JAEA-Research 2009-004

幌延深地層研究センター換気立坑140m 試錐座における初期応力測定

In Situ Stress Measurements at 140m Niche around the Ventilation Shaft in the Horonobe Underground Research Laboratory

中村 隆浩 真田 祐幸 杉田 裕 加藤 春實 Takahiro NAKAMURA, Hiroyuki SANADA, Yutaka SUGITA and Harumi KATO

> 地層処分研究開発部門 幌延深地層研究ユニット

Horonobe Underground Research Unit Geological Isolation Research and Development Directorate

CPS P

May 2009

日本原子力研究開発機構

Japan Atomic Energy Agency

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 〒319-1195 茨城県那珂郡東海村白方白根2番地4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken, 319–1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2009

幌延深地層研究センター換気立坑 140m 試錐座における初期応力測定

日本原子力研究開発機構 地層処分研究開発部門 幌延深地層研究ユニット 中村 隆浩^{**}、真田 祐幸、杉田 裕、加藤 春實*

(2009年2月19日受理)

高レベル放射性廃棄物の地層処分技術開発として北海道幌延町で進めている幌延深地層研究計 画は、平成12年度から開始した地上からの調査研究段階が平成17年度に終了し、現在、坑道掘 削(地下施設建設)時の調査研究段階に移行している。地上からの調査研究段階では、幌延町北 進地区に3km四方程度の領域を研究所設置地区とし、この地区およびその周辺を対象に地上物 理探査、地質調査、ボーリング調査などを実施し、この地区内の地質環境のモデル化や安全評価 手法の適用性確認などを試みた。一般に地下には、土壌や岩盤の自重のほかに地殻変動などによ り初期応力と呼ぶ応力が生じている。初期応力は、地下構造物の設計や坑道周辺岩盤中に発生す る掘削影響領域内の性状と密接な関係があることから、地上からのボーリング調査において研究 所設置地区内に分布している水平面内(2次元)の初期応力の評価を試みている。

坑道掘削(地下施設建設)時の調査段階においては、地上からのボーリング調査において評価 した初期応力の妥当性の確認ならびに更新を目標の一つとしている。そこで、本研究は換気立坑 の深度140mの小型試錐座において3本のボーリング孔を掘削し、水圧破砕法と呼ばれる方法で 小型試錐座周辺に作用している初期応力の3次元評価を試みた。また、この3本のボーリング孔 では、水圧破砕法から得られた型取の記録よりボアホールブレイクアウトと考えられる孔壁の断 続的な破壊が認められた。そこで、ボアホールブレイクアウトの情報による初期応力の評価も試 みた。

初期応力測定の結果、主応力 o (最大主応力), o (中間主応力), o (最小主応力)は、2つの方法で 評価した主応力方向の分布には比較的良い一致が認められた。主応力 o, o, o o値についても、 それぞれ 2.3, 1.8, 1.2MPa (水圧破砕法)および 2.4, 2.3, 1.3MPa (ブレイクアウト法)と o に若干の相違はあるが、概ね整合的な結果が得られた。これまでに地上部から実施したボーリン グ孔 (HDB-1, 3, 6, 9, 11 孔)より得られた水平面内の初期応力と今回得られた結果とを比較する と、今回得られた水平面内の最大主応力の値は、その深度の土被り圧にほぼ一致しているものの、 既往の結果よりわずかに小さな値であった。また、地上からの調査において得られた水平面内の 最大主応力の方向は、ほぼ東西方向であったが、今回の結果では、東西方向から反時計回りに 25°,43°の方向にある結果が得られた。これまでの傾向と異なる原因については、今後、声問層を 対象とする深度 140m 水平坑道および稚内層を対象とするさらに深い深度の水平坑道での初期地 圧測定データとを比較検討し、明らかにしていく予定である。

本報告書は、ジオテクノス株式会社が独立行政法人 日本原子力研究開発機構との契約により実施した業務成果に関するものである。

幌延深地層研究センター(駐在):〒098-3224 北海道天塩郡幌延町北進 432-2
※ 技術開発協力員(幌延深地層研究センター)
* ジオテクノス株式会社

In Situ Stress Measurements at 140m Niche around the Ventilation Shaft in the Horonobe Underground Research Laboratory

Takahiro NAKAMURA^{**}, Hiroyuki SANADA, Yutaka SUGITA and Harumi KATO^{*}

Horonobe Underground Research Unit Geological Isolation Research and Development Directorate Japan Atomic Energy Agency Horonobe-cho, Teshio-gun, Hokkaido

(Received February 19, 2009)

The Underground Research Laboratory (URL) has been conducting a research project in Horonobe-cho, Hokkaido. This project aims at improvement of the reliability of technologies for geological disposal of high level radioactive wastes. It started in 2000, and the surface-based investigation phase was completed in 2005. Now it has shifted to the construction phase (investigation during construction of the underground facilities). In the surface-based investigation phase, the area of about 3 km x 3 km around URL in the Hokushin district, Horonobe-cho was selected as the main research area, and geophysical exploration, geological survey, borehole survey, etc. were carried out in this area. In general, initial stress due to crustal movement and overburden pressure has been taking place underground here. In designing underground structures, it is necessary to measure initial stress around underground structures. Therefore, initial stress distributed in the URL area has been estimated during surface-based investigations in order to design URL.

In investigation during construction of the underground facilities, the updating and check of the validity of initial stress estimated during surface-based investigations is one of the main issues. Thus, three boreholes were made from the niche (GL-140 m) of ventilation shaft, and a three-dimensional evaluation of the initial stress in Koetoi Formation was done by the method called hydraulic fracturing. Breakout (spalling) of the walls of the boreholes due to the stress concentration was detected on plastic films wrapped on an impression packer inserted in the boreholes. Then, analysis of the borehole breakout was also performed to estimate in situ the orientation and magnitude of stresses.

The measurement result of initial stress showed that principal stress σ_1 (major principal stress), σ_2 (intermediate principal stress), and σ_3 (minor principal stress), and comparatively good coincidence in distribution of the direction of the principal stress evaluated by the two above methods was observed. Although σ_2 values were somewhat different, the magnitudes of principal stress σ_1 , σ_2 , and σ_3 found by the hydraulic fracturing method (2.3, 1.8, 1.2 MPa) and analysis of the borehole breakout (2.4, 2.3, 1.3 MPa), general agreement was obtained. From the result of the horizontal initial stress obtained from the borehole investigation (HDB-1, 3, 6, 9, 11 holes) carried out in the past, and the result obtained from the present underground test, although the magnitudes of the maximum horizontal principal stress obtained here are mostly in agreement with the overburden pressure, they are slightly smaller than the past results. Moreover, the direction of the maximum horizontal principal stress had been found to be east/west in general. However, the present test showed that the direction was 25° or 43° counterclockwise from east/west. To gain data to explain this difference, initial stress measurements in the pressure at the depth 140 m in Koetoi Formation, and pressure at the still deeper depth for the Wakkanai Formation will be carried out.

Keywords: In Situ State of Stress, Stress Relief Method, Conical-Ended Borehole Technique, Hydraulic Fracturing Technique, Breakouts

- * Collaborating Engineer (Horonobe Underground Research Center)
- * Geotechnos Co., Ltd.

This work was performed by Geotechnos Co., Ltd. under contract with Japan Atomic Energy Agency. Horonobe Underground Research Center

1. はじめに	c ······1
1.1 目的	<u></u> ყ1
1.2 測定	こ位置
1.3 測定	ミ期間
2. ガスチョ	ェックボーリング
3. ボーリン	ング孔掘削
3.1 ボー	-リング孔孔口の位置
3. 1. 1	測量方法
3. 1. 2	測量結果
3.2 ボー	-リング資機材の搬入
3.3 ボー	-リング資機材の設置
3.4 ボー	-リング孔口切
3.5 ボー	-リング孔掘削(深度 1.5m~深度 20.5m)
3.6 掘肖	∥の経過
4. 地質記載	t ······13
4.1 岩芯	5の採取
4.2 岩芯	な記載
4. 2. 1	岩芯の地質
4. 2. 2	岩盤等級区分
4. 2. 3	RQD
4. 2. 4	コア回収率
4. 2. 5	割れ目 ····································
5. BTV	現察
5.1 作業	美概要
5. 1. 1	目的
5. 1. 2	BTV観察作業使用機器 ····································
5. 1. 3	測定方法
5. 1. 4	解析方法
5. 1. 5	BTV観察工程および作業数量45
5. 1. 6	BTV作業手順 ····································
5. 1. 7	BTV画像の深度補正
5. 1. 8	画像状況
5.2 計測	結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5. 2. 1	孔壁の概要
5. 2. 2	割れ目の頻度
5. 2. 3	不連続面の状況
5. 2. 4	不連続面の方向性
5. 2. 5	割れ目分布と岩盤状況

5. 2. 6 深度方向の割れ目系の傾向	······53
5. 2. 7 見かけ傾斜	······53
5. 2. 8 割れ目形状タイプ別の傾向	······54
5. 2. 9 ブレイクアウト	·····70
5.3 まとめ	71
5.3.1 割れ目系の頻度・密度	·····71
5. 3. 2 割れ目分布と岩盤状況	·····72
5.3.3 割れ目の方向性	·····72
6. 応力解放法による初期応力測定	·····73
6.1 円錐孔底ひずみ法による初期応力測定	·····73
6.2 ストレインセルの接着試験	·····76
6.3 小型試錐座における応力解放試験	·····78
6. 4 結言	
7. 水圧破砕法による初期応力測定	82
7. 1 試験装置 ······	82
7. 2 試験方法	
7.3 解析方法	
7.3.1 従来の初期応力評価手順	
7.3.2 き裂開口圧と初期応力の関係	
	~ -
7.3.3 具のさ袋開口圧を測定するための水圧破砕ンステム	
7.3.3 具のざ袋開口圧を測定するための水圧破砕システム	······87 ·····88
 7.3.3 具のざ袋開口圧を測定するための水圧破砕システム 7.4 試験結果	······87 ·····88 ·····88
 7.3.3 具の含裂開口圧を測定するための水圧破砕システム	······87 ·····88 ·····88 ·····90
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 	······87 ·····88 ······88 ·····90 ·····103
 7.3.3 真のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 	
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 	87 88 88 90 103 108 109
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 	87 88 88 90 103 103 108 109 110
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 	87 88 88 90 103 108 109 109 110
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 	87 88 88 90 103 108 109 109 110 110 112
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 	87 88 90 90 103 103 108 109 110 110 110 112 113
 7.3.3 具のざ裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 	87 88 88 90 103 103 108 109 110 110 110 112 113 114
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 	87 88 90 103 108 109 110 110 111 112 113 114 116
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4 1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5 1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂の方向余弦 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 	87 88 90 103 108 109 110 110 111 112 113 114 116 117
 7.3.3 具の言姿開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 8.3 解析結果 	87 88 90 103 108 109 110 110 111 112 113 114 116 117 118
 7.3.3 具のざ裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 8.3 解析結果 8.4 結言 	87 88 90 103 108 109 110 110 111 <tr< td=""></tr<>
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂の方向余弦 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 8.3 解析結果 8.4 結言 9. コア物性測定試験 	87 88 90 103 108 109 110 110 111 <tr< td=""></tr<>
 7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂のき裂閉口圧 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 8.3 解析結果 8.4 結言 9.1 試験概要 	87 88 90 103 108 109 110 110 111 112 113 114 115 117 118 119 1120 1120
7.3.3 具のき裂開口圧を測定するための水圧破砕システム 7.4 試験結果 7.4.1 水圧破砕システムのコンプライアンス Cの評価 7.4.2 水圧破砕試験 7.4.3 水圧破砕試験によって生じたき裂 7.5 初期応力の評価 7.5.1 き裂閉口圧と初期応力の関係 7.5.2 横き裂の方向余弦 7.5.3 横き裂の方向余弦 7.5.4 解析結果 7.6 結言 8. ブレイクアウトによる初期応力評価 8.1 解析モデル 8.2 ブレイクアウトの形状 8.3 解析結果 8.4 結言 9.コア物性測定試験 9.1 試験概要 9.2 力学試験方法	87 88 90 103 108 109 110 110 111 112 113 114 115 117 118 119 1120 1120 1120

9. 2. 2 圧裂引張試験	
9.3 力学試験結果	
9.3.1 一軸圧縮試験	
9.3.2 圧裂引張試験	138
10. おわりに	
参考文献	
付録1 BTV観察 ······	
付録2 き裂の型取結果	

CONTENTS

1. Introduct	tion1
1.1 Obje	cts
1.2 Loca	tion of the site ·····2
1.3 Aper	riod of the measurement ·····2
2. Borehole	drilling for the inspection of methane gas from the formation $\cdots \cdots \cdots$
3. Borehole	e drilling for the in situ stress measurements $\cdots 5$
3.1 Loca	tion of the mouths of the borehole $\cdots 6$
3. 1. 1	The method of the survey
3. 1. 2	The results of the survey
3.2 Trans	sportation of the boring machine to the 140m niche7
3. 3 Placi	ng of the boring machine ·····8
3.4 Drillir	ng of the borehole mouths
3.5 Bore	hole drilling (the depths from 1.5m to 20.5m) $\cdots 9$
3.6 Drillir	ng logs ·····9
4. Geology	
4.1 Samp	bling of the drilling core \cdots 13
4.2 Desc	ription of the drilling core $\cdots 13$
4. 2. 1	Geology of the drilling core ····································
4. 2. 2	Classification of the drilling core \cdots 36
4. 2. 3	RQD
4. 2. 4	Core recovery ····································
4. 2. 5	Fissures ····································
5. Borehole	, wall inspection by BTV(The Borehole Televiewer) $\cdots 40$
5.1 Sumr	mary of the inspection ······40
5. 1. 1	Objectives ······40
5. 1. 2	Equipment used for inspection by BTV $\cdots 40$
5. 1. 3	Techniques ······40
5. 1. 4	Data analysis $\cdots 42$
5. 1. 5	The time schedule by BTV inspection $\cdots 45$
5. 1. 6	Procedures for inspection by BTV $\cdots 45$
5. 1. 7	Depth correction of the image recorded by BTV $\cdots \cdot $
5. 1. 8	The quality of the image recorded by BTV $\cdots \cdots 49$
5. 2 The r	results of the measurements $\cdots 50$
5. 2. 1	The condition of the borehole wall $\cdots 50$
5. 2. 2	Frequency of fissures
5. 2. 3	The condition of the discontinuities $\cdots 51$
5. 2. 4	The orientation of the discontinuities $\cdots 51$
5. 2. 5	Distribution of fissures and the quality of the rock mass $\cdots \cdots $

5. 2. 6 System of fissures along borehole axis	53
5. 2. 7 Apparent inclination of fissures ······	53
5. 2. 8 Classification of fissures ·····	···54
5. 2. 9 Breakouts	70
5. 3 Summary ·····	···71
5. 3. 1 Frequency and density of the fissures	···71
5. 3. 2 Distribution of fissures and the quality of the rock mass	···72
5. 3. 3 Orientation trend of the fissures	···72
6. In situ stress measurements by stress relief method	···73
6. 1 In situ stress measurement by Conical-ended Borehole Overcoring method	···73
6. 2 Gluing of conical strain gage plug onto the rock	76
6. 3 Overcoring tests at the 140m niche ·····	···78
6. 4 Summary ·····	···81
7. In situ stress measurements by hydraulic fracturing method	···82
7. 1 Equipments ·····	···82
7. 2 Procedure of the test	83
7. 3 Process of the data analysis ······	86
7. 3. 1 Conventional procedure of the in situ stress evaluation	86
7. 3. 2 The relation between the shut-in pressure and in situ stress	86
7. 3. 3 Hydraulic fracturing equipment required to measure the true re-opening pressure	···87
7. 4 Results	88
7. 4. 1 Evaluation of the compliance of the hydraulic fracturing equipment	88
7. 4. 2 Hydraulic fracturing test ·····	90
7. 4. 3 Fractures induced by hydraulic fracturing tests	103
7. 5 Evaluation of the in situ stress	108
7.5.1 The relationship between the shut–in pressure and the in situ stress \cdots	109
7. 5. 2 Orientation of transverse fractures	110
7. 5. 3 The shut-in pressure of the transverse fractures	110
7. 5. 4 Results of the analysis ······	112
7. 6 Summary ·····	113
8. In situ stress evaluation using breakout data	114
8. 1 The model of the analysis ······	116
8. 2 Measurements of breakout configuration	117
8. 3 Results of the analysis ·····	118
8. 4 Summary ·····	119
9. Measurement of the mechanical properties of the drill core	120
9. 1 Mechanical tests using boring core	120
9. 2 Procedure of the mechanical tests ······	120
9. 2. 1 Uniaxial compression test	125

JAEA-Research 2009-004

9. 2. 2	Brazilian tensile test $\cdots 125$
9.3 Resu	Its of the test $\cdots 127$
9. 3. 1	Uniaxial compression test $\cdots 127$
9. 3. 2	Brazilian tensile test \cdots 138
10. Conclu	ision ·····148
References	
Appendix 1	Photos of borehole wall inspected by BTV
Appendix 2	Photos of impression taken by impression packer $\cdots 161$

付表	目次
----	----

表 2.1	ガスチェックボーリング孔におけるメタンガス濃度測定結果4
表 2.2	メタンガス濃度対応基準
表 3.1	換気立坑 140m 小型試錐座に掘削したボーリング孔
表 3.2	孔口位置の測量に使用した基準点の日本測地系座標
表 3.3	各ボーリング孔孔口の日本測地系座標6
表 3.4	使用機材一覧表
表 4.1	1m 区間ごとのコアデータ一覧13
表 4.2	割れ目データ一覧
表 5.1	BTV 計測使用機器・機材
表 5.2	BTV 計測作業工程および調査数量45
表 5.3	07-V140-M01 号孔深度補正表
表 5.4	BTV 計測区間における不連続面の頻度
表 5.5	不連続面の状態
表 5.6	不連続面の集中点
表 5.7	割れ目の統計処理
表 5.8	割れ目形状別の集中点54
表 5.9	ブレイクアウト一覧表
表 5.10	割れ目頻度
表 5.11	割れ目の方向性
表 6.1	M01 孔における円錐孔底ひずみ法による応力解放試験状況80
表 7.1	測定機器一覧
表 7.2	高剛性水圧破砕システムのコンプライアンス測定結果
表 7.3	水圧破砕試験深度
表 7.4	水圧破砕試験によって開口した横き裂の法線の方向余弦(E-N-V 座標系)および
	き裂閉口圧
表 7.5	横き裂の垂直応力から評価した初期応力状態112
表 8.1	ブレイクアウトの位置と開き角
表 8.2	ブレイクアウトから評価した初期応力状態
表 9.1	ボーリングコアの力学試験
表 9.2	- 軸圧縮試験の試験方法
表 9.3	一軸圧縮試験結果······133
表 9.4	ー軸圧縮試験結果(スケッチ)
表 9.5	E裂引張試験結果139
表 9.6	圧裂引張試験結果(スケッチ)

付図	目次
----	----

$\boxtimes 2.1$	ガスチェックボーリング孔配置図
図 3.1	初期応力測定用ボーリング孔の配置図
図 3.2	ボーリング掘削完了状況6
図 3.3	ボーリング資機材の設置平面図
図 3.4	07-V140-M01 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重および
	スピンドル回転数と掘削深度との関係
図 3.5	07-V140-M02 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重および
	スピンドル回転数と掘削深度との関係
図 3.6	07-V140-M03 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重および
	スピンドル回転数と掘削深度との関係
図 4.1	岩芯柱状図
図 4.2	総合柱状図(07-V140-M01 孔)
図 4.3	コア写真(07-V140-M01 孔) ···································
図 4.4	割れ目の傾斜角度の頻度分布
図 5.1	BTV 計測システムの構成
$\boxtimes 5.2$	面構造の走向傾斜の解析ルーチン
図 5.3	割れ目形状区分
図 5.4	BTV 計測フローチャート
図 5.5	プローブのアクリル窓に水滴が付着してできた白線49
図 5.6	全不連続面シュミットネット
図 5.7	割れ目全体シュミットネット
図 5.8	開口割れ目シュミットネット
図 5.9	明瞭割れ目シュミットネット
図 5.10	ヘアークラックシュミットネット
図 5.11	岩盤緩み状態図
図 5.12	AVTD 分散図(割れ目全体)
図 5.13	AVTD 図(割れ目全体)
図 5.14	全不連続面見掛け傾斜図
図 5.15	開口割れ目見掛け傾斜図
図 5.16	仮想平面上の見掛け傾斜図
図 5.17	割れ目 シュミットネット投影図(割れ目形状 P)66
図 5.18	割れ目 シュミットネット投影図(割れ目形状 I)67
図 5.19	割れ目 シュミットネット投影図(割れ目形状 C)68
図 5.20	割れ目 シュミットネット投影図(割れ目形状 S)69
図 5.21	ブレイクアウトの測定方法
図 6.1	円錐孔底ひずみ法による初期応力測定手順
oxtimes 6.2	ストレインセルの接着試験
図 6.3	孔底清掃後に回収した孔底面清掃器具の汚れ

図 6.4	破壊した M01 孔深度 9.28m の円錐孔底
図 7.1	コンプライアンス Cの小さな高剛性水圧破砕システム83
図 7.2	可塑性のチューブによって被覆された型取パッカーの挿入84
図 7.3	ストラドルパッカーの挿入85
図 7.4	破砕後の型取で得られたき裂のトレースの例
図 7.5	水圧破砕システムのコンプライアンス測定状況
図 7.6	高剛性水圧破砕システムを用いた鋼管内における加圧試験の例89
図 7.7	M01 孔の深度 6.3m における圧力・流量・時間曲線
図 7.8	M01 孔の深度 14.2m における圧力・流量・時間曲線
図 7.9	M01 孔の深度 17.2m における圧力・流量・時間曲線
図 7.10	M02 孔の深度 8.9m における圧力・流量・時間曲線
図 7.11	M02 孔の深度 12.0m における圧力・流量・時間曲線
図 7.12	M02 孔の深度 15.0m における圧力・流量・時間曲線
図 7.13	M02 孔の深度 16.5m における圧力・流量・時間曲線
図 7.14	M03 孔の深度 6.3m における圧力・流量・時間曲線
図 7.15	M03 孔の深度 11.8m における圧力・流量・時間曲線
図 7.16	M03 孔の深度 13.5m における圧力・流量・時間曲線
図 7.17	M03 孔の深度 15.0m における圧力・流量・時間曲線
図 7.18	(a)M01 孔の深度 6.3m、(b)M01 孔の深度 14.2m および(c)M01 孔の
	深度 17.2m で採取したき裂の型取の記録
図 7.19	(a)M02 孔の深度 8.9m、(b)M02 孔の深度 12.0m および(c)M02 孔の
	深度 15.0m で採取したき裂の型取の記録
図 7.20	(a)M02 孔の深度 16.5m、(b)M03 孔の深度 6.3m および(c)M03 孔の
	深度 11.8m で採取したき裂の型取の記録
図 7.21	(a)M03 孔の深度 13.5m および(b)M03 孔の深度 15.0m で採取した
	き裂の型取の記録
図 7.22	ボーリング孔と座標系の関係
図 7.23	型取パッカーから得られたき裂のトレースに最小二乗法によって
	横き裂平面を当てはめた例
図 7.24	き裂閉口圧の設定例(M03 孔、深度 11.8m)
図 7.25	(a)水圧破砕法によって評価された主応力の下半球投影図および
	(b)水平面内の主応力分布
図 8.1	ボーリング孔軸と直交する面内に示したボアホールブレイクアウトと
	初期応力の関係の模式図
図 8.2	ボーリング孔軸と直交する面内の最小主応力の方向にボアホールブレイク
	アウトが生じると仮定したときの初期応力とブレイクアウトの関係116
図 8.3	(a) ブレイクアウトから評価された主応力の下半球投影図および
	(b)水平面内の主応力分布
図 9.1	一軸圧縮試験片

図 9.2	E裂引張試験片······123
図 9.3	力学試験における試験装置および測定系統
図 9.4	ー軸圧縮試験における応力ひずみ曲線128
$\boxtimes 9.5$	圧裂引張試験片の破断状況147
図 10.1	初期応力の測定結果(主応力の下半球投影図)
図 10.2	既往の初期応力測定結果との比較(水平面内最大・最小応力値)150
図 10.3	既往の初期応力測定結果との比較(水平面内最大主応力の方位)150

1. はじめに

1.1 目的

独立行政法人日本原子力研究開発機構は、北海道天塩郡幌延町において新第三紀堆積岩を対象 として幌延深地層研究計画と称する地下施設建設を伴う研究プロジェクトを進めている。この計 画は、平成12年度から開始し、全体で約20年間の研究プロジェクトであり、地上からの調査研 究段階、坑道掘削(地下施設建設)時の調査研究段階および地下施設での調査研究段階の3つの 段階から構成される。地上からの調査研究段階は平成17年度に終了し、現在、坑道掘削(地下 施設建設)時の調査研究段階に移行している。地上からの調査研究段階では、幌延町北進地区に 3km四方程度の領域を研究所設置地区とし、この領域およびその周辺を対象に地上物理探査、地 質調査、ボーリング調査などを実施した。一般に地下には、土壌や岩盤の自重のほかに地設変動 などにより初期応力と呼ぶ応力が生じている。初期応力は、地下構造物の合理的で安全な設計・ 施工法の検討や坑道周辺岩盤中に発生する掘削影響領域の性状と密接な関係があることから、地 上からのボーリング調査において研究所設置地区内に分布している初期応力の評価を試みている。

初期応力の測定方法は、主に応力解放法や水圧破砕法などのボーリング孔を利用した原位置で の計測と、AE法・DSCA法・DRA法などのボーリング孔から採取したコアを利用した計測(コ ア法と呼ばれる)とに大別される。地表から実施される水圧破砕法の場合、主応力の1つがボー リング孔軸に等しく、原位置に作用する土被り圧と等しいと仮定され解析されるため、水平面内 の主応力のみが同定され地下深部に作用する正確な初期応力状態を知ることが出来ない。地下深 部に作用する三次元的な応力状態を評価可能な手法である応力解放法は、深部に位置する調査坑 道などからの水平ボーリング孔を利用した計測がほとんどを占めており、地表からの計測は技術 的な困難さからほとんどなされていない。そのため、坑道掘削(地下施設建設)時の調査段階に おいては、地下施設を利用した三次元初期応力状態の正確な評価を実施し、さらに地上からのボ ーリング調査において評価した初期応力の妥当性の確認ならびに更新を目的としている。

初期応力の測定方法は、一般的に地下深部の硬岩を対象にすることが多く、幌延地域に見られ る新第三紀堆積岩である軟岩に対する実施例は硬岩の実施例と比較して少ない。そのため、初期 応力測定法のうちどの方法が幌延地域の新第三紀堆積岩に最適であるか適用性の検討が必要であ る。また、初期応力は一般的に深度依存性が認められるとともに、その地域特有の地質構造の存 在や地形の影響の他、地殻変動などによりその状態が変化する。そのため、ある対象領域の初期 応力状態を評価する場合、地質構造や地形に着目し複数の地点において初期応力測定を行い、バ ラツキを含めて総合的に評価する必要がある。以下、初期応力状態の検討内容と得られた結果の 利用方法について示す。

新第三紀堆積岩の原位置における初期応力測定法の適用性の検討

初期応力測定法の検討では、ボーリング孔表面から水が浸出するような新第三紀堆積岩に 適用可能な初期応力測定方法の選定するため、岩盤とひずみゲージの接着性能、最適なボー リング掘削径・掘削方向の決定、ボーリング孔内での設置位置の決定等、必要に応じて予備 実験・解析等を実施し適用性を事前に確認し、その後原位置での適用を図る。

② 声問層、遷移帯、稚内層の3つの地層における初期応力状態の検討

初期応力状態の検討では、各地層においてそれぞれ3~4カ所程度の地点で初期応力測定を

実施し、初期応力結果のバラツキの程度・掘削時の情報化施工で得られる A/B 計測結果・掘 削時の切羽観察・三次元地質構造モデル・地上からの調査研究段階で得られた初期応力状態 との比較検討等を含めて総合的に評価する。得られた結果については、必要に応じ既存の岩 盤力学モデルの確認・更新、地下構造物の応力・変形解析の初期応力入力パラメーターの見 直し、地下施設の合理的で安全な設計・施工法の見直しおよび周回坑道配置の適否等に適宜 反映する予定である。

本報告は、著者らが平成 19 年度に幌延深地層研究センターの換気立坑深度 140m 小型試錐座 から直径 76mm の 3 本のボーリング孔を掘削し、地下施設周辺岩盤の初期応力測定について取 りまとめたもので、測定方法の適用性を検討するための予備実験および初期応力状態の評価、既 存調査で得られた初期応力結果との比較検討を実施したものである。

