JAEA-Research 2009-003

分子動力学法による3価希土類元素塩化物の アルカリ塩化物融体中の混合挙動

Study on Mixing Behavior of Rare Earth Chloride in Molten Alkali Chloride by Molecular Dynamics(MD) Calculation

> 沼倉 正彦 矢板 毅 塩飽 秀啓 鈴木 伸一 小林 徹 阿久津 和宏 Paul Anthony Madden 岡本 芳浩

Masahiko NUMAKURA, Tsuyoshi YAITA, Hideaki SHIWAKU, Shinichi SUZUKI Tohru KOBAYASHI, Kazuhiro AKUTSU, Paul Anthony Madden and Yoshihiro OKAMOTO

> 量子ビーム応用研究部門 放射光科学研究ユニット

Synchrotron Radiation Research Unit Quantum Beam Science Directorate

April 2009

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 〒319-1195 茨城県那珂郡東海村白方白根2番地4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2009

分子動力学法による3価希土類元素塩化物のアルカリ塩化物融体中の混合挙動

日本原子力研究開発機構 量子ビーム応用研究部門 放射光科学研究ユニット 沼倉 正彦^{*1}、矢板 毅、塩飽 秀啓、鈴木 伸一、 小林 徹^{*2}、阿久津 和宏^{*1}、Paul Anthony Madden^{*1}、岡本 芳浩

(2009年1月21日受理)

使用済み核燃料中のウラン(U), プルトニウム(Pu)および長寿命核種のマイナーアクチ ノイド(MA)を分離、高速炉燃料として利用することは原子力エネルギー資源の利用効率 の向上および放射性廃棄物の低減の観点で近年重要性が増している。その次世代の元素 分離手法の一つとして乾式再処理法が提案されている。本法は溶融塩を溶媒とし、電解 精錬技術を利用するものであり、回収される金属イオンの溶存状態が電解プロセスに直 接影響すると予想されている。しかし、その詳細な情報は未だ報告例が少なく、この溶 存状態およびその物性の解明は乾式再処理法の開発にとって重要な課題の一つである。

我々はこの溶存状態の構造解析に X 線吸収微細構造(XAFS)と分子動力学(MD)計算を 利用している。本研究では MD 計算を利用し、その溶存状態を調べた。対象とした系は 実際の乾式再処理における電解浴として有力視されている LiCl-KCl 共晶塩および電解回 収対象の金属として 3 価希土類元素塩化物である TbCl₃を用い、その混合挙動を調べた。 また、陽イオンのイオン半径の違いによる構造への影響を理解するため、Tb³⁺よりもイオ ン半径の大きい La³⁺、小さい Y³⁺を比較対象として用いた。さらに、LiCl-KCl 共晶塩の混 合効果を詳細に調べるために、LiCl および KCl による混合効果についても検討した。

TbCl₃単独塩融体は7配位構造が主でありClイオンを介した架橋構造を形成している ことがわかった。そして、LiCl-KCl 共晶塩を加えていくとその架橋構造が崩壊し、安定 な6配位八面体構造を形成することがわかり、特に40 mol%TbCl₃と15 mol%TbCl₃の間 で配位数が急激に変化する結果が得られた。また、YCl₃系,LaCl₃系の計算結果と比較す ると、単独塩融体では陽イオンのイオン半径の違いにより配位数が異なるが、LiCl-KCl 共晶塩を混合させるとその大きさに関係なく安定な6配位八面体構造に近づく傾向があ ることがわかった。さらに、LiClおよびKClとの混合効果について調べた結果、KClと の混合ではLiCl-KCl 共晶塩の場合と比べ、6配位八面体構造の形成を促進させる効果が あり、LiCl との混合では逆に6配位八面体構造を形成しにくくなることがわかった。こ の違いはLiClと3価希土類元素塩化物のClイオンの数密度の値が近いため配位数が減少し にくいこと、さらにK⁺イオンより小さなLi⁺イオンが、より3価希土類元素の陽イオンの近くに位置し、 Li⁺イオンから生じる強いクーロン力がCl⁻イオンをより強く引き付けるため、構造の安定化を阻害 していると推定される。つまり、アルカリ塩化物の混合による安定化構造の形成には数密度およ びアルカリ金属イオンと希土類元素の陽イオンの距離が関係していることを明らかにした。

原子力科学研究所(駐在): 〒319-1195 茨城県那珂郡東海村白方白根 2-4 *1 オックスフォード大学 ※1 特別研究生 ※2 博士研究員

Study on Mixing Behavior of Rare Earth Chloride in Molten Alkali Chloride by Molecular Dynamics (MD) Calculation

Masahiko NUMAKURA^{**1}, Tsuyoshi YAITA, Hideaki SHIWAKU, Shinichi SUZUKI, Tohru KOBAYASHI^{**2}, Kazuhiro AKUTSU^{**1}, Paul Anthony Madden ^{*1} and Yoshihiro OKAMOTO

Synchrotron Radiation Research Unit, Quantum Beam Science Directorate Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken

(Received January 21, 2009)

From the viewpoint of the effective utilization of nuclear energy and reduction of radioactive waste, recovery of uranium (U), plutonium (Pu), and minor actinide (MA) and their recycling as fuel of fast breeder reactors (FBR) are very important. And pyrochemical reprocessing with the use of molten salt is regarded as a strong candidate for such recovery technology. It is predicted that metallic ion in molten salt influences the electrolysis process directly. Therefore, clarifying the local structure of metallic ion in molten salt and its physico-chemical properties is very important information in pyrochemical reprocessing of spent nuclear fuels.

We have investigated the local structure around metallic ion in molten salt by XAFS (X-ray absorption fine structure) and MD (molecular dynamics) simulation techniques. In this study, we investigated the mixing behavior of molten TbCl₃ in LiCl-KCl eutectuic by MD simulation. At the same time, simulation of molten MCl₃ (M=Y, La) systems were performed to elucidate the difference of the structural change by the difference in cation size (Y^{3+} <Tb³⁺<La³⁺). In addition, to elucidate the mixing effect with LiCl-KCl in detail, we also examined MCl₃-LiCl and -KCl systems (M=Y, Tb, La).

The molten pure TbCl₃ has mainly 7-fold structure. By mixing with LiCl-KCl, the network structure by Cl⁻ is broken and the stable 6-fold structure is formed. Especially, the drastic change of the coordination number is observed between 40mol% and 15mol% TbCl₃. Comparison of MCl₃ systems shows that the change of coordination number and the Tb³⁺-Cl⁻ distance by the mixing with LiCl-KCl are between those of YCl₃ and LaCl₃ systems. Independent of cation size, the molten MCl₃ tend to be formed the stable 6-fold structure by the mixing with LiCl-KCl. MD simulations on MCl₃-LiCl and -KCl systems revealed that the mixing effect was different between LiCl and KCl. By the mixing with LiCl, the formation of the stable 6-fold structure is promoted. We consider that the number density of Cl⁻ and the distance of M³⁺-Li⁺,-K⁺ are related to the difference of the formation of the stable 6-fold structure.

