JAEA-Research 2011-030

再処理廃液の沸騰模擬ツールの開発

Development of Simulation Tool for Boiling Event of Reprocessed Radioactive Liquid Waste

> 石川 淳 吉田 一雄 Jun ISHIKAWA and Kazuo YOSHIDA

安全研究センター サイクル施設等安全研究ユニット

Fuel Cycle Safety Research Unit Nuclear Safety Research Center November 2011

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2011

JAEA-Research 2011-030

再処理廃液の沸騰模擬ツールの開発

日本原子力研究開発機構 安全研究センター サイクル施設等安全研究ユニット 石川 淳、吉田 一雄

(2011年9月9日受理)

日本原子力研究開発機構では、核燃料施設の確率論的安全評価手法の整備の一環として事故影響評価手法の開発を進めている。その中で再処理廃液の沸騰時の物性値の変化を模擬するツール を開発した。再処理施設の機器では、万一、冷却機能が喪失した場合、放射性物質の崩壊熱によ り内包する溶液(廃液を含む)の温度が上昇し沸騰に至る。このような場合、機器内気相部への 放射性物質の移行量が増加し、その移行挙動を評価するには、廃液の温度、硝酸濃度など廃液の 物性値が必要となる。開発したツールは、モル沸点上昇の原理に基づき再処理廃液の沸騰、濃縮 過程を模擬している。モデルの検証のため実廃液を用いた沸騰実験を解析した。その結果、廃液 の硝酸濃度及び温度等の挙動を比較的精度良く計算できることを確認した。

JAEA-Research 2011-030

Development of Simulation Tool for Boiling Event of Reprocessed Radioactive Liquid Waste

Jun ISHIKAWA and Kazuo YOSHIDA

Fuel Cycle Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received September 9, 2011)

Development of accident consequence analysis method bas been under carried out at Japan Atomic Energy Agency as a part of research activities for development of probabilistic safety assessment method of nuclear fuel facilities. A computer tool has been developed to simulate boiling event of reprocessed liquid waste which is postulated to be occurred caused by the loss of cooling function at a fuel reprocessing plant. Thermodynamic properties of boiling and condensed nitric acid aqueous solution containing radioactive waste are necessary to assess quantitatively the amount of radioactive materials transferring to gas phase. The developed tool simulates boiling and condensation process of liquid waste based on the ebullioscopy. A simulation study of experimental result has been carried out and it was demonstrated that behavior of temperature and concentration of nitric acid of liquid waste are simulated well.

Keywords: Spent Fuel Reprocessing Plant, Radioactive Liquid Waste, Accident Consequence Analysis, Boiling Event, Simulation Tool

目次

1.	はじめに	1
2.	再処理廃液の沸騰の模擬に必要な機能	3
3.	計算モデルの概要	5
	3.1 初期濃度の設定	5
	3.2 沸点上昇度	5
	3.3 塩析出の模擬	6
	3.4 塩の脱水現象の模擬	6
	3.5 沸騰時の蒸発速度	7
	3.6 貯槽内気相部の模擬及び貯槽外への移行量	8
	3.7 貯槽内の蒸気上昇速度 ······	9
	3.8 Ru 放出量	10
4.	実験データに基づく検証計算	15
	4.1 CEA 実験の概要	15
	4.2 廃液の組成の推定	15
	4.3 計算結果	15
5.	まとめ	22
参考	文献	23
付鋦	と入力データ	24

CONTENTS

1.	Introduction	1
2.	Key functions for simulation of boiling behavior of reprocessed liquid waste	3
3.	Description of simulation model	5
	3.1 Set up of initial concentration of solute	5
	3.2 Degree of boiling point elevation	5
	3.3 Hydration of salting-out	6
	3.4 Dehydration of hydrated salts	6
	3.5 Vaporization speed	7
	3.6 Thermodynamics of vapor phase and	8
	3.7 Vapor velocity from boiling surface	9
	3.8 Ru transfer to vapor phase	10
4.	Verification with experimental data	15
	4.1 Overview of boiling experiment conducted by CEA	15
	4.2 Estimated composition of actual radioactive liquid waste	15
	4.3 Simulation results	15
5.	Summary	22
Ref	erence	23
App	pendix Sample Input	24

1. はじめに

日本原子力研究開発機構では、核燃料施設の確率論的安全評価手法の整備の一環として事故影響評価手法の開発を進めている。再処理施設の機器には、放射性物質の崩壊熱により内包する溶液(廃液を含む)の温度が上昇するものがあり、このような機器では、溶液が沸騰に至ることを防止するために冷却水により崩壊熱を除去する対策を施している。万一、この冷却機能が喪失した場合は、溶液の沸騰までに時間余裕があり種々の対策を施すことができると考えられるが、全てに失敗して溶液が沸騰に至ると機器内気相部への放射性物質の移行量が増加し、施設外へ放出される放射性物質の量も平常時より増加する場合があり得る。このような事象での気相部への放射性物質の移行挙動を評価するには、廃液の温度、硝酸濃度など廃液の物性値が必要となる。そのため事故影響評価手法の整備の一環として、再処理廃液の沸騰時の物性値の変化を模擬する計算ツールを開発した。

再処理廃液には、難揮発性化学種と揮発性化学種が含まれる。沸騰濃縮段階での放射性物質の 気相部への移行のメカニズムとしては、液面での気泡の破裂によって生成される飛沫のうち比較 的小さい粒径の液適のエアロゾル化と、揮発性化学種の温度上昇に伴う気化による移行が想定さ れる⁽¹⁾。特に、揮発性化学種である Ru は、沸騰が進み溶液が乾固に至る過程では大量に気相部 に移行することが知られている⁽²⁾⁻⁽⁴⁾。このような再処理廃液の沸騰濃縮時の放射性物質の気相部 への移行量を精度良く評価するためには、沸騰濃縮に伴う硝酸水溶液の硝酸濃度や廃液温度など 熱水力パラメータの変化を定量的に求める必要がある。このために沸騰模擬ツールを作成した。

2章及び3章では、模擬ツールの主要な機能とそれを実現するための計算モデルについて述べる。4章で実廃液を用いた沸騰実験のデータを用いて、模擬ツールの解析性能の検証を試みた結果を示す。

This is a blank page.

2. 再処理廃液の沸騰の模擬に必要な機能

作成した沸騰模擬ツールの主要な計算項目と計算に必要な機能を以下に示す。計算モデルの詳細は3章で示す。本ツールは、貯槽内の再処理廃液の沸騰開始から完全蒸発に至るまでの沸騰濃 縮現象での気相部の蒸気圧力(雰囲気組成)、温度、硝酸濃度、液位、存在量等の変化などを計算す る。以下にツールの概要を示す。

- 初期の廃液組成及び容積、タンク内径、廃液への付加熱量を入力で与え、硝酸水溶液または 塩を含む硝酸水溶液の沸騰段階に着目した計算を行う。なお、現状では、乾固後の熱的挙動は 模擬できない。
- ・ 沸騰時の硝酸と水の蒸発量(モル数)は、蒸気圧(温度及び硝酸濃度に依存)の比に従うとして、計算する。
- ・ 塩の硝酸水溶液への溶解度は水への溶解度と同様と仮定し、硝酸塩の析出を模擬する。
- ・ 硝酸解離度を計算するとともに溶解している硝酸塩の完全電離を仮定し、沸点上昇度を計算する。
 これにより廃液の温度挙動を模擬する。
- ・沸騰までの塩の結晶水の脱水を考慮して(遷移段階の脱水は未考慮)、廃液中の水分量を計算する。
- ・気相内の混合蒸気(水及び硝酸)の蒸気圧から状態方程式を用いて蒸気密度を求め、ガス上昇速 度を計算する。
- ・ Ru 放出は、廃液からのニトロシル Ru 錯体の酸化に伴う放出(酸濃度が影響)を想定する。
- ・ 沸騰時の以下のパラメータの沸騰の進展に伴う変化を計算する。
 - 液相部:硝酸濃度(モル濃度、モル分率、質量分率等)、水及び塩濃度、沸点上昇、 水溶液体積、水位、物量(モル数、質量)、塩の溶解度など
 - 気相部:組成(硝酸及び水の分圧)、濃度、タンク内蒸気上昇速度、RuO4の総揮発量、 容器外への移行など