1.2 測定位置

幌延深地層研究センター換気立坑 140m 小型試錐座

1.3 測定期間

測定期間 自) 平成20年1月28日

至) 平成 20 年 2 月 18 日

2. ガスチェックボーリング

初期応力測定に先立ち、換気立坑坑底から小型試錐座掘削前の調査予定岩盤に向かって直径 47mm、長さ33mの水平ノンコアボーリングをおこない、メタンガスの湧出状況を把握した。チ ェックボーリングの掘削方向は、図2.1に示すとおり、掘削予定の小型試錐座坑道の長軸方向と 一致し、初期応力計測用のボーリング孔の到達深度をカバーする長さである。

メタンガス濃度の測定は、ガスチェックボーリング孔が深度 13m および 33m に達したとき、 孔口および孔口から約 30cm の地点で実施した。測定結果は、表 2.1 に示すとおりである。孔口 から約 30cm 離れた地点でのメタンガス濃度は、チェックボーリング孔の深度に関わらず 0.0 Vol%であり、立坑作業時におけるメタンガス濃度対応基準値 (0.25~0.5 Vol%) よりも小さい (表 2.2 参照)。したがって、初期応力測定のためのボーリング掘削によって調査対象岩盤から発生す るメタンガスの濃度も十分に小さいと予想された。ただし、孔口では 0.45 Vol%以上のメタンガ スが検出されたので、初期応力測定はメタンガス濃度の測定・監視をおこないながら実施するこ ととした。

図 2.1 ガスチェックボーリング孔配置図 (ガスチェックボーリング時、小型試錐座は未掘削)

$JAEA\text{-}Research \ 2009\text{-}004$

メタンガス濃度測定時のボ	メタンガス濃度測定値(Vol %)									
ーリング孔深度(m)	孔口	孔口から約 30cm 地点								
13	0.45	0.0								
33	0.70	0.0								

表 2.1 ガスチェックボーリング孔におけるメタンガス濃度測定結果

表 2.2 メタンガス濃度対応基準*

メタンガス濃度対応基準値(Vol%)	作業基準
0.25- 0.5	火気使用作業の禁止
0.25 - 0.5	非防爆電動工具の使用禁止
$0.5 {\sim} 1.0$	火薬取り扱い作業の禁止
1.0	第1次警報(パトライト点灯)
$1.0 \sim 1.5$	作業員退避
1.3	第2次警報(パトライト点灯+ブザー)
1.5 以上	坑内電源遮断

*:幌延深地層研究計画地下施設工事(第 I 期)施工要領書(東立坑・換気立坑 立坑一般部)より 抜粋

3. ボーリング孔掘削

換気立坑 140m 小型試錐座掘削後、まず応力解放法による初期応力測定を目的として 07-V140-M01 孔を掘削した。その後、応力測定方法を水圧破砕法に変更したため、さらに 07-V140-M02 孔と 07-V140-M03 孔の 2本のボーリング孔を追加掘削した。各ボーリング孔の方 位・傾斜、掘削深度などは表 3.1 に示すとおりである。ここで、ボーリング孔の方位は真北を基 準としている。図 3.1 は、各ボーリング孔の配置図である。

孔名	方位・傾斜	掘削深度(m)	備考
07-V140-M01 孔	N60°W、水平か ら上向き 5°	20.5	・ φ76 シングルコアチューブ使用 ・円錐孔底ひずみ法と水圧破砕法を適用
07-V140-M02 孔	NS、水平から上向 き 5°	20.5	・ φ76 コアパック使用 ・円錐孔底ひずみ法と水圧破砕法を適用
07-V140- M03 孔	N30°W、水平か ら下向き 30°	20.5	・ φ 76 コアパック使用 ・水圧破砕法を適用

表 3.1 換気立坑 140m 小型試錐座に掘削したボーリング孔

3.1 ボーリング孔孔口の位置

各ボーリング孔孔口の日本測地系 2000(JDG2000)における X、Y および Z 座標を、ボーリン グ孔掘削後に測量した。ここで、孔口の座標とは孔口に設置した鋼製のキャップ表面の中心点の 座標である。測量の精度は、水平位置、標高とも 1cm 以下である。

3.1.1 測量方法

トータルステーションおよび水準測量により、換気立坑 140m 小型試錐座周辺に設置されている基準点を使用して各ボーリング孔の孔口の座標を求めた。使用した基準点の座標は表 3.2 に示すとおりである。

基準点	Х	Y	Z
基準点1	116231.075	-30768.381	-139.904
基準点2	116227.465	-30766.417	-140.004

表 3.2 孔口位置の測量に使用した基準点の日本測地系座標

3.1.2 測量結果

測量の結果を表 3.3 に示す。図 3.2 は、各ボーリング孔の掘削完了状況を撮影した画像である。

孔名	Х	Y	Z	キャップ円形面から坑道 壁面までの距離(cm)
07-V140-M01 孔	116236.40	-30771.43	-138.676	10
07-V140-M02 孔	116236.76	-30770.31	-139.739	20
07-V140-M03 孔	116237.37	-30769.38	-138.665	20

表 3.3 各ボーリング孔孔口の日本測地系座標

図 3.2 ボーリング掘削完了状況

3.2 ボーリング資機材の搬入

ボーリング資機材は、換気立坑坑口まで2tトラックで運搬し、換気立坑のキブルによって坑内 に搬入した。キブルの最大収納寸法には制約があるので、搬入資機材はすべてキブルの最大収納 寸法以下に梱包した。表 3.4 に使用機材の一覧を示す。搬入時期は他の工事と重なり合わないよ うに調整した。

次操社权环	メーカー	公称能力および	寸法 (H×W×L)	舌具なていけ粉具
員機的石柳	型式	規格	(mm)	里里のついる数里
試錐機	TEC-1	$5.5 \mathrm{kW}$	$1400 \times 730 \times 1205$	$450 \mathrm{~kgf}$
2"水中ポンプ		$1.5 \mathrm{kW}$		1台
配電盤			$1100\!\times\!600\!\times\!890$	$20~{ m kgf}$
ドラム缶	100ℓ			3缶
92 シード管			1.5m	3本
92 メタルクラウン			0.15m	1個
40.5 ロッド			1.0m	22本
76 コアパック			1.5m	1本
40.5 ロッド			0.5m	2本
40.5 ロッド			0.3m	1本
アウターチューブ他	掘削ツール		$400 \times 500 \times 2500$	1個
孔底掃除器具他			$300 \times 200 \times 1800$	1個

表 3.4 使用機材一覧表

3.3 ボーリング資機材の設置

キブルから資機材設置場所までの運搬・設置作業は、キブルから小型試錐座側への機材の取り 出し・引き込み、小型試錐座における運搬・設置の作業手順でおこなった。その作業手順は次の 通りである。

- (1) 小型試錐座への資機材の搬入・設置は、ボーリングの資機材、タンクおよび試錐機の 順におこなう。
- (2) キブルから小型試錐座側への試錐機の取り出し・引き込みは、主に小型バックホーを 利用し、モノレールホイストの下まで運搬する。
- (3) モノレールホイストの下から試錐機をレバーブロックで吊り上げ、小型試錐座にいっ たん仮置きする。他の資機材はすべて人力によって小型試錐座まで運搬する。
- (4) 所定の位置に試錐機、タンク等を据える。図 3.3 に小型試錐座における資機材配置の 例を示す。

試錐機のベースは、アンカーボルトによってコンクリート床面に固定した。電気配線は、小型 試錐座に配電盤を設置し、試錐機、試錐ポンプ等の電気設備に配電した。配線は歩行や小資材運 搬の障害にならないように配慮した。

図 3.3 ボーリング資機材の設置平面図

3.4 ボーリング孔口切

試錐機のスピンドルを所定の方位および傾斜角度に設定し、小型試錐座切羽の吹き付けコンク リートを 92mm シールドロ切ビット(メタルクラウン)によって約 1.5m 掘削した。掘削に先立 って、92mm シールドロ切ビットが当たる坑道壁面を電動ハンドドリルによって平坦に整形し、 口切ビットが壁面に対して安定して食い込むようにした。

07-V140-M01 孔、07-V140-M02 孔および 07-V140-M03 孔の傾斜角度は、表 3.1 に示すよう に、それぞれ+5°、+5°および-30°とし、掘削方位は、それぞれ N60°W、NS および N30° Wとした。

3.5 ボーリング孔掘削(深度1.5m~深度20.5m)

07-V140-M01 孔の深度 1.5m から深度 11.89mまでの区間は、直径 76mm ダイヤモンド薄肉ビット+シングルコアチューブ+40.5mm ロッドという掘削編成でボーリングをおこなった。これは、前述の深度範囲において円錐孔底ひずみ法による応力解放試験を計画していたためである。

07-V140-M01 孔の深度 11.89m から深度 20.5m まで、および 07-V140-M02 孔と 07-V140-M03 孔の深度 1.5m から深度 20.5m までは、76mm 二重管掘削(コア径 55mm)装置の コアパック を使用して コアボーリングをおこなった。掘削編成は、76mm メタルクラウン+アウターチュー ブ+40.5mm ロッドを基本とした。40.5mm ロッドは、狭い坑内で作業しやすいように原則とし て長さ 1.5m ものを使用した。掘削水は、坑内の給水をドラム缶に溜め、試錐機に内蔵された給 水ポンプで送水した。

3.6 掘削の経過

各ボーリング孔掘削時のポンプ流量、ポンプ圧力、掘進荷重およびスピンドル回転数を、図 3.4、 図 3.5 および図 3.6 に示す。

図 3.4 07-V140-M01 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重およびスピンドル回転数と 掘削深度との関係

図 3.5 07-V140-M02 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重およびスピンドル回転数と 掘削深度との関係

図 3.6 07-V140-M03 孔掘削時のポンプ流量、ポンプ圧力、掘進荷重およびスピンドル回転数と 掘削深度との関係

4. 地質記載

4.1 岩芯の採取

07-V140-M01孔は、深度1.67mまでは92mmシールドロ切ビット(メタルクラウン)によって ノンコア掘削を行った。深度1.67m以深は、直径76mm、長さ1.58mのコアチューブでコアリン グを実施した。採取した岩芯は、深度1mの区切りで切断し、コア箱(一箱4m×5箱;計20m分) に収納した。

4.2 岩芯記載

岩芯は、地上からの調査ならびに坑道内で実施しているコアの記載要領に基づいて記載した。 岩芯記載の項目は、深度、岩石名、岩相、岩盤等級区分、RQD、コア回収率、割れ目模式断面図、 割れ目番号、割れ目の傾斜角度、割れ目のタイプ、割れ目面の特徴、断層岩、割れ目の成因等で あり、コア写真を添付した。1m 区間ごとの柱状図を図 4.1(1/20)~図 4.1 (20/20)に、総合柱状図 を図 4.2 に示す。また、全区間のコア写真を図 4.3 に、1m 区間ごとのコアデータ一覧を表 4.1 に 示す。

	深度	-	地屋	岩工	岩	POD	コア	岩盤等級	割れ目本数(本/m)							
	(m)		眉名	名	相	NQD	回収率	区分	h-f	f	o-f					
0	\sim	1				-	-	-	0	0	0	0				
1	\sim	2				14	23		0	2	0	2				
2	$2 \sim 3$					26	35		0	3	0	3				
3	$\frac{3 \sim 4}{4}$					68	100		0	1	0	1				
4	\sim	5				66	86	OL II	0	1	0	1				
5	\sim	6				78	100		0	2	0	2				
6	$\frac{6}{7} \sim \frac{7}{8}$				暗	49	100		0	6	0	6				
7	$7 \sim 8$			т±:	火	16	100	CL-M	2	10	0	12				
8	8 ~ 9		畫	互遠	巴.	22	100	CL-L	3	3	0	6				
9	\sim	10	円間	傑哲	齿	74	100	CL-H	1	4	0	5				
10	\sim	11	屆	員泥	阿督	18	79		0	3	0	3				
11	\sim	12	/目	岩	•	0	71	CL-L	0	2	0	2				
12	\sim	13		Ţ	新	30	100		2	4	0	6				
13	\sim	14			鮮	44	100	CL-M	1	5	0	6				
14	\sim	15				22	100	CL-L	0	5	0	5				
15	\sim	16				31	100	CL-M	0	3	0	3				
16	$\frac{10}{16} \sim 17$					84	100	CI –H	1	3	0	4				
17	$17 \sim 1$					90	100	OL II	0	2	0	2				
$18 \sim 19$		19				34	100	CI –M	0	3	0	3				
19	\sim	20				58	100	OL M	1	4	0	5				
						平均	84.7	計	11	66	0	77				

表4.1 1m区間ごとのコアデーター覧表

h-f:癒着割れ目 f:非癒着割れ目 o-f:開口割れ目

	孔名	07–	∨1 40- M01	2	架 度	0	.00	D	n] ^	• 1	.00		[m]	縮尺			
	RQD		-	:	コア回収	率			0	[%]	記	載者	Ť				
	66名		-	石 町	盛等教	赵分 粉		*	- c.	0 +			1	2008.	2.	17. 伝	
深 度 [cm]	岩相·	風化	コア 写真		割れ目 模式断面図		<u> </u>	タイプ	[傾斜角度	<u>しな</u> , 1 割れ の特	<u>,,</u> 目面 清徴	断層岩	成因	その他記述 (割れ目売填物な	戊 ど)	Ċ調 [: ∗ª •º]	硬さ[」]
10-				· · · ·		- - - - - - - - - - - - - - - - - - -				·	· · · · ·						
-20-			φq							· · · · · · · · · · · · · · · · · · ·	· · · ·				•••		
-30-			2 17			- - - - - - - - - - - - - - - - - - -				·	· · · ·						
-40-			たート			· • · · · · · · · · · · · · · · · · · ·				· · · · · · · ·	· · · ·			· · · · · · · · · · · · · · · · · · ·			
-50-			1"											ロ元ケーシン			
-60-			7								· · · ·			<i>ダ</i>			
-70-						- - - - - - - -					· · · · ·						
 -80-			i. Jec.20			·					· · · ·	•••					
						- - - - -					· · · · ·						
-90-											 - 						
	「タイブ] 「防層岩] 「・非産者満れ目 「し、耐層角機を伴う育れ目 「・非産者満れ目 「し、耐層角機は基質と当けが未園館で、破砕当片の含有率が30以上 ので、間口有れ目 「酸酸酸」 「お、肉素素」 「し、耐層角機を伴う育れ目 「も、耐磨角機は基質と当けが未園館で、破砕当片の含有率が30以上 「読用の機像」 「前れ目面の特徴」 「酸酸 51.43 「新日」 「酸酸 51.45 「「」」」」」」 「「」、「」」」 「「」」」」 「」、「」」」 「「」」」」 「」、「」」」 「「」」」 「」、「」」」 「「」」」 「」、「」」」 「「」」」 「」」」 「「」」」 「」」」 「「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」 「」」」」 「」」」																

図 4.1 岩芯柱状図(07-V140-M01 孔) (1/20)

図 4.1 岩芯柱状図(07-V140-M01 孔) (2/20)

	孔名 07-V140-M01			深度 2.0		.00 [m] ~ 3.00					[m]		縮尺				
	RQD		26			<u>z</u>			35	<u>[%]</u>	記	載者	Ť				
1 T	石名		楽質泥岩		岩盤等級区	<u>分</u>			<u>н, 7</u> С	<u> </u>	- 1 0	、載 E	-	2008.	2.	17. •	
深 度 [cm]	岩相·	·風化	⊐ア 写真		前れ日本郊 割れ目 模式断面 日		<u>: 0</u> 番 号	<u>▲</u> , タイプ	[傾斜角度]	<u>3年</u> , 0 割れ の特	<u>)</u> 目面 資数	断層岩	成因	その他記載		山間「- a b」	硬さ[-]
 -10-			2							· · · · · · · · · · · · · · · · · · ·							
 -20-			H							· · · · · · · · · · · · · · · · · · ·	· · · · · ·						
30-			全组成											·····田····· 錐	· · ·		
-40-			平)							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			····Ĥ··			
50-										· · · · · · ·							
-60-			No.	· • •							· · · ·						
-70-	暗灰色を 均賞。 新鮮。	呈する。		70-72-		- 72	2-1 2-2	ŕŕ.	50 40	SS - SS S		. <u>.</u> .	SS				
 -80-			-	· · · · · · · · · · · · · · · · · · ·		_ /3 _ 				(5	0) .				· · ·		
-90-										· · · · · ·							
	· · · · · ·			95- - -		- - - - - - -	2–3	f.	 30	ss -	ST (30)	_	s				
	[タイプ] h-f:憲憲 f :非憲 f :非面口 SS: 条 線 (ス SL: 条 線 (ス ST: スリック 割れ目 (れ目 割れ目 れ目 したenside) が[しりッケンライン リッケンライン ・ ンステップ (si の上整例の相	観められる ・) (slickenline) が認め ・)のレイク角を記載 ickenstop) が認めら 対的な変位方向を記)られ いる 載	断層岩] f-b:断層角 断層角 断層角 新層周ガ f-g:断層ガ f-gs:回結し - :なし	職業は上 構業の上 構築 が で た 黒 色 都	割れ目 【と岩片が 記を構成す う割れ目 :覚と岩片: 端を構成	未る がす破	iで, 破 f bt, 1 緒で, i をf gt, gt り買を伴	辞岩片の台 5増を構成 波砕岩片の 万増を構成 う割れ目	*有率が する面を 含有率が なする面を	30%[J.L -bb 2 *30%[J] Ef-gb 4	記入	[成因] S: 剪新 (shear) 割れ (健肌, 条健, ス T: 引っ張り (tension (羽毛状構造を作 D:機械割れ目 (観削時またはそ 機械的に割れ)	,目 テップ, 新) 割れ目 5) -の後の司 ともの)	周岩	<u>と伴う</u>) (こ

図 4.1 岩芯柱状図(07-V140-M01 孔) (3/20)

	孔名	07–	V1 40−M 01		深度	3	3.00	[m] ^	~ 4	.00		[m]	縮尺		
L.	RQD		68		コア回収	<u>、</u> 率		1	00	[%]	韶	載者	Ť			
1	皆石名		灤質泥岩 ─────		岩盤等級	区分		<u>-H、</u>	<u>有、(</u>		R C	!載E		2008.	2. 17	
深度 [cm]	岩相·	風化	⊐ア 写真	Ē	割れ日本 割れ目本 割れ目 割れ目		<u>1:</u> 番 号	<u>タ</u> イプ	1. 傾斜角度	<u>」</u> 和, (割れ の特	<u>p=r:</u> 目面 計徴	断層岩	成因	その他記載 ^(割れ目充填物など)	担調 [□ *ª *9]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。				. 03								No. 2-3から続く 割れ目。		
-10-			-	08		- - - - -	 3–1	 f	50	SS S	L –		 S			
			-			16				(8)	D)					-
-20-			-			. .				· ·	· · · ·					
-30-						· • · · · · · · · · · · · · · · · · · ·				· · · · · ·		· ·				
			-			-				• • • • • • •						
-40-			-			-				• • • •	• • • •					
			-			. <u>-</u> - - -				· · · · ·						
-50-			-			· • · · · · · · · · · · · · · · · · · ·				· · · · · ·	·					
-60-			-			- - - -				• • • • • •						
			-			- - - -				 	. <u>.</u>					-
-70-			-			. .				· · · · · · · ·						
-80-					X	· • • • • •	· · · · ·	· · ·	20	· · · · ·	· · · ·	· ·	1D.		· · · · ·	
										· · · · ·						
-90-						· • · ·				· · · · · · ·	·			3.79~4.00m 機械割れによる 角礫状コア。		
										· · · · · · ·	·					
	[9イブ] 「原用法」 「原用: 「用 法」 「原用: 「用 法」 「原用: 「用 法」 「原用: 「用 法」															

図 4.1 岩芯柱状図(07-V140-M01 孔) (4/20)

	孔名 07-V140-M01			深度	4.	.00	[m] ^	- 5	.00		[m]	縮尺				
	RQD		66				<u> </u>	8	6	[%]	12 12	載者	Ť				
1	日名	珪	澡質泥岩 │		岩盤等級区	分			H、有 6.	ī 1 1	1 2	!載E		2008.	2.	17.	
深度 [cm]	岩相·	風化	コア 写真	Ĩ	割れ日本 朝れ目 模式断面		<u>r: 0</u> 番 号	タイプ	[傾斜角度]	<u> 本,</u> 割れ の特	<u>) T:</u>]面 液	断層岩	成因	その他記事		凹調 [□ *a *b]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。		- - - - - - -		- - - - - - - - - - - - - - - - - - -				· · · · · ·	· · · · ·						
				-													
-20-			1 A				- -	. t . _ 	.70 5		-	. . 	D				
-30-			丹 雞 痃							· · · · ·				日前			
-40-			先							· · · · · · ·	· · ·						
										· · · · · · ·							
										· · · · · · · ·	· · · ·						
				-			· · <u>-</u> · ·	· <u>-</u> ·	-10	· · · · · ·		· _	D.				
-80-				-			· · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · ·						
-90-										· · · · · · ·	-						
	[タイプ] [原常力] hr:豊富者和九目 「時常力] or:開口耐れ目 「読用力調さ伴う潤れ目 or:開口耐れ目 「読用力調さ伴う潤れ目 or:開口耐れ目 「読用力ジジは差質と当力が未回結で、破砕当りの含有事が30%以上 「読用目面の特徴」 「「「「」」」」」」 SS:検知(allownaide) が認められる 「「」」」」 SS:検観(X)ッケンライン) (allokronine) が認められる 「「」」」「罰して、認知者」 「」、「」」」 「」」」」 ST: スリッケンライン) (allokronine) が認められる 「」」」」 ST: スリッケンシイン) (allokronine) が認められる 「」」」」 ST: スリッケンシイン) (allokronine) が認められる 「」」」 St. 検観 (スリッケンライン) (allokronine) が認められる 「」」」」 ST: スリッケンステッツ) (allokronine) が認められる 「」」」 ST: スリッケンステッツ) (allokronine) が認められる 「」」」 St. 検観 (スリッケンステッツ) (allokronine) が認められる 「」」」 St. 大観 (スリッケンステッツ) (allokronine) が認められる 「」」」 St. 大観 (スリッケンスーツ) (allokronine) が認められる 「」」」 St. スリッケンスーツ 「」」 Tan (日) 「」」																

図 4.1 岩芯柱状図(07-V140-M01 孔) (5/20)

孔名 07-		∨1 40- M01		深度	5.	00	m] ^	- 6	.00 [m]			縮尺					
RQD		78		コア回収率		<u>z</u>		100 [%]		[%] 記載		Ť					
		澡質泥岩		宕盛等級区分							2008.	2.	2. 17.				
深度 [cm]	岩相·	風化	コア 写真	ŧ.	割れ日本の 割れ目 模式断面目	<u>n-1</u>	<u>:</u> 0 番 号	タイプ	1. 傾斜角度	<u>2本</u> , <u>c</u> 割れ の特	<u>)</u>]面 微	断層岩	成因	その他記載		巴調 [□ *a *b]	硬さ[-]
- 10-	暗灰色を 均賀。 新鮮。	呈する。 				- - - - - - - - - - - - - - - - - - -	5-1 -	 f. –	50 0	SS SI (90 	L –		S D				
-20-			-							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				-		
-30-				31 -		35 -	5 2	 f	 30 .0	SS Si (10	L – D) _ 1	·	S D				
-40- -50-					 		 	 	5	· · · · · · · · · · · · · · · · · · ·	· · · · ·	·	D	548~559m			
-60-								5.				 . D.	4 機械 前 れによる 角 礫 状 コ ア 。			
- 70-	5.68m付近 コア表面(状の空隙 生痕化石	Î こ虫食い 跡?													-		
-80-	5.78m付込 コア表面(状の空隙 生痕化石	i こ虫食い 跡?								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				-		
-90-															-		
	[タイプ] hf:憲着前 f:非用口面 SS:鏡肌(a SS:鏡肌(a SL:条鏡(ス ST:スリック 割れ目 c - た	れ目 割れ目 わ目 Diekenside) が リッケンライ2 リッケンライ2 ンステップ (s の上盤側の相	観められる) (elickonine) が認め) のレイク秀を記録 になれまたの) が認められ) 向い支位方向を記		[新暦岩] f→:新暦角 新暦角 fg:新暦が fg:新暦が fg:新暦が fg:面積し - :なし	業業では 業業では たけでは 業業では たけで、 のででは のででは のででは のででは のででの のででの のででの のででの のででの のででの のででの のででの のでの のでのでの のでのでの のでのでの のでのでのでの のでのでの のでのでの のでの のでのでの のでのでの のでのでのでの のでのでの のでのでの のでのでの のでのでのでの のでのでの のでの のでのでの のでのでの のでのでの の の のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの の のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの のでの の のでの のでの の のでの の の の の の の の の の の の の の	割れ目 【と構成すう割れ日 う割と結構成する 割と結構層	未る がす破存す	iで、破 f-bt, T 緒で, i をf-gt, j質を伴	辞岩片の含 、増を構成 変砕岩片の 下増を構成 う割れ目	有率が: する面を さする面積	30% DL L Hob 21 1430% DL 21-gb 2		[成因] S:前野(shoar)割れ (健肌, 条健, ス (羽毛状構造を作 D:機械調れ目 (観測時またはそ 機械的に割れれ	目 テップ,目 うう こもの)	新層岩	を伴う) !(こ

図 4.1 岩芯柱状図(07-V140-M01 孔) (6/20)

孔名 07-		∨140- M01		深度	6.	00	[n] ^	- 7	.00		[m]	縮尺				
RQD		49		コア回収率	<u>z</u>		100		[%] 記		載者	Ť					
日本 日		藻質泥岩				} CL-		H、有、C		<u>)L-M 記</u>			2008.	3. 2. 1			
深 度 [cm]	岩相·	風化	コア 写真	ł	割れ日本愛 割れ目 模式断面開		<u>: 0</u> 番 号	<u>▲</u> , タイプ	1. 傾斜角度	<u>6本</u> , 9 割れ の料	<u>o-t:</u> 目面 F徴	断層岩	成因	その他記載	1	包調 [□ *ª *⁰]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。		- - - - - -		-											
-10-			K	· · ·			- 6-1	 - f	 0 10	- SS SI (80	 L ST)) (260)		DS				
-20-				23	······································		6-2		 .10	SS	- ST (100)						
-30-			No.	-			 _	 _			- - -	-	 D	6.24~6.33m 機械割れによる 角礫状コア。			
-40-			- Cont	39 -		37	6-3	f	15	SS	- ST (20)	-	S				
 -50-				- - - - - - - -							 						
				- - - - -						· · · · · · ·	 - -						
-60-			(A)	-			· · · · · · ·	· · ·		· · · · · ·	· · · · ·	·					
-70-				-		72			•		· · · · ·						
-80-			S.	79			6–4 	f 	40 	SS	- : -	-	S 	6.76~6.86m 機械割れによる 角礫状コア。			
-90-			P	87 - 90 -		- 86 - 86	6-5 6-6	f f	20 60	SS SS	ST (290)	- -	S S				
				-													
	[タイプ] hf: 赤着割 f : 赤着割 [割れ目面の SS: 鏡和目面の SS: 鏡和肌(a SL: 条線(ス ST: スリック 割れし ったし	れ目 割れ目 わ特徴] lokenside) が リッケンライン リッケンライン マステップ (a の上整例の帯	認められる) (slickenine) が認)のレイク角を記彙 lickenstep) が認めら 対的な変位方向を言	められ れる 記載	 「竹」 新聞為」 「竹」 新聞為」 「新聞方」 「「」 新聞が 「」 「「」 「」 「」 「」 「」 「」 「」 「」 「」 「」	レート 業を伴う 環境の上端 うジは上端 うジは上 た黒色朝	割れ目 にと構成す う割と岩片が 貫と岩片成 増を構成層	二十二日 二 二十二日 二十二日 二 二 二 二 二 二 二 二 二 二	 	幹岩片の1 5端を構成 夜砕岩片の 下端を構成 う割れ目	する面を()合有率な 成する面を	I 30% [J.] 1430% [J] 1430% [J] 1430		[成因] S: 剪新 (shear) 割れ (鏡肌, 条線, ス· T: 引っ張り (tansion (羽毛状義進を作 D: 機械割れ目 (観削時またはそ 機械的に割れ)	い日フォーク	、 新暦岩 1日 20取扱時 2)	を伴う) NC

図 4.1 岩芯柱状図(07-V140-M01 孔) (7/20)