Keywords: Molten Salt, Molecular Dynamics, XAFS

^{*1} University of Oxford

^{※1} Fellow of Advanced Science

^{*2} Post-Doctoral Fellow

目次

1. はじめに	1
2. 計算方法	2
2.1 相互作用モデル	2
2.2 シミュレーション計算	3
3. 結果と考察	5
3.1 MCl3のポテンシャル評価	5
3.2 TbCl ₃ -(LiCl-KCl)混合系のポテンシャル評価	5
3.3 TbCl ₃ -(LiCl-KCl)混合系の動径分布関数と配位数	5
3.4 (LiCl-KCl)共晶塩中の TbCl3と YCl3,LaCl3の比較	6
3.5 LiCl および KCl との混合	7
3.6 配位構造の安定性	8
3.7 配位構造安定化の原因	8
4. まとめ	10
謝辞	11
参考文献	11

Contents

1. Introduction1
2. Molecular dynamics simulation2
2.1 Internal potential2
2.2 Simulation procedure3
3. Results and discussion 5
3.1 Potential estimate of MCl ₃ 5
3.2 Potential estimate of TbCl ₃ -(LiCl-KCl) system5
3.3 Radial distribution function and coordination number of TbCl ₃ system 5
3.4 Comparison of TbCl ₃ and YCl ₃ , LaCl ₃ systems6
3.5 Mixture with LiCl and KCl7
3.6 Stabilization of coordination structure8
3.7 Cause of stable coordination structure8
4. Conclusion10
Acknowledgment11
References 11

This is a blank page.

1.はじめに

安定なエネルギー源を確保するために軽水炉で使用済みの核燃料からウラン(U)やプルトニウム(Pu)を回収し、それらを高速増殖炉(FBR)の燃料として再利用することが考えられている¹⁾。また、これらの回収と同時に長寿命核種のマイナーアクチノイド(MA)を回収し、FBR 内で燃焼することにより、その後の地層処分の監視時間が大幅に短縮できるとされている²⁾。現在、この使用済み核燃料の再処理技術の一つとして乾式再処理法の利用が有効であると考えられている。なぜなら、湿式再処理法に比べ、元素を分離・回収する際に発生する廃棄物の量が少なく、また高速炉では中性子のエネルギーが高いため、湿式再処理法よりも除染係数の小さい乾式再処理法でも適用させることができるからである。この方法は溶融塩を媒質とした電解精錬がメインプロセスであり、電解浴中に含まれる回収対象の金属の溶存状態が電解プロセスに大きく影響を及ぼすと考えられている。また、溶融塩ではその構造と物性値に相関関係が存在することが多いため、構造を明らかにすることにより電解の性能に関係してくる拡散係数などの物性値を予測できると考えられている。この関係から、ランタノイド(Ln)元素の浴中の溶存状態を明らかにし、それらの構造と物性値の関係を明らかにすれば、実験では得ることが難しいアクチノイド(An)元素の物性値を解明できる可能性がある。

我々は乾式再処理の有力な電解質である LiCl-KCl 共晶塩に注目し、電解回収対象の金 属として3価希土類元素塩化物を使い、その溶存状態についてX線吸収微細構造(XAFS) を利用し解明している³⁾。XAFS により混合塩融体中に含まれる金属イオン周辺の構造を 短時間で明らかにすることができ⁴⁾、さらに SPring-8の BL11XU で開発が進められてい る高エネルギーXAFS を駆使することにより、LiCl-KCl 共晶塩中に1%程度溶け込んでい る希土類元素の局所構造を明らかにすることが出来るからである³⁾。しかし、高温融体の XAFS 測定では XAFS 振動が弱くなり、非調和熱振動効果⁵⁾や多電子励起⁶⁾の影響が顕著 となるために、通常のカーブフィッティングによるデータ解析に誤った結果をもたらす 可能性がある。そこで、我々は分子動力学(MD)計算を行い、その結果を利用し XAFS シ ミュレーションを実施することで XAFS のデータ解析の信頼性を高めている⁷⁾。さらに、 MD 計算の利用により、混合による詳細な構造変化や物性値を調べることも可能となる。 そのため、高温融体の構造を明らかにするには XAFS と MD 計算を相補的に利用するこ とが重要である。

そこで、本研究では MD 計算に注目し、TbCl₃ と LiCl-KCl 共晶塩の混合挙動を調べた。 また、3 価希土類元素の陽イオンのイオン半径の違いによる電解浴中での混合挙動の違い を調べるため、既に計算が実施されている YCl₃ および LaCl₃ 系について⁸⁾、その計算の 精度を上げるために対象イオン数を増やし、再度計算を行い、TbCl₃ 系の計算結果と比較 した。そして、LiCl-KCl 共晶塩の混合効果を詳細に調べるために、電解浴の構成要素で ある LiCl と KCl を分けて計算を行い、それぞれの溶媒としての効果の違いについても調 べた。

2.計算方法

2.1 相互作用モデル

本研究の MD 計算では、(1)式の1項目で表している Born-Mayer 型斥力に2項目以降で表 しているクーロン力と分散項を加えた相互作用ポテンシャルを用いた。

$$U_{ij}(r_{ij}) = B_{ij} \exp\{-(a_{ij}r_{ij})\} + \frac{Q_i Q_j}{r_{ij}} - \frac{C_{ij}^6}{r_{ij}^6} - \frac{C_{ij}^8}{r_{ij}^8} \qquad \cdots (1)$$

1項目の短距離反発は(2)式、(3)式で表現されている。

$$B_{ij} = f(\rho_i + \rho_j) e^{\{a_{ij}(\sigma_i + \sigma_j)\}} \qquad \cdots (2)$$

$$a_{ij} = \frac{1}{\rho_i + \rho_j} \qquad \cdots (3)$$

(2)式、(3)式中の f は定数であり、 σ はイオンサイズを表すパラメータ, ρ はイオンのポテンシャル反発の勾配を表している。(1)式の r_{ij} はイオン種 i, j の距離を表し、2項目 Q は電荷を表している。本研究でQ は形式電荷であり、 M^{3+} (M=Y,Tb,La)で+3,Li⁺とK⁺で+1,Cl⁻で-1 である。また、3,4項目はそれぞれ双極子-双極子相互作用、双極子-四重極子相互作用を表している^{9,10}。本計算では Wilson と Madden により考案された分極モデル(PIM(Polarizable ionic model))を用いた¹¹⁾。この分極モデルは Cl⁻イオンの分極によって引き起こされる双極子の効果が考慮されている。図 1 に MCl₃ 融体のイメージ図を示す。Cl⁻M³⁺-Cl⁻対が非直線の場合、Cl⁻イオンの分極により①双極子が誘起される②結合がさらに曲げられる③双極子の存在が M^{3+} - M^{3+} 対の強い反発作用を遮蔽し緩和するように働く④ M^{3+} イオンが小さい場合はこの効果が強くなり、2 つの M^{3+} イオンが 2 つの Cl⁻イオンを辺共有する架橋構造を形成すると考えられる。この分極効果を取り入れることによって、それまでに用いられていた分極を考慮しない剛体球モデル(RIM(rigid ionic model))より、より正確な構造や物性値のシミュレーションを行うことが可能になった¹²⁾。また、陽イオンの分極の影響は塩化物イオンに比べ小さいため、今回の計算において、陽イオンの分極は考慮していない。

