JAEA-Research 2011-053

多孔質地質媒体中における放射性核種の移行現象を 解析するための実験モデルに関する研究

Study on Experimental Models to Analyze Radionuclide Migration Behaviors through Porous Geologic Media

> 田中 忠夫 向井 雅之 Tadao TANAKA and Masayuki MUKAI

安全研究センター サイクル施設等安全研究ユニット

> Fuel Cycle Safety Research Unit Nuclear Safety Research Center

August 2012

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2012

JAEA-Research 2011-053

多孔質地質媒体中における放射性核種の移行現象を解析するための 実験モデルに関する研究

日本原子力研究開発機構 安全研究センター サイクル施設等安全研究ユニット 田中 忠夫・向井 雅之

(2011年12月16日受理)

放射性廃棄物の地中への埋設処分においては、土壌や多孔質岩中における放射性核種の移行を理解する ことが重要である。地下水の移流分散ならびに地質媒体と放射性核種との相互作用によって支配される放 射性核種の移行を理解するために、バッチ試験、カラム試験、フィールド試験などによって、移行挙動デ ータが実験的に取得されている。本研究では、様々の手法や条件で取得された移行挙動データを合理的に 解釈するため、固液相間における放射性核種の相互作用を9 タイプの実験モデルに整理した。実験モデル の検討にあたっては、反応の平衡到達度、可逆性、線形性、メカニズム、放射性核種の化学形を考慮した。 さらに、様々な移行実験の結果を任意のモデルで解析できる計算プログラムを整備した。この計算プログ ラムを用いて、様々な条件での放射性核種の移行挙動を予測、あるいは実験結果の逆解析から移行パラメ ータ値を推定できることを示した。

原子力科学研究所(駐在):〒319-1195 茨城県那珂郡東海村白方白根 2-4

Study on Experimental Models to Analyze Radionuclide Migration Behaviors through Porous Geologic Media

Tadao TANAKA and Masayuki MUKAI

Fuel Cycle Safety Research Unit Nuclear Safety Research Center Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received December 16, 2011)

The migration phenomenon of radionuclide through geological media such as soils and porous rocks, which is important in underground disposal of radioactive wastes, can be described by the advection-dispersion of groundwater and the interactions of radionuclide with geological media. On the other hand, to understand the migration phenomenon, actual migration data are experimentally acquired by a batch test, a column test and field trial. In the present study, experimental models about the interactions of radionuclide between the solid phase and the liquid phase were discussed systematically to interpret the migration data acquired by the various techniques and conditions. Equilibrium, reversibility, linearity, mechanism and chemistry in the interactions were considered in discussion of the experimental models. A calculation program, which can analyze migration data obtained under various conditions by applying the selected 9 types of experimental models, was maintained. The calculation program makes it be able to predict the migration behavior of radionuclide under various conditions and to decide the important parameter by a fitting analysis of the migration data.

Keywords:

Experimental Model, Radionuclide Migration, Geologic Media, Radioactive Waste Disposal, Calculation Program

目 次

1. はじ	めに	1
2. 固液	間反応モデルの網羅的抽出と整理	2
2.1 単-	ー化学種の単一サイトとの相互作用に関する反応モデル	2
2.2 単-	ー化学種の複数サイトとの相互作用に関する反応モデル	4
2.3 複刻	数の化学種が相互作用に関わる反応モデル	5
3. 反応	モデルの計算プログラムへの導入	8
4. 解析	例	
4.1 放	射性核種移行挙動の解析例	
4.2 逆角	解析による移行パラメータの決定	10
5. おわ	りに	12
謝辞		12
参考文南	۲	13
付録1	多孔質媒体中溶質移行を解析するための計算プログラム : FIT1DD	21
付録2	入力データファイル	22
付録3	出力データファイル	24

① 亚化 3	$\Box J J J = \phi J f + J \mu - \dots$	24
付録4	FIT1DDのソースコード	25

Contents

1.	Introduction	1
2.	Exhaustive systemization of reaction models between solid and liquid phases	2
	2.1 Reaction models relating to the interaction of chemical mono-species with mono-site	2
	2.2 Reaction models relating to the interaction of chemical mono-species with multi-sites	4
	2.3 Reaction models relating to the interaction of chemical multi-species	5
3.	Induction of the reaction models into a calculation program	8
4.	Analytical examples	9
	4.1 Analytical examples on migration behavior of radionuclide	9
	4.2 Decision of the migration parameters by fitting method	10
5.	Concluding Remarks	12
Ac	knowledgements	12
Re	eferences	13

Appendix 1	Calculation program for analyzing solute migration through porous media: FIT1DD	21
Appendix 2	Input data file	22
Appendix 3	Output data file	24
Appendix 4	Source code of FIT1DD	25

1. はじめに

一般に、土壌や堆積岩等の多孔質地質媒体中において、放射性核種は地質媒体と地下水間における放射 性核種の諸反応による移行抑制作用を受けながら、主として地下水の移流と拡散(もしくは分散)現象に 基づいて移行するとして評価される^{(1),(2)}。実際の環境における放射性核種は、陽イオン、陰イオン、コロイ ドなど多種の化学形態を成し、イオン交換、物理吸着、化学結合、溶解・沈殿、錯形成など多様に反応し ている⁽³⁾⁻⁽⁵⁾。さらに、土壌や岩石は、それらを構成する鉱物をはじめ、多種多様な収着サイトの集合体と して捉えることができる。したがって、地質媒体中で放射性核種の移行抑制作用を生み出す個々の反応は 非常に局所的な反応の不均一な組み合わせであり、ミクロな観点をベースにして移行抑制作用を定量的に 評価することは非常に複雑なものとなる。一方、青森県の六ヶ所村で現在進められている低レベル放射性 廃棄物の浅地中への埋設事業の安全評価⁶⁰など、現在の放射性廃棄物処分の安全評価では、これら複雑に交 錯するすべての反応をマクロな視点から捉えている。すなわち、"地質媒体と反応している放射性核種濃 度"と"地下水中に存在する放射性核種濃度"との間に可逆的な瞬時平衡が一定の平衡値の下で常に成り 立つという仮定、すなわち分配係数を用いて移行抑制作用を定量化している⁽²⁾。これは、主な反応メカニズ ムであるとされるイオン交換および表面錯体形成が比較的速い平衡反応であること、反応を構成する素過 程を全て数式化して体系化することが現実的ではないことを論拠として提示されたものであり、分配係数 は安全評価上これにとって代われるものがない概念として現時点まで受け入れられてきた^{(5),(7)}。

ミクロな観点から固液界面における反応のメカニズムを詳細にモデル化する研究も行われており、例えば、結合サイトの特定⁽⁸⁾や結合強度の特定⁽⁹⁾、表面錯体反応⁽¹⁰⁾、表面酸化還元反応⁽¹¹⁾、コロイドの動的付着⁽¹²⁾、結合状態⁽¹³⁾など、分子レベルのモデル化や現象解明が進められてきた。これらの知見は、移行抑制作用の科学的根拠を構築するものであるが、移行評価との関連性の観点では、最終的には分配係数の大小関係に帰着させる場合が多い。

その一方で、実環境で観測された放射性核種の移行現象^{(14),(15)}や Lysimeter 試験⁽¹⁶⁾,バッチ法収着実験^{(7),(17)} やカラム法移行実験^{(18),(19)}など、移行現象理解のためのデータ取得も行われてきた。その結果、実際の移行 現象には、単純な瞬時平衡を仮定した分配係数で解釈できない事例も散見され、実験結果を解釈する上で 固液間における反応を分配係数のみに帰着させることが不合理であることは否定できない⁽⁷⁾。そのため、実 験的に得られた移行抑制作用や移行現象をマクロな観点から解釈するための実験モデルの提案も同時並行 的に行われており、1 化学種の平衡や一次反応速度などを考慮した比較的単純なモデル⁽²⁰⁾⁻⁽²²⁾から多成分の 多相間での相互作用を取り扱う非常に複雑なモデル⁽²³⁾⁻⁽²⁵⁾まで多岐にわたる。しかし、これら実験モデルは、 特定の現象を精度良く再現することを目的として提案されたものであるため、誰もが様々な試験結果に適 用して容易に解析できるものではない。

本研究では、実験的に観察される種々の移行現象を合理的に解釈するため、固液相間における相互作用 に関する諸反応を網羅性と単純化に焦点をおいて抽出するとともに、それらを現実的に解析可能な範囲で 整理して、実験モデルとしての体系化を図った。さらに、様々な移行実験の結果を任意のモデルで解析で きるよう、整理したモデルを導入した計算プログラムを整備した。

2. 固液間反応モデルの網羅的抽出と整理

地質媒体中における1次元の放射性核種の移行現象は、(1)式で示す移流分散方程式と固液間における対象核種の反応式によって記述される⁽¹⁾。それらの連立方程式を解くことによって、対象核種の移行挙動を予測することが可能となる。

$$\frac{\partial C}{\partial t} + \frac{\rho}{fs} \frac{\partial Q}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - V \frac{\partial C}{\partial x}$$
(1)

ここで、*C* は地下水中における放射性核種の濃度 (Bq/cm³)、*Q* 地質媒体に収着した放射性核種の濃度 (Bq/g)、 ρ 地質媒体の密度 (g/cm³)、*f* 空隙率、*s* 地下水による地質媒体の飽和度、*D* 分散係数 (cm²/min)、 *V* 地下水の線流速 (cm/min)、*t* 時間 (min)、*x* 地質媒体の長さ (cm)である。

固液間反応モデルについては、移行現象において想定される地下水中における放射性核種の諸反応およ び固液間における放射性核種の相互作用を抽出するとともに、解析するために必要となる数式として提示 することが必要である。本研究で行った反応モデルの検討プロセスを以下に示す。

まず、反応モデルの検討にあたっては、以下を原則条件とした。

・地質媒体はマクロな観点から均一であること。

・放射性核種の濃度は反応への影響が無視できるほど希薄であり、Henry 型の吸着等温線に従うこと。 原則条件の下,固液間における諸反応を ①単一化学種の単一サイトとの相互作用,②単一化学種の複 数サイトとの相互作用,および③複数の化学種が関わる相互作用,の3つのカテゴリーに分類した。さら に、反応の平衡と非平衡,反応の可逆性と不可逆性,反応の線形性,元素の化学種変化を考慮して,3つの カテゴリーそれぞれにおいて想定すべき反応モデルを列挙した。反応モデルを列挙するにあたっては、一 般性的な移行現象を解析するための網羅性を維持しつつ,反応を記述するモデルのパターンによる単純化 も図った。列挙した反応モデルを整理し、実験モデルとして体系化した結果を Fig.1 に示す。なお、反応モ デルを単純化するにあたっては、現象発現の優先度、現象が重複する可能性等を考慮した。

以下,列挙した個々の反応について,反応を解釈するためのモデルと(1)式と連立させる数式化について 述べる。

2.1 単一化学種の単一サイトとの相互作用に関する反応モデル

モデル (a) 瞬時平衡収着モデル (Kd model)

放射性廃棄物の地中埋設処分の安全評価等に適用されている最もシンプルなモデルである。溶液中と固 相の相互作用において、単一化学種が単一サイトと瞬時平衡にあることを想定したモデルであり、前述の 通り1つの分配係数: Kd で相互作用を記述する。分配係数はバッチ収着実験から容易に取得できるパラメ ータである。

$$Q = KdC \tag{2}$$

瞬時平衡収着モデルに従う核種移行実験結果の典型的な例として、地質媒体を充てんしたカラムへ核種

を含む溶液を連続注入した場合に、ある時点でのカラム内における当該核種の分布およびカラム流出液中 における核種の濃度変化を Fig.2 に示す。

モデル (b) 速度依存性収着モデル (Rate-limited sorption model)

地質媒体と溶質との相互作用の速度が(1)式中の溶媒の移行速度 V との比較で無視できない程遅い場合, 相互作用の速度を考慮する必要が発生する。単純な一次反応を想定した場合,反応モデルは収着プロセス に対応する速度定数: k_1 (cm³/g/min)と脱離プロセスに対応する速度定数: k_2 (1/min)を伴う(3)式で記述でき る^{(20), (22)}。カラム法による核種移行実験結果の典型的な例(カラム内における当該核種の分布)を Fig. 3 に 示す。

$$\frac{\partial Q}{\partial t} = k_1 C - k_2 Q \tag{3}$$

固相表面に吸着した溶質が時間と共に固相内部へ拡散する場合^{(26),(27)},固相表面に吸着した溶質の結合が イオン交換から配位結合等へ変化する場合⁽²⁸⁾⁻⁽³⁰⁾など,比較的早い反応速度と比較的緩慢な反応速度の両方 が存在し,相互作用の速度を支配する反応そのものが見かけ上時間と共に変化する場合もある。しかし, Fig.4に示す概念図のように,解析や評価の対象とする時間が短期であれば比較的早い反応速度のみを考慮 すればよく(Fig.4(a)),逆に長期を対象とした解析であれば比較的緩慢な反応速度のみを考慮すればよい ことになる(Fig.4(b))。また,同等の反応速度を有する複数の相互作用が混在する場合,それらを包括的 に捉えた1つの反応速度を近似的に全体の反応速度として用いることで実験結果の解釈が可能である(Fig. 4(c))。移行実験結果の解析においては,対象範囲,目的に沿ったモデルを選定することが重要である。