孔名 0		07-	V140-M01		深度		.00 [m] ~ 8.00 [m]						[m]	縮尺			
RQD			16		コア回収率		100 [%]				記載者					-	
1	岩石名 珪		藻質泥岩 └────			<u>分</u>			L-M、CL-L		5			2008.	2. 17		
深度 [cm]	深 度 岩相·風化 ^[cm]		 コア 写真		<u> </u>		<u>: 2</u> 番 号	▲ タイプ	<u>し</u> 4, 傾 斜割れ 角の 度		<u>o-f:</u> 目面 計 徴	断層岩	<u>▲</u> 成因	その他記載 ^{(割れ目充填物など}			硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。	A STAN														
-10-								 -	 30 	 	 	·	D				
-20-										· · · ·	· · · · ·						
-30-										· · · · · ·				機械割れによる 角礫状コア。			
 -40-			1 Ste	39		38	 . 7-1		 10	ss -	ST (300)	·	S		· · ·		
				41 43 		- 42 - 44 -	7-2 7'-1	f _h-f	10 30	SS - 	ST (310)	- 	S 				
-50-															-		
-60-				59 		58	7–3	f 	20 	SS S (11	L ST 0) (290)	_ 	S 				
-70-				66		65	7-4	•••• f		SS S (9	L – 0)	· <u>-</u> ·			· · ·		
				75-		72	. 7 5	f	30 	SS -	- ST (30)	-	S 				
-80-				82 83 86		80 82 	· 76 7'2 · 77 ·	`f` h−f `f`	20 30 10	SS - SS -	- ST (40)	· _ ·	"S" - S"	No. 7-6 鏡肌弱く、機械割 の可能性有り。	11 11		
-90-			Contraction of the second	91 -		- 88 - 91	7-8 7-9	f f	45 0	SS - SS -	(80) (80)	- 	S S	No.7-9 割れ目低角のた ST方向不明	80 .		
	 [タイプ]		1-5	96	[斷層燈]	97	7–10	f	 15	SS S (5	iL – 0)	-	s	[成因]			
	た f : : : : : : : : : : : : :	れ目 割れ目 D特徴] liokenside)が リッケンライン リッケンライン の上載側の相	記められる ン) (slickenline) が間さ ン)のレイク角を記載 lickenstep) が認めら 対約な変位方向を記)られる 1る 載	1.1.1 15時間角角 時間角角 「g: 前間間ガ 「g: 前間間ガ 「g: 25 1回約し 「g: 40し	業では 上 業 業 ま い た 供 き い た 供 き い た 伴 き い た 伴 き い た 伴 き い た 伴 き い た 伴 き う い い う い う い う い う い う い い い い つ い う い う い う い う い う い う い う い う い う い う い う い う い う い う い う い う い う い い う う い つ い う い う い う い つ い う い う い う い つ い う い い つ い つ い つ い つ い つ い つ い つ い つ い い つ い つ い つ い つ い つ い つ い つ い つ い つ つ つ つ つ つ つ つ つ つ つ つ つ	割れ目 間と岩片が 着を構成す ら割れ目 に増を構成 見 た 岩 た 岩 府 の 制 た 目 の	未面を がす破砕	で、破 f-bt, 「 結で, i をf-gt, 同覧を伴	砕岩片の台 「端を構成 波砕岩片の 下端を構成 う初れ目	2 有率が: する面を() 含 有率が 成する面容	30% 및 F-bb 논 *30% 및 Èf-gb &	記入	5: 剪新(shear) 割れ (彙肌, 条編, スラ T:引っ取り(tenaion) (羽毛状構造を伴 D:機被割れ目 (週期時またはそ 機械的に割れた	目 ·ップ, 新 割れ目 う) の後の取 :もの)	青岩を 扱時(:伴う) に

図 4.1 岩芯柱状図(07-V140-M01 孔) (8/20)

孔名 07-V14		∨1 40– M01)-M01 ;		8	.00	[r	n] ^	- 9	.00	8.00 [m] ~ 9.00 [m]							
RQD		22		コア回収率		100 [%]			記	載者	Ť			-				
岩石名 珪		藻質泥岩	1	岩盤等級区分		CL-L		.、CL-M		記	記載日		2008.	2.	7.			
深度 [cm]	岩相·	風化	⊐ア 写真	Ť	引れ日本教 割れ日 模式断面		<u>f:3</u> 番 号	至, ご タイプ	[] 傾斜角度	<u>3本</u> , <u>(</u> 割れ の特	<u>p-f:</u> 目面 清徴	02 断層岩	成因	その他記載			硬さ[-]	
	暗灰色を 均質。 新鮮。	呈する。		-		- 00	8–1		70	SS S (90	L –	-	S					
			I				-	-	U 	 	· · -							
-20-				20 -						· · · · · · · · · · · · · · · · · · ·								
-30-										· · · · · · · ·								
-40-										, , , , , , , , , , , , , , , , , , , ,			· ·	8,10~8,75m 機械割れによる 角礫状コア。	-			
-50-										· · · · · · · · ·	· · · · ·							
-60-				· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·								
-70-							· · · · ·	· · ·	 -10				 D					
-80-			-							· · · · · · · ·	· · · · ·				-			
-90-				90 - 91 - 92 - 95 -		88 89 92 93	8-2 8'-1 8'-2 8'-3	f h=f h=f h=f	40 -19 20 10	SS - 	ST (40) - -		s _: _					
	[タイプ]		M	-	(新層岩)	00	8-3	f	40	SS S (14	L – 0)	-	s	[成因]				
	h-f:癒着割 f :非面口 の-f:開口 部 (割 SS:載録 (ス ST:条銀 (ス ST:えれ f - :なし	れ目 有れ目)特徴] lokenside)が リッケンライン リッケンライン の上藝側の相	置められる /) (slickenline) が置め /)のレイク角を記載 lickenstep) が認められ 対的な変位方向を記:	ióna ið	f-b:新層角 新層角 f-g:新層ガ 新層ガ 5 f-g:三面着し: - :なし	礫礫線 ううう ● はのをはのを はの ● はの ● 単 単 単 単 単 単 単 単 単 単 単 単 単	割れ目 【と特成す う割れ目 う質と岩片 開 和な新層	未面着 る が 未 る 酸 神 で 敬 砕	で、破 Fbt, 一 結で, i をf-st, 資を伴	辞岩片の合 「増を構成」 凌砕岩片の 下端を構成 う割れ目	は有率が する面を 合有率な なする面を	30% 및 _ E ' - bb 논 E (*30% 및 Ef-gb 2	記入	S:剪断(shear) 割れ (鏡肌, 条線, ス T:引っ至以(tonaion) (羽毛状構造を州 D:機械剤れ目 (機械剤れ目 (機械的に割れ)	.目 テップ、新) 割れ目 ら) ・の後の取 ともの)	層岩 名 一般時	注伴う) (こ	

図 4.1 岩芯柱状図(07-V140-M01 孔) (9/20)
	孔名	07-	∨140–M0 1		深度	9.	00	[1	n] ^	~ 1(0.00		[m]	縮尺		_	
L.	RQD			_	コア回収率	<u> </u>		1	<u>)0</u>	[%]	記	載者	i				
1	合石名	坦	澡 貨 泥宕 │	;	おいちゃう おうしん おうしん しょうしん しゅうしょう しんしょう しんしん しんしん しんしん しんしん しんしん しんしょう しんしょ しんしょ	<u>分</u>			<u>1、</u> 有 c.		<u>id</u>		1	2008.	2.	17.	
ア度	岩相·	風化	コア 写真	<u> </u>	<u>朝れ日本政</u> 割れ目 模式断面図		<u>:</u> 番 号	タイプ	[傾斜角度	<u>4本</u> , c 割れ の特	<u>]</u> 面 微	断層岩	成因	その他記載)	已調 [: *ª *º]	硬さ[-]
 -10-	暗灰色を 均質。 新鮮。	呈する。 				08	9–1	 f		SS SI (14	L – 0)	- <u>-</u>	S				
 -20-										· · · · · · ·	· · · ·						
-30-								. <u>.</u> . _	 15 40			·	 D. D		-		
-40-							10 		· ··	. -	D.				
-50-				54		- 	9–2	.f.	- 4 0	SS SL (120	ST) (120)		S .				
-60-										· · · · · · · · · · · · · · · · · · ·	· · · ·				-		
-70-										· · · · · · ·	 - 				-		
-80-			1	83		82 	9'-1 9-3	 .h−f .f.	20 -30	SS SL (100	»		- S	9.84~9.96m 機械割れによる			
-90-		· · · · · ·		97			9-4	ŕ.	30	ss -	ŠŤ (50)	· <u> </u>	S	角礫状コア。	-		
	[タイプ] hf:雲憲活着 off:開口面 SS:条線線(ス SS:条線線(ス ST:スリれ目 コなし - :なし	れ目 割れ目)特徴] liokenside)が1 リッケンライン ンステップ(3 り上整例の相	躍められる ン) (elickenline) が聞)のレイク角を記載 lickenstep) が認めら 対的な変位方向を訳	。 かられる 「載	[新羅岩] fb:新眉角調 新眉角調 所眉角調 fg:新眉ガヴ 5 新眉ガヴ fg:3 副軸し - :なし	または また また また また また の を は 上 単 の を は し 上 単 の を は し 上 単 の を は し 上 単 の を は し 上 単 の を は し 二 単 の そ は し 二 単 の そ は し た 一 二 一 二 一 二 二 一 二 二 一 二 二 一 二 二 一 の こ の そ に の た こ し の そ の た こ し の そ の た の の た の の た の の た の た の の の た の た の の の た の た ろ の の の た の た の ろ の ろ の た の ろ の ろ の た の ろ の の た ろ の の の の ろ の の の の の ろ の の の の ろ の の の ろ の の の の の の の の の の の の の	割れ目 た着所成日 資料成日 資と着成日 開 地な新層	未回転 「た」 「た」 「た」 「た」 「た」 「た」 「た」 「た」 「た」 「た」	で、破 「bt, 」 結で、i をf-gt, 質を伴	辞岩片の含 「増を構成」 破砕岩片の 下増を構成 う割れ目	有率が る面を 含有率が する面を	90% (J. L 1-66 2 1430% (J) 1-156 2 1430% (J)	记入 下 定入	[成因] S: 前町 (shear) 利れ (鏡肌, 朱健, ス- T:引っ張り (tonsion) (羽毛状構造を引 D:繊維前れ目 (繊則時またはそ 機体的に割れた	目 アップれ うう の後の	断層岩 目 の取扱時	を伴う) Nに

図 4.1 岩芯柱状図(07-V140-M01 孔) (10/20)

	孔名	07-	V1 40-M0 1		深度	1	0.00	[m] ^	. .	11.00		[m]	縮尺			
<u> </u>	RQD		18		コア回収率	<u>R</u>		7	'9	<u>[%]</u>	12	載者	Ť				
1	皆石名	珪	藻質泥岩 		岩盤等級区	分		<u>-M、</u>	CL-			ļ載 E		2008.	2.	17.	
深度 [cm]	岩相·	風化	コア 写真	4	副れ日本愛 割れ目 模式断面開	<u>x</u>	<u>t: 0</u> 番 号	<u>承</u> , タイプ	1. 傾斜角度	<u>3本</u> , 割れ の ^特	<u>o-t:</u> 目面 寺徴	断層岩	成因	その他記述	戊 ど)	Ð 謂 [-∗ª*⊖]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。		06		-											
						- 17	· 10-1 ·	· • ·		SS S (8	L ST 0) (175)						
-20-														10.12~10.28m 機械割れによる 角礫状コア。	5		
-30-				- - - - - - - - - - - - - - - - - - -		- - - - -	- 	-	10	-		-	D				
-40-						37	·			. 33 . 3 (14	10) (220)						
- 50-										· · · · ·							
			Lings	51		- - 	10–3	f 	30 	SS	- ST (50)	-	s 				
-60-									•••	· · · · ·							
-70-										· · · ·				10.54~10.79m 機械割れによる 角礫状コア。	5		
80-									•••	· · · · · ·	· · · · ·	•••					
						- - - - - -				· · · · ·				······ 孔 璧			
-90-	~~~					-				· · · · · ·	· · · · ·			·····朋··· 壊 ·····			
	[タイプ] hf:素非同 f:非期目面 (副計動 SL:条線(ス SL:条線(ス SL:条線(ス SL:条線(ス SL:系線(ス SL:系線) の 割 に入りり (コ の し の の の の の の の の の の の の の の の の の	れ目 割れ目 10 10 10 10 10 10 10 10 10 10 10 10 10	要められる ン) (slickonine) が聞き)のレイク身を記載)のレイク身を記載)はckenatog) が聞めら)対的な更位方向を記)られ れる 載	[「新聞君」 「か:新聞角」 「新聞角」 「「」、「新聞力」 「」、「「聞君」」 「」、「「」、」 「」、」、 「」、 「」、 「」、 「」、	様 建た 建た 構築 で た 構 で 、 、 、 、 、 、 、 、 、 、 、 、 、	割れ目 など着作成目 にう割と着構成目 に質響な新居 間粒な新居		 f で, 破 f bt, 1 結で, i をf at, り貫を有	砕岩片の 、 端を構成 波砕岩片(ごう割れ目	含有率が する面を の含有率な 成する面を	30% [J] -65 2-1 *30% [J] Ef-gb 4		[成因] S:前新(Ghear) 利 (截面, 余銀, ス T:引っ張り(Sensio (羽毛状構造を):載減前れ目 (観嗣時または、 機械的に割れ	れ.ティット 目、一一 引 う) 様 の も の	「、断層岩 1日 その取扱詞))	·を伴う) *に

図 4.1 岩芯柱状図(07-V140-M01 孔) (11/20)

	孔名	07–	V1 40-M0 1	深月	迂 1	[m]	縮尺									
	RQD			コア[回収率		7	1	[%]	記	載者	Ť				
1	皆石名	珪	澡 質泥岩 │		<u>級区分</u>	<u> </u>		-L	<u>a</u> +	5	載日	-	2008.	2.	17.	
深度 [cm]	岩相·	風化	⊐ア 写真	割れ日割れ日	本致 亡れ目断面図	<u>f: 0</u> 番 号	タイプ	[傾斜角度	<u>2本</u> , <u>0</u> 割れ目 の特	<u>一:</u> 1百 後	断層岩	成因	その他記載 (新れ目売裏機な)		也調 [[*a *b]	硬さ[-]
			St. Jr.		- · · · · · · · · · · · · · · · · · · ·				· · · · · · · · ·	· · · · ·	•••		·····			
 -20-			調						· · · · · · · · · · · · · · · · · · ·	· · · ·						
 -30-	暗灰色を	<u></u> 呈する。		31		· · · · ·	 	 80			· · ·	 S				
-40-	均實。			39		· · · · ·	 		- 22	· · · · ·	· · ·					
							•									
									· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
-60-									· · · · · · · · · · · · · · · · · · ·	· · ·			11.41~12.00m 機械割れによる	· · ·		
-70-													周標₹↓コア。 一部、鏡肌、条 ステップが有り 剪断割れを伴う	線、		
-80-									· · · · · · · · · · · · · · · · · · ·	· · · · ·						
-90-									·	· · · ·	•••					
	[タイプ] hf: 妻着着着 f : 非限口面(SS: 鏡側((ス SS: 気)) SS: 気) 気(スリック) - : なし	れ目 割れ目 D特徴] lokenside) が リッケンライン リッケンライン ンステップ (s の上整例の相	要められる ン) (alickontine) が選め ン)のレイク角を記載 山になったり、7個めらえ (対的な変位方向を記 対的な変位方向を記	06h3 fts b6h3 fts l3 t t t	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	う割れ目 貫と岩片が きう割れ目 きう割れ目 き貫と岩片 と増を構成目 上増な断層	また。 本面 素面 素面 物 で 数 で 物	で、破 Fbt, T 結で, i をfet, g を伴	辞当片の含 、端を構成す 夜砕岩片の 下端を構成 う割れ目	有率が3 る面を1 合有率が する面を	10% DJ _ - bb 21 *30% DJ 27-gb 2		[成因] S:剪新(chear)割 (鏡肌,余様,ス T:引つ琴り(consion (羽毛状構造者) D:機械割れ目 (観測時または、 機械的に割れ	1日 プ テッ割 デ う) 後の たもの	・・・ , 新層者 目 の取扱時)	を伴う) ・(こ

図 4.1 岩芯柱状図(07-V140-M01 孔) (12/20)

	孔名	07-	V1 40-M 01	深度	1:	2.00	[n] ^	- 13.0	0	[m]	縮尺		
	RQD		30	コア回収率	<u>k</u>		10	00	[%]	記載	ŧ			
1	皆石名	玨	澡質泥岩 └─────	岩盤等級区	分		<u>M、</u> ≹	<u>すり、</u>	CL-L	記載	<u>=</u>	2008. 2	2. 17.	
深度 [cm]	岩相·	風化	コア 写真	<u>割れ日本</u> 愛 割れ日 模式断面	<u>x n-</u>	<u>r: 2</u> 番 号	タイプ	[傾斜角度]	<u>4本</u> , <u>0</u> 一 割れ目間 の特徴	□ 断	成因	その他記載 (新れ目充填物など)	۵ اللہ اور	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。			· · · · · · · · · · · · · · · · · · ·							12.00~12.24m 機械割れによる		
												角礫状コア。 一部、鏡肌、条線 ステップが有り、 剪断割れを伴う。		
-20-			7	23	22	12–1 12'–1	 f. h-f	 40 	SS		s			
-30-					- 29 - - - - -									
-40-				42		- 12-2	 –	 0 90	 SS - (ST -	D 5			
-50-				48	48 - - - - -	12–3 12'–2	f h-f	5 60 	SS - (2 	ST - 30) 	S -			
-60-				63	- - - - - 62	12-4	 f	 40	SS SL (100)		 s			
-70-														
 -80-			2									12.63~13.00m 機械割れによる 岩片状~角礫状		
90-												コア。 しばしば鏡肌有り 一部、条線、ステ・ プが有り、剪断割 を伴う。	 ที่	
	[タイプ] hf:癒着剤 f:非口面 SG:鏡和日面(SS:鏡線(ス SL:条線(ス ST:スリッケ 割なし = :なし	れ目 割れ目 10特徴] liokenside) が リッケンライン - ンステップ(の上整備の相	「観められる ン) (slickenline) が聞ん ンのレイク角を記載 ilickenstep) が認めら i対的な変位方向を言		▲ 一 礫礫礫でした 業業ではのをはの色 当当年 通りた	割れ目 にと岩片がす う割れ目片 に増な新聞 調査な新聞	」 「「こう」 「こう」 「こう」 「こう」 「こう」 「こう」 「こう」 「こ	で,破 f bt,] 結で, i をf-gt, j質を伴	砕岩片の含有準 「増を構成する可 液砕岩片の含有 下増を構成する う割れ目	iが30%以、 iをf-bbと 車が30%」。 面をf-gb	上記入り下と記入	[成因] S: 剪新 (shear) 割れ目 (第二, 条線, ステ T: 引つ張り (sension) (羽毛状構造を伴う D:職被割れ目 (観削時またはその 機械的に割れたも	- リプ, 新層岩 リれ目) 後の取扱 (の)	を伴う) 寺(こ

図 4.1 岩芯柱状図(07-V140-M01 孔) (13/20)

	孔名	07-	V1 40−M0 1	深度	1	3.00	[n] ^	- 14	.00		[m]	縮尺			
<u> </u>	RQD		44		<u>客</u>		10	00	[%]	記	載者	Ť				
1	石名		澡質泥岩	_ 岩盤等級図			<u>M, C</u>	<u>L-H</u>	<u>、有り </u> 	<u>12</u>	載E		2008.	2.	17.	
深度 [cm]	岩相·	風化	コア 写真	<u>割れ日本</u> 割れ日 模式断面	<u>x h−</u> x	<u>t:</u> 番 号	<u>承</u> , タイプ	1. 傾斜角度	<u>5本, o</u> 割れ目 の特 ⁴	<u>+:</u> 面 徴	02 断層岩	成因	その他記載	č	巴調 [L *a *b]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。				· · <u>-</u> ·	· <u>-</u> ·	Ō				D				
-10-			10	16	1 5 17	- 13-1 13-2	 - f	0 5 5	 SS - SS -	- ST		D S S		· · ·		
-20-						- . 13-3 f .	. 0. .80	ss -	ST (80)		. D. .S.				
-30-				31	29 30 	_ 13-4 13'-1	- f . . f . . h-f	0 50 60		- ST (110) -	-	D .\$.				
-40-				30		- 		•	• • • •		-	D	12.37~12.50m 機械割れによる 角礫状コア。 一部、鏡加、条相	線、		
-50-				54		<u>.</u> .	· <u>-</u> ·	[°] 10		·		D	ステックか 有り、 剪断割れを伴う	•		
-60-					56				(90)							
						 	 _ 	 0	- · · -	· · · ·		D				
80-									· · · · · · ·					· · ·		
									· · · · · ·							
-90-									· · · · ·	· · · ·				· · •		
	[タイプ] hf: 意来 f: 引 新 索 着 新 言 行 引 記 前 に 前 記 新 索 着 訳 同 同 で 。 S に 、 第 索 者 言 つ で に 、 記 う 着 素 索 記 う う 言 、 一 で ま 来 記 う う 言 、 示 記 書 示 記 言 、 言 、 示 に 、 記 う 言 、 二 、 示 に の う う う に 、 の う う に 、 の う う に の の の う つ に の う う う う う う う う う う う う う う う う う う	れ日 割れ日 2時様[] llokenside) が リッケンライン リッケンライン ンステップ (a の上芸術の希	観められる ノ) (alickonline) が思 ノ)のレイク角を記載 (jickonteg) が闇めらう 対的な変位方向を記	 「新聞台」 「中 新聞角 新聞角 「 新聞力 」 51 55 13 - :なし 第 5 5 5 5 5 5 5 5 5 5 5 5 5	藤を伴う 藤健の りつうジは うつうた 黒色 第	う割れ目 貫と増片がす い日 「すう割れ目 に増を構成目 に増な新属 間粒な新属		iで,破 f-bt, 1 結で, i をf-gt, j質を伴	辞岩片の含 「増を構成す 数砕岩片の1 で増を構成 う割れ目	有率が3 る面を↑ 5 有率か	0%[일.] -bb 논] (30%]일 2f-gb 4	 配入 下 上記入	[戌四] S:剪筒(shoar)割れ (値肌 条線,ス T:引っ張り(tanaion (羽毛状構造を作): 機械調れ目 : 機械的に割れ 機械的に割れ	1日 プル テッ割う) そう) そうの後の	, 新層岩 目 の取扱問)	を伴う) NC

図 4.1 岩芯柱状図(07-V140-M01 孔) (14/20)

図 4.1 岩芯柱状図(07-V140-M01 孔) (15/20)

	孔名	07–	V1 40−M 01		深 度	1	5.00	[m] ^	~ 1	6.00		[m]	縮尺			
	RQD		31		コア回収率	<u>K</u>		1	00	[%]	i.	載き	Ť		•	-	
1	岩石名	建	藻質泥岩 「 「 「		岩盤等級区	分		<u>-М、</u>	<u>有、(</u>			!載 E	<u> </u>	2008.	2.	17.	
深度 [cm]	岩相·	風化	コア 写真	<u> </u>	副れ日本愛 割れ目 模式断面開	(<u>h-</u>	<u>f: 0</u> 番 号	(本) タイプ	1. 傾斜角度	<u>3本</u> , 割れ の ^執	<u>o-f:</u> 目面 特徴	断層岩	成因	その他記載 (朝れ日充填物など	1	包調 [□ *ª *으]	硬さ[_]
	暗灰色を 均質。 新鮮。	呈する。 		2		- - - - -				• • • • •							
-10-						- 09 	- • 15-1•	• f •	10 -20	- ss -	- · - ·	- 	D S				
-20-						- - - -	-		- 5-	- : -		- 	D D				
						- - - - -	- 		0 10	- : - - : -	- : - - :		D D				
-30-							· · · · · _	 _		· · · · ·	·	·	 D				
-40-											·						
						 46	-	-	0	- : -		-	D	15.41~15.48m 機械割れによる 岩片~角礫状= 一部。鏡肌が有	17. 17.		
-50-				49 _ - -		- - - - -	15-2	f 	50 	SS S (13	;L – (0)	-	S	剪断割れを伴う	•		
60-				58		56 - -	15–3	 f 	 30	SS S (10	SL – 10)	- -	S	.15.57 <u>~</u> 15.68m_			
			2			- - - -					. <u>.</u>			機械割れによる 岩片〜角礫状= 一部、鏡肌が有 剪断割れを伴う	17. 19.		
-70-						- - - -	- 		0		 	-	D				
80-						-				· · · · ·	· · · · ·						
						- - - - -								15.85~15.88m			
-90-							-	-	30				D	ヘアークラック* 多い。	94) 		
						- - - -					 						
	[タイプ] h-f:癒着割割 f :非日面(SS:鏡観(ス SL:矣線(ス SL:スリッケ(SL:スリッケ(- : なし	れ目 割れ目 い特徴] llokenside) が リッケンライン リッケンライン ンステップ(a の上整領の	簡められる ン) (slickenline) が譲る ilokenstop) が認めら likkenstop) が認めら 対的な変位方向を記	かられ れる 「戦	[新居岩] f→:新居角) 所宿角, 新居角) f・g:新居力 f-g:新居力 f-g:新居力 f-g:新居力 i 示す: まま。 f-g: 新居力 i 示す: まま。 f-g: 新居力 f-g: 新居力 f-g: 新居力 f-g: たし	様を伴う 際な基準 からた伴う うジレクト	割れ目 関と岩片が引 ら割と岩構成引 に対応し に 開 粒な新眉	- 大面面を 「一」です。 「一」です。 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、	 f-bt,] 結で, をf-gt, 別賞を併	砕岩片の 下端を構成 取砕岩片の 下端を構成 う割れ目	含有率が する面を つ合有率が 成する面で	30%.QL_1 F-bb と1 b*30%.QJ をf-gb る		[成因] S:剪斯 (shear) 割れ (鏡肌, 余線, ス T: 引っ致け (tension (羽毛状構造を作 D: 鐵網和日 (観剤時またはそ 複根的に割れ)	1日 プオントレージョン (日) プオントレージョン (日) プオントレージョン (日) アオントレージョン (日)	、新層岩 1日 の取扱制))	を伴う) りに

図 4.1 岩芯柱状図(07-V140-M01 孔) (16/20)

図 4.1 岩芯柱状図(07-V140-M01 孔) (17/20)

	孔名	07–	V1 40−M 01		深度	17	7.00	[n] ^	• 1	8.00		[m]	縮尺			
<u> </u>	RQD		90		コア回収率	<u>x</u>		1	00	[%]	記	載者	1		-		
1	日名		灤質泥岩 ─────		岩盤等級区 問本日 古教	<u>分</u>			<u>-1、有</u> 。	<u></u>		載日	1	2008.	2.	17. –	
深度 [cm]	岩相·	風化	コア 写真	ī	<u>割れ日本</u> 致 割れ目 模式断面図	<u>n-r</u>	<u>: 0</u> 番 号	タイプ	1. 傾斜角度	<u>2本</u> , <u>(</u> 割れ の特	〕 目面 済徴	断層岩	成因	その他記載 (朝れ日先現物など		巴調 □*a *ら]	硬さ[_]
	暗灰色を 均質。 新鮮。	呈する。		- - - - -		- - - - - - - - -											
-10-				-		- - -											
				-							÷ • •						
				-	· · · · · · · · · · · · · · · · · · ·			. <u>.</u> .	Ō		: :_:	. <u>.</u> .	D.				
-30-				- - - - -							;						
						- - - -					• • •						
-40-						- - - -				· · · · · ·	· • · · •						
-50-			7	52		46 51	- 17–1	f	0 60	 SS S (8)	- L - D)	-	D S				
				59		- - - -	17 -2	·f·	-60	ss -	ST (230)	· _ ·	'S'				
-60-											· · · · · · · · · · · · · · · · · · ·						
-70-				- - - - - -		- - - - - - -					: : : · ·						
				- - - -		- - - -											
-80-				-		- - - -					• • • • •						
-90-											: 						
				- - - -		- - - - - - - - - - - - - - - - - - -				· · · · · ·							
	[タイプ] h-f: 第書 f : 計算 の-f: 間目面(SS: 条欄) 系 気 業績(ス ST: スリック(- : なし	れ目 相れ目 0 特徴] lokenside) が リッケンライン リッケンライン ンステップ (a の 土 整備の 相	置められる) (alickenline) が置。)のレイク身を配 対的な変位方向を配	。 られ れる 1戦	[新層岩] 「+b:新層角] 「+b:新層角] 「g:新層灯" る 新層灯" る 新層灯" - :なし	- - - - - - - - - - - - - -	割れ目 約と岩積成目 う間と岩内す う間を着成層	大る がす破れる 都を 固面 未る 静	iで、破i f-bt, 下 結で, 話 をf-gt, 賞を伴	降岩片の含 増を構成 取砕岩片の 下増を構成 う割れ目	有率が3 する面をf 含有率か する面を	10%以上 bbと! (30%以 ff-gbと	 B入 下 記入	[成因] S:寛新 (shear) 満れ (黄肌, 条銀, ス T:引つ強り(sension (羽弓状等違音作 D:養被前れ目 (観測時またはれ) 養体的に割れ)	い日 ファヨン キ う) そ の も の も の	, 新層岩 月 の取扱時)	を伴う) iに

図 4.1 岩芯柱状図(07-V140-M01 孔) (18/20)