陰イオン(CГ)の分極は CГの分極率 a および誘起減衰因子 b の 2 つのパラメータを使って行った。bは隣接する陽イオンが短距離効果のため誘起された双極子場から外れることによって陰イオンで誘起される双極子の大きさを表している。そして、この b の値はそれぞれの陽イオンと陰イオン半径の和と一致している^{9,10}。

$$b_{ij} = \frac{c}{\sigma_+ + \sigma_-} \qquad \cdots (4)$$

分極の計算においては希土類元素塩化物の PIM 計算で用いられている値(c の値は 2 価の塩 化物(MCl₂)で用いられている値 7.42、CIの分極率は NaCl 結晶で適用された値 20 a.u.)に固定 している¹³⁾。このため、陽イオンサイズの違いだけが構造に影響していると考えることが出来る。 表1に本研究で使用したポテンシャルパラメータを示した。3価希土類元素の陽イオンのイオン 半径の違いによる構造の違いを見るために行った YCl₃,LaCl₃系の計算においては既に報告さ れているポテンシャルパラメータを利用した⁸⁾。

2.2 シミュレーション計算

本研究では全組成系を対象とし、それぞれの混合挙動について詳細に調べるために 100%-MCl₃(M=Y,Tb,La)及び 75%, 40%, 15%, 1.8%MCl₃ - (LiCl-KCl)混合系について計算を行った。

計算結果より、中心元素からの距離rに存在する他の元素の存在確率を見ることが出来る動 径分布関数 G(r)を求め、その G(r)より、イオン間距離と配位数を求めた。

動径分布関数は以下の式により求められる。

$$G_{ij}(r) = \frac{1}{N} \sum_{i=1}^{N_j} \frac{n_{ij}(r - \Delta r/2, r + \Delta r/2)}{4\pi \rho_j r^2 \Delta r} \qquad \cdots (5)$$

また、配位数は

$$n_{ij}(r') = 4\pi\rho_j \int G_{ij}(r)r^2 dr \qquad \cdots (6)$$

で求められる。イオン*i*を原点としたときに、半径 $r+\Delta r \ge r-\Delta r$ の2つの球面内に存在するイオン*j*の個数を $n_{ij}(r-\Delta r/2, r+\Delta r/2)$ とすると動径分布関数G(r)は(5)式で求めることが出来る。この式中においてNはイオンの総数を表しており、 ρ は数密度を表している。また、配位数はrの値によって変化する。このrの決め方は第一ピークが対称になるようにして、積分するなど様々な方法が提案されているが¹⁴⁾、本研究では、 $G_{ij}(r)$ の第一極小値の数値を採用し配位数を求めた。

また、既に YCl₃,LaCl₃単独塩及びその混合系について 336 個のイオンを対象とし、計算が実施されているが⁸⁾、1%MCl₃(M=Y,La)-LiCl-KCl 混合系のシミュレーションではセルに含まれる M^{3+} の個数が2 個であるため、正確な結果が得られない可能性が考えられる。そこで本研究では混合系の計算精度を高めるため、対象とするイオン数を2688 個に増やし、計算を実施した。動径分布関数や配位数などの構造情報は15万 MD ステップを計算して求めた。また、 M^{3+} -Cl⁻間の距離の変化は僅かであるため、それらを議論するためにはより多くの統計量が必要であると考えられる。そのため、本研究では9万 MD ステップの統計量を使い、部分動径分布関数の第一ピークを比較し、混合による M^{3+} -Cl⁻間の距離の変化を議論した。また後述する cage correlation 関数^{15,16)}も同様に9万ステップの統計量から求めた。

シミュレーション計算は MCl₃-(LiCl-KCl),-LiCl,-KCl 系において圧力を0 に設定した等圧シミ ュレーション(NPT)で行ったが、3.7節で述べている KCl の数密度を人為的に変化させたシミュレ ーション計算は密度を一定とした NVT シミュレーションで行った。

また、TbCl₃-(LiCl-KCl)混合系のポテンシャルの評価及び配位数の議論に XAFS シミュレーションを利用した⁷⁾。本研究で利用した XAFS シミュレーションの方法は MD 計算と FEFF¹⁷⁾を組み合わせた方法である。FEFF とは座標などの入力データを基に理論的な XAFS 関数を算出す

るソフトであり、この XAFS シミュレーション方法は FEFF の入力データに必要な座標系を MD 計算の出力から得る方法である。このシミュレーション方法は計算の蓄積により Deby-Waller 因子などの揺らぎ成分を取り入れることができると仮定され行われており、Pt,RbBr,SrCl₂の系に対して1万~3万回の計算を蓄積させることで、実験で得られた XAFS 関数を良好に再現できると報告されている⁷⁾。そこで、本研究では2万回の FEFF の計算を平均化し、実験で得られた XAFS 関数と比較した。

3.結果と考察

3.1 MCl₃のポテンシャル評価

本研究で使用した MCl₃のポテンシャルの評価として、中性子回折実験より報告されている動 径分布関数 *G(r)*^{18,19,20)}と分極を考慮した(PIM)および分極を考慮していない(RIM)-MD の計算 結果に中性子の散乱長の重みを付けた動径分布関数の比較および、実験で得られた TbCl₃の 密度の温度依存性²¹⁾と MD 計算により得られた密度の値を比較した。図 2 と図 3 にそれらの結 果を示す。分極を考慮することにより、実験による中性子回折の回折パターンの特徴を全ての系 で概ね良好に再現していることがわかる。この結果より、本研究で対象とした 3 価希土類元素塩 化物はシミュレーションにおいて分極を考慮することが重要であることがわかる。またシミュレーシ ョンにより求めた密度は実験値より 1%程度大きな値が得られたが、温度依存性の傾向をよく再 現していることがわかり、これらの結果から単独塩融体の構造が正しく再現できていると考えられ る。