モデル (c) 非可逆的収着モデル (Non-equilibrium sorption model)

地質媒体への溶質の収着メカニズムが,解析対象期間や脱離過程の観点から,見かけ上非可逆的とみな すことができる場合,反応モデルは,(4)式で記述できる。カラム法による核種移行実験結果の典型的な例 を Fig.5 に示す。

$$\frac{\partial Q}{\partial t} = k_1 C \tag{4}$$

天然バリアを対象とした核種移行現象に関する非可逆的相互作用の典型的な例としては、核種の鉱物結 晶格子への取り込み^{(31), (32)},粘土鉱物層間への核種の固定^{(8), (33)–(35)},コロイドのフィルトレーション^{(12), (36)}が 挙げられる。これらは、鉱物そのものの溶解を考慮すると、超長期的には、核種が極めて遅い速度で溶液 相へ再解離し得る。核種移行実験結果の解釈において、極めて遅い溶液相への再解離も考慮する必要があ る場合には、(3)式における k_1 と比較して極めて小さな k_2 を仮定することにより、見かけの非可逆的収着を 近似的に記述することが可能である。

$$\frac{\partial Q}{\partial t} = k_1 C - k_2 Q \qquad (k_1 \gg k_2) \tag{5}$$

一方,フィルトレーションについては,(6)式で記述される粒子のフィルトレーション理論が最も基本的 かつ単純な解析に用いられている⁽³⁷⁾。この考え方も原理的には非可逆的収着反応モデルと同じであるが, 実験系に導入される粒子量のみをパラメータとした解析が可能となるため,カラム式のコロイド等粒子の 透過実験結果を解析するモデルとしての適用性が高い。

$$\frac{\partial C_p}{\partial X} = -\lambda C_p \tag{6}$$

ここで、 λ はフィルトレーション・ファクター (1/cm)、 C_p はX cm の地質媒体を透過した際のコロイド等 粒子の濃度である。X=0の時すなわち対象とする地質媒体に侵入する前の粒子の濃度を $C_p = C_{p0}(X=0)$ 及 び C_{p0} =constant として(6)式を解くと、

$$\frac{C_p}{C_{p0}} = \exp(-\lambda X) \tag{7}$$

地質媒体を X_i cm 透過した際に捕獲される粒子濃度 Q_p は、(8)式で記述できる。

$$\frac{Q_p}{Q_{p0}} = \exp(-\lambda X_i) \tag{8}$$

ここで, Q_p は対象とする地質媒体の端面から X_j cm において地質媒体に捕獲される粒子濃度 (Bq/g), Q_{p0} は地質媒体の端面に捕獲される粒子濃度 (Bq/g)である。対数をとると,

$$ln(Q_p) = ln(Q_{p0}) - \lambda X_j \tag{9}$$

が得られ、実験的に取得した地質媒体中における粒子の分布傾向から λ を決定することができる (Fig. 5 参照)。

2.2 単一化学種の複数サイトとの相互作用に関する反応モデル

モデル(d) 複数サイトとの瞬時平衡収着モデル(2-site sorption model)

ある溶質の地質媒体との相互作用がイオン交換に支配されていて、異なるイオン選択性を有する Na イオン、Ca イオンを競合イオン種としてのイオン交換が同時に起こる場合⁽³⁸⁾、あるいは NpO₂⁺等オキソイオンと鉱物との反応で認識されているように、表面アルカリ金属イオンとのイオン交換反応並びに表面 OH 基との表面錯体形成反応との両方の相互作用が同時に起こる場合^{(39)、(40)}など、地質媒体と溶質の相互作用に複数の反応サイトが関わることは、通常起こり得る極めて現実的な現象である。これら個々の相互作用が瞬

時平衡とみなされる場合、収着平衡は以下のように記述できる。

$$Q_1 = K d_1 C \tag{10}$$

$$Q_2 = Kd_2C \tag{11}$$

$$\mathcal{Q} = \mathcal{Q}_1 + \mathcal{Q}_2 \tag{12}$$

ここで、 Q_1 はあるサイトと相互作用した核種濃度 (Bq/g)、 Q_2 は競合する他のサイトと相互作用した核種 濃度 (Bq/g)、 Kd_1 及び Kd_2 は2つのサイトそれぞれに対応する核種の分配係数 (cm³/g) である。(10)~(12) 式を整理すると(13)式になる。

 $Q = (Kd_1 + Kd_2)C \tag{13}$

平衡定数 (Kd1+Kd2)は、みかけ上1つの分配係数で記述でき、(2)式に同じとなる。

モデル (e) 平衡反応と時間依存反応が混在する収着モデル (2-site hybrid sorption model)

上述の2サイトモデルでは、溶質と地質媒体との相互作用に瞬時平衡を仮定していた。しかし、Fig.6に 示すように、瞬時平衡と見なせる反応と緩慢な時間依存性が共存し、且つ反応の大部分を占める早い相互 作用が定常化した後に顕在化する緩慢な反応を解析対象とするような場合⁽⁴¹⁾には、平衡反応と時間依存反 応が混在する反応モデルを考慮する必要がある。

$$Q_3 = K d_0 C \tag{14}$$

$$\frac{\partial Q_4}{\partial t} = k_3 C - k_4 Q_4 \tag{15}$$

$$Q = Q_3 + Q_4 \tag{16}$$

ここで、 Q_3 は瞬時平衡プロセスで収着する核種濃度 (Bq/g)、 Kd_0 は瞬時平衡プロセスに対応する分配係数 (cm³/g)、 Q_4 は緩慢なプロセスで収着する核種濃度 (Bq/g)、 k_3 (cm³/g/min) および k_4 (1/min) は緩慢なプロセ スに対応する反応速度式における収着と解離に関わる速度定数である。(14)~(16)式を整理すると、(1)式と 連立させる反応モデルとして(17)式が得られる。

$$\frac{\partial Q}{\partial t} = Kd_0 \frac{\partial C}{\partial t} + k_3 C - k_4 (Q - Kd_0 C)$$
⁽¹⁷⁾

2.3 複数の化学種が相互作用に関わる反応モデル

モデル (f) 複数化学種による瞬時平衡収着モデル (2-species sorption model)

天然バリア中におけるある放射性核種の化学形について考えると、イオン、加水分解生成物、炭酸錯体、 有機物錯体など、固相との相互作用に関わる化学種が複数存在する場合があり得る^{(3, 6), (3)}。特に、遷移金 属元素は、複数の化学種が混在しているとみなした方が一般的である。このような複数化学種が存在する 系を対象とした核種移行実験の結果を解釈するにあたっては、地質媒体との相互作用が強い化学種と弱い 化学種とに分類すると合理的である⁽⁹⁾。例えば、対象核種である金属イオン元素"A"が相互作用の小さい 化学種"AL"を生成すると仮定し、溶液中で"A"および"AL"がともに安定で、個別に地質媒体中を自 由に挙動できるとした場合、対象核種全体(A+AL)の移行現象は、化学種ごとに解析した上で、その重ね 合わせで記述することが可能である(Fi.g. 7 参照)。

$$Q_{A} = K d_{A} C_{A}$$

$$Q_{AL} = K d_{AL} C_{AL}$$
(18)
(19)

$$C = C_{\rm A} + C_{\rm AL} \tag{20}$$

$$Q = Q_{\rm A} + Q_{\rm AL} \tag{21}$$

ここで、 C_A は地質媒体との相互作用が強い化学種 "A"の初期濃度 (Bq/cm³)、 C_{AL} は A から生成される相 互作用の弱い化学種 "AL"の濃度 (Bq/cm³)、 Q_A および Q_{AL} は地質媒体に収着した化学種 A、AL それぞ れの濃度 (Bq/g)、 Kd_A および Kd_{AL} は化学種 A、AL それぞれについての分配係数 (cm³/g) である。

モデル (g) 複数化学種による速度依存性収着モデル (2-species rate-limited sorption model)

上述のモデル (f)は、地質媒体と対象核種との相互作用を瞬時平衡として扱った場合であるが、化学種 A および/または化学種 AL の相互作用に速度依存性を考慮する必要がある場合、(18)および(19)式に代わり (22)式、(23)式をそれぞれ適用し、重ね合わせで記述することが可能である。

$$\frac{\partial Q_A}{\partial t} = k_5 C_A - k_6 Q_A \tag{22}$$

$$\frac{\partial Q_{AL}}{\partial t} = k_7 C_{AL} - k_8 Q_{AL} \tag{23}$$

モデル(h) 化学種変化を考慮した瞬時平衡収着モデル(2-species transformation sorption model)

*モデル (f)*および*モデル (g)*は,溶液中において化学種 A がその反応生成物である AL とは独立に振る舞 うという特異的なケースを対象としたものである。しかし,一般的には,化学種 A および反応生成物 AL は,環境条件や反応要因物質 L の濃度によってその存在割合が変化すると考えるべきであろう。

$$A+L \Leftrightarrow AL$$
 (24)

(24)式の生成および解離反応は、その反応プロセスが化学種の地質媒体との相互作用プロセスより十分に 速い場合、平衡反応とみなすことができる。

$$C_{\rm AL} = \beta C_{\rm A} C_{\rm L}$$
 ($C_{\rm L} = \text{constant}$) (25)

ここで、 C_L は反応要因物質 L の濃度、 β は(24)式の反応における AL の安定度定数である。原則条件として対象核種の濃度は環境中の反応要因物質の濃度に比べ無視できることを仮定しているので、(24)式の反応にかかわらず C_L = constant となる。A の一部から AL が生成されるとした場合、対象核種全体(A+AL)の分配係数は、

$$Kd = \frac{Q_A + Q_{AL}}{C_A + C_{AL}} \tag{26}$$

で記述でき、(18)~(21)式及び(25)式をもって整理すると、

$$Kd = \frac{Kd_A + Kd_{AL}\beta C_L}{1 + \beta C_L}$$
(27)

したがって,(1)式と連立させる収着反応モデルとして(28)式が得られる。なお、反応生成物である化学種 ALが地質媒体と相互作用しない場合,(29)式に簡略化できる。

$$Q = \frac{Kd_A + Kd_{AL}\beta C_L}{1 + \beta C_L}C$$
(28)

$$Q = \frac{Kd_A}{1 + \beta C_L} C \tag{29}$$

モデル (i) 化学種変化速度を考慮した収着モデル (2-species kinetic-transformation sorption model)

地質媒体と溶質との相互作用の速度が(1)式の溶媒の移行速度との比較で瞬時平衡とみなせ、且つ(24)式の 生成および解離反応が化学種の地質媒体との相互作用プロセスより緩慢であり、結果的に相互作用そのも のを律速している可能性がある場合、生成と解離の速度を考慮する必要がある。

$$\frac{\partial C_{AL}}{\partial t} = C_L k_9 C_A - k_{10} C_{AL}$$
(30)

ここで、 k_0 は反応生成物 AL の生成プロセスに対応する速度定数 (mol/g/min)、 k_{10} は AL の解離プロセスに 対応する速度定数 (1/min)である。(30)式および(18)~(21)式をもって、 $Q \ge C$ の関係式に整理すると、(1) 式と連立させる反応モデルとして(31)式が得られる。なお、反応生成物である化学種 AL が地質媒体と相互 作用しない場合、(32)式に簡略化できる。

$$\frac{\partial Q}{\partial t} = Kd_A \frac{\partial C}{\partial t} + (Kd_A k_{10} + Kd_{AL} C_L k_9)C - (C_L k_9 + k_{10})Q$$
(31)

$$\frac{\partial Q}{\partial t} = Kd_A \frac{\partial C}{\partial t} + Kd_A k_{10} C - (C_L k_9 + k_{10})Q$$
(32)

モデル(i)では、化学種の生成を時間依存反応と捉えた場合を示したが、モデル(b)で示したように地質 媒体との相互作用を時間依存反応として捉える必要がある場合も存在する。そのような場合、律速プロセ スが溶媒中での化学種の生成/解離なのか、それとも地質媒体との相互作用なのかを諸実験データから判 断したうえで、モデルを選択することが重要である。

