慮して連続的に地下水流動解析等を実施するシステムである。地形・地質などの変形を考慮するためには、対象期間を地形・地質形状変化の影響が大きくなるような適切な期間（タイムステップ設定、Fig.2.1-2）に分割し、分割された期間内では地形・地質などの形状や物性は変わらない条件で解析する。この期間での解析結果を、次期間のモデル（形状などが異なるモデル）
に対して、地形・地質などの形状変化に応じた解析値を引き続きことにより地形・地質などの形状変化の影響をモデル化し連続的に計算を実施するシステムである。

天然現象の影響を考慮した地下水流動解析を実施する一連の流れにおける SMS の位置づけを Fig.2.1-3 に示す。天然現象の影響を考慮した地下水流動解析においては、モデル形状やパラメータ設定に関連する地形・地質構造の長期変動や地下水流動解析の境界条件を設定するために必要な海水準や降水量の長期的変動を把握しデータベース化する必要がある。本システムは、この時間と関連づけられ、天然現象の長期変動のデータベースを利用し、対象期間に応じた複数の解析メッシュや境界条件データを作成する。解析では、最初のタイムステップにおける非定常地下水流動解析の結果を次のタイムステップの初期値として反映させる。

タイムステップごとに地形・地質構造が変化する解析において、形状の異なるモデル間の適切な初期値設定が必要となる。本システムでは、向斜・背斜構造や断層などの長期変遷において追跡可能な参照点から構成される FEM メッシュに類似したモデルを地下水流動解析モデル（FEM メッシュ, DEM 格子など）とは別に構築する。Fig.2.1-4(a)ではこれをジオモデルとして示している。ジオモデルは任意時間に対して構築できるように、ジオモデルを構成する参照点座標の経時変化情報を持たせている。

地下水流動解析における FEM メッシュや DEM 格子はジオモデルとは独立に作成し、Fig.2.1-4(b)に示すようにジオモデルを参照して物性値や初期値設定をする。次のタイムステップにおける初期値は該当する前ステップのジオモデル内において相対位置の同じ点の解析値を反映させる。本システムではジオモデルの構築が重要である。

Fig. 2.1-1 幌延地域における地形・地質構造の長期的変遷
Fig. 2.1-2 タイムステップの設定

Fig. 2.1-3 システム構成とフロー

Fig. 2.1-4 地形・地質構造の変化に応じたモデル化と初期値設定
2.1.2 SMSの条件設定

前項2.1.1ではSMSの基本的な考え方を示した。本項ではSMSの適用事例を示しつつ具体的にSMSの手法を示すとともにその課題を示す

(1) SMSを適用した解析手順

SMSを適用した解析は、1.5Maから現在までの地形・地質構造、海水準、かん養量の変化の地下水流動への影響を把握するため、以下の手順で実施した。

①第1ステップのジオモデル（復元地質断面モデル）とFEMモデル作成
②第1ステップの定常解析（1.5Maでの海水位、かん養量設定）
③第1ステップ対象期間の非定常解析
④第2ステップのジオモデルとFEMモデル作成
⑤第1ステップの非定常解析の最終時点の圧力水頭、濃度より、Fig.2.1-4に示す方法により第2ステップ解析の初期値算定
⑥第2ステップ対象期間の非定常解析

以降、④から⑥を所定のステップ設定に従い、現時点で計算を継続する。非定常計算は、Dtransu-3D・EL（菱谷ほか1999）を用いて地下水流動解析、塩分濃度に関する物質移行解析を実施した。

(2) タイムステップ設定

タイムステップは、Fig.2.1-5に示すように解析対象時間（1.5Maから現在まで）の150万年間をN個（N=10）のステップに分割した。150万年間を10ステップに分割した際のステップ間・内での変化事項をTable2.1-1に整理した。
Table 2.1-1 150万年間を10ステップに分割した際のステップ間・内での変化事項の整理

<table>
<thead>
<tr>
<th>変化項目</th>
<th>150万年間での変化</th>
<th>150万年を10ステップに分割した各ステップ間での変化</th>
<th>各ステップ内での変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>地形形状および地質構造形状</td>
<td>50万年間隔での4断面を参考に線形補間し、ステップ中間時点で補間した地形・地質構造形状を設定ステップ間で変化</td>
<td>左記曲線を適用ステップ内で保持ステップ内での変化なし</td>
<td></td>
</tr>
<tr>
<td>海水準</td>
<td>海水準変曲線 (Fig.2.1-11)</td>
<td>左記曲線を適用ステップ間で変化</td>
<td>左記曲線を適用ステップ内で変化</td>
</tr>
<tr>
<td>かん養量</td>
<td>海水準変曲線を基にした推定曲線 (Fig.2.1-15)</td>
<td>左記曲線を適用ステップ間で変化</td>
<td>左記曲線を適用ステップ内で変化</td>
</tr>
<tr>
<td>解析での圧力水頭</td>
<td>地形・地質、海水準、かん養量などの影響を受けて非定常に変化</td>
<td>地形・地層形状でき相対位置が同じ点での圧力は変化なし絶対的同一座標における圧力は変化</td>
<td>海水準およびかん養量の変化に伴い非定常変化</td>
</tr>
<tr>
<td>解析での全水頭</td>
<td>地形・地質、海水準、かん養量などの影響を受けて非定常に変化</td>
<td>全水頭（圧力水頭＋位置水頭）を構成する位置水頭が地形・地層形状（標高値）の変化に伴い変化するため変化が発生</td>
<td>同上</td>
</tr>
<tr>
<td>解析での濃度</td>
<td>地形・地質、海水準、かん養量などの影響を受けて非定常に変化</td>
<td>地形・地層形状でき相対位置が同じ点での濃度は変化なし絶対的同一座標における濃度は変化</td>
<td>同上</td>
</tr>
</tbody>
</table>

(3) 初期値の設定

今回の解析では、Fig.2.1-4に示されるように、地層構造は主に鉛直方向に変形し、水平方向の移動はほぼ無視しうると考えられる。このため、地質構造の水平方向（x）を固定し、鉛直方向の変化だけで各ステップ間の初期値を引き継ぐこととした。また、前項SMSの解析手法の説明では、前ステップと新ステップで隆起・侵食に伴う地層の消滅を考慮していないが、補延地域を対象とした地質構造の変遷では堆内層、声間層で隆起・侵食に伴う地層の消滅を考慮する必要が想定された。また、第四紀層は前ステップで存在しない地層として新ステップで発生する。このため、対象とした地層特性に応じた初期値の引き継ぎや第四紀層厚の推定による設定方法が必要となる。以下にこれらへの対応を含めた解析方法を示す。

前述のように、新ステップの計算に先立ち、初期値の設定が必要となる。初期値の設定には①前ステップと新ステップのモデル間での同一地層区分間での相対的位置の整合性による前ステップからの引き継ぎによる場合、②隆起・侵食により前ステップの地層が新ステップで一部消滅し同一地層区分間での相対的位置の整合性を評価できない場合、③新たな地層が発生する場合、が想定され、それぞれに対して具体的な初期値の設定が必要となる。

まず、引き継ぎに必要なデータは、以下の4種類である。
①前ステップジオモデル（地層構造データ、地表面データ）
②前ステップFEMモデルの最終時点（圧力水頭：PR、濃度：CNCデータ）
③新ステップジオモデル（地層構造データ、地表面データ）
④新ステップのFEMモデル節点座標データP(x,y,z)
初期値設定は、新ステップFEMモデルの全節点に対して以下の流れで実施する。
①対象節点の座標P(x,y,z)選定
②P(x,y,z)より、新ステップジオモデル内でのP(x,y,z)の地層区分を同定
③地層区分ごとの初期値算定
以下、地層区分ごとに計算方法を示す。

(a) 古第三系＋白亜紀（Cr層）、中新統（増築層＋鬼志別層）（MO層）の場合
対象期間の地層構造の変遷において、地層の一部消滅や新規発生はないとため、ステップ前後での相対位置における地質構造区分の整合性による経形補間で算定する。以下この算定方法を「整合性補間処理」と呼ぶ。

(b) 稚内層（Wk層）の場合
地表との深度差dzを算定し、dzの値により以下の計算を実施する。
\[\text{dz} > \text{判定値} \]: 整合性補間処理
\[\text{dz} \leq \text{判定値} \]: Wk層上面は侵食を受けている（Wk層上面からの変位速度推定不能）。
下位の地層（MO層）上面の隆起量（速度）を適用する。当該ステップのMO層上面からの高さh1が前ステップと同じものと仮定する（Fig.2.1-6）。
判定値＝10.0m（モデル化プログラムにて設定）

(c) 声間層（Kt層）の場合
 a) 隆起部以外
整合性補間処理を行う。隆起部はx座標で識別する。地質構造断面からx＝3,500mと設定した。
 b) 隆起部の場合
地表との深度差dzを算定し、侵食の有無を判定して処理を区分。
\[\text{dz} > \text{判定値} \]: 侵食なしと判断、整合性補間処理
\[\text{dz} \leq \text{判定値} \]: Kt層上面は侵食を受けている（Kt層上面からの変位速度推定不能）。
下位の地層（Wk層）上面の隆起量（速度）を適用する。当該ステップのWk層上面からの高さh1が前ステップと同じものと仮定する（Fig.2.1-7）。
判定値＝10.0m（モデル化プログラムにて設定）

(d) Kt層よりも上位の場合
Kt層上面の前ステップ、当該ステップそれぞれのz座標、z1、z2から隆起・沈降量Δ（Δ=
\[z_2 - z_1 \]）を算定
 a) 沈降部の場合（Δ<0）
 はじめに前ステップの地表面位置を推定する（Fig.2.1-8）。
 - 前ステップの地表面も沈降している場合は、前ステップの地表面位置をΔより算定
 - 前ステップの地表面の沈降量はKt層上面の沈降量より大きい（Kt層より上位層の圧
縮を考慮すると、地表面の沈降量はKt層上面の沈降量より大きいことから、Kt層より上位層の層厚の圧縮を考慮して、前ステップの地表面の沈降量をα・Δ（α＞1.0）とする。

a1）対象点がKt層上面と前ステップの地表面推定位置の間にある場合
旧Kt層上面と旧地表面に挟まれた区間に対象層として整層性補間処理

a2）対象点が前ステップの地表面推定位置よりも上にある場合
・新規堆積層と判断
・静水圧分布として圧力算定
海水面が地表よりも上にある場合：海水面からの静水圧
海水面よりも上方に地表がある場合：地表面からの静水圧

b）隆起部の場合（Δ＞0）
Kt層上面の隆起量Δから算定

Fig. 2.1-6 稚内層（Wk層）表面侵食部での推定方法

Fig. 2.1-7 声間層（Kt層）表面侵食部での推定方法
2.1.3 地質構造のモデル化
(1)モデル化手法
1.5Ma から現在までの地質構造は、「2.1.4 海水準変動を考慮した復元地質断面の経時変化特性」で示された地表面、地層境界を参照し、各年代のモデルを作成した。モデル作成の方法を以下に示す。
①水平方向の要素分割位置は固定
②底盤は現時点標高-5,000m に固定
③地表面は各時間断面の標高を補間計算して設定
④地表面から深度 1,000m までの節点を所定の間隔（Fig. 2.1-9 参照）で設定
⑤深度 1,000m から底盤を所定の比率で分割
⑥各年代に応じた地層に該当する要素を抽出、物性区分を設定
⑦断層は線分で定義し、この線分が切る要素を断層部に設定

Fig. 2.1-8 Kt 層よりも上位の場合での旧地表再現の概要

Fig. 2.1-9 メッシュ分割概要
(2) 設定された地質構造モデル

設定された代表的な時間断面の地質構造モデルを Fig. 2.1-10 に示す。
図は鉛直方向を 5 倍にして示している。図中の濃淡は地質構造区分を、矢印は各時間断面における海岸線の位置を示す。

Fig. 2.1-10 代表的時間断面の地質構造モデル
2.1.4 海水準変動、かん養量変動のモデル化
(1)海水準変動
海水準変動は、小池・町田（2001）に記された海水準変動曲線から以下のことを念頭においてデータを選別し、簡素化したものを設定した（Fig.2.1-11）。
①温暖期と寒冷期が繰り返し、②海洋酸素同位体ステージ（MIS）中の中温暖・寒冷ピーク時の海水準データを含める、③復元地質断面図（Fig.2.1-1）の年代付近の海水準を含める、④変動周期を約2.5～1Maまでは約4万年、約1Ma以降は約10万年を基準とする、⑤変動周期は1.2～0.7Ma頃にかけて徐々に変化したものとする。

(2)かん養量変動のモデル化
かん養量は、海水準変動曲線を基に、年平均気温、凍土厚さを考慮して設定した（Fig.2.1-12）。
平均気温の推定は、平均気温が海水準変動と相関があるものと考え、Table 2.1-2（松末ほか、2000）に示す植生の現在と最終氷期最終寒冷期の平均気温を参考に、海水準が－110mの時に最終氷期最終寒冷期の気温（－6.3℃）、海水準が0mの時に現在の気温（6.4℃）とし、海水準を用いた線形補間により式（2.1-1）のように算定した。Fig.2.1-13に推定平均気温曲線を示す。
ここで、平均気温 x (℃)，海水準 S (m)
上記平均気温を参考に平均気温と凍土厚の推定式（松末，2000）を用いて凍土厚（Fig.2.1-14）を算定した。

$$\begin{align}
 y &= 8.6807 \exp(-0.3281x) \\
 \text{ここで、平均気温} & \text{以外の高い場合は凍土は存在しないものとした。}
\end{align}$$

同様にかん養量の推定も海水準変動と相関があると考え、海水準が-110m のときに (0m/y (0mm/day)), 海水準が 0m の時に現在のかん養量 (0.365m/y (1mm/day)) として、海水準を用いた線形補間により算定した（Fig.2.1-15 の Recharge-1）。さらに、凍土の厚さを考慮し、凍土が存在する場合にはかん養量を 0 とする条件（Fig.2.1-15 の Recharge-2）を設定した（実際に解析プログラムにおける境界条件制御上の都合で極めて小さな値 (0.000365m/y =0.0001mm/day) を設定している）。

Table 2.1-2 最終氷期最寒冷期と現在の年平均気温の差（松末ほか, 2000）

<table>
<thead>
<tr>
<th>緯度範囲 (°)</th>
<th>地点</th>
<th>緯度 (°)</th>
<th>年平均気温 (℃)</th>
<th>現在</th>
<th>最終氷期最寒冷期</th>
<th>現在との差</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.00 - 45.99</td>
<td>種内</td>
<td>45.25</td>
<td>6.4</td>
<td>6.4</td>
<td>-6.3</td>
<td>-12.7</td>
</tr>
<tr>
<td>44.00 - 44.99</td>
<td>平均</td>
<td>44.01</td>
<td>6.0</td>
<td>6.0</td>
<td>-4.9</td>
<td>-10.9</td>
</tr>
<tr>
<td>43.00 - 43.99</td>
<td>留萌</td>
<td>42.55</td>
<td>7.4</td>
<td>6.0</td>
<td>-2.2</td>
<td>-9.4</td>
</tr>
<tr>
<td></td>
<td>札幌</td>
<td>42.59</td>
<td>8.2</td>
<td>7.4</td>
<td>-2.2</td>
<td>-9.4</td>
</tr>
<tr>
<td></td>
<td>橿原</td>
<td>43.20</td>
<td>5.9</td>
<td>7.2</td>
<td>-2.2</td>
<td>-9.4</td>
</tr>
</tbody>
</table>

Fig. 2.1-13 推定平均気温曲線
Fig. 2.1-14 推定凍土厚曲線

Fig. 2.1-15 推定かん養量曲線
2.1.5 地下水流動および物質移行解析

(1) 解析手法

地下水流動解析では塩分濃度よりも地形の地下水流動への影響が大きいと考え、密度の影響を考慮せずに二次元地下水流動解析を実施し、この流速を利用して塩分濃度の非定常変化を移流・分散を考慮した物質移行解析により算定した。

解析には FEM 地下水流動解析用プログラム Dtransu-3D・EL を基本コードとし、一部今回の解析目的に合うように透水係数設定、境界条件制御などについてソースコードを修正して使用した。

Dtransu は、岡山大学 西垣 誠教授、三菱マテリアル（株）、ダイヤコンサルタンツ（株）の三者共同で開発されたプログラムである。Dtransu は、密度勾配を考慮した飽和・不飽和浸透流および移流・分散問題を対象とした解析コードで、移流・分散解析においてオイラリアン・ラグランジアン手法を用い、高ベクレ数から低ベクレ数の問題に対して安定した解析が可能である。