再処理プロセスに関わる解析では、化学種間の複雑な化学反応を取り扱う必要があることから、 一般的に気液平衡などの化学平衡を仮定した手法が採用されている。本ツールが対象とする沸騰 現象は、非平衡な現象であるので、平衡を仮定した手法ではなく、質量及びエネルギー保存など 熱バランスを考慮し、硝酸水溶液の沸騰時の物性値変化を模擬する手法を用いた。溶解する塩の 沸騰現象に及ぼす影響としては、塩溶解に伴う沸点上昇と結晶水の解離による希釈効果、溶解度 データに基づく塩析出の3つが考慮する必要があるが、現状では、塩溶解に伴う硝酸解離度への 影響、酸濃度上昇や塩析出の促進などの塩析効果については考慮していない。これには、溶解度 データの精度向上や完全電離の仮定の妥当性検討を含めた塩析効果に関わる評価手法の構築が必 要であり、実験データの取得と合わせて、継続して検証/高度化を進める予定である。

以上の模擬ツールの要件を実現するために整備すべき解析機能の概要を以下に示す。

(1) 物性值

再処理廃液の沸騰濃縮現象を考慮するため、以下のような幅広い温度範囲及び硝酸濃度に適用 可能な物性値情報を用いる。なお、硝酸水溶液は、沸騰蒸留により共沸状態(濃度が質量分率で 68wt%、モル濃度で約 14mol/L 相当)まで濃縮されることから、この濃度範囲を網羅した物性値 計算ライブラリを構築した。

- ・ 硝酸及び水の蒸気圧の物性値情報(適用範囲:硝酸濃度 0~80wt%,温度 100℃~125℃)
- ・ 硝酸水溶液の密度の物性値情報(適用範囲:硝酸濃度 0~100wt%, 温度 20℃~100℃)
- ・ 硝酸と水の蒸発潜熱の物性値情報(硝酸は物性値推定法より構築)
- ・蒸気密度の物性値情報は、状態方程式を用いて蒸気圧から算出
- ・ 硝酸水溶液の解離定数の物性値情報(0wt%~共沸まで, 沸点)

(2) 初期濃度の設定

廃液中に含まれる硝酸及び硝酸塩化学種の物量は、組成情報に基づき設定する。廃液の初期体 積及びそれらの物量をもとに水量を算出する。また、塩溶解は体積膨張を伴うが、その膨張の度 合いは、廃液組成などで異なるので、ここでは容積と密度から算出した廃液の総重量から、廃液 組成及び容積から得られる硝酸、塩及び塩結晶水の物量を差し引き水の物量を算出し、これらの 情報をもとに、廃液中の硝酸、水、塩等の物量(質量、モル数)や濃度(モル濃度及び質量分率等)、 そして、体積、液位、など主要なパラメータの初期条件を設定する。

(3) 廃液沸騰時温度

溶液温度は、モル沸点上昇の原理に基づき計算する。沸点上昇度は、重量モル濃度(=溶質のモル数/溶媒質量)と水のモル沸点上昇(=0.515[K・kg/mol])の積で与えられる。ここで、硝酸水溶液中の硝酸(HNO₃)は、電解質なので、溶質のモル数計算には硝酸の解離を考慮する必要がある。 硝酸は水に溶解すると、一部がH+とNO₃に解離する(HNO₃ \Leftrightarrow H+ + NO₃)。例えば、希薄水溶 液の場合は完全に解離するが、硝酸濃度が上昇すると電離され難くなり解離度(電離度)が低下する。 また、熱解離反応は吸熱反応であるので温度が高いほど解離度が上昇する傾向がある。このよう な特性をモデル化する。

(4) 塩析出モデル

再処理廃液が沸騰し、濃縮が進むと溶液中に溶解する塩が析出する。硝酸水溶液での溶解度に ついてのデータは乏しいので、試みとして再処理廃液に含まれる代表的な無機塩の水に対する溶 解度の文献記載値のうち最大温度での溶解度を用いて濃縮に伴う塩の溶解量を計算する。

(5) 沸騰時の蒸発速度

再処理廃液の沸騰時の硝酸及び水の蒸発は、硝酸濃度及び温度に応じた硝酸の飽和蒸気圧(硝酸 濃度範囲 20~80wt%、温度範囲 40~125℃)及び水の飽和蒸気圧の比で蒸発すると仮定した。硝 酸の蒸発潜熱は、任意の温度における飽和蒸気圧を基に、ヒルデブランドの法則を佐藤が蒸発潜 熱に適用した式⁽⁵⁾を用いて算出する。このようにして求めた硝酸及び水の減少量から、硝酸濃度、 塩の溶解度等のパラメータの値を更新する。これを継続することにより、沸騰時の酸濃縮現象の 事故進展を模擬する。

3. 計算モデルの概要

以下に、2章で挙げた機能を実現するための計算モデルの概要を記す。

3.1 初期濃度の設定

沸騰模擬ツールで考慮できる硝酸塩化学種を表 3.1 に示す。廃液中に含まれるこれらの化学種 及び硝酸の物量は、組成情報から算出可能だが水についての情報はない。また、塩溶解により体 積は膨張するが、その度合いは、廃液組成などによって異なり、検討は困難である。それ故、容 積と密度から算出した廃液の総重量から、廃液組成及び容積から得られる硝酸、塩及び塩結晶水 の物量を差し引き水の物量を算出する。これら情報をもとに、廃液中の硝酸、水、塩等の物量(質 量、モル数)や濃度(モル濃度及び質量分率等)、そして、体積、水位などの主要なパラメータの初 期条件を設定する。

3.2 沸点上昇度

溶液中に不純物が多く含まれると沸点が上昇する。溶液の沸点上昇度は、重量モル濃度(=溶質のモル数/溶媒質量)と水のモル沸点上昇(=0.515[K・kg/mol])の積で与えられる。

沸点上昇度 = 0.515[K・kg/mol](水) ×溶質のモル数÷溶媒(水)質量[kg]

ここで、硝酸水溶液中の硝酸は、電解質なので、溶質のモル数計算には硝酸の解離を考慮する 必要がある。硝酸HNO₃は水に溶解すると、一部がH+とNO₃⁻に解離する(HNO₃ \leftrightarrow H⁺+NO₃⁻)。 例えば、表3.2 に示すように希薄水溶液の場合は完全に解離するが、硝酸濃度が上昇すると電離 され難くなり解離度(電離度)が低下する。また、熱解離反応は吸熱反応であるので温度が高いほど 解離度が上昇する傾向がある(圧力にも影響し、圧力低下で解離度は増加する傾向あり)。

解離度の定義

HNO3の初期濃度を C[mol/L]とすると、平衡時の濃度関係は

HNO₃ \Leftrightarrow H⁺ + NO₃-, [HNO₃]= C(1- α), [H⁺]=C α , [NO₃-]=C α

となる。ここで解離度は α(=[H+]/[HNO₃]_{初期})で定義される。表 3.2 に 25℃における硝酸解離度を 示す。表に示すように、硝酸濃度上昇に伴い解離度は低下する。また、温度上昇に伴い解離度は 上昇する傾向がある。

硝酸解離度の計算モデル

硝酸の解離定数 pKa(対数表記)は、改訂第 4 版化学便覧基礎編 II-322 に pKa= -1.8 と記載されている、なお解離係数は平衡定数なので、解離度とは定義が異なるので注意を要する。

解離定数 K_a=[H⁺][NO₃⁻]/[HNO₃]とすると pK_a=−log₁₀K_a = −1.8 となり、K_a = 10^{1.8}=63.095≒63.1 ここで [H⁺]=[NO₃⁻]の濃度を X[mol/L]、解離なしの初期の硝酸濃度を C[mol/L]とおくと