	孔名	07–	V1 40-M0 1		深度	18	8.00	D	m] ^	. -	9.00		[m]	縮尺			
	RQD		34		コア回収率	<u>R</u>	-	1	00	[%]	12	載者	š				
1	皆石名	珪	藻質泥岩 └────		岩盤等級区	分			<u>M</u>	~		.載E	<u> </u>	2008.	2.	17.	
深度 [cm]	岩相·	風化	⊐ア 写真	Ē	副れ日 本愛 割れ目 模式断面日		<u>r: 0</u> 番 号	本,タイプ	t: 傾斜角度	<u>3本</u> , 割れ の ^料	<u>o-f:</u> 目面 寺徴	断層岩	成因	その他記載		包調 [□ *ª *≙]	硬さ[-]
	暗灰色を 均質。 新鮮。	呈する。 				-	 _				· · · ·		 D				
-10-											·			18.08~18.22m 機械割れによる 角礫状コア。 一部、鏡肌、条約			
-20-				21 - 			- -	 _ 	20 20	· · · · ·	 		D	ステップが有り、 剪断割れを伴う	•		
-30-						-	18–1	 f	80	SS (1	SL. – 60).	-	S				
-40-			Real and	37 - - - -		- 39 - 41	18-2 -	.f.	50 20	SS -			<u>.</u> S D				
 -50-										· · · · ·	· · · · ·						
 -60-				- - - - 61		- - - - - -	- -	 _	 70 •0		- ; - - ; -	 -	D.				
						 67	18-3	f 	40 	SS (SL – 10)	_ 	S 				
						- - - - - -		. <u>.</u> . _	 0				 D				
-80-						- · · · ·					· · · · ·						
-90-			1				-10 				.D.				
	[タイプ] h-f:垂着 f :非要日面 f :非要日面 S: 第10日面 S: 集線 線(ス SI:条線 (ス ST:スリック f - :なし	れ目 割れ目 れ目 Jokenside)が Joyケンライン リッケンライン S リッケンライン の 上 整備の相	置められる ン) (alickonline) が置め いのレイク角を記載 対的な変位方向を記	- - - - - - - - - - - - - - - - - - -	[新暦岩] 「ひ:新暦角角 「ひ:新暦角角 「」「新暦角角」 「」「新暦着し」 - こなし	→ 課課課うううち	割れ目 にと構成す ごと構成目 注意に出た 意と岩氏 記 記 室 の 記 の に と 構成 目 が の に と 構成 す の と と 構成 す の に と 、 と 、 で の 、 と 、 と 、 、 の 、 の 、 の 、 の 、 の 、 、 の 、 の	大る がす破れる	iで,破 f-bt,] 緒で, ! をf-gt,	砕岩片の 防増を構成 下増を構成 下増を構 う割れ目	含有率が; する面を(の含有率な 成する面で	30% (J) ⊥ ⊢bb ≿i rt 30% (J) ≩f-gb d	 ■人 下 ■記入	【成四】 (京四】 (京町、伝統、朱敏、天 (羽石鉄溝進を刊 (羽石鉄溝進を刊 日:執新町水目 (観前)時日 (観前)時日 (観前)時日	日 デッ割れ ううう したのう	 新居岩 日 D取扱時	を伴う) (に

図 4.1 岩芯柱状図(07-V140-M01 孔) (19/20)

	孔名	07–	∨1 40- M01		深度	1	9.00	6	n] ^	د د	20.00		[m]	縮尺			
	RQD		58		コア回収率	<u>z</u>		10	00	[%]	Ē	載者	Ť				
1	皆石名	珪	藻質泥岩		岩盤等級区	<u>分</u>		<u>H, (</u>		<u>/、有</u>		!載 E		2008.	2.	17.	
深度 [cm]	岩相·	·風化	コア 写真	<u></u>	割れ日本第 割れ目 模式断面	<u>x</u>	<u>t:</u> 番 号	<u>承</u> , タイプ	1. 傾斜角度	<u>4本</u> , 割れ の	<u>o-t:</u> 月面 侍 徽	断層岩	成因	その他記載		巴調 [┙∗▫ •゚゚	硬さ[-]
	暗灰色を 均置。 新鮮。	呈する。		-		- - - - - - -					- 1						
-10-				-		13			0	- ;		-	 D				
-20-				-20 -			19–1	f	60	SS (SL - 80)	-	s 				
				- - - - -		- - - - -											
-30-				- - - - - -						· · · · ·							
40-			T				· · <u>-</u> · ·	· <u>-</u> ·			- :	·	D				
				- - - - -						,							
-50-				50 - 53 -	1	- 	- 19-2	·f·	0 · 0	SS	 SL ST	·	D S	No.19-2 割れ目低角のた SL、ST方向不明	ю.		
						56	-	· <u>-</u> ·	80 10	-		· -	- D D				
-00-				61 64		64	19-3	f	30	SS (SL - 160)	-	S				
-70-			-7	- - - - -			 -		80	-		 _	 D				
				- - - -	· · · ·)· · ·			 -	 0	- :		 -	 D				
-80-				· · •						· · · · · ·	· · · · ·						
-90-				- - - - -						·,-							
				- - - - -						·,-							
	[タイプ] h-f:電滞消 f :非書清消 o-f:間口有 [前れ目面位 SS:兼範(ス SL:条載(ス ST:スリッケ 割れ目(- :なし	れ目 割れ目 D特徴] liokenside)が リッケンライン リッケンライン マンステップ (s の上豊備の相	置められる) (slickenine) が聞)のレイク 月を記 lickenstep) が聞めら 対約な変位方向を記	められ れる !載	 [新暦岩] 「・5:新暦角 新暦角 新暦角 「「「「「「「「」」」 「」」 「」」 「」」 「」」 「」」	- 様様様 を体 が ジジジ の と 体 割 。 作 当 。 作 当 。 作 当 。 た や お う う う 、 、 や た お し た や お こ た や お こ や た お こ や た お こ や た わ た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た や お こ や た わ た わ た わ た わ た わ た わ た の 上 や お こ の た や お こ の た や お こ の た や お こ の た で あ こ や た わ た の こ や た わ た こ わ た こ か た こ か た こ か た こ か た こ か た で お こ の た で お こ の た で お こ の た は こ た ち こ の た は こ つ た は こ つ た は こ つ た は こ つ ち つ こ つ た は こ つ た こ ろ つ こ つ た こ ろ つ こ つ こ つ た こ こ つ こ つ こ つ こ つ つ つ こ つ こ つ つ つ こ つ つ つ つ つ つ つ つ つ つ つ つ つ	割れ目 割と岩片が引 載を割れ目 近て着れ目 に 気を 開 記 な 新 間 た 岩 片 が り に と 岩 片 が り に と 岩 片 が り に ろ 間 に ろ 門 の と 岩 に ろ 門 の と 当 門 の と ろ 門 の と ろ 門 の と ろ 門 の と ろ 門 の と ろ 門 の と ろ 門 の と ろ に ろ ろ の ろ の の ろ	 未面 新 	iで,破 f-bt,1 結で,1 をf-gt,)賞を伴	砕岩片の 5 増を構成 改砕岩片 5 増を構成 で増を構成 う割れ目	含有率が まする面を の合有率 。成する面	30% 및 J f-bb とi f*30% 및 をf-gb d	 記入 下 上記入	[成因] S:35前(cheer)割れ (黄肌、条種、ス T:引つ張り(cension) (切られ載量を相):機械剤れ目 (観削時またはそ 複額的に割れ)	 テップ, う割れ うう ともの)	新居岩: 目 2)取扱時	を伴う) ;に

図 4.1 岩芯柱状図(07-V140-M01 孔) (20/20)

図 4.2 総合柱状図(07-V140-M01 孔)

図 4.3 コア写真(07-V140-M01 孔)

4.2.1 岩芯の地質

深度 0.00~1.67m はノンコアである。深度 1.67m 以深は、すべて声問層に属する珪藻質泥岩 である。暗灰色を呈し、均質、新鮮である。

深度 5.68m、5.78m 付近に虫食い状の空隙が認められ、これは生痕化石の跡と推定される。

なお、深度 1.90~2.65m、4.30~4.44m は応力測定による円錐成形のため、深度 10.79~11.29m は孔壁崩壊のため、コア未採取(ノンコア)である。

4.2.2 岩盤等級区分

岩盤等級区分は、すべて CL 級であり、割れ目の状態によって CL-L~CL-H と区間ごとに変化する。

深度 1.0 (1.67) ~7.0m は CL-H を主体とし、ヘアークラックも認められる。深度 7.0~9.0m は CL-M および CL-L である。深度 9.0~10.0m は CL-H を主体とし、ヘアークラックも認められる。深度 10.0~13.0m は CL-L を主体とする。深度 13.0~16.0m は CL-M および CL-L を主体とし、一部、ヘアークラックも認められる。深度 16.0~18.0m は CL-H を主体とし、ヘアークラックも認められる。深度 18.0~20.0m は CL-M を主体とし、一部、ヘアークラックも認められる。

4.2.3 RQD

RQD(Rock Quality Designation)は、1 m の区間長のうち、長さ 10 cm 以上の棒状岩芯の比率 (%)である。したがって、割れ目によって細分した前記の岩盤等級区分とは密接な関係がある。

岩盤等級区分が CL-H 区間でノンコアの部分をのぞけば、RQD はほぼ 50 以上を示し、特に深度 16~18m は 84、90 と高い値を示す。CL-M、CL-L 区間では、RQD は 20~40 前後であり、 深度 11.0~12.0m はゼロである。

4.2.4 コア回収率

全区間のコア回収率は84.7%であるが、口切と円錐成形によるノンコア部をのぞけば97.1%となる。深度10~12m は孔壁崩壊のため、コア回収率も79%および71%と低くなっている。

4.2.5 割れ目

割れ目(機械割れをのぞく)のデーター覧を表 4.2(1/2)~表 4.2(2/2)に示す。

(1)割れ目のタイプ

全区間で割れ目は77本認められた。これらのタイプは非癒着割れ目(f)が66本で主体をなし、 残りは癒着割れ目(h-f)の11本である。開口割れ目(o-f)は岩芯観察の段階で確実なものは認め られなかった。

(2)割れ目の傾斜角度

岩芯に垂直な方向からの割れ目の傾斜角度の頻度分布を図 4.4 に示す。非癒着割れ目では、 0~40°が多く、50°を超えるものは少ない。癒着割れ目は、割れ目の形状が不規則、不連続で あることが多く、傾斜角度による顕著な傾向はない。

f : 非癒着割れ目

図4.4 割れ目の傾斜角度の頻度分布

(3)割れ目面の特徴

非癒着割れ目はいずれも鏡肌を有する。これらの一部には条線を有し、レイク角は50~160° である。また、一部、スリッケンステップを有し、変位方向は20~310°である。鏡肌、条線、 スリッケンステップは明瞭なものは少なく、レイク角、変位方向も一定せず、顕著な傾向はない。

なお、07-V140-M01 孔は 5°上向き傾斜で掘削したため、終点側(深度 20m)を上盤、孔口 側(深度 0m)を下盤としてレイク角、変位方向を測定した。

(4) 断層岩

断層角礫、断層粘土等を伴うなどの明確な断層は認められなかった。しかし、深度 8.10~8.75m、 10.53~11.29m (孔壁崩壊を含む)、11.40~12.24m、12.63~13.00m などの破砕状コア(角礫状、 岩片状)は、岩盤の弱部であり、破砕帯などの可能性が考えられる。

(5)割れ目の成因

割れ目の主体をなす非癒着割れ目は、鏡肌、一部には条線あるいはスリッケンステップが認め られることから、剪断割れ目である。また、機械割れによる破砕状コアのなかにも鏡肌、条線、 スリッケンステップが認められることがあり、これらは剪断割れ目を伴う。

表 4.2 割れ目アーター覧表(1/2	表 4.2	割れ目データ一覧表(1/2
---------------------	-------	---------------

	割オ	ι目深度	(m)	割れ目		傾斜	鏡肌	条	線	スリッケン	·ステップ	羽毛状構造	断層岩	
No.	上端	下端	中間	番号	タイフ	(°)	有無	有無	レイク(°)	有無	変位(゜)	有無	有無	成因
1	1.67	1.69	1.68	1-1	f	20	有	有	100	-	-	-	-	S
2	1.81	1.85	1.83	1-2	f	30	有	-	-	-	-	-	-	S
3	2.70	2.72	2.71	2-1	f	50	有	 	- 50	-	-	-		S
4 5	2. 72	3.03	2.13	2-2	f	30	有	- -	- 50	有	30	_	-	S
6	3.08	3.16	3.12	3-1	f	50	有	有	80	-	-	-	-	S
7	4.09	4.30	4.20	4-1	f	70	有	-	-	-	-	-	-	S
8	5.04	5.11	5.08	5-1	f	50	有	有	90	-	-	-	-	S
10	5.31	5.35	5.33	5-2 6-1	f	30	有右	有	100	 右	- 260	-	-	5
11	6.23	6.24	6.24	6-2	f	10	有	- -	- 00	有	100	_	_	S
12	6.37	6.39	6.38	6-3	f	15	有	-	-	有	20	-	-	S
13	6.72	6.79	6.76	6-4	f	40	有	-	-	-	-	-	-	S
14	6.86	6.87	6.87	6-5	f	20	有	-	-	有	290	-	-	S
15	6.86	6.90	6.88	6-6	f	60	有	-	-	-	-	-	-	S
10	7.30	7.39	7.39	7-1	f	10	有	_	_	有	310	_	_	S
18	7.43	7.44	7.44	7'-1	h-f	30	-	-	-	-	-	-	-	-
19	7.58	7.59	7.59	7-3	f	20	有	有	110	有	290	-	-	S
20	7.65	7.66	7.66	7-4	f	30	有	有	90	-	-	-	-	S
21	7.72	7.75	7.74	7-5	f	30	有	-	-	有	30	-	-	S
22	7.80	7.82	7.81	7'-6	f h-f	20	1 1	-	_	-	_	_	_	5
23	7.85	7.86	7.86	7-7	f	10	_ 	-	_	 	40	-	_	- S
25	7.86	7.88	7.87	7-8	f	45	有	-	-	有	80	-	-	S
26	7.91	7.91	7.91	7-9	f	0	有	-	-	有	-	-	-	S
27	7.96	7.97	7.97	7-10	f	15	有	有	50	-	-	-	-	S
28	8.00	8.20	8.10	8-1	f	70	有	有	90	-	-	-	-	S
29	8.86	8.88	8.87	8-2	f	40	有	-	-	有	40	-	-	S
31	8.90	8.91	8.90	8 -1 8'-2	h-f	20	-	_	_	_	_	_	_	_
32	8.92	8.93	8.93	8'-3	h-f	10	-	-	_	-	-	-	-	-
- 33	8.95	9.00	8.98	8-3	f	40	有	有	140	-	-	-	-	S
34	9.02	9.08	9.05	9-1	f	40	有	有	140	-	-	-	-	S
35	9.50	9.54	9.52	9-2	f	40	有	有	120	有	120	-	-	S
36	9.83	9.85	9.84	9 -1	h-f	20	-	- 5	-	-	-	-	-	- c
38	9.02	9.80	9.04	9-3 9-4	f	30	有	- -	- 100	有	50	_	_	S
39	10.06	10.17	10.12	10-1	f	70	有	有	80	有	175	-	-	S
40	10.33	10.37	10.35	10-2	f	30	有	有	140	有	220	-	-	S
41	10.51	10.55	10.53	10-3	f	30	有	-	-	有	50	-	-	S
42	11.29	11.31	11.30	11-1	f	80	有	-	-	-	-	-	-	S
43	11.39	11.41	11.40	11-2	f	40	有	-	_	-	_	-	-	S
44	12.22	12.20	12.24	12'-1	⊥ h−f	70	- -	-	_	-	_	-	_	-
46	12.42	12.48	12.45	12-2	f	90	有		_	有	120	_		S
47	12.48	12.48	12.48	12-3	f	5	有	-	-	有	230	-	-	S
48	12.48	12.55	12.52	12'-2	h-f	60	-	-	-	-	-	-	-	-
49	12.62	12.63	12.63	12-4	f c	40	有	有	100	-	-	-	-	S
50	13.15	13.15	13.15	13-1	I f	5	有	_	_	- 右	270	_	_	2
52	13.17	13. 29	13.24	13-3	f	80	有	-	-	有	80	-	-	S
53	13.29	13.31	13.30	13-4	f	50	有	-	-	有	110	-	-	S
54	13.30	13.36	13.33	13' -1	h-f	60	-	-	-	-	-	-	-	-
55	13.54	13.56	13.55	13-5	f	10	有	有	90	-	-	-	-	S
56	14.10	14.11	14.11	14-1	f	10	有	有	120	-	-	-	-	S
57 58	14.10 14.91	14.12 14.23	14.11 14.99	14-2	I f	30 40	有	_	_		- 130	_	_	2
59	14.27	14.29	14.28	14-4	f	40	有	有	100	-	-	-	-	S
60	14.68	14.72	14.70	14-5	f	70	有	有	100	有	280	-	-	S
61	15.07	15.09	15.08	15-1	f	20	有	-	-	-	-	-	-	S
62	15.46	15.49	15.48	15-2	f	50	有	有	130	-	-	-	-	S
63	15.56	15.58	15.57	15-3	f c	30	有	有	100	- +	-	-	-	S
04 65	16.22	10.11	10.11	16-2	f	70	 有		- 100	11	40	-	_	S S
00		10.00	10.00		-		1.4	1.4	100					

JAEA-Research 2009-004

No	割れ	1目深度	(m)	割れ目	カイプ	傾斜	鏡肌	条	線	スリッケン	·ステップ	羽毛状構造	断層岩	よ田
NO.	上端	下端	中間	番号	247	(°)	有無	有無	レイク(°)	有無	変位(゜)	有無	有無	成凶
66	16.28	16.44	16.36	16' -1	h-f	90	1	-	-	-	-	-	-	-
67	16.61	16.65	16.63	16-3	f	50	有	有	120	-	-	-	-	S
68	17.46	17.52	17.49	17-1	f	60	有	有	80	-	-	-	-	S
69	17.51	17.59	17.55	17-2	f	60	有	I	-	有	230	-	-	S
70	18.21	18.39	18.30	18-1	f	80	有	有	160	-	-	-	-	S
71	18.37	18.41	18.39	18-2	f	50	有	-	-	-	-	-	-	S
72	18.61	18.67	18.64	18-3	f	40	有	有	90	-	-	-	-	S
73	19.13	19.20	19.17	19-1	f	60	有	有	80	-	-	-	-	S
74	19.50	19.50	19.50	19-2	f	0	有	有	-	有	-	-	-	S
75	19.53	19.56	19.55	19' -1	h-f	80	-	I	-	-	-	-	-	-
76	19.61	19.64	19.63	19-3	f	30	有	有	160	-	-	-	-	S
- 77	19.64	19.66	19.65	19-4	f	10	有	-	-	-	-	-	-	S

表 4.2 割れ目データー覧表(2/2)

成因 S:剪断割れ目

タイプ h-f:癒着割れ目 f: 非癒着割れ目

5. BTV観察

5.1 作業概要

5.1.1 目的

BTV 計測は、ボーリング孔内の以下の壁面情報を連続的かつ詳細に取得・解析することを目的とする。

- ・ 割れ目の位置・方向などの分布特性
- ・ 割れ目の開口幅や形状に関する特性

5.1.2 BTV観察作業使用機器

BTV 計測の使用機器・機材一覧を表 5.1 に示す。

名称	型式	機能	数量	備考
BIP システム コントロール ユニット	BIP-LT	コントロールユニット 220m、ケブラーケーブ ル	1	展開画像作成・記録 プローブ制御機能 MO (640MB) ドライブ 5 芯ケブラーケーブル 破断強度 220MPa 有効計測長 220m
展開画像専用 プローブ	BPR-553	ボーリング孔壁画像 撮影カメラ	1	CCD カメラ(NTSC 準拠) 円錐ミラー 蛍光燈照明 磁気方位センサ φ50mm アクリル窓 φ50mm×1.40m 重量 10kg 観察可能口径 150mm
電動押し込み機		深度測定カウンター 0.25mm/Pulse	1	深度測定機能つき
バックアップ用 VTR デッキ	Sony 社製	DV ビデオデッキ	1	バックアップ画像録画

表 5.1 BTV 計測使用機器・機材

5.1.3 測定方法

BTV 計測装置は、株式会社レアックスが開発した BIP-LT を使用し、ボーリング孔の壁面観察 をおこなった。本システムは耐圧 10MPa(10N/mm²)のプローブと有効長 220m ケブラーケー ブルを組み合わせて使用し、最大計測長 220m までのボーリング孔壁の全周を連続孔壁面展開画 像として観察記録をおこなうことができる。また、本システムにおいて得られた 1 ライン 720 画 素、1 画素あたり RGB3 バイトのデジタルデータを室内解析システム上の CRT 上に再生し、割 れ目の走向傾斜計測などの解析をおこなうことが可能である。

システム構成は図 5.1 に示すとおり、現場システムと室内システムから構成される。現場シス テムを以下に示す。

- ・ プローブ(孔壁面画像を撮影するカメラ部)
- ウインチコントローラおよびケブラーケーブル・ウインチ
- ・ 電動押し込み機(深度計測機能付き)
- ・ 画像処理・プローブコントロールユニット(孔壁面画像展開記録・プローブ制御)
- ・ テレビモニタ

室内システムは以下のように構成される。

- Windows パソコン
- カラーコピー機(カラープリンタ)
- ・ 光磁気ディスクドライブ
- ・ 専用解析ソフトウェアから構成される。

図 5.1 BTV 計測システムの構成

5.1.4 解析方法

(1) 画像処理および割れ目データの取得

不連続面の走向傾斜の測定は、現場で記録した光磁気ディスクを読み出して室内解析システム の CRT 上に展開画像を表示する。CRT 上に展開画像に示される不連続面にフィットするトレー スライン(サインカーブ)を求めることによりおこなう。走向傾斜の計算は図 5.2 に示すような走 向傾斜の解析ルーチンによりおこなう。割れ目幅の測定は任意の2点間をマウスカーソルでポイ ンティングすることにより、実距離の表示・記録をおこなう。

図 5.2 面構造の走向傾斜の解析ルーチン

(2) 深度表記

深度とは、掘削基準面(切羽面)からボーリング孔に沿った掘削長を表す。

(3) 割れ目データの解析

画像データより取得した不連続面データは以下のような要領で整理し、割れ目の方向性、割れ 目密度等の解析をおこなう際の基本データとした。

①分布深度

- ・ 各面要素と孔壁の切合線の上端および下端、両者の中点を併記し、中点の深度は測定時の誤 差を補正する。
- ・ 表記は mabh(meter along borehole)単位とし、0.01 mabh(=1cm)精度とする。
- 表記深度は孔壁画像と岩芯を対比して地質的に深度基準点となる個所(岩相境界など)において深度検証をおこない、岩芯深度を基準として孔壁画像深度について補正をおこなった結果を記載する。

②走向·傾斜

- ・ 孔の全周の70%以上連続する面要素について計測をおこなう。
- ・ 算出にあたってはポイントの座標値(3点以上)を平均化するものとする。
- ・ 破砕帯および変質帯など、ある程度の厚さを有する面要素については、その上盤、および下 盤面の走向・傾斜を計測する。

③区分

面要素は以下の9つに区分する。

(a)明瞭割れ目

亀裂・節理などのうち、画像上で破断面の形状、連続性ともきわめて明瞭なもの。

(b)開口割れ目

明瞭割れ目のうち、特に、画像上で 0.1mm 以上の開口性が認められ画像上で開口幅の測定が 可能なもの。

(c)ヘアークラック

亀裂・節理などのうち、画像上で形状・連続性ともやや不明瞭で、また変質鉱物などの充填物、 面沿いの風化・変質などが顕著でない微細な割れ目。

(d)破砕帯上盤

断層破砕帯もしくは破砕部の上盤。

(e)破砕帯下盤

断層破砕帯もしくは破砕部の下盤。

(f)鉱物脈

方解石および石英など脈状の構造。

(g) 層理面

堆積時の層状構造(初生構造)で、明瞭な破断面が認められず、周囲の岩盤と一体化している もの。

(h)境界面

岩相境界および貫入岩と母岩との境界、方解石や石英などの充填鉱物と母岩との境界面で、明 瞭な破断面が認められず周囲の岩盤と完全に一体化しているもの。

④開口量

開口量は以下の基準で計測をおこなった。

・ 孔壁面と面要素との切合線の最大傾斜部分の幅を計測するものとする。

・ わずかな凹凸に対しては全体の平均を求めるものとする。

- ・ 幅の計測は拡大画像モードを使用する。
- ・ 表記は mm 単位とし、0.1mm 精度とする。

⑤形状

形状区分は図 5.3 に拠った。以下の 4 つを基本形とした。

P----平 滑 planar type

I----不規則 irregular type

C----波 状 curved type

S----ステップ状 stepped type

さらに、これの派生形として、以下の細分類をおこなう。

- -n :周方向に不連続なもの
- -h :付随割れ目を伴うもの

·j :他の主要な割れ目と交差するもの

-n/h :周方向に不連続で付随亀裂を伴うもの

-n/j :周方向に不連続で他の主割れ目と交差するもの

-h/j :付随割れ目を伴いかつ他の主割れ目と交差するもの

-n/h/j :不連続でかつ付随割れ目を伴い他の主割れ目とも交差するもの

ここでの付随割れ目とは、主割れ目から派生した不規則で微細な割れ目で、画像上で走向・傾斜の測定が不可能な割れ目である。また、主割れ目とは、画像上で周方向に70%以上の連続性を有し、走向・傾斜の測定が可能な割れ目である。

図 5.3 割れ目形状区分^[1]

⑥状態·備考

充填物の有無、面沿いの褐色化、変質などの状況、および境界面の細区分などを以下のような 要領で記載する。

(a)充填物介在 :割れ目内に充填物が認められるもの。

(b)褐色化:割れ目沿いに褐色に変色しているもの。

- (c)粘土化 :割れ目沿いに粘土化を伴うもの。下記(d)と比較すると、岩盤の堅硬な部分 ~漸移し、境界がやや不明瞭なもの。
- (d)粘土介在
 :割れ目内に粘土が充填されている場合で、岩盤の堅硬な部分との境界が明らかなもの。
- (e)角礫状 : 主割れ目周辺の岩盤が付随割れ目の発達により、角礫化している場合。

(f)変質帯上盤	: 画像上で著しい変色を伴う、変質帯とみられるゾーンの上盤。
(g)変質帯下盤	: 画像上で著しい変色を伴う、変質帯とみられるゾーンの下盤。
(h)白色鉱物	: 割れ目沿いに白色鉱物の脈、あるいは付着物がみられるもの。
	石英、方解石、白色年度などの粘土鉱物などが考えられる。
(i)有色鉱物	: 割れ目沿いに暗緑色の鉱物脈、あるいは付着物がみられるもの。緑泥石な
	どが考えられる。下記(j)と比較すると、画像上で境界が明瞭なもの。
(j)岩相境界	: 中粒花崗岩と細粒花崗岩の境界面など、母岩の岩相境界。
(k)岩脈	:アプライトなどの岩脈と母岩との境界面。
(1)セメンリング	: 割れ目などにセメントが付着または開口部に充填している。

(m)礫・マトリックス:母岩と礫の境界面。

5.1.5 BTV観察工程および作業数量

BTV 計測の作業工程を表 5.2 に示す。

表 5.2	BTV 計測作業工程および調査数量

孔番	計測区間	作業期間	備考
07-V140-M01	1.67~20.46mabh [※] 測定長 18.79 m	平成 20 年 2 月 15 日	

※:深度補正後の計測深度

5.1.6 BTV作業手順

(1) 撮影準備

撮影準備は、以下の手順でおこなう。

- 電源の確保・・・・・外部装置(記録装置、モニター、ケーブル駆動装置など)および撮影 装置に要する電気は、坑内の分電<u>盤</u>から確保する。
- 機材の接続・・・・・外部装置に孔内に挿入する測定プローブを接続する。
- 機材の動作確認・・・測定プローブの接続後、通電して機材の動作確認をおこなう。

孔内状況の確認・・・機材動作の確認後、測定プローブを試錐孔内に挿入し、孔内が計測可 能な状態にあるかどうかをモニター上で確認する。 孔内が濁りなどにより計測可能な状態にない場合は、状況を JAEA の 担当者に速やかに連絡し対応策を協議する。

(2) 孔壁画像撮影

モニター上において孔壁が十分に撮影可能な状態にあることを確認した上で、孔壁画像撮影を 開始する。撮影された画像は、MOディスクにデジタル情報として記録し、VTR 装置によりバッ クアップ画像として記録する。

(3) 記録データの確認・機材回収

孔壁画像撮影の終了後、取得データ(VTR、MOディスク)の精度や確度などの最終確認をお こない、JAEAの担当者の承認を得た後に、機材を回収する。 (4)報告・撤収