塩濃度の解析実績も多い。

密度依存を考慮した飽和・不飽和非定常浸透流方程式は次式（菱谷ほか、1999）で示される。

\[
\rho_j \theta_j \frac{\partial c}{\partial t} + \rho_j \beta S_s + C_s(0)) \frac{\partial \theta}{\partial x_j} = \frac{\partial}{\partial x_j} \{ \rho K^s_j K_r(0) \frac{\partial \theta}{\partial x_j} + \rho K^s_j K_r(0) \rho_r \}
\]

(2.1-3)

ここで、\(\varphi \)：圧力水頭、\(\theta \)：体積含水率、\(S_s \)：比貯留係数、\(C_s(0) \)：比水容容量、\(K^s_j \)：飽和透水テンソル、\(K_r(0) \)：透水係数、\(C \)：濃度 (0 \leq c \leq 1) として正規化）、\(t \)：時間、\(\rho_j \)：溶媒の密度、\(\rho \)：流体の密度、\(\rho_r \)：溶媒の密度に対する流体の密度比（\(\rho / \rho_r \)）、\(\beta = 1 \)：飽和領域、\(\theta \)：不飽和領域、\(\gamma \)：溶質の密度比（一般に海水で\(\gamma = 0.025 \)程度）

物質移行の方程式は次式で示される。

\[
R \theta_p \frac{\partial c}{\partial t} = \frac{\partial}{\partial x_i} \left(\theta_p D_{ij} \frac{\partial c}{\partial x_j} \right) - \frac{\partial}{\partial x_i} (\theta_p V_i c) - \theta \rho \lambda Rc - Q_c
\]

(2.1-4)

ここで、\(R \)：遅延係数、\(Q_c \)：源泉項、\(D_{ij} \)：分散テンソル、\(\lambda \)：減衰定数、\(V_i \)：実流速

(2) 境界条件・初期設定

a) 地下水流動解析の境界条件

地下水流動解析の境界条件をFig.2.1-16に示す。解析領域側部、底部は不透水として、海底部は海水準から算定される水位を固定水位として設定し、陸部はかん養量とともに自由浸出条件を設定した。図中の矢印の表は固定水位およびかん養量変化の概要を示したものである。

海水準変動はFig.2.1-11に示す海水準変動曲線を適用し、かん養量はFig.2.1-14で凍土が発生する期間はかん養量0となる設定（Fig.2.1-15の recharge-2）を適用した。これらの境界条件をまとめてFig.2.1-17に示す。
b）物質移行解析の境界条件

物質移行解析の境界条件をFig.2.1-18およびFig.2.1-19に示す。モデル側部、底部は不透水境界でゼロフラックスとした。陸部表面では濃度$C=0$の天水がかん養される。海部では濃度$C=1.0$として海水であることを示す。厳密には流出箇所では濃度を有した地下水の湧出も想定されるが、設定した初期濃度分布から濃度を有する湧出の可能性が小さいこと、計算の収束性を確保する観点からこの境界条件とした。他の境界部に関しては特に境界条件を設定していない。

海進、海退に伴い沿岸海溝部は境界条件が変化する。
c）地下水解析の初期条件

現在の海水準とかん養量を与えた条件で地下水の定常解析を実施し、この結果を初期条件とした。

d）物質移行の初期条件

初期条件は全領域濃度 1.0 を与えた。

(2) パラメータ

a）透水係数、間隙率、比貯留係数

Fig.2.1-20 に地質区分を示し、Table 2.1-3 に透水係数、間隙率、比貯留係数設定を示す。
Table 2.1-3 透水係数，間隙率，比貯留係数

<table>
<thead>
<tr>
<th>No</th>
<th>地質</th>
<th>透水係数(m/s)</th>
<th>間隙率(%)</th>
<th>比貯留係数(1/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>古第三系+白亜系</td>
<td>1.0E-11</td>
<td>20</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>2</td>
<td>増幌+鬼見別</td>
<td>5.0E-10</td>
<td>30</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>3</td>
<td>稚内</td>
<td>Depth Wk</td>
<td>40</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>4</td>
<td>声聞</td>
<td>Depth Kt</td>
<td>60</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>5</td>
<td>勇知・更別・第四系</td>
<td>Depth Yt</td>
<td>60</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>6</td>
<td>大曲断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>7</td>
<td>サロベツ断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>8</td>
<td>S1-断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>9</td>
<td>S2-断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>10</td>
<td>S3-断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>11</td>
<td>S4-断層</td>
<td>1.0E-08</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>12</td>
<td>表層（地表より10m程度）</td>
<td>1.0E-06</td>
<td>60</td>
<td>1.0E-05</td>
</tr>
</tbody>
</table>

※表中の Depth_Yt，Depth_Kt，Depth_Wk は各層の深度依存性モデルを示す。
透水係数 k (m/s)、深度 Z(m) とするとそれぞれ次式で表される。また上下限を設定した。

Depth_Yt : \(\log_{10} k = -0.0034Z - 8.3665 \) （上限：1×10^{-8}m/s，下限：1×10^{-11} m/s）
Depth_Kt : \(\log_{10} k = -0.0039Z - 7.5935 \) （上限：1×10^{-7} m/s，下限：1×10^{-11} m/s）
Depth_Wk : \(\log_{10} k = -0.0061Z - 5.5626 \) （上限：1×10^{-6} m/s，下限：1×10^{-11} m/s）

Fig. 2.1-20 地質構造区分

b）不飽和透水係数

不飽和を考慮したケースにおいては、すべての地質区分について Fig.2.1-21 と Table 2.1-4 に示す不飽和特性を用いた。この不飽和特性は実際の調査試験データをそのまま用いたものではなく、計算時の収束性を重視し、単純化したかたちで設定した。
Table 2.1-4 飽和度と相対透水係数、サクションの関係

<table>
<thead>
<tr>
<th>飽和度 (%)</th>
<th>サクション水頭 (m)</th>
<th>飽和度 (%)</th>
<th>相対透水係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>99999</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>500</td>
<td>20</td>
<td>0.2</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
<td>50</td>
<td>0.5</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

(a)水分特性曲線

(b)相対透水係数

Fig. 2.1-21 不飽和特性（飽和度と相対透水係数、飽和度とサクション圧の関係）

(c) 分散長

分散長は、既往の事例を参考にして、縦分散長 $a_L = 100m$、横分散長 $a_T = 20m$ とした。

(3)解析ケース

解析は、地質構造の遷移（時間的変化）の有無、透水係数の変動の有無の観点から以下の3ケースを実施した。透水係数の変化は深度依存性を仮定した勇知層、声間層、堆内層を対象にし、それ以外は不変とした。勇知層、声間層、堆内層では透水係数 k は深度 z より次式で表現した。この式で定数 b を $1.5Ma$ では1大きい値とし、現在の値との間で時間に線形に変化する設定とした。

$$\log_{10}(k) = az + b$$ (2.1-5)

Table 2.1-5 解析ケース

<table>
<thead>
<tr>
<th>構造</th>
<th>透水係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case1</td>
<td>現在のまま不変</td>
</tr>
<tr>
<td>Case2</td>
<td>遷移</td>
</tr>
<tr>
<td>Case3</td>
<td>遷移</td>
</tr>
</tbody>
</table>
2.1.6 SMSを適用した解析結果

上述した条件による解析結果として、
(1) 全水頭および塩分濃度分布の経時変化
(2) 現時点での全水頭および塩分濃度分布
(3) 代表点での全水頭および塩分の経時変化
(4) 粒子追跡法により現時点からの流動経路の比較
を以下に示す。

(1) 全水頭および塩分濃度分布の経時変化

全水頭および塩分濃度の経時変化をFig.2.1-22に示す陸側の40kmについて、1.5Maより現時点までの断面内分布をFig.2.1-23〜Fig.2.1-28に示す。陸側の40kmという表示領域は、全解析領域を表示すると解析領域が極長いため全体を表示することが難しく、海域では濃度の変化が少なく、表示する必要性も低いことなどから、全水頭、濃度の変化の大きい範囲における変化の程度を詳細に表示するため、陸側の40kmを表示することにした。
全水頭は各図とも一律-120m〜120mの範囲、濃度は正規化濃度として0〜1.0として示す。
表示している各年代の下には、その年代に該当する海水準を表示している。

![Fig. 2.1-22 全水頭分布、濃度分布表示範囲](image)

a）全水頭分布

・Case1の地質構造変不変のケースでは、地質構造の変化するCase2,Case3に較べて全般に全水頭の値は大きい。Case1では、地質構造変不変のため、Case2,Case3に較べて高標高地に位置することが原因と考えられる。
・Case2とCase3では、時間の経過と共に全水頭値が増加する傾向が見られる。
・Case2とCase3を比較するとCase3のほうが、深部まで高い全水頭値が分布する傾向が見られる。これはCase3のほうが透水係数が大きいことから、深部までほん便の影響が及ぶことが一因と考えられる。
b）濃度分布
・濃度は、海水濃度を1.0として正規化した濃度で表示している。
・Case1とCase2では、Case1のほうが淡水化域が深部まで達している。淡水化は主に丘陵部で生じ、丘陵部は隆起域に該当する。隆起域では深部から塩分を含んだ地層が上昇し、また淡水化した表面部は削剥の影響で淡水化域の広がりが抑制される。
・Case2とCase3では、Case3のほうが明らかに淡水化の広がりが進展している。これは透水係数を初期に大きく設定していることの影響が大きい。
Fig. 2.1-23 全水頭分布（Case-1）
<table>
<thead>
<tr>
<th>年代 (Ma)</th>
<th>水準 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>-80</td>
</tr>
<tr>
<td>1.2</td>
<td>-43</td>
</tr>
<tr>
<td>1.0</td>
<td>-55</td>
</tr>
<tr>
<td>0.8</td>
<td>-90</td>
</tr>
<tr>
<td>0.6</td>
<td>-55</td>
</tr>
<tr>
<td>0.4</td>
<td>-27</td>
</tr>
<tr>
<td>0.2</td>
<td>-5</td>
</tr>
<tr>
<td>現在</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2.1-24 全水頭分布（Case-2）
<table>
<thead>
<tr>
<th>年代</th>
<th>海面水位</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5Ma</td>
<td>-80m</td>
</tr>
<tr>
<td>1.2Ma</td>
<td>-43m</td>
</tr>
<tr>
<td>1.0Ma</td>
<td>-55m</td>
</tr>
<tr>
<td>0.8Ma</td>
<td>-90m</td>
</tr>
<tr>
<td>0.6Ma</td>
<td>-55m</td>
</tr>
<tr>
<td>0.4Ma</td>
<td>-27m</td>
</tr>
<tr>
<td>0.2Ma</td>
<td>-5m</td>
</tr>
<tr>
<td>現在</td>
<td>0m</td>
</tr>
</tbody>
</table>

Fig. 2.1-25 全水頭分布（Case-3）
海水中の鉛直分布を1.0とした正規化の濃度

<table>
<thead>
<tr>
<th>1.5Ma WL= -80m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2Ma WL= -43m</td>
</tr>
<tr>
<td>1.0Ma WL= -55m</td>
</tr>
<tr>
<td>0.8Ma WL= -90m</td>
</tr>
<tr>
<td>0.6Ma WL= -55m</td>
</tr>
<tr>
<td>0.4Ma WL= -27m</td>
</tr>
<tr>
<td>0.2Ma WL= -5m</td>
</tr>
<tr>
<td>現在 WL= 0m</td>
</tr>
</tbody>
</table>

Fig. 2.1-26 濃度分布（Case-1）
海水濃度を1.0とした正規化の濃度

<table>
<thead>
<tr>
<th>年代</th>
<th>海抜 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5Ma</td>
<td>-80</td>
</tr>
<tr>
<td>1.2Ma</td>
<td>-43</td>
</tr>
<tr>
<td>1.0Ma</td>
<td>-55</td>
</tr>
<tr>
<td>0.8Ma</td>
<td>-90</td>
</tr>
<tr>
<td>0.6Ma</td>
<td>-55</td>
</tr>
<tr>
<td>0.4Ma</td>
<td>-27</td>
</tr>
<tr>
<td>0.2Ma</td>
<td>-5</td>
</tr>
<tr>
<td>現在</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2.1-27 濃度分布（Case-2）
海水濃度を1.0とした正規化の濃度

<table>
<thead>
<tr>
<th>年代</th>
<th>WL</th>
<th>濃度分布</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5Ma</td>
<td>-80m</td>
<td></td>
</tr>
<tr>
<td>1.2Ma</td>
<td>-43m</td>
<td></td>
</tr>
<tr>
<td>1.0Ma</td>
<td>-55m</td>
<td></td>
</tr>
<tr>
<td>0.8Ma</td>
<td>-90m</td>
<td></td>
</tr>
<tr>
<td>0.6Ma</td>
<td>-55m</td>
<td></td>
</tr>
<tr>
<td>0.4Ma</td>
<td>-27m</td>
<td></td>
</tr>
<tr>
<td>0.2Ma</td>
<td>-5m</td>
<td></td>
</tr>
<tr>
<td>現在</td>
<td>0m</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.1-28 濃度分布（Case-3）
(2) 代表点での全水頭および塩分の経時変化

代表点として、先に示した現時点での全水頭および塩分濃度の分布と同じ、(a)海域、(b)沿岸域、(c)丘陵部における、三つの地層境界（声間層上面、稚内側層上面、增帳・鬼志別層上面）での、全水頭および塩分濃度の経時変化を示す。代表点の位置は Fig.2.1-29 のとおりである。また、Fig.2.1-30 には、各点の塩高値の経時変化を示した。(a)海域と(b)沿岸は沈降域、(c)丘陵は隆起部に該当する。

Fig.2.1-29～Fig.2.1-34 は、各点での全水頭および塩分の経時変化である。(a)海域、(b)沿岸の濃度については解析対象期間において、濃度はほぼ 1.0 と変化が無いため、図として掲載していない。

これら経時変化の概要を以下に示す。

a）全水頭

・海域、沿岸域における Case2, Case3 の全水頭の経時変化は、モデル形状の変化する時点で大きく値が低下する。
・丘陵部は隆起域でありモデル形状の変化する時点でやや全水頭が増加する。
・これら値の低下後、全水頭値は増加する。Case2 よりも Case3 の増加速度が大きい。

これは Case3 の透水係数が大きいことによる。
・丘陵部では、時間の経過と共に全水頭が増加する。これは海水準変動と地形標高の増加の影響である。

b）濃度

・透水係数の大きい Case3 の濃度低下が最もはやい。一方 Case1 は隆起の影響で濃度低下が遅い。

経時変化から明らかのように、モデル形状の変化する際に、全水頭が大きく変化する。これは、モデル形状が瞬時に変化することが原因であり、この解析手法ゆえの課題である。この課題に対しては次節で検討する。
Fig. 2.1-29 着目位置（海域、沿岸域、丘陵部）

Fig. 2.1-30 表示した各点の標高値の経時変化
Fig. 2.1-31 地層境界における全水頭の経時変化
Fig. 2.1-32 地層境界における全水頭の経時変化
Fig. 2.1-33 地層境界における全水頭の経時変化
Fig. 2.1-34 地層境界における濃度の経時変化
2.2 タイムステップ設定の影響

前節では 150 万年を 10 ステップに分割して地形・地質形状の変化をモデル化した。本節では、150 万年を 15 ステップ（15@10 万年）に分割して解析を実施し、両者の全水頭と濃度の経時変化を比較する。Table 2.2-1 にそれぞれのタイムステップ設定を示す。

(1) 全水頭および塩分濃度の経時変化

Fig.2.2-1〜Fig.2.2-3 に海域、沿岸域、丘陵部（Fig.2.1-29）における地層境界部着目点の全水頭の非定常変化を示す。Fig.2.2-4 には丘陵部における地層境界着目点の正規化濃度の非定常変化を示す。濃度に関しては、海域、沿岸域とも濃度がほぼ 1.0 で一定であるため表示していない。全水頭および濃度の非定常変化から以下のことが確認される。

○全水頭の経時変化では、タイムステップを細分化することにより一時的な全水頭の変化量は低減できる。
○さらに全水頭の経時変化については、時間の経過とともにタイムステップを細分化することによる効果は低下する。
○濃度に関しては、タイムステップを細分化することで、濃度の低下が早まる傾向が見られる。
　これは、タイムステップを短くすることで隆起に伴うタイムステップ間での濃度の増加幅が抑制された結果と考えられる。

