JAEA-Research 2013-009

酸化物分散強化型フェライト鋼の 硝酸溶解特性評価:第 2 報

一溶解工程の硝酸濃度等に対応した溶解量の検討—

Dissolutions of Oxide Dispersion Strengthened Ferritic Steels in Various Nitric Acid Solutions: The Second Report - The Amount of the Corrosion Products in the Dissolution Process -

> 井上 賢紀 須藤 光雄 小山 真一 大塚 智史 皆藤 威二

Masaki INOUE, Mitsuo SUTO, Shinichi KOYAMA, Satoshi OHTSUKA and Takeji KAITO

次世代原子カシステム研究開発部門 燃料材料技術開発ユニット

Fast Reactor Fuels and Materials Technology Development Unit Advanced Nuclear System Research and Development Directorate

October 2013

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency. Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency. 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan

Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2013

酸化物分散強化型フェライト鋼の硝酸溶解特性評価:第2報 - 溶解工程の硝酸濃度等に対応した溶解量の検討-

日本原子力研究開発機構

次世代原子力システム研究開発部門 燃料材料技術開発ユニット 井上 賢紀⁺¹、須藤 光雄^{*1}、小山 真一、大塚 智史、皆藤 威二

(2013年4月26日 受理)

高速増殖炉サイクル実用化段階の燃料被覆管の基準材料であるマルテンサイト系酸化物分散強 化型フェライト鋼(9CrODS 鋼)の再処理システム適合性評価の一環として、溶解工程の硝酸濃 度等に対応した溶解量を評価した。溶解液中の燃料被覆管成分の高濃度化による個別プロセスへ の影響の観点からは最大値を示す最高温度炉心燃料集合体単体の溶解量、高レベル放射性廃棄物 (ガラス固化体)の発生量への影響の観点からは全ての炉心燃料集合体を積算した溶解量を算出 した。溶解量の評価にあたっては、過去の高速炉における燃料ピン照射試験、ナトリウムループ 試験等の結果をレビューし、炉内使用に伴う外面腐食、内面腐食等が硝酸溶解特性に及ぼす影響 を考慮した評価方法を検討した。炉内使用の影響による溶解量の増分を評価したところ、流動ナ トリウム環境特有の質量移行現象の発生条件に大きく依存することがわかった。

大洗研究開発センター(駐在):〒311-1393 茨城県東茨城郡大洗町成田町 4002

+1 大洗研究開発センター 福島燃料材料試験部

※1 技術開発協力員(大洗研究開発センター 福島燃料材料試験部)

Dissolutions of Oxide Dispersion Strengthened Ferritic Steels in Various Nitric Acid Solutions: The Second Report - The Amount of the Corrosion Products in the Dissolution Process -

Masaki INOUE⁺¹, Mitsuo SUTO^{**1}, Shinichi KOYAMA, Satoshi OHTSUKA and Takeji KAITO

Fast Reactor Fuels and Materials Technology Development Unit, Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received April 26, 2013)

In order to exammine the applicability for advanced aqueous reprocessing system, the martensitic oxide dispersion strengthened ferritic steel (9Cr-ODS steel), which is the primary candidate material for high burnup fuel pin cladding tube in fast reactor cycle, was evaluated for the amount of corrosion products in the dissolution process. The quantity of corrosion products was calculated to investigate the influence of both various chemical processes and waste glass (vitrified high level radioactive wastes) by use of the results of a maximum cladding temperature fuel subassembly and the sum of all fuel subassemblies, respectively. The experimental results of immersion tests in flowing liquid sodium loops and fuel pin irradiation tests in fast reactors were reviewed to consider the effect of outer and inner corrosions in high burnup fuel pins on corrosion products. This work revealed that the sum of corrosion products depends largely on the mass transfer behavior in flowing liquid sodium.

Keywords: Oxide Dispersion Strengthened Ferritic Steel, Fast Reactor Cycle, Fuel Pin Cladding Tube, Corrosion Resistance, Passivity, Reprocessing, PUREX Process, Nitric Acid Solution, Metallic Ion, Corrosion Potential, Mass Transfer, Fuel Cladding Chemical Interaction

 ⁺¹ Fukushima Fuels and Materials Department, Oarai Research and Development Center
 ※1 Collaborating Engineer (Fuels and Materials Department, Oarai Research and Development Center)

目次

1.	序論		1
	1.1	酸化物燃料と先進湿式再処理	1
	1.2	技術課題	2
	1.3	目的	3
	1.4	付記	3

2.	硝酸溶角	解特性に及ぼす炉内使用の影響	4
	2.1	外面腐食挙動:金属元素の質量移行現象(脱Cr)	4
	2.2	外面腐食挙動:非金属元素の質量移行現象(脱炭・浸炭)	5
	2.3	内面腐食举動	5
	2.4	照射効果	6

溶解工程	星における溶解量の評価モデルの構築	7
3.1	評価体系の構築	7
3.2	溶解量に及ぼす炉内使用の影響のモデリング:外面腐食量	8
3.3	溶解量に及ぼす炉内使用の影響のモデリング:内面腐食量	10
3.4	溶解量に及ぼす炉内使用の影響のモデリング:照射効果	11
	溶解工程 3.1 3.2 3.3 3.4	 溶解工程における溶解量の評価モデルの構築 3.1 評価体系の構築 3.2 溶解量に及ぼす炉内使用の影響のモデリング:外面腐食量 3.3 溶解量に及ぼす炉内使用の影響のモデリング:内面腐食量 3.4 溶解量に及ぼす炉内使用の影響のモデリング:照射効果

4.	溶解工種	呈における溶解量の評価結果	12
	4.1	評価パラメータ	12
	4.2	評価計算結果	13
	4.3	評価精度の向上方策の検討	14

5.	溶解量0)低減方策に関する検討	15
	5.1	被覆管鋼種の変更:12Cr-ODS 鋼	15
	5.2	被覆管鋼種の変更:高 Ni 鋼	15

6.	結論	 16
謝	辞	 17
1111	- 1	
参	考文献	 18

Contents

1. Intr	1.1 Oxide Fuels and Advanced Aqueous Reprocessing System	1
	1.2 Technical Issues	$\frac{1}{2}$
	1.3 Objectives	3
	1.4 Remaks	3

2. The Effect of Irradiation on Dissolution Kinetics in Various Nitric Acid Solutions	4
2.1 Outer Corrosion due to Mass Transfer in Flowing Liquid Sodium:	
Metallic Elements	4
2.2 Outer Corrosion due to Mass Transfer in Flowing Liquid Sodium: Carbon	5
2.3 Inner Corrosion due to Oxidations Derived from Adjacent Fuels	5
2.4 Irradiation Induced Segregations and Precipitates	6

3. The Modelling of the Corrosion Behavior in the Dissolution Process	7
3.1 Fuel Pin Geometry and Iradiation Conditions	7
3.2 Modelling of In-Pile Outer Corrosion Behavior	8
3.3 Modelling of In-Pile Inner Corrosion Behavior	10
3.4 Modelling of Irradiation Damage	11

4. Results and Discussions	12
4.1 Parameters	12
4.2 The Extent of Dissolutions	13
4.3 Technical Issues to Eliminate Extra Margins	14

5. Feasible Options to Reduce Dissolutions	15
5.1 Alternatives: 12Cr-ODS Steel	15
5.2 Alternatives: High Nickel Alloys	15