$Ka=[H+][NO_3-]/[HNO_3]=X^2/(C-X)$

の関係となり、平衡状態における[H+](=[NO₃·])の濃度は2次方程式の解として算出できる。

→ X²+63.1X-63.1C=0 (X>0)の解は、 $X = \frac{-63.1 + \sqrt{63.1^2 - 4 \times 63.1C}}{2}$

硝酸水溶液の溶質のモル数(重量モル濃度計算に必要)=[H+]+[NO₃-]+[HNO₃] = 2X+(C-X)=X+C となり、これを沸点上昇度計算に用いる。

上記の計算モデルを用いて、硝酸水溶液のモル濃度と沸点の関係を求め、実測値⁽⁷⁾と比較した 結果を図 3.1 に示す。解離定数 pKa=-1.8 (図中の解離モデル修正前)では、高濃度(8M 以上)に おける解離度が極端に低下するため沸点を過大評価する。そこで、高濃度の溶液にも適用可能な ように、高濃度時の沸点データに合うような解離定数を求めた結果を表 3.2 に示す。

計算モデルでは、表 3.3 に示した 8M 以上の解離係数を硝酸のモル濃度: C の 4 次の多項式(下式)で近似して解離係数を算出している。

モル濃度 C ≦ 8mol/L の場合	: Ka=63.0957
モル濃度 C >8mol/L の場合	: Ka= $0.0478X^4 - 2.4534X^3 + 48.252X^2 - 432.28X + 1493.9$

上記の修正式による解離係数に基づく沸点の図 3.1 の「解離モデル修正後」として示す。データ 修正(8mol/L以上)モデルにより高濃度での計算精度が向上した。

3.3 塩析出の模擬

表 3.4 に示すように硝酸塩の溶解度データはあまり多くない。沸騰による濃縮に伴う塩の析出 量は、塩の硝酸水溶液への溶解度が水と同等であると仮定し、また、沸騰事象を対象している理 由から水に対する溶解度の文献記載値の最大値を用いた。また、溶解度データがないものは析出 しないとし、析出すると計算された塩の量は、廃液中に溶解する物量(モル濃度等)から差し引き、 沸点上昇度計算から除外している。表 3.3 に示す溶解度データは単独元素の水に対するものであ ること、析出物の水和数も不明であるなど計算に必要な物性値が不足している。計算精度向上に は実験に基づく評価手法の検証が必要である。

3.4 塩の脱水現象の模擬

Fe(NO₃)₃・9H₂O など硝酸塩に付随する結晶水は、温度上昇による脱水で溶液を希釈させ硝酸 濃度に影響する。塩の脱水現象は、以下に示すように沸騰前と沸騰晩期後半の溶液から乾固物へ の遷移段階に起こると考えられる。現状では沸騰前の脱水現象のみモデル化している。

1) 100℃以下(沸騰開始前)での脱水

Mn、Ni、Cd、Fe、Cr の硝酸塩結晶水は、以下に示すように分解し、全てまたは一部の結晶水

が離脱すると考えられる。本ツールでは、廃液が沸騰するまでの結晶水分解に伴う溶液の希釈を 模擬した。なお、初期の結晶水の水和数は、廃液の初期温度と模擬廃液作成時の添加物の情報^{(2)、} ⁽³⁾ を参考に入力で与える。

- $Mn(NO_3)_2 \cdot 6H_2O$	\rightarrow Mn(NO ₃) ₂ ·	H2O(100℃以下で水和数変化:6→1)
- Ni(NO ₃) ₂ • 6H ₂ O	\rightarrow Ni(NO ₃) ₂ · 2	2H2O (100℃以下で水和数変化 : 6→2)
- $Cd(NO_3)_2 \cdot 4H_2O$	\rightarrow Cd(NO ₃) ₂	(100℃以下で水和数変化 : 9→0)
- Fe(NO ₃) ₃ • 9H ₂ O	\rightarrow Fe(NO ₃) ₃	(100℃以下で水和数変化:9→0)
- Cr(NO ₃) ₃ • 9H ₂ O	\rightarrow Cr(NO ₃) ₃	(類似元素と同様と仮定すれば 100℃以下で水和数変化)

2) 100℃以上(沸騰開始後)での脱水

100℃以上では以下の脱水現象が起こると考えられが、遷移段階は現象を溶液系として取り扱えないことから、本段階での脱水は考慮していない。

- Mn(NO ₃) ₂ · H ₂ O	\rightarrow	$Mn(NO_3)_2$	(130℃までに脱水)	
- Ni(NO ₃) ₂ • 2H ₂ O	\rightarrow	Ni(NO ₃) ₂	(250℃までに脱水)	
- $RuNO(NO_3)_3 \cdot 2H_2O_3$)	\rightarrow RuNO(NO ₃) ₃	(140℃までに脱水)	
- $Pd(NO_3)_2 \cdot 2H_2O$	\rightarrow	$Pd(NO_3)_2$	(150℃までに脱水)	
- Rh(NO ₃) ₃ • 2H ₂ O	\rightarrow	$Rh(NO_3)_2$	(類似元素 Pd と同様と仮定、	150℃までに脱水)
- $ZrO(NO_3)_2 \cdot 2H_2O$	\rightarrow	$ZrO(NO_3)_2$	(150℃までに脱水)	
- Nd(NO ₃) $_3 \cdot 6H_2O$	\rightarrow	$Nd(NO_3)_3$	(200℃までに脱水)	
- Y(NO ₃) ₃ • 6H ₂ O	\rightarrow	$Y(NO_3)_3$	(類似元素 Nd と同様と仮定、	200℃までに脱水)
- La(NO ₃) $_3 \cdot 6H_2O$	\rightarrow	La(NO ₃) ₃	(類似元素 Nd と同様と仮定、	200℃までに脱水)
- $Pr(NO_3)_3 \cdot 6H_2O$	\rightarrow	Pr(NO ₃) ₃	(類似元素 Nd と同様と仮定、	200℃までに脱水)
- Sm(NO ₃) $_3 \cdot 6H_2O$	\rightarrow	$Sm(NO_3)_3$	(類似元素 Nd と同様と仮定、	200℃までに脱水)
- Ce(NO ₃) ₃ • 6H ₂ O	\rightarrow	Ce(NO ₃) ₃	(200℃までに脱水)	
- $Gd(NO_3)_3 \cdot 6H_2O$	\rightarrow	$Gd(NO_3)_3$	(300℃までに脱水)	
- Eu(NO ₃) ₃ • 6H ₂ O	\rightarrow	$Gd(NO_3)_3$	(類似元素 Gd と同様と仮定、	300℃までに脱水)

3.5 沸騰時の蒸発速度

水への付加熱量を Q[J/s](入力データ)とすると硝酸及び水の蒸発量は、濃度及び温度に応じた飽 和蒸気圧の比で蒸発すると仮定した。各蒸気圧を計算するための2つのオプションを設けている。 一つは、表 3.5 に示す硝酸水溶液(硝酸濃度範囲 20~80wt%、温度範囲 40~125℃)の硝酸及び 水の飽和蒸気圧⁽⁸⁾から求めるオプションである。もう一つは、図 3.2 に示す実廃液の硝酸活量の 実測値から求めるオプションである。

時間 dt 間に蒸発する硝酸及び水の質量(dm_{HNO3}[g]及び dm_{H20}[g])及び蒸発潜熱、分子量、蒸気圧の間に以下の2式が成り立つ。dm_{HNO3}及び dm_{H20}はこれを連立させて計算する。