以上より、タイムステップを短く設定することが有効と判断される。

| Table 2.2-1 タイムステップ設定 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.5 | 1.4 | 1.3 | 1.2 | 1.1 | 1.0 | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1-0 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

最上段は年代（単位：Ma）、第 2 段は前節のタイムステップ、最下段は本節で実施
Fig. 2.2-1 地層境界における全水頭の経時変化（海域）
Fig. 2.2-2 地層境界における全水頭の経時変化（沿岸域）
Fig. 2.2-3 地層境界における全水頭の経時変化（丘陵部）
Fig. 2-4 地層境界における濃度の経時変化（丘陵部）
(2) 現時点での全水頭および塩分濃度分布

現時点での全水頭および塩分濃度分布を Fig. 2.2-5, Fig. 2.2-6 に示す。それぞれ、Fig. 2.1-29 に示す代表点として現時点の(a)海域（海岸より約12km沖合，解析領域陸部端より約30km）、(b) 沿岸域（現在の海岸線，解析領域陸部端より約18km），(c) 丘陵部（幌延立坑建設地点付近，解析領域陸部端より約2.5km）に該当する位置を設定した。

・全水頭は海域，沿岸域でほぼ等しく，丘陵部でやや異なった値を示す。
・濃度分布は海域部と丘陵部でほぼ等しく，沿岸部上部で step15 が低濃度を示す。

(d) 塩分分布は低濃度である。Fig. 2.2-5 全水頭分布

Fig. 2.2-5 全水頭分布
図 2.2-6 濃度分布
2.3 解析手法の改良

(1) 改良方針

前節において、タイムステップ間隔の異なる2ケースを比較し、タイムステップ間隔を短くすることでタイムステップ間での全水頭の不連続性が緩和されることが確認された。このため、さらにタイムステップ間隔を短く設定する方法について検討する。

SMSではFig.2.3-1に示すように、①解析対象期間の分割数設定，②親フォルダ作成，③分割数に応じた解析用子フォルダ（t-1～t-N）を作成，④各子フォルダ内に解析対象期間を示したファイル作成，⑤逐次子フォルダに移動して地下水流動および物質移行解析を実施という手順で解析が進められる。各解析フォルダでは、前ステップの解析結果から初期条件を作成し、解析期間に応じた境界条件（海水準，かん養量の経時変化）や物性値を設定して解析を実施する。

前節までの方法では、子フォルダ作成，各子フォルダ内への解析対象期間を示したファイル作成を個別に実施していることから、タイムステップの細分割には時間・労力を要した。そこで、タイムステップ間隔を短くすることによりタイムステップ間の不連続性を改善するために、この作業を計算機に自動的に実行させるシステムを構築した。

Fig. 2.3-1 SMSにおける計算機内でのフォルダ・ファイル構成
(2) 解析手法の改良

タイムステップ数の増加に伴う作業時間を短縮し、同時に、データ作成に伴う入力ミスを解消するために、入力データ作成や解析結果処理の自動化の観点から下記の改良を実施した。

①子フォルダの自動作成化
②子フォルダ内に設定する解析開始・終了時間設定データファイルのプログラムによる作成
③各子フォルダ内での解析を逐次実施させるジョブコマンド作成のプログラム化
④各子フォルダ内に収納された解析結果データの一元的なデータ処理プログラム作成
上記対応により人間の介在を少なくしたタイムステップ数の増加が可能となった。

各子フォルダに作成する解析データ名を同じものにして、ジョブコマンドにて、タイムステップ順に、各タイムステップ終了後、次のタイムステップに移動し、同じコマンドを実行することにより、各タイムステップでの解析が行われる。
2.4 改良手法による解析結果

改良した解析手法により，①150万年間を30ステップに分割（30@5万年＝150万年），②150万年間を150ステップに分割（150@1万年＝150万年）した場合の解析を実施した。

(1) 解析モデル，解析条件
解析モデル，解析の境界条件，初期条件は2.1節と同条件とした。

(2) 解析結果
地層境界における全水頭・濃度の経時変化をFig.2.4-1～Fig.2.4-4に示す。地質地形構造の変化を考慮したケースとして，対象とする150万年を10(step10)，15(step15)，30(step30)，150(step150)分割した結果を合わせて示している。

Fig.2.4-1，Fig.2.4-2，Fig.2.4-3に示す海域，沿岸域，丘陵部での全水頭の経時変化はタイムステップ数が増加するほど，タイムステップ間での変動が小さくなり，タイムステップを細かくする手法が有効に機能している。

Fig.2.4-4に示す丘陵部の濃度は，稚内層上部（Wk），増根層上部（MO）ではタイムステップ間隔による差は小さいが，表層に近い声層間でタイムステップの分割数が多いケースで濃度の変動が大きく，タイムステップ間隔を小さく設定することの有効性が確認される。

Fig.2.4-5にはFig.2.4-3の時間軸の拡大図をかん養量の経時変化と共に示す。この図から，全水頭の低下はかん養量が0になったことをによる影響であると推察できる。

Fig.2.4-6はさらに時間軸を拡大した丘陵部声層上部の全水頭の経時変化である。全水頭と共に海水準，この点の高さ，この点直上の地表面の高さを合わせて示す。また，かん養量の経時変化グラフもあわせて示す。全水頭評価地点は地表面に近く，かん養量の減少に伴い不飽和状態にあることが理解される。また，148万年以降かん養量が増加すると全水頭も敏感に反応する。ある程度のかん養量のある場合，地表面まで飽和して地表面近傍に地下水位が形成されるが，かん養量が0の期間では不飽和帯が形成されて地下水面が大きく低下していることが全水頭と地表面の値から理解できる。
Fig. 2.4-1 地層境界における全水頭の経時変化（海域）
Fig. 2.4-2 地層境界における全水頭の経時変化（沿岸域）
Fig. 2.4-3 地層境界における全水頭の経時変化（丘陵部）
Fig. 2.4-4 地層境界における濃度の経時変化
Fig. 2.4-5 地層境界における全水頭の経時変化とかん養量（丘陵部）
Fig. 2.4-6 地層境界における全水頭の経時変化とかん養量（丘陵部）
(3) 現時点での全水頭および塩分濃度分布

現時点での全水頭および塩分濃度分布を Fig.2.4-7, Fig.2.4-8 に示す。図中, (a)海域（海岸より約 12km 沖合，解析領域陸部端より約 30km), (b)沿岸域（現在の海岸線，解析領域陸部端より約 18km), (c)丘陵部（幌延立坑建設地点付近，解析領域陸部端より約 2.5km）に該当する位置の鉛直分布も示す。この図から以下のことがわかる。

- 地形地質構造の変化を考慮したケースでは全水頭が小さくなる傾向にある。この傾向は深部ほど大きく，タイムステップを細かく設定した場合にその傾向が大きくなる。これは，タイムステップを細かくするほど，過去の海水準や干満量の低下による経時的な影響がより詳細に反映されるためであると考えられる。
- 海域，沿岸部では，地形地質構造の変化を考慮したケースでは浅部の塩分濃度が低くなる傾向があり，タイムステップを細かくするほど表層部の濃度が低くなる。これは，タイムステップを細かくするほど，地表面近傍の塩分濃度の低い地層の沈降に伴う経時的な影響が詳細に反映されるためであると考えられる。
- 丘陵部では，地形地質構造の変化を考慮したケースの塩分濃度が考慮しないケースより高くなる。これは隆起により塩分を含む深部の地層が上昇したことによる影響と考えられる。
Fig. 2.4-7 全水頭分布
(a)海城での鉛直分布
(b)沿岸域での鉛直分布
(c)丘陵部での鉛直分布

Fig. 2.4-8 濃度分布
2.5 SMSによる解析手法のまとめ

一定のタイムステップ毎に解析モデルを修正することにより地形地質構造の遷移を考慮する解析手法であるSMSでは、地形地質構造が変化するタイムステップ間での解の受け渡しが課題になる。その対策として、タイムステップを細かくすることで対応することとし、そのための解析システムの改良を実施した。

最大150分割、1タイムステップを1万年まで細分化した解析を実施し、分割数が少ない場合に生じるタイムステップ間の解（全水頭）の変動、ギャップが大幅に改善されることを確認した。
3. より現実的な地質構造やかん養量などを反映した解析の実施

より現実的な地質構造やかん養量などを反映した解析として、地層の応力状態の変化や堆積過程、かん養量設定、密度差の影響に関する解析を実施した。

3.1 地層の応力状態の変化や堆積過程が地下水流動に与える影響

非常に長いスケールで生じる地質事象との関係で地下水流動を予測しようとする場合、地層の生成に関わるメカニズムや隆起、侵食といった地質の構造運動に関わる現象が、地下水流動にどのような影響を与えるかを整理検討しておく必要がある。ここでは、今後の幌延地域における地下水流動調査に資することを視野に入れて、地下水流動に影響を与える地質事象と地下水流動の関係について整理し、その中で重要と考えられる地質深部の過剰間隙水圧（異常高圧）について概略的解析検討を行った。

3.1.1 地下水流動に与える要因の整理

地質構造や応力の変化がどのように地下水流動に影響を与えるかについて概略的に整理すると次の図のようになる。堆積や構造運動による応力の増加により地下水流動解析で用いられる透水係数や間隙率は、小さくなることが考えられ、その結果、深部における地下水流速が極めて遅くなるとともに、間隙から排水されようとする地下水の排水が進まず、静水圧状態から形態した異常な高圧状態が発生することになる。また、堆積作用により変形係数も大きく（固く）なり、比容積係数に影響を与えることも考えられる。

![Fig. 3.1-1 地質・応力状態の地下水流動への影響](image)

- テクトニックな応力による地殻変動（褶曲等の地層の変形、断層の発生・変位）
- 堆積過程の圧密現象による間隙水圧の変動
- 石油、ガスの生成
- 鉱物の変質に伴い排出される水（層間水等）
・断層深部や沈込み帯から湧き出る流体ソースによる流体増加
・地下の高温による流体の膨張

幌延地域は、過去に石油資源探査を目的とした調査も実施されており、また実際にHDB-2孔ではガスの発生も確認されていることから、物理的な圧密現象のみでは観測されているデータを説明できない場合、石油やガスの生成あるいは鉱物の変質といった化学的エネルギーの変換に起因する過剰間隙水圧も検討課題のひとつとして考えられる。また、沈込み帯から湧き出る流体ソースについては、プレートのもくり込みによってプレートが圧縮され、間隙水や粘土鉱物の結晶内に取り込まれた居間水がしばしば湧き出されることが考えられる。ただし、幌延地域はプレートのもくり込みが発生している地域とは考えられていない。温度の影響についても、谷川ら（2003）の解析的検討において、その影響が無視しうることが示されており、特に大きな温度勾配である地域でない限り考慮する必要性は低いと思われる。

本稿では、物理的な現象のみ着目し、テクトニックな応力が間隙水圧に与える影響ならびに堆積過程の圧密現象による間隙水圧の変動について解析的な検討を実施した。
3.1.2 テクトニックな応力による間隙水圧への影響

想延地域で得られている地質情報、物性情報を用いて応力と地下水の連成解析を試みた。ここでの主目的は、実測されている間隙水圧データと解析結果を比較することによりテクトニックな応力による地下水の間隙水圧分布への影響を評価することである。

（1）解析条件

解析対象とする時間スケール、解析範囲を限定するとともに、簡略化したモデルを用いることとした。解析条件の設定の考え方を以下に示す。

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>時間スケール</td>
<td>1万年〜150万年程度を想定する。</td>
</tr>
<tr>
<td></td>
<td>(解析ケースによってはさらに長い期間について検討する。)</td>
</tr>
<tr>
<td>解析対象</td>
<td>複数発達している範囲（10〜15km程度）に限定する。海底においては、堆積により第四系の層厚が増加してゆくと考えられる。偏しながら、解析において逐次メッシュを追加しつつ解析を進めるとは容易ではないため、地層構造は変動しないとする。モデル化の対象とする地層は、 Sting層、叙述層、増幅層、地質図である。</td>
</tr>
<tr>
<td>海水準変動、隆起・侵食</td>
<td>考慮しない。</td>
</tr>
<tr>
<td>地層の力学モデル</td>
<td>地層は外力、自重、間隙水圧の影響により変形する際、非線形な弾性および塑性挙動が複雑に影響していると考えられるが、ここでは最も単純な構成モデルとして弾性モデルを想定する。</td>
</tr>
</tbody>
</table>

上記の方針により、具体的な条件を以下のようにした。

①解析領域

解析対象とした領域は、次の図に示すように比較的複数の大きい東西約15kmの範囲である。

Fig. 3.1-2 解析領域
②解析メッシュ、境界条件

解析モデルは二次元とし、領域を格子状に分割した。

Fig. 3.1-3 境界条件

③初期条件

力学条件：地層の自重による応力のみを考慮

水理条件：過剰間隙水圧が発生していない静水圧状態と仮定

④歪み速度

幌延地域周辺における地殻の歪み速度に関しては、核燃料サイクル機構により既往の文献情報等をもとに検討されており（核燃料サイクル機構、2005a）、幌延地域の東西方向の歪み速度として概ね 10^{-9} \sim 10^{-7} (1/yr) の範囲にあるとしている。本検討では平均的な歪み速度として 10^{-8} (1/yr) を基本とした。解析では、領域全体の平均的な歪み速度がこの値となるように側方境界の変位を制御した。

(2) 解析手法

解析には、圧密沈下解析等で実績のある手法を基にした解析コードである DACSAR（Iizuka, 1987）を用いた。DACSAR は関口・太田モデル（Sekiguchi & Ohta, 1977）にもとづいて開発された連成解析コードであり、土木工学分野において圧密沈下の予測などに広く用いられている。DACSAR では、粘性や塑性を考慮することが可能であるが、ここでは、簡略なモデル化として地層は弾性体として取り扱った。

(3) 物性

用いた変形係数、ポアソン比、密度を Table 3.1-2 に、透水係数、間隙率（初期間隙率）を Table 3.1-3 に示す。
Table 3.1-2 解析に用いる変形係数、ポアソン比、密度

<table>
<thead>
<tr>
<th>地層区分</th>
<th>変形係数 (GPa)</th>
<th>ポアソン比 (-)</th>
<th>湿潤密度 (Mg/m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第四系～表層</td>
<td>0.5</td>
<td>0.25</td>
<td>1.9</td>
</tr>
<tr>
<td>声間層</td>
<td>0.5</td>
<td>0.25</td>
<td>1.6</td>
</tr>
<tr>
<td>稚内層</td>
<td>2.0</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td>増幅層＋鬼土別層</td>
<td>3.0</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>古第三系＋白亜紀</td>
<td>3.0</td>
<td>0.2</td>
<td>2.0</td>
</tr>
<tr>
<td>断層（大曲断層他）</td>
<td>0.2</td>
<td>0.25</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 3.1-3 解析に用いる透水係数、間隙率

<table>
<thead>
<tr>
<th></th>
<th>透水係数(m/s)</th>
<th>間隙率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0E-11</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>5.0E-10</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>1.0E-08</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>1.0E-08</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>1.0E-09</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>1.0E-07</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td>1.0E-07</td>
<td>50</td>
</tr>
<tr>
<td>8</td>
<td>1.0E-06</td>
<td>60</td>
</tr>
</tbody>
</table>

透水係数に関して、勇知層、声間層、稚内層の深度依存性を考慮する場合は、操上ら(2005)によって示された近似式をそれぞれの地層に対して適用する。ただし、各地層の透水係数の下限値は、10^{-13} (m/s)と仮定した。

勇知層： \[\log_{10} k = -0.0034z - 8.3665 \] (m/s)

声間層： \[\log_{10} k = -0.0032z - 7.5549 \] (m/s)

稚内層： \[\log_{10} k = -0.0105z - 3.9118 \] (m/s)
(4) 解析ケース

解析ケースとしては、下記の 5 ケースを設定した。

<table>
<thead>
<tr>
<th>解析ケース</th>
<th>解析条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>ケース 1</td>
<td>標準ケース</td>
</tr>
<tr>
<td>ケース 2</td>
<td>種内層と増幅層、鬼子別層の透水係数を 1/10 とした</td>
</tr>
<tr>
<td>ケース 3</td>
<td>透水係数の深度依存性を考慮</td>
</tr>
<tr>
<td>ケース 4</td>
<td>ケース 3 に加えて、透水係数の動水勾配依存性（非ダルシー則）を考慮</td>
</tr>
<tr>
<td>ケース 5</td>
<td>泥水による粘性低下の影響として、ダイヤビルの存在が示唆されている地層について粘性係数を変化させた解析を実施する。（増幅層について、ケース 3 をベースにして、透水係数が 1/100 とする）</td>
</tr>
</tbody>
</table>