6. Conclusions	16
----------------	----

Acknowledgements 1

References	18

表リスト

表 1.1	炉心・燃料設計研究における実証炉炉心燃料ピン仕様(典型例)	20
表 1.2	ODS 鋼の材料仕様	21
表 1.3	連続溶解槽における遊離硝酸濃度と溶存金属濃度の解析例	21
表 1.4	ODS 鋼の再処理システム適合性に関する評価課目の整理	22
表 1.5	炉内使用による被覆管の表面性状の変化	22
表 1.6	高強度フェライト/マルテンサイト鋼(PNC-FMS)の材料仕様	23
表 2.1	ナトリウムループ試験における ODS 鋼供試材の化学分析値	24
表 2.2	Fe 鋼材料における Cr・Ni・Fe の拡散係数報告例	24
表 2.3	BOR-60 照射試験に使用した 9Cr-ODS 鋼被覆管の材料仕様	24
表 2.4	被覆管の酸化に消費可能な酸素量の試算	25
表 2.5	「常陽」材料照射試験片の硝酸溶解試験方法	26
表 2.6	純硝酸水溶液と模擬溶解液への溶解速度:9Cr-ODS 鋼「常陽」材料照射試験片	26
表 3.1	外面腐食量と内面腐食量の解析体系	27
表 3.2	実証炉における被覆管肉厚中心温度の軸方向分布の典型例	28
表 3.3	実用炉における集合体毎の被覆管肉厚中心最高温度の分布例:内側炉心燃料集合体	
		29
表 3.4	実用炉における集合体毎の被覆管肉厚中心最高温度の分布例:外側炉心燃料集合体	
21 01 -		- 30
表 3.5	実用炉における被覆管肉厚中心最高温度に着目した炉心燃料集合体数分布	31
表 3.6	Cr 濃度指定値に対する浸入深さを計算するための係数	32
表 3.7	温度と時間をパラメータにした脱 Cr 層の生成に関する試算	33
表38	供試材の基本仕様・モデル合金	34
表39	供試材の化学分析値・3 元系モデル合金	35
表 3 10	供試材の化学分析値・4 元系モデル合金	36
表 3 11		37
表 3 12		38
表 3 13	純硝酸水沼 似と 医风口 がん かん かん かん かん かん かん かん かん ひん	- 39
表 3.14	純明酸水阳低と俣城阳炉低 ジロ炉起度 10120 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100 10100 1000	40
表 3 15	純明酸水阳低と俣城阳県低 ジロ県起使: $10 101200011190x CFF 10 100$ 純硝酸水溶液と構擬溶解液への溶解速度: $F_0 - 4C_r - 2W - 12Ni 4 - エ エ モ デ ル 合全$	10
表 3.10	純明設示符版と僕與符所版、の符所述度:Fe for 2W 12R f 元示 C / $ル$ 日 $ω$ 納硝酸水溶液と描擬溶解液への溶解連度・Fo-9Cr-9W-0 13C / 元系モデル会会	41
太 0.10 主 9 17	純明設示符版と僕與符件版、の符件述及:FE JOI 2W 0.150 年元末 ビアル自立 純硝酸水溶液と増塩溶解液への溶解油度・Fo-0C n -2W-0.50C 4 元系エデル合会	42
衣 0.17 主 9 19	純明酸水谷酸と僕無俗解散、の俗解迷及、Fe $501.2W 0.5004$ 元ホモアル自並 純硝酸水溶液と増塩溶解液への溶解声度、Fe $501.2W 0.5004$ 元ホモアル合会	40
衣 J.10 主 9 10	純明酸水谷酸と僕幾倍解散、の溶解速度、Fe $301.2W$ 1.000 4 元示て 776 日並	40
衣 3.19	純明酸小俗似と模擬俗解似、の俗解速度: $Fe^{-80F-2W} = 0.1304$ ルポモアル白金 ===== 純茂酸水溶液 」 構築溶解液 。 の溶解 声度 , $Fe^{-70F-2W} = 0.1204$ 二変エ デル合会	44
衣 3.20	純明酸水溶液と模擬溶解液、の溶解速度: Fe^{-7} Ur-2W-0.13U 4 元糸モアル合金	45
衣 3.21	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	46
衣 3.22	re-Ur-2W 3 元米七アル合金の純明酸水浴液と模擬浴解液における浴解速度アータ	. –
# 0.00		47
表 3.23	Fe-4Cr-2W-N14 元糸モアル合金の純硝酸水溶液と模擬溶解液における溶解速度デー	- <i>9</i>
	一覧表	48

表 3.24	Fe-Cr-2W-C4元系モデル合金の純硝酸水溶液と模擬溶解液における溶解速度データ	
	一覧表	49
表 3.25	モデル合金と 9Cr-ODS 鋼の純硝酸水溶液と模擬溶解液における腐食電位測定結果	
		50
表 3.26	内面腐食深さの計算値(全面腐食量)	51
表 4.1	外面腐食現象と内面腐食現象に起因する溶解量の試算マトリックス	52
表 4.2	9Cr-ODS 鋼の溶解工程における溶解量の計算結果:最高温度燃料集合体	53
表 4.3	9Cr-ODS 鋼の溶解工程における溶解量の計算結果:全ての炉心燃料集合体の積算値	
		54
表 4.4	評価体系の中で設定した保守性のリストーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	55
表 4.5	溶解工程における溶解量の評価精度の向上に有効な試験データ	56
表 5.1	供試材の材料仕様:12Cr-ODS 鋼	57
表 5.2	純硝酸水溶液と模擬溶解液への溶解速度:12Cr-ODS 鋼	58
表 5.3	12Cr-ODS 鋼と高 Ni 鋼の硝酸水溶液と模擬溶解液における溶解速度データ	60
表 5.4	12Cr-ODS 鋼の溶解工程における溶解量の計算結果:最高温度炉心燃料集合体	61
表 5.5	12Cr-ODS 鋼の溶解工程における溶解量の計算結果:全ての炉心燃料集合体の積算値	
		62
表 5.6	9Cr-ODS 鋼と 12Cr-ODS 鋼の溶解量の比較:最高温度炉心燃料集合体	63
表 5.7	9Cr-ODS 鋼と 12Cr-ODS 鋼の溶解量の比較:全ての炉心燃料集合体の積算値	64
表 5.8	高 Ni 鋼供試材と PNC316 の材料仕様	65
表 5.9	純硝酸水溶液と模擬溶解液への溶解速度データ:炭窒化物析出強化型高 Ni 鋼	
		66
表 5.10	純硝酸水溶液と模擬溶解液への溶解速度データ:金属間化合物析出強化型高 Ni 鋼	
		68

図リスト

図 1.1	酸化物燃料と先進湿式再処理の組合せ	- 70
図 1.2	燃料集合体と燃料ピンの概略構造	- 70
図 1.3	先進湿式再処理プロセス(抜粋)	- 71
図 1.4	連続溶解槽内での剪断片および溶液の流れ	- 71
図 1.5	流動ナトリウム接触による外面腐食現象の模式図	- 72
図 1.6	内面腐食に関する観察事例(PNC-FMS 被覆管)	- 72
$\boxtimes 2.1$	BOR-60 第 2 期照射試験におけるクロム濃度分布測定例その 1	- 73
図 2.2	BOR-60 第2期照射試験におけるクロム濃度分布測定例その2	- 73
図 2.3	BOR-60 第3期照射試験におけるクロム濃度分布測定例その1	- 74
図 2.4	BOR-60 第3期照射試験におけるクロム濃度分布測定例その2	- 74
$\boxtimes 2.5$	BOR-60 照射試験における光学顕微鏡組織観察例	- 75
図 2.6	内面腐食深さに及ぼす温度の影響その1	- 75
図 2.7	内面腐食深さに及ぼす温度の影響その2	- 76
図 2.8	9Cr-ODS 鋼(Mm14)の「常陽」照射前後の溶解速度の比較	- 76
図 3.1	外面腐食と内面腐食に関する解析体系	- 77
図 3.2	質量移行現象の計算のためのモデル図	- 77
図 3.3	600℃・640℃・700℃における脱クロム層の深さ方向計算結果	- 78
図 3.4	モデル合金(Fe-4Cr-2Wと Fe-4Cr-2W-8Ni)の分極曲線	- 78

This is a blank page.