廃液への付加熱による	る蒸発量	: $Qdt = L_{HNO3} \times dm_{HNO3} + L_{H2O} \times dm_{H2O}$
蒸気圧の比に従い硝酸	凌及び水が蒸発	$\frac{P_{HNO3}}{P_{H2O}} = \frac{dm_{HNO3}}{XM_{HNO3}} / \frac{dm_{H2O}}{XM_{H2O}}$
dmhno3 dmh20 Q dt Phno3	 ・ 硝酸の蒸発量 水の蒸発量[・ 水への付加熱 ・ 時間間隔[s] 硝酸の蒸気E 	量[g] g] 軼量[J/s] E[Pa]

$P_{\rm H2O}$:	水の蒸気圧[Pa]
L hno3	:	硝酸の蒸発潜熱[kJ/kg]
L _{H2O}	:	水の蒸発潜熱[kJ/kg]
${ m XM}_{ m HNO3}$:	硝酸の分子量[g/mol]
$XM_{\rm H2O}$:	水の分子量[g/mol]

ここで、硝酸の蒸発潜熱は、任意の温度における蒸気圧が既知であるので、ヒルデブランドの 法則を佐藤が蒸発潜熱に適用した次式を用いて計算する(物性値推定法)。次式は、無極性液体に 適用可能な式で、硝酸溶液では精度が低い可能性があるので今後の改良が必要である。

$$\frac{L}{T} = 23.61 \left(\frac{P}{T}\right)^{-0.119}$$

L:蒸発潜熱[cal/g-mol=cal/mol]
T:温度 [K]

これらの式より廃液からの硝酸及び水の減少量を求め、熱水カパラメータのデータを更新する。 これを継続することにより、沸騰時の酸濃縮現象の事故進展の計算を行う。

3.6 貯槽内気相部の模擬及び貯槽外への移行量

貯槽内気相は、沸騰進行に伴う水位低下を考慮し、貯槽形状及び液相の体積変化から計算する。 気相の初期組成、液相からの硝酸水溶液(硝酸及び水蒸気)の蒸発速度から状態方程式を用いて、等 圧(大気圧)を仮定し、雰囲気組成、混合蒸気の密度、反応容器外への硝酸及び水蒸気の移行量を計 算する。計算手順を以下に示す。

基本式

状態方程式 PVg=niRT

P[Pa], V[L], T[K], n:i物質 i のモル数、気体定数 R [Pa・L/mol/K]=8.31×10³

計算条件

- ・ 全圧 P[Pa]: 大気圧(初期の雰囲気組成及び分圧は、硝酸水溶液の蒸気圧に従うと仮定)
- ・ Vg:気相体積[m³]→入力で与える貯槽体積から液相体積を差し引いたものが気相体積
- V1:等圧条件下で dt 間の溶液蒸発を反映した後の気相部の理論体積(外部放出計算前)
- T : 気相温度[K] = 液相温度と等しいと仮定
- ・ 雰囲気中の硝酸と水のモル数:

全圧 Ptot = 硝酸と水蒸気の分圧の和 = Pg,H20+Pg,HN03

水蒸気: $P_{g,H2O}V_g = n_{g,H2O}RT$ 、硝酸: $P_{g,HNO3}V_g = n_{g,HNO3}RT$

蒸発による液相中の物質変化量の計算

気相部に移行する水及び硝酸のモル数変化量は、液相部での硝酸及び水の蒸発による液相での 減少分を dmH20 及び dmHN03 と分子量から次式で与えられる。 $\Delta n_{g,H2O} = dm_{H2O}/ XM_{H2O}$ $\Delta n_{g,HNO3} = dm_{HNO3}/ XM_{HNO3}$

気相部のモル数の増加は

 $n'_{g,H2O} = n_{g,H2O} + \Delta n_{g,H2O}$ $n'_{g,HNO3} = n_{g,HNO3} + \Delta n_{g,HNO3}$

気相部への硝酸と水の移行による分圧と全圧変化は

水蒸気: P'g,H20Vg = n'g,H20RT 硝酸 : P'g,HN03Vg = n'g,HN03RT P'tot = P'g,H20+ P'g,HN03

気相圧力は大気圧に保持されるとして貯槽から外部へ放出される体積(ΔV=V1-Vg)を計算する。

 $P'_{tot} \times V_g = 大気圧 \times V1$ (ボイルの法則)

外部へ放出される水蒸気と硝酸のモル数は、気相部での完全混合を仮定し次式で計算する。

 $\begin{array}{l} \Delta \; n_{\rm g,H2O} = n_{\rm g,H2O} \times \; \Delta \; V \; /V1 \\ \Delta \; n_{\rm g,HNO3} = n_{\rm g,HNO3} \times \; \Delta \; V \; /V1 \end{array}$

外部への放出分を差し引いて、硝酸と水蒸気のモル数及び分圧、全圧を更新し、気相部の硝酸及 び水蒸気の濃度(質量分率、モル濃度)を算出し、次のタイムステップに進む。

3.7 貯槽内の蒸気上昇速度

貯槽内の蒸気上昇速度は、硝酸及び水の蒸発量を用いて以下で計算する。

 $v_{upflw} = fv_{tot} / A_{floor} = \left(\frac{dm_{HNO3} + dm_{H2O}}{\rho_g}\right) / A_{floor}$

ここで蒸気密度 pg は、雰囲気組成情報から状態方程式を用いて求める。

 $\rho_{g} = \rho_{g,HNO3} + \rho_{g,H2O} = P_{HNO3} XM_{HNO3} / R / TK + P_{H2O} XM_{H2O} / R / TK$

Vunflw	:	タンク内の蒸気上昇速度[m/s]
fv _{tot}	:	基発すろ硝酸と水の体積流量[m3/s]
dm _{HNO3}	:	硝酸の蒸発量[kg]
dm _{H2O}	:	水の蒸発量[kg]
ρ _g	:	硝酸と水の混合蒸気密度[kg/m ³]
$\rho_{g,HNO3}$:	- 硝酸の蒸気密度[kg/m ³]
ρ _{g,H2O}	:	水の蒸気密度[kg/m ³]
R	:	気体定数 [Pa・L/mol/K]=8.31×10 ³

TK	:	雰囲気温度[K]
A _{floor}	:	タンクの床面積[m ³]

3.8 Ru 放出量

硝酸水溶液中で加温されたRu^Ⅲ (NO)錯体の酸化によるRuO₄ 生成及び雰囲気への揮発速度は、 Sasahiraの式^{(2)、(3)}を用いて計算する。この式の適用の上限の硝酸濃度は8mol/L以下であり、高 濃度へ適用できない可能性がある。

$\frac{dr_{Ru(VIII),aq}}{dt}$	= 1.2	$2x10^{10}a_{HNO3}^{1.5}exp(0.3c_{HNO3,aq})exp\frac{-E}{RT}$
r(Ru(VIII))	:	Ru(VIII)の気相への移行量[mol/L]
ahno3	:	硝酸活量[-]
c(HNO3)	:	硝酸濃度[mol/L]
Ε	:	活性化エネルギー(E=1.3x10 ⁵ [J/mol])
R	:	気体定数(R=8.31[J/mol/K])
Т	:	温度 [K]

硝酸活量は、図 3.2 に示す文献(9)に記載の実廃液の気液平衡実験の結果⁽¹⁰⁾を基に算出された 硝酸活量係数から計算している。

JAEA-Research 2011-030

	20012 01-110 100000			
H_3PO_4	RbNO ₃	$CsNO_3$	$Sr(NO_3)_2$	$Ba(NO_3)_2$
MoO_2	$Cr(NO_3)_3$	Тс	$Mn(NO_3)_2$	Fe(NO ₃) ₃
$Ru(NO_3)_2$	Rh(NO ₃) ₃	$Pd(NO_3)_2$	$Ni(NO_3)_2$	AgNO_3
${ m SnO}_2$	Sb_2O_3	$Cd(NO_3)_2$	ZrO(NO ₃) ₂	Te ₂ O ₃ (OH)NO ₃
Y(NO ₃) ₃	La(NO ₃) ₃	Ce(NO ₃) ₃	Pr(NO ₃) ₃	Nd(NO ₃) ₃
$Sm(NO_3)_3$	Eu(NO ₃) ₃	Gd(NO ₃) ₃	Np(NO ₃) ₅	U(NO ₃) ₆
Pu(NO ₃) ₄	Am(NO ₃) ₃	$Cm(NO_3)_4$		