(5) 解析結果

代表的な解析結果としてケース 1 とケース 3 の過剰間隙水圧分布を Fig. 3.1-4 に示す。ケース 1 では、透水係数の小さい深部の増幅層において数十 kPa の過剰間隙水圧が発生している程度である。透水係数が深部ほど小さくなる深度依存性を考慮したケース 3 においては、過剰間隙水圧はやや大きくなり、最大で 2000kPa(=2MPa)程度となっている。これらの解析結果と過剰間隙水圧が観測されている SK-1 孔での結果を比較したものが、Fig. 3.1-5 である。SK-1 孔では深度約 4km で 10~30MPa 程度の過剰間隙水圧が発生しており、解析での結果は 10%以下であることがわかる。解析結果で比較的実測に近似した結果となったのは、ケース 5 で透水係数を小さめに見積もりケースであったが、それでも実測の 3~4 割程度の圧力であった。

これらの結果から、テクトニックな変形による解析においては、透水係数が大きな感度を有するということがわかる。しかしながら、深部の透水係数に関する情報が少ないため、1000m よりも深いポーリング孔で取得されたデータを外挿することによって推定せざるを得ない。深部透水係数の値によれば、テクトニックな変形により無視しきれない過剰間隙水圧が発生する可能性も否定できないため、深部の透水係数をどう評価するかは検討課題の 1 つである。

一方、解析ケースとしては取り上げなかったが、歪み速度が 10^{-8} 1/y よりも大きい可能性や深度により歪み速度が異なる可能性も否定できない。より深部での地殻の動きに引きずられて比較的歪い地殻の領域が歪んでいるとするならば、深いほど歪み速度が大きい可能性は十分にあることになる。ただし、深部での歪み速度については、試験や観測が容易ではないと思われるため、何らかのモデル化による推定が検討されるべきである。
Fig. 3.1-4 過剰間隙水圧の分布
Fig. 3.1-5 観測点 SK-1 における実測値と解析値の比較
3.1.3 堆積過程で発生する過剰間隙水圧についての検討

テクトニックな水平応力に起因する地層の変形が地下深部の間隙水圧に与える影響について検討を行ったが、3.1.2 節で述べたように幌延地域の SK-1 孔等で観測されている過剰間隙水圧については、解析では十分に再現することはできなかった。このことから、テクトニックな応力は、過剰間隙水圧に何らかの影響を及ぼす可能性は否定できないが、主要原因ではないと考えられる。過剰間隙水圧の原因としては様々な要因が考えられているが、石油工学の分野では圧密現象を考慮した堆積盆シミュレーションが実用的に行われており、その中で過剰間隙水圧についての検討もなされている。ここでは、テクトニックな応力以外の要因について評価するために、Bethke ら (1988) や谷川ら (2003) の非線形圧密解析手法を用いた解析的検討を試みる。ただし、現状では解析に必要となる入力データが十分には得られていなかったため、今後の原位置調査、試験計画立案に役立てることを目的とした予察的な検討である。

（1）堆積過程を考慮した一次元圧密理論

堆積過程における圧密に伴う過剰間隙水圧の発生については、Gibson (1958) が、Fig. 3.1-6 に示すような水面下において堆積が進行する状況を一次元問題として定式化している。Gibson は、堆積速度、透水係数および比貯留係数が一定の場合について理論解を導き、過剰間隙水圧が発生し得ることを示している。また、Bethke らは、Gibson の設定した一次元の問題に、透水係数や比貯留係数の非線形性を導入し、数値解析（有限差分法）を用いて解くことによりパラメータの非線形性が間隙水圧の分布に影響を与えることを明らかにした。

Gibson によると、堆積過程を考慮した場合の一次元圧密問題の支配式は、以下のように表現される。

\[
\frac{\partial}{\partial z} k \frac{\partial h}{\partial z} = S_i \left(\frac{\partial h}{\partial t} - \frac{\rho'}{\rho} \right)
\]
ここで，h は過剰間隙水圧に相当する水頭，k は透水係数，S_v は比貯留係数，ω は堆積速度，ρ は間隙流体の密度，ρ' は次式で表される密度差である。

$$\rho' = \rho_e - \rho$$

ここで，ρ_e は飽和した地盤の密度である。

境界条件は，Fig. 3.1-6 に示すように，堆積過程を表現するために解析領域の上端に移動境界条件を適用する。

$$l(t) = 0 \quad t = 0$$
$$\frac{\partial h}{\partial z} \bigg|_{z=0} = 0 \quad t > 0$$
$$h \bigg|_{z=l(t)} = 0 \quad t > 0$$

ここで，$l \equiv l(t)$ は地層の厚さであり，堆積速度 ω と次の関係がある。

$$\omega = \frac{\partial l}{\partial t}$$

上記の問題に対しては，解析解が Gibson により示されている。Bethke は移動境界を考慮した有限差分法により解析を実施し，Gibson による解析解と良い一致が得られたことを報告している。さらに，Bethke は，比貯留係数や透水係数を間隙率の関数とした場合の非線形解析を試みている。以下に Bethke らのモデルについて説明する。

まず有効応力と間隙率の関係である次の Athy (1930) の式を考慮する。

$$\frac{\partial \phi}{\partial \sigma_e} = -\frac{b}{\rho' g} \phi$$

ここで，ϕ は間隙率，σ_e は有効応力，b は定数である。一方，比貯留係数と間隙率，有効応力の間に

$$\frac{\partial \phi}{\partial \sigma_e} = -(1 - \phi) \frac{S_v}{\rho g}$$

この式と Athy の式を組み合わせることにより，比貯留係数は間隙率の関数として次のように与えられる。

$$S_v(\phi) = \frac{\rho - b\phi}{\rho' (1 - \phi)}$$
なお、初期間隙率をϕ_0とすると間隙率はAthyの式により有効応力の関数として次式で与えられる。

$$\phi = \phi_0 \exp \left(-\frac{b\sigma_e}{\rho'g} \right)$$

Bethkeの解析によると、比貯留係数のみの非線形性を考慮した場合と、考慮しない場合を比較した結果、考慮しない場合は、過大な過剰間隙水圧を予測する結果となる可能性があることを示している。また、比貯留係数と透水係数の両の非線形性を考慮した場合は、深度の増加に対して動水勾配はそれほど変化しないのに対し、比貯留係数のみの非線形性を考慮した場合では深い領域で動水勾配が大きくなる傾向があり、パラメータの非線形性をどのようにモデル化するかにより結果がかなり異なることが明らかにされている。

(2) 解析手法の確認

Bethkeの提案している手法を参考として、既存の二次元有限要素法地下水流動解析プログラム(草深ら, 1977)を修正した。Bethkeの示した過剰間隙水圧に関する支配方程式は、通常の非定常地下水流動解析のそれと同様であり、解析プログラムの修正点は以下の3項目となる。

・移動境界条件の考慮
・圧密に伴う生成項の考慮
・圧密進行に伴う間隙率、比貯留係数の変化

修正プログラムによりBethkeと同じ条件（Table 3.1-5参照）での解析を行った。解析では、貯留係数のみ間隙率変化による非線形性を考慮し、透水係数については変化しない条件を用いている。

解析結果をBethkeらの結果と合わせてFig. 3.1-7に示す。今回作成したプログラムの結果は、Bethkeらの結果と比べ3%弱小さい結果であった。これは、Bethkeらが差分法による離散化を行っているのに対し、FEMのプログラムを用いたこと、解析グリッド数がBethkeの500要素に対して、100要素としたことなどが影響していると思われる。なお、線形なケースについては、比貯留係数を$S_e = 3 \times 10^{-5}(1/cm)$、透水係数を$k = 10^{-8}(cm/s)$として解析を行った結果、誤差0.03%でGibsonによる理論解と一致した。したがって、今回用いたプログラムにより十分な精度の解析検討が可能であると判断した。
Table 3.1-5 比較解析に用いたパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>記号</th>
<th>値</th>
<th>單位</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆積速度</td>
<td>ω</td>
<td>0.0005</td>
<td>m/y</td>
</tr>
<tr>
<td>堆積時間</td>
<td>T</td>
<td>2 × 10^7</td>
<td>y</td>
</tr>
<tr>
<td>堆積層の厚さ</td>
<td>L</td>
<td>10</td>
<td>km</td>
</tr>
<tr>
<td>岩石の密度</td>
<td>ρ_s</td>
<td>1.8×10^6</td>
<td>g/m^3</td>
</tr>
<tr>
<td>水の密度</td>
<td>ρ_f</td>
<td>1.0×10^6</td>
<td>g/m^3</td>
</tr>
<tr>
<td>透水係数</td>
<td>k</td>
<td>1.0×10⁻⁸</td>
<td>m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0×10⁻⁹</td>
<td></td>
</tr>
<tr>
<td>初期間隙率</td>
<td>φ₀</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Athy 式のパラメータ</td>
<td>b</td>
<td>1.0×10⁻⁴</td>
<td>l/m</td>
</tr>
</tbody>
</table>

Fig. 3.1-7 過剰間隙水圧解析結果の比較

(3) 解析条件

堆積過程を考慮した一次元圧密解析を試みるにあたって、現状で得られている情報、データをもとに必要となるパラメータ値を設定した。

1 密度

地層の湿潤密度については、核燃料サイクル開発機構（2005）より、Table3.1-6のようなデータが得られている。今回は予想的解析で用いるプログラムでは、層毎の詳細な密度分布を与えることはできないため、密度は一定と仮定し、稚内層と声間層の平均的な値として
を採用することとした。

\[\rho = 1.75 \text{ Mg/m}^3 \]

Table 3.1-6 湿潤密度

<table>
<thead>
<tr>
<th>地層区分</th>
<th>解析で用いる湿潤密度（Mg/m^3）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>第四系〜表層</td>
<td>1.9</td>
<td>D-1 孔の平均的な値を設定。</td>
</tr>
<tr>
<td>声間層</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>稚内層</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>増幌層+鬼士別層</td>
<td>2.0</td>
<td>より固結度が高いと考え、稚内層の最大値相当を用いる。</td>
</tr>
<tr>
<td>古第三系+白亜紀</td>
<td>2.0</td>
<td>増幌層と同じ値を用いる。</td>
</tr>
<tr>
<td>断層（大曲断層他）</td>
<td>1.6</td>
<td>試験データがないと考えられるが、声間層と同じ値を仮定する。</td>
</tr>
</tbody>
</table>

②間隙率

深層ボーリング時の物理試験（動力炉核燃料事業団（1998））で得られた有効間隙率と近似式を重ねてプロットした Fig.3.1-8 に示す。この図の近似式は Athy の式 \(\phi = \phi_0 \exp(-b \sigma_z / \rho' g) \) をあてはめたものである。ただし、有効応応の測定値は得られていないので、ここでは、

\[\sigma_z = -z \rho' g \text{ (Pa)} \]

により近似した。ここに、\(z \) は標高、\(\rho' \) は地下水の密度、\(\rho' \) は地層の湿潤密度から地下水の密度を引いたものである。地下水の密度は厳密には塩分濃度の影響を考慮すべきであるが、ここでは淡水に等しいと仮定した。上述した \(\rho = 1.75 \text{ Mg/m}^3 \) を用いると実測データを近似式した場合のパラメータとして、以下の値が得られた。

\[b = 5 \times 10^{-4} \text{ (/m)} \]
\[\phi_0 = 0.5 \text{ (-)} \]

これらのパラメータ値は、Table 3.1-7 に示す星ら（2005）が砂質岩や泥質岩について示している値とほぼ同じである。こうしたことから、検討に用いる値としては、星らが整理した値から選定することとした。
Fig. 3.1-8 有効間隙率と深度の関係

Table 3.1-7 間隙率・透水係数のパラメータ例（星，2005）

<table>
<thead>
<tr>
<th>堆積物種類</th>
<th>砂質岩</th>
<th>泥質岩</th>
<th>珪藻</th>
</tr>
</thead>
<tbody>
<tr>
<td>初期間隙率 (V/V)</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>間隙率式</td>
<td>指数式 (係数: 0.0005)</td>
<td>指数式 (係数: 0.00065)</td>
<td>指数式の組合せ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0〜980m 0〜980m 0〜980m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(初期間隙率: 0.9) (初期間隙率: 0.9) (初期間隙率: 0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(係数: 0.00025) (係数: 0.00025) (係数: 0.00025)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1090m〜 1090m〜 1090m〜</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(初期間隙率: 0.9) (初期間隙率: 0.9) (初期間隙率: 0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(係数: 0.0006) (係数: 0.0006) (係数: 0.0006)</td>
</tr>
<tr>
<td>透水係数式</td>
<td>Berg式 (Dn=0.03)</td>
<td>Bryant式</td>
<td>Berg式 (Dn=0.001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>指数平均係数（セル透水係数算定式）: 水平：ω=0, 垂直：ω=-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
② 比貯留係数
間隙率と比貯留係数の関係より Bethke が示しているように次式で評価を行う。

\[S_x(\phi) = \frac{\rho_b\phi}{\rho(1-\phi)} \]

③ 透水係数
幌延地域の地層の透水性に関しては操上ら(2005)により深度依存性の可能性が示唆されている。一方、太田ら(2007)の解析検討においては、各地層について次の表の透水係数が用いられている。稚内層、声間層、増幌層等の透水係数は、実測値に基づいて設定されているが、深部の透水係数についてはほとんどデータがないため仮定された値が用いられている。

<table>
<thead>
<tr>
<th>位置</th>
<th>透水係数 (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0×10^-11</td>
</tr>
<tr>
<td>2</td>
<td>5.0×10^-10</td>
</tr>
<tr>
<td>3</td>
<td>1.0×10^-10</td>
</tr>
<tr>
<td>4</td>
<td>1.0×10^-7</td>
</tr>
<tr>
<td>5</td>
<td>1.0×10^-7</td>
</tr>
<tr>
<td>6</td>
<td>1.0×10^-6</td>
</tr>
<tr>
<td>7</td>
<td>1.0×10^-8</td>
</tr>
<tr>
<td>8</td>
<td>2.0×10^-6</td>
</tr>
</tbody>
</table>

一方、星ら(2005)の検討では、透水係数として、Berg(1975)の提案式、Bryantら(1975)の提案式が用いられている。Berg式は砂質岩についての経験式で、

\[K = 5.3 \times 10^3 \times \phi^{5.1} \times D_n^{2.2} \text{ (md)} \]

ここで、\(K \)は浸透率、\(\phi \)は間隙率(一)、\(D_n \)は粒径分布のP90値あるいは[算術平均値−標準偏差]である。Berg式の解は浸透率であるため、係数9.7×10^-7 (cm/s/md)を用いて透水係数に変換する。Table 3.1-7の値を用いると砂質岩については、間隙率が50%の場合、\(k=1.35\times10^{-7} \text{ (cm/s)} \)となる。

Bryantらの提案式は、泥質岩についての経験式で、

\[k = \exp(14.3\phi - 26.3) \]

ここで、\(k \)：透水係数(cm/s)である。Table 3.1-7の初期間隙率の値(\(\phi = 0.8 \))を用いると泥質岩に
ついては，k=3.5×10^{-7}(cm/s)となる。圧密解析においては間隙率が深度に応じて変化するため，
深いほど透水係数も小さくなる。
今回の解析では，泥質岩を仮定し，Bryant式を用いることとした。

④堆積速度

堆積速度については，原ら（2007）により堆積速度が海岸線からの距離の関数として次の図のように
示されている。この図を参考として堆積速度を100~500m/Myの範囲で設定した。

![Fig. 3.1-9 基準堆積速度プロファイル](image)

⑤テクトニックな応力

前項3.1.3で取り上げたテクトニックな構造運動により地層が変形し，歪みが発生することによる影
響については，一次元圧密解析において以下のような形で考慮した。ただし，幔延地域では東西方向の
みに圧縮されていると仮定し，平面歪み問題として扱った。圧密の支配式において，水平方向圧縮で発
生する体積歪みによる間隙水の絞り出しは生成項の形で表現される。

\[
\frac{\partial}{\partial z} k \frac{\partial h}{\partial z} + Q = S \left(\frac{\partial h}{\partial t} - \frac{\rho'}{\rho} \alpha \right)
\]