3. 反応モデルの計算プログラムへの導入

収着や移行のメカニズムや化学種に起因する諸現象を網羅的に検討し、且つ合理的に単純化することに より、カラム法による放射性核種の透過実験などから得られる地質媒体中における放射性核種の分布デー タやカラム流出液中の放射性核種の濃度変化データ(Breakthrough curve 等)を解析するための反応モデル として以下の9パターンのモデルが抽出された。

モデル (a):瞬時平衡収着モデル

モデル (b): 速度依存性収着モデル

モデル (c): 非可逆的収着モデル

モデル (d): 複数サイトとの瞬時平衡収着モデル

モデル (e): 平衡反応と時間依存反応が混在する収着モデル

モデル (f): 複数化学種による瞬時平衡収着モデル

モデル (g): 複数化学種による速度依存性収着モデル

モデル(h): 化学種変化を考慮した瞬時平衡収着モデル

モデル (i): 化学種変化速度を考慮した収着モデル

これらの反応モデルを(1)式の移流拡散方程式と連立させて解析するための計算プログラムに導入するに あたっては、定数や係数を整理することによって以下の4式に統合できる。

モデル(a), (d), (f) および(h) は最も単純な1つの分配係数で記述する(33)式とみなすことができる。

$$Q = K_{\rm d} C. \tag{33}$$

相互作用に時間依存性を考慮したモデル(b),(c)および(g)は,(34)式とみなすことができる。

$$\frac{\partial Q}{\partial t} = k_1' C - k_2' Q \tag{34}$$

平衡反応と時間依存反応が混在する モデル (e) は(35)式, 平衡反応と時間依存反応が混在する モデル (i) は(36)式となる。

$$\frac{\partial Q}{\partial t} = Kd' \frac{\partial C}{\partial t} + k_1'C - k_2'(Q - Kd'C)$$
(35)

$$\frac{\partial Q}{\partial t} = Kd'\frac{\partial C}{\partial t} + k_1'C - k_2'Q$$
(36)

移流分散についての(1)式および(33)~(36)式の何れかを選択して、一次元の地質媒体中における放射性核 種の分布やカラム流出液中の放射性核種の濃度変化を解析することを可能とする計算プログラム: FIT1DD を FORTRAN77 によりコード化した。数値解法には差分法を用いた。FIT1DD の詳細は付録に示 す。

本プログラムでは,移行する地質媒体の長さ,空隙率,水の飽和度,地質媒体の密度などの計算場の体 系を任意に設定できる。また,計算場への放射性核種の導入方法,計算場へ流入する地下水中の放射性核 種の濃度の与え方も任意に設定できる。設定した場において,放射性核種の初期濃度,線流速,拡散係数, 分配係数,反応速度定数などの移行パラメータを変動させて,計算場における放射性核種の分布や計算場 からの流出する放射性核種の濃度変化を解析することができる。また,初期濃度,線流速,拡散係数,分 配係数,反応速度定数などの移行パラメータについて,計算結果と実験データとの2乗誤差を最小化する 繰り返し計算によりフィッティングさせて求める逆解析を行うこともできる。

4. 解析例

実験室スケールで実施されている,直径数 cm 規模のカラムへ放射性核種水溶液を連続的あるいは断続的 に通水して移行挙動を調べる実験を対象として,FIT1DD を用いた移行解析及び逆解析を例示する。解析の ための一次元通水実験系の概念図を Fig.8 に示す。各解析例において,地質媒体の密度 ρ ,空隙率 f,水に よる飽和度 s はそれぞれ 2.5 g/cm3, 0.5, 1 と共通の値にした。

4.1 放射性核種移行挙動の解析例

カラム式移行実験のシミュレーション解析の一例として、放射性核種の移行に及ぼす腐植物質の影響に ついて検討した結果を示す^{(42), (43)}。腐植物質は、放射性核種と錯体を形成して環境中における移行現象に影 響を及ぼす可能性が指摘されている。ここでの解析では、共存する腐植物質と放射性核種とが反応して地 質媒体と相互作用しない錯体を形成することを想定し、結果として放射性核種の移行が著しく速まる可能 性について検討した。

解析に適用する反応モデルには、環境賦存物質である腐植物質と放射性核種との錯形成と解離の反応に おいて瞬時平衡と仮定したモデル(h)、およびそれらの反応速度を考慮したモデル(i)が該当する。これら の両方について、カラムへ連続流入した放射性核種の破過傾向を解析した。

シミュレーション解析における変動パラメータを腐植物質濃度とし、0,1,3,10 および 100 mol/dm³の値を 与えた。他の計算条件は、腐植物質濃度の変換を考慮して、モデル(h)の(29)式の瞬時平衡モデルでは単位変 換も含めた条件付の反応定数として $\beta=2.5$ cm³/mol を設定した。モデル(i)の(32)式の反応速度モデルでは $k_1=100$ mol・dm³/mg/cm³/min, $k_2=0.02$ 1/min を設定した。また、実験カラムの長さは 2.5 cm, Kd_A は 170 cm³/g, Dは 0.05 cm²/min, Vは 0.2 cm/min とした。なお、初期濃度 C_0 は 1 に規格化した。解析パラメータの一覧 を Table 1 に示す。初期条件と境界条件は以下のとおりとした。

初期条件:

 $Q(0 \le x \le 2.5) = C(0 \le x \le 2.5) = 0 \qquad (t=0)$

境界条件:

$C(x=0)=C_0$	(t > 0)
D = 0	$(x \le 0, x > 2.5)$

腐植物質濃度をパラメータとして計算した放射性核種の破過傾向のシミュレーション解析結果を Fig. 9, Fig. 10 に示す。想定したように、腐植物質濃度が高くなるに従ってカラムからの放射性核種の流出が速ま る傾向が得られた。また、錯形成速度に対して非常に小さな解離速度を仮定した場合(Fig. 9),カラム内 では溶質の相互作用が非平衡状態になり、錯体の形態で移流分散する割合が大きくなるため、瞬時平衡を 仮定した場合(Fig. 10)に比べ放射性核種の流出は速くなる傾向となった。なお、このような傾向は、小規 模カラム実験で観察された溶質の破過傾向と調和的な結果であった。

4.2 逆解析による移行パラメータの決定

ある条件のもとで実施した放射性核種の移行実験の結果として、一般に地質媒体に収着した放射性核種 濃度に関する情報と間隙水中の放射性核種濃度に関する情報が蓄積される。これらの実験結果をベースと して、移行現象を制御する分配係数、分散係数等の移行パラメータを逆解析する際には、適用するモデル とモデルに基づく現象を理解した上で、解析対象とすべきデータ、フィッティング範囲等を設定すべきで ある。また、フィッティングするパラメータは1つ、最大でも2つとすることで信頼性の高い決定が可能 である。それ以外のパラメータの値は、事前に他の実験や解析から決定あるいは推定しておくことが推奨 される。

以下,最も単純なカラム式の放射性核種移行実験から得られた結果に反応モデル式をフィッティングすることによって,移行パラメータを逆解析した例を示す^{(37),(44)}。

①実験概要

クロボク土(茨城県産)を充てんした内径 2.5 cm,長さ 5 cmのアクリル樹脂製カラムの下部から,予め クロボク土と十分接触させて調製した平衡水を流入してカラム内を水で飽和させた。0.5 cm³/min の流量で 平衡水を流入し、カラム内が定常状態になったと見なされた後、放射性核種の移行試験を開始した。先ず、 カラム内における水の線流速および分散挙動を把握するため、トリチウム水で標識した平衡水を 0.5 cm³/min の流量でカラム下部から流入し、流出液を採取、分析して、トリチウム水の破過傾向を測定した。 続いて、 3×10^4 Bq/cm³の²³⁷Npまたは²⁴¹Amを含む平衡水 5 cm³を 0.5 cm³/min の流量で流入した後、連続 して平衡水 500 cm³を流入して²³⁷Np,²⁴¹Amを移行させた。カラム流出液は一定間隔で分取して²³⁷Np,²⁴¹Am を分析し、各々の核種の流出傾向を測定した。平衡水の流入終了後、カラム内のクロボク土は 0.5 cm 間隔 で 10 等分にスライスして²³⁷Np,²⁴¹Am を分析し、カラム内における各々の核種の濃度分布を測定した。 ②解析1:D, Vの決定

カラム実験体系における水の移流分散に関わるパラメータ V, Dを決定するため、反応モデルとしてモデ ル (a)の(2)式を選択し、実験から得たトリチウムの破過曲線に、Kd=0の条件で計算結果のフィッティング を行った。なお、トリチウム水の破過傾向の解析において初期濃度 C₀は1に規格化した。初期条件と境界 条件は以下のとおりとした。

初期条件:

 $Q(0 \le x \le 5) = C(0 \le x \le 5) = 0 \qquad (t=0)$

境界条件:

$C(x=0)=C_0$	(t > 0)
D = 0	$(x \le 0, x > 5)$

解析結果を実験結果とともに Fig. 11 に示す。フィッティングの結果,実験条件における線流速,分散係数の値として,それぞれ D=0.045 cm²/min, V=0.13 cm/min を得た。

③解析2:放射性核種の収着反応パラメータの決定

移行実験期間にカラムから流出した液中に²³⁷Np,²⁴¹Am は検出されなかった。このため、カラム内における各々の核種の濃度分布のみに対し、反応モデルをフィッティングさせることによって収着反応に関わるパラメータを決定した。²³⁷Np の分布傾向ならびに収着メカニズムの検討から、収着反応はイオン交換など瞬時平衡反応で記述できることが推察された。そのため、²³⁷Np についての反応モデルとしては*モデル (a)*の(2)式を選択し、*Kd*をフィッティングにより決定した。

一方,同じ実験条件で取得した²⁴¹Am の分布傾向ならびに収着メカニズムの検討から,収着反応は表面 錯体反応が支配的であり,瞬時平衡反応では記述できないことが推察された。そのため,²⁴¹Am についての 反応モデルとしては*モデル (b*)の(3)式を選択し, *k*₁, *k*₂ をフィッティングにより決定した。

解析においては、D=0.045 cm²/min、V=0.13 cm/min、また初期条件と境界条件は以下のとおりとした。

初期条件:

 $Q(0 \le x \le 5) = C(0 \le x \le 5) = 0 \qquad (t=0)$

境界条件:

$C(x=0)=C_0$	$(0 \le t \le 10)$
C(x=0)=0	(<i>t</i> >10)
D = 0	$(x \le 0, x > 5)$

²³⁷Np および²⁴¹Am の解析結果を実験結果とともに **Fig. 12**, **Fig. 13** にそれぞれ示す。フィッティングの結果, *モデル (a)*の(2)式の瞬時平衡モデルを適用した²³⁷Np では,分配係数として *Kd*=150 cm³/g の値を得た。

モデル (b)の(3)式の反応速度モデルを適用した²⁴¹Am では、反応速度定数として k_1 =1.4 cm³/g/min、 k_2 =2.2×10⁻¹⁰ 1/min の値を得た。

5. おわりに

本研究では、様々の手法や条件で取得された放射性核種の移行現象を合理的に解釈するため、汎用性ある反応モデルを実験モデルとして体系化を図るとともに、解析ツールを整備した。

- ・ 実験モデルの体系化では、網羅性と単純化に焦点をおいて、固液間相互作用および溶質反応のメカ ニズムを要素的に取り入れた9パターンの反応モデルに整理した。
- 9パターンの反応モデルを導入した汎用性のある計算ツール FIT1DD を開発し,様々な移行実験結果 を柔軟に解析できるようにした。
- ・ 放射性核種の移行実験結果の解釈や実験結果に基づく移行パラメータ値の逆解析のために、計算ツ ール FIT1DD の適用が有効であることを例示的に示した。

移行実験に関して与えられた条件や情報に沿って適切な解析を行うためには、解析の目的を明確にする ことは当然として、地質媒体の性質、放射性核種の性質、移行実験の諸条件を把握しておくことが不可欠 である。また、解析に適用する反応モデルの選定にあたっては、収着脱離のメカニズム、ミクロな観点か らの収着挙動、溶液中での反応など、収着や移行に関連する取得可能な多くの情報を参考にしつつ、選定 根拠を整えておくことが肝要である。反応モデルの選定と同様に、解析対象とするデータや情報の範囲の 選定も重要である。このような総合的な判断に基づき、現象を支配している主要なメカニズムと矛盾しな い適切な反応モデルを選択することにより、信頼性のある解析が初めて可能となる。

なお、本研究で提示した固液間相互作用に関する反応モデルは、実験室で実施するカラム式移行実験の 結果等で一般的に観察される放射性核種の移行現象や土壌層中における挙動を合理的に解釈するためのツ ールとして位置付けられるマクロ的な観点をベースにしたものであり、実際の固液界面における放射性核 種の化学形態や界面で起きている結合状態を定量的に解明し、そのミクロ的なメカニズムを直接反映した モデルではないことに留意する必要がある。