3.2 TbCl₃-(LiCl-KCl)混合系のポテンシャル評価

さらに、本研究で計算を実施した 40%, 15%, 1.8%TbCl₃-(LiCl-KCl)混合系のポテンシャルを 評価するために、TbCl₃単独塩融体と併せてそれらの XAFS シミュレーションを行い⁷⁾、実際の XAFS 実験から得られた XAFS 関数と比較した。その結果を図 4 に示す。この図から全ての系に 対して XAFS 関数を良好に再現していることがわかり、本研究において TbCl₃ 混合系の局所構 造が正確に表されていると考えることができる。

3.3 TbCl₃-(LiCl-KCl)混合系の動径分布関数と配位数

MD シミュレーションによる TbCl₃ 及び 40%,1.8%MCl₃-(LiCl-KCl)混合系の Tb³⁺-Cl 対の部分 動径分布関数 *G_{M-Cl}(r)*の比較を図 5 に示す。この図より、TbCl₃の濃度が低くなると第一ピーク後 の極小値が 0 に近づいている、つまり第一ピークと第二ピークの境界が明瞭になっていることが わかる。これは混合により塩化物イオン分布の境界がはっきりしたことを示している。これより混合 により配位構造が安定化していると考えられる。次に、配位数の変化を比較した。図 6 は TbCl₃-(LiCl-KCl)混合塩中の配位数変化、図 7 は配位数分布を示したものである。これらの図よ り、100%TbCl₃ の状態、つまり単独塩融体において 7 配位構造が優勢であることがわかる。そし て、混合が進み TbCl₃の濃度が低くなると、6 配位の割合が高くなる傾向がある。本研究でもっと も濃度が薄い 1.8%TbCl₃ の状態において、9 割以上が 6 配位構造を形成していることがわかる。

また 100%TbCl₃ と 15%TbCl₃の結果を使い、XAFS シミュレーションにより配位数の変化を詳細に調べることにした。図 8 は MD 計算結果から 5,6,7,8 配位の構造を別々に抜き出し、XAFS シミュレーションを配位数ごとにグループ分けして行い、実験で得られた XAFS 関数と比較を行った結果である。この図より 100%TbCl₃では 7 配位、15%TbCl₃では 6 配位の XAFS 関数が最も 一致していることがわかる。これより、それぞれ 7 配位、6 配位が優勢であると考えられ、図 6,7 で 示した TbCl3 の配位数の変化と一致している。

これらの結果より TbCl₃ は LiCl-KCl 共晶塩の混合により安定な 6 配位八面体構造(TbCl₆)³⁻ を形成すると考えられる。特に 40%~15%の間で 6 配位構造の割合が急激に変化していることが わかる。これは、25%TbCl₃の状態で6配位八面体構造を形成するために不足している Cl-イオン がアルカリ塩化物から供給されるためであると推測される。

3.4 (LiCl-KCl)共晶塩中の TbCl3とYCl3,LaCl3の比較

次に、3 価希土類元素の陽イオンのイオン半径の違いによる混合挙動の違いを調べるため YCl₃,LaCl₃ のシミュレーションを行い、それらの結果を比較した。図 9 は MCl₃ 及び 40%,1.8%MCl₃-(LiCl-KCl)混合系の M³⁺-Cl⁻対(M=Y,La)の部分動径分布関数 *G_{M-Cl}(r)*の比較 をした結果である。この図より、YCl₃,LaCl₃系でもTbCl₃系と同様、配位構造が安定化している結 果が得られた。また、混合によって最近接 M³⁺-Cl⁻イオン間距離がどのように変化するかを調べる ため、動径分布関数の第一ピークを比較した。その結果を図 10 に示す。この図より、YCl₃では 混合により距離がごく僅か短くなっており、LaCl₃では明らかに距離が短くなっていることがわかる。 また、本研究で対象とした TbCl₃ に注目すると、距離が短くなっており、その変化量が Y³⁺-Cl⁻と La³⁺-Cl⁻の間に位置していることがわかる。これより、M³⁺-Cl⁻イオン間距離の変化は3 価希土類元 素の陽イオンのイオン半径の大きさによって異なると考えることができる。

次に、それぞれの混合系の配位数を比較した。図 11 は MCl₃-(LiCl-KCl)混合系の配位数変 化、図 12 は配位数分布を示したものである。これらの図より、MCl₃単独塩融体の配位数はそれ ぞれ 6、7、8 配位構造(YCl₃,TbCl₃,LaCl₃)が優勢であり、陽イオンのイオン半径の大きさによって 違うことがわかる。そして、LiCl-KCl 共晶塩を混合させると全ての系で、徐々に 6 配位の割合が 高くなっていることがわかる。このことより、LiCl-KCl 共晶塩中で MCl₃の濃度が低くなると、イオン 半径に関係なく6 配位八面体構造を形成し安定化すると考えられる。また、LaCl₃では単独塩融 体の状態で Cl-イオンを介した架橋構造を主に形成し、LiCl-KCl 共晶塩を混合させることにより、 架橋構造が崩壊していくと報告されている⁸⁾。そこで、本研究でもそれぞれの融体中における構 造変化を調べるため、Cl-イオンを介した架橋構造の存在割合を調べた。その結果を図 13 に示 す。この図からイオン半径が異なっていても混合が進むにつれ架橋構造の割合が減少している ことがわかる。

っまり、LiCl-KCl 共晶塩の割合が高くなると、架橋構造が崩壊し、電解浴中を自由に動き回れる6配位八面体構造の割合が増加するため、混合系の物性値の変化に大きな影響を与えると考えられる。また40%MCl₃の状態まではLaCl₃,TbCl₃,YCl₃の順で架橋構造の割合が高いことがわかるが、15%MCl₃以下ではTbCl₃はYCl₃とほぼ同じ値を示し、LaCl₃に比べ架橋構造の割合が少ないことがわかる。

この架橋構造の変化を視覚化するため、ある時刻での 100%,40%,15%TbCl₃のスナップショットを作成した。その構造を図 14 に示す。これより 100%TbCl₃の構造は LaCl₃のスナップショットと同様に⁸⁾、Clイオンを介した架橋構造を形成していることがわかる。また、40%TbCl₃ までは架橋

構造の割合が多いことがわかるが、15%TbCl3 の状態では架橋構造がほとんど崩壊していること がわかる。さらに、100%TbCl3と1.8%TbCl3の拡大したスナップショットを図 15 に示す。この図より 100%TbCl3では 7 配位構造を形成し、1.8%TbCl3では 6 配位八面体構造形成していることが確 認できる。

これらのことより、3価希土類元素塩化物はLiCl-KCl共晶塩を混合すると、Clイオンが供給されるため、架橋構造が崩壊し、安定な6配位八面体構造の割合が高まっていくと考えられる。また3価希土類元素の陽イオンのイオン半径の大きさに注目すると、陽イオンが小さいYCl₃系ではその濃度が低くなってもイオン間距離や配位数に大きな変化は見られないが、陽イオンが大きいLaCl₃系ではイオン間距離が短くなり、配位数も減少する結果が得られた。そして、イオン半径がその間に位置するTbCl₃では配位数やイオン間距離の変化がYCl₃とLaCl₃の間に位置することがわかった。つまりLiCl-KCl共晶塩の混合による配位構造の変化の様子は3価希土類元素の陽イオンのイオン半径の大きさによって異なるといえる。