ここに，\(Q \)はテクトニックな応力に起因する単位体積当たりの生成項(1/\(\text{yr} \))であり，次式によ
り近似する。

\[
Q = - \frac{\Delta \varepsilon_{\text{vol}}}{\Delta t}
\]

ここで，\(\Delta \varepsilon_{\text{vol}} \)はテクトニックな応力による体積歪みの変化であり，水平方向歪みの変化\(\Delta \varepsilon_x \)と
鉛直方向歪みの変化\(\Delta \varepsilon_z \)の合計（\(\Delta \varepsilon_{\text{vol}} = \Delta \varepsilon_x + \Delta \varepsilon_z \)）である。弾性理論においては，平面歪み問
題の場合，歪みは水平方向応力の変化\(\Delta \sigma_x \)，鉛直方向応力の変化\(\Delta \sigma_z \)，ヤング率\(E \)，ポアソング比
\(\nu \)により次式で評価される。
\[\Delta \sigma_x = \frac{1-\nu^2}{E} \left(\Delta \sigma_z - \frac{\nu}{1-\nu} \Delta \sigma_x \right) \]
\[\Delta \sigma_z = \frac{1-\nu^2}{E} \left(\Delta \sigma_x - \frac{\nu}{1-\nu} \Delta \sigma_z \right) \]

テクトニックな応力による歪みを考慮する場合は、水平方向歪みの変化速度を既知として検討する。また、鉛直応力の変化については、堆積層の厚み変化により考慮されるため、ここでは考慮しない。すなわち、

\[\Delta \sigma_z = 0 \]
とする。次に、水平方向を与えた場合の体積歪みの変化を計算すると、\(\Delta \sigma_z = 0 \)であるから、

\[\frac{\Delta \varepsilon_{vol}}{\Delta \varepsilon_x} = \frac{\Delta \varepsilon_x + \Delta \varepsilon_z}{\Delta \varepsilon_x} = \frac{1-2\nu}{1-\nu} \]

となる。ポアソン比に関しては核燃料サイクル機関（2005）に示されたデータの平均的な値として\(\nu = 0.2 \)とした。このとき、テクトニックな応力による歪み速度が、\(\partial \varepsilon_x / \partial t = -10^{-8} \)（1/yr）の場合（引張歪みをとる）と、体積歪み速度（すなわち支配式における生成項\(Q \)）は、\(\partial \varepsilon_{vol} / \partial t = -0.75 \times 10^{-8} \)（1/yr）となる。

⑥解析の流れ
解析全体の概略的な流れを示す次の図のようになる。

![Fig. 3.1-10 解析フロー](image)
(4) 解析ケース

間隙率を評価するための Athy 式のパラメータ、解析領域の深度（堆積層の厚み）、堆積速度を変化させて解析を実施した。解析ケースの一覧を次の表に示す。ケース 7 とケース 8 は間隙率、比貯留係数は圧密とともに変化するが、透水係数は堆積時から一定で変化しないと仮定したケースである。また、ケース 5 とケース 6 では、テクトニックな応力による地殻の水平方向歪み速度を考慮した。

<table>
<thead>
<tr>
<th>ケース名</th>
<th>想定する岩質と透水係数式</th>
<th>間隙率式パラメータ (Athy 式の b)</th>
<th>堆積速度</th>
<th>地殻の水平方向歪み速度</th>
<th>解析の深さ (km)</th>
<th>解析期間 (yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>泥質岩 Bryant 式</td>
<td>初期間隙率 0.8, b = 0.00065</td>
<td>0.0002 m/yr</td>
<td>考慮せず</td>
<td>10km</td>
<td>5x10^7</td>
</tr>
<tr>
<td>2-1</td>
<td></td>
<td></td>
<td>0.0005 m/yr</td>
<td></td>
<td>2x10^7</td>
<td></td>
</tr>
<tr>
<td>2-2</td>
<td></td>
<td></td>
<td>0.0001 m/yr</td>
<td></td>
<td>1x10^8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>初期間隙率 0.5, b = 0.0005</td>
<td>0.0002 m/yr</td>
<td></td>
<td>5km</td>
<td>2.5x10^7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>初期間隙率 0.8, b = 0.00065</td>
<td></td>
<td>10^-8 (1/yr)</td>
<td>10km</td>
<td>5x10^7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>10^-9 (1/yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>$k = 10^{-10}$(m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$k = 10^{-11}$(m/s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(5) 解析結果と考察

解析結果として得られた過剰間隙水圧の分布を SK-1 孔での観測値とともに Fig. 3.1-11 に示す。解析結果はいずれも堆積が終了した時点での過剰間隙水圧について深度 5000m までのデータのみを取り出して示している。なお、間隙水圧等のデータは検層データから換算されたものであり、換算の際の誤差を含んでいる可能性があることを踏まえておく必要がある。

Fig. 3.1-11 から、以下のことが読みとれる。

・いずれのケースにおいても、深度 500m を越えたあたりから過剰間隙水圧が増加してゆく。
・いずれの解析ケースも実測値のトレンドと調和的である。
・初期間隙率を小さめにしたケース 4 では、やや浅いところから水圧が増加している。
・堆積速度を倍以上（ケース 2）にしても過剰間隙水圧は 2 割程度増加することとどまる。
・解析モデルの深度を 5km までとしたケースでは過剰間隙水圧は深部でやや小さめとなる。
・テクトニックな応力の影響を考慮したケースのうち、水平の歪み速度が 10^8 (1/yr) の場合、2 割程度過剰間隙水圧が大きくなるが、10^9 (1/yr) の場合その影響はわずかである。
・透水係数を $10^{10}(m/s)$ と一定とした場合、過剰間隙水圧の発生はわずかであるが、$10^{11}(m/s)$ の場合、深部では実測と同等の過剰間隙水圧が発生する。ただし、500m よりも浅い領域から過剰間隙水圧が発生しており、実測の傾向は明らかに異なる。

実測値はパラツキが大きいが、これは、地層の不均質性（堆積した粒子の粒径分布等や不連続面、亀裂の存在）の影響が考えられる。堆積過程を考慮した一次元の圧密解析により、実測のトレンドをおおむね再現できていることから、堆積速度、間隙率、透水係数などの特性と深度分布を詳細に知ることができれば、深部の地下水流動状況についての理解がより深まるものと期待できる。

次に、解析において得られる間隙率の分布と実測データを Fig. 3.1-13 に示す。間隙率は、有効応力の関数として得られるため、過剰間隙水圧が大きい領域では比較的大きな値を示す可能性がある。解析と実測を比較すると次のようになる。

・深度 0.5km 付近では、換算間隙率が 50%前後であり、ケース 1～3 の 60%とケース 4 の 40%程度の中間的な値である。
・深度 4km 付近では、換算間隙率、コア間隙率ともに 10%付近に分布している。解析ではケース 7 を除いて、やや大きめであり、ケース 3 の 17%程度が比較的実測に近い。ただし、3.5km 付近のコア間隙率は 20%を越えており、傾向としてはいずれのケースも近い値を示していると思われる。
・水平の歪み速度が $10^8(1/yr)$ の場合、過剰間隙水圧が大きめとなる（有効応力が小さくなる）影響で深部では間隙率も比較的大きい値となっており、深部での実測の間隙率分布の傾向とは整合しない傾向となっており、歪み速度を過大に評価している可能性がある。また、$10^9(1/yr)$ の場合はテクトニックな応力の影響はわずかである。
・透水係数を $10^{10}(m/s)$ と一定とした場合、傾向としては実測の分布に近いと言えるが、$10^{11}(m/s)$ の場合、深度に関わらず間隙率が大きい状態が継続しており、明らかに実測の傾向とは異なっている。

間隙率の値から経験式により算定された透水係数の深度分布を Fig. 3.1-15 に実測データ（原位置試験データおよび室内コア試験データ）とあわせて示す。実測データは、HDB 学の試験で得られたデータを示しており、いずれのデータも 700m よりも浅い深度で試験されたデータあるいは採用されたコアによるデータである。Fig. 3.1-15 から以下のことが読みとれる。

・ケース 1～3 の透水係数分布は、原位置試験データのトレンドと良く一致している。
・コア試験データについては、パラツキが大きく深度依存性がそれほど明瞭とは言えないが、ケース 4 に比較的近い。
・水平の歪み速度が $10^8(1/yr)$ の場合、透水係数は深部で大きめとなる。一方、$10^9(1/yr)$ の場合はテクトニックな応力の影響はわずかである。
SK-1孔の実測値では、過剰間隙水圧は700mより浅い領域ではあまり発生していなかったため、より深部の透水係数分布を正確にモデル化することが重要と考えられる。すなわち、今回はBryant式を用いたが、このような透水係数分布モデルの妥当性を確かめるためにも深部の透水性の測定評価が重要である。

間隙水圧、間隙率、透水係数の深度分布について、一次元の解析と実測との比較検討を行ってきたが、経験式などを利用して解析によって、ある程度実測データを再現できることができた。ここで実施した解析は、地層の構成や断層の存在などの考虑を伴わず、均質を仮定した単純なモデルであり、ポーリング検層で得られているような詳細な分布状況やデータのパラツキを表現するには限界がある。また、今回の解析では深度1kmより浅い領域での過剰間隙水圧の発生はわずかであることからHDB-2孔で観測されているような比較的浅い深度での高圧現象は説明できない。これについては、ガスの影響をも視野に入れた検討が必要と思われる。今後の方向性として、二次元あるいは三次元のモデルを構築して詳細な地質特性（粘土質であるか砂分を多く含むかなど）や地質構造（地質状況や褶曲、断層分布など）を考慮することが必要と考えられる。

Fig. 3.1-11 過剰間隙水圧分布（その1）
Fig. 3.1-12 過剰間隙水圧分布（その2）
Fig. 3.1-13 間隙率の解析結果と実測値（その1）
（実測値は、動力炉・核燃料開発事業団（1987）から引用）
Fig. 3.1-14 間隙率の解析結果と実測値（その2）

（実測値は、動力炉・核燃料開発事業団（1987）から引用）
Fig. 3.1-15 透水係数の実測値と解析結果
（実測値は、動力炉・核燃料開発事業団（1987）から引用）
3.1.4 堆積盆シミュレータの調査

油田開発の分野では、過剰間隙水圧の原因として圧密現象が最も大きな要因として考えられている。この解釈の第1段階として、前項のような簡易な一次元圧密の解析検討を実施したが、次の段階では、圧密以外の現象を考慮することとして、地層構造をより詳細にモデル化した二次元あるいは三次元での解析が必要と考えられることから、下記の事項について調査・検討を行った。

①既存の堆積盆シミュレータの概要
②堆積盆シミュレーションに必要なパラメータの整理

（1）堆積盆シミュレータの概要

これまでに開発されている堆積盆シミュレーションコードを調査し、代表的なコードにおいてどのようなメカニズムが考慮されているかについて整理した。

石油探査分野における堆積盆シミュレーションでは、概ねFig. 3.1-16のようなモデルを使用する。このうち、過剰間隙水圧に関する検討では、まず「地質シミュレーションモデル」が重要であり、さらにガスが過剰間隙水圧に与える影響を詳細に評価するには、それに加えて「生成シミュレーションモデル」と「油・ガスの移動シミュレーションモデル」が必要となる。

Fig. 3.1-16 堆積盆シミュレーションの構成（奥井、1991より抜粋、修正）

また、既存のシミュレーションコードについては奥井(1998)が整理している。

Table 3.1-10。テクトニックな応力の影響を扱うことのできるコードは有限要素法によるものが2つあり、差分法が1つ(SIGMA-2D)である。ただし、SIGMA-2Dに関しては、側方境界における応力あるいは歪み条件として考慮されるのではなく、地層の圧密変形による亀裂発生などを考慮できる程度となっている。

Table 3.1-10 既存のシミュレーションコードの一覧（奥井, 1998）

<p>|</p>
<table>
<thead>
<tr>
<th>TYPE</th>
<th>VENDER</th>
<th>PROGRAM</th>
<th>DIMEN</th>
<th>PHASE</th>
<th>NUMERICAL</th>
<th>TECTONIC</th>
<th>DIAGENESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMERCIAL</td>
<td>IFP/BEICIP</td>
<td>TEMISPAC</td>
<td>2D</td>
<td>2PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRA</td>
<td>BASINMOD-2D</td>
<td>2D</td>
<td>3PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IES</td>
<td>PETROMOD</td>
<td>2D</td>
<td>3PH</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACADEMIC</td>
<td>JAPEX/U.S. CAROLINA</td>
<td>GEOPET2</td>
<td>2D</td>
<td>3PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GBRN/CORNELL UNIV.</td>
<td>AKCESS.BASIN</td>
<td>2D</td>
<td>1PH</td>
<td>FE</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNIV. ILLINOIS</td>
<td>BASIN2,3</td>
<td>2,3D</td>
<td>1PH</td>
<td>FD</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INDIANA UNIV.</td>
<td>CIRFB</td>
<td>2D</td>
<td>1PH</td>
<td>FE</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.C. BERKELEY</td>
<td>IBMF</td>
<td>2D</td>
<td>1PH</td>
<td>FE</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOKYO UNIV.</td>
<td>BASIN3D2P</td>
<td>3D</td>
<td>2PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFP</td>
<td>THRUSTPACK</td>
<td>2D</td>
<td>—</td>
<td>FE</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IFP</td>
<td>DEMETER</td>
<td>3D</td>
<td>2PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IKU</td>
<td>SEMI/BASEVAL</td>
<td>3D</td>
<td>(3PH)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN HOUSE</td>
<td>SHELL</td>
<td>BASMOD</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOBIL</td>
<td>SEXTANT</td>
<td>3D</td>
<td>3PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNOCAL</td>
<td>GENMOD</td>
<td>2D</td>
<td>1PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCO</td>
<td>GENESIS-2D</td>
<td>2D</td>
<td>2PH</td>
<td>FD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STATOIL/IFE</td>
<td>IFE-2D,3D</td>
<td>2,3D</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AGIP</td>
<td>SEBE-3</td>
<td>3D</td>
<td>1PH</td>
<td>FE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JNOC</td>
<td>SIGMA-2D※</td>
<td>2D</td>
<td>3PH</td>
<td>FD</td>
<td>(＋)</td>
<td></td>
</tr>
</tbody>
</table>

※）SIGMA-2Dは、商用ソフトウェア名としてはSigmaBasinとなる。

堆積盆地シミュレータにより、具体的な解析手法は異なるが、骨格部分は共通する部分も多い。ここでは、シミュレーションの概要をSIGMA2D/3Dを例として、奥井(1991)の論文を要約する形で以下に示す。このシミュレータで考慮される主なメカニズムを以下に示す。

・地層の埋没・圧密
・流体移動
・フラグチャーリング
・熱史

上記以外に、鉱物の圧力溶解、沈殿、鉱物変質、セメントーションなどが考慮される。解析モデルの基本となる支配式において考慮される現象をFig. 3.1-17に模式的に示す。水分、油、ガスおよびエネルギーの保存式が支配式として用いられる。これらの相互の影響を考慮して、間隙率と間隙における水、油、ガスの割合とそれらの圧力、温度を未知数として、与えられた初期条件、境界条件の下で解析が進められる。流体の移動は液相、気相ともにダルシー則が用いられるが、透水性・透気性は間隙率と飽和度に依存するため非線形の解析となる。多くの未知数と非線形性により、解析を実施するために多くの入力パラメータを用意する必要があるが、実際のシミュレーションにおいては、モデルによるシミュレーション結果と坑井試料において計測される測定値（間隙率等）との比較を行い、数式に用いられる定数を補正するという試行錯誤が繰り返される。
地層の埋没・圧密は、基盤に堆積物が供給され、堆積盆が発達する現象であり、堆積速度と堆積した地層の圧密による間隙と層厚の減少を考慮したモデル化がなされる。
地層の間隙は、水分や油・ガスの移動経路になるとともに、それらの流体を貯留する機能を有する。圧密現象は主に上載荷重により生じるが、化学的プロセスによっても影響を受ける。多くの化学的プロセスは温度変化に支配されており、そのため堆積盆の温度の履歴が異なれば化学的なプロセスによる地層の状態（圧密状況、流体成分等）は異なったものとなる。
流体の移動については、全水頭の差によって生じる動水勾配が主な駆動力であるが、油の移動については浮力も大きな影響を与えていると考えられている。
フラクチャリングは、地層の歪みによる歪みの大きさが地層の延性を越える場合に生じると仮定される。地層の変形の大きさからフラクチャーの特性を評価し、透水性が修正される。地層の変形は圧密沈下等の情報に基づき算定されるが、テクトニックな応力による変形までは考慮されない。
熱に関しては、熱伝導、流体移動に伴う熱移流、地下深部からの熱フラックス（地殻熱流量）が考慮される。
また、油田の生成の検討では、シーリングが重要なメカニズムの1つである。シーリングにおいては、液相と気相の界面にはたらくキャビラリー圧が重要な働きをすると考えられている。圧密などにより流体が排水される時の圧力が、このキャビラリー圧よりも小さい場合は、流体の移動が起こらず、その場合、シールする地層の厚みは重要でないと考えられている。ここに、ガスの影響を考えることの重要性があり、堆積盆地シミュレータで二相流あるいは三相流のモデルが多く用いられる理由となっている。