謝 辞

本報をまとめるにあたり貴重なご助言を頂きました,安全研究センター 廃棄物安全研究グループの武 田聖司 研究副主幹に深く感謝の意を表します。

参考文献

- Inoue, Y., Kaufman, W. J.: Prediction of movement of radionuclides in solution through porous media, *Health Phys.*, 9, p.705 (1963).
- (2) Selim, H. M., Davidson, J. M., Rao, P. S. C.: Transport of reactive solutes through multilayered soils, *Soil Sci. Soc. Am. J.*, **41**, p.3 (1977).
- (3) McCarthy, J. F., Zachara, J. M.: Subsurface transport of contaminants, *Environ.Sci.Technol.*, 23, p.496 (1989).
- (4) Nagasaki, S., Tanaka, S., Suzuki, A.: Influence of Fe(III) colloids on Np(V) migration through quartz-packed column, J. Nucl. Sci. Technol., 31, p.143 (1994).
- (5) 日本原子力学会標準: "収着分配係数の測定方法—浅地中処分のバリア材を対象としたバッチ法の基本 手順:2002—", JESJ-SC-F003:2002, 日本原子力学会, (2002).
- (6) 日本原燃産業株式会社: 六ヶ所低レベル放射性廃棄物貯蔵センター廃棄物埋設事業許可申請書,(1988).
- (7)内田滋夫,保田浩志,馬原保典,佐々木規行,高橋知之,木村英雄,松鶴秀夫:分配係数の測定法及び利用法,放射線医学総合研究所,電力中央研究所,日本原燃株式会社,日本原子力研究所,JAERI-Review 95-009,(1995).
- (8) Means, J. L., Crerar, D. A., Borcsik, M. P.: Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments, *Geochim. Cosmochim. Acta*, 42, p.1763 (1978).
- (9) Sasaki, T., Terakado, Y., Kobayashi, T., Takagi, I., Moriyama, H.: Analysis of sorption behavior of cesium ion on mineral components of granite, *J. Nucl. Sci. Technol.*, **44**, p.641 (2007).
- (10) Peak, D.: Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface, *J. of Coll. Int. Sci.*, 303, p.337 (2006).
- (11) Nakata, K., Nagasaki, S., Tanaka, S.: Sorption and reduction of neptunium (V) on the iron oxides, *Radiochim. Acta*, 90, p.665 (2003).
- (12) Chinju, H., Nagasaki, S., Tanaka, S., Tanaka, T., Ogawa, H.: Deposition behavior of Latex particles in filtration process through glass packed column., *Mat. Res. Soc. Symp. Proc.*, **556**, p.743 (1999).
- (13) Yoshida, T., Yamaguchi, T., Iida, Y., Nakayama, S.: XPS study of Pb(II) adsorption on γ-Al₂O₃ surface at high pH conditions, *J. Nucl. Sci. Technol.*, **40**, p.672 (2003).
- (14) Killey, R. W. D., McHugh, J. O., Champ, D. R., Cooper, E. L., Young, J. L.: Subsurface cobalt-60 migration from a low-level waste disposal site, *Environ. Sci. Technol.*, **18**, p.148 (1984).
- (15) Kersting, A. B., Efurd, D. W., Finnegan, D. L., Rokop, D. J., Smith, D. K., Thompson, J. L.: Migration of plutonium in ground water at the Nevada Test Site, *Nature*, **397**, p.56 (1999).
- (16) Rogers, D. R., McConnell Jr., J. W: Performance verification of solidified radioactive waste using lysimeters, *Engineering Geology*, **30**, p.79 (1991).
- (17) Relyea, J. F., Serne, R. J., Rai, D.: Methods for determining radionuclide retardation factors: Status Report, PNL-3349, UC-70, (1980).
- (18) Relyea, J. F.: Theoretical and experimental considerations for the use of the column method for detrmining reterdation factors, *Radioactive Waste Management and the Nuclear Fuel Cycle*, **3**, p.151 (1982).
- (19) Gutierrez, M. G., Bidoglio, G., Avogadro, A., Mingarro, E., D'Alessandro, M.: Experimental investigations of

radionuclide transport through cored granite samples, Radiochim. Acta, 52/53, p.213 (1991).

- (20) 福井正美: 地質媒体中における放射性核種の吸着・移動モデル, 原子力誌, 29, p.498 (1987).
- (21) Carlsen, L., Nielsen, O. J., Bo, P.: The influence of complexation on radionuclide migration; a theoretical study, *Waste Manag.*, **9**, p.165 (1989).
- (22) Tanaka, T., Mukai, M., Maeda, T., Matsumoto, J., Ogawa, H., Li, S., Wang, Z., Wang, J., Guo, Z., Zhao, Y.: Adsorption mechanisms and models of ⁸⁵Sr, ²³⁷Np, ²³⁸Pu and ²⁴¹Am in loess media (Joint research), JAERI-Research 2002-034, (2002).
- (23) Li, S. H., Jen, C. P.: Migration of radionuclides in porous rock in the presence of colloids: effects of kinetic interactions, *Waste Manag.*, 21, p.569 (2001).
- (24) Schuessler, W., Artinger, R., Kienzler, B., Kim, J. I.: Conceptual modeling of the humic colloid-borne americium(III) migration by a kinetic approach, *Environ. Sci. Technol.*, **34**, p.2608 (2000).
- (25) Brusseau, M. L.: The effect of nonlinear sorption on transformation of contaminants during transport in porous media, J. Contam. Hydology, 17, p.277(1995).
- (26) Tsukamoto, M., Ohe, T.: Intraparticle diffusion of cesium and strontium cations into rock materials, *Chem. Geol.*, 90, p.31 (1991).
- (27) Rundberg, R. S.: Kinetics of the adsorption of radionuclides on tuff from Yucca Mountain, *Mat. Res. Soc. Symp. Proc.*, 26, p.827 (1984).
- (28) Fujikawa, Y., FUKUI, M.: Variations in adsorption mechanisms of radioactive cobalt and cesium in rocks, J. Contam. Hydrology, 8, p.177 (1991).
- (29) Wang, X., Tanaka, T., Takebe, S.: Sorption of ²³⁷Np on crushed tuff and tuffaceous sand: Combined kinetics/sequential extraction analysis (CHSA), *Proc. of The 13th Int. Conf. on Environmental Remediation and Radioactive Waste Management (ICEM99)*, Nagoya, Japan, CD-ROM, No-489, (1999).
- (30) Tanaka, T., Ogawa, H.: Course of speciation of americium on sedimentary materials, *Proc. of the Int. Workshop on Distribution and Speciation of Radionuclides in the Environment*, Rokkasho, Aomori, Japan, 278 (2000).
- (31) Nakata, K., Nagasaki, S., Tanaka, S., Sakamoto, Y., Tanaka, T., Ogawa, H.: Sorption and desorption kinetics of Np(V) on magnetite and hematite, *Radiochim. Acta*, 88, p.453 (2000).
- (32) Sakamoto, Y., Senoo, M.: Redistribution of strontium during crystallization of amorphous ferrihydrite to goethite, *Radioactive Waste Manag. Environ. Restoration*, 18, p.265 (1994).
- (33) 佐伯誠道: "環境放射能", 170, ソフトサイエンス社, (1984).
- (34) Comans, R. N. J., Haller, M., Preter, P. D.: Sorption of cesium on illite: non-equilibrium behavior and reversibility, *Geochim. Cosmochim. Acta*, **55**, p.433 (1991).
- (35) Oscarson, D. W., Watson, R. L., Miller, H. G.: The interaction of trace levels of cesium with montmorillonitic and illitic clays, *Applied Clay Sci.*, **2**, p.29 (1987).
- (36) Tanaka, T., Ohnuki, T.: Colloidal migration behavior of radionuclides sorbed on mobile fine soil particles through a sand layer, *J. Nucl. Sci. Technol.*, **33**, p.62 (1996).
- (37) Tanaka, T., Nakayama, S.: Experimental and modeling studies on sorption and migration of americium in porous sedimentary materials, *Proc. of 15th Int. Conf. on Nuclear Engineering (ICONE-15)*, Nagoya, Japan, CD-ROM, ICONE-10228 (2007).

- (38) Ohe, T.: Ion exchange adsorption of radioactive cesium, cobalt, manganese, and strontium to granitoid rocks in the presence on competing cations, *Nucl. Technol.* **67**, p.92 (1984).
- (39) 坂本義昭: Np(V)の土壌への吸着に及ぼす炭酸イオンの影響, 放射性廃棄物研究, 1, p.107 (1994).
- (40) Goulding, K. W. T.: Potassium-calcium exchange equilibria in aluminosilicate minerals and soils, in *Geochemical processes at mineral surfaces*, edited by Davis, J. A. and Hayes, K. F., Am. Chem. Soc., symp. ser., **323**, p.327 (1986).
- (41) Tanaka, T., Mukai, M., Li, Z., Li, S.: Applicability of sorption data determined by laboratory experiment to evaluation of ⁸⁵Sr mobility in sub-surface field, *Proc. of Transfer of Radionuclides in Biosphere -Prediction and Assessment*-, JAERI-Conf 2003-010, p.142 (2003).
- (42) Tanaka, T., Sakamoto, Y., Mukai, M., Maeda, T., Nakayama, S.: Influence of humic substances on ⁶³Ni migration through crushed rock media, *Radiochim.Acta*, **92**, p.725 (2004).
- (43) Tanaka, T., Mukai, M.: Numerical simulation of the influence of humic-complexation on the migration of radionuclide through porous media - a consideration of the sensitivity of analytical parameters, *Humic Substances Research*, 5/6, p.35 (2009).
- (44) Tanaka, T., Mukai, M., Nakayama, S.: Sorption and migration of neptunium in porous sedimentary materials, *Proc. of Int. Conf. Nuclear Energy System for Future Generation and Global Sustainability (GLOBAL2005)*, Tsukuba, Japan, CD-ROM, GL264DF, (2005).

Fig.1 体系的な現象記述モデルの整理

※ Fig.2 およびFig.3 は、多孔質媒体を充てんしたカラムへ溶質濃度一定の溶液を連続注入する実験において、注入時間を =1 から =2, =3, =4 と順次長くした場合のカラム内における溶質分布をイメージした図である。

Fig.4 時間依存性収着挙動と反応速度式の設定に関する概念

(a) 短期を対象とした解析のため、比較的早い反応速度のみを考慮して設定する場合

(b) 長期を対象とした解析のため、比較的緩慢な反応速度のみを考慮して設定する場合

(c) 包括に捉えた1つの反応速度を設定する場合

●は実験結果をイメージ、実線は適用した反応速度式をイメージしたものである。

Fig.5 非可逆的収着モデルに基づく典型的な多孔質媒体中溶質分布形状の例

●は、多孔質媒体を充てんしたカラムへ溶質濃度一定の溶液を連続注入する実験において、非可逆的な収着メカニズムに基づいてカラム内に蓄積した溶質分布をイメージしたものである。破線は、フィルトレーション理論を適用した場合の粒子の分布形状(ろ過係数λを1.9/cmと設定)をイメージしたものである。

JAEA-Research 2011-053

Fig.6 速い収着反応と緩慢な収着反応が混在する場合の分配係数の時間変化の例²²⁾

[○]は、中華人民共和国山西省の黄土高原で採取した黄土 1g とトレーサー濃度の¹³⁴Cs で標識した地下水 25cm³を接触させるバッチ実験を実施し、液相中の¹³⁴Cs 濃度変化から分配係数の経時変化を測定した結果である。

Fig.7 溶液中で溶質Aが反応生成物ALを形成する場合の溶質Aについての収着モデル

Fig.11 トリチウム破過傾向に対するフィッティングの結果

ᄳᄯᅮᆕᆈ	Kd _A	CL	β	k۹	k ₁₀
脾析モテル	(cm³/g)	(mol/cm³)	(cm³/mol)	(cm ³ /g•min)	(1/min)
	100	0	10	***	***
	100	1	10	***	***
モデル (h)	100	3	10	***	***
	100	10	10	***	***
	100	100	10	***	***
	100	0	***	10	1
— — "	100	1	***	10	1
モナル()	100	10	***	10	1
	100	100	***	10	1

Table 1 パラメータの設定条件⁽⁴³⁾

付 録

付録1 多孔質媒体中溶質移行を解析するための計算プログラム: FIT1DD

Appendix 1 Calculation program for analyzing solute migration through porous media: FIT1DD (Coded by M. Mukai, Nuclear Safety Research Center, JAEA)

FIT1DD is composed of a main component and two subroutines. The main component is coded to read parameters for the fitting calculation and experimental data, and to output calculated results on screen and diskette. The first subroutine is functioned to search the best-fitted parameters. The second subroutine is used to calculate one dimensional solute migration in porous media at constant water flow velocity. Equations applied for the second subroutine are follows:

(1)
$$\frac{\partial C}{\partial t} + \frac{\rho}{fs} \frac{\partial Q}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - V \frac{\partial C}{\partial x}$$

(2) $Q = K_{\rm d}C$ (Reaction IP = 1)

(3)
$$\frac{\partial Q}{\partial t} = k_1 C - K_2 Q$$
 (Reaction IP = 2)

(4)
$$\frac{\partial Q}{\partial t} = Kd \frac{\partial C}{\partial t} + k_1 C - k_2 (Q - KdC)$$
 (Reaction IP = 3)

(5)
$$\frac{\partial Q}{\partial t} = Kd \frac{\partial C}{\partial t} + k_1 C - k_2 Q$$
 (Reaction IP = 4)

In the calculation, media characteristics such as porosity, degree of water saturation, genuine density of media particle and parameters concerning to solute reactions are assumed to be kept at constant value, independent of time and space in experimental system. By fixating all the parameters, the solute transfer could be estimated by calculation.