表3.1 沸騰模擬ツールで考慮できる硝酸塩化学種

表3.2 25℃における硝酸解離度 (6)

硝酸モル濃度[mol/L]	0	5	10	14
解離度 α[-]	1.0	0.809	0.501	0.260

表 3.3 硝酸水溶液の沸点に合うように補正した解離係数及び解離定数

モル濃度[mol/L]	Ka[-]	pKa[-](対数表示)
1.0	63.096(修正なし)	1.8(修正なし)
2.0	同上	同上
3.0	同上	同上
4.0	同上	同上
5.0	同上	同上
6.0	同上	同上
7.0	同上	同上
8.0	同上	同上
9.0	37.857	1.578
10.0	18.923	1.277
11.0	12.619	1.101
12.0	6.310	0.800
13.0	3.155	0.499
14.0	3.155	0.499

化学種	溶解度	文献	化学種	溶解度	文献
	$[g/100g$ - $H_2O]$			$[g/100g-H_2O]$	
H_3PO_4	84.79 50°C, a)	[1]	AgNO_3	88 100°C, a)	[1]
RbNO ₃	81.9 100°C, a)	[1]	${ m SnO}_2$	-	[1]
$CsNO_3$	66.3 100°C, a)	[1]	Sb_2O_3	8.50E-4 25℃, a)	-
$Sr(NO_3)_2$	50.8 100°C, a)	[1]	$Cd(NO_3)_2$	82.3 80°C, a)	[1]
$Ba(NO_3)_2$	25.6 100°C, a)	[1]	$ m ZrO(NO_3)_2$	-	-
Mo 金属	0.14 30°C, a)	[2]	Te ₂ O ₃ (OH)NO ₃	-	-
Cr(NO ₃) ₃	47.5 35°C, a)	[1]	Y(NO ₃) ₃	66.6 60°C, a)	[1]
Tc	-	-	$La(NO_3)_3$	75.04 60°C, a)	[1]
$Mn(NO_3)_2 \cdot H_2O$	83.3 75℃,	[1]	$Ce(NO_3)_3$	176 30°C, a)	[2]
Fe(NO ₃) ₃	51.18 45°C, a)	[1]	Pr(NO ₃) ₃	75.2 60°C, a)	[1]
$Ru(NO_3)_2$	-	-	Nd(NO ₃) ₃	75.34 80°C, a)	[1]
Rh(NO ₃) ₃	-	-	$Sm(NO_3)_3$	58.95 25°C, a)	[1]
$Pd(NO_3)_2$	58.1 100°C, a)	[1]	$Eu(NO_3)_3 \cdot 6H_2O$	193	[2]
Ni(NO ₃) ₂	69.2 100°C, a)	[1]	$Gd(NO_3)_3 \cdot 2H_2O$	190	[2]

表 3.4 硝酸塩の溶解度データ

[1]:化学便覧基礎編

[2] : Handbook of Chemistry an Physics, 87th Edition(2006-2007).

右肩文字: 文献記載値の最大温度, a):無水物の値

Mn(NO₃)2は、脱水により 100℃以下で水和数が変化 6→1、Ni(NO₃)2は、脱水

により100℃以下で水和数が変化6→2

Cd(NO₃)₂は、脱水により 100℃以下で水和数が変化 9→0

麦3.5 硝酸-水2成分系での硝酸及び水の蒸気圧(8)

[Hg]	0	水	L	9.5	12	15	20	25	31	38	48	60	73	89	108	129	155	185	219	
[mm	õ	硝酸	24.5	32	41	52	67	85	106	130	158	192	230	278	330	392	465	545	640	I
	C	水	12.8	16.7	21.8	27.3	35.3	44.5	56	70	86	107	130	158	192	231	270	330	393	469
	70	硝酸	9.65	12.6	16.5	21	27.1	34.5	43.3	54.5	67.5	83	103	125	152	183	221	262	312	372
	2	ж	15.5	20	26	33	43	54.5	68	86	106	131	160	195	238	288	345	410	490	580
	68	硝酸	5.7	7.55	10	12.8	16.8	21.7	27.5	35	43.5	54.5	67.5	83.5	103	124	152	181	218	260
	(ж	18.1	23.7	31	39	51	64	81	102	126	156	192	233	285	345	417	495	590	700
	6(硝酸	3.1	4.2	5.68	7.45	9.9	13	16.8	21.8	27.5	34.8	43.7	55	69.5	84.5	103	126	156	187
	2	水	21.3	28	36.3	46	60	76	95	120	148	182	223	272	331	400	485	575	685	I
	55	硝酸	1.82	2.5	3.41	4.54	6.15	8.18	10.7	13.9	18	23	29.4	37.3	47	58.5	73	06	110	I
		水	25	32.5	42.5	54	70	88	110	138	170	211	258	315	383	463	560	665	785	I
	50	硝酸	1.13	1.57	2.18	2.95	4.05	5.46	7.25	9.6	12.5	16.3	20.9	26.8	34.2	43	54.5	67	84	I
		水	29.3	38	49.5	62.5	80	100	126	158	195	240	292	355	430	520	625	740		I
	45	硝酸	0.68	0.96	1.35	1.83	2.54	3.47	4.65	6.2	8.15	10.7	13.7	17.8	23	29.2	37	46		
		水	33.5	43	56	71	06	114	143	178	218	268	325	394	480	573	688	810		
	40	硝酸	0.36	0.52	0.75	1.04	1.48	2.05	2.8	3.8	5.1	6.83	6	11.7	15.5	20	25.7	32.5		I
		ж	37.7	48	63	79	102	127	159	198	243	297	359	436	530	631	755	I	I	I
	35	硝酸	0.2	0.25	0.42	0.59	0.85	1.18	1.63	2.26	3.07	4.15	5.5	7.32	9.7	12.7	16.5	Ι	I	I
	0	水	41	53	69	87	113	140	174	217	267	325	393	478	580	690	I	I		I
	3(硝酸	0.11	0.17	0.25	0.35	0.51	0.71	1	1.38	1.87	2.53	3.38	4.53	6.05	7.9	Ι	Ι	I	I
	2	水	44	57.5	75	94	121	151	157	234	287	352	426	517	628	745	I	Ι		I
	21	硝酸	I	0.09	0.13	0.18	0.28	0.4	0.54	0.77	1.05	1.44	1.95	2.62	3.5	4.65	Ι	Ι	I	I
	0	ж	47.5	62	80	100	128	162	200	250	307	378	458	555	675	800	I	I		I
	2	硝酸		I	I	0.09	0.13	0.19	0.27	0.38	0.53	0.74	1.01	1.37	1.87	2.5	I	I	I	I
	硝酸の重量 百分率/WT%	温度/°C	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125

JAEA-Research 2011-030

図 3.1 硝酸水溶液のモル濃度と沸点の関係

図 3.2 廃液及び硝酸水溶液の硝酸及び水の活量係数

4. 実験データに基づく検証計算

フランス原子力庁(CEA: Commissariat à l'Energie Atomique)の原子力安全防護研究所 (IPSN: Institut de Protection et Sûreté Nucléaire))では、再処理廃液の沸騰事象での放射性 物質放出に係る影響の評価に資するため、実廃液を用いて沸騰乾固時の放射性物質の移行割合を 調べる実験を実施している⁽¹⁰⁾。この実験データを用いて作成した沸騰模擬ツールの模擬性能を検 討した。以下に CEA 実験の概要と模擬結果と実験データの比較を示す。