Fig. 3.1-17 シミュレータ（SIGMA2/3D）の基本法則（方程式）と構造

<table>
<thead>
<tr>
<th>水分保存則</th>
<th>油の保存則</th>
</tr>
</thead>
<tbody>
<tr>
<td>・圧密</td>
<td>・反応速度による油の生成モデル</td>
</tr>
<tr>
<td>・水の膨張／圧縮</td>
<td>・油の膨張／圧縮</td>
</tr>
<tr>
<td>・フラクチャリング</td>
<td>・油の密度と粘度</td>
</tr>
<tr>
<td>・間隙率の減少</td>
<td>・油の相対透水係数</td>
</tr>
<tr>
<td>・透水性の変化</td>
<td>・油のキャピラリー圧</td>
</tr>
<tr>
<td>・相対透水係数</td>
<td>・ダルシー則</td>
</tr>
<tr>
<td>・ダルシー則</td>
<td>・ダルシー則</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ガスの保存則</th>
<th>エネルギーの保存則</th>
</tr>
</thead>
<tbody>
<tr>
<td>・反応速度によるガスの生成モデル</td>
<td>・熱伝導</td>
</tr>
<tr>
<td>・ガスの膨張／圧縮</td>
<td>・流体による熱の輸送</td>
</tr>
<tr>
<td>・ガスの油への溶解</td>
<td>・ビトリアライ反射率</td>
</tr>
<tr>
<td>・相対透水係数</td>
<td>・STERANE EPIMERIZATION</td>
</tr>
<tr>
<td>・ガスのキャピラリー圧</td>
<td>・ダルシー則</td>
</tr>
<tr>
<td>・ダルシー則</td>
<td></td>
</tr>
</tbody>
</table>
（2）シミュレーションに必要なパラメータの整理

堆積の過程を考慮して、地層の形成や深部地下水（および石油、ガス）の移動を解析するために、どのような物性パラメータ等が必要となるかについて国内外の代表的な堆積盆シミュレータを1つずつ選定して調査を行った。調査対象とした堆積盆シミュレータは、Table 3.1-11 に示す通りである。

Table 3.1-11 調査したシミュレータ

<table>
<thead>
<tr>
<th>シミュレータ名</th>
<th>開発者・販売者</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SigmaBasin</td>
<td>（独）石油天然ガス・金属鉱物資源機構、みずほ情報総研㈱</td>
</tr>
<tr>
<td>2 Basin2</td>
<td>イリノイ大学（米国、公開コード）</td>
</tr>
</tbody>
</table>

a. SigmaBasin

SigmaBasin は、独立行政法人 石油天然ガス・金属鉱物資源機構で開発された堆積盆シミュレータであり（奥井、1991）、みずほ情報総研株式会社が商用ソフトウェアとして販売・保守を行っている。SigmaBasin には二次元版と三次元版が存在するが、機能的にはほぼ同じである。

SigmaBasin による堆積盆生成シミュレーションに必要となる入力パラメータを Table 3.1-12 および Table 3.1-13 に示す。多くのパラメータは、他のパラメータの関数としてテーブル形式で与える必要がある。例えば、地下水流れ解析では、通常間隙率は一定値として与えるが、SigmaBasin では有効応力の関数として入力する。

なお、SigmaBasin においては、堆積は海底下で生じることが前提となっており、隆起により地層が地上に露出した場合の地表境界条件の変動（かん養条件等）を考慮することはできないため、陸域をも含めた流体移動と間隙水圧を解析することはできない。
<table>
<thead>
<tr>
<th>パラメータ</th>
<th>設定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆積速度</td>
<td>各地層について、堆積開始時代と堆積終了時代を設定する。</td>
</tr>
<tr>
<td>間隙率 ϕ</td>
<td>間隙率は有効応力 σ_e の関数として入力する。 $$\dot{\phi} = \phi_0 \exp \left(-b\frac{\sigma_e}{(\rho_s - \rho_f)g} \right) $$ 例えば、Athy の間隙率変化に関する式の場合は次式となる。</td>
</tr>
<tr>
<td>絶対浸透率 k</td>
<td>絶対浸透率は間隙率 ϕ の関数として入力する。 $$k = f(\phi)$$ 異方性については、地層の堆積方向などを考慮して指定する。</td>
</tr>
<tr>
<td>相対浸透率 (水、ガス、油) k_{rw}, k_{rg}, k_{ro}</td>
<td>水の相対浸透率 k_{rw} およびガスの相対浸透率 k_{rg} は、それぞれ、正規化された飽和度の関数として与える。 $$k_{rw} = f(S_w^)$$ $$k_{rg} = f(S_g^)$$ ここで、$S_w^, S_g^$ は水とガスの飽和度である。 オイルの相対浸透率 k_{ro} は、オイルの飽和度 $S_o^$ およびオイル／水系の相対浸透率 k_{row} 、及びオイル／ガス系の相対浸透率 k_{rog} を用いて次式により計算される。 $$k_{ro} = S_o^ k_{row} k_{rog}$$</td>
</tr>
<tr>
<td>毛管圧力 $p_{o/w}, p_{g/o}$</td>
<td>オイルの水に対する毛管圧力 $p_{o/w}$ とガスのオイルに対する毛管圧力 $p_{g/o}$ はそれぞれの飽和度の関数として入力する。これは飽和不飽和浸透解析における水分特性に相当するものである。 $$p_{o/w} = f(S_w)$$ $$p_{g/o} = f(S_g)$$</td>
</tr>
<tr>
<td>密度 ρ_m</td>
<td>地層の密度は一定値として入力する。</td>
</tr>
<tr>
<td>熱伝導率 λ_m</td>
<td>熱伝導率 λ_m は温度と有効応力の関数として入力する。 $$\lambda_m = f(\sigma_e, T)$$</td>
</tr>
<tr>
<td>熱容量 (比熱) C_m</td>
<td>熱容量は温度と有効応力の関数として入力する。 $$C_m = f(\sigma_e, T)$$</td>
</tr>
<tr>
<td>延性 ε_{max}</td>
<td>延性は有効応力の関数として入力する。 $$\varepsilon_{max} = f(\sigma_e)$$</td>
</tr>
<tr>
<td>パラメータ</td>
<td>設定方法</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 水の密度 ρ_w | 溶質濃度（塩分濃度），圧力，温度の関数として与える。
$\rho_w = \frac{1}{(1-C_w)/\rho_{w_0} + C_w/\rho_s}$
$\rho_{w_0} = f(P_w,T)$
$
ho_s$は溶質の密度，$\rho_{w_0}$は純水の密度，$C_w$は溶質濃度，$P_w$は圧力である。 |
| 水の熱伝導率 | 水の熱伝導率は，圧力と温度の関数として入力する。 |
| 水の熱容量 | 水の熱容量は，圧力と温度の関数として入力する。 |
| 水の粘性係数 | 次に示すように粘性係数μ_wは，温度，圧力，溶質濃度（塩分濃度）の関数として入力する。
$\mu_w = (1 + \rho_s C_w) \mu_{w_0}$
$\mu_{w_0} = f(P_w,T)$ |
| 油の密度 | 油の密度は，標準状態における油の比重，ガス溶解度，ガスの比重，温度，により計算される。ガス溶解度は，油とガスの密度，圧力，温度から組み込まれた関数式で算定される。 |
| 油の熱伝導率 | 油の熱伝導率は，温度の関数として算定される。
$\lambda_o = 0.135 - 2.5 \times 10^{-5}T/3.6$ |
| 油の熱容量（比熱） | オイルの熱容量は，温度と油の比重の関数として算定される。
$C_o = \frac{0.7 + 0.0032T}{\rho_o^{0.5}}$ |
| 油の粘性係数 | ガスが溶存していない状態の油の粘性係数が，温度と油の比重の関数として算定され，さらに，ガスの溶解度を考慮した粘性係数が算定される。 |
| ガスの密度 | ガスの密度は，標準状態におけるガスの密度と温度，圧力から算定される。 |
| ガスの熱伝導率 | ガスの熱伝導率は，圧力と温度の関数として入力する。 |
| ガスの熱容量（比熱） | ガスの熱容量は，圧力と温度の関数として入力する。 |
| ガスの粘性係数 | ガスの粘性係数は，ガスの比重と温度から経験式による算定される。 |
b. Basin2

Basin2 は、イリノイ大学(米国)で開発され公開されている堆積帯シミュレータである。Basin2 で考慮される現象とその扱いについて概略を整理したものを Table 3.1-14 に示す。

<table>
<thead>
<tr>
<th>考慮される現象</th>
<th>シミュレーションにおける扱い</th>
</tr>
</thead>
<tbody>
<tr>
<td>地質構造の変化</td>
<td>堆積とそれに伴う圧密現象が考慮される。また、地層の隆起・侵食が考慮可能である。</td>
</tr>
<tr>
<td>流体移動</td>
<td>液相の水（1相）のみを扱い、Darcy則が用いられる。したがって、気相を考慮する場合に必要となる相対浸透率や毛管圧力の概念はない。</td>
</tr>
<tr>
<td>熱</td>
<td>フーリエ則による熱伝導および流体移動に伴う熱の移流を考慮することができる。</td>
</tr>
<tr>
<td>塩分濃度</td>
<td>間隙水中の塩分の拡散（分散）および水分移動に伴う塩分の移流を考慮することが可能である。</td>
</tr>
<tr>
<td>鉱物の溶解・沈殿</td>
<td>温度・圧力による溶解・沈殿量の変化を扱うことが可能である。</td>
</tr>
</tbody>
</table>

Basin2 で扱える流体は1相（水）のみであること、塩分濃度の影響を考慮することが可能である点が SigmaBasin と最も異なる点である。液状水のみを扱うため、解析の過程で油・ガスの生成と移動をシミュレーションすることはできないが、シミュレーションの結果得られる温度の分布と履歴を用いて油の生成評価を行うことが可能となっている。油の生成評価は、熟成度を評価するものであって、評価モデルとして Lopatin 模型 (Lopatin, 1971), Arrhenius モデル (Lewan, 1985), LLNL ピトリナイトモデル (Sweeney and Burnham, 1990) が利用可能である。

Basin2 の解析結果として出力される項目を以下の通り。

・上陸荷重、水圧、応力履歴により決まる間隙率と透水係数の分布
・堆積による圧密と除荷によるリバウンドの効果を反映した間隙水圧
・堆積と圧密、リバウンド、浮力、地形影響による地下水流れのパターン
・熱の生成、地下水の移流と地殻からの熱流束に制御される温度分布
・堆積層中の有機物の熱による成熟と石油・ガスの生成の時期と分布
・地下水の流動、拡散、蒸発残留岩に影響される塩分濃度分布
・どのセメント分が沈殿し、どの鉱物が溶解するか等の堆積層内のセメンテーションの状況
・堆積層における地下水年代分布

また、Basin2 による解析に必要となる主なパラメータを Table 3.1-15 に示す。
<table>
<thead>
<tr>
<th>パラメータ</th>
<th>設定方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆積速度</td>
<td>各地層について、堆積開始時代と堆積終了時代を設定する。</td>
</tr>
</tbody>
</table>
| 間隙率 ϕ | 間隙率は有効応力の関数として規定される。\[
\phi = \phi_0 \exp(-\beta P_e) + \phi_i
\]ただし、ϕ は間隙率、ϕ_0 は初期間隙率、ϕ_i は不動間隙率、β は圧縮度、P_e は有効応力である。あるいは間隙率は深度の関数として観測されるため、\[
\ln(\phi - \phi_i) = -bz + \ln(\phi_0)
\]という関係を使うこともできる。この場合は、深度に関する係数 b も入力する。 |
| 絶対浸透率 | 絶対浸透率は間隙率の関数として入力する。\[
\log k = A\phi + B
\] A と B は係数である。また、水平方向絶対浸透率 k_x と鉛直方向絶対浸透率 k_z の異方性を規定することができる。 |
| 固相の密度 | 固相の密度は一定値として入力する。 |
| 熱伝導率 | 熱伝導率は間隙率の関数として入力する。\[
\lambda = A\phi + B
\] A と B は係数である。また、水平方向熱伝導率 k_x と鉛直方向熱伝導率 k_z の異方性を規定することができる。 |
| 熱容量 | 熱容量は温度の関数として入力する。\[
C_p = A + BT + CT^2 + \frac{D}{\sqrt{T}} + \frac{E}{T^2}
\]ここで、A～E は係数である。 |
| 水の密度 | 一定値または圧力、温度、塩分濃度の関数として入力する。ただし、後者の場合 Batzle and Wang(1992)の関数式で自動的に計算される。 |
| 水の粘性係数 | 粘性係数は、①Phillips et al.(1980)に従い温度と塩分濃度の関数として入力。②Batzle and Wang(1992)に従うものとして規定、または、③一定値を入力する。①の場合、関数をテーブル形式で設定する。②の場合は関数が組み込まれており、変更はできない。 |
| 溶質の拡散係数、分散係数 | 溶質等の溶質の拡散係数は以下のように規定される。\[
D' = D_0 \exp(-C(1/T - 1/T_0))
\]ここで、D_0 は基準温度 $T_0 = 25 \degree C$ での拡散係数、D' は温度 T における拡散係数、C は係数である。また、水力学的分散係数(縦方向、横方向)は一定値として入力する。 |
| 水の熱容量 | 熱容量は温度の関数として関数は Phillips et al.(1981)に従って組み込まれており、変更することはできない。 |
| 塩分の溶解度 | 塩分の水への溶解度は熱容量と温度の関数 (Phillips et al., 1981)として組み込まれており、変更することはできない。 |
c. 堆積盆シミュレーションに関するまとめ

各シミュレータで考慮できる現象を整理すると、次のようになる。なお、SigmaBasinにおける地層の変形（△）に関しては、層厚変化の場所的な変動等に起因するものとして評価されるが、テクトニックな応力による変形については考慮されない。

<table>
<thead>
<tr>
<th>現象</th>
<th>SigmaBasin</th>
<th>Basin2</th>
</tr>
</thead>
<tbody>
<tr>
<td>過剰間隙水圧</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>圧密作用を伴う浸透率の減少</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>地層変形の影響（褶曲・断層）</td>
<td>△</td>
<td>×</td>
</tr>
<tr>
<td>塩分濃度の変化（移流拡散）</td>
<td>×</td>
<td>○</td>
</tr>
</tbody>
</table>
| 油・ガスの生成・移動 | ○ | △
（油・ガスの移動は解析できていないが、生成については解析結果からの評価が可能） |

堆積盆シミュレータにより扱うことのできる現象は異なるため、検討目的に応じて選定する必要がある。油やガスの生成・移動の影響も検討するのであればSigmaBasinのような多相流のコードを用いればよい。また、圧密現象による過剰間隙水圧と塩分濃度との関係まで考慮するのであればBasin2の適用性が高いと言える。

坂下地域における地質環境の長期的変遷を考慮した場合、堆積・圧密過程は重要な要素であり、今後SMS (Sequential Modeling System of geo-environmental evolution impact on groundwater flow)によって検討に反映することが望ましい。その際、次の2点を考慮すべきと考えられる。

・深部の透水性が非常に低いと推定されること
・深部での水分移動が極めて緩慢であると推定されること

前者についてはBryant式を深部の地層の透水性に反映すればよく、後者に関するSMSへの反映方法としては、以下の方法が考えられる。

①反映方法－1
まず、堆積盆シミュレータにより堆積・圧密過程における間隙水圧分布と水分移動を解析する。ある深度より深い領域においては過剰間隙水圧が発生し、水分移動が極めて緩慢であるとの結果が予想されるので、深部の水分移動状況から、実質的に不透水となっている深度を決定し、SMSのモデルでは、その深度より深い領域だけを解析対象とする。すなわち、モデル化の範囲の設定に利用することになる。あるいは、過剰間隙水圧の発生している深部から上昇する水分フラックスを境界条件として与えることが考えられる。
第 3.1-18 堆積変シミュレータ解析結果のSMSモデル化範囲への展開