The migration parameters, such as water flow velocity, dispersion coefficient, interaction parameters Kd, k_1 , k_2 , can be simultaneously calculated by the program. Slow, however, steady algorithm is applied for searching the best fitted parameters to avoid miss-searching the parameters.

付録2 入力データファイル

Appendix 2 Input data file

An example of input data set for the program is shown in **Fig. A1**. Input data in Fig. A1 are for a fitting analysis to optimize the distribution coefficient *Kd* and the initial concentration C_0 . In the data, concentration distribution in the geologic media (soil) is set as experimental results obtained in a column system, and 10 iterations of fitting process for optimization of *Kd* and C_0 are to be done. Meaning of the marks on the right side is as follows. Each data has ten characters width.

(a) Set the experimental type:

- 1.0: Continuous feeding of solute solution.
- 2.1: Feeding of eluting solution into contaminated soil. (input the concentration of interstitial water)
- 3.1: Feeding of eluting solution into contaminated soil. (input the concentration sorbed on soil)
- 4.0: Feeding of eluting solution into contaminated soil. (input the concentration in unit volume)
- (b) Set the number of experimental condition changed during the period of experiment relating to column (a). Refer to column (c).
- (c) Set the condition on each period of experiment. In the case of "1.0" experimental type, starting time, ending time, and relative concentration in the feeding process of the influent solution are set on this column as an experimental condition. In the case of "3.1", upper depth, lower depth of the contaminated soil layer, and relative concentration sorbed on the soil are set on this column. In the cases of "2.1" and "4.0", upper depth, lower depth of the contaminated soil layer are set on this column. And relative concentration of interstitial water in the cases of "2.1" and relative concentration in unit volume in the cases of "Set 4.1" are also set on this column.
- (d) Set the number of measured data of solute concentration in the effluent. In the case of fitting calculation without measured data of effluent, set zero here. In the case with effluent data, set the number of measured data, set starting time, ending time of sampling and measured concentrations below. Figure A1 shows the case without effluent concentration data.
- (e) Set the number of measured data of solute concentration sorbed on the soil. Below this column, set starting time, ending time of sampling and measured concentrations repeatedly to the number of the measured data. In the case of fitting calculation without measured data of soil, set zero here.
- (f) Following the number of measured data of soil, set starting depth, ending depth of sampling and measured concentrations.
- (g) Set the upper starting value of fitting parameters. In all the reaction cases (IP= 1, 2, 3 or 4 in column (i)), initial concentration, water flow velocity and dispersion coefficient have to be set here. In the case IP= 1, 3 and 4, add distribution coefficient of radionuclide. In the case IP=2 and 3, add first-order reaction constants on the adsorption and desorption processes. In the IP= 4, set first-order reaction constants on the chemical transformation process between two species of radionuclide.
- (h) Set the lower starting value of fitting parameters, corresponding the same format to the column (g). When the value of upper starting parameter is equal to that of lower, such parameter is fixed on the set value. For example,

performing a simulation analysis should be all the parameters fixed.

(i) The column is used for selecting equation of sorption reaction and for setting Kd_0 in the case of IP-3. Equation for sorption reaction of solutes can be selected from four reaction types as follows:

IP = 1: Equilibrium sorption

IP = 2: First-order rate-limited kinetic sorption

IP = 3: Hybrid reaction of equilibrium and kinetic sorption

IP = 4: Sorption including reactive two species of radionuclide

- (j) Duration time of experiment, time step of calculation, depth of soil layer and grid size of calculation are set on this column. These parameters must be carefully selected experimental conditions, values of parameters set on column (g) and (h), reproducibility of calculation results, sensitivity for calculation results, and so on.
- (k) Porosity, degree of saturation and genuine density of soil particle are set on this column.
- (m) Smoothing can be optionally processed on experimental condition data by setting iteration number on each column. No smoothing is done in case of setting zero.
- (n) Set a number of iteration of fitting process.
- (o) An algorithm applied for searching the best fitted parameters requires the number to divide the field of parameter region. The number should be odd and more than four. Set "4" in general use of the program.
- (p) Smoothing can be optionally processed on experimental measured data by setting iteration number. No smoothing is done in case of setting zero.

3.1					(a)
1					(b)
49.7	50.0	1.000E+00			(c)
0					(d)
7					(e)
47.300	47.600	8.990E+02			(f)
48.500	48.800	1.860E+03			(f)
49.700	50.200	1.830E+03			(f)
50.500	50.800	3.370E+03			(f)
51.100	51.400	1.670E+03			(f)
52.600	52.900	3.050E+02			(f)
52.900	53.200	3.430E+01			(f)
1.790E+04	0.900	1.900	200.000	0.0000	(g)
5.790E+04	0.900	1.900	500.000	0.0000	(h)
1.000	000.0				(i)
976.000	9.760	60.000	0.300		(j)
0.520	1.000	2.700			(k)
0.000					(1)
1.000	1.000	1.000			(m)
10					(n)
4					(o)
0					(p)

Fig. A1 Input data for FIT1DD.

付録3 出力データファイル

Appendix 3 Output data file

An example of output data is shown in **Fig. A2**. The output data shows optimized *Kd*, along with concentration distribution in the effluent and the soil which are calculated using the *Kd*. The *Kd* value was determined after 30 times of iteration of fitting process, based on the input data in Fig. A1.

************** Results of Analysis **********					
Conc. of	Water Flow	Dispersion	Distributi	Retarda	Deviation
Solution	Velocity	Coeff.	on Coeff.	tion Coef.	
microCi/ml	cm/min	cm*cm/min	ml/g		
.31284E+05	.90000E+00	.19000E+01	.75744E+03	.18888E+04	.21658E+07
*	***** Con	centration	*****		
Number	Upper(cm)	Lower (c	em)	Measured	Calculated
1	47.300	47.600)	. 8990E+03	.3257E+03
2	48.500	48.800)	.1860E+04	.1317E+04
3	49.700	50.200)	. 1830E+04	.2610E+04
4	50.500	50.800)	.3370E+04	.2553E+04
5	51.100	51.400)	.1670E+04	. 2025E+04
6	52.600	52.900)	. 3050E+03	. 5156E+03
7	52.900	53.200)	.3430E+02	.3443E+03
C L	Sampling Time =	976.0	Iterat	ion = 10	

Fig. A2 Output data for FIT1DD.

付録4 FIT1DDのソースコード

Appendix 4 Source code of FIT1DD

С		
С ====	MAIN PROGRAM	
С		
С	1. Parameter PM(12) was added.	(1990/12/07)
С	2. Boundary and initial conditions were changed.	(1990/12/13)
С	3. Parameter ETYP was added.	(1990/12/15)
С	4. New No. of parameter ETYP (=3.) was added.	(1991/ 2/ 1)
С	5. New No. of parameter SELE (=3.&4.) were added.	(1991/ 2/28)
С	6. Meaning of ETYP was changed.	(1991/ 2/28)
С	7. Dividing method was changed.	(1991/ 4/12)
С	8. Negative concentration was neglected to use for fitting.	(1991/10/4)
С	9. New No. of parameter ETYP (=4.) was added.	(1994/ 6/21)
C	10. New reaction equation (IP=3) was added.	(1992/ 9/29)
С		
С ====		
С		
	PROGRAM FDM1DFIT	
С		
	PARAMETER (MD=180, MPV=5, MPM=20)	
	IMPLICIT DOUBLE PRECISION (A-H, O-Z)	
	CHARACTER*14 DFNAME, OFNAME	
	DIMENSION DTS (MD), DTE (MD), DTC (MD)	
	DIMENSION XS (MD), XE (MD), TS (MD), TE (MD)	
	DIMENSION CDATA (MD), CRSLT (MD), QDATA (MD), QRSLT (MD)	
	DIMENSION PS(MPV), PE(MPV), PM(MPM), PF(MPV)	
С		
	WRITE (6, 6080)	
	READ (5, 5050) DFNAME	
	WRITE (6, 6090)	
_	READ(5, 5050) OFNAME	
С		
	OPEN (1, FILE=DFNAME)	
	READ(1, 5040) ETYP	
	READ (1, 5010) NEC	
	DO 1100 I=1, NEC	
	READ(1, 5020) DTS(1), DTE(1), DTC(1)	
1100	CONTINUE	
C		
	KEAD(1, 5010) NI	
	IF (NI.NE.O) THEN	
	D0 1200 1=1, N1	
	KEAD(1, 5020) TS(1), TE(1), CDATA(1)	
	CRSLT(1) = CDATA(1)	

```
IF (CDATA(I).GE.O.) NN=NN+1
 1200
           CONTINUE
           NTP=NN
         END IF
С
         READ(1, 5010) NX
         IF (NX. NE. 0) THEN
           NN=0
           DO 1300 I=1, NX
             READ(1, 5020) XS(I), XE(I), QDATA(I)
             QRSLT(I) = QDATA(I)
             IF (QDATA(I).GE.O.) NN=NN+1
 1300
           CONTINUE
           NXP=NN
         END IF
С
         READ(1, 5030) PS(1), PS(2), PS(3), PS(4), PS(5)
         READ(1, 5030) PE(1), PE(2), PE(3), PE(4), PE(5)
         READ(1,5040) PM(1)
         IF (PM(1). GE. 3.) THEN
           BACKSPACE 1
           READ(1, 5080) PM(1), PM(13)
         END IF
С
          write(*,*) pm(1), pm(13)
         READ(1, 5060) PM(2), PM(3), PM(4), PM(5)
         READ(1, 5070) PM(6), PM(7), PM(8)
         READ(1, 5040) PM(9)
        READ(1, 5070) PM(10), PM(11), PM(12)
         READ(1, 5010) NCMAX
         READ(1,5010) NDIV
         READ(1,5010) NSMTH
      CLOSE(1)
С
С
      CALL SMOOTH (NT, CRSLT, NSMTH)
      CALL SMOOTH (NX, QRSLT, NSMTH)
      CALL FIT (ETYP, NEC, DTS, DTE, DTC, PS, PE, PM,
     &
                NT, NTP, TS, TE, NX, NXP, XS, XE,
     &
                PF, CRSLT, QRSLT, SS, NCMAX, NDIV)
С
С
      OPEN (2, FILE=OFNAME)
        DO 3000 K=6, 2, -4
           WRITE(K, 6100)
           WRITE(K, 6010)
           IF (PM(1). EQ. 1.) THEN
             WRITE(K, 6020)
             WRITE(K, 6021)
```

```
WRITE(K. 6022)
          ELSE
            WRITE(K, 6023)
            WRITE(K. 6024)
            WRITE(K, 6025)
          END IF
          WRITE(K, 6030) PF(1), PF(2), PF(3), PF(4), PF(5), SS
          WRITE(K, 6100)
          WRITE(K, 6040)
С
          IF (NT. NE. 0) THEN
            WRITE(K, 6050)
            DO 2100 I=1, NT
              WRITE (K, 6070) I, TS (I), TE (I), CDATA (I), CRSLT (I)
 2100
              CONTINUE
            WRITE (K, 6060) PM (4), NCMAX
            WRITE(K, 6100)
          END IF
С
          IF (NX. NE. 0) THEN
            WRITE(K, 6051)
            DO 2200 I=1, NX
              WRITE (K, 6070) I, XS(I), XE(I), QDATA(I), QRSLT(I)
 2200
            CONTINUE
            WRITE(K, 6061) PM(2), NCMAX
            WRITE(K, 6100)
          END IF
 3000 CONTINUE
      CLOSE(2)
С
 5010 FORMAT (I10)
 5020 FORMAT (F10. 1, F10. 1, E10. 3)
 5025 FORMAT (F10. 1, F10. 1, E10. 3, E10. 3)
 5030 FORMAT (E10. 3, F10. 4, F10. 4, F10. 4, F10. 4)
 5040 FORMAT (F10. 4)
 5050 FORMAT (A14)
 5060 FORMAT (F10. 4, F10. 4, F10. 4, F10. 4)
 5070 FORMAT (F10. 4, F10. 4, F10. 4)
 5080 FORMAT (F10. 4, F10. 4)
С
 6020 FORMAT(1H, 1X, ' Conc. of ', 3X, 'Water Flow', 3X, 'Dispersion'
                ,3X,'Distributi',3X,'Retarda ',3X,' Deviation')
     &
 6021 FORMAT(1H, 1X, 'Solution', 3X, 'Velocity', 3X,' Coeff.
                                                                  ')
     &
                , 3X, 'on Coeff.', 3X, 'tion Coef.', 3X, '
 6022 FORMAT(1H, 1X, 'microCi/ml', 3X, '
                                        cm/min ', 3X, 'cm*cm/min '
                                                  ', 3X, '
                                                                  ')
                ,3X,' m1/g ',3X,'
     &
 6023 FORMAT(1H, 1X, 'Conc. of ', 3X, 'Water Flow', 3X, 'Dispersion'
```

```
, 3X,' Reaction', 3X,' Reaction', 3X,' Deviation')
    &
 6024 FORMAT(1H, 1X, 'Solution', 3X, 'Velocity', 3X, 'Coeff.
    & , 3X, 'Constant', 3X, 'Constant', 3X, '
                                                              ')
 6025 FORMAT(1H ,1X, 'microCi/ml', 3X, ' cm/min ', 3X, ' cm*cm/min'
    & , 3X, ' K1 ', 3X, '
                                      K2 ', 3X, '
                                                      ')
 6030 FORMAT (1H, 1X, E10. 5, 3X, E10. 5)
 6050 FORMAT(1H, 3X, 'Number', 5X, 'Start(min)', 5X, 'Stop(min)', 8X
    &
         ,' Measured ', 5X,'Calculated')
 6051 FORMAT(1H, 3X, 'Number', 5X, 'Upper(cm)', 5X, 'Lower(cm)', 8X
    & ,' Measured ', 5X,'Calculated')
 6060 FORMAT(1H, 11X, 'Sampling Depth =', F8. 1, 10X, 'Iteration =', I4)
 6061 FORMAT (1H, 11X, 'Sampling Time =', F8. 1, 10X, 'Iteration =', I4)
 6070 FORMAT (1H, 5X, I3, 7X, F10. 3, 5X, F10. 3, 10X, E10. 4, 6X, E10. 4)
 6080 FORMAT(1H, 'Type Data File Name = ', $)
 6090 FORMAT(1H, 'Type Out File Name = ', $)
 6100 FORMAT(1H )
С
      STOP
      END
С
C =
C =
С
      SUBROUTINE SMOOTH (N, C, NN)
С
      PARAMETER (MCQ=3000)
      IMPLICIT DOUBLE PRECISION (A-H, O-Z)
      DIMENSION C(MCQ), CC(0:MCQ)
С
      IF (N. LE. 0) GO TO 2000
      IF (NN. LE. 0) GO TO 2000
      CC(0) = C(1)
      CC(N+1) = C(N)
      DO 1000 K=1, NN
       DO 1100 I=1, N
         CC(I) = C(I)
 1100 CONTINUE
       DO 1200 I=1, N
         C(I) = (CC(I-1) + 8. *CC(I) + CC(I+1)) *.1
 1200 CONTINUE
 1000 CONTINUE
С
 2000 RETURN
      END
С
C =
C =
```