1. 序論

1.1 酸化物燃料と先進湿式再処理

1.1.1 主概念

高速増殖炉サイクル実用化研究開発プロジェクト(以下、FaCTと略す)では、「酸化物燃料(以下、燃料と略す)」と「先進湿式再処理」の組み合わせが主概念として採用されている¹⁾²⁾³⁾。図 1.1 には、燃料製造・炉内使用・再処理のリサイクルに加え、先進湿式再処理システムの個別プロセスを示す。先進湿式再処理は、従来からある「PUREX法」を発展させたシステムである。

1.1.2 酸化物燃料

FaCT の炉心・燃料設計研究における炉心燃料集合体の概略構造 ¹⁾を図 1.2 に示す。また、炉 心燃料ピン(実証炉想定仕様)の基本仕様を表 1.1 に示す。

燃料被覆管(以下、被覆管と略す)には最高燃焼度 250GWd/MTM、最大中性子照射量 250dpa、 使用期間 9 年、ホットスポット温度 700℃(原子炉入口温度 395℃)の高燃焼度・高照射量・長 期間・高温に対する照射健全性(耐照射性、高温強度特性、耐食性)が求められる。

炉心燃料ピンの被覆管と上下部端栓には酸化物分散強化型フェライト鋼(以下、ODS 鋼と略 す:Oxide Dispersion Strengthened ferritic steel)が採用されている。ODS 鋼には表 1.2 のよ うに 9Cr-ODS 鋼(マルテンサイト系:Cr 濃度 9mass%)と 12Cr-ODS 鋼(再結晶フェライト 系:Cr 濃度 12mass%)の2種類がある ⁴。FaCT では前者が基準材料に採用されている。

1.1.3 先進湿式再処理

先進湿式再処理における溶解工程には、従来の湿式再処理と同様、硝酸水溶液が適用される²⁾³⁾。 特に、9Cr-ODS 鋼のようにステンレス鋼の定義(10.5mass%≦Cr 濃度)に満たない低 Cr 濃度 の鋼種を適用する場合、燃料ピン構成材料(被覆管、端栓等)の硝酸溶解特性を評価する必要性 が顕在化する。ODS 鋼の再処理システム適合性については、仏国でも注目されている⁵。

再処理工場に輸送された使用済燃料集合体は、前処理工程においてラッパ管、エントランスノ ズル(E/N)、ハンドリングヘッド(H/H)が除去された後、燃料ピンは束ねられた状態(下部端 栓が固定された状態)のまま、10mm 程度に順次短尺剪断される。燃料ピン剪断片(以下、剪断 片と略す)は、炉心燃料とブランケット燃料の溶解のために連続溶解槽に投入される(図 1.3)。 溶け残った被覆管は「ハル」と呼ばれる。回収されたハルはハル洗浄槽中で硝酸水溶液に再度浸 漬され、残留している燃料の溶解回収が行われた後、高放射性固体廃棄物として処理処分される。 燃料ピン構成材料の溶解は、全て溶解工程の中で起こる。

図 1.4 のように、連続溶解槽における剪断片投入口は燃料溶解液(以下、溶解液と略す)の回 収部付近、ハルの回収部は硝酸水溶液の供給口付近にある。連続溶解槽は回転ドラム式と呼ばれ ており、剪断片は硝酸水溶液と向流接触しながら、一定速度で移動する。

連続溶解槽は8ステージあり、各ステージの溶液条件を解析するシミュレーションコードが整備されている。シミュレーションコードによると、表1.3のように接触する硝酸水溶液の組成も連続的に変化していく。供給される硝酸水溶液は、硝酸濃度が12mol/L程度の純硝酸水溶液(溶存金属を含まない硝酸と水だけで構成される水溶液)であるが、溶解液の硝酸濃度は燃料溶解反応によって消費され、4mol/L程度に低下する。液温は95℃、滞留時間は4時間が想定されている。溶解工程からの(中間)製品には、500gHM/L程度の高濃度の金属イオン(ウラン、プルトニウム、核分裂生成物等)を溶存する高濃度の溶解液が求められている。

1.2 技術課題

1.2.1 燃料ピン構成材料の溶解による再処理システムへの影響

溶解液における燃料ピン構成材料からの溶出成分(主に、Fe、Cr、Ni:以下、CPと略す:腐 食生成物=Corrosion Product)は、再処理プロセスの搭槽類を構成するステンレス鋼系材料から の溶出成分と一体となり、核分裂生成物等とともに高レベル放射性廃液に移行する。燃料ピン構 成材料の溶解量が過大になると、高レベル放射性廃液が増量し、ガラス固化体の発生量増大の懸 念が生じる。また、溶解液中のCP濃度が過大になると、燃料溶解率の低下、除染係数の減少、 分配係数の変化、スラッジ、処理量の増大等による個別プロセス(溶解、清澄、晶析、抽出、マ イナーアクチニド回収等:図1.1参照)の改良、燃料ピン構成成分の分離回収、ガラス固化体の 化学組成の変更等の必要性が懸念される(表1.4)。

1.2.2 9Cr-ODS 鋼の母材の硝酸溶解特性

前報^のでは、9Cr-ODS 鋼の母材(製造まま材)について、連続溶解槽の溶液条件を模擬した硝酸水溶液における溶解特性を評価した。その結果、9Cr-ODS 鋼の溶解速度の抑制には高硝酸濃度、溶存金属イオン等による不働態皮膜の安定化効果が必要であることがわかった。また、連続溶解槽中では、剪断片と接触する硝酸水溶液中の硝酸濃度と溶存金属イオン濃度が連続的に変化するが、不働態皮膜の安定化効果を持続させる方向に変化する傾向があることもわかった。連続溶解槽の想定運転条件における 9Cr-ODS 鋼の溶解速度(連続溶解槽内滞留時間中の平均値)の上限値は 10mm/y と評価された。

前報では母材の溶解速度に着目した評価に留まっていた。ODS 鋼の再処理システム適合性を評価するためには、炉内使用、工程要因等による溶解速度の増大要因を考慮し、溶解工程(連続溶解槽とハル洗浄槽)における溶解量(上限値)を評価することが課題として残されていた。

1.2.3 硝酸溶解特性に及ぼす炉内使用の影響

被覆管の外面は流動する冷却材ナトリウムに接触し、図 1.5 に模式的に示すように、減肉と質 量移行の2種類の腐食現象(表 1.5)が発生する⁸。実証炉設計研究によると、集合体内におけ る冷却材ナトリウムの流速は約 5m/s である。