3.5 LiCl および KCl との混合

ここまでの結果及び考察より、TbCl₃は、LaCl₃やYCl₃と同様に、LiCl-KCl 共晶塩中で混合が 進むにつれ 6 配位八面体構造(MCl₆)³⁻を形成し安定化することが分かった。そこで LiCl-KCl 共 晶塩の混合による構造の安定化について詳細に調べるために、2 成分系に分離した MCl₃-LiCl 系及び MCl₃-KCl 系のシミュレーションを実施した。

図 16 に LiCl 及び KCl との混合による配位数の変化と LiCl-KCl 共晶塩との混合による配位 数の変化を比較した図を示した。MCl₃ 濃度が低くなるに従い配位数が減少する傾向が見られる が、LiCl との混合では配位数の減少が鈍く、KCl との混合では大いに減少し、LiCl-KCl 共晶塩 との混合ではその中間程度を示すことがわかる。これらの混合系の詳細な配位数分布を図 17 に 示した。図より、LiCl との混合において YCl₃,TbCl₃ では LiCl-KCl 共晶塩との混合と同様に 6 配 位構造の割合が高くなっていることがわかる。しかし、その割合は明らかに LiCl-KCl 共晶塩を混 合させた場合よりも低い。さらに、LaCl₃の場合は 1.8%LaCl₃の状態においても 6 配位構造の存 在確率が低く、7 配位構造の割合がもっとも高い結果が得られた。これに対し、KCl の混合では まったく逆の現象が見られた。つまり、LiCl-KCl 共晶塩の混合と比較し、安定化構造である 6 配 位構造の割合が高くなっていることがわかり、1.8%LaCl₃においても 8 割以上が 6 配位構造を形 成している結果が得られた。これらの結果から、KCl は安定な 6 配位八面体構造の形成を促進し、 逆に LiCl は 6 配位八面体構造を形成し難くなること、そして LiCl-KCl 共晶塩はそれらの競合状 態にあり、結果的にその中間程度の性質を示すことが分かった。

また、図 18 に混合相手の違いによる融体中の Clイオンを介した架橋構造の存在割合を比較 した図を示す。この図より、LiCl-KCl 共晶塩の混合と比較して、LiCl との混合では架橋構造の存 在割合が高いことがわかり、KCl との混合では LiCl-KCl 共晶塩の混合よりも、より架橋構造が崩 壊していることがわかる。つまり、LiCl との混合では、6 配位八面体構造(MCl₆)³⁻の割合が低いた め、融体中で自由に動けないものと考えられる。 3.6 配位構造の安定性

次にこれらの配位構造が時間的スケールでどの程度安定なのかを評価するために、 Cage-correlation 関数^{15,16)}を使い調べた。この関数を求めることによって金属イオンに配位してい る CI イオンが、それらの外に存在している配位していない CI イオンとどの程度置き換わるかを調 べることが出来る。交換現象がまったく起こらない場合は相関が 1、全ての CI イオンが入れ替わ った場合は相関が 0 を示す。つまり、時間が経っても相関が 1 に近いということは、その配位構造 が時間的スケールにおいて安定であることを示している。MCl₃ と LiCI-KCI 共晶塩、LiCI 及び KCI との混合についてそれぞれ比較した結果を図 19 に示す。

これらの図より、単独塩融体において、LaCl₃では短い時間で相関が低くなり、7ps経過後には 相関は 5%以下になるのに対し、YCl₃や TbCl₃ は LaCl₃より相関が高く 7ps 経過後でも相関は それぞれ約 30%と 20%であることが分かる。また、LiCl-KCl 共晶塩との混合では 1.8% YCl₃,TbCl₃,LaCl₃の系で 7ps 後の相関がそれぞれ約 60%,70%,10%となり、混合により相関が長 時間に渡って残る傾向がみられ、さらに KCl を混合させた 1.8%の状態では、7ps 後の相関が約 95%,95%,50%となり LiCl-KCl 共晶塩の場合よりも相関が長時間に渡って残る傾向が見られる。 このことから KCl との混合では配位構造を安定化させる効果があることがわかる。また、YCl₃ や TbCl₃ では、KCl と混合し、その濃度が低くなると、Cl イオンの交換現象がほとんど起きていない ことがわかり、KCl との混合により配位構造の安定化がかなり高まることがわかる。一方で、LiClを 混合させた場合には 1.8%YCl₃,TbCl₃ の状態で 7ps 後に相関がそれぞれ約 10%,5%であり、 1.8%LaCl₃においては約 6ps で 0%になることから、すべての系に対して短い時間で相関が失わ れる傾向が見られる。このことより、LiClを混合させることは安定な 6 配位八面体構造の形成を阻 害している効果があるというこがわかる。

3.7 配位構造安定化の原因

KClを混合させることは6配位八面体構造の安定化を促進させる効果があり、LiClの混合では その効果は見られず、逆に配位構造を不安定にさせる結果が得られた。また最近の研究により LaCl₃においてNaCl及びCsClを混合させることにより、KClの場合と同様に配位構造を安定化 させる効果があると示されている²²⁾。つまりMCl₃とアルカリ塩化物の混合では基本的には6配位 八面体構造が安定するが、例外的にLiClだけが6配位八面体構造を不安定にさせると考えら れる。この原因はClイオンの数密度が影響していると考えられる。図20はそれぞれのClイオン の数密度を示した図である。MCl₃のClイオンの数密度はアルカリ塩化物より高く、またアルカリ 塩化物のClイオンの数密度はその陽イオンのイオン半径が小さくなるに連れ高くなっていき、 LiClのClイオンの数密度は3価希土類元素塩化物のClイオンの数密度の値に匹敵する程高 い。つまり、混合が進みMCl₃の濃度が減少していくと、その混合相手であるアルカリ塩化物の Clイオンの数密度の値に近づいていくが、その相手がLiClの場合はClイオンの数密度はMCl₃ 単独塩融体の値とほとんど変わらないことになる。そこで、このClイオンの数密度が配位構造の 安定性に影響する可能性を確かめるために、15%と1.8%MCl₃-LiCl系に対してLiClのClイオ ンの数密度を人為的に KCl の数密度の値にしてシミュレーションをおこなった。その結果を図 21 に示す。この図より、本来の LiCl を混合させた結果よりも Cl イオンの数密度を KCl の値へと減少 させた場合のほうが、明らかに 6 配位の割合が高くなっていることがわかる。しかし、同様に図に 示している 1.8% MCl₃-KCl 系の配位数の割合と比較すると、6 配位構造の割合が低いことがわかる。この結果より、アルカリ塩化物の Cl イオンの数密度が配位構造の安定化に関係していると考えられるが、原因はそれだけではないと考えられる。