測定終了日の翌日までに孔壁画像を収録した、孔壁画像を記録した CD-ROM または MO ディ スクを作成して提出し、JAEA の担当者の確認を受けた後に撤収する。

(5) 割れ目情報の整理・解析

割れ目情報の整理・解析については、以下のような統計学的な解析をおこなう。

割れ目情報の整理

孔壁面から取得された割れ目などの情報は一覧表にまとめた。

②割れ目情報の解析

ステレオネット、πダイヤグラム、カウントダイヤグラム、コンターマップ、大円、ローズ ダイヤグラム、累積図、分布図、分散図、傾斜図などを用いた統計学的な解析をおこなった。

図 5.4 BTV 計測フローチャート

5.1.7 BTV画像の深度補正

BTV 画像の測定にあたっては、岩芯深度に極力一致させるとの観点から岩芯ならびに柱状図から特定ターゲットの深度を設定し測定時に深度を確認して合わせながら孔壁画像の記録をおこなった。

深度補正は、以下の手順に沿っておこなった。

(1) 基準深度の決定

岩芯観察結果と孔壁画像とを対比し、明らかに両者が一致すると分かる不連続面を抽出して深 度補正の基準点(以下、リファレンスポイント)とした。

(2) 深度補正

①リファレンスポイントの深度に対して、画像深度がこれに整合するよう修正する。各リファレンスポイント間の深度補正は、上位リファレンスポイントおよび下位リファレンスポイント間のずれを比例配分しておこなう。

②破砕帯、岩質不良区間が連続し、明確なリファレンスポイントが設定できない場合は、この 上下部分で、もっとも近接したリファレンスポイントから深度を確定する。

③深度誤差表を作成し、誤差率を求め一定の範囲に収束することを確認して計測深度を確定す る。このようにして確定した深度を解析に使用する(表 5.3 参照)。

- なお、岩芯との BTV 計測で取得された割れ目との比較においては、以下の理由により完全な 一致を見ていない。この原因として、次のような理由が考えられる。
- 地下水の濁りがある場合や、泥壁の影響により割れ目が読み取りにくいものがある場合、
 岩質(色調)と割れ目のコントラストの差が小さく判別しにくく取得できないものがある
 こと。
- ・ マイクロへアークラックなど、画像で割れ目と認識できないものがあること。
- ・ 割れ目が集中し、個別に判別することが困難なこと。
- ・ スライムにより孔壁面が見えない箇所があること。

No.	①BTV(mabh)	②岩芯(mabh)	深度誤差(①-②) (m)*	備考
1	1.670	1.670	0.000	ケーシング
2	2.751	2.720	0.031	割れ目
3	10.118	10.100	0.018	割れ目
4	20.460	20.460	0.000	孔底(ロッド残尺により確認)

表 5.3 07-V140-M01 号孔深度補正表

*:マイナスの誤差深度は、岩芯が深いことを示す。

5.1.8 画像状況

得られた画像は割れ目の抽出に支障はないが、壁面画像が不鮮明であるのでその状況と原因に ついて説明する。まず、展開画像の両端に、幾筋もの線が確認できる。これは、孔内からの湧水 が孔口へ絶えず流れている状況を示すものである。次に、図 5.5 に示すように、18.214mabh か ら孔底までの画像上には白色の線が数本認められる。これは、18.214mabh および 18.416mabh の割れ目からの湧水が、プローブのアクリル窓に付着したために撮影されたもので、孔壁の条痕 ではない。

図 5.5 プローブのアクリル窓に水滴が付着してできた白線

5.2 計測結果

BTV 計測の結果得られた観察記録を岩芯に合わせて深度補正をおこなった。深度補正を実施し た観察記録は、孔壁展開画像はカラープリントとして別冊の画像データ集に、割れ目などの不連 続面は 5.1.4 章の要領に従って一覧表としてまとめた。また、画像解析で得られた不連続面デー タを用いてステレオネット、割れ目密度図、岩盤状態図などを作成した。報告書には、特に記載 の無いものを除き深度補正後の深度を示した。

5.2.1 孔壁の概要

07-V140-M01 孔の深度 1.67~20.46mabh 区間で孔壁観察および記録を実施した。孔壁観察区 間の岩種は、泥岩であった。岩質が軟らかいため、孔壁にはコアチューブの出し入れ時にできた と思われる条痕が認められた。また、孔壁の上部には、深度方向にブレイクアウトと思われる模 様が確認できた。

5.2.2 割れ目の頻度

観察区間における不連続面の頻度を表 5.4 に示す。確認できた不連続面は、すべて割れ目に属 するものであった。1m あたりの割れ目本数は 1.38 本であった。 開口割れ目は、全体で 5 本 (0.27m/本)であった。

不連続面区分	本数	百分率(%)	本/m	備考
開口割れ目	5	19.2	0.27	
明瞭割れ目	18	69.2	0.96	
ヘアークラック	3	11.5	0.16	
破砕帯	0	0.0	0.00	
鉱物脈	0	0.0	0.00	
層理面	0	0.0	0.00	
境界面	0	0.0	0.00	
合計	26	100.0	1.38	
割れ目※	26	100.0	1.38	

表 5.4 BTV 計測区間における不連続面の頻度

※:開口割れ目、明瞭割れ目およびヘアークラックを合計したものの総称

5.2.3 不連続面の状況

点数は少ないが、割れ目沿いに角礫状のものが見られた。以下に不連続面の状況を表 5.5 にま とめた。

状態区分	本数	百分率(%)	本/m
褐色化	0	0.0	0.00
介在物挟む	0	0.0	0.00
セメンチング	0	0.0	0.00
角礫状	3	11.5	0.16
その他(無し)	23	88.5	1.22
合計	26	100.0	1.38

表 5.5 不連続面の状態

5.2.4 不連続面の方向性

計測された各不連続面の方向データを用いて図 5.6 から図 5.10 に示すシュミットネット(下半 球投影)を作成し、割れ目の方向性について解析をおこなった。結果を表 5.6 に示す。

- (1)全不連続面(BTV 観察の結果得られた、全ての面要素)(図 5.6)
 走向傾斜 N64E70N と N80E56N の中~高角部に集中する。集中度は 19%である。
- (2)割れ目(開口割れ目、明瞭割れ目、ヘアークラックの3区分を合計したもの)(図5.7) 全不連続面と一致する。
- (3) 開口割れ目(図 5.8)

E-W 走向、中~高角傾斜の傾向を示すが、集中度は低い。

(4)明瞭割れ目(図 5.9)

集中点は、走向傾斜N64E70Nを示す。集中度は22%である。傾斜は中~高角度が多い。

(5) ヘアークラック(図 5.10)

データ数は3ポイントと少ないが、全て NE-SW 走向 57~59°NW 傾斜の範囲にある。 (6) 破砕帯(破砕帯上端、破砕帯下端の合計)

観察されていない。

(7) 鉱物脈

観察されていない。

(8) 層理面

観察されていない。

(9)境界面

観察されていない。

不連続面区分	集中点	データ数	ピーク値(%)
全不連続面+	N64E70N	26	19
	N80E56N		
割れ目※	N64E70N	26	19
	N80E56N		
開口割れ目	-	5	20
明瞭割れ目	N64E70N	18	22
ヘアークラック	N73E58N	3	66
破砕帯*	-	0	-
鉱物脈	-	0	-
層理面	-	0	-
境界面	-	0	-

表 5.6 不連続面の集中点

+:壁面より計測されたすべての面要素の合計

※:開口割れ目、明瞭割れ目およびヘアークラックの合計したものの総称

*:破砕帯上端、破砕帯下端の合計したものの総称

5.2.5 割れ目分布と岩盤状況

岩盤の状態を示す主要なパラメーターと考えられる割れ目の分布状況・幅・密度についてまとめ、岩盤緩み状態図を作成した(図 5.11 参照)。岩盤緩み状態図とは岩盤評価の試みとしての ー手法であり、以下のチャートの複合図である。

(1)割れ目分散:割れ目の発達位置(深度)と大きさをプロット

(2) 1m 当たりの割れ目頻度:1m 当たりの割れ目の発達頻度

(3) 累積開口量曲線: 孔底を基準点として開口量を累積したもの

(4) 累積割れ目本数曲線: 孔底を基準として割れ目数を累積したもの

このうち、累積開口量曲線図および累積割れ目本数曲線図は岩盤性状の変化、特に割れ目に着 目し、岩盤の状態を判定するために考案された方法である。これらの傾きは岩盤内部に一定確率 で割れ目が発達するならば一定に表現され、断層破砕帯や地質変化などで岩盤状態が変化した場 合には変曲点として表現される。

割れ目頻度

割れ目全体では、平均 1.38 本/m (標準偏差 1.42) であり、最大 5.0 本/m である。表 5.7 に 割れ目の統計処理結果を示す。

②累積開口量曲線

開口量全体で 8.0mm と非常に少ないこと、また、開口割れ目が 5 本と少ないため明瞭な傾向は読み取れない。

③累積割れ

目本数曲線

割れ目数が26本と少ないため明瞭な傾向は読み取れない。

④割れ目密度(割れ目区分別)

- ・ 割れ目は平均 1.38 本/m である。割れ目区分としては、明瞭割れ目・開口割れ目・ヘアー クラックの順に多い。
- ・ 開口割れ目の分布状況では、傾向は読み取れない。

	割れ目全体	明瞭割れ目	開口割れ目	ヘアークラック	開口幅
平均	1.38(本/m)	1.04(本/m)	0.27(本/m)	0.16(本/m)	1.60(mm)
標準誤差	0.32	0.25	0.12	0.08	0.24
中央値(メジアン)	1	1	0	0	1.50
最頻値(モード)	0	0	0	0	1.50
標準偏差	1.42	1.12	0.55	0.37	0.55
分散	2.01	1.25	0.30	0.13	0.30
尖度+	0.77	2.01	4.66	2.78	2.92
歪度	1.13	1.47	2.24	2.12	1.29
最小	0(本/m)	0(本/m)	0(本/m)	0(本/m)	1.00(mm)
最大	5(本/m)	4(本/m)	2(本/m)	1(本/m)	2.50(mm)
標本数	26本	18本	5本	3本	5本
信頼区間(95%)	0.66	0.52	0.26	0.17	0.68

表 5.7 割れ	目の統計処理
----------	--------

+:データが平均のまわりに集中している度合いを示す尺度。分布について平均や分散以外の特性 を知りたい場合に利用される。

5.2.6 深度方向の割れ目系の傾向

深度方向の割れ目系の解析図を図 5.13 および図 5.14 に示す。

図 5.12 および図 5.13 は、Azimuth Versus Traverse Distance Plots 法の考え方により、割れ 目の方向を方位傾斜で代表させ、深度位置と割れ目の構造関係を 2 次元的に表現した AVTD 法^[2] による分散図とカウントダイヤグラム(AVTD 図と表示)であり、割れ目の傾斜方位を示してい る。カウントダイヤグラムは深度方向 1.00m、方位方向 10°のグリッドを用いて、グリッド内の 割れ目密度を示したものである。

(1) 傾斜方位の分布

傾斜方位 270°~30°間にデータが集中している。

(2) 傾斜角度の分布

全ての割れ目が40°以上の中~高角度を示す。

5.2.7 見かけ傾斜

全不連続面と透水性に影響を与えると思われる開口割れ目に着目して、その深度と見かけ傾斜の関係を見るために見かけ傾斜図を作成した。図 5.14 および図 5.15 は、ボーリング孔を掘進方位 300°で切断してそれぞれ左右から見たものである。どちらの断面においても、中~高角度の

不連続面が多いことがわかる。図 5.16 は、ボーリング孔の深度 10.0m と交差する仮想の水平面 に投影した不連続面の見かけ傾斜図である。

5.2.8 割れ目形状タイプ別の傾向

割れ目形状が平滑な P型と不規則な形状 (I型・C型・S型) という 2 つに分類して検討した。 ステレオ投影図を図 5.17~図 5.20 に、集中点を表 5.8 に示す。割れ目形状による分類は、P型・ C型・S型の形状で、中~高角度に集中する傾向がみられる。I型はデータにばらつきがある。

割れ目形状区分	集中点	本数	比率(%)
P型	N79E59N	12	46.2
I型		4	15.4
の刑	N69E60N	4	15.4
し生	N81E57N	4	
C 开I	N56E62NW	C	23.1
り生	N64E70N	Ö	
	合計	26	100.0

表 5.8 割れ目形状別の集中点

図 5.6 全不連続面シュミットネット

図 5.7 割れ目全体シュミットネット

データ数: 5/26 投影法: シュミット 下半球 (L.H)

データ数:5/26 投影法: シュミット 下半球(L.H)

図 5.8 開口割れ目シュミットネット

図 5.9 明瞭割れ目シュミットネット

データ数: 3/26 投影法: シュミット 下半球(L.H)

データ数:3/26 投影法: シュミット 下半球(L.H)

図 5.10 ヘアークラックシュミットネット

07-V140-M01

図 5.11 岩盤緩み状態図

07-V140-M01

<凡例)	>			
		傾	斜	範囲
0	:	0	~	30°
Δ	:	31	~	60°
×	:	61	~	90°

図 5.12 AVTD 分散図(割れ目全体)

07-V140-M01

<凡例> 表示範囲: 12 ~ 50 %

図 5.13 AVTD 図 (割れ目全体)

図 5.14 全不連続面見掛け傾斜図

図 5.15 開口割れ目見掛け傾斜図

開口亀裂

図 5.16 仮想平面上の見掛け傾斜図

図 5.17 割れ目 シュミットネット投影図(割れ目形状 P)

データ数: 4/26 投影法: シュミット 下半球(L.H)

データ数:4/26 投影法: シュミット 下半球 (L.H)

図 5.18 割れ目 シュミットネット投影図(割れ目形状 I)

データ数: 4/26 投影法: シュミット 下半球(L.H)

データ数:4/26 投影法: シュミット 下半球 (L.H)

図 5.19 割れ目 シュミットネット投影図(割れ目形状 C)

データ数: 6/26 投影法: シュミット 下半球(L.H)

データ数: 6/26 投影法: シュミット 下半球 (L.H)

図 5.20 割れ目 シュミットネット投影図(割れ目形状 S)

5.2.9 ブレイクアウト

孔壁の天盤付近に見られたブレイクアウトと思われる模様について、位置、長さ、孔壁 天盤からの距離を図 5.21 のようにして測定し、その結果を表 5.9 に示した。

表 5.9 には、ボーリング孔軸方向の情報として、始点・中間・終点の各深度とブレイクア ウトの全長、周方向の情報として、中間深度における孔壁天盤との距離(角度表示)、始点 から終点にかけて等間隔に 5 点計測した平均幅を記載した。

ブレイクアウトの計測は、21 か所について実施した。出現深度は、16mabh 以浅に集中 している。ブレイクアウトの発生位置は、孔口から孔底を見たとき、孔壁の上部左側に集 中し、天盤から 3~40°程度離れた位置に出現している。幅は、8mm 以下のものが多く、 10mm を超えるものは3点確認できたのみである。

図 5.21 ブレイクアウトの測定方法

莱	沒	程度(mabl	1)	公司	位墨		ブレー	イクアウ	クアウトの幅(mm)		
田 号	始点	終点	中心点	主政 (m)	心ല (°) *	始点	1/4 地点	中間点	3/4 地点	終点	平均值
1	1.920	2.427	2.174	0.507	-47.6	3.0	8.8	1.5	1.3	1.8	3.3
2	3.016	3.121	3.069	0.105	-30.2	1.0	12.5	5.0	12.9	1.3	6.5
3	3.348	3.400	3.374	0.052	-38.7	2.5	3.3	6.0	7.5	1.3	4.1
4	3.523	3.709	3.616	0.186	-40.3	3.5	14.5	5.5	2.3	3.5	5.9
5	3.962	3.980	3.971	0.018	-3.0	1.0	4.3	4.5	0.8	1.8	2.5
6	3.986	4.005	3.996	0.019	-18.9	2.0	5.0	4.3	2.0	3.0	3.3
7	4.249	4.280	4.265	0.031	-16.3	2.8	6.0	6.3	5.8	3.3	4.8
8	4.518	5.491	5.005	0.973	-24.6	10.8	10.3	26.3	36.8	2.3	17.3
9	6.007	6.034	6.021	0.027	-22.3	2.5	4.3	5.3	7.8	4.3	4.8
10	6.236	6.252	6.244	0.016	-30.6	1.3	3.3	4.5	3.3	0.0	2.5
11	6.291	6.364	6.328	0.073	-20.4	3.0	3.3	4.8	7.5	1.8	4.1
12	6.391	6.433	6.412	0.042	-15.9	3.0	2.5	2.5	3.5	3.0	2.9
13	6.462	6.558	6.510	0.096	-31.0	6.8	10.0	2.5	11.0	8.3	7.7
14	6.571	6.616	6.594	0.045	-21.2	2.3	6.0	9.5	14.0	2.8	6.9
15	6.631	6.944	6.788	0.313	-35.9	8.3	20.8	1.3	19.6	2.0	10.4
16	7.770	7.917	7.844	0.147	-29.1	2.8	4.3	7.8	9.3	2.5	5.3
17	8.025	8.072	8.049	0.047	-24.2	3.0	12.8	12.0	7.8	3.5	7.8
18	11.929	12.056	11.993	0.127	-14.7	1.8	5.5	22.3	13.5	2.8	9.2
19	13.841	13.883	13.862	0.042	-20.0	4.0	7.8	6.5	5.0	1.3	4.9
20	14.376	15.016	14.696	0.640	-4.2	3.5	15.0	1.3	1.8	0.5	4.4
21	15.391	15.404	15.398	0.013	-35.1	0.5	1.3	3.0	0.8	1.0	1.3

表 5.9 ブレイクアウト一覧表

*: Uを起点として R 方向が正(図 5.21 参照)

5.3 まとめ

07-V140-M01 孔の観察、解析結果を以下にとりまとめる。

5.3.1 割れ目系の頻度・密度

観察区間全体の傾向として、割れ目頻度は非常に低く、平均 1.38 本/m である。割れ目は、 明瞭割れ目が全体の 69%を占め、ヘアークラックは少ない。また、開口割れ目は全体の 19.2% (0.27 本/m) である。層理面、鉱物脈、境界面などは BTV による観察では認められなかっ た。割れ目の頻度を表 5.10 に示す。

不連続面区分	本数	本/m	割合(%)	備考
全不連続面	26	1.38	100.0	BTV 計測区間全体
割れ目+	26	1.38	100.0	
開口割れ目	5	0.27	19.2	
明瞭割れ目	18	0.96	69.2	
ヘアークラック	3	0.16	11.5	

表 5.10 割れ目頻度

+:開口割れ目、明瞭割れ目およびへアークラックの合計したものの総称

5.3.2 割れ目分布と岩盤状況

開口割れ目の開口量は 1.00 ~2.50 mm で、平均 1.60 mm (標準偏差 0.55)、累積開口量 は 8.00mm であった。累積割れ目本数曲線および累積開口量曲線からは岩盤の性状変化を 示す変曲点は見出せなかった。

5.3.3 割れ目の方向性

割れ目の方向性をまとめると、表 5.11 に示すようである。全ての割れ目が中~高角部に 集中する傾向があり、ピーク値は 30%以上を示す。割れ目の形状別の方向性をみると、I 型を除く全ての形状で、中~高角度に集中している。

AVTD 図により解析した深度方向の傾向をみると、傾斜方位は、傾斜方位 270~30°間 に集中し、傾斜角度は全ての割れ目が 31°以上の中~高角度に分布する。深度方向にはは っきりした分布傾向は認められない。

不連続面区分	集中点	データ数	ピーク値(%)	
今不浦結西	N64E70N	96	10	
王个理税囬	N80E56N	20	19	
生い 日*	N64E70N	96	10	
台14 0 日	N80E56N	20	19	
開口割れ目		5	20	
明瞭割れ目	N64E70N	18	22	
ヘアークラック	N73E58N	3	66	

表 5.11 割れ目の方向性

*:開口割れ目、明瞭割れ目およびへアークラックの合計したものの総称

6. 応力解放法による初期応力測定

岩盤に作用する応力の大きさと方向を測定する方法として、応力解放法、水圧破砕法、フラットジャッキ法、コア法などが挙げられる。このうち応力解放法は、岩盤の応力測定法として信頼性の高い方法であり、地下空洞での適用実績も多い^[3]。応力解放法は、コアリング(オーバーコアリングと呼ぶ)に先立ってコアの中心部のパイロット孔に変位計あるいはひずみ計などのセンサを設置し、コアリングに伴う除荷時の変形挙動を弾性理論に基づいて解析することによって岩盤の3次元的な応力状態が求められる。

小型試錐座の 07-V140-M01 孔と 07-V140-M02 孔では、地下施設周辺岩盤の初期応力状態を 把握することを目的として、応力解放法のひとつである円錐孔底ひずみ法^{[4][5][6]}による初期応力測 定をおこなった。円錐孔底ひずみ法においては、円錐形に加工・研磨した孔底面に 16 枚のひず みゲージ (ストレインセル)を確実に接着することが必須である。しかしながら、当該岩盤はビ ットによって円錐加工・研磨すると、孔底面に粘土状のスライムが形成されたため、ストレイン セルを接着することはできなかった。さらに、ボーリング孔まわりの応力集中によって孔壁ある いは孔底が破壊したため、応力解放法の基本仮定である岩盤の線形弾性仮定を適用できないばか りでなく、孔底の円錐加工も困難となる場合があった。このため、07-V140-M01 孔を深度 11.89m まで掘削した段階で、応力解放法による初期応力測定を中止せざるを得なくなった。ここでは、 応力解放法の適用を断念し、それに代わる初期応力の測定方法として水圧破砕法を採用するまで の経緯について述べる。なお、以下では 07-V140-M01 孔、07-V140-M02 孔および 07-V140-M03 孔を、それぞれ単に M01 孔、M02 孔および M03 孔と呼ぶ (図 3.1 参照)。

6.1 円錐孔底ひずみ法による初期応力測定

円錐孔底ひずみ法による初期応力測定は、一般に次のような測定手順に従っておこなわれる (図 6.1 参照)。

① パイロットボーリング

所定の深度まで 76mm パイロットボーリングをおこなう (図 6.1①参照)。

② パイロットボーリングコアの観察

パイロットボーリングコアを観察し、孔底付近に割れ目が認められないことを確認してストレ インセル設置深度を決定する。

③ 孔底の円錐加工

荒削り用の円錐ビットによって孔底の円錐加工をおこない、その後も孔底に清水を送り続け、 孔底面からできるだけ掘削屑を除去する(図 6.1②参照)。

④ 孔底観察

ボアホールボトムスコープによって円錐孔底面を観察し、円錐孔底面に割れ目や湧水が認めら れないことを確認する(図 6.1③参照)。

⑤ 孔底面研磨仕上げ

仕上げ用の円錐ビットで孔底面を研磨し、その後孔底に清水を送り続け孔底面から掘削屑を除 去する(図 6.1④参照)。

⑥ 孔底面清掃

孔底面清掃用器具を用いて、柔らかい布で孔底面を拭き、さらに乾燥した柔らかい布で孔底面 の水分を拭き取る(図 6.1⑤参照)。

⑦ ストレインセルの貼付

ストレインセル貼付装置を用いて、貼付面に接着剤を塗布したストレインセルを円錐孔底面に 貼付し、貼付したストレインセルの回転角を測定する(図 6.1⑥参照)。

⑧ オーバーコアリングの準備

接着剤の硬化後、ストレインセルのケーブルをオーバーコアリング用薄肉ビット、ボーリング ロッドおよびウォータースイベルの中を通し、ケーブルをデータロガーに接続する。

⑨ オーバーコアリング

オーバーコアリングの長さは 300~500mm を標準とするが、岩盤に含まれる割れ目の分布状況や岩盤の強度によって変化することがある。オーバーコアリングの実施にともない、掘進長を変位計で測定するとともに、掘削の進行にともなうひずみの変化を測定する。ひずみの測定間隔はオーバーコアリングの掘進長 2~5mm の範囲ごとに1回とする。

⑩ 解放ひずみの決定

オーバーコアリングで得られる掘進深度を横軸に、ひずみ変化を縦軸に図化する。このひずみ 解放曲線図において、オーバーコアリング最終段階のひずみの値を読み取り、これを解放ひずみ とする。

① コア回収

オーバーコアリング終了後、コアチューブを引き出してコアを回収する。

図 6.1 円錐孔底ひずみ法による初期応力測定手順

6.2 ストレインセルの接着試験

円錐孔底ひずみ法の測定手順から分かるように、円錐加工・研磨した孔底面にストレインセル を確実に接着することができなければ、ケーブルのハンドリングあるいはオーバーコアリングの 際に、ストレインセルが円錐孔底からはく離して、オーバーコアリングにともなうひずみの変化 を測定することはできなくなる。ストレインセルが岩盤に確実に接着できるかどうかは、対象と なる岩盤の研磨面の性状、使用する接着剤などに影響される。そこで、あらかじめ換気立坑 140m 小型試錐座付近から採取した塊状の岩石を用いて、ストレインセルの接着試験を実施した。

試験の経過は、図 6.2 に示すとおりである。まず、岩石をボール盤に固定し、実際の円錐加工・ 研磨に使用する円錐ビットを用いて岩石の表面を円錐形に加工した(図 6.2(a)参照)。円錐加工・ 研磨にともなって発生する掘削屑は、清水を送りながら除去した。図 6.2(b)は、円錐加工・研磨 が終了した岩石である。

次に、孔底を模擬した円錐形のくぼみを、やはり実際の現場で使用する孔底面清掃用器具を用いて拭き取った。孔底面清掃用器具の先端には、乾燥した脱脂綿をガーゼで包んだタンポンがついている。図 6.2(d)は、孔底面清掃用器具を新しいものに交換しながら、8 回目の清掃をおこなったときの状況である。清掃用器具を交換するたびに汚れは少なくなったが、タンポンの表面には依然として汚れが付着した。円錐形のくぼみの表面は完全に乾燥せず、湿気を帯びていた。

くぼみを8回清掃した後、円錐孔底ひずみ法で実績のあるシアノアクリレート系の瞬間接着剤 をストレインセルに塗布し、ストレインセルを一定の圧力で10分間圧着した(図6.2(e)、図6.2(f) 参照)。10分後にストレインセルを持ち上げると、岩石試料はストレインセルとともに持ち上が り、ストレインセルは孔底を模擬したくぼみに完全に接着していた。現場でのハンドリングの際 に受けると思われる程度の衝撃をストレインセルに加えたが、ストレインセルは岩石試料からは く離しなかった。

以上の室内試験から、孔底面の汚れを完全に取り除くことはできなくても、孔底面清掃の回数 を増やすことで円錐孔底面に若干の湿気が残る程度まで乾燥させることが可能であり、シアノア クリレート系の瞬間接着剤によるストレインセルの接着は可能であると判断された。

(a) 円錐加工・研磨

(b)洗浄開始

(e) 接着剤を塗布したストレインセル

(f) 接着・硬化待ち 10 分間

(c)洗浄1回目と2回目

(g) 接着状態

(d) 洗浄7回目と8回目

図 6.2 ストレインセルの接着試験

6.3 小型試錐座における応力解放試験

M01 孔では、ボーリング孔底の円錐加工を8深度で実施し、このうち3深度でストレインセル 貼付作業をおこなった。M02 孔では1回の円錐加工をおこなったのみである。そこで、ここでは M01 孔における円錐孔底ひずみ法による応力解放試験について述べる。

表 6.1 は、M01 孔における応力解放試験の試験状況をまとめた結果である。ここに記載した湧 水箇所、孔壁のブレイクアウト発生箇所および孔壁崩壊箇所は、M01 孔にボアホールボトムスコ ープを挿入し、孔内観察をおこなって確認した。深度 1.99m、深度 2.33m、深度 2.65m、深度 4.43m では、乾燥した布を交換しながら孔底面清掃を 10 回繰り返した。孔底面のスライムや汚 れが除去されると、孔底面清掃を繰返しおこなうことで布に付着する汚れは徐々に減少する。し かし、当該岩盤では繰返し孔底清掃をおこなったが、布に付着する粘土質のスライムと湿分はほ とんど減少しなかった。図 6.3 は孔底清掃後に回収した孔底面清掃器具の例である。孔底清掃を 繰り返しても円錐孔底面のスライムを除去できていないことがわかる。

この原因は次のように説明できる。まず、当該岩盤に掘削したボーリング孔底を円錐ビットに よって円錐加工・研磨すると、孔底面に粘土状のスライムが形成される。これを除去しようとし て柔らかい乾燥した布で拭き取ろうとしても、岩盤からしみ出る地下水によって孔底面が常に浸 潤されるため、布と孔底面の摩擦によってさらに粘土状のスライムが生成される。このため、孔 底清掃を繰返しおこなっても孔底面から粘土状のスライムを取り除くことは困難であると考えら れた。