減肉現象は、冷却材ナトリウム中の不純物酸素による被覆管構成元素の酸化と溶解に起因する ため、溶解量に及ぼす影響は無視できる。

質量移行現象は、冷却材と被覆管母材における構成元素の活量(化学ポテンシャル)の差に起因する⁸⁹⁹。金属元素は、被覆管側から見た場合、Crの溶出、Niの浸入等が代表的な現象である。 非金属元素のCは、溶出(脱炭)と浸入(浸炭)の2種類ある。脱炭は実効Cr濃度を上げる方向に働くが、浸炭は逆に下げる方向に働く。硝酸溶解特性は実効Cr濃度に極めて敏感であり、 脱Cr層と脱炭浸炭の影響が懸念される。

内面腐食現象は被覆管の高温酸化現象であり、燃焼による燃料の酸素ポテンシャルの上昇と核 分裂生成物に影響を受ける。図 1.6 は、フェライト系鋼被覆管における内面腐食層(酸化層)を 光学顕微鏡によって観察した例である。内面腐食層は母相への密着性が高く、例え硝酸水溶液に 溶解しなくても、剪断の過程で剥離して溶解液中に浮遊すれば溶解したのと同様であり、影響が 懸念される。

被覆管の内部では中性子照射による原子の弾き出しによる照射損傷が発生し、炉内使用環境に 特有の組織変化を誘起する。熱時効効果に加え、σ相の析出、炭化物の析出等の促進効果がある とすると、母相の実効 Cr 濃度が低下し、硝酸溶解特性への影響が懸念される。

1.2.4 硝酸溶解特性に及ぼす工程要因の影響

前処理工程における剪断時に発生する切り粉(実効表面積の増大)、連続溶解槽におけるハル と回転する槽壁との機械的相互作用による擦過(不働態皮膜の損傷)、温度変動等の工程要因が溶 解量を増大させる可能性があり、炉内使用の影響と並行して検討が進められている。

なお、ハル洗浄槽の詳細構造は設計検討中である。洗浄には高濃度の純硝酸水溶液が使用され ると予想されるが、硝酸濃度、槽内の滞留時間、液温等の詳細は検討段階にある。ハル洗浄後の 硝酸水溶液の取扱方法としては、連続溶解槽への供給、清澄工程への混合等が検討されている。

1.3 目的

ODS 鋼の実用化段階における高燃焼度燃料被覆管としての採否判断にあたっては、高燃焼度までの照射健全性の技術見通しに加え、再処理システムへの適合性も評価する必要がある。

今回の評価は、9Cr-ODS 鋼を被覆管に採用した実証炉想定仕様燃料ピン(表 1.1)を対象とし、 前報で評価した母材の溶解速度に加え、増大要因を新たに考慮し、溶解工程における溶解量を評 価することを目的とする。ただし、検討する増大要因のうちの工程要因の影響については、別途 並行して進んでいるため、今回は炉内使用の影響に限定する(表 1.4)。また、今回の「溶解工程」 における溶解量の評価対象は「連続溶解槽」を想定し、「ハル洗浄槽」は含まない。

溶解量評価は以下の2つについて実施する。

① 燃料ピン構成成分の高濃度化による個別プロセスへの影響の観点から、炉心燃料集合体のう ち溶解量が最大のもの。

② 高レベル放射性廃棄物(ガラス固化体)の発生量への影響の観点から、全ての炉心燃料集合体の積算値。

具体的な溶解工程における溶解量の評価は、以下のように進める。

2章:炉内使用による溶解速度(溶解量)の増大要因を抽出する。

3章:溶解工程における被覆管の溶解現象をモデル化する。

4章:3章で構築したモデルをもとに溶解工程における被覆管の溶解量を評価する。

5章:被覆管鋼種の変更による溶解量の低減可能性を検討する。

溶解量の評価値には、再処理システムにおける個別プロセスの設備機器、運転条件等の設計研 究に反映するため、保守性を持たせる。

1.4 付記

ラッピングワイヤも被覆管と同時に剪断されて連続溶解槽に投入されるため、硝酸水溶液との 接触による溶解が起こる。しかし、表面積を比較すると、ラッピングワイヤは被覆管の10分の1 程度である。ラッピングワイヤに使用されるのは、高強度フェライト/マルテンサイト鋼(以下、 PNC-FMSと略す)である。PNC-FMSの材料仕様¹⁰は表 1.6 に示すように、その Cr 濃度はス テンレス鋼に分類される。前報のように PNC-FMSの溶解速度(連続溶解槽内滞留時間中の平均 値)は、9Cr-ODS 鋼の5分の1程度である⁷⁰。ラッピングワイヤの溶解量への寄与は、9Cr-ODS 鋼被覆管の50分の1程度であり、9Cr-ODS 鋼被覆管の溶解量の評価過程における保守性の中に 隠れるレベルであるため、今回の評価では対象にしないことにした。

2. 硝酸溶解特性に及ぼす炉内使用の影響

2.1 外面腐食挙動:金属元素の質量移行現象(脱Cr)

2.1.1 ナトリウムループ試験

大洗研究開発センターにおいては、ODS 鋼に対するナトリウムループ試験経験がある¹¹⁾。ODS 鋼 2 鋼種(63DSA と MA957)のナトリウムループ試験(流速 4.5~5.1m/s)の結果、質量移行 現象は 600℃付近から認められ、650℃超になると顕著になる。表 2.1 に材料仕様を示す。質量移 行現象にはしきい温度が存在し、その温度は 600~650℃の範囲にある。また、Ni が Cr と Fe を 置換しながら拡散浸入して脱 Cr 層と Ni 浸入層が生じており、試験温度が 700℃の最表面濃度に は鋼種依存性が識別できず、Cr 濃度は 7mass%程度、Ni 濃度は 13mass%程度に収束する傾向 がある。つまり、最表面の各元素の濃度はナトリウムループにおける活量に対応する固有値に収 束(平衡)していることを示す。さらには、Ni の深さ方向の元素分布をもとに Ni の拡散係数((2-1) 式)が評価されている。

$$D = D_0 \exp\left(-\frac{146000}{RT}\right) \tag{2-1}$$

D: 拡散係数(m²/s)

 $D_0:$ 定数 (m²/s) (9.37×10⁻⁹)

- R: 気体定数(J mol⁻¹ K⁻¹)(=8.31451J mol⁻¹ K⁻¹)
- T: 温度(K)

評価された Ni の拡散係数は、表 2.2 のように、格子拡散に対する文献値¹²⁾¹³⁾に対して極めて 小さく、活性化エネルギーQも小さい。その原因は、温度レベルが比較的低いため、粒内拡散で はなく、粒界拡散や転位芯拡散のような短回路拡散が支配的になっているためと考えられる。

2.1.2 BOR-60 照射試験(燃料ピン照射)

ロシアの高速実験炉 BOR-60 において、9Cr-ODS 鋼被覆管燃料ピン照射試験が行われた¹⁴。 使用された 2 ロット (Mm13・Mm14)の材料仕様を表 2.3 に示す。

9Cr-ODS 鋼被覆管を使用した燃料ピンは、第1期(集合体2体・燃料ピン14本)・第2期(集 合体1体:燃料ピン5本)・第3期(集合体1体:燃料ピン5本)の計4体の集合体において合 計24本が照射された。特に、外面腐食に関する試験データを取得できたのは、第2期と第3期 において照射された計5本(Mm14)であった。照射条件は、第2期は最高燃焼度10.4at%(約 100GWd/MTM)、最大中性子照射量44dpa、第3期は最高燃焼度11.8at%(約110GWd/MTM)、 最大中性子照射量50dpaであった。