С						
	SUBROUTINE FIT (ETYP	SUBROUTINE FIT (ETYP, NEC, DTS, DTE, DTC, PS, PE, PM,				
	& NT. NTP. TS. TF. NX. NXP. XS. XF.					
	& PFIT	F = PETC (O SSMIN NCMAY NDIV)				
C	« 1111	, 0, Q , 00MIN, NOM				
U	PARAMETER (MD-180 MP	V-5 MPM-20 MCC	-1000 MCC - 10000)			
	TMUMETER (MD=100, MI V=0, MI M=20, MCQ=10000, MCC=10000) TMDI ICIT DOUBLE PRECISION (A =H O=7)					
	IMPLICIT DOUDLE FRECISION (A-H, O-Z)					
	DIMENSION DIS(MD), D	(MD) $VC(MD)$ VI				
	DIMENSION IS (MD), IE	(MD), XS(MD), XI	(MD), C(MD), Q(MD)			
	DIMENSION CUC (MD), Q	QQ (MD), CCCC (MI), QQQQ (MD), CFII (MD), QFII (MD)			
	DIMENSION PM (MPM), P	S(MPV), PE(MPV)	(MPV)			
	DIMENSION P(MPV), PM	IN (MPV), PFII (M	APV)			
	DIMENSION ID(MPV), I	E(MPV), IM(MPV)				
	DIMENSION CIO(MCQ),	CBO (MCC)				
	DIMENSION PRAM(MPM)	, CO (MCQ) , QO (MC	CQ), CC (MCC), QQ (MCQ)			
	PMINIMUM=1.E-20					
С						
С	****	***** INPUT	DATA *****			
С	ETYP	: :	experimental type (1.=adsorption test,			
С		: :	2.?=desorption test <set initial<="" td=""></set>			
С		: :	conc. for solution first, and			
С		: :	conc. for soil proportinally			
С		: :	: 3.?=desorption test <set initial<="" td=""></set>			
С		: :	conc. for soil first, and conc.			
С		: :	for solution proportionally>)			
С		: :	(? = 1 - 0)			
С	NEC	: :	No. of experimental conditions			
С	from DTS to DTE	: :	: time(ETYP=1.) or X-pos.(ETYP=2.,3.)			
С	DTC	: :	data of experimental conditions			
С	NT	: :	No. of sampling time			
С	NTP	: :	No. of positive concentration time			
С	from TS to TE	: :	time of sampling			
С	NX	: :	No. of sampling point			
С	NXP	: :	No. of positive concentration point			
С	from XS to XE	: :	X-position of sampling point			
С	from PS(1) to PE(1)	: CON :	concentration			
C	from $PS(2)$ to $PE(2)$: VEL :	velocity of water flow			
Č	from $PS(3)$ to $PE(3)$: DIS :	dispersion coefficient			
C	from $PS(4)$ to $PE(4)$: FKD FK1 :	distrib coeff / reaction const			
C	from $PS(5)$ to $PE(5)$: FK2 :	/ reaction const			
C	PM(1)	: 1 2 3	$1 \cdot \text{Kd} / 2 \cdot \text{K1} \cdot \text{K2} / 3 \cdot \text{Kdd} \cdot \text{K1} \cdot \text{K2}$			
C	PM(2)	· TMAX	maximum time of calculation			
C	PM(3)	• DT	time stop of calculation			
C	DM(4)	· DI	column longth			
C	PM(5)		distance of gride			
C	DM(6)	· DVV ·	· urscalle or grius			
C	DM(7)		· porocity of soll			
C C	$\Gamma \mathbb{M}(I)$	· SAIU	· degree of saturation			
U	rm(o)	• KUU -	• dencity of soll particle			

```
С
     PM(9)
                        :
                           NSMTH
                                  : iteration of smoothing for
С
                        :
                                   : experimental conditions data
С
     PM(10)
                        :
                           CWT
                                   : error weight for effluent solution
С
                                   : error weight for soil samples
     PM(11)
                        :
                           QWT
С
                        :
                                   : selecting parameter for calculating
     PM(12)
                           SELE
С
                        :
                                   : method of error
С
                        :
                                   : (1. = linear / 2. = logarithm /
С
                                       3. = normalized linear /
                                   :
С
                        :
                                   :
                                       4. = normalized logarithm )
С
     PM(13)
                        :
                           EKDD
                                   : use only PM(1)=3.
С
                        :
     С
                                   : measured conc. in effluent solution
С
     Q
                        :
                                   : measured conc. in soil samples
С
     NCMAX
                        :
                                   : max. No. of iteration for fitting
С
                        •
     NDIV
                                   : diving No. of fitting region
С
     *****
С
     С
     С
             : 1 - MESH : fitted distribution of effluent solution
С
             : 1 - MESH : fitted distribution in the soil samples
     Q
С
     PFIT(1) :
                 CON
                        : fitted concentration
С
     PFIT(2) :
                 VEL
                         : fitted velocity of water flow
С
     PFIT(3):
                 DIS
                         : fitted dispersion coefficient
С
                     EK1 : fitted distrib. coeff. / reaction const.
     PFIT(4) : EKD
С
     PFIT(5) : ERD
                     EK2 : fitted retard. coeff. / reaction const.
С
     SSMIN
           :
                         : fitting error for set of fitted parameters
С
     ****
С
     DO 1000 I=1,5
       IE(I)=NDIV
       IF (PS(I), EQ, PE(I)) THEN
         IE(I)=1
         PD(I)=0.
       END IF
 1000 CONTINUE
С
     IP=INT(PM(1)+.5)
     DO 1010 I=2,8
       PRAM(I+4) = PM(I)
 1010 CONTINUE
     PRAM(13) = ETYP
     PRAM(14) = PM(13)
С
     ITER=INT (PM(2)/PM(3) + .5)
     MESH=INT(PM(4)/PM(5)+.5)
     NSMTH=INT (PM(9) + .5)
     CWT=PM(10)
     QWT=PM(11)
     SELE=PM(12)
```

С

```
DO 1020 I=1, ITER
        CBO(I) = 0.
 1020 CONTINUE
      DO 1030 I=1, MESH
        CIO(I)=0.
 1030 CONTINUE
С
      IF (ETYP. EQ. 1.) THEN
        WRITE (*, *) NEC
        DO 1040 I=1, NEC
           IST=INT (DTS (I) /PM (3) +1)
           ISP=INT(DTE(I)/PM(3))
          WRITE (*, *) IST, ISP
          DO 1050 J=IST, ISP
             CBO(J) = DTC(I)
 1050
           CONTINUE
 1040
        CONTINUE
         CALL SMOOTH (ITER, CBO, NSMTH)
      ELSE
         WRITE (*, *) NEC
        DO 1060 I=1, NEC
           IST=INT (DTS(I)/PM(5)+1)
           ISP=INT(DTE(I)/PM(5))
           WRITE (*, *) IST, ISP
          DO 1070 J=IST, ISP
             CIO(J) = DTC(I)
 1070
           CONTINUE
 1060
        CONTINUE
         CALL SMOOTH (MESH, CIO, NSMTH)
      END IF
С
      NC=0
      SSMIN=1.0E+37
С
 9000 DO 9010 I=1,5
         IF (IE(I).NE.1) THEN
           IF (PS(I).LT.PMINIMUM) PS(I)=PMINIMUM
          PD(I) = DLOG10(PE(I)/PS(I))/REAL(NDIV-1)
        END IF
 9010 CONTINUE
      IC=0
      SMIN=1.0E+37
      DO 9001 I1=1, IE(1)
       ID(1)=I1
       P(1) = PS(1) * 10. **(PD(1) * REAL(I1-1))
        DO 9002 I2=1, IE(2)
         ID(2) = I2
         P(2) = PS(2) * 10. * (PD(2) * REAL(12-1))
```

	DO 9003 I3=1, IE(3)
	ID(3)=I3
	P(3) = PS(3) * 10. **(PD(3) * REAL(13-1))
	DO 9004 I4=1, IE(4)
	ID(4) = I4
	P(4) = PS(4) * 10. **(PD(4) * REAL(I4-1))
	DO 9005 I5=1. IE(5)
	ID(5)=15
	P(5) = PS(5) * 10 * * (PD(5) * REAL(15-1))
С	
ũ.	DO 1100 I=1.5
	PRAM(T) = P(T)
1100	CONTINIF
1100	DO 1110 $I=1$ MFSH
	CO(1) = CIO(1)
	00(1) = 010(1)
1110	CONTINE
1110	DO 1190 I-1 ITEP
	C(1) - CR(1)
1120	
1120 C	CONTINCE
C	CALL EDWID (ID DDAM CO OO CC OO)
C	CALL I'DMID (II, I'RAW, CO, WO, CO, WO)
C	SCN-0
	SCI-0.
	SUL-U. TE (NT NE O) THEN
	$\frac{11}{100} = \frac{100}{100} = \frac{1}{100} = \frac$
	DU 1200 1-1, NI
	151 - 1NI (15(1) / PM(3) + 1)
	1SP = INI (IE (I) / PM(3))
	15N=15P-151+1
	(UU(I)=0.
	D0 1210 J=151, 15P
1010	(UU(I)=UU(I)+UU(J)
1210	(UNTINUE
	UUU(I) = UUU(I) / REAL(ISN)
	IF $(CCC(1), LE, 0,)$ $CCC(1) = .1E-9$
	IF $(C(1), GE, 0,)$ THEN
	SCN=SCN+(CCC(1)-C(1))**2.
	SCL=SCL+DLOG10(CCC(1)/C(1))**2.
1000	END IF
1200	CONTINUE
	IF (NTP. NE. 0) THEN
	IF (SELE. GE. 3.) THEN
	SCN=SCN/REAL (NTP)
	SCL=SCL/REAL (NTP)
	END IF
	END IF
	END IF