4.1 CEA 実験の概要

実験では、Pu 富化度 5%の MOX の使用済燃料を再処理し、300 [L/t] 相当まで濃縮して得た廃 液 400 [mL] を用いている。実験は、沸騰状態の気液平衡を測定するための実験及び廃液が沸騰 し乾固するまでの放射性物質の気相への移行量を測定する実験が行われた。後者の実験で用いた 装置の概要を図 4.1 に示す。実験で用いた使用済燃料及びそれを再処理して得た廃液の緒言を以 下に示す。また、廃液の主要な核種の組成を表 4.1 に示す。

再処理燃料(Pu5% MOX 燃料):

燃焼度: 30,000 [MWday/t]、1550 [日](4.2 年)冷却

廃液:

発熱密度: 6.6 [W/L]、フリー硝酸: 1.8 [mol/L]、硝酸根: 8.1 [mol/L]

4.2 廃液の組成の推定

表 4.2 に、文献(11)に示されている仏の軽水炉燃料の高レベル濃縮廃液中の放射性物質の組成に 係る情報を転載する。これらの情報をもとに表 4.3 に示すような廃液の組成を推定した。各組成 の濃度の根拠については表の脚注に示した。

4.3 計算結果

模擬ツールに 4.2 節で推定した廃液中の放射性物質組成を入力し、初期の廃液水分量が実験結 果より推定される水分量(347 [g])に一致するように廃液の密度を 1.195 [g/cm³]と推定した。ま た、実廃液の発熱量は既知であるが、加熱槽で常時加熱されているため凝縮水体積が実測値に合 うように廃液の加熱量を調整し、解析の境界条件とした。この解析でのツールの入力データを付 録に示す。解析は、廃液からの硝酸及び水の蒸発量を、硝酸水溶液の分圧のデータを用いて計算 するケース a と、実廃液の硝酸活量を基に計算するケース b の 2 ケースを実施した。

図 4.2 に、実測データから換算した凝縮液中の硝酸量の値と計算値の比較を示す。模擬ツール では、硝酸水溶液の飽和蒸気圧をもとに凝縮液への硝酸の移行量を計算する。図 3.2 に示すよう に廃液の硝酸活量係数は、放射性物質の硝酸化合物を含むことから、不純物のない硝酸水溶液の 活量係数に比べ大きいので、溶液の硝酸濃度が同じ場合、硝酸の気相部での分圧は硝酸水溶液の 場合に比べ大きくなる。このため、硝酸水溶液の分圧を用いるケース a では、沸騰状態での気相 部の硝酸の蒸気分圧は小さく計算され、凝縮する硝酸量も全般にわたり実測値より計算値が少な い。実廃液の硝酸活量を用いて蒸発量を計算するケース b では、全範囲で、硝酸量をケース a に 比べ多め計算しているが、実測値と比較すると、約56時間までは過小評価、それ以降では過大評価になっている。これは、蒸発量の計算に用いる硝酸の蒸発潜熱の不確実さに起因する推察される。

図 4.3 に沸騰に伴う廃液体積の減少の実測値を計算値の比較を示す。ここでの解析では、凝縮 水体積が実測値に合うように加熱条件を設定しているので、実測値と計算値は一致するはずであ るが、僅かな差異が生じている。これは、100℃までの硝酸水溶液の密度データを外挿して求めた 密度を用いて廃液の体積を計算していることに因る。

図 4.4 に廃液の硝酸濃度の比較を示す。図中の推定値は、CEA 実験での気液平衡測定実験での 廃液の濃縮度と硝酸濃度の関係及び図 4.2 で示す廃液体液の減少(濃縮度)の実測値から推定し た値(推定の詳細は文献(9)を参照のこと)である。ケース a では、沸騰初期で計算値と推定値の 一致は良いが、45 時間以降では高めに計算しているのに対して、ケース b では、推定値との一致 は良好である。ケース a の推定値との差異は、廃液の濃縮に伴い放射性物質の硝酸塩が析出する ことによる硝酸基の減少をモデル化していないことに起因していると推察される。これに対して ケース b で用いた実廃液の硝酸活量には、塩析効果による硝酸基の減少を反映していると推察さ れる。

図 4.5 に廃液温度の実測値と計算値の変化の比較を示す。ケース a では、廃液の温度が急激に 上昇する 60 時間以降、温度を高めに計算しているが、それ以前では、両者の一致は良好である。 これに対してケース b では、60~68 時間の間で僅かに過小評価している。これは、図 4.1 に示す 凝縮水への硝酸の移行量をこの時間帯で過大評価していることから、廃液中の硝酸量が少なくな り、結果としてモル沸点上昇を過少に計算したためと考えられる。廃液に含まれる硝酸塩の量は、 推定値であることを考慮すれば、両ケースとも概ね実測値との一致は良好と判断される。

化学種、核種	量	単位
Mo	2.4	g/L
Zr	6.6	g/L
Fe	13.8	g/L
Ru	$\sim \! 0.04$	mol/L
Ce^{144} + Pr^{144}	5,032	TBq/m^3
Sb^{125}	118	TBq/m^3
$Ru^{106}+Rh^{106}$	4,603	TBq/m^3
Cs^{134}	3,718	TBq/m^3
Cs^{137}	11,255	TBq/m^3
全α核種	3,800	TBq/m^3

表 4.1 廃液の組成 (1)

;	燃料	LWR(日)	LWR(仏)	FBR
燃焼度 /GWdt ⁻¹		28	33	60-80
アクチノイド元素	U	2.29	2.5	2.3
酸化物相当の濃度	Pu	0.15		
	Np	1.8	2	1-2.3
	Am	0.32	0.45	
	Cm	0.07		
FP 元素	Rb	0.62	0.73	
酸化物相当の濃度	\mathbf{Sr}	1.67	2.09	
	Y	0.99	1.18	
	Zr	8.4	9.89	
	Mo	8.74	7.98	
	Tc	2.17	2.07	
	Ru	4.83	2.35	
	Rh	0.76	0.38	
	Pd	2.93	1.20	
	Ag Cd In Sn Sb	0.34	0.58	
	Те	1.23	1.56	
	\mathbf{Cs}	4.87	5.68	
	Ba	3.38	3.17	
	La	2.61	2.98	
	Ce	4.96	6.51	
	Pr	2.31	2.81	
	Nd	8.11	9.33	
	Pm	0.05	0.21	
	Sm	1.74	1.90	
	Eu	0.39	0.42	
	Gd	0.22	0.24	
FP 元素の合計		61.32	63.30	

表 4.2 仏の軽水炉使用済燃料由来の高レベル濃縮廃液の放射性物質組成(11)

空欄:情報なし

成分	濃度[mol/L]	成分	濃度[mol/L]	成分	濃度[mol/L]
HNO ₃ ¹⁾	1.8	P 1)	$2.53 imes 10^{-3}$	Fe ¹⁾	$2.47 imes 10^{-1}$
Rb	$4.50 imes 10^{-3}$	Sr	$1.26 imes 10^{-2}$	Y	$6.99 imes 10^{-3}$
Zr ¹⁾	$7.24 imes 10^{-2}$	Mo ¹⁾	$2.50 imes10^{-2}$	Тс	$1.11 imes 10^{-2}$
Ru ^{1), 4)}	4.04×10^{-2}	Pd	$5.94 imes 10^{-3}$	Ag ³⁾	$6.64 imes 10^{-4}$
Cd ³⁾	$1.06 imes 10^{-3}$	Sn ³⁾	$7.54 imes 10^{-4}$	Sb ¹⁾	$2.46 imes 10^{-5}$
Те	6.44×10^{-3}	Cs ¹⁾	$2.62 imes 10^{-2}$	Ba	$1.22 imes 10^{-2}$
La	$1.13 imes 10^{-2}$	Ce ^{1), 4)}	$2.94 imes 10^{-4}$	Pr	$1.05 imes 10^{-2}$
Nd	3.41×10^{-2}	Sm	$6.66 imes 10^{-3}$	Eu ¹⁾	4.71×10^{-4}
Gd	8.04×10 ⁻⁴	U 2)	$5.53 imes 10^{-3}$	Np ²⁾	1.10×10^{-1}
Pu ²⁾	$8.80 imes 10^{-3}$	Am ²⁾	$2.41 imes 10^{-2}$	Cm ²⁾	4.10×10^{-3}