照射後試験の結果、質量移行現象が観察されている。図 2.1~図 2.4 に表面付近の元素分布を 示す。また、図 2.5 に光学顕微鏡組織観察結果を示す。

BOR-60 照射試験における質量移行現象(冷却材流速約1.9m/s)は、FeがCrを置換しながら 拡散浸入し、脱Cr層が生じている。最表面濃度をみると、Cr濃度は4~6mass%程度、Ni濃度 は0.1mass%程度に収束していることがわかる。ナトリウムループ試験と同様に、最表面の各元 素の濃度はBOR-60の冷却系ナトリウムにおける活量に対応する固有値に収束(平衡)している ことを示す。プラント毎に固有値が異なるのは、冷却材中の濃度(活量)、ループ構成材料と温度 分布(溶出と侵入の挙動)等の違いに起因する。

2.2 外面腐食挙動:非金属元素の質量移行現象(脱炭・浸炭)

2.2.1 ナトリウムループ試験

前出の ODS 鋼を対象にしたナトリウムループ試験では浸漬後の C の分析が行われておらず、 浸炭あるいは脱炭の発生状況は不明である。一方、原子炉構造材料の 9Cr-1Mo 鋼、9Cr-2Mo 鋼、 2.25Cr-1Mo 鋼等のフェライト系鋼に対するナトリウムループ試験(流速 1m/s)によると、550 ~600℃の間に境界があり、高温側では脱炭、低温側では浸炭が観察されている¹⁵⁾。

2.2.2 BOR-60 照射試験(燃料ピン照射)

図 2.1~図 2.3 の 9Cr-ODS 鋼における Cr 濃度の肉厚方向の線分析プロファイルをみると、Cr 濃度が 8mass%未満の脱 Cr 層には炭化物に対応する Cr 濃度の局所ピークがないことがわかる。 EPMA によって脱 Cr 層母相部分の点分析を行ったところ、C 濃度は検出限界以下であり、脱 Cr と同時に脱炭が生じていると考えられる。

9Cr-ODS 鋼中の炭化物で実効 Cr 濃度の観点で問題になるのは、Cr・Fe・W を主成分とする「M23C6」である。脱 Cr 層が生成し始めると、炭化物中の Cr は Cr 濃度の勾配を解消するために母相に再固溶する傾向が高まり、遊離するCはフェライト相への溶解度が低くかつ高温のため、容易に冷却材ナトリウムへ移行(脱炭)すると考えられる。つまり、脱 Cr 層が発生する領域では、脱炭も同時に進行する可能性が高いと考えられる。

2.3 内面腐食举動

2.3.1 「常陽」等における照射試験:ペレット燃料

図 2.6 と図 2.7 は、高速実験炉「常陽」・仏国の高速増殖原型炉「Phenix」・米国の試験研究用 高速炉「FFTF」において観察された内面腐食深さの照射温度依存性を整理した結果である。内 面腐食量は被覆管温度に敏感であり、発生に 500℃付近にしきい温度が存在することがわかる¹⁶⁾。

また、過去の燃料ピン照射試験の経験によると、内面腐食は炉心燃料領域における発生が支配 的であり、ブランケット燃料領域における発生は炉心燃料領域直上の上部ブランケット領域下端 付近に限定されることもわかっている。

さらに、「Phenix」において燃料のO/M比をパラメータにした高燃焼度燃料ピンの照射試験が 行われており、低O/M比の方が内面腐食量は小さく、酸素ポテンシャルが低くなると内面腐食が 抑制される傾向が現れることがわかっている¹⁷⁾。

2.3.2 BOR-60照射試験:バイパック燃料

BOR-60 における ODS 鋼被覆管の燃料ピン照射試験には、バイパック燃料が組み合わされて いる¹⁸⁾。バイパック燃料は、燃料の O/M 比を低減して内面腐食を抑制するため、燃料ピン製作 時に酸化物燃料顆粒に金属ウランを添加しているのが特徴である¹⁸⁾。

照射後の光学顕微鏡観察による残留肉厚測定結果によると、製造時肉厚と残留肉厚の差が全て 内面腐食(全面腐食層)と仮定してもその厚さは20µm 未満であった¹⁴⁾。BOR-60における ODS 鋼被覆管の燃料ピン照射試験の結果、燃料 O/M 比を低減することにより、内面腐食の発生を効果 的に抑制できることもわかった。

2.3.3 内面腐食量の限界値

酸化物燃料では、核分裂生成物中には白金族元素や希ガス元素も含まれるため、燃焼とともに 酸素が余剰になり、酸素ポテンシャルは単調に上昇する。余剰になった酸素は、核分裂生成物中 のジルコニウムや希土類金属の酸化、O/M 比の増大、モリブデン基複合酸化物の生成、被覆管の 酸化等に消費される。

燃焼による O/M 比の変化に関する評価として、仏国の高速増殖実証炉「Super Phenix」燃料において被覆管の酸化が無い場合、初期 O/M 比 1.97 は燃焼度が約 9at%(約 80GWd/MTM)になると 2.00 に達するとの解析例がある¹⁹。

実証炉の炉心設計研究によると、最高燃焼度は 250GWd/MTM(約 27at%)、炉心燃料領域の 取出平均燃焼度は約 150GWd/MTM(約 16at%)である。「Super Phenix」燃料の評価例と同様、 燃焼度 9at%あたりの O/M 比の増分を 0.03 と想定すると、初期 O/M 比 1.97 の場合、炉心燃料 の O/M 比は燃焼度約 16at%になると 2.02 強に上昇する計算になる。保守側の想定として、O/M 比 2.00 に対する過剰量 0.03、モル比率で 1.5%の酸素が被覆管の酸化に消費されると仮定する。 また、軸ブランケット燃料は、初期 O/M 比は 2.00 に近いが燃焼度が低く、被覆管の酸化に消費 可能な酸素量は O/M 比変化にして 0.02、モル比率にして 1%程度までと考えられる。さらには、 炉心燃料とブランケット燃料のカラム長を考慮し、余剰の酸素が全て被覆管の酸化に消費される ことを仮定しても、表 2.4 のように、酸化される被覆管重量は全重量の約 0.7%である。

実証炉以降の大型炉には、初期 O/M 比 1.97 以下(目標 1.95)の低 O/M 比の炉心燃料ペレットの使用が想定されている。したがって、被覆管の酸化に消費可能な燃料ペレット内の酸素量はさらに少なく、内面腐食量は被覆管全重量に対して 0.7%未満に留まると考えられる。

2.4 照射効果

熱時効効果、照射誘起の偏析や析出の促進等による硝酸溶解特性の変化を分離評価することは 困難である。そこで、被覆管の状態で照射された試料をそのまま硝酸水溶液に浸漬し、照射効果 を観察することにした。具体的には、「常陽」において材料照射された試料(ロット名:Mm14) を対象にした。照射条件は、温度約 490°C、中性子照射量約 20dpa、実効照射時間約 4660hr で あった。浸漬溶解試験は、大洗研究開発センター照射燃料試験施設のホットセル内で行った。表 2.5 に試験仕様をまとめて示す。試験溶液は、8mol/Lの純硝酸水溶液 1 種類とした。溶液温度は 95°Cとし、4hr、8hr、12hr の浸漬後に取り出し、洗浄・乾燥・重量測定を行った。溶解速度 J は重量減少量 M・初期表面積 S_0 ・密度 ρ ・浸漬時間 tを用いて(2·2)式のように算出した。

$$J = \frac{d}{dt} \frac{M}{\rho S_0} = \frac{\Delta M}{\rho S_0 t}$$
(2-2)