そこで、LaCl₃に対して NaCl を混合させるよりも CsCl を混合させた方が安定化がより進むという報告より²²⁾、もう一つの原因として、そのアルカリ塩化物の陽イオンの大きさが関係していると考えた。図 22 は図 21 に示している 1.8%TbCl₃系の計算を実施した際に得られた Tb³⁺-Cl'と Tb³⁺-Li⁺, K⁺対の部分動径分布関数である。この図より、Cl'イオンの数密度を変化させた TbCl₃-LiCl 系の Tb³⁺- Cl 対の相関が TbCl₃-KCl 系の Tb³⁺- Cl 対の相関が IbCl₃-KCl 系の Tb³⁺- Cl 対の相関と強度がほとんど一致している結果 が得られた。アルカリ塩化物の添加により増加する Li⁺イオンや K⁺イオンは Tb³⁺イオンが 6 配位 八面体構造(TbCl₆)³⁻を形成する際に、その周りに配位し、配位構造の安定化を妨害していると 考えられるが、K⁺イオンより小さい Li⁺イオンがより Tb³⁺イオンの近くに位置していることが図 22 の Tb³⁺-K⁺,Li⁺対の部分動径分布関数から確認できる。このことより、6 配位八面体構造(TbCl₆)³⁻を形成するときに K⁺よりも(TbCl₆)³⁻の近くに Li⁺イオンは位置し、Li⁺イオンから生じる強いクーロン 力が Cl'イオンを引き付けてしまうため、6 配位八面体構造の形成を妨害していると考えられる。

4.まとめ

LiCl-KCl 共晶塩中に含まれる TbCl₃ について、その濃度によりどのように局所構造が変化するのかを調べ、さらに LiCl-KCl 共晶塩中に含まれる YCl₃と LaCl₃の計算も行い、3 価希土類元素の陽イオンのイオン半径の違いによる局所構造変化の濃度依存性を比較した。

その結果 TbCl₃は LiCl-KCl 共晶塩中で、混合により配位数が約 7から6 に減少する傾向が見 られ、イオン間距離は僅かに短くなった。この配位数の変化を XAFS シミュレーションで調べた結 果、XAFS 実験の結果と一致していた。混合系では TbCl₃の濃度が薄くなるにつれ、6 配位八面 体構造(TbCl₆)³⁻の割合が増えて安定化する。その安定化の程度は TbCl₃ 濃度が 40%から 15% の間で劇的に進むことがわかった。これは単独塩融体では 7 配位で Cl-イオンを介した架橋構造 を形成しているが、アルカリ塩化物の混合により供給される Cl-イオンにより架橋構造が破壊され、 化学量論的に 25%TbCl₃ の状態で、溶存している全ての Tb³⁺イオンが 6 配位八面体構造 (TbCl₆)³⁻を形成するために必要な Cl-イオンの数が供給されるためであると推測でき、その架橋 構造が壊れていく様子を MD 計算で確認できた。

また、3 価希土類元素の陽イオンのイオン半径の異なる YCl₃ 及び LaCl₃ 系と比較した結果、こ れらの単独塩融体はそれぞれの配位数が、約6配位、約7配位及び約8配位であり、3価希土 類元素の陽イオンのイオン半径が大きいほど配位数が大きくなるという傾向が確認された。そし て、LiCl-KCl 共晶塩中では YCl₃の配位数は約6個から大きな変化がないが、LaCl₃は約8個 から6個の割合が高くなっていくことがわかった。これより、3価希土類元素塩化物ではその陽イ オンの大きさが異なっても、LiCl-KCl 共晶塩中では6配位八面体構造を形成して安定化する傾 向がみられた。これはアルカリ塩化物融体の配位数が6個であることと関係している可能性があ るが、まだ解明されていないため今後の課題である。

また、構造の安定化について詳細に調べるために MCl₃-LiCl 系と MCl₃-KCl 系の構造変化の 違いを調べた。その結果、KCl との混合では LiCl-KCl 共晶塩との混合に比べ、安定化構造の 形成が促進されることがわかり、逆に LiCl との混合では安定化構造を形成し難くなった。この原 因の一つとして CI イオンの数密度の影響を考え、15%と1.8%MCl₃系で LiCl の CI イオンの数密 度を人為的に KCl の値まで下げ、MD 計算により配位数を求めた結果、CI イオンの数密度を下 げたときに6配位の割合が高くなることが確認できた。しかし、CI イオンの数密度を KCl の値に変 化させた LiCl との混合よりも KCl との混合の方が6配位構造の割合が高い結果が得られたため、 CI イオンの数密度だけが構造の安定化の原因ではないと考えられる。そこでもう一つの原因とし て Li⁺イオンの近くに位置し、Li⁺イオンから生じる強いクーロン力が CI イオンを引きつけるた め、安定な6配位八面体構造の形成を阻害していると考えられる。

これらの結果より、アルカリ塩化物の混合による安定化構造の形成には CIイオンの数密度の 効果と3 価希土類元素の陽イオンとアルカリ金属イオンの距離が関係していると考えられる。

謝辞

放射光科学研究ユニットの青木勝敏ユニット長及び水木純一郎副部門長にはこの研究 を進めるにあたり多大な協力を頂きました。この場を借りて深く感謝致します。また、 本研究に対して貴重な御意見を下さいました放射光高密度物質科学研究グループ・片山 芳則リーダーに感謝致します。

本研究における分子動力学計算は、日本原子力研究開発機構・システム計算科学センターのスーパーコンピューター、Altix3700Bx2及び PC クラスターA を利用して行われました。