②反映方法－2

SMSに堆積・圧密現象の考え方を取り入れることが考えられる。SMSにおいて温度影響や二相流れまで考慮することは解析コードを大きく変更する必要が生じるため難しいが、堆積・圧密現象のみに限定して、その影響を考慮することは可能と考えられる。

SMSで採用している解析コードにおける地下水流域の支配式は、密度依存と飽和・不飽和状態を考慮して次のように表される。

\[
\rho_j \theta_j \frac{\partial c}{\partial t} + \rho \{ \beta S_s + C_s(\theta) \} \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x_j} \left(\rho K^s_j K_s(\theta) \frac{\partial \theta}{\partial x_j} \right) + \rho K^s_j K_s(\theta) \rho_r
\]

ここで、\(\theta \)：圧力水頭、\(C_s(\theta) \)：比貯留係数、\(K^s_j \)：飽和透水テンソル、\(K_s(\theta) \)：比透水係数、\(C \)：濃度（0 \(\leq c \) \(\leq 1 \)、飽和濃度を1として正規化）、\(t \)：時間、\(\rho_j \)：溶媒の密度、\(\rho \)：流体の密度、\(\rho_r \)：溶媒の密度に対する流体の密度比（\(\rho / \rho_j \)）、\(\beta = 1 \)：飽和領域、\(0 \)：不飽和領域、\(\gamma \)：溶質の密度比（一般に水深で\(\rho = 0.025 \)程度）である。

堆積による荷重増加の影響が、その鉛直下方のみ有効応力増加させるとの簡略化をした場合、次のように生成項を追加した式を支配式として用いれば良いと考えられる。

\[
\rho_j \theta_j \frac{\partial c}{\partial t} + \rho \{ \beta S_s + C_s(\theta) \} \frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x_j} \left(\rho K^s_j K_s(\theta) \frac{\partial \theta}{\partial x_j} \right) + \rho K^s_j K_s(\theta) \rho_r + \rho \beta S_s \frac{\partial' \omega(x_j)}{\rho}
\]

ただし、\(\rho' \)は地層の湿潤密度から含有する流体の密度を差し引いた密度、\(\omega(x_j) \)は堆積速度である。期間\(\Delta t \)（yr）の間にある地点\(x_j \)において\(\Delta z(x_j) \)（m）だけ堆積したと仮定すると次式で与えられる。

\[
\omega(x_j) = \frac{\Delta z(x_j)}{\Delta t}
\]
上式は、隆起沈降を考慮したSMSの解析において既知量として与えられる情報であり、解析における生成項として入力データに記述することが可能である。なお、侵食による除荷の影響についても負の値の$\omega(x)$を適用することにより、同様の扱いが可能である。ただし、圧密試験における除荷時のe～logp曲線から推察されるように、除荷過程における膨満指数は圧密過程の圧縮指数よりも小さくなると考えられることから、除荷の影響を考慮する際に用いる比貯留係数S_rについては十分検討する必要がある。

Fig. 3.1-19 堆積と侵食による有効応力変化の概念
3.1.5 まとめ

本節での検討結果から、過剰間隙水圧が発生する条件について整理するとTable 3.1-17のようになる。

Table 3.1-17 過剰間隙水圧に関する検討結果の整理

<table>
<thead>
<tr>
<th>解析条件</th>
<th>値の範囲</th>
<th>解析条件の影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>堆積速度</td>
<td>0.0001～0.0005 m/yr</td>
<td>・堆積速度を0.5～2.5倍に変化させると過剰間隙水圧は1～2割程度変化する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・堆積速度を高く設定することで実測値と整合する傾向がある。</td>
</tr>
<tr>
<td>透水係数のモデル化</td>
<td>・Bryant式</td>
<td>・浅い領域ではBryant式と実測値は整合的である。</td>
</tr>
<tr>
<td></td>
<td>・一定値</td>
<td>・透水係数を一定としたモデルでは、間隙率と過剰間隙水圧の分布の両者を再現することは難しい。</td>
</tr>
<tr>
<td>間隙率のモデル化 (Athy式パラメータ)</td>
<td>φ₀=0.5～0.8 α=0.0005～0.00065</td>
<td>・初期間隙率等のパラメータ値を変化させても過剰間隙水圧には大きな影響は見られなかった。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・透水係数の評価において間隙率は最も重要パラメータであり、そのパラメータの設定には十分な検討が必要と考えられる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・浅い領域で実測値との違いが大きいことから、パラメータの見直しが望ましい。</td>
</tr>
<tr>
<td>テクトニックな応力</td>
<td>歪み速度 ε=10^{-8}～10^{-9} (1/yr)</td>
<td>・一次元圧密解析において、歪み速度を10^{-9} (1/yr)とした場合、過剰間隙水圧に対して無視できない影響があるが、深部での実測の間隙率分布の傾向とは整合しないことから、歪み速度を過大に評価している可能性がある。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・一次元圧密解析において、歪み速度を10^{-8} (1/yr)とした場合、間隙水圧や間隙率分布に与える影響は無視し得る程度となる。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>・二次元のテクトニックな応力を作用させた解析では、透水性をかなり低く設定しないと過剰間隙水圧は発生せず、テクトニックな応力の影響だけでは実測値を再現できなかった。</td>
</tr>
<tr>
<td>堆積厚さ</td>
<td>5～10 (km)</td>
<td>・堆積厚さを半分（5km）とした場合、過剰間隙水圧は深部で最大3割程度低下する。また、深部の間隙率は低くなる傾向があり、実測値の傾向に近い。</td>
</tr>
</tbody>
</table>

このように、ほとんどのケースにおいて過剰間隙水圧が発生し、実測の分布傾向を再現することはある程度可能である。過剰間隙水圧が発生しないケースは、相対的に高い透水係数を一定に設定した場合であり、間隙率や有効応力に規定される透水係数のモデル化が重要であることを示唆するものと考えられる。
また、今後の課題として、以下の事項を挙げることができる。

① 詳細な深部情報の取得

堆積過程を考慮した一次元圧密解析により構造海底において過剰間隙水圧が発生することを実測されている過剰間隙水圧の分布をある程度再現できることを示した。ただし、解析モデルは均質であり、パラメータについては既存の経験式等を利用するのは仮定条件が用いられている。今後の課題としては、地質構造を考慮に入れることにより、必要なパラメータの深部ボーリングと採取コアを用いた試験によりデータを取得することが挙げられる。パラメータは、有効応力と間隙率の関係等、関数として与えるべきものがあり、試験方法についても十分検討した上で研究を実施する必要がある。

構造海底は油田が存在する可能性のある地域であり、油やガスの地下水流動への影響を考慮される。堆積層シミュレータでは、油やガスの影響を考慮した解析が可能であるが、第1ステップとしては、油やガスの発生を考慮せずに堆積過程を考慮した解析検討を行って、現在の地質環境の再現性を確認し、解析モデルに油やガスの影響を考慮する必要があるかの吟味を行うことが重要と考えられる。

② 過剰間隙水圧を考慮した統合的検討

SMS による地質環境の変遷を考慮した検討においても、圧密による過剰間隙水圧が地下水流動に与える影響を考慮することも課題の1つと考えられる。堆積層シミュレータでは、SMS で考慮しているような地表水の影響は必ずもし考慮されないことから、SMS において何らかの形で圧密等の影響を考慮する工夫をすることが必要となる。

そのためには、過剰間隙水圧の発生している範囲を一次元圧密解析あるいは堆積層シミュレータの解析により特定し、それより深い領域を SMS における解析領域とすることや、SMS における支配式の流体生成項として圧密の影響を考慮することが考えられる。
3.2 氷期のかん養量設定による影響

(1) 氷期のかん養量設定

2.1.4 項では、凍土が存在する状態でのかん養量を0と設定したが、氷期において凍土が存在する状態でもかん養が生じている可能性も否定できない。そこで、2.1.4 項で示したかん養量（Recharge-2）に加えて、凍土が存在する場合にもかん養が生じるケースとして、Fig.2.1-15のRecharge-1の50%を与えるケース（Recharge-3）を設定した。Fig.3.2-1に設定したかん養量を示す。

Fig.3.2-1 かん養量設定

(2) 解析モデル、解析条件

解析モデル、初期条件は2.2節のstep15と同条件とした。境界条件のかん養量のみRecharge-3（凍土が存在するときにRecharge-1の50%のかん養量）を適用した。地形地質構造は10万年ごとに変化する設定である。

(3) 全水頭および塩分濃度分布

最終的な解析結果である現時点での全水頭および塩分濃度分布の解析結果をFig.3.2-2、Fig.3.2-3に示す。

・鉛直断面内の全水頭の分布からは、かん養量による差異は識別できないが、鉛直方向の分布では沿岸域、丘陵部でR-3（Recharge-3）がR-2（Recharge-2）よりも深部で全水頭が高い。かん養は主に陸域で発生し、R-3（Recharge-3）はR-2（Recharge-2）よりもかん養量が多いためで全水頭が大きくなったと考えられる。

・濃度分布も鉛直断面内の分布からは両者に顕著な違いは認められない。鉛直方向の分布では沿岸域浅層でR-3の濃度が高く、丘陵部ではR-3の濃度が低い。沿岸域ではかん養量の多いR-3では、全水頭の増加により濃度の高い水が下方から押し上げられるためで
あると考えられる。丘陵部では天水かん養による希釈、洗い出しがかん養量の多い R-3 で促進されるため R-3 のほうが R-2 よりも濃度が低くなるものと考えられる。

(a)海域 (b)沿岸域 (c)丘陵部

Fig. 3.2-2 全水頭分布
(a)海域
(b)沿岸域
(c)丘陵部

海水濃度を1.0とした正規化の濃度

Recharge-2

Recharge-3

約40km

Fig. 3.2-3 濃度分布（150万年経過時）
(4) 全水頭および塩分濃度の非定常変化
沿岸域、丘陵部の声間層上面、雰囲気層上面、増幅層上面における全水頭および塩分濃度の非定常変化を Fig.3.2-4～Fig.3.2-6 に示す。これらの図から以下のことがいえる。

・沿岸域の全水頭（Fig.3.2-4）はかん養条件の影響が小さい。
・丘陵部の全水頭（Fig.3.2-5）は、R-2 でかん養量が 0 となっている期間において R-3 では R-2 よりも 30〜40m 程度高くなる。
・正規化した塩分濃度（Fig.3.2-6）は、かん養量の多い R-3 で洗出しにより R-2 より 0.1 程度低くなる。

(5) 氷期のかん養量設定による影響
凍土が存在する場合にかん養量を 0 とするケースと、気温変動から想定されるかん養量の 50%を与えるケースによる違いを、全水頭と洗出し解析による濃度で比較した。その結果、両者に顕著な違いはないが、かん養量の 50%を与えるケースでは、丘陵部でのかん養量増加、丘陵から沿岸への地下水流せ増加による全水頭分布、塩分濃度分布への影響が確認された。その変化量は、全水頭で最大 40m 程度、正規化した塩分濃度で 0.1 程度である。
Fig. 3.2-4 地層境界における全水頭の経時変化（沿岸域）
Fig. 3.2-5 地層境界における全水頭の経時変化（丘陵部）
Fig. 3.2-6 地層境界における濃度の経時変化（丘陵部）
3.3 密度差の影響に関する検討

海水と淡水の密度差が沿岸部の地下水流動に及ぼす影響も想定されるため、密度差が地下水流動に与える影響について検討した。

(1) 解析モデル

解析モデルの水理地質区分をFig.3.3-1に示す。密度差を考慮した解析では不均質性の高いモデルでは、収束性が悪く、非常に長い計算時間を要するため図中に示す太線（増幅層上面）よりも上の地質区分を均質なモデルとした解析を行った。設定した透水係数、間隙率、比貯留係数をTable 3.3-1に示す。

Fig. 3.3-1 解析モデルの水理地質区分

<table>
<thead>
<tr>
<th>No</th>
<th>地質</th>
<th>透水係数(m/s)</th>
<th>間隙率(%)</th>
<th>比貯留係数(1/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>古第三系＋白亜系</td>
<td>1.0E-11</td>
<td>20</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>2</td>
<td>増幅層＋鬼土別層</td>
<td>5.0E-10</td>
<td>30</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>3</td>
<td>稚内層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>4</td>
<td>声間層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>5</td>
<td>勇知層・更別層・第四系</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>6</td>
<td>大曲断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>7</td>
<td>サロベツ断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>8</td>
<td>S1-断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>9</td>
<td>S2-断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>10</td>
<td>S3-断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>11</td>
<td>S4-断層</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
<tr>
<td>12</td>
<td>表層（地表より10m程度）</td>
<td>1.0E-07</td>
<td>50</td>
<td>1.0E-05</td>
</tr>
</tbody>
</table>

(2) 解析条件

地下水流動解析の境界条件をFig.3.3-2に示す。また、ここで境界水位となる海水準変動、かん養量の時間変化をFig.3.3-3に、物質移行解析の境界条件をFig.3.3-4に示す。

解析はFig.3.3-3に示す氷期・間氷期の繰り返し2回、24万年間（=2@12万年）を対象に実施した。また、海水密度は1.023とした。
(3) 全水頭および塩分濃度分布
現時点での全水頭および塩分濃度分布の解析結果を Fig.3.3-5, Fig.3.3-6に示す。これらの図から以下のことが示される。
・全水頭（圧力水頭値に標高値を加えたもの）に関しては、密度差を考慮したほうが、その密度の影響で全水頭は大きくなる。
・鉛直方向の濃度分布の傾向は、密度差を考慮したケース、考慮しないケースで類似している。
・両者の違いとしては沿岸部で密度差を考慮しないケースでは下方まで淡水が入っているが、密度差を考慮したケースでは沿岸部における淡水の侵入深度が浅い。これは、密度効果による下方からの上昇流が原因となっていると推測される。
Fig. 3.3-5 全水頭分布
(a)海城
(b)沿岸城
(c)丘陵部

海水濃度を1.0とした正規化の濃度

(d)12万年経過時（1サイクル）
(e)24万年経過時（2サイクル）

Fig. 3.3-6 濃度分布
4. 地下水流動に影響を及ぼす天然現象の感度解析

これまで、地質環境の長期変動や気候変動が重要と認識しつつも、現在の環境をベースにした地下水流動解析を進めてきた。これまでの研究から、現状の地下水流動の概況は理解されつつあるが、地下水中の高い塩分濃度や一部で確認されている地下水の過剰間隙水圧については検討が十分とはいえない。このような背景から、本検討では、地質環境や気候変動の長期的変遷を考慮した地下水流動のモデル化手法の確立を目的として以下の検討を実施した。

① 地下水流動に影響を及ぼす天然現象の整理
② 断層の影響に関する検討
③ 海水準変動や氷期におけるかん養量の影響に関する検討

4.1 地下水流動に影響を及ぼす天然現象

核燃料サイクル開発機構の第2次取りまとめでは地質環境に関して、その安定性の観点から天然事象に関して以下のように記述している（核燃料サイクル開発機構、1999）。

“わが国は変動帯に位置しており、安定大陵にある欧米諸国に比べて、地震・断層活動、火山・火成活動、隆起・沈降・侵食が活発である。このうち、火山噴火や断層活動のように突然的起こる現象は、地質環境に破壊的な影響を与える可能性があるため、地層処分の実施に際しては、これらによる重大な影響を被らないような場所を選ぶことが重要となる。一方、地盤の広域的な隆起・沈降や侵食は、比較的ゆっくりと進む現象であるが、長期間にわたって累積するため、変動の程度やその影響を時間スケールとの関係で把握することが必要となる。また、わが国は中緯度の比較的温暖な地域にあるため、氷期においても大規模な氷河が発達することはないと考えられるが、気温や降水量の変化による地下水流動や侵食への影響、あるいは海水準変動にともなう海岸部での塩分と淡水の分布状態の変化などが想定される。”

幌延地域の地下水流動に影響すると考えられる地質環境要因のイメージを Fig. 4.1-1 に示す。これらのうち、以下に断層および気候変動に伴う海水準変動、かん養量の影響についての検討結果を示す。