表 2.6 に溶解速度データを示す。「常陽」材料照射試料の溶解速度は母材(製造まま材)の溶解 速度のばらつきの範囲内にあり、照射効果の影響は識別できないことがわかった(図 2.8)。

3. 溶解工程における溶解量の評価モデルの構築

3.1 評価体系の構築

3.1.1 計算体系

評価にあたっては、表 1.1 の炉心燃料ピン仕様を使用する。また、計算体系を表 3.1 と図 3.1 にまとめて示す。被覆管全長は、上部端栓、スプリング、スリーブ管等も同時に連続溶解槽に投入されるため、70mmの余裕をもたせ、全長を 2700mm(457g)に設定する。燃料ピン 1 本あたりの剪断数は、保守側の評価とするため、270cutにする。なお、プレナム領域には燃料がないため、短尺剪断は不要であり、実際には 165cut 程度が想定されている。さらに、腐食形態の違いから、「下部プレナムと下部ブランケット」1330mm、「炉心燃料」1000mm、「上部ブランケット」200mm、「上部プレナム」100mmの4領域に分ける。

溶解工程における 9Cr-ODS 鋼の溶解量は、硝酸溶解特性への影響の観点から、炉内使用による影響がないとみなす領域(母材相当領域)、外面腐食(特に、質量移行)が発生した領域(外面 腐食起因)、内面腐食が発生した領域(内面腐食起因)の3値の合計とする。

外面腐食が発生する領域は、炉心燃料、上部ブランケット、上部プレナムの3領域とする。炉 心燃料カラムは 10mm 毎にメッシュ分割し、上部ブランケットと上部プレナムは合計して 300mm 長さの1メッシュとする。被覆管外面温度は保守側に被覆管肉厚中心温度とし、さらに メッシュ上端位置の温度をメッシュ全体に適用する。上部ブランケットと上部プレナムの温度は、 保守側に炉心燃料カラム上端温度(最高温度)と同じにする。

内面腐食が発生する領域は、炉心燃料の1領域だけとする。炉心燃料カラムは10mm毎にメッシュ分割する。被覆管内面温度は被覆管肉厚中心温度+15℃とし、メッシュ上端位置の温度をメッシュ全体に適用する。

なお、下部プレナムと下部ブランケットは温度が低いため、外面腐食と内面腐食が生じないた め、計算対象から除外した。

3.1.2 炉内使用条件

表 3.2 は、実証炉における最高被覆管温度燃料ピンの被覆管肉厚中心温度の軸方向分布の典型 例を示す。被覆管肉厚中心温度については、(3-1)式の相関式を作成し、軸方向温度分布の計算に 使用した。

$$T(N) = 407.4 + 191.96(X/L) + 231.04(X/L)^{2} - 190.77(X/L)^{3} - 2.6224(X/L)^{4}$$
(3-1)

T(N): ノミナル温度 (℃)

X/L: 炉心燃料カラムにおける軸方向の相対位置

運転サイクル長さは18箇月、交換パターンは6バッチ、照射時間は合計で9年を想定する。

実用炉の炉心燃料集合体は、炉内装荷位置によって発熱量が異なるため、被覆管肉厚中心最高 温度も集合体毎に異なっている。また、集合体の中にも発熱分布があり、燃料ピン毎に被覆管肉 厚中心最高温度は異なっている。表 3.3 は内側炉心燃料集合体の半分の 148 体、表 3.4 は外側炉 心燃料集合体の半分の 138 体について、集合体毎の被覆管肉厚中心最高温度をリストアップして いる。表 3.5 は内側炉心燃料集合体と外側炉心燃料集合体に対し、集合体内の被覆管肉厚中心最 高温度に着目し、10℃刻みで該当する集合体数を計算した結果である。被覆管肉厚中心温度が、 脱 Cr 層形成しきい温度を超える可能性がある 620℃以上になる炉心燃料集合体は、内側炉心で 約 9%、外側炉心で約 19%と比較的少ない。

3.2 溶解量に及ぼす炉内使用の影響のモデリング:外面腐食量

3.2.1 モデリング:脱Cr層

質量移行現象のうちの脱 Cr 層生成に関する拡散計算は、一次元の無限平板を想定する。なお、 実際の被覆管は円筒管かつ有限肉厚であり、内面からの反射効果が加わるため、無限平板は保守 側の想定である。

Crの拡散係数は相互拡散現象と短回路拡散現象を考慮し、ナトリウムループ試験で定量された Niの拡散係数(D)の(2-1)式を代用する。また、拡散係数のCr濃度依存性は考慮しない。

表面濃度 C_s、初期濃度 C₀、任意位置の濃度 C_x、任意位置の表面からの距離 x、時間 t、拡散係 数 D の間には、(3-2)式が成立する(図 3.2)。

$$\frac{C_x - C_0}{C_s - C_0} = 1 - erf \left\{ \frac{x}{2\sqrt{Dt}} \right\}$$
(3-2)

C_s: 表面濃度 (mass%)

C_0: 初期濃度 (mass%)

C_x: 任意濃度 (mass%)

erf(z): 誤差関数

x: 任意濃度の表面からの距離 (m)

D: 拡散係数 (m²/s)

t: 時間 (s)

これを x について解くと、式(3-3)が得られる。

$$x(C_{s}mass\%) = erf^{-1}\left(1 - \frac{C_{x} - C_{0}}{C_{s} - C_{0}}\right) \times 2\sqrt{Dt}$$
(3-3)

例えば、初期濃度 9mass%、時間 9 年、拡散係数(2-1)式に対し、表面濃度 7mass%・4mass%・ 0mass%を設定し、Cr 濃度が 8mass%になる表面からの距離 x (m) は、それぞれ(3-4)式・(3-5) 式・(3-6)式から計算できる。拡散係数は温度の関数であるため、メッシュ毎の温度を入力するだ けで計算できる。表 3.6 に右辺下線部の係数の一覧表を示す。また、表 3.7 に温度と時間をパラ メータに計算した結果を示す。図 3.3 に模式計算結果を示す。

$$x(7mass\%) = \underline{0.47669} \times 2 \times \sqrt{D} \times \sqrt{9} \times 365.24219 \times 24 \times 3600$$
(3-4)

$$x(4mass\%) = \underline{0.90546} \times 2 \times \sqrt{D} \times \sqrt{9} \times 365.24219 \times 24 \times 3600}$$
(3-5)

$$x(0mass\%) = \underline{1.12560} \times 2 \times \sqrt{D} \times \sqrt{9 \times 365.24219 \times 24 \times 3600}$$
(3-6)

3.2.2 モデリング: 脱炭・浸炭

BOR-60 照射試験では、脱 Cr 層が生じた領域は脱炭(全量)が進む傾向が観察されたが、実 証炉以降の大型炉にも適用可能な知見かどうかは現時点では判断できない。また、被覆管におけ る浸炭現象については、観察例がない。そのため、脱炭と浸炭のモデリングは、現時点では困難 である。