表 4.3 推定した廃液中の化学種組成

- 1):表4.1の値を単位換算した値。
- 2): U、Np及びAmは表 4.2の仏の値、Pu及びCmは日本の値を1.1倍(Npの比)した 値から求めた放射能量の比で、表 4.1中のα核種の全放射能量:3800 [TBq/m³]を各核 種の放射能量に配分し、モル濃度に換算した値(Puの同位体比は、238:239:240: 241=0.038:0.556:0.273:0.133を仮定)。
- 3): 表 4.2 の Ag、Cd、In、Sn、Sb の合計値を文献(3)記載の廃液組成の計算値で比例配分 して求めた値。
- 4):表 4.1 中の Ce¹⁴⁴+Pr¹⁴⁴ 及び Ru¹⁰⁶+Rh¹⁰⁶は、それぞれ、全て Ce¹⁴⁴ 及び Ru¹⁰⁶と仮定。

注 無印:表 4.1 及び表 4.2 で共通する Mo、Zr 及び Cs の濃度の比の平均値(0.53 倍)で表 4.2 の仏の値を補正して求めた値。

図 4.2 凝縮液の硝酸量の実測値と計算値の比較

図 4.3 廃液の濃縮の実測値と計算値の比較

図 4.4 廃液の硝酸濃度の実測データからの推定値と計算値の比較

図 4.5 廃液温度の実測値と計算値の比較

5. まとめ

核燃料施設の確率論的安全評価手法整備のための事故影響評価手法の開発の一環として再処理 施設での冷却機能の喪失に伴う再処理廃液貯槽内の沸騰事象での熱水力挙動を模擬するツールを 作成した。ツールの模擬性能を確認するために、実廃液を用いた沸騰実験を解析し、実測データ と比較した。その結果を以下にまとめる。

- モル沸点上昇の原理に基づく硝酸水溶液の沸騰挙動を模擬する計算プログラムにより、廃 液温度及び硝酸濃度を概ね精度良く模擬できることが示せた。
- 廃液の硝酸濃度は、硝酸の蒸発量を硝酸水溶液の分圧を用いて計算した場合、沸騰初期で 計算値と推定値の一致は良いが、濃縮が進むにつれ高めに計算している。これは、廃液の 濃縮に伴い放射性物質の硝酸塩が析出することによる硝酸基の減少をモデル化していない ことに起因していると推察される。実廃液の硝酸活量を用いて硝酸の蒸発量を求めた場合 は、推定値との一致は良好である。これは、実廃液の硝酸活量には塩析効果が反映されて いることに因ると考えられる。
- 凝縮液中の硝酸量については、硝酸の蒸発量を硝酸水溶液の分圧を用いて計算した場合、 計算値は全時間にわたって実測値より少ない。実廃液の硝酸活量は、放射性物質の硝酸化 合物を含むことから、不純物のない硝酸水溶液の活量に比べ大きいので、溶液の硝酸濃度 が同じ場合、硝酸水溶液の蒸気圧から求めた硝酸の気相部での分圧は、実廃液の場合に比 ベ小さくなるため凝縮水へ移行する硝酸量を過小評価したと考えられる。実廃液の硝酸活 量を用いて硝酸の蒸発量を求めた場合は、硝酸水溶液の分圧で計算した場合に比べ多め計 算しているが、実測値と比較すると、約56時間までは過小評価、それ以降では過大評価に なっている。これは、蒸発量の計算に用いる硝酸の蒸発潜熱の不確実さに起因する推察さ れる。

沸騰模擬ツールは、関連する実験データの入手に応じて継続して検証/高度化を進める予定で ある。今後、放射性物質の移行挙動を解析する計算コードに組込み、再処理施設での事故影響 評価に活用する。

参考文献

- (1) 吉田 一雄 他、「核燃料施設の事故影響評価手法に関する調査(II) 溶液沸騰事象での放射 性物質の移行割合に関する基礎的データと試解析」、日本原子力学会和文論文誌、Vol.9、No.1、 pp.60-70, (2010)
- (2) A. Sasahira, et al., "Formation Rate and Gas-Liquid Equilibrium of RuO4," J. Nucl. Sci. Technol., 25[5], pp.472-478, (1988).
- (3) A. Sasahira, et al., "Formation Rate of Ruthenium Tetroxide during Nitric Acid Distillation," J. Nucl. Sci. Technol., 25[7], pp.603-606, (1988).
- (4) 日本原子力学会、「PUREX システム工学の最前線 ールテニウム、テクネチウム及びネプツ ニウムの化学と工学-」、(2004)
- (5) 大江 修造、「物性推算法」、http://www.s-ohe.com/bussei_suisanho.htm
- (6) Davis, W., Jr., De Bruin, H.J.: J. Inorg. Nucl. Chem., 26, 1069(1964).
- (7) 住友化学、「濃硝酸製造法の動向」、特 1972-II(1972). (原子力百科辞典 Atomica より)
- (8) Perry. J.H. and Chilton, C.H. ,Ed., Chemical Engineer's Handbook, 5th Ed., McGraw-Hill, New York, Chapter 3,pp.63-64, (1974).
- (9) 吉田 一雄、「再処理廃液の沸騰実験の分析」、JAEA-Research 2011-020, (2011).
- (10) Philippe M., et al., "Behavior of Ruthenium in the Case of Shutdown of the Cooling System of HLLW Storage Tanks," Proc. of 21th DOE/NRC Nucl. Air Cleaning Conf., San Diego, CA, Aug., 1990, NUREG/CP-0116, Vol 2, pp.831-843, (1990).
- (11) IAEA : STI/DOC/10/187, "Characteristics of Solidified High-Level Waste Products," IAEA Technical Reports Ser.No.187, (1979).