深度 2.33m と深度 4.43m では、シアノアクリレート系の瞬間接着剤で円錐孔底面にストレインセルを接着しようとした。しかし、深度 2.33m ではストレインセルは孔底面に接着せず、貼付装置とともに回収された。また、深度 4.43m ではオーバーコアリング開始直前にストレインセルが孔底からはく離した。

深度 2.65m では、水中でのストレインセル接着で実績のあるエポキシ系の接着剤を使用した。 接着 12 時間後にオーバーコアリングを開始したが、ストレインセルはコアリング直後にはく離 した。深度 5.34m では、孔底を円錐加工した後、12 時間放置した。これは、孔底面からしみ出 る地下水が時間に依存して減少することを期待したためである。しかし、12 時間後に孔底清掃を 繰り返しおこなっても、孔底面清掃器具の汚れと湿分は減少せず、スライムを取り除くことはで きなかった。

深度 7.59m および深度 9.28m では、孔底の円錐加工後にボアホールボトムスコープによる孔 内観察をおこなったところ、円錐孔底面は破壊していることが確認され、この原因はボーリング 孔底まわりの応力集中にあるのでないかと考えられた(図 6.4 参照)。このことは、測定対象とす る岩盤に対して応力解放法の基本仮定である線形弾性仮定を適用できないばかりでなく、孔底面 を円錐形に成形することも容易でないことを示していた。

以上より、M01 孔の深度 11.89m までの試験状況に鑑み、小型試錐座まわりの岩盤に円錐孔底 ひずみ法を適用することは、技術的にも理論的にも困難であると判断された。なお、 M02 孔で も、深度 17.30m で孔底の円錐加工後、孔底清掃を4回繰り返したが、やはり孔底面のスライム と湿分を除去することはできなかった。

図 6.3 孔底掃除後に回収した孔底面清掃器具の汚れ (左端が第1回目、右端が第4回目の孔底清掃結果)

図 6.4 破壊した M01 孔深度 9.28m の円錐孔底

	12								
		創場		0					
	11	····· [
	10								
兄		\frown	82.6			1	ブレイクアウト		
験状	9			0					
军放討	8				•				
応力角		\frown	6912	0		1	ブレイクアウト		
571	7								
り法に									
CV fr.	9	•					著しいそれと思り、		
隹孔底			\$°.3			6	一昼夜放置後も湿り		
る円争	5		\$\$. \$		•	2	著しい汚れと湿り		
おけ	1		64.43			10	少ない汚れと湿り	シアノアクリレート系	OC 前剥離
1 FL/C	7				•				
MO	3		60.2			(
₹ 6.1		\land	2.33			0 1(着 く ちぃ こ起り書しい汚れと湿り	Hがも少成 Hがも少成 H	安省 OC 中剥離
μ <i>Μ</i> ι	2	\wedge	66.I			10 1	著しい汚れと湿り		
	1								
	深度(m)	#刘 底梁贲(m)		火 箇所	のブレイクアウト	铥清掃回数(回)	锥孔底状況	用接着剤	ずみセルの接着 兄
		H H		湧7	孔虛	FLI	Ë	便	状で

6.4 結言

小型試維座において円錐孔底ひずみ法による応力解放試験を実施した。まず、M01 孔と M02 孔で、それぞれ 8 回および1 回の円錐加工・研磨をおこない、M01 孔ではストレインセルン貼付 を 3 回実施した。しかしながら、円錐ビットによる円錐加工・研磨にともなって円錐孔底には粘 土状のスライムが生成された。これを拭き取ろうとして孔底清掃を繰り返しても、岩盤から地下 水が染み出して孔底面が常に浸潤されるため、清掃器具と孔底面の摩擦によってさらに粘土状の スライムが発生するという悪循環が生じた。これに加えて、ボーリング孔底まわりの応力集中に よる円錐孔底面の破壊現象も観測された。このため、M01 孔を深度 11.89m まで掘削した段階で、 当該岩盤に円錐孔底ひずみ法による応力解放法を適用することは容易でないと判断された。そこ で、応力解放法に代わる初期応力測定法として、ボーリング孔壁へのセンサの設置を必要とせず、 かつ、オーバーコアリングを必要としない水圧破砕法を適用することが考えられた。水圧破砕法 では、一般的にボーリング孔軸と直交する面内の 2 次元応力状態に関する情報が得られる。した がって、小型試錐座まわりの 3 次元初期応力状態を把握するためには、方向の異なる 2 本以上の ボーリング孔で水圧破砕試験をおこなう必要がある。そこで、 M01 孔を深度 20.5m まで掘削し た後、さらに方向の異なる長さ 20.5m の M02 孔と M03 孔を掘削して水圧破砕試験をおこなう こととした。

7. 水圧破砕法による初期応力測定

水圧破砕法は、応力解放法と異なりオーバーコアリングを必要とせず、ボーリング孔さえあれ ば適用できるため、これまで地下深部の初期応力の計測および評価に最も一般的に用いられてき た。また、水圧破砕法は直接に応力を測定するので、物性の評価の誤りに基づく誤差が原理的に 存在しないことが応力解放法と比較して特に優れた点のひとつである。この方法は、地殻内に掘 削したボアホールの所要区間を二つの詮 (パッカーエレメント)により仕切り、この区間(以下、 加圧区間)に高水圧を負荷して岩体内に人工き裂を作成し、このときに観察されるき裂開口圧お よびき裂閉口圧という二つのボアホール水圧からボアホール軸と直交する面内に作用する二つの 初期主応力の大きさを決定する。最近の研究によれば、き裂への加圧水の侵入を無視した従来の 水圧破砕法によるき裂開口圧の観測方程式は誤りであり、また、同式から求められるき裂開口圧 は、通常の水圧破砕試験で観測されるき裂開口圧(見かけのき裂開口圧 $P^{(\omega)}$)とは異なり、実 際にき裂が開き始めるときの水圧(真のき裂開口圧 P_{n})にも一致しないことが指摘されている^{[7][8]}。 さらに、コンプライアンス Cの小さな水圧破砕システムを用いれば、見かけのき裂開口圧 $P^{(\omega)}$

以上の知見に鑑み、換気立坑 140m 小型試錐座では、できるだけコンプライアンス Cの小さい 配管系を用いた高剛性水圧破砕法を、M01 孔、M02 孔および M03 孔の 3 孔で実施した。

7.1 試験装置

試験に使用した水圧破砕システムの配管および配線図を図 7.1 に示す。また、試験に用いた主 要機器名をまとめて表 7.1 に示す。見かけのき裂開口圧から真のき裂開口圧を近似的に評価して 孔軸と直交する平面内の最大応力 *SH*の大きさを評価するには、測定システムのコンプライアン スを小さくするために、流量計から加圧区間までの加圧系の体積をできるだけ小さくする必要が ある。そこで、流量計とストラドルパッカーをコンプライアンスの小さい長さ 30m、内径 2mm のステンレスパイプで接続した。加圧区間への水の圧入は、最大吐出量 400ml/min の小型高圧プ ランジャーポンプによっておこなった。加圧区間の水圧はストラドルパッカーの直上に設置した 圧力変換器によって測定し、地表で測定された流量とともに A/D 変換し、 5Hz のサンプリング 周波数でパーソナルコンピュータに記録した。

測 定 機 器	メーカー	数量
φ76mm ストラドルパッカー、ウレタンゴム、耐圧 30MPa	ジオテクノス (株)	1本
↓ 76mm インプレッションパッカー、ウレタンゴム、耐圧 30MPa	ジオテクノス(株)	1本
高圧ポンプ、NP-GXL-400、400cc/min、最高吐出圧力 30MPa	日本精密科学株式会社	1台
システムコントローラー、Sony VAIO	Sony	1台
シグナルコンディショナー、CDA-230C	(株)共和電業	1台
圧力変換器、PGM-200KD、測定範囲 20MPa	(株)共和電業	1台
流量計、MF30、測定範囲 500cc/min	Japan Flow Control Co.	1台
坑井方位傾斜儀計、TYPE-SS、最小読取り精度 1°	(株)村田製作所	1台

表 7.1 測定機器一覧

図 7.1 コンプライアンス Cの小さな高剛性水圧破砕システム

7.2 試験方法

水圧破砕法によって初期応力を評価する手順は、以下の通りである。

(1) 水圧破砕前の孔壁の型取り

通常の水圧破砕法は、等方均質弾性体中の円孔まわりの応力分布に基礎を置いて解析理論が 構築されているので、加圧区間は岩盤にき裂のない均質な位置を選定する必要がある。そこで、 ボーリングコアの目視による鑑定結果を総合的に判定し、天然き裂が少なく孔壁の安定した区 間を選定する(図 7.2 参照)。このようにして選定した位置で、インプレッションパッカー(型 取りパッカー)を用いた水圧破砕前の孔壁の型取りをおこない、天然き裂の状態をさらに詳し く調査する。インプレッションパッカーの表面は可塑性のチューブによって被覆されているの で、所定の深度でパッカーエレメントを膨張させ、その表面をボアホール壁面に押し付けるこ とで壁面の凹凸がチューブの表面に記録される。加圧予定区間に天然き裂が認められた場合は、 さらに別の深度で型取をおこない、適切な加圧区間を探す。

図 7.2 可塑性のチューブによって被覆した型取パッカーの挿入

(2) 水圧破砕試験

孔口付近に設置した小型プランジャーポンプとコンプライアンスの小さいステンレスパイプ で接続したストラドルパッカーを、ボアホール内の測定対象深度まで挿入する(図 7.3 参照)。 その後、ストラドルパッカーのパッカーエレメントに水を圧入してそれを膨らませ、ボアホー ル壁面に密着させることにより、二つのパッカーエレメントによってはさまれた加圧区間を隔 離する。以上のセットアップ終了後、①加圧配管を通して電動小型プランジャーポンプから加 圧区間に一定の流量(400ml/min あるいは 200ml/min)で水を圧入する、②プランジャーポン プと流量計の間にあるバルブを閉じ、水の圧入を停止する(以下、この操作をシャットインと 呼ぶ)、③加圧系の圧力を開放する、等の操作を行うことにより、加圧区間のボアホール壁面か らき裂が発生、進展し、またそのき裂が開口、閉口する。最初の加圧サイクルにおいて水を圧 入してボアホール内の水圧を上昇させていくと、破砕圧(breakdown pressure)と呼ばれる水 圧 Pbを越えた直後にボアホール内の水圧は急激に減少する。そこでシャットインして水の圧入 を停止すると、ボアホール内の水圧は下降し、やがて、き裂閉口圧(shut-in pressure)と呼ば れる水圧 Psに落ちつく¹⁹。一方、二回目以降の加圧サイクルにおいて、き裂開口圧(reopening pressure)と呼ばれる水圧 Prに達したところでボアホール内の水圧と時間の関係が線形から非 線形に変わる[10]。このようにして水の圧入、シャットイン、水の排出を数回繰り返し、三種類 の水圧データ、すなわち破砕圧、き裂閉口圧、ならびにき裂開口圧を測定する。

なお、岩盤から湧出する地下水と識別するために、加圧区間に圧入した水にはトレーサーと して水 100 リットル当たりウラニン 0.3g およびナフチオン酸 1.0g を添加した。

(3) 破砕後の型取りによる人工き裂の方位測定

水圧破砕後、再びインプレッションパッカーを用いて加圧区間の型取りをおこない、(1)で 得られたき裂のトレースと比較することにより新たに造成されたき裂を判定する。このインプ レッションパッカーの先端には坑井方位傾斜儀計が取り付けられており、熱収縮チューブの表 面に印された基準線の方位が測定される。この方位とき裂のトレースから、造成された新たな き裂の走向傾斜を決定することができる。図 7.4 は、破砕後の型取で得られたき裂のトレース の例である。

図 7.3 ストラドルパッカーの挿入

図 7.4 破砕後の型取で得られたき裂のトレースの例

7.3 解析方法

7.3.1 従来の初期応力評価手順

水圧破砕試験によって測定した各観測データから、初期応力の大きさおよび方向を評価する手順は次のとおりである。ただし、初期応力の主軸の一つがボアホール軸に一致しており、かつ、水圧破砕によりボアホール軸と平行ないわゆる縦き裂が形成された場合を考える。また、岩体中の間隙水圧は0であるものとする。このとき、ボアホール内の水圧が破砕圧 P_bに達したときに、ボアホール壁に作用する周方向引張応力が岩体の引張強さ Tに達してボアホール壁面からき裂が発生するものと考え、また、シャットイン後、き裂内水圧とき裂面垂直方向の初期圧縮応力が平衡したときにボアホール内の水圧の降下が停止すると考えれば、P_bおよび P_sと初期応力との関係がそれぞれ次式のように与えられる^{[9][11]}。

 $P_b = 3S_b - S_H + T \dots (7.1)$ $P_s = S_b \dots (7.2)$

ここに、 S_H および S_h ($S_H \ge S_h$) はボアホールと直交する面内に作用する初期主応力である。 なお、式(7.1) と式(7.2) を含め、以下、初期応力は圧縮を正とする。式(7.1) と式(7.2) におい て Tを既知とすると、未知量は初期圧縮応力 S_H および S_h の二つになる。したがって、両式の関 係を用いれば、 P_b と P_s の測定値から S_H および S_h の大きさを決定できる。ここで、ボアホール 中心から見たときのき裂の方向が S_H の作用方向である。

ところで、岩体は天然物でありその特性は場所ごとに異なる。この傾向は引張強さ Tについて 特に顕著であるため、式(7.1)を用いて初期応力を正しく評価するためには、き裂を作成した原 位置岩体の Tを正確に評価することが前提となる。しかし、ボーリングコアの回収にはマイクロ クラックの進展など、必ず不可逆的なプロセスを伴うことから、原位置岩体の Tを正確に評価す ることは容易でない。一方、もし、再加圧時にボアホール内の水圧がき裂再開口圧 P_rに達したと きにき裂が開口し始め、このき裂の開口が T=0 のボアホール壁からき裂が発生する現象と等価で あるものと仮定すると次式が成立する^{[12][13]}。

 $P_r = 3S_h - S_H \qquad (7.3)$

したがって、破砕圧 P_b の代わりにき裂開口圧 P_r を用い、上式と式(7.2)の関係を利用すれば、 引張強さ Tと無関係に S_H および S_b の大きさを決定できることになる。このため、式(7.3)が Zoback ら^[14]および Bredehoeft ら^[13]によって提案されて以来、水圧破砕法では式(7.2)と式(7.3) に基づいて初期応力を評価することが一般的になり、さらに、初期応力の評価に原位置岩体の物 性値を必要としないことが水圧破砕法の大きな特長とされてきた。

7.3.2 き裂開口圧と初期応力の関係

これまで数多くのフィールド実験や室内実験が実施されてきた結果、き裂開口圧が圧入流量の 大きさに依存して変化すること^{[15][16]}、その一方で本来異なるはずのき裂閉口圧とき裂開口圧が計 測実施地域によらず常に近い傾向にある^{[17][18]}といった従来の理論に反する実験事実が徐々に明 らかになってきた。さらに、式(7.3)の背景にはき裂が開口するまで加圧水はき裂内に進入しな いという仮定があるのに対して、Cornet^[16]およびZobackら^[19]は、水圧破砕室内実験の結果から、 き裂が閉じていても加圧水がき裂内に浸入し得ることを明らかにした。これは、き裂が閉じてい ても、向かい合うき裂面上の凹凸が完全にかみ合わず、かみ合わない部分が連なって水の通路と なるためである。このため伊藤ら^[20]は、Cornet^[16]および Zoback ら^[19]の実験結果を基に、き裂開 ロ以前よりボアホールからき裂内に加圧水が進入することを考慮した数値解析および室内実験を 実施してき裂開口圧の物理的意味を再検討し、その結果から次のことを明らかにしている。すな わち、再加圧時にき裂が開口し始めるときのボアホール内の水圧(以下、真のき裂開口圧と呼ぶ) は、初期応力および圧入流量によらず従来の理論、つまり、式(7.3)で与えられているき裂開口 圧の半分となることである。したがって、式(7.3)の代わりに次式を用いて初期応力を評価すれ ば良いことになる。

7.3.3 真のき裂開口圧を測定するための水圧破砕システム

伊藤ら^[20]は、き裂が開口してもすぐにはボアホール内の水圧と時間の関係に顕著な変化は現れ ず、き裂開口圧、つまりボアホール内の水圧と時間との関係が明らかに非線形になり始めるとき のボアホール内の水圧(以下、見かけのき裂開口圧と呼ぶ)は真のき裂開口圧よりも大きくなる こと、そして、見かけのき裂開口圧は本質的にき裂閉口圧に等しい水圧であることを明らかにし ている。これらのことは、測定のむずかしい岩体物性値*T*を用いないことを前提とすると、き裂 閉口圧の測定値と式(7.2)から*S*_hの大きさを評価できても、何らかの方法で真のき裂開口圧を測 定できなければ、き裂線方向に作用する初期応力*S*_Hの大きさを評価できないことを意味する。

このため、伊藤ら^{[20][21]}は真のき裂開口圧を用いて初期応力を評価することを目的として、数値 シミュレーションに基づき、真のき裂開口圧と見かけのき裂開口圧との間に差が生じる原因につ いて詳細に検討した。この結果、見かけき裂開口圧が真のき裂開口圧よりも大きく、き裂閉口圧 に近くなるのは主に加圧システム内の水の体積が大きいことが原因であり、その体積を適切に選 択すれば、見かけのき裂開口圧から真のき裂開口圧を近似的に評価できることを明らかにした。 さらに、見かけのき裂開口圧から式(7.3) あるいは式(7.4) によって初期応力 S_H の大きさを評価 した場合について、見かけのき裂開口圧が式(7.3) で与えられる圧力あるいは真のき裂開口圧に 等しくないために生じる S_H の評価結果の誤差の範囲を明らかにした。例えば、流量調整バルブ より下流側でき裂が閉じた状態での加圧系内の水の体積 Vが 2×10⁻³m³ (=2000ml) であるよ うな水圧破砕システムを用いる場合、ボアホールを 2×10⁻⁶m³/sec (=120ml/min) の一定流量 Qで加圧すると、 S_H/S_h が 2 以下の範囲では、約 20%以下の誤差の範囲内で真のき裂開口圧を評 価できる。したがって、き裂閉口圧を使って S_h の大きさを決定するものとすれば、その結果と、 加圧系体積 Vの十分小さい水圧破砕システムを用いて十分に小さい圧入流量で測定した見かけの き裂開口圧 (≒真のき裂開口圧) から、式(7.4) の関係に従って S_H の大きさを評価できる。

7.4 試験結果

7.4.1 水圧破砕システムのコンプライアンス Сの評価

図 7.1 に示した水圧破砕システムの、流量計から加圧区間までのコンプライアンス Cを測定す るために、工場においてき裂のない鋼管内にストラドルパッカーを設置して加圧試験をおこなっ た(図 7.5 参照)。水圧破砕システムのコンプライアンス Cとは、流量計よりも下流の圧力を単 位量だけ上昇させるのに必要な水の量のことである。パッカー圧を 10MPa に設定しておこなっ た加圧試験の結果の一例を図 7.6 に示す。ここで、横軸は総圧入流量 Qtotal、縦軸は加圧区間の圧 力 P である。加圧区間の圧力がパッカー圧を越えるとパッカーが変形を開始し、加圧区間の体積 は増加する。このため、水圧破砕システムのコンプライアンスが増加し圧力曲線の勾配は小さく なる。このことから、水圧破砕試験においては、測定しようとする水圧よりもパッカー圧を十分 に高く設定する必要がある。加圧区間の圧力がパッカー圧に達する前の Qtotal と P の直線の傾き からコンプライアンスを測定した結果を表 7.2 に示す。本水圧破砕システムのコンプライアンス の平均値は、 4.50×10⁻⁶ m³/MPa である。

図 7.5 水圧破砕システムのコンプライアンス測定状況

図 7.6 高剛性水圧破砕システムを用いた鋼管内における加圧試験の例

	間例上ハル・取件シハノムのニシノノイノシハ頃ル相木					
加压法导 (m3/200)	パッカー圧	コンプライアンス				
加工派重(m ³ /sec)	(MPa)	(m³/MPa)				
$5.0 imes10^{-6}$	20	$4.14 imes 10^{-6}$				
$5.0 imes10^{-6}$	20	$4.27 imes 10^{-6}$				
$5.0 imes10^{-6}$	10	$*9.85 imes 10^{-6}$				
$5.0 imes10^{-6}$	10	$6.06 imes 10^{-6}$				
$5.0 imes10^{-6}$	10	$5.63 imes 10^{-6}$				
$5.0 imes10^{-6}$	15	$4.15 imes 10^{-6}$				
$5.0 imes10^{-6}$	15	$3.88 imes 10^{-6}$				
$5.0 imes10^{-6}$	15	$3.93 imes 10^{-6}$				
	平均值	$4.50 imes 10^{-6}$				
	平均值	$4.50 imes 10^{-6}$				

表 7.2 高剛性水圧破砕システムのコンプライアンス測定結果

*加圧区間に空気があったので、平均値の算定に用いなかった。

7.4.2 水圧破砕試験

水圧破砕試験は、M01 孔、M02 孔および M03 孔の 16 深度で実施した。各ボーリング孔の試 験深度は表 7.3 に示すとおりである。ここで、M01 孔の深度 16.5m、M02 孔の深度 17.8m およ び M03 孔の深度 16.5m と深度 17.2m では、パッカーエレメントで隔離した加圧区間に水を圧入 しても加圧区間の圧力は上昇しなかった。また、M03 孔の深度 9.2m では、シャットイン後の加 圧区間の圧力が加圧前の圧力まで急激に低下した。これらの試験深度には加圧区間の水を逸水さ せる要因があると考えられるが、そのひとつとして加圧区間と交差する透水性の大きい天然の潜 在き裂が存在すると考えられる。このような区間では、加圧区間の圧力が加圧前の圧力まで短時 間に低下するため、き裂に垂直な応力の大きさを精度よく測定することができない。そこで、以 下ではこれらの5 深度を除く、残り 11 深度の測定データを用いて初期応力を評価する。

残り 11 深度における圧力・流量-時間曲線は、図 7.7 から図 7.17 に示す。ここで、横軸は時 間である。下段の曲線はストラドルパッカー直上に設置した圧力変換器で測定した加圧区間の圧 力、上段の曲線は地表の高圧ポンプ吐出口で測定した加圧区間に圧入される水の流量(右縦軸) である。各グラフの上部中央に記載されたタイトルは、最初の3文字が孔名、ハイフンの次の数 値が試験深度、そして最後のアルファベットが加圧サイクルの順序を表す。すなわち、A は第 1 回目のき裂発生試験、B、C、D などは、それぞれ第 1 回目、第 2 回目、第 3 回目のき裂再開口 試験であることを意味する。シャットイン後の加圧区間の圧力は、通常、滑らかに減少するが、 測定された圧力は時間軸に対して揺らぎが見られるものが多い。これは、当該岩盤から湧出する メタンガスと地下水の圧力変動が加圧区間の圧力変化となって現れたためでないかと考えられる。

孔名	方位·傾斜	試験深度 (m)	備考	解析に採用(○) か不採用(×)か
	$N60^{\circ} W_{\chi}$	6.3		\bigcirc
Moi	水平から	14.2		0
MOT	上向き	16.5	圧力立たず。加圧区間よりメタンガス湧出	×
	$+5^{\circ}$	17.2		0
	NC	8.9		0
	NB、 水亚から	12.0		0
M02	小平から 上向き →5°	15.0		0
		16.5		0
	+ 0	17.8	圧力立たず。加圧区間より地下水湧出	×
		6.3		0
	N90° W	9.2	シャットイン後、圧力が加圧前の圧力に低下	×
	N3U W、 オタズオット	11.8		0
M03	小平がら 下向き	13.5		0
	-30°	15.0		0
	- 50	16.5	圧力立たず	×
		17.2	圧力立たず	×

表 7.3 水圧破砕試験深度

図 7.7 M01 孔の深度 6.3m における圧力・流量・時間曲線

図 7.8 M01 孔の深度 14.2m における圧力・流量・時間曲線

図 7.9 M01 孔の深度 17.2m における圧力・流量・時間曲線

図 7.10 M02 孔の深度 8.9m における圧力・流量・時間曲線(1/2)

図 7.10 M02 孔の深度 8.9m における圧力・流量・時間曲線(2/2)

図 7.11 M02 孔の深度 12.0m における圧力・流量・時間曲線

図 7.12 M02 孔の深度 15.0m における圧力・流量・時間曲線

図 7.13 M02 孔の深度 16.5m における圧力・流量・時間曲線

図 7.14 M03 孔の深度 6.3m における圧力・流量・時間曲線

図 7.15 M03 孔の深度 11.8m における圧力・流量・時間曲線

図 7.16 M03 孔の深度 13.5m における圧力・流量・時間曲線

図 7.17 M03 孔の深度 15.0m における圧力・流量・時間曲線

7.4.3 水圧破砕試験によって生じたき裂

水圧破砕試験をおこなう前に実施した孔壁の型取によって、表 7.3 に示す 16 深度の加圧区間 が選定された。水圧破砕後、これらの加圧区間で採取したインプレッションパッカーによるき裂の 型取の記録を図 7.18 から図 7.21 に示す。これらの型取の記録は、パッカーエレメントに熱収縮 チューブを巻きつけてき裂の型取りをした後、そのチューブに軸方向の切れ目を入れてパッカー からはがし、それを周方向に展開したものをトレースした結果である。図は熱収縮チューブ表面 のトレースであり、向かって上側が孔口、下側が孔底側である。薄墨で示した領域は、ボーリン グ孔壁が破壊してはく離した部分を示している。各トレースの左下には、孔口から孔底を見たと き、切れ目の向きを鉛直上向きから時計方向に計った角度が示されている。図中の白抜きの矢印 () は、横き裂の方向余弦を算定するために用いたき裂のトレースを示している。また、黒 色の矢印 (→) は、第 8 章で述べるブレイクアウトを示している。なお、先に述べたように、 加圧区間の圧力が上昇しなかった4深度と、シャットイン後の圧力が加圧前の圧力まで短時間に 低下した1深度では、き裂に作用する初期応力の大きさに関する情報が得られないので孔壁の型 取はおこなわなかった。

これらの型取の記録をみると、ボーリング孔軸を含む縦き裂はどこの試験深度にも生じていない。すべてボーリング孔軸と交差する横き裂である。これは、当該岩盤に多くの潜在き裂が含まれているために、水圧破砕によってボーリング孔壁の周方向引張応力が岩盤の引張強さに達する前に潜在き裂が開口したことによると考えられる。したがって、小型試錐座で実施した水圧破砕試験から、7.3 節で述べた手法にしたがってボーリング孔軸と直交する面内の初期応力を評価することはできない。孔壁の周方向に180°離れた位置に分布する破壊は、孔壁の集中応力が岩盤の強度を越えてできたボアホールブレイクアウトであると考えられる。

- 104 -

- 105 -

7.5 初期応力の評価

一般に、水圧破砕試験をおこなうと縦き裂あるいは横き裂という2種類のき裂が誘起される。 縦き裂とはボーリング孔軸に平行に進展するき裂であり、横き裂とは既存の弱面あるいは岩脈な どに沿って進展するき裂である。小型試錐座まわりの岩盤のように、多くの弱面を有する岩盤で 水圧破砕試験をおこなうと、誘起されるき裂はほとんどが横き裂であり、縦き裂が生じることは まれである。万一、縦き裂が生じたとしても、多くの弱面を含む岩盤では容易に弱面と連結する ため、縦き裂のき裂閉口圧 Ps の信頼性は低い。そのため、一般的によく知られている、横き裂 のき裂閉口圧はき裂に垂直な圧縮応力に等しい^[25]条件より、まず複数の横き裂のき裂閉口圧から 初期応力を評価するための、横き裂のき裂閉口圧と初期応力との関係について述べる。次に、小 型試錐座に掘削した3本のボーリング孔でおこなった水圧破砕試験で開口した横き裂の法線ベク トルを求め、最後に横き裂に作用する法線応力とき裂の法線ベクトルの関係から初期応力を評価 する。

7.5.1 き裂閉口圧と初期応力の関係[25]

ボーリング孔を掘削する前の岩盤の応力状態は、いたるところで一様であると仮定する。この 一様な応力場を、図 7.22 に示すカーテシアン座標系 (x_i : i=1、2、3) に関して $\tau_{ij}(i, j=1, 2, 3)$ 3)と表記する。ここで、圧縮応力を正とする。水圧破砕試験をおこなって生じた横き裂のき裂閉 口圧は、横き裂に作用する法線応力成分であると考えられるので、次式が得られる。

 $\sum_{i,j=1}^{3} \tau_{ij} \lambda_{i}^{(k)} \lambda_{j}^{(k)} = P_{s}^{(k)} \qquad (k=1, 2, \dots, K)$ (7.5)