3.2.3 外面腐食層からの溶解量の計算方法

3.2.3.1 外面腐食を模擬した試験片による硝酸溶解特性:供試材

脱 Cr 層・脱炭・浸炭の3つの質量移行現象について、硝酸溶解特性を把握するためにモデル 合金を溶製した。モデル合金は、Fe-Cr-2Wの3元系、Fe-4Cr-2W-Niの4元系、Fe-Cr-2W-Cの 4元系の3種類とした。いずれもW濃度は2mass%に固定した。表3.8に基本仕様、表3.9と表 3.10に化学分析結果をまとめて示す。

Fe-Cr-2W 3 元系は Cr 濃度を 2~12mass%の範囲でパラメータとし、BOR-60 照射試験におけ る脱 Cr と脱炭(全量)の同時進行を模擬した。Cr 濃度の影響を直接的に把握するため、C と Ti は添加しなかった。

Fe-4Cr-2W-Ni 4 元系は Ni 濃度を 4~12mass%の範囲でパラメータとし、ナトリウムループ試験における Ni 浸入を模擬した。Cr 濃度 4mass%は BOR-60 照射試験観察値、Ni 濃度 12mass% はナトリウムループ試験をもとに設定した。また、この系は脱炭(全量)と脱 Cr の同時進行を 模擬している。

Fe-Cr-2W-C 4 元系は脱炭と浸炭が硝酸溶解特性に及ぼす影響を把握するため、C を 0、0.07、0.13、0.5、1mass%の5 レベルとし、Cr を 6~9mass%の範囲で変化させた。

モデル合金は、約 200g のボタンインゴットをアーク溶解し、厚さ約 4mm×幅約 60mm×長さ 約 125mm に熱間圧延した後、1050℃×1hr×急冷(窒素ガス吹付)の焼ならし熱処理を施した。 また、4 元系合金はマルテンサイト系であるため、780℃×1hr×水冷の焼き戻し処理も施した。浸 漬溶解試験の前に#400 以上の研磨紙による研磨仕上げを施し、表面状態を調整した。

3.2.3.2 外面腐食を模擬した試験片による硝酸溶解特性:硝酸溶解試験方法

供試材(試料)と水溶液の組成の組み合わせを表 3.11 に示す。

溶解特性に及ぼす硝酸濃度の影響等を検討するため、純硝酸水溶液濃度は、1、3.5、5、8、10、 12mol/Lの6種類とした。模擬溶解液は、連続溶解槽における溶液条件を考慮した。連続溶解槽 は全部で8ステージあり、模擬溶解液は第1~第3ステージを模擬した3種類を調整した。なお、 第4~第8ステージは、12mol/Lの純硝酸水溶液に相当する。液温と浸漬時間は連続溶解槽の運 転条件を参考とし、95℃と4時間の組み合わせを標準とした。

試料はガラスフラスコ中央に配置し、フラスコ底部を常時攪拌した状態で浸漬した。溶液の温度はフラスコに挿入した温度計を監視し、所定温度の2℃以内に維持した。純硝酸水溶液と模擬溶解液への浸漬試験における比液量は、試料の溶解による酸濃度変化の影響を抑制するために20cm³/cm²以上にした。試料のn数は3とした。

浸漬による溶解速度(mm/y)は浸漬前後の重量変化、試料表面積、密度等をもとに式(2-2)を 用いて算出した。

3.2.3.3 外面腐食を模擬した試験片による硝酸溶解特性:硝酸溶解試験結果

Fe-Cr-2W 3 元系については、前報の作成段階では取得されていなかった Fe-7Cr-2W の溶解速 度データを表 3.12 に示す。Fe-4Cr-2W-Ni 4 元系と Fe-Cr-2W-C 4 元系の溶解速度データを表 3.13 ~表 3.21 に示す。また、表 3.22~表 3.24 に溶解速度データを一覧表に整理して示す。

Fe-Cr-2W3元系の溶解速度データから、脱Cr層と脱炭(全量)が同時に生じた場合、最表面 Cr濃度が8mass%以上あれば、連続溶解槽における活性溶解は回避できそうである。

Fe-4Cr-2W-Ni4 元系の溶解速度をみると、脱 Cr 現象によって Cr 濃度が 4mass%に低下して も、Ni 浸入(\geq 4mass%)が生じていれば、模擬溶解液における活性溶解は回避できる可能性が ある。12mol/L の純硝酸水溶液への溶解速度も Ni 浸入によって大きくなるが、100mm/y を超え

るような活性溶解は回避できそうである。つまり、ナトリウムループ試験のように Ni 浸入が生 じると、脱 Cr の影響を緩和する効果が期待できる。表 3.25 と図 3.4 に整理したように、模擬溶 解液での腐食試験の場合、Ni の添加によって腐食電位がわずかではあるが高電位側にシフトして おり、耐食性の改善を示す。

Fe-Cr-2W-C 4 元系の溶解速度をみると、C 濃度が 0.36mass%以上では、8mol/L の純硝酸水 溶液においては活性溶解が生じており、浸炭が生じた領域は連続溶解槽に投入した直後の第1ス テージの中で活性溶解すると予想できる(表 3.24)。また、C 濃度が 0.13mass%の溶解速度デー タをみると、仮に脱炭が生じずに脱 Cr 現象だけが生じた場合、浸炭が生じた場合と同様に第1 ステージの中で活性溶解すると予想される。

3.2.3.4 外面腐食層からの溶解量の計算方法

Fe-Cr-2W3 元系の硝酸溶解試験によると、脱炭(全量)を想定した場合、Cr 濃度が 8mass% 未満になると、1mol/L では活性溶解を生じる結果が得られた(表 3.22)。脱 Cr 層と脱炭(全量) が生じた場合は、表面の Cr 濃度が 7mass%の場合は活性溶解が生じていることから、保守側に 評価するためには、8mass%未満の領域が連続溶解槽に浸漬した直後に活性溶解すると想定する のが妥当である。

3.3 溶解量に及ぼす炉内使用の影響のモデリング:内面腐食量

3.3.1 内面腐食層厚さの相関式

内面腐食層の厚さは、2.3節で述べたように、温度と燃焼度に強く依存する現象である。そのため、溶解量を評価するためには、内面腐食層の厚さに関する相関式が必要である。

ODS鋼の材料強度基準暫定案における内面腐食式は、内面腐食深さを局所燃焼度と温度の関数 として定式化している⁴。なお、9Cr-ODS鋼と12Cr-ODS鋼の内面腐食式は共通である。炉外に おける模擬試験の結果²⁰、ODS鋼開発途中材(1DS、1DK)とPNC-FMSとの腐食量は変わらな いことがわかっており、ODS鋼の内面腐食式にはPNC-FMSの内面腐食式が流用されている。さ らに、PNC-FMSの内面腐食式はPNC316と同一であるため、ODS鋼とPNC316に対する内面腐 食式は結果的に共通になっている。

内面腐食形態としては全面腐食と粒界腐食があることが知られている。材料強度基準の中の内 面腐食式は、被覆管の応力評価に適用することが意図されているため、粒界腐食を含んだ深さが 計算される。しかし、実際に溶解を想定する必要があるのは全面腐食層であり、材料強度基準の 内面腐食式による計算値は過度に保守側である。

今回の評価のように高燃焼度までの内面腐食層の厚さを予測する場合、ODS 鋼の全面腐食式は 未作成であるため、PNC316 の高燃焼度(≧62116MWd/MTM)の全面腐食式である(3-6)式を代 用し、過度の保守性を回避する。

$$C_{FCCI}(U) = f \left[1.207 \times 10^{-3} (62116 - 11486) - \frac{1.207 \times 10^{-3}}{Z} \left\{ 1 - \exp\left(-\frac{Z}{62116 - 11486}\right) \right\} \right]$$
(3-6)