Fig. 4.1-1 幌延地域を想定した地下水流動に影響すると考えられる地質環境要因のイメージ（新里ほか、2007 を改変）
4.2 断層の影響に関する検討

(1) 断層のモデル化

サロベツ断層帯の形状に関しては、異なる2つの解釈がある（石油公団，1995，産業技術総合研究所，2006）。

①リストリック断層の形態（断層が地表付近まで延びる）
②ランプ・フラットの組み合わせからなる形態（地表まで断層が延びない）

上記の断層形態に対応するモデル化を行い、断層の影響として、サロベツ断層形状の影響に関して地下水流動への影響と、洗い出し解析による塩分濃度分布への影響について検討した。基本とする解析断面は2章のモデルと同様である。サロベツ断層の形状が異なるケースとの比較を行うとともに、サロベツ断層の透水係数の影響を把握するため、1×10^{-6}m/s, 1×10^{-8}m/s, 1×10^{-10}m/s の3ケースについて計算した。

![サロベツ断層の形態](image1)

(a) リストリック断層の形態

![サロベツ断層の形態](image2)

(b) ランプ・フラットの組み合わせの形態

Fig. 4.2-1 サロベツ断層のモデル化
解析条件

地下水流動解析は、海部を一定水位（固定水位）、陸部をかん養量1mm/dで自由浸出面とした定常解析を実施した。また、初期濃度を全域1.0として洗い出し解析を150万年間にわたり実施した。

サロベツ断層以外の物性値、空間的水理地質区分はFig.2.1-20、Table2.1-3と同条件である。不飽和特性もFig.2.1-21を適用した。

全水頭分布の解析結果

全水頭の鉛直分布をFig.4.2-2、断面内分布をFig.4.2-3に示す。図中の凡例のうち、f1はリストリック、f2はランプ・フラットを示す。また、1E-6m/s、1E-8m/s、1E-10m/sは断層に設定した透水係数値を示している。

・全水頭は、f1（リストリック）の場合はf2（ランプ・フラット）に較べて深部での全水頭が低い傾向がみられる。これはリストリックの場合、透水性の高い断層が地表面近傍にまで伸びていることにより圧力が低下しているものと考えられる。

Fig. 4.2-2 現時点での全水頭の鉛直分布
Fig. 4.2-3 全水頭分布
(4) 塩分濃度分布の解析結果

塩分濃度分布の解析結果をFig.4.2-4, Fig.4.2-5に示す。これらの図が示すように，断層タイプ，断層の透水係数による塩分濃度分布への影響は小さい。Fig.4.2-4に示す丘陵部の鉛直分布に多少違いが見られる。f1（リストリックタイプ）でf2（ランプフラット）より洗い出し方が進む傾向が見られる。また，透水係数の大きいケースのほうが洗い出し方が進む（浅層の濃度が低くなる）。

Fig. 4.2-4 現時点での全水頭の鉛直分布
海水濃度を1.0とした正規化の濃度

(a)海域 (b)沿岸域 (c)丘陵部

STEP: 1 TIME: 1.50000×10^6

STEP: 46 TIME: 1.50000×10^6

STEP: 46 TIME: 1.50000×10^6

STEP: 46 TIME: 1.50000×10^6

k=1×10^{-6}m/s

k=1×10^{-8}m/s

k=1×10^{-10}m/s

約26km

Fig. 4.2-5 現時点での濃度分布
(5) 粒子追跡法による解析結果

断層形状の違いが地下水流动経路に影響することが想定されるため、粒子追跡法により流动経路を計算した。計算は、粒子がモデル外に出るまで、滞留時間300万年まで計算した。Fig.4.2-6にはリストリック、ランプフラットを同一グラフにプロットし、代表的な箇所を拡大して比較した。図中の太線は大曲断層とサロベツ断層を示す。サロベツ断層がランプフラットの場合、グラフ表示範囲より深部で断層が止まっているため断層位置は図中に表示されない。Fig.4.2-7には各ケースの陸側30kmの流动経路を示す。

各図から、両ケース間に顕著な違いがないことがわかる。

Fig. 4.2-6 粒子追跡解析結果の拡大図（k=1×10^{-8} m/s）
Fig. 4.2-7 粒子追跡解析結果
（上：リストリックタイプ，下：ランプフラットタイプ）
（6）リストリック，ランプフラット断層タイプが地下水流動に与える影響

リストリック，ランプフラット断層タイプが地下水流動に与える影響を把握するため，地下水の定常解析と150万年の洗い出しの物質移行解析を実施した。解析結果として，全水頭分布，濃度分布，粒子追跡法による流動経路の比較を行った。

この結果，以下の傾向が把握された。

・全水頭分布：f1（リストリック）は，f2（ランプフラット）よりも深部の全水頭が低い。
・濃度分布：海域，沿岸域では両者の影響ほぼんどない。丘陵部ではf1（リストリック）で洗い出しが進み，f2（ランプフラット）よりも濃度が低めになる。
・粒子追跡法による流動経路の比較では，両者に顕著な差異は認められない。
4.3 海水準変動や氷期におけるかん養量の影響に関する検討

海水準変動や氷期におけるかん養量の低下の影響を検討する一環として、代表的時間断面における地質断面と海水準の変動範囲をFig.4.3-1～Fig.4.3-10に整理した。図は各年代、10～30万年間の期間における海水準の最高水位と最低水位およびその期間前後の地表面形状を示している。

また、地層境界は最終的な位置を示している。

Ktは声間層の上面、Wkは堆積層の上面、MOは増幅層＋鬼志別層の上面、Crは古代三紀＋白亜系の上面をそれぞれ示している。

これらの図から、海水準変動や海水準に同調すると考えられるかん養量変動への影響が示唆される。地形と海水準変動の関係から1.5Ma～0.6Maにかけてはほとんどの箇所が海面下にあり、海水準変動やかん養量変動の地下水流動への影響は小さいものと想定される。

したがって、Fig.4.3-1～Fig.4.3-10に示した地形と海水準変動の年代的な比較検討から、ここで対象とする時間スケールと地下水流の伝播速度を考慮すると、海水準変動やかん養量変動の地下水流動への影響については0.6Ma以降を対象に検討すればよいと考えられる。

Fig. 4.3-1 地層境界と海水準の変動（0.1Ma～現在）
Fig. 4.3-2 地層境界と海水準の変動（0.2Ma〜0.1Ma）

Fig. 4.3-3 地層境界と海水準の変動（0.3Ma〜0.2Ma）

Fig. 4.3-4 地層境界と海水準の変動（0.4Ma〜0.3Ma）
Fig. 4.3-5 地層境界と海水準の変動（0.5Ma〜0.4Ma）

Fig. 4.3-6 地層境界と海水準の変動（0.6Ma〜0.5Ma）

Fig. 4.3-7 地層境界と海水準の変動（0.8Ma〜0.6Ma）
Fig. 4.3-8 地層境界と海水準の変動（1.0Ma〜0.8Ma）

Fig. 4.3-9 地層境界と海水準の変動（1.2Ma〜1.0Ma）

Fig. 4.3-10 地層境界と海水準の変動（1.5Ma〜1.2Ma）
4.4 天然現象の影響に関するまとめ

地下水流動に影響を及ぼすと考えられる天然現象のうち、今回検討を行った結果およびその検討を進める際の課題を Table 4.4-1 に示す。

<table>
<thead>
<tr>
<th>現象</th>
<th>影響の程度</th>
<th>課題</th>
</tr>
</thead>
</table>
| ①地形、地質構造の変動 | 地形や地質構造の変動に伴う透水性の変化を考慮しない場合、浅部 (EL. -500m 以下) では、地下水流動に比べ塩分濃度分布への影響が大きい。 | 解析手法の高度化
地形や地質構造の変動履歴のより詳細な情報の拡充 |
| ②海水準変動 | 沿岸域における地下水流動、塩分濃度分布に影響する。 | 正確な海水準変動の把握 |
| ③かん養の変動 | 丘陵部での地下水流動、塩分濃度分布に大きく影響する（隆起の地形形状の影響も大きい）。
海流への影響は小さい。 | かん養量推定手法の信頼性向上
水期および水欠渇時のかん養量の推定 |
| ④透水係数などの物性値の変動 | 堆積過程に伴う間隙率や透水係数の変化が深部の間隙水圧分布（週期間隙水圧）に影響を及ぼす。 | 間隙率や有効応力に規定される透水係数のモデル化
二元あるいは三次元堆積シミュレーションによる確認 |
| ⑤テクトニックな応力 | 過剰間隙水圧分布への影響は小さい。 | 深部でのひずみ速度の把握 |
5. まとめ

地質環境の長期的変遷が地下水流動に及ぼす影響を把握するため、以下の検討を実施した。
① 天然現象の影響を考慮した地下水流動解析手法の高度化
② より現実的な地質構造やかん養量などを反映した解析の実施
③ 地下水流動に影響を及ぼす天然現象の感度解析
この結果、以下のことが示された。

(1) 天然現象の影響を考慮した地下水流動解析手法の高度化
地下水流動に影響を与える地質環境の変遷を連続的にモデル化するシステム：SMS（Sequential Modeling System of geo-environmental evolution impact on groundwater flow）の高度化を実施した。モデル形状変化時における解析結果の不連続性を低減する方法のひとつとして、タイムステップ数を多くして不連続性を小さくするシステムを考案し、解析に適用した。この結果、モデル形状変化時における不連続性（ギャップ）が大きく低減された。また、本解析により、地質構造の変化を考慮した場合、考慮しない場合に比べて深部の水頭が低くなり、隆起部では淡水の侵入深度が浅くなることなどが示された。

(2) より現実的な地質構造やかん養量などを反映した解析の実施
地層の応力状態の変化や堆積過程が地下水流動に及ぼす影響、氷期のかん養量設定の地下水流動に与える影響、地下水に含まれる塩分の密度差が地下水流動に与える影響について検討した。この結果、過剰間隙水圧の発生を理解するには間隙率や有効応力に規定される透水係数の設定が重要であること、氷期のかん養量設定は丘陵部、沿岸域の地下水流動特性に影響を与えること、密度差の影響は地形勾配の影響ほど大きくはないが沿岸域の地下水流動に影響を与え、淡水の地下深部への侵入を抑制する働きをすることが解析的に示された。

(3) 地下水流動に影響を及ぼす天然現象の感度解析
本検討では、地下水流動に影響を及ぼす天然現象を整理し、断層の生成タイプとその透水係数について感度解析的検討を実施した。この検討で想定した2種類の断層生成タイプの影響は対象とする深度 500m 程度までの影響は顕著でないこと示した。
また、儀延地域の過去150万年間の地形・地質構造と海水準変動について図化・整理し、地質環境変遷の地下水流動への影響を評価するためには0.6Ma 頃からの検討で十分であるとの見解を示した。

本検討を通じて考えられる今後の課題としては、
① 物性値変化（間隙率の変化とその影響による透水係数変化など）を考慮した SMS 解析
② 詳細な深部情報の取得
③ 過剰間隙水圧による影響を考慮した統合的検討
が挙げられる。
参考文献

1) 小池一之，町田洋　編：日本の海成段丘アトラス，東京大学出版会．（2001）
2) 松本和也, 藤原治, 末吉哲雄：日本列島における最終氷期最寒冷期の気候, サイクル機構技報，No.6, pp.93-103. （2000）
3) 菱谷皆幸，西垣誠，橋本学：物質移動を伴う密度依存地下水流の3次元数値解析手法に関する研究，土木学会論文集，No.638／Ⅲ-49，pp.59-69. （1999）
4) 操上広志，竹内竜史，瀬尾昭治：帳延層地層研究計画における地下水流動解析（研究報告）, JNC TN5400 2005-003. (2005)
5) 核燃料サイクル開発機構：わが国における高レベル放射性廃棄物地層処分の技術的信頼性—地層処分研究開発第2次取りまとめ—分冊1わが国の地質環境，核燃料サイクル開発機構，JNC TN1400 99-021. （1999）
6) 操上広志，竹内竜史，瀬尾昭治: 帳延地域の新第三紀～第四紀堆積岩の水理特性，土木学会年次学術講演会講演概要集 (2005)
7) 太田久仁雄，阿部寛信，山口雄大，國丸貴紀，石井英一，操上広志，戸村豪治，柴野一則，寅克宏，松井裕哉，新里忠史，高橋一晴，丹生屋純夫，大原英史，溝見浩一，森岡宏之，舟木泰智，茂田直孝，福島龍朗：帳延層地層研究計画における地上からの調査研究段階（第1段階）研究成果報告書 分冊「深層地の科学的研究」，JAEA-Research 2007-044（2007）
8) ドミニコ，シュワルツ：地下水の科学III—地下水と地質—，土木工学社. （1996）
9) 核燃料サイクル開発機構：高レベル放射性廃棄物の地層処分技術に関する知識基盤の構築（平成17年取りまとめ）—深層地の科学的研究—，JNC TN1400 2005-014. （2005）
10) Iizuka and Ohta：A determination procedure of input parameters in elasto-viscoplastic finite element analysis，Soils and Foundations，Vol.27, No.3, pp.71-87. （1987）
14) Gibson, R. E.：The progress of consolidation in a clay layer increasing in thickness with time, Geotechnique, 8, pp.171-182. （1958）
15) ATHY, L. F.：Density, porosity, and compaction of sedimentary rocks，AAPG, 14, pp.1－24. （1930）
16) 荒深守人，向上光美，三原正哉，北村孝海：有限要素法による飽和不飽和浸透の二次元非定常解析について，開発研究年報，pp.33〜50. （1977）
17) 動力炉・核燃料開発事業団：貯蔵工学センター立地環境調査深層ポーリング報告書，PNC TJ1027 98-012. （1987）
18) 星一良, 侯健勇, 川田耕司, 辻隆司, 諏訪部瑞恵: 前進的モデルを用いた不均質性堆積岩評価手法の研究 II, JNC TJ8400 2005-008. （2005）
21) 原彰男, 星一良, 加藤新, 前川忠輔：前進的モデルを用いた不均質性堆積岩評価手法の研究 III, JAEA-Research 2007-015. （2007）
22) 核燃料サイクル開発機構：幌延深地層研究計画における地下研究施設の空洞安定性評価および支保設計（平成15年度）, JNC TN5410 2004-001, p.35. （2004）
31) 新里忠史, 舟木泰智, 安江健一: 北海道北部、幌延地域における後期鮮新世以降の古地理と地質構造発達史, 地質学雑誌, vol.113, pp.119-135. （2007）
33) 独立行政法人 産業技術総合研究所: サロベツ断層帯の活動性および活動履歴調査, 「基盤的調査観測対象断層帯の追加・補完調査」成果報告書, No.H17-1 (2006)。
国際単位系（SI）

<table>
<thead>
<tr>
<th>表1. 国際基本単位の例</th>
<th>表2. 国際基本単位とその関連単位の例</th>
</tr>
</thead>
<tbody>
<tr>
<td>…………………………</td>
<td>………………………………………</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表3. 国際基本単位の関係式</th>
<th>表4. 国際基本単位の関係式</th>
</tr>
</thead>
<tbody>
<tr>
<td>…………………………</td>
<td>………………………………………</td>
</tr>
</tbody>
</table>

本レポートを日本原子力研究開発機構が不適切に発行する成果報告書です。
本レポートの入手及び著作権利用に関するお問い合わせは、下記までお問い合わせください。
なお、本レポートの全文は日本原子力研究開発機構のウェブサイト（http://www.jaea.go.jp）より発信されています。

立売原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 群馬県前橋市東町白方白塀2番4号　電話029-282-6387、Fax029-282-5920、E-mail:irr-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel+81-29-282-6387, Fax+81-29-282-5920, E-mail:irr-support@jaea.go.jp

©Japan Atomic Energy Agency, 2009
地下水流動に対する地質環境の長期的変遷の影響に関する研究

Study on the Effects of Long-term Evolution of Geological Environment on Groundwater Flow

(Contract Research)

今井 久* 坂下 亮* 坂崎 功* 藤野 和彦*

笠 博義* 丸山 信生* 新里 忠史 前川 惠輔

Hiashi Imajo*, Ryo YAMASHITA*, Isao SHOZAKI*, Kazuhiko URANO*
Hitoyoshi KASA*, Yoshio MARUYAMA*, Tadashi NIIZATO and Keisuke MAEKAWA

地層処分研究開発部門
堆積岩地質環境研究グループ

Sedimentary Environment Research Group
Geological Isolation Research and Development Directorate

March 2009
Japan Atomic Energy Agency
日本原子力研究開発機構

* JAEA-Research 2009-001