付録

4章の検証計算で用いた入力データを以下に示す。

```
タイトル
            CEA 実験(塩析効果なし)
廃液組成[M] -----1234567-----1234567-----1234567-----1234567------1234567
HN03 1.80e+0 P
               2.53e-3 Rb 3.96e-3 Cs 1.81e-2 Sr
                                                1.11e-2
Ba 1.07e-2 Mo 2.50e-2 Cr 0.00e+0 Tc 9.71e-3 Mn
                                                 0.00e+0
Fe
    2.47e-1 Ru
               4.05e-2 Rh 0.00e+0 Pd
                                     5.23e-3 Ni
                                                 0.00e+0
Ag 5.85e-4 Sn 6.65e-4 Sb
                          1.71e-5 Cd 9.30e-4 Zr
                                                7.24e-2
Te
    5.67e-3 Y
                6.16e-3 La
                          9.96e-3 Ce
                                     2.06e-4 Pr
                                                 9.26e-3
Nd
   3.00e-2 Sm 5.86e-3 Eu
                          3.26e-4 Gd 7.08e-4 Np
                                                1.24e-9
U
    4.88e-3 Pu
               7.09e-6 Am
                          1.47e-3 Cm
                                      2. 42e-2
添加した硝酸塩の初期水和数[個] -1234567-----1234567-----1234567-----1234567
           Ρ
                0.00e+0 Rb
                          0.00e+0 Cs
                                      0.00e+0 Sr
                                                 0.00e+0
    0.00e+0 Mo 0.00e+0 Cr 0.00e+0 Tc 0.00e+0 Mn
                                                 6.00e+0
Ba
                          0.00e+0 Pd
Fe
    9.00e+0 Ru
               0.00e+0 Rh
                                      0.00e+0 Ni
                                                 6.00e+0
Ag 0.00e+0 Sn 0.00e+0 Sb 0.00e+0 Cd
                                     4.00e+0 Zr
                                                 0.00e+0
Te
    0.00e+0 Y
                6.00e+0 La
                          6.00e+0 Ce
                                      6.00e+0 Pr
                                                 6.00e+0
    6.00e+0 Sm 6.00e+0 Eu 6.00e+0 Gd 6.00e+0 Np
Nd
                                                 5.00e+0
U
     6.00e+0 Pu 6.00e+0 Am 6.00e+0 Cm
                                      6.00e+0
沸騰開始min
             300.
塩水和物分解わ<sup>°</sup>1
                     (=0: 分解なし, =1:沸騰までに分解)
沸点上昇計算わ。1
                     (=0: 硝酸のみ考慮,=1:硝酸+FP 化学種を考慮)
硝酸解離オプ 1
                     (=0: 解離度データ(25°C),=1:解離度係数 pKa=-1.8 より計算)
解離度補正係数 1.0
                     (沸点上昇計算に係る硝酸解離度計算の補正係数)
FP 塩析効果
            0
                     (=0: FP 塩析効果考慮しない, =1:考慮する)
塩析効果を考慮した各金属イオンの水和数[個]---1234567-----1234567
           Ρ
              0.00e+0 Rb 8.00e+0 Cs 8.00e+0 Sr
                                                13.0e+0
Ba 13.0e+0 Mo 0.00e+0 Cr 19.0e+0 Tc 0.00e+0 Mn 14.0e+0
Fe 14.0e+0 Ru 14.0e+0 Rh 0.00e+0 Pd 14.0e+0 Ni
                                                14.0e+0
Ag 9.00e+0 Sn 13.0e+0 Sb 0.00e+0 Cd 14.0e+0 Zr
                                                 0.00e+0
Te
    0.00e+0 Y
               17.0e+0 La 17.0e+0 Ce 17.0e+0 Pr
                                                 17.0e+0
Nd
   17.0e+0 Sm 17.0e+0 Eu 17.0e+0 Gd 17.0e+0 Np
                                                0.00e+0
U
    0.00e+0 Pu 0.00e+0 Am 0.00e+0 Cm 0.00e+0
塩析効果補正 1.0
廃液初期容量 m3 400.0E-6
液初期密度 g/mL 1.111
タンク内径m
            0.14
タンク高さm
             0.38
付加熱(時刻min)4.200E+2 7.200E+2 2.760E+3 4.020E+3 4.200E+3 4.30E+03 4.50E+03 5.00E+03 5.50E+03 6.00E+03
付加熱₩
             2. 488E+0 2. 893E+0 2. 956E+0 4. 288E+0 5. 560E+0 6. 222E+0 4. 903E+1 1. 000E+1 1. 000E+1 1. 50E+01
付加熱(時刻min)6.50E+03 7.00E+03 7.50E+03 8.00E+03 8.50E+03 9.00E+03 9.50E+03 1.00E+04 1.05E+04 1.10E+04
             4. 270E+1 4. 071E+1 3. 760E+1 3. 414E+1 3. 217E+1 3. 026E+1 2. 432E+1 4. 715E+1 4. 701E+1 4. 535E+1
付加熱W
計算終了 day
             6.
出力間隔min
             60.0
```

表 1. SI 基本単位					
甘大昌	SI 基本ì	単位			
盔半里	名称	記号			
長さ	メートル	m			
質 量	キログラム	kg			
時 間	秒	s			
電 流	アンペア	А			
熱力学温度	ケルビン	Κ			
物質量	モル	mol			
光度	カンデラ	cd			

表2. 基本甲位を用	いて表されるSI組立単位	立の例			
和辛雪	SI 基本単位				
和立里	名称	記号			
面 積平	方メートル	m^2			
体 積立	法メートル	m^3			
速さ,速度メ	ートル毎秒	m/s			
加速度メ	ートル毎秒毎秒	m/s^2			
波 数每	メートル	m ⁻¹			
密度,質量密度キ	ログラム毎立方メートル	kg/m ³			
面積密度キ	ログラム毎平方メートル	kg/m ²			
比 体 積立	方メートル毎キログラム	m ³ /kg			
電流密度ア	ンペア毎平方メートル	A/m^2			
磁界の強さア	ンペア毎メートル	A/m			
量濃度 ^(a) ,濃度モ	ル毎立方メートル	mol/m ³			
質量濃度キ	ログラム毎立法メートル	kg/m ³			
輝 度力	ンデラ毎平方メートル	cd/m^2			
屈 折 率 ^(b) (数字の) 1	1			
比透磁率(b)	数字の) 1	1			
(a) 量濃度 (amount concentra	ation)は臨床化学の分野では	物質濃度			
(substance concentration)	とも上げれる				

(substance concentration)ともよばれる。
 (b)これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚	5.37 v (b)	red	1 (b)	m/m
	() / / / / / / (b)	(c)	1 1 (b)	2/ 2
		sr II-	1	m m -1
同 仮 多		пг		S .
カ	ニュートン	N		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量 比エネルギー分与				
カーマ	グレイ	Gy	J/kg	m ² s ²
線量当量,周辺線量当量,方向	2 × 2 2 (g)	C	T/la a	2 -2
性線量当量,個人線量当量		SV	J/Kg	ms
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(カタール) kat [s¹mol]
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周崩現象についてのみ、ペシレルは抜焼性核種の統計的過程についてのみ使用される。
 (a)やレシウス度はケルビンの特別な名称で、セルシウス温度度を表すために使用される。
 (d)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (d)かけ性核種の放射能(activity referred to a radionuclide) は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	[組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量,エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酸素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ e ⁻¹ mol

表 5. SI 接頭語							
乗数	接頭語	記号	乗数	接頭語	記号		
10^{24}	э 9	Y	10 ⁻¹	デシ	d		
10^{21}	ゼタ	Z	10 ⁻²	センチ	с		
10^{18}	エクサ	E	10 ⁻³	ミリ	m		
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ		
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n		
10^{9}	ギガ	G	10^{-12}	ピコ	р		
10^{6}	メガ	M	10^{-15}	フェムト	f		
10^{3}	+ 1	k	10 ⁻¹⁸	アト	а		
10^{2}	ヘクト	h	10^{-21}	ゼプト	z		
10^{1}	デカ	da	10 ⁻²⁴	ヨクト	v		

表6. SIに属さないが、SIと併用される単位						
名称	記号	SI 単位による値				
分	min	1 min=60s				
時	h	1h =60 min=3600 s				
日	d	1 d=24 h=86 400 s				
度	٥	1°=(п/180) rad				
分	,	1'=(1/60)°=(п/10800) rad				
秒	"	1"=(1/60)'=(п/648000) rad				
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²				
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³				
トン	t	$1t=10^{3}$ kg				

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される剱値が実験的に待られるもの								
名称				記号	SI 単位で表される数値			
電	子 >	ボル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J			
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg			
統-	一原子	質量単	单位	u	1u=1 Da			
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m			

表8.SIに属さないが、SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値
バ	-	N	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海		里	М	1 M=1852m
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²
1	ッ	ŀ	kn	1 kn=(1852/3600)m/s
ネ	-		Np	い逆伝しの教徒的な問題は
ベ		N	В	31単位との数値的な関係は、 対数量の定義に依存。
デ	ジベ	N	dB -	

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{ m}^{\cdot 2}$		
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx		
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ^{·1}		
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」				

は対応関係を示すものである。

表10. SIに属さないその他の単位の例								
	名	称		記号	SI 単位で表される数値			
キ	ユ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq			
$\scriptstyle u$	ン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$			
ラ			K	rad	1 rad=1cGy=10 ⁻² Gy			
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv			
ガ		\sim	7	γ	1 γ =1 nT=10-9T			
フ	I.	N	"		1フェルミ=1 fm=10-15m			
メー	-トル	系カラ	ット		1メートル系カラット = 200 mg = 2×10-4kg			
ŀ			ル	Torr	1 Torr = (101 325/760) Pa			
標	進	大気	圧	atm	1 atm = 101 325 Pa			
力	П	IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)			
3	カ	17	~		$1 = 1 = 10^{-6}$ m			

この印刷物は再生紙を使用しています