ここで、Kは水圧破砕試験によって生じた横き裂の総数、 $P_s^{(k)}$ はk番目のき裂のき裂閉口圧力、 そして $\lambda_i^{(k)}$ はk番目のき裂面の外向きの単位法線ベクトルである。式(7.5)は、次のような単純な 式に書き換えることができる。

$$\sum_{l=1}^{6} a_{kl} s_{l} = P_{s}^{(k)} \quad (k=1, 2,,K) \quad \dots \quad (7.6)$$

$$\sum_{l=1}^{6} \lambda_{l}^{(k)} \lambda_{1}^{(k)}, \quad a_{k2} = \lambda_{2}^{(k)} \lambda_{2}^{(k)}, \quad a_{k3} = \lambda_{3}^{(k)} \lambda_{3}^{(k)}, \quad a_{k4} = 2\lambda_{1}^{(k)} \lambda_{2}^{(k)}, \quad a_{k5} = 2\lambda_{2}^{(k)} \lambda_{3}^{(k)}, \quad a_{k6} = 2\lambda_{1}^{(k)} \lambda_{3}^{(k)} \quad \dots \quad (7.7)$$

$$\mathbf{S}_1 = \tau_{11}$$
, $\mathbf{S}_2 = \tau_{22}$, $\mathbf{S}_3 = \tau_{33}$, $\mathbf{S}_4 = \tau_{12}$, $\mathbf{S}_5 = \tau_{23}$, $\mathbf{S}_6 = \tau_{13}$ (7.8)

式(7.6)は6つの応力成分を未知数とする線形連立方程式である。したがって、方位傾斜の異なる6つ以上の横き裂に関して式(7.6)が得られれば、初期応力を評価することができる。

図 7.22 ボーリング孔と座標系の関係[25]

7.5.2 横き裂の方向余弦

図 7.18 から図 7.21 に示した横き裂の法線の E-N-V 座標系(V 軸は鉛直上向き)における方向 余弦を表 7.4 に示す。横き裂の方向余弦は、図 7.23 に示すように、型取パッカーから得られたき 裂トレースの 3 点以上の任意の座標データを用いて最小二乗法による三角関数近似式を決定し、 トレースの全幅、き裂のトレースのピークが現れる位置 S_m およびその振幅 A の幾何学的な関 係から決定することができる^[19]。方向余弦の算定に用いた横き裂のトレースを、図 7.18 から図 7.21 中の矢印(〇))で示した。

図 7.23 型取パッカーから得られたき裂のトレースに最小二乗法によって 横き裂平面を当てはめた例

7.5.3 横き裂のき裂閉口圧

き裂面に垂直な法線応力、すなわちき裂閉口圧は、き裂面内に水圧勾配ができない程度に小さい流量で加圧したときの圧力から評価することができる^{[26] [27]}。これは、何度か再加圧を続けて、加圧区間の圧力がほぼ一定になったときの圧力をき裂面に垂直な応力とする方法である。したがって、ここでは、200ml/min で加圧したときの最後の加圧サイクルにおける定常圧力をき裂閉口 圧とした。図 7.7 から図 7.17 の圧力ー時間曲線には、評価されたき裂閉口圧を記入して示した。 図 7.24 は、MO3 孔の深度 11.8m で測定された圧力ー時間曲線からき裂閉口圧を決定したときの 例である。結果は、表 7.4 の通りである。

図 7.24 き裂閉口圧の設定例(M03 孔、深度 11.8m)

孔名	方位·傾斜	試験深度	方向余弦(E-N-V座標系)			き裂閉口圧
		(m)	λ1	λ_{2}	λ_{3}	(MPa)
M01	N60°W、水	6.3	0.834548	0.488372	0.254995	2.21
	平から上向き	14.2	0.493706	-0.553553	-0.670696	1.45
	+5	17.2	0.059563	-0.778365	-0.624980	0.95
M02		8.9	0.849487	-0.410098	0.331952	1.49
	NS、水平か	12.0	-0.277202	-0.073080	-0.958028	1.94
	ら上向き+5°	15.0	0.777662	-0.420286	0.467548	1.63
		16.5	0.715498	-0.269292	0.644627	1.73
M03	N90° W -k	6.3	-0.545660	-0.807596	0.223706	1.82
	N30 W、小 亚かた下向き	11.8	0.674199	-0.655098	-0.341031	1.56
	-30°	13.5	0.031041	-0.999457	0.011068	1.69
	JU	15.0	0.703428	-0.600247	-0.380648	1.38

表 7.4 水圧破砕試験によって開口した横き裂の法線の方向余弦(E-N-V座標系)および き裂閉口圧

7.5.4 解析結果

式(7.6)の P_s^(k)として表 7.4 のき裂閉口圧を、式(7.7)の $\lambda_i^{(k)}$ として表 7.4 の方向余弦を代入し、6 つの応力成分と主応力を求めた。結果は表 7.5 および図 7.25 のとおりである。主応力はいずれも 鉛直方向あるいは水平方向から 30°程度傾いている。水平面内の最大主応力方向は、N65°E で ある。ここで用いた初期応力の評価方法は、加圧区間と交差するき裂の法線方向と、き裂面に作 用する法線応力(き裂閉口圧)の大きさから初期応力を評価するものであり、円孔まわりの弾性 応力分布にもとづいた観測方程式は用いない。このため、ブレイクアウトによってボーリング孔 の断面形状が円形から逸脱しても、パッカーエレメントによって加圧区間を完全に隔離し、き裂 閉口圧を測定することができれば初期応力の評価は可能である。ただし、このようにして評価し た初期応力状態の信頼性は、水圧破砕試験を実施した岩盤の応力均一仮定が成り立つことが条件 である。

応力成分	σE	$1.98{\pm}0.18$
	σ_N	$1.44 {\pm} 0.16$
	σν	$1.87 {\pm} 0.23$
	au EN	$0.33 {\pm} 0.11$
	au NV	-0.31 ± 0.19
	au VE	-0.12 ± 0.18
3次元主応力	σ1 (方位/傾斜)	$2.29{\pm}0.21 \ (56^{\circ} \ /32^{\circ} \)$
	σ2 (方位/傾斜)	$1.80{\pm}0.23\(277^{\circ}\ /50^{\circ}\)$
	σз (方位/傾斜)	$1.19{\pm}0.19 \ (160^{\circ}\ /21^{\circ}\)$
平面応力	σн	$2.14 {\pm} 0.17$
	σ _h	1.28±0.16
	E から <i>o</i> Hまで の角度	25°

表 7.5 横き裂の垂直応力から評価した初期応力状態

(応力の単位はMPa)

図 7.25 (a)水圧破砕法によって評価された主応力の下半球投影図および (b)水平面内の主応力分布

7.6 結言

小型試錐座に掘削された方向の異なる3本のボーリング孔において、コンプライアンス Cの小 さな配管系を用いた高剛性水圧破砕法を実施した。3本のボーリング孔の11 深度でおこなった水 圧破砕試験で、ボーリング孔軸を含む縦き裂はどこにも生じなかった。これは、当該岩盤に潜在 の天然き裂が多く含まれていることが一つの原因と考えられた。応力状態が測定位置によらず一 様であると仮定し、き裂面の法線応力と初期応力の関係から小型試錐座まわりの初期応力状態を 評価した。主応力はいずれも鉛直方向あるいは水平方向から30 度程度傾いていた。

8. ブレイクアウトによる初期応力評価

初期応力を受けている岩盤にボーリングをおこなうと、ボーリング孔まわりに応力集中が発生 し、弾性ひずみエネルギーは局所的に増加する。岩石の弾性ひずみエネルギーがある限界値に達 するとボーリング孔壁面の破壊が始まる。この破壊過程はボアホールブレイクアウトと呼ばれ、 初期応力場の主軸の方向と大きさを決定するために利用されている^[28]。小型試錐座の水圧破砕試 験から得られたき裂の型取には、ブレイクアウトと思われる孔軸方向に伸びた孔壁の破壊および はく離が記録されていた。そこで、ここでは小型試錐座で観測されたブレイクアウトの観測デー タを用いて初期応力の評価を試みる。

図 8.1 は、初期応力の主軸のいずれかがボーリング孔軸と一致している場合を例にとってブレ イクアウトの状況を模式的に示したものである。ここで、*o*maxを最大圧縮応力、*o*minを最小圧 縮応力とし、岩盤は等方均質性を有すると仮定する。ボーリング孔壁の接線応力は孔軸と垂直な 最大圧縮応力*o*maxの方向で最小となり、*o*minの方向で最大となる。すなわち、ボーリング孔中 心から見た*o*minの作用方向に応力が集中し、その応力が岩盤の強度を越えた部分にブレイクアウ トが生じるとされている。このように、ブレイクアウトが初期応力の影響を受けて発生すること に着目し、ブレイクアウトの観測データを利用して初期応力を評価する方法が提案されている。 すなわち、ブレイクアウトの発生方向からボーリング孔と直交する面内に作用する最大および最 小圧縮応力を評価する方法^[29]、ブレイクアウトの開き角度から最大圧縮応力の大きさを評価する 方法^[30]等である。

ただし、これらの方法は、ボーリング孔軸といずれかの初期主応力軸が一致していると仮定し ている。地表からの深度が大きくなると初期主応力軸の一つが鉛直に近くなる場合が多いことか ら、大深度の鉛直ボーリング孔であれば上記の仮定は妥当であると考えられる。しかし、小型試 錐座に掘削した3本のボーリング孔のように、土被りの小さい地下坑道から斜めに掘削したボー リング孔の孔軸と初期主応力軸が一致する可能性はほとんどないと考えられる。ボーリング孔軸 と初期主応力軸のひとつが一致しない場合、孔壁で発生する最大圧縮応力の方向および大きさと、 孔軸と直交する面内で発生するそれらとの間にずれが生じる。ボーリング孔軸と初期主応力軸が 一致しないとしてブレイクアウトのデータから厳密に初期応力を評価する問題は、非線形の逆解 析問題^[31]となり、解析モデルの構築には線形の解析モデルと比較してより多くの労力を要する。 さらに、また、今回測定を行った場の特徴として採取されたボーリングコアには多くの天然き裂 が含まれていたこと、さらに、第9章で述べるように、BTV 観察でははっきりと検出できなかっ た堆積構造も認められることから、逆解析モデルの構築にあたっては岩盤強度と弾性率の異方性 も無視し得ないように思われる。そこで、ここではブレイクアウトがボーリング孔軸と直交する 面内の最小主応力方向に発生する仮定して、一次近似的な初期応力評価をおこなうにとどめる。

図 8.1 ボーリング孔軸と直交する面内に示したボアホールブレイクアウトと初期 応力の関係の模式図

8.1 解析モデル

ボーリング孔口から孔底をみたとき、図 8.2 に示すような直交座標系を考える。ここで、*x*軸 および*y*軸はボーリング孔軸と直交する面内の最大および最小主応力方向、*X*軸は鉛直下方、*Y* 軸は水平方向を向き、*Z*軸はボーリング孔軸と一致し紙面から手前を向いているものとする。 *¢*は *X*軸と*x*軸のなす角度である。ボーリング孔軸と直交する面内の最小主応力方向にブレイクアウ トが生じると仮定すると、次式が得られる。ただし、ここでは間隙水圧は無視するものとする。

ここで、 σ_x および σ_y は、それぞれボーリング孔軸に直交する面内に作用する最大および最小 圧縮応力である。 Ψ_b はx軸から計ったブレイクアウト縁部までの角度である。また、 C_0 はブレ イクアウトが生じた岩盤の一軸圧縮強さである。 Ψ_b はブレイクアウトの開き角 Θ から次式で 求められる。

さらに、 Ψ_{b} + $\Theta/2$ はx - y 平面の主応力方向であると仮定するので、

である。式(8.1)および式(8.3)の σ_x 、 σ_y および τ_{xy} はX-Y-Z 直交座標系に関する応力成分によって表現される。さらに、ボーリング孔の方位・傾斜から E-N-V 座標系(V 軸は鉛直上向き)に応力変換すると、E-N-V 座標系の応力成分を未知数とする線形の観測方程式が得られる。

図8.2 ボーリング孔軸と直交する面内の最小主応力の方向にボアホールブレイクアウト が生じると仮定したときの初期応力とブレイクアウトの関係

8.2 ブレイクアウトの形状

水圧破砕試験後の 11 深度における型取の記録のうち、8 深度でブレイクアウトが認められた(図 7.18 から図 7.21 の黒色の矢印() 参照)。ブレイクアウトは、孔壁の周方向に 180°離れた 位置に発生し、孔軸方向に比較的連続性を持って分布する。熱収縮チューブの左の切れ目からブ レイクアウト縁部までの距離およびブレイクアウトの幅を、孔軸方向に約 1cm 間隔で測定して平 均値を求めた。結果は表 8.1 に示すとおりである。ここで、 $\phi + \Psi_b + \Theta/2$ は鉛直下向きの X 軸 からブレイクアウトの中心まで反時計回りに測定した角度、 Θ はブレイクアウトの開き角であ る。

 $\phi + \Psi_b + \Theta/2$ をみると、M03 孔の深度 13.5m と深度 15.0m を除いたブレイクアウトは、孔軸 を含む鉛直面と孔壁とが交差してできる母線の周りに分布していることが分かる。ブレイクアウ トの開き角 Θ は小さく、20°よりも小さいものが多い。なお、表 8.1の一軸圧縮強さは、第9 章の岩石の力学試験から求めた結果である。

孔名	方位·傾斜	試験深度 (m)	$\phi + \Psi_b + \Theta/2$ (deg)	Ø (deg)	一軸圧縮強さ <i>C</i> ₀ (MPa)
M01	N60°W、水平 から上向き+5	6.3	198.4	13.4	4.48
M02	NS、水平から上 向き+5°	8.9	193.4	11.5	3.39
		12.0	170.6	27.4	
		15.0	182.4	7.9	
		16.5	179.1	17.0	
M03	N30°W、水平 から下向き -30°	6.3	177.5	22.4	
		13.5	210.6	12.2	4.96
		15.0	206.2	13.3	

表8.1 ブレイクアウトの位置と開き角

8.3 解析結果

表 8.1 に示した各深度におけるブレイクアウトのデータ、ボーリング孔の方位・傾斜および岩盤の一軸圧縮強さを式(8.1)および式(8.3)に代入し、最小二乗法によって E-N-V 座標系に関する 6 つの応力成分と主応力を求めた。結果は表 8.2 および図 8.3 の通りである。中間主応力軸は鉛直方向に近く、初期応力環境は横ずれ断層型である。水平面内の最大主応力方向は、N47°E である。

第7章で述べた水圧破砕法は、天然き裂の法線方向に作用する応力の情報に基づいて初期応力 を評価するのに対して、ブレイクアウトの情報から初期応力を評価する方法は孔壁の破壊基準を 用いる。すなわち、これら2つの応力評価方法はまったく異なる原理に基づいている。それにも かかわらず、図7.25と図8.3を比較すると、これら2つの方法で評価した主応力軸方向の分布傾 向には比較的良い一致が認められる。

先にも述べたように、ここで用いた解析手法は、ボーリング孔軸と直交する面内の2次元応力 状態から3次元初期応力状態を評価しているため、得られた応力の方向と大きさには誤差が含ま れる。このため、将来的には厳密な3次元解析モデルに基づいた逆解析をおこなうことが望まれ る。ただし、当該岩盤のように比較的明瞭な堆積構造を有し、完全な等方性体とみなせない場合 には、ブレイクアウトのデータの解釈を等方弾性体の解に基づいておこなうと、解析結果にある 程度の誤差が含まれることになる。異方性の顕著な岩盤ではこの誤差は必然的に増加する。した がって、異方性岩盤内で生じたブレイクアウトを等方弾性体の解に基づいて評価する場合、ブレ イクアウトの位置と開き角にどの程度の誤差が生じるかを検討する必要もあるように思われる。

応 力	O E	$1.88 {\pm} 0.04$
	σ_N	1.80 ± 0.14
	σν	$2.29 {\pm} 0.13$
成	τ en	$0.53 {\pm} 0.05$
分	τ_{NV}	-0.09 ± 0.06
	τ VE	$0.03 {\pm} 0.02$
3	σ1	$2.38 {\pm} 0.08$
次	(方位/傾斜)	$(45^\circ$ $/22^\circ$)
元	σ2	2.28 ± 0.11
主	(方位/傾斜)	$(239^\circ$ $/67^\circ$)
応 力	<i>O</i> 3	$1.30 {\pm} 0.09$
	(方位/傾斜)	$(137^\circ$ $/5^\circ$)
-	σ_{H}	$2.37 {\pm} 0.08$
小 亚	σ_h	1.31 ± 0.09
「面応力	E から <i>σH</i> まで の角度	43°

表 8.2 ブレイクアウトから評価した初期応力状態

(応力の単位はMPa)

図8.3 (a) ブレイクアウトから評価された主応力の下半球投影図および (b) 水平面内の主応力分布

8.4 結言

小型試錐座に掘削した3本のボーリング孔では、水圧破砕試験から得られた型取の記録にブレ イクアウトと考えられる孔壁の連続的な破壊が認められた。そこで、ブレイクアウトがボーリン グ孔軸と直交する面内の最小圧縮応力の方向に生じるという仮定のもとに、一次近似的な初期応 力評価をおこなった。用いた測定データはブレイクアウトが生じた方向、ブレイクアウトの開き 角、岩盤の一軸圧縮強さおよび各ボーリング孔の方位・傾斜である。ブレイクアウトから評価され た初期応力環境は横ずれ断層型であり、中間主応力軸の方向はほぼ鉛直方向であった。ここで用 いた解析手法は、ボーリング孔軸と直交する面内の2次元応力状態から3次元初期応力状態を評 価しているため、得られた応力の方向と大きさには誤差が含まれている。将来的には、ボーリン グ孔壁面内に生じる最大圧縮応力を破壊基準とする解析モデルを構築し、ブレイクアウトからよ り厳密な初期応力評価をおこなうことが望まれる。

9. コア物性測定試験

9.1 試験概要

水圧破砕試験実施深度近傍のボーリングコアのうち、できるだけ天然き裂を含まないインタクトなコアを用いて、表 9.1 に示す力学強度測定試験をおこなった。

試験名	測定項目	数量	備考
力学試験	一軸強度試験	28 個	自然乾燥状態、静ポアソン比測定を含む
	圧裂引張試験	35 個	自然乾燥状態

表 9.1 ボーリングコアの力学試験

9. 2 力学試験方法^{[32][33][34][35]}

一軸圧縮試験に用いる試験片を製作するときは、まずボーリングコアの長軸方向と垂直に切断 し、次にその両端面を平面研削盤によって成形した。当該ボーリングコアは、湿潤した状態で表 面を摩擦すると容易に溶解するので、カーボランダムによる端面の研磨仕上げはおこなわなかっ た。一軸圧縮試験では、試験結果におよぼす端面拘束の影響を避けるため、一般に直径に対する 長さの比を 2~2.5 とする。しかし、当該岩盤には多くのき裂が含まれていたため、この寸法比よ りも小さい試験片になる場合もあった。成形した試験片は、湿潤状態のままポリプロピレンシー トで被覆・保管し、試験開始前にシートから取り出して室内で1日間自然乾燥させ、表面が乾燥 した段階で測寸、重量測定および箔ひずみゲージの貼付をおこない、その後すぐに試験に供した。 図 9.1 は一軸圧縮試験片の画像である。

圧裂引張試験に用いる試験片は、ボーリングコアをその軸方向と垂直に切断したあと、両端面 を平面研削盤によって成形した。成形した試験片は、一軸圧縮試験片と同様、湿潤状態のままポ リプロピレンシートで被覆・保管し、試験開始前にシートから取り出して室内で1日間自然乾燥 させたあと測寸および重量測定をおこない、試験に供した。試験片の画像を図9.2に示す。

図 9.1 一軸圧縮試験片(1/2)

図 9.1 一軸圧縮試験片(2/2)

$JAEA\text{-}Research \ 2009\text{-}004$

図 9.2 圧裂引張試験片(1/2)

図 9.2 圧裂引張試験片(2/2)

9.2.1 一軸圧縮試験

ー軸圧縮試験における試験装置および測定系統の概念図は図 9.3 の通りである。試験片をセットするときは試験片、エンドピースおよび球座の中心を一致させ、アムスラー型材料試験機(島 津製作所製 Universal Testing Machine、RH-100T.V.、最大荷重 100 tf)によって平均 1.29MPa/min の載荷速度で軸圧を加えた。エンドピースと材料試験機の間に取り付けたロード セル(共和電業製LC-10TF、容量 10 tf)によって軸圧を検出し、試験片の軸ひずみと横ひずみ は円柱型試験片の側面に 180°間隔に接着した 2 枚の 2 軸直交ひずみゲージ(ゲージ長 10 mm) で検出した。各ひずみゲージは 1 ゲージ 3 ワイヤ法でホイートストンブリッジの一辺に組み込ん だ。軸圧とひずみはデータロガー(NEC 三栄製、DC3100)によって検出し、パーソナルコンピ ュータに記録した。本一軸圧縮試験の試験方法を、日本鉱業会岩石試験データシート作成・利用 研究委員会(1982)のデータシート(一部変更)にならってまとめると表 9.2 のようである。な お、ひずみゲージの接着にはシアノアクリレート系の瞬間接着剤(共和電業製 CC-33A)を使用 したが、試験片を構成する鉱物粒子の結合力が弱いために、ひずみゲージ接着後にゲージベース を持ち上げると簡単にはく離した。

9.2.2 圧裂引張試験

圧裂引張試験の試験装置、測定系統および試験方法は、一軸圧縮試験と基本的に同じである。 円板形の岩石試験片の中心と球座の中心を載荷軸に一致させ、アムスラー型材料試験機(島津製 作所製 Universal Testing Machine、RH-100T.V.、最大荷重 100 tf)によって平均 0.34MPa/min の載荷速度で円板の中心線に沿って載荷した。エンドピースと材料試験機の間に取り付けたロー ドセル(共和電業製 LC-10TF、容量 10 tf)の出力をデータロガー(NEC 三栄製、DC3100)に よって検出し、パーソナルコンピュータに記録した。

図 9.3 力学試験における試験装置および測定系統

	形状	円柱形			
	平均寸法	直径 5.4cm×高さ 11.6cm			
試験片	成形の仕方、	側面:未処理			
	精度	端面:ダイヤモンドホイール付平面研削盤、1/20mm以下			
	乾燥状態	端面成形後、24時間室内自然乾燥			
学時を地の刊いた	アムスラー				
武徳州茂リノ至天	型材料試験機	计谷取入何里 100000			
⇒₽₽₽ ₽- 1- \/+-	制御方式	軸圧力:材料試験機、手動調整			
武阙 万伝	載荷速度	平均 1.29MPa/min			
		軸ひずみ : 試験片にひずみゲージを貼付			
測定法および	ひずみ	横ひずみ:試験片にひずみゲージを貼付			
計算法		体積ひずみ:軸ひずみと横ひずみから求める			
	軸圧力	ひずみゲージ式ロードセル			

9.3 力学試験結果

9.3.1 一軸圧縮試験

ー軸圧縮試験における応力--ひずみ曲線は、図 9.4 に示すとおりである。各グラフの上部中央 に記載したタイトルは、最初の 3 文字が孔名、次の数値は試験片が採取されたボアホール深度を 表し、試験片の上端面の深度と一致する。 ε_a、 ε_oおよび ε_vは、それぞれ軸ひずみ、横ひずみ および体積ひずみである。横ひずみは、軸荷重が破断荷重に達するまでほぼ線形に増加するが、 軸ひずみは破断荷重に達する前に減少に転じる応力--ひずみ曲線がいくつか認められる。例えば、 図 9.4 の M01 孔の深度 6.40m から採取された試験片の応力--ひずみ曲線をみると、軸応力が 2.5MPa に達すると軸ひずみは-3000 マイクロひずみから急激に減少する。一方、横ひずみは軸 応力が破断応力に達する直前までほぼ線形に増加する。これは、軸ひずみが-3000 マイクロひず みに達したとき、軸方向の箔ゲージが試験片からはく離し、試験片の変形を捉えることができな くなったためであると考えられる。

ー軸圧縮試験の結果を、試験片を採取したボーリング孔別にまとめると表 9.3 のようである。 ここで、破断荷重 P_cとは圧縮試験における最大荷重である。 S_cは一軸圧縮強さであり、破断荷 重 P_cを試験片の初期の断面積 A で除した値である。 E₅₀は、 S_cの 1/2 の応力における応力ー軸 ひずみ曲線上の接線弾性係数である。ポアソン比 v は、原点と最大荷重の近傍を除いた中間部分 の応力ー軸ひずみおよび横ひずみ曲線から、次式にしたがって計算される。

ー軸圧縮強さの平均値をみると、M03 孔から採取した試験片が 4.96MPa と最も大きく、M02 孔の試験片が 3.39MPa と最も小さい。表 9.4 は、一軸圧縮試験後の試験片のスケッチである。 ここで、太線で表示した曲線は、試験片に含まれていた既存のき裂が分離面となったことを示している。

図 9.4 一軸圧縮試験における応力-ひずみ曲線(1/5)

図 9.4 一軸圧縮試験における応力-ひずみ曲線(2/5)

図 9.4 一軸圧縮試験における応力-ひずみ曲線(3/5)

図 9.4 一軸圧縮試験における応力-ひずみ曲線(4/5)

図 9.4 一軸圧縮試験における応力-ひずみ曲線(5/5)

	表 9.3	一軸圧縮試験結果
--	-------	----------

孔名	採取深度 (m)	直径 (mm)	長さ (mm)	見かけ 質量 (g)	破断荷重 Pc(kN)	一軸圧縮 強さ <i>Sc</i> (MPa)	接線弾性 係数 <i>E50</i> (GPa)	ポアソン 比 <i>v</i> (-)	備考
	5.62	68.35	165.00	908.80	12.0	3.26	0.702	0.237	一部に包含物有、 天然き裂有
	6.40	68.10	170.20	927.00	15.1	4.16	1.072	0.315	天然き裂有
	13.74	52.55	119.15	392.64	9.8	4.52	0.867	0.324	表面うねり有、天 然き裂有
	13.87	51.40	119.10	373.80	9.7	4.69	1.005	0.358	表面うねり有
M01	14.39	48.75	99.65	285.72	6.6	3.53	1.141	0.301	表面うねり有
	17.60	52.80	118.80	384.65	12.5	5.72	0.912	0.334	表面うねり有
	17.73	52.40	118.00	380.45	10.8	5.00	0.989	0.364	天然き裂有、一部 欠損
	17.86	52.00	117.20	375.05	10.5	4.96	0.894	0.327	
		平均值		4.48		0.948		0.320	
		標準偏差		0.81		0.136		0.039	
	8.00	53.60	124.75	431.02	7.0	3.11	1.334	0.350	天然縦き裂有
	8.13	53.85	122.05	423.30	9.1	3.98	*	*	天然き裂有
	8.45	53.80	124.75	433.09	6.0	2.65	0.898	0.292	天然き裂有
M02	11.31	54.00	115.00	408.86	7.2	3.12	0.939	0.355	縦き裂有
	12.01	53.50	116.00	404.93	6.6	2.95	0.776	0.391	縦き裂有
	12.52	53.95	118.20	416.21	9.1	3.96	0.974	0.370	横き裂有
	14.13	53.55	117.90	412.45	7.4	3.31	0.993	0.345	
	15.41	53.60	103.45	361.93	6.5	2.89	0.973	0.337	
	19.90	53.60	87.30	305.15	10.3	4.56	0.931	0.342	
		平均值	3.39			0.977		0.348	
		標準偏差	0.63		0.159		0.029		
	5.58	53.25	79.35	273.11	10.4	4.67	1.300	**	
	7.23	53.70	111.75	393.72	8.8	3.88	0.762	0.389	表面うねり有、き 裂有
	10.67	53.50	115.85	403.15	10.1	4.49	0.925	0.441	
	11.88	53.75	108.90	382.92	12.5	5.52	0.859	0.315	き裂有
	12.22	51.35	108.65	351.31	12.4	5.97	0.787	0.328	き裂有、表面うね り有
102	15.02	51.95	96.95	323.39	11.7	5.52	0.955	0.347	
M03	15.37	53.40	105.15	363.94	11.3	5.05	0.821	0.239	き裂有、表面うね り有
	15.48	53.55	108.75	378.70	11.1	4.92	1.192	**	表面うねり有
	16.21	53.80	114.55	402.30	9.4	4.15	1.190	0.358	き裂有
	16.62	53.30	117.85	405.72	12.3	5.52	1.017	0.207	き裂有
	16.80	53.25	117.10	407.55	10.9	4.88	1.014	0.289	き裂有
		平均值		4.96		0.984		0.324	
		標準偏差		0.64		0.179		0.072	