С	
	SQN=0.
	SQL=0.
	IF (NX. NE. O) THEN
	DO 1220 T=1. NX
	IST = INT (XS(I) / PM(5) + 1)
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	$\frac{101}{100} = \frac{100}{100} = $
	10(-10) - 0
	$\nabla \nabla $
	$D0 \ 1230 \ J-151, 15P$
1000	$(\psi_{\mathcal{A}}(1) - \psi_{\mathcal{A}}(1) + \psi_{\mathcal{A}}(1))$
1230	
	QQQ(1) = QQQ(1) / REAL(1SN)
	IF $(QQQ(1), LE, 0,)$ $QQQ(1) = .1E-9$
	IF (Q(1), GE, 0,) THEN
	SQN=SQN+(QQQ(I)-Q(I))**2.
	SQL=SQL+DLOG10(QQQ(I)/Q(I))**2.
	END IF
1220	CONTINUE
	IF (NXP. NE. 0) THEN
	IF (SELE. GE. 3.) THEN
	SQN=SQN/REAL (NXP)
	SQL=SQL/REAL (NXP)
	END IF
	END IF
	END IF
С	
	IF (SELE. EQ. 1 OR. SELE. EQ. 3.) THEN
	S=SCN*CWT+SQN*QWT
	ELSE
	S=SCL*CWT+SQL*QWT
	END IF
	IC=IC+1
	WRITE (6, 6010) IC, NC+1, P(1), P(2), P(3), P(4), P(5), S
С	
	IF (SMIN. GT. S) THEN
	SMIN=S
	D0 9020 T=1.5
	PMIN(I) = P(I)
	IM(T) = ID(T)
9020	CONTINIF
3020	IF (NT NF O) THEN
	DO 9030 I=1 NT
	CCC(1) - CCC(1)
0030	
9000	
	IF (NY NE O) THEN
	$\frac{11}{100} (NA, NE, U) \text{IEEN}$
	DU = 5040 I = 1, INA

```
QQQQ(I) = QQQ(I)
 9040
                     CONTINUE
                   END IF
                 END IF
С
 9005
               CONTINUE
 9004
             CONTINUE
 9003
          CONTINUE
 9002 CONTINUE
 9001 CONTINUE
С
      IF (SSMIN. GT. SMIN) THEN
       SSMIN=SMIN
        DO 9050 I=1,5
         PFIT(I) = PMIN(I)
 9050
        CONTINUE
        IF (NT. NE. 0) THEN
          DO 9060 I=1, NT
            CFIT(I) = CCCC(I)
 9060
          CONTINUE
        END IF
        IF (NX. NE. 0) THEN
          DO 9070 I=1, NX
            QFIT(I) = QQQQ(I)
 9070
          CONTINUE
        END IF
      END IF
С
      NC=NC+1
      WRITE (6, 6000) NC, PMIN (1), PMIN (2), PMIN (3), PMIN (4), PMIN (5), SMIN
      IF (NC. EQ. NCMAX) GO TO 8000
      DO 9080 I=1,5
        IF (IE(I).NE.1) THEN
          PS(I) = PMIN(I) / 10. **(PD(I) * REAL(NDIV/2-1))
          PE(I) = PMIN(I) * 10. **(PD(I) * REAL(NDIV/2-1))
           IF (IM(I), EQ, 1)
            PS(I)=PMIN(I)/10. **(PD(I)*REAL(NDIV/2-1)*2.)
     &
          IF (IM(I), EQ, IE(I))
     &
            PE(I)=PMIN(I)*10. **(PD(I)*REAL(NDIV/2-1)*2.)
        END IF
 9080 CONTINUE
      GO TO 9000
С
 8000 IF (IP. EQ. 1) PFIT(5)=1. +(1. -PM(6))*PM(8)/(PM(6)*PM(7))*PFIT(4)
      IF (NT. NE. 0) THEN
        DO 8010 I=1, NT
         C(I) = CFIT(I)
 8010 CONTINUE
```

```
END IF
     IF (NX. NE. 0) THEN
       DO 8020 I=1, NX
        Q(I) = QFIT(I)
8020 CONTINUE
     END IF
С
 6000 FORMAT (1H, '**', I2, '******', 2X, E10. 5, 2X, F10. 6, 1X, F10. 6,
                                1X, E10. 5, 1X, E10. 5, 2X, E10. 5)
    &
6010 FORMAT (1H , 17, '/', 12, 2X, E10. 5, 2X, F10. 6, 1X, F10. 6,
                         1X, E10. 5, 1X, E10. 5, 2X, E10. 5)
    &
С
     RETURN
     END
С
C ==
C ====
С
С
     IP=1 : Q = Kd*C
С
С
           dQ
С
     IP=2 : ---- = K1*C - K2*Q
С
             dt
С
С
            dQ dC
С
     IP=3 : ---- = Kd*---- + K1*C - K2*(Q - Kd*C)
С
             dt dt
С
С
            dQ dC
С
     IP=4 : ----- = Kd*----- + K1*C - K2*Q
С
           dt dt
С
     SUBROUTINE FDM1D (IP, PM, CO, QO, C, Q)
С
     PARAMETER (MPM=20, MCQ=1000, MCC=10000)
     IMPLICIT DOUBLE PRECISION (A-H, O-Z)
     DIMENSION CC (0:MCQ), QQ (0:MCQ), CB (0:MCQ), QB (0:MCQ), BB (0:MCQ)
     DIMENSION EA (0:MCQ, 0:2), EB (0:MCQ, 0:2)
     DIMENSION EED (0:MCQ), EEE (0:MCQ), EEF (0:MCQ)
     DIMENSION PM (MPM), CO (MCQ), QO (MCQ), C (MCC), Q (MCQ)
С
С
     С
     IP : : 1:Kd / 2:K1, K2 / 3, 4:Kdd, K1, K2
С
     PM(1) : CBO or CIO : concentration for boundary or initial cond.
С
     PM(2) : VEL : velocity of water flow
С
     PM(3) : DIS : dispersion coefficient
С
     PM(4) : EKD or EK1 : distrib. coeff. / reaction constant
С
     PM(5) : --- or EK2 : ---- / reaction constant
```

С	PM(6) : TMAX	: maximum time of calculation
С	PM(7) : DT	: time step of calculation
С	PM(8) : CLEN	: column length
С	PM(9) : DX	: distance of grids
С	PM(10): PORO	: porocity of soil
С	PM(11): SATU	: degree of saturation
С	PM(12): ROU	: dencity of soil
С	PM(13): ETYP	: selection of experimental type
С	:	: (1.=sorption test / 2., 3.=desorption test)
С	PM(14): EKDD	: use only IP=3
С	CO : 1 - MESH	: initial conc. distribution of solution
С	QO : 1 - MESH	: initial conc. distribution of soil
С	C : $1 - ITER$: concentration of feeding solution
С	****	*******
С	***	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
С	CO : 1 - MESH	: final conc. distribution of solution
С	QO : 1 - MESH	: final conc. distribution of soil
С	C : $1 - ITER$: concentration of effluent solution
С	Q : 1 - MESH	: concentration distribution in the column
С	***	****
С		
	IF (ETYP. EQ. I.) IF CB0=PM(1) CI0=1. ELSE CB0=1. CI0=PM(1) END IF	ΕN
С		
	VEL=PM(2)	
	DIS=PM(3)	
С	IF (IP. EQ. 1) EKD=H IF (IP. EQ. 2) THEN EK1=PM(4) EK2=PM(5) EKD=EK1/EK2 END IF IF (IP. GE. 3) THEN EK1=PM(4) EK2=PM(5) EKDD=PM(14) IF (EK2. NE. 0.) T EKD=EKDD+EK1/H ELSE EKD=EKDD END IF	M(4) HEN K2

```
END IF
С
      TMAX=PM(6)
      DT=PM(7)
      CLEN=PM(8)
      DX=PM(9)
      PORO=PM(10)
      SATU=PM(11)
      ROU=PM(12)
С
      ITER=INT (TMAX/DT+.5)
      MESH=INT (CLEN/DX+.5)
С
      ALPHA=(1. -PORO) *ROU/PORO/SATU
      RD=1. +ALPHA*EKD
С
      IF (ETYP. EQ. 1.) THEN
        DO 900 I=1, MESH
           CC(I)=CO(I)*CIO
           OO(I) = EKD * CC(I)
  900 CONTINUE
      END IF
      IF (ETYP. GE. 2. . AND. ETYP. LT. 3.) THEN
        DO 910 I=1, MESH
           CC(I) = CO(I) * CIO
           QQ(I) = EKD * CC(I) * (ETYP - 2.) * 10.
  910 CONTINUE
      END IF
      IF (ETYP. GE. 3. . AND. ETYP. LT. 4. ) THEN
        DO 920 I=1, MESH
           QQ(I) = QO(I) * CI0
           CC(I) = QQ(I) / EKD * (ETYP - 3.) * 10.
  920 CONTINUE
      END IF
      IF (ETYP. EQ. 4.) THEN
        DO 930 I=1, MESH
           CC(I)=C0(I)*CI0/(EKD+1./ALPHA)
           QQ(I) = EKD * CC(I)
  930 CONTINUE
      END IF
С
      A1=EK1*DT/2.
      A2=EK2*DT/2.
      A3=DIS*DT/(2.*DX*DX)
      A4=VEL*DT/(4.*DX)
      A5=ALPHA*A1/(1.+A2)
      A6=ALPHA*A2/(1.+A2)
      A7=ALPHA*(A1+EKDD*A2+EKDD)/(1.+A2)
```

```
A8=ALPHA*(A1+EKDD*A2-EKDD)/(1.+A2)
       A9=ALPHA*(A1+EKDD)/(1.+A2)
       AA=ALPHA*(A1-EKDD)/(1.+A2)
С
       IF (IP. EQ. 1) THEN
         DO 1000 I=1, MESH
            EA(I, 0) = (-A3 - A4) / RD
            EB(I, 0) = (A3+A4)/RD
            EA(I, 1) = 1. +2. *A3/RD
            EB(I, 1) = 1. -2. *A3/RD
            EA(I, 2) = (-A3 + A4) / RD
            EB(I, 2) = (A3 - A4)/RD
 1000
         CONTINUE
         EA(0, 1) = 1.
         EB(0, 1)=1.
         IF (ETYP. EQ. 1.) THEN
           EA(1, 0) = (-A3 - A4) / RD
            EB(1, 0) = (A3+A4)/RD
            EA(1, 1)=1.+2.*A3/RD
            EB(1, 1)=1. -2. *A3/RD
         ELSE
            EA(1, 0) = -A4/RD
            EB(1, 0) = A4/RD
            EA(1, 1) = 1. + A3/RD
            EB(1, 1) = 1. -A3/RD
         END IF
         EA(MESH, 1) = 1. + (A3+A4)/RD
         EB(MESH, 1) = 1. - (A3 + A4) / RD
       END IF
       IF (IP. EQ. 2) THEN
         DO 1100 I=1, MESH
            EA(I, 0) = -A3 - A4
            EB(I, 0) = A3 + A4
            EA(I, 1) = 1. +2. *A3+A5
            EB(I,1)= 1.-2.*A3-A5
           EA(I, 2) = -A3 + A4
            EB(I, 2) = A3 - A4
 1100 CONTINUE
         EA(0, 1) = 1.
         EB(0, 1) = 1.
         IF (ETYP. EQ. 1.) THEN
           EA(1, 0) = -A3 - A4
            EB(1, 0) = A3 + A4
           EA(1, 1)=1.+2.*A3+A5
            EB(1, 1)=1. -2. *A3-A5
         ELSE
            EA(1, 0) = -A4
            EB(1, 0) = A4
```