参考文献

- 1) 電力中央研究所: "乾式リサイクル技術・金属燃料 FBR の実現に向けて" 電中研レビュ 一第 37 号 (2000)
- 2) 伊藤靖彦 編: "溶融塩の応用" アイピーシー (2003)
- 3) Y.Okamoto, T.Yaita, K.Minato, J.Mol.Struct, 749, PP.70-73 (2005)
- 4) Y.Okamoto, T.Yaita, H.Shiwawku, S.Suzuki,:"Recent status of XAFS work on molten salt systems in the SPring-8" Actinides XAS 2006
- 5) P.Eisenberger, G.S.Brown, Solid State Commun, 29, P.481 (1979)
- 6) J.A.Solera, J.Garcia, M.G.Proietti, Physical Review B, 51, PP.2678-2686 (1994)
- 7) Y.Okamoto, Nuclear Instruments and Methods in Physics Research A, 536, PP.572-583 (2004)
- Y.Okamoto, T.Tsuruoka, T.Yaita, P.A.Madden "Molecular Dynamics Simulation Study on Behavior of Metallic Ion in Molten Salt Mixture Bath", JAEA-Research 2007-005 (2007).
- 9) P.A.Madden, F.Hutchinson, M.Wilson, Mol.Phys., 99, PP.811-824 (2001)
- F.Hutchinson, A.J.Rowley, M.K.Walters, M.Wilson, P.A.Madden, J.C.Wasse, P.S.Salmon J.Chem.Phys. 111, PP.2028-2037 (1999)
- 11) M Wilson, P.A.Madden, J.Phys.:Condens.Matter, 5, PP.2687-2706 (1993)
- 12) Y.Okamoto, P.A.Madden, K.Minato, Journal of Nuclear Materials, 344, PP.109-114 (2005)
- 13) P.W.Fowler P.A.Madden Phys.Rev.**B29**, PP.1035-1042 (1984)
- 14) 三宅静雄:"X線の回折"朝倉書店 PP.345-347 (1990)
- 15) B.Morgan, P.A.Madden, J.Chem.Phys, 120, PP.1402-1413 (2004)
- 16) R.Brooks, A.Davis, G.Ketwaroo, P.A.Madden, J.Phys.Chem.B, 109, PP.6485-6490 (2005)
- 17) A.L.Aukudinov, B.Ravel, J.J.Rehr, S.D.Conradson, Phys.Rev.B, 58, PP.7565-7576 (1998)
- 18) J.C.Wasse P.S.Salmon, J.Phys,; Condens. Matter, 11, PP.1381-1396 (1999)
- 19) J.C.Wasse P.S.Salmon, J.Phys,; Condens. Matter, 11, PP.9293-9302 (1999)

- 20) J.C.Wasse P.S.Salmon A.C.Barnes G.J.Cuello, J.Phys,;Condens. Matter, 14, PP.L703-L707 (2002)
- 21) T.Sato, Y.Olamoto, Z.Naturforsch, 58a, PP.1-3 (2003)
- 22) W.J.Glover, P.A.Madden, J.Chem.Phys, 121, PP.7293-7303 (2004)

イオン対	<i>a_{ij}/a.u</i> .	$B_{ij}/a.u.$	$C_{ij}^{\ \ \ \ \ \ }/a.u.$	$C_{ij}^{\ \ 8}/a.u.$	b/a.u.
Cl ⁻ -Cl ⁻ 1	1.5717	71.3445	139.0446	932.5154	
Cl ⁻ -Cl ⁻ 2	1.5300	100.0000	222.2580	7455.508	
Y ³⁺ -Cl ⁻	1.8000	273.0000	41.5100	450.0000	1.336
Tb ³⁺ -Cl ⁻	1.8000	283.0000	53.9000	800.0000	1.317
La ³⁺ -Cl ⁻	1.8000	450.2000	97.2200	600.0000	1.258
$Y^{3+}-Y^{3+}$	3.0000	15.0000	10.5300	40.0000	
$Tb^{3+}-Tb^{3+}$	3.0000	15.0000	47.0000	100.0000	
La ³⁺ -La ³⁺	3.0000	15.0000	47.0000	100.0000	
$Y^{3+}-Li^+$	1.5690	10.5448	1.3892	3.1668	
Y ³⁺ -K ⁺	1.5690	10.5448	1.3892	3.1668	
Tb ³⁺ -Li ⁺	1.5690	10.5448	1.3892	3.1668	
Tb ³⁺ -K ⁺	1.5690	10.5448	1.3892	3.1668	
La ³⁺ -Li ⁺	1.5690	10.5448	1.3892	3.1668	
La ³⁺ -K ⁺	1.5690	10.5448	1.3892	3.1668	
Li ⁺ -Li ⁺	1.4907	0.0000	0.0000	0.0000	
Li ⁺ -K ⁺	1.5690	10.5448	1.3892	3.1668	
K ⁺ -K ⁺	1.5690	54.4930	25.3822	89.5215	
Li ⁺ -Cl ⁻	1.7315	26.9518	0.0000	0.0000	1.72
K ⁺ -Cl ⁻	1.5479	57.7257	50.1277	272.2945	1.34

表1 ポテンシャルパラメータ

①はLaCl₃,TbCl₃系 ②はYCl₃に使用

図1 分極モデルのイメージ図

 図 2 MCl₃の動径分布関数 G(r) (実線:分極を考慮した(PIM)シミュレーション 破線:分極を考慮していない(RIM)シミュレーション ○プロット:中性子回折実験) 左上:YCl₃ 右上:TbCl₃ 左下:LaCl₃

図3 TbCl₃の密度の温度依存性(実線:実験値 破線:シミュレーション)

図 4 TbCl₃系の XAFS 実験と XAFS シミュレーション比較 (実線:実験値 破線: XAFS シミュレーション)

図 8 配位数別 XAFS シミュレーションと XAFS 関数比較 (左:100%TbCl₃ 右:15%TbCl₃)

図 9 YCl₃,LaCl₃-(LiCl-KCl)混合系の濃度変化による M³⁺-Cl⁻対の部分動径分布関数比較(左:YCl₃系 右:LaCl₃系)

図 10 MCl₃-(LiCl-KCl)混合系の M³⁺-Cl⁻対の部分動径分布関数 第一ピーク拡大図(上:YCl₃系 中:TbCl₃系 下:LaCl₃系)

図 11 MCl₃-(LiCl-KCl)混合系の最近接相関配位数の変化

図 12 MCl₃-(LiCl-KCl)混合系の MCl₃の最近接相関配位数分布

図 13 MCl₃-(LiCl-KCl)混合系の架橋構造割合

図 14 TbCl₃-(LiCl-KCl)混合系のスナップショット写真 (左:100%TbCl₃ 中:40%TbCl₃ 右:15%TbCl₃)

図 15 TbCl₃-(LiCl-KCl)混合系のスナップショット写真拡大図 (左:100%TbCl₃ 右:1.8%TbCl₃)

(左上:YCl3系 右上:TbCl3系 左下:LaCl3系)

図 18 MCl₃-(LiCl-KCl),LiCl,KCl 混合系の架橋構造存在割合 (左上:-LiCl-KCl 混合系 右上:-LiCl 混合系 左下:-KCl 混合系)

図 20 MCl₃及びアルカリ塩化物融体の数密度

図 21 MCl₃-LiCl,-KCl 及び数密度を変化させた LiCl 混合系の最近接配位数分布 (左:15%MCl₃系 右:1.8%MCl₃系)

図 22 TbCl₃-LiCl,KCl 及び数密度を変化させた LiCl 系の M³⁺-Cl⁻対および M³⁺-Li⁺ or K⁺対の部分動径分布関数比較

表 1. SI 基本単位				
甘木昌	SI 基本ì	单位		
本平里	名称	記号		
長さ	メートル	m		
質 量	キログラム	kg		
時 間	秒	s		
電 流	アンペア	А		
熱力学温度	ケルビン	Κ		
物質量	モル	mol		
光度	カンデラ	cd		