*:破断加重のみ測定

**: v >0.5 となり、弾性体としての変形挙動から逸脱

MOT	TOM	17.73		天然き裂有	中ん断	10.78	40	コアの一部久損
M01	TOW	17.60		き裂なし	せん断	12.52	20	
M01	TOM	14.39		き裂なし	堀イヤ	62.9	15	
MOT	TOW	13.87		き裂なし	せん断	9.72	25	
MOT	TOM	13.74		天然き裂有	せん断	9.80	35	
M01	TOM	6.40		天然き裂有	せん断	15.14	23	
M01	TOM	5.62		天然き裂有	市ん断	11.95	20	粗粒包含物有
五 天		採取深度(m)	試験後の状態	試験前	試験後	破断荷重(kN)	破断角度(度)	備考

表 9.4 一軸圧縮試験結果(1/4)

- 134 -

*:太い曲線は分離した既存のき裂を示す。

JAEA-Research 2009-004

M02	12.52		天然縦き裂有	天然き裂で分離	90.6		
M02	12.01		天然縦き裂有	せん断	6.64	34	
M02	11.31		天然縦き裂有	天然き裂で分離	7.15		
M02	8.45		天然縦き裂有	天然き裂で分離	6.02		
M02	8.13		天然縦き裂有	天然き裂で分離	9.07		
M02	8.00		天然縦き裂有	天然き裂で分離	7.03		
M01	17.86		き裂なし	せん断	10.53	35	
孔名	採取深度(m)	試験後の状態	試驗前	試驗後	破断荷重(kN)	破断角度(度)	備考

表 9.4 一軸圧縮試験結果(2/4)

- 135 -

*: 太い曲線は分離した既存のき裂を示す。

JAEA-Research 2009-004

孔名	M02	M02	M02	M03	M03	M03	M03
採取深度(m)	14.13	15.41	19.90	5.58	7.23	10.67	11.88
試験後の状態							
試験前	つな掻き	き裂なし	つな掻き	しなた	天然き裂有	き裂なし	天然き裂有
試驗後	せん断	せん断	せん断	せん断	天然き裂で分離	せん断	せん断
破断荷重(kN)	7.45	6.51	10.29	10.41	8.79	10.09	12.52
破断角度(度)	15	35	35	25	35	30	25
備考							

表 9.4 一軸圧縮試験結果(3/4)

- 136 -

*:太い曲線は分離した既存のき裂を示す。

JAEA-Research 2009-004

M03	16.80		天然き裂有	せん断	10.87	08	
M03	16.62		天然き裂有	せん断	12.32		
M03	16.21		天然き裂有	せん断	9.43	25	
M03	15.48		き裂なし	せん断	11.07	40	
M03	15.37		天然き裂有	せん断	11.32	25	
M03	15.02		き裂なし	せん断	1.71	25	
M03	12.22		天然き裂有	せん断	12.37	25	
孔名	採取深度(m)	試験後の状態	試験前	試驗後	破断荷重(kN)	破断角度(度)	備考

表 9.4 一軸圧縮試験結果(4/4)

*:太い曲線は分離した既存のき裂を示す。

- 137 -

9.3.2 圧裂引張試験

引張強さ S_t 、円板形の岩石試験片を上下から圧縮し、円板の中心線にそって生じる引張応力 によって引張破壊が起きたときの応力であり、このときの破断荷重P、円板の直径dおよび円 板の厚みlから次式で与えられる。

 $S_t = 2P/\pi dl \qquad (9.2)$

表 9.5 の圧裂試験結果をみると、一軸圧縮強さと同様に、引張強さの平均値は M03 孔から採取 した試験片が 0.59MPa と最も大きく、M02 孔の試験片が 0.42MPa と最も小さい。

表 9.6 は、圧裂引張試験後の試験片のスケッチである。試験片の強度が均質等方であれば、試験片は円板の中心線を通って紙面に垂直な平面で分離する。しかし、天然き裂のために複雑な形状の破断面を呈した試験片も多い。明瞭な堆積構造が認められた試験片では、破断面が紙面と斜交した層理面に沿って分離する場合もあった(図 9.5 参照)。したがって、試験片には、潜在き裂に加えて、層理構造による強度異方性があると考えられる。

	採取深度	直径	長さ	見かけ	破新荷重	引張強さ	
孔名	(m)	(mm)	(mm)	51% () 皙量(g)	$P_{\alpha}(kN)$	(\mathbf{S}_{t})	備考
	(111)	(11111)	(11111)	X = 8	100000	(MPa)	
	6.57	68.00	31.35	171.72	152.3	0.45	き裂有
	6.60	68.35	29.60	163.91	74.9	0.23	天然き裂有
	6.63	68.30	29.90	164.84	92.4	0.28	一部欠損
	6.66	68.25	29.55	163.15	272.2	0.84	天然き裂有
	6.69	68.20	30.20	165.21	239.7	0.73	
	14.01	51.00	30.50	97.01	79.9	0.32	
M01	14.04	52.30	29.50	94.20	187.3	0.76	
11101	17.27	52.80	24.45	80.32	52.4	0.25	
	17.30	52.70	28.45	94.15	192.3	0.80	
	17.33	52.75	26.15	86.33	137.3	0.62	
	17.36	53.05	27.00	89.89	74.9	0.33	
	17.57	51.60	26.40	85.60	207.2	0.95	
					平均值	0.55	
					標準偏差	0.26	
	8.70	53.70	27.80	95.90	127.3	0.53	天然き裂有、一部欠損
	11.44	54.00	28.80	102.34	137.3	0.55	横き裂有、一部欠損
M02	11.48	54.20	27.65	98.34	97.4	0.41	き裂有
	11.52	54.00	28.35	100.46	84.9	0.35	き裂有
	11.88	53.60	27.85	97.49	44.9	0.19	き裂有
	12.66	53.90	27.20	94.92	59.9	0.26	き裂有
	14.45	53.90	27.35	95.88	249.7	1.06	
	14.49	53.85	29.50	101.32	39.9	0.16	一部欠損、き裂有
	15.90	53.75	26.75	93.35	59.9	0.26	一部欠損、き裂有
					平均值	0.42	
					標準偏差	0.28	
	5.87	52.75	27.60	93.91	74.9	0.32	層理に沿って割れ
	6.70	50.25	30.50	92.16	149.8	0.61	
	10.91	52 60	30.00	102.81	167 9		き裂有、層理に沿って割
	10.01	00.00	50.00	105.01	107.5	0.65	n
	11 36	53 45	28.40	98.03	139.8		き裂有、層理に沿って割
	11.00	00.10	20.10	00.00	100.0	0.57	<i>h</i>
	11.40	53.85	23.20	80.29	124.8	0.62	き裂有
	11.80	53.25	30.60	104.76	212.2	0.81	
M03	11.84	53.35	26.35	90.69	174.8	0.78	
WI05	14.23	50.70	23.45	72.06	144.8	0.76	表面うねり有
	14.27	49.80	23.50	72.98	159.8	0.85	表面うねり有
	15.89	53.65	29.30	102.23	187.3	0.74	
	15.93	53.65	26.50	92.60	89.9	0.39	層理に沿って割れ
	16.75	53.55	29.30	103.76	112.3	0.45	き裂有
	16.93	53.50	25.25	88.28	64.9	0.30	層理に沿って割れ
	17.33	52.00	29.75	98.16	97.4	0.39	き裂有
					平均值	0.59	
					標準偏差	0.19	

表 9.5 圧裂引張試験結果

	M01	6.69		き裂なし	2.35	
	M01	6.66		き裂有	2.67	
圧裂引張試験結果(1/7)	M01	6.63		よ裂なし	0.91	き裂により一部欠損
表 9.6	M01	6.60		き契有	0.73	
	M01	6.57		き裂有	1.49	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

E
₩
犒
驗
冠
賬
裂
H
9.
<u>_</u>

	M01	17.33		き裂なし	0.73	
	M01	17.30		き裂なし	1.35	
圧裂引張試験結果(2/7)	M01	17.27		つな陸を	1.89	
表 9.6	M01	14.04		き裂なし	0.51	
	M01	14.01		き裂なし	1.84	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

ો	
長試験結果(
毘	
圧裂引	
9.6	

	M02	11.48		き裂有	0.96	
	M02	11.44		き裂有	1.35	き裂により一部欠損
圧裂引張試験結果(3/7)	M02	8.70		き裂有	1.25	き裂により一部欠損
表 9.6	M01	17.57		き裂なし	2.03	
	M01	17.36		き裂なし	0.73	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

્રે
₩
結
驗
韬
賬
戣
Щ
9.
6

	M02	14.49		き裂有	0.39	き裂により一部欠損
	M02	14.45		き裂なし	2.45	
圧裂引張試験結果(4/7)	M02	12.66		き裂有	62.0	
表 9.6	M02	11.88		き裂有	0.44	
	M02	11.52		き裂有	0.83	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

4
₩
結
験
賬
梨
H
9.
G

ſ						
	M03	11.36		き裂有	1.32	堆積構造に沿って割れ
	M03	10.81		き裂有	1.64	堆積構造に沿って割れ
	M03	6.70		しな疑ち	1.47	
	M03	5.87		き裂なし	0.73	堆積構造に沿って割れ
	M02	15.90		き裂有	0.59	き裂により一部欠損
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

表 9.6 圧裂引張試験結果(5/7)

	M03	14.27		き裂なし	1.57	
	M03	14.23		き裂なし	1.42	
圧裂引張試験結果(6/7)	M03	11.84		き裂なし	1.71	
表 9.6	M03	11.80		き裂なし	2.08	
	M03	11.40		き裂有	1.22	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

œ_
張試験結果(
圧裂引
9.6

	M03	17.33		き裂有	0.96	
	M03	16.93		き裂なし	0.64	堆積構造に沿って割れ
圧裂引張試験結果(7/7)	M03	16.75		き裂有	1.10	
表 9.6	M03	15.93		き裂なし	0.88	堆積構造に沿って割れ
	M03	15.89		き裂なし	1.84	
	孔名	採取深度(m)	試験後の状態	試験前	破断加重(kN)	備考

(a) 圧裂引張試験片の破断面にみられる堆積構造

(b) 堆積構造に沿って伸展した破断面

図 9.5 圧裂引張試験片の破断状況

10. おわりに

幌延深地層研究センターの地下施設周辺岩盤の応力場を把握するため、換気立坑深度140m小型試錐座から直径76mmのほぼ水平な07-V140-M01孔を掘削し、円錐孔底ひずみ法による応力 解放法を実施した。深度1.99mから深度9.28mまでの区間で8回の円錐加工・研磨をおこない、 ストレインセルの貼付を3回実施した。しかしながら、円錐ビットによる円錐加工・研磨にとも なって円錐孔底には粘土状のスライムが生成された。これを拭き取ろうとして孔底清掃を繰り返 しても、岩盤から地下水が染み出して孔底面が常に浸潤されるため、清掃器具と孔底面の摩擦に よってさらに粘土状のスライムが発生するという悪循環が生じた。これに加えて、ボーリング孔 底まわりの応力集中による円錐孔底面の破壊現象も観測された。このため、M01 孔を深度11.89m まで掘削した段階で、当該岩盤に円錐孔底ひずみ法による応力解放法を適用することは容易でな いと判断された。そこで、さらに長さ20.5mの07-V140-M02 孔(水平)および07-V140-M03 孔(傾斜)を掘削し、水圧破砕法による3次元初期応力測定を実施した。これら3本のボーリン グ孔では、ボーリング孔まわりの応力集中によって孔壁が破壊するボアホールブレイクアウトが 観測されたので、ブレイクアウトの情報から初期応力を評価する試みもおこなった。得られた結 果は次のとおりである。

(1) 水圧破砕法

小型試錐座に掘削された方向の異なる3本のボーリング孔において、コンプライアンス Cの小 さな配管系を用いた高剛性水圧破砕法を実施した。3本のボーリング孔の11深度でおこなった水 圧破砕試験で、ボーリング孔軸を含む縦き裂はどこにも生じなかった。これは、当該岩盤に潜在 の天然き裂が多く含まれていることが一つの原因と考えられた。応力状態が測定位置によらず一 様であると仮定し、き裂面の法線応力と初期応力の関係から小型試錐座まわりの初期応力状態を 評価した。主応力はいずれも鉛直方向あるいは水平方向から30度程度傾いていた。

(2) ブレイクアウト

小型試錐座に掘削した3本のボーリング孔では、水圧破砕試験から得られた型取の記録にブレ イクアウトと考えられる孔壁の連続的な破壊が認められた。そこで、ブレイクアウトがボーリン グ孔軸と直交する面内の最小圧縮応力の方向に生じるという仮定のもとに、一次近似的な初期応 力評価をおこなった。用いた測定データはブレイクアウトが生じた方向、ブレイクアウトの開き 角、岩盤の一軸圧縮強さおよび各ボーリング孔の方位・傾斜である。ブレイクアウトから評価され た初期応力環境は横ずれ断層型であり、中間主応力軸の方向はほぼ鉛直方向であった。ただし、 ここで用いた解析手法では、ボーリング孔軸と直交する面内の2次元応力状態から3次元初期応 力状態を評価しているため、得られた応力の方向と大きさには誤差が含まれている。将来的には、 ボーリング孔壁面内に生じる最大圧縮応力を破壊基準とする解析モデルを構築し、ブレイクアウ トからより厳密な初期応力評価をおこなう必要である。

(3) 2つの方法で得られた初期応力の比較

水圧破砕法は、天然き裂の法線方向に作用する応力の情報に基づいて初期応力を評価するのに 対して、ボアホールブレークアウトの情報から初期応力を評価する方法はボーリング孔周辺岩盤 の破壊規準を用いる。このように、これら2つの応力評価方法は異なる原理に基づいているが、 図10.1より主応力軸方向の分布傾向には、良い一致が認められた。また、中間主応力は若干の相 違はあるものの、最大・最小主応力値は比較的良い一致が認められた。

図 10.1 初期応力の測定結果(主応力の下半球投影図)

(4) 既往の初期応力測定結果との比較

図 10.2、図 10.3 は今回得られた結果とこれまでに地上部から実施したボーリング孔 (HDB-1,3,6,9,11 孔)より得られた初期応力測定結果を、それぞれ、水平面内最大・最小主応力 値と深度と水平面内の最大主応力の方位と深度の関係を表したものである。上記鉛直ボーリング 孔は、研究所設置地区内で存在が推定されている大曲断層の西側領域で実施されたもので、今回 実施した結果と初期応力分布が比較的類似した場所のものと考えられる。

図 10.2 より 2 つの方法で評価した水平面内の最大主応力値は、その深度分の土被り圧とほぼ 一致しており、これまで得られている結果よりわずかに小さな値であった。また、図 10.3 より水 平面内の最大主応力の方向については、これまで研究所設置地区の断層西側では、深度によらず ほぼ東西方向である結果が得られていたが、今回の結果では、東西方向から反時計回りに 25°、 43°の方向にある結果が得られた。今回実施箇所は、深度は 140m の声問層の 1 地点のみであり、 今後同深度およびさらに深い深度での初期応力測定を実施し、データの蓄積を図りより詳細な初 期応力分布の解釈を行う予定である。

N 水平面内最大主応力の方位 Е

W

図10.3 既往の初期応力測定結果との比較 (水平面内最大主応力の方位)

参考文献

- 1. 吉田英一、大澤英昭、柳澤孝一、山川稔、深部花崗岩中の割れ目解析--岐阜県東濃地域に分布 する花崗岩類を例にして、応用地質 第30巻第3号、p.11-22、(1989)
- 2. 渡辺邦夫、割れ目系の確率的連続性の評価法と AVTD 法に基づく岩盤調査の試み、昭和 60 年度応用地質学会シンポジウム予稿集、p.36-39、(1985)
- 3. Leeman, E.R., The 'doorstopper' and triaxial rock stress measuring instrument developed by the C.S.I.R., Journal of the South African Institute of Mining and Metallurgy, (1969)
- 4. 坂口清敏、竹原 孝、尾原祐三、中山智晴・菅原勝彦:円錐孔底ひずみ法の応力測定精度、 資源と素材、Vol.108、 p.455-460、(1992)
- 5. 坂口清敏、竹原 孝、尾原祐三、中山智晴、菅原勝彦: コンパクトオーバーコアリング法に よる岩盤応力測定、資源と素材、Vol.110、 p.331-336、(1994)
- 6. Sugawara K, Obara Y. Draft ISRM suggested method for in situ stress measurement using the compact conical-ended borehole overcoring(CCBO) technique. Int J Rock Mech Min Sci and Geomech Abstr, 36:p.307-322, (1999)
- 7. Ito T., Igarashi A., Kato H., Ito H. and Sano O., Crucial effect of system compliance on the maximum stress estimation in hydrofracturing method : Theoretical considerations and field-test verification, Earth Planets Space, 58, p.963-971, (2006)
- 8. Ito, T., Evans, K., Kawai, K., and Hayashi, K., Hydraulic Fracture Reopening Pressure and the Estimation of Maximum Horizontal Stress, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 36, p.811-826,(1999)
- 9. Kehle, R.O., The Determination of Tectonic Stresses through Analysis of Huydraulic Well Fracturing, J. Geophys. Res., 69, p.259-273, (1964)
- 10. Hardy, M.P. and Asgian, M.I., Fracture Reopening During Hydraulic Fracturing Stress Determinations, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, p.489-497, (1989)
- 11. Hubbert, M.K. and Willis, D., Mechanics of Hydraulic Fracturing, AIME Trans., 210, p.153-168, (1957)
- Hayashi, K., et al., In Situ Stress Determination by Hydraulic Fracturing A Method Employing an Artificial Notch, Int. J. Rock. Mech. Min. Sci. & Geomech. Abstr., 26, p.197-202,(1989)
- 13. Breadhoeft, J.D., et al., Hydraulic Fracturing to Determine the Regional In Situ Stress Field, Geol. Soc. Amer. Bull., 87, p.250-258,(1986)
- 14. Zoback, M.D., et al., Preliminary Stress Measurements in Central California Using the Hydraulic Fracturing Technique, Pure Appl. Geophys., 115, p.135-152, (1977)
- Ikeda, R. and Tsukahara, H., Hydraulic Fracturing Technique in Deep Wells and In Situ Stress at Depth, Proc. 2nd Int. Wkshp Hydr. Fract. Stress Measur., Minneapolis, p.141-165,(1988)
- 16. Cornet, F.H., Analysis of Injection Tests for In Situ Stress Determination, Proc. Wkshp Hydr. Fract. Stress Measur., Menlo Park, p. 414-443, (1982)
- Lee, M.Y. and Haimson, B.C., Statistical Evaluation of Hydraulic Fracturing Stress Measurement Parameters, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, p.447-456, (1989)
- Cheung, L.S. and Haimson, B.C., Laboratory Study of Hydraulic Fracturing Pressure Data – How Valid is Their Conventional Interperation?, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 26, p.595-604,(1989)
- 19. Zoback, M.D., et al., "Laboratory Hydraulic Fracturing Experiments in Intact and Prefractured Rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 14, p.49-58,(1977)
- 20. 伊藤高敏、林一夫、 水圧破砕地殻応力計測における縦き裂開口挙動の解析、日本機械学会論 文集(A 編)、57、 p.1715-1719、(1991)
- 21. 伊藤高敏、林一夫、 水圧破砕地殻応力計測における縦き裂のき裂開口圧と地殻応力の関係、 日本機械学会論文集(A 編)、25、p.72-77、(1992)
- 22. Baumgartner J. and Zoback M.D., Interpretation of hydraulic fracturing pressure-time records using interactive analysis methods, Int. Rock Mech. Min. Sci. & Geomech. Abstr., 26, p.461-469, (1989)
- 23. Vik G. and Tundbridge L., Hydraulic fracturing a simple tool for controlling the safety of unlined high pressure shafts and headrace tunnels, Proc. of the Int. Symp. On Rock Stress and Rock Stress Measurements/Stockholm,(1986)

- 24. Hayashi K. and Haimson B.C., Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination from hydraulic injection test data, J. Geophys. Res., 96, p.18311-18321,(1991)
- 25. Hayashi K., Sato A. and Ito T., *In situ* stress measurements by hydraulic fracturing for a rock mass with many plane of weakness, Int. Rock Mech. Min. Sci. & Geomech. Abstr., 34, p.45-48, (1997)
- 26. Hickman S.H. and Zoback M.D., The interpretation of hydraulic fracturing pressure-time data for in situ stress measurement, Proc. Workshop on Hydraulic Fracturing Stress Measurements, ed. Zoback M.D. and Haimson B.C., Vol.1, p.103-146, (1982)
- 27. Cornet F.H. and Vallette B., In situ stress determination from hydraulic injection test data, J. Geophys. Res., Vol.89, p.11527-11537, (1984)
- 28. Zoback M.D., Moos D. and Mastin L., Well bore breakouts and in situ stress, J. Geophys. Res. 90(B7), p.5523-5530, (1985)
- 29. Bell J.S. and Gough D.I., Northeast-southwest Compressive Stress in Alberta: Evidence from Oil Wells, Earth Planet Sci. lett., 45, p.475-482, (1979)
- 30. Haimson B.C., Improved In Situ Stress Determination in the KTB Ultra Deep Hole from Logged Breakouts and a Truly-Triaxial Rock Strength Criterion, Proc. 8th Int. Symp. on the Observation Continental Crust Through Drilling, p.194-199, (1996)
- 31. Qian W. and Pedersen L.B., Inversion of borehole breakout orientation data, J. Geophys. Res. 96(NB12), p.20093-20107, (1991)
- 32. 山口梅太郎、西松裕一、岩石力学入門(第3版)、東京大学出版会、(1991)
- 33. R.D. Lama & V.S. Vutukuri、 岩の力学的性質IV、古今書院、(1992)
- 34. 日本材料学会編、岩の力学-基礎から応用まで-、丸善
- 35. I.W. ファーマー、岩盤工学の基礎と応用、鹿島出版会

付録 1

BTV観察

This is a blank page.

- 155 -

タイトル:線延深地層研究センター換気立坑140m試錘座における初期応力測定 孔番:1/140-M01

8.000mabh- 12.000mabh

タイトル:標延深地層研究センター換気立坑140m試錘座における初期応力測定 孔番:V140-M01

•

•

タイトル:線延深地層研究センター換気立坑140m試錘座における初期応力測定 孔番:V140-M01

倍率:1/5 アスペクト:100%

タイトル:幌延深地層研究センター換気立坑140m試縫座における初期応力測定 孔番:V140-M01

16.000mabh- 20.000mabh

JAEA-Research 2009-004

20.000mabh- 21.000mabh

付録2

き裂の型取結果

This is a blank page.

LOP

(A)

M02 FL 12.0m

34567891012345678920123456789E0123456789E0123456789E0123456789E0123456789E0123456789E0123456789

This is a blank page.
表 1. SI 基本単位					
甘大昌	SI 基本ì	SI 基本単位			
盔쑤里	名称	記号			
長さ	メートル	m			
質 量	キログラム	kg			
時 間	秒	s			
電 流	アンペア	А			
熱力学温度	ケルビン	Κ			
物質量	モル	mol			
光 度	カンデラ	cd			

表2.基本単位を用いて表される	SI組立単位の例
a d d d d d d d d d d d d d d d d d d d	基本単位
和立重 名称	記号
面 積 平方メートル	m ²
体 積 立法メートル	m ³
速 さ , 速 度 メートル毎秒	m/s
加速度メートル毎秒毎	秒 m/s ²
波 数 毎メートル	m ⁻¹
密度, 質量密度キログラム毎立方	メートル kg/m ³
面 積 密 度キログラム毎平方	メートル kg/m ²
比体積 立方メートル毎キ	ログラム m ³ /kg
電 流 密 度 アンペア毎平方	メートル A/m^2
磁界の強さアンペア毎メー	トル A/m
量濃度(a),濃度モル毎立方メー	トル mol/m ³
質量濃度 キログラム毎立法	メートル kg/m ³
輝 度 カンデラ毎平方	メートル cd/m^2
屈 折 率 ^(b) (数字の) 1	1
比 透 磁 率 (b) (数字の) 1	1

(a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度 (substance concentration) ともよばれる。
(b) これらは無次元量あるいは次元1をもつ量であるが、そのこと を表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 組立甲位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
平 面 鱼	ラジアン ^(b)	rad	1 ^(b)	m/m
· 血 // 立 体 鱼	ステラジア、/(b)	er ^(c)	1 (b)	m^{2/m^2}
周 波 数	ヘルツ ^(d)	Hz	1	s ⁻¹
力	ニュートン	Ν		m kg s ⁻²
压力, 応力	パスカル	Pa	N/m ²	$m^{-1} kg s^{-2}$
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕 事 率 , 工 率 , 放 射 束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{2} kg^{1} s^{3} A^{2}$
磁束	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$\text{kg s}^{2}\text{A}^{1}$
インダクタンス	ヘンリー	Η	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	セルシウス度 ^(e)	°C		K
光束	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量,比エネルギー分与,	グレイ	Gv	J/kg	$m^2 s^{-2}$
カーマ		ay	ong	
線量当量,周辺線量当量,方向	シーベルト ^(g)	Sv	J/kg	m ² e ⁻²
性線量当量,個人線量当量		51	Ong	
酸素活性	カタール	kat		s ⁻¹ mol

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
(c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
(d)ヘルツは周期現象についてのみ、ベクレルは放射性抜種の統計的過程についてのみ使用される。
(e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
(e)セルシウス度はケルビンの特別な名称で、セルシウス温度で表すために使用される。
(f)数単位を通の大きさは同一である。したがって、温度差や温度問隔を表す数値はとちらの単位で表しても同じである。
(f)数単性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
(g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘质	E パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	コニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ミラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	E ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$
熱流密度,放射照度	E ワット毎平方メートル	W/m ²	kg s ⁻³
熱容量,エントロピー	- ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$
比熱容量, 比エントロピー	- ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	- ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱 伝 導 率	『ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	- ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	E クーロン毎立方メートル	C/m ³	m ⁻³ sA
表面電荷	ラクーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	エクーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	『ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透 磁 辛	ミ ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	- ジュール毎モル	J/mol	m ² kg s ⁻² mol ⁻¹
モルエントロピー,モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^{2} kg s^{2} K^{1} mol^{1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ^{−1} sA
吸収線量率	ミグレイ毎秒	Gy/s	$m^2 s^{-3}$
放射 強度	E ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝 度	E ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	たカタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

表 5. SI 接頭語					
乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	э 9	Y	10^{-1}	デシ	d
10^{21}	ゼタ	Z	10^{-2}	センチ	с
10^{18}	エクサ	Е	10^{-3}	ミリ	m
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ
10^{12}	テラ	Т	$10^{.9}$	ナノ	n
10^{9}	ギガ	G	10^{-12}	ピコ	р
10^{6}	メガ	М	10^{-15}	フェムト	f
10^3	キロ	k	10^{-18}	アト	а
10^{2}	ヘクト	h	10^{-21}	ゼプト	z
10^{1}	デ カ	da	10^{-24}	ヨクト	У

表6.SIに属さないが、SIと併用される単位						
名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
日	d	1 d=24 h=86 400 s				
度	۰	1°=(п/180) rad				
分	,	1'=(1/60)°=(п/10800) rad				
秒	"	1"=(1/60)'=(п/648000) rad				
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²				
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³				
トン	t	$1t=10^{3}$ kg				

_

表7.	SIに属さないが、	SIと併用される単位で、	SI単位で
	まとわて粉は	ぶ 中 瞬時 ほう や て そ の	

		い夫駅町に守られるもの			
名称				記号	SI 単位で表される数値
電	子才	ベル	7	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg
統一	-原子	質量単	自位	u	1u=1 Da
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m

表8.SIに属さないが、SIと併用されるその他の単位						
	名称		記号	SI 単位で表される数値		
バ	-	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa		
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa		
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m		
海		里	М	1 M=1852m		
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²		
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s		
ネ	-	パ	Np			
ベ		N	В	↓ 51単位との数値的な関係は、 対数量の定義に依存。		
デ	ジベ	N	dB -			

表9. 固有の名称をもつCGS組立単位						
名称	記号	SI 単位で表される数値				
エルグ	erg	1 erg=10 ⁻⁷ J				
ダイン	dyn	1 dyn=10 ⁻⁵ N				
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s				
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{m}^2 \text{ s}^{-1}$				
スチルブ	$^{\rm sb}$	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²				
フォト	ph	1 ph=1cd sr cm ^{-2} 10 ⁴ lx				
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{\cdot 2} = 10^{\cdot 2} \text{ms}^{\cdot 2}$				
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$				
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{2} = 10^{4} \text{T}$				
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ⁻¹				

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」 は対応関係を示すものである。

			表	£10.	SIに 属	属さないその他の単位の例
	:	名利	尓		記号	SI 単位で表される数値
+	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
ν	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy
ν				L	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		$\boldsymbol{\mathcal{V}}$		7	γ	1 γ =1 nT=10-9T
フ	I		ル	"		1フェルミ=1 fm=10-15m
メ	ートル	/系	カラ:	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ				N	Torr	1 Torr = (101 325/760) Pa
標	準	大	気	圧	atm	1 atm = 101 325 Pa
力			IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)
Ξ	ク		П	ン	μ	$1 \text{ u} = 1 \text{ um} = 10^{-6} \text{ m}$

この印刷物は再生紙を使用しています