EA(1, 1)=1. +A3+A5 EB(1, 1)=1. -A3-A5 END IF EA(1, 1)=1.+2.*A3+A5 EB(1, 1)=1. -2. *A3-A5 EA (MESH, 1) =1. +A3+A4+A5 EB (MESH, 1) = 1. - A3 - A4 - A5 END IF IF (IP. EQ. 3) THEN DO 1200 I=1, MESH EA(I, 0) = -A3 - A4EB(I, 0) = A3 + A4EA(I, 1) = 1. + 2. * A3 + A7EB(I, 1) = 1. -2. *A3 - A8EA(I, 2) = -A3 + A4EB(I, 2) = A3 - A41200 CONTINUE EA(0, 1) = 1.EB(0, 1) = 1.IF (ETYP. EQ. 1.) THEN EA(1, 0) = -A3 - A4EB(1, 0) = A3 + A4EA(1, 1)=1.+2.*A3+A7 EB(1, 1)=1. -2. *A3-A8 ELSE EA(1, 0) = -A4EB(1, 0) = A4EA(1, 1)=1.+A3+A7 EB(1, 1)=1. -A3-A8 END IF EA (MESH, 1)=1. +A3+A4+A7 EB (MESH, 1) =1. -A3-A4-A8 END IF IF (IP. EQ. 4) THEN DO 1300 I=1, MESH EA(I, 0) = -A3 - A4EB(I, 0) = A3 + A4EA(I, 1)= 1.+2.*A3+A9 EB(I, 1) = 1. -2. *A3-AA EA(I, 2) = -A3 + A4EB(I, 2) = A3 - A41300 CONTINUE EA(0, 1) = 1.EB(0, 1) = 1.IF (ETYP. EQ. 1.) THEN EA(1, 0) = -A3 - A4EB(1, 0) = A3 + A4EA(1, 1)=1.+2.*A3+A9

```
EB(1, 1)=1. -2. *A3-AA
         ELSE
           EA(1, 0) = -A4
           EB(1, 0) = A4
           EA(1, 1) = 1. + A3 + A9
           EB(1, 1) = 1. -A3 - AA
         END IF
         EA (MESH, 1) =1. +A3+A4+A9
         EB (MESH, 1) = 1. - A3 - A4 - AA
       END IF
С
С
                          ----- MMAT -----
       DO 1800 I=1, MESH
         EED(I) = EA(I, 0)
 1800 CONTINUE
       DO 1810 I=0, MESH
         EEE(I) = EA(I, 1)
 1810 CONTINUE
      DO 1820 I=0, MESH-1
         EEF(I) = EA(I, 2)
 1820 CONTINUE
С
       DO 1900 I=1, MESH
         EED(I) = EED(I) / EEE(I-1)
         EEE(I) = EEE(I) - EED(I) * EEF(I-1)
 1900 CONTINUE
С
                            ----- MMAT ----
С
                                    ----- Start of calculation -----
       DO 2000 J=1, ITER
        CC(0) = C(J) * CB0
         DO 2100 I=0, MESH
           CB(I) = CC(I)
           QB(I) = QQ(I)
 2100 CONTINUE
         IF (IP. EQ. 1) THEN
           DO 2110 I=1, MESH-1
             CC(I) = EB(I, 0) * CB(I-1) + EB(I, 1) * CB(I) + EB(I, 2) * CB(I+1)
 2110
           CONTINUE
         ELSE
           DO 2120 I=1, MESH-1
             CC(I) = EB(I, 0) *CB(I-1) + EB(I, 1) *CB(I) + EB(I, 2) *CB(I+1)
             CC(I) = CC(I) + 2. *A6*QB(I)
 2120
           CONTINUE
         END IF
         CC (MESH) = EB (MESH, 0) * CB (MESH-1) + EB (MESH, 1) * CB (MESH)
С
С
                              ----- SOLV ----
         DO 3000 I=0, MESH
```

```
BB(I) = CC(I)
 3000
        CONTINUE
        CC(0) = BB(0)
        DO 3100 I=1, MESH
          CC(I) = BB(I) - EED(I) * CC(I-1)
 3100
        CONTINUE
        CC (MESH) = CC (MESH) / EEE (MESH)
        DO 3200 I=MESH-1, 0, -1
          CC(I) = (CC(I) - EEF(I) * CC(I+1)) / EEE(I)
 3200 CONTINUE
                        ----- SOLV -----
С
С
        IF (IP. EQ. 1) THEN
          DO 4000 I=1, MESH
            QQ(I) = CC(I) * EKD
 4000
          CONTINUE
        END IF
        IF (IP. EQ. 2) THEN
          DO 4010 I=1, MESH
            QQ(I) = (A1*CC(I)+A1*CB(I)+(1.-A2)*QB(I))/(1.+A2)
 4010
          CONTINUE
        END IF
        IF (IP. EQ. 3) THEN
          DO 4020 I=1, MESH
            QQ(I) = ((A1+A2*EKDD+EKDD)*CC(I)+(A1+A2*EKDD-EKDD)*CB(I))
                   +(1.-A2)*QB(I))/(1.+A2)
     &
 4020
          CONTINUE
        END IF
        IF (IP. EQ. 4) THEN
          DO 4030 I=1, MESH
            QQ(I) = ((A1+EKDD)*CC(I)+(A1-EKDD)*CB(I))
                   +(1.-A2)*QB(I))/(1.+A2)
     &
 4030
          CONTINUE
        END IF
С
        C(J) = CC(MESH)
 2000 CONTINUE
С
                           ----- End of calculation -----
С
      DO 5000 I=1, MESH
        CO(I) = CC(I)
        QO(I) = QQ(I)
        Q(I) = QQ(I) + CC(I) / ALPHA
 5000 CONTINUE
С
      RETURN
      END
```

This is a blank page.

表2. 基本単位を用いて表されるSI組立単位の例 表1. SI 基本単位

甘木県	SI 基本単位		
基个里	名称	記号	
長さ	メートル	m	
質 量	キログラム	kg	
時 間	秒	s	
電 流	アンペア	Α	
熱力学温度	ケルビン	Κ	
物質量	モル	mol	
光 度	カンデラ	cd	

	100			
组立量		SI 基本単位		
和立里		名称	記号	
面	積	平方メートル	m ²	
体	積五	立法メートル	m ³	
速さ,速	度 >	メートル毎秒	m/s	
加速	度 >	メートル毎秒毎秒	m/s^2	
波	数每	毎メートル	m ⁻¹	
密度,質量密	度 =	キログラム毎立方メートル	kg/m ³	
面 積 密	度	キログラム毎平方メートル	kg/m^2	
比 体	積ゴ	立方メートル毎キログラム	m ³ /kg	
電流密	度フ	アンペア毎平方メートル	A/m^2	
磁界の強	さフ	アンペア毎メートル	A/m	
量濃度 ^(a) ,濃	度刊	モル毎立方メートル	mol/m ³	

第一の「濃度」での「海」で「シートル」 mol/m³ 量濃度にの、濃度モル毎立方メートル mol/m³ 量濃度キログラム毎立法メートル g^{\dagger} かンデラ毎平方メートル cd/m^2 折率(b^{\dagger} (数字の) 1 1 透磁率(b^{\dagger} (数字の) 1 1 質 輝 屈 透磁 比

(a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度 (substance concentration) ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのこと を表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

	SI 組立単位				
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方	
平 面 角	ヨラジアン ^(b)	rad	1 ^(b)	m/m	
立 体 牟	コテラジアン ^(b)	$sr^{(c)}$	1 ^(b)	m ² /m ²	
周 波 数	ベルツ ^(d)	Hz		s ⁻¹	
力	ニュートン	Ν		m kg s ^{'2}	
圧力,応力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²	
エネルギー,仕事,熱量	ビュール	J	N m	m ² kg s ⁻²	
仕事率, 工率, 放射束	モワット	W	J/s	$m^2 kg s^{\cdot 3}$	
電荷,電気量	ローロン	С		s A	
電位差(電圧),起電力	ボルト	V	W/A	m ² kg s ⁻³ A ⁻¹	
静電容量	マアラド	F	C/V	$m^{2} kg^{1} s^{4} A^{2}$	
電気抵抗	ī オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$	
コンダクタンフ	ジーメンス	S	A/V	$m^{2} kg^{1} s^{3} A^{2}$	
磁芽	ミウエーバ	Wb	Vs	$m^2 kg s^2 A^1$	
磁束密度	テスラ	Т	Wb/m ²	kg s ⁻² A ⁻¹	
インダクタンフ	、ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$	
セルシウス温度	モルシウス度 ^(e)	°C		K	
光 東	モルーメン	lm	cd sr ^(c)	cd	
照度	レクス	lx	lm/m^2	m ⁻² cd	
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹	
吸収線量,比エネルギー分与,	グレイ	Gv	J/kg	m ² s ⁻²	
カーマ		сл <i>у</i>	0/11g	111 5	
線量当量,周辺線量当量,方向 性線量当量,個人線量当量,	シーベルト (g)	Sv	J/kg	$m^2 s^2$	
酸 素 活 相	カタール	kat		s ⁻¹ mol	
				0 11101	

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (o)剤光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ベクレルは放射性核種の統計的過程についてのみ使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス選びを大しに使用される。セルシウス度とケルビンの 単位の大きさは同一である。したかって、温度差や温度間隔を表す数値はどちらの単位で表しても同じである。
 (f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば認った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4. 単位の	中に固有の名称と記号を含むSI組立単位の例

	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ^{'3}
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$
熱伝導率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	クーロン毎平方メートル	C/m^2	m ⁻² sA
電束密度, 電気変位	クーロン毎平方メートル	C/m ²	m ⁻² sA
誘 電 卒	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁 卒	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^{2} kg s^{2} K^{1} mol^{1}$
照射線量 (X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^2 s^{-3}$
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{2} kg s^{3} = m^2 kg s^{3}$
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	$m^{3} s^{1} mol$

表 5. SI 接頭語							
乗数	接頭語	記号	乗数	接頭語	記号		
10^{24}	ヨ タ	Y	10^{-1}	デシ	d		
10^{21}	ゼタ	Z	$10^{.2}$	センチ	с		
10^{18}	エクサ	Е	10^{-3}	ミリ	m		
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ		
10^{12}	テラ	Т	10^{-9}	ナノ	n		
10^{9}	ギガ	G	$10^{\cdot 12}$	ピョ	р		
10^{6}	メガ	М	$10^{.15}$	フェムト	f		
10^{3}	キロ	k	$10^{\cdot 18}$	アト	а		
10^{2}	ヘクト	h	$10^{.21}$	ゼプト	z		
10^{1}	デ カ	da	10^{-24}	ヨクト	У		

表 6. SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	۰	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, l	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1t=10^3 \text{ kg}$		

表7. SIに属さないが、SIと併用される単位で、SI単位で

	表される数値が実験的に得られるもの					
名称				記号	SI 単位で表される数値	
電	子 オ	、ル	Ч	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J	
ダ	ル	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg	
統-	一原子	質量単	〔位	u	1u=1 Da	
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m	

	表8.SIに属さないが、SIと併用されるその他の単位					
	名称		記号	SI 単位で表される数値		
バ	_	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa		
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa		
オン	グストロ・	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m		
海		里	М	1 M=1852m		
バ		\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²		
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s		
ネ		パ	Np	ロ光伝しの粉はめた眼接は		
ベ		ル	В	51単位との数値的な関係は、 対数量の定義に依存。		
デ	ジベ	ル	dB -	X19X ± 17 AC44 (19 A 11 6		

表9. 固有の名称をもつCGS組立単位							
名称	記号	SI 単位で表される数値					
エルク	erg	1 erg=10 ⁻⁷ J					
ダイン	dyn	1 dyn=10 ⁻⁵ N					
ポアフ	P	1 P=1 dyn s cm ⁻² =0.1Pa s					
ストークフ	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$					
スチルフ	sb	$1 \text{ sb} = 1 \text{ cd} \text{ cm}^{2} = 10^{4} \text{ cd} \text{ m}^{2}$					
フォト	ph	1 ph=1cd sr cm 2 10 ⁴ lx					
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{-2} = 10^{-2} \text{ ms}^{-2}$					
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$					
ガウジ	G	$1 \text{ G} = 1 \text{Mx cm}^{-2} = 10^{-4} \text{T}$					
エルステッド ^(c)	Oe	1 Oe ≜ (10 ³ /4π)A m ⁻¹					
(a) 3 元系のCCS単位系とSIでけ直接比較できかいため 笑早 [△							

3元系のCGS単位系とSI Cは は対応関係を示すものである。

表10. SIに属さないその他の単位の例								
名称					記号	SI 単位で表される数値		
キ	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
ν	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$		
ラ				ĸ	rad	1 rad=1cGy=10 ⁻² Gy		
ν				Д	rem	1 rem=1 cSv=10 ⁻² Sv		
ガ		$\boldsymbol{\nu}$		7	γ	1 γ =1 nT=10-9T		
フ	r		ル	i.		1フェルミ=1 fm=10-15m		
メー	ートル	系	カラッ	ット		1メートル系カラット = 200 mg = 2×10-4kg		
ŀ				ル	Torr	1 Torr = (101 325/760) Pa		
標	準	大	気	圧	atm	1 atm = 101 325 Pa		
力	Ц		IJ	_	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)		
ŝ	ク			\sim	μ	$1 \mu = 1 \mu m = 10^{-6} m$		

この印刷物は再生紙を使用しています