和午春	SI 基本単位	
和卫星	名称	記号
面積	平方メートル	m ²
体積	立法メートル	m ³
速 さ , 速 度	メートル毎秒	m/s
加速度	メートル毎秒毎秒	m/s^2
波 数	毎メートル	m ⁻¹
密度,質量密度	キログラム毎立方メートル	kg/m ³
面 積 密 度	キログラム毎平方メートル	kg/m ²
比 体 積	立方メートル毎キログラム	m³/kg
電流密度	アンペア毎平方メートル	A/m^2
磁界の強さ	アンペア毎メートル	A/m
量濃度 ^(a) ,濃度	モル毎立方メートル	mol/m ³
質量濃度	キログラム毎立法メートル	kg/m ³
輝 度	カンデラ毎平方メートル	cd/m ²
屈折率	(数字の) 1	1
比透磁率) (数字の) 1	1

表2. 基本単位を用いて表されるSI組立単位の例

(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度 (a) 重要な (and tone internation) ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 組立単位	
組立量	夕敌	纪旦	他のSI単位による	SI基本単位による
	泊你	記与	表し方	表し方
平 面 角	ラジアン ^(b)	rad	1 ^(b)	m/m
立 体 角	ステラジアン ^(b)	$sr^{(c)}$	1 ^(b)	$m^{2/}m^{2}$
周 波 数	ヘルツ ^(d)	Hz		s ⁻¹
力	ニュートン	Ν		m kg s ⁻²
圧力,応力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	m ² kg s ⁻²
仕事率, 工率, 放射束	ワット	W	J/s	$m^2 kg s^{\cdot 3}$
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{\cdot 3} A^{\cdot 1}$
静 電 容 量	ファラド	F	C/V	$m^{2} kg^{1} s^{4} A^{2}$
電 気 抵 抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	\mathbf{S}	A/V	$m^{2} kg^{1} s^{3} A^{2}$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量,比エネルギー分与,	グレイ	Gv	J/kg	m ² s ⁻²
カーマ		c, j	0,116	in 5
線量当量,周辺線量当量,方向	シーベルト ^(g)	Sv	J/kg	$m^2 s^{-2}$
性線量当量,個人線量当量	2 - 7 F I	~.		
<u>酸素活性</u>	カタール	kat		s ⁻¹ mol

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはベ コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (c)潤光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ベクレルは放射性核種の統計的過程についてのみ使用言れる。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (b)セルジクス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (b)定数ではついてのあ。
 (b)放射性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2(CI-2002)を参照。

	W/ / Is a state tests		$\Delta = \alpha \pi 4 \alpha + \omega 2 (1) - 1 \alpha$
表4.	単位の中に固	自の名称と記号を	含むSI組立里位の例

	SI 組立単位			
組立量	名称	記号	SI 基本単位による 表し方	
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹	
カのモーメント	ニュートンメートル	N m	$m^2 kg s^2$	
表 面 張 力	ニュートン毎メートル	N/m	kg s ⁻²	
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹	
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$	
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³	
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$	
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$	
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$	
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹	
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²	
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹	
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA	
表 面 電 荷	クーロン毎平方メートル	C/m^2	m ⁻² sA	
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m^2	m ⁻² sA	
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$	
透 磁 率	ヘンリー毎メートル	H/m	m kg s ^{2} A ^{2}	
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$	
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$	
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA	
吸収線量率	グレイ毎秒	Gy/s	$m^2 s^{-3}$	
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$	
放 射 輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	$m^2 m^{-2} kg s^{-3} = kg s^{-3}$	
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol	

表 5. SI 接頭語						
乗数	接頭調	語	記号	乗数	接頭語	記号
10^{24}	Э	Þ	Y	10^{-1}	デシ	d
10^{21}	ゼ	9	Z	10^{-2}	センチ	с
10^{18}	エク	サ	E	10^{-3}	ミリ	m
10^{15}	~	タ	Р	10^{-6}	マイクロ	μ
10^{12}	テ	ラ	Т	10^{-9}	ナノ	n
10^{9}	ギ	ガ	G	10^{-12}	ピコ	р
10^{6}	メ	ガ	М	10^{-15}	フェムト	f
10^{3}	キ		k	10^{-18}	アト	a
10^{2}	ヘク	ŀ	h	10^{-21}	ゼプト	z
10^{1}	デ	力	da	10^{-24}	ヨクト	у

表6. SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h=60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	۰	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, l	$1L=11=1dm^{3}=10^{3}cm^{3}=10^{-3}m^{3}$		
トン	t	1t=10 ³ kg		

表7.	SIに属さないが、	SIと併用される単位で、	SI 単位で

表され	表される数値が実験的に得られるもの				
名称 記号		SI 単位で表される数値			
電子ボルト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J			
ダルトン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg			
統一原子質量単位	u	1u=1 Da			
天 文 単 位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m			

表8.	SIに属さないが、	SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値	
バ	1	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa	
水銀柱ミリメートル			mmHg	1mmHg=133.322Pa	
オングストローム			Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m	
海		里	М	1 M=1852m	
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²	
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s	
ネ	-	パ	Np ~	SI単位しの粉値的な間接け	
ベ		N	В	▲ S1単位との数値的な関係は、 対数量の定義に依存。	
デ	ジベ	N	dB -		

表9. 固有の名称をもつCGS組立単位							
名称	記号	SI 単位で表される数値					
エルグ	erg	1 erg=10 ⁻⁷ J					
ダイン	dyn	1 dyn=10 ⁻⁵ N					
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s					
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$					
スチルブ	$^{\rm sb}$	$1 \text{ sb} = 1 \text{ cd} \text{ cm}^{\cdot 2} = 10^4 \text{ cd} \text{ m}^{\cdot 2}$					
フォト	$_{\rm ph}$	1 ph=1cd sr cm 2 10 ⁴ lx					
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²					
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$					
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$					
エルステッド ^(c)	Oe	$1 \text{ Oe} \triangleq (10^3/4\pi) \text{A m}^{-1}$					

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」 は対応関係を示すものである。

表10. SIに属さないその他の単位の例							
	名称				記号	SI 単位で表される数値	
+	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq	
$\scriptstyle u$	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$	
ラ				K	rad	1 rad=1cGy=10 ⁻² Gy	
$\scriptstyle u$				ム	rem	1 rem=1 cSv=10 ⁻² Sv	
ガ		\sim		\checkmark	γ	1 γ =1 nT=10-9T	
フ	I.		N	1		1フェルミ=1 fm=10-15m	
メートル系カラット				ット		1メートル系カラット = 200 mg = 2×10-4kg	
ŀ				ル	Torr	1 Torr = (101 325/760) Pa	
標	準	大	気	圧	atm	1 atm = 101 325 Pa	
カ			IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)	
Ξ	ク		П	\sim	μ	$1 \mu = 1 \mu m = 10^{-6} m$	