C_{FCCI}(U): 内面腐食量(全面腐食)(µm)

$$Z = 1.155 \times 10^8 \exp\left\{-\frac{47204}{1.987(T_i + 273.15)}\right\}$$

$$f = (8.03 \times 10^{-3} \rho - 7.11 \times 10^{-4} G)(1.67 - 1.19 \times 10^{-2} GS + 1.17 \times 10^{1} C)$$

ρ: 燃料ペレット相対密度(%TD)

G: 燃料ペレット被覆管初期ギャップ幅(直径)(µm)

GS: 被覆管平均結晶粒径(µm)(典型例:22µm)

C: 被覆管不純物C濃度(mass%)(典型例:0.06mass%)

炉心燃料の取出平均燃焼度 150GWd/MTM の場合、炉心燃料領域の燃焼度は最低のものでも 70GWd/MTM を超える。内面腐食深さ計算式に入力する燃料ペレット仕様は PNC316 の値を流 用し、典型例である 95%TD、ギャップ幅は 240μm、結晶粒径は 22μm、C 量は 0.06wt%を入力 する。

温度範囲を 400~700℃にした場合の内面腐食層 (全面腐食)の発生量を計算した結果を表 3.26 に示す。内面腐食層厚さは温度上昇とともに増加し、76µm 程度で飽和する。

3.3.2 内面腐食層からの溶解量の計算方法

内面腐食現象に起因する溶解量の増大を評価する場合は、全面腐食層が全量溶解して溶解液に 移行すると想定するのが保守側と考えられる。具体的には、メッシュ毎に計算された内面腐食深 さを重量(密度 7.83g/cm³)に換算する。

3.4 溶解量に及ぼす炉内使用の影響のモデリング:照射効果

照射温度約 490℃の「常陽」材料照射試験試料の硝酸溶解試験(2.4 節)を行ったところ、溶 解速度に有意な差は識別できなかった。そこで、母材の硝酸溶解に対する照射効果の影響につい ては、影響がないと仮定し、考慮しないことにする。

4. 溶解工程における溶解量の評価結果

4.1 評価パラメータ

4.1.1 個別プロセスとガラス固化体発生量への影響への着目

溶解量は、燃料ピン構成成分の高濃度化による個別プロセスへの影響の観点から最大値を示す 炉心燃料集合体、高レベル放射性廃棄物(ガラス固化体)の発生量への観点から全ての炉心燃料 集合体の積算値の2つの観点から評価する。

外面腐食と内面腐食は、温度に強く依存する現象である。そこで、個別プロセス(特に、溶解 工程)への影響の評価には、内外面腐食量が最も大きくなる最高温度炉心燃料集合体単体の溶解 量を対象とする。被覆管肉厚中心の最高温度をパラメータとし、620~700℃の範囲で変化させる。 なお、最高温度炉心燃料集合体中の被覆管肉厚中心温度の標準値は、表 3.1 の 640℃を想定する。

全ての炉心燃料集合体からの積算値は、内側炉心燃料集合体 148 体(表 3.2) と外側炉心燃料 集合体 138 体(表 3.3) における被覆管肉厚中心最高温度に対してそれぞれ計算し、286 体の積 算値を使用する。

4.1.2 母材相当領域の溶解量の評価に関するパラメータ

母材相当領域については、影響する因子がないため、パラメータは設定せず溶解速度を10mm/yとする。

4.1.3 炉内使用の影響による溶解量の評価に関するパラメータ:外面腐食挙動

質量移行は、冷却系の流動条件に加え、Fe、Cr、Ni、C等の不純物の活量に依存するため、その挙動は厳密にはプラント毎に異なる。「常陽」、BOR-60、ナトリウムループは原子炉容器および冷却系配管ともにオーステナイト系ステンレス鋼を主要な構成材料とする。一方で、実証炉以降の大型炉では原子炉容器にはオーステナイト系ステンレス鋼(SUS316系)を、冷却系配管には高Cr鋼(9Cr-1Mo系)を使用することが想定されている。また、質量移行の発生のしきい温度(例、脱Cr層、脱炭・浸炭)に関する試験データは十分とは言えない。

そこで、今回の評価(表 4.1)では、BOR-60とナトリウムループの結果から、脱 Cr 層が生成 する傾向は実証炉でも共通と想定する。ただし、実証炉における脱 Cr 層生成の不確かさを考慮 し、発生しきい温度を 590℃~650℃の範囲でパラメータとする。

最表面 Cr 濃度は、脱炭(全量)が生じた場合に活性溶解を回避可能な 8mass% (ケース A)、 ナトリウムループ試験相当の 7mass% (ケース B)、BOR-60 照射試験相当の 4mass% (ケース C)を想定する。ケース A~ケース C は、脱炭(全量)の同時進行を想定する。

ケースA:最表面Cr濃度=8mass%

ケース B: 最表面 Cr 濃度=7mass% (ナトリウムループ試験相当)

ケース C: 最表面 Cr 濃度=4mass% (BOR-60 照射試験相当)

一方、過去の照射試験では脱炭・浸炭に関する試験データが非常に少ないため、脱 Cr 層に有意な C が残存する場合を想定する。現時点では脱炭浸炭現象の発生条件が不明確であるため、ケースDとして最も保守側に表面 Cr 濃度がゼロになるケースを設定する。

ケースD:最表面Cr濃度=0mass%(脱炭・浸炭挙動の不確かさを考慮)

また、最高温度炉心燃料集合体の評価は、被覆管肉厚中心最高温度を 620℃~700℃の範囲で 5 段階に設定する。

4.1.4 炉内使用の影響による溶解量の評価に関するパラメータ:内面腐食量挙動

内面腐食現象には実際にはしきい温度が存在する。また、内面腐食量(酸化量)は、燃料ピン 内の酸素量に制限される。そこで、内面腐食層の生成量については、しきい温度をパラメータと し、下記の4ケースを設定する(表 3.26)。なお、最高温度炉心燃料集合体の評価にあたっては、 被覆管肉厚中心最高温度を 620℃~700℃の範囲で5 段階に設定する。

ケース E:供給酸素量限界(2.3節で計算済)

ケース F: 全面腐食式計算値(しきい温度 550℃)

ケースG:全面腐食式計算値(しきい温度 500℃)

ケースH:全面腐食式計算値(しきい温度なし)

4.2 評価計算結果

4.2.1 最高温度炉心燃料集合体:個別プロセスへの影響

今回の評価では、表 3.5 に示すように被覆管肉厚中心最高温度が最も高くなる集合体を最高温 度炉心燃料集合体とし、今回は 640℃を代表例に計算を行った。表 4.2 に計算結果をまとめて示 す。

母相相当領域の連続溶解槽における溶解速度は、浸漬時間全体の平均で10mm/yであり、溶解 量は被覆管全重量比率(被覆管重量:457g/本)で1.4%になる。

外面腐食層からの溶解量の最小値は、ケース A のようにゼロである。最大値は、ケース D と 最も保守側のしきい温度 590℃の組合せ(D·1)から、被覆管全重量比率で最大 7.4%である。

内面腐食層からの溶解量は、2.3 節で詳述したように、実際には被覆管の酸化に供給可能な酸素の量が律速し、被覆管全重量比率で0.7%未満と予想される。

最高温度炉心燃料集合体に対する溶解量は、母相相当領域(1.4%)、外面腐食層(0~7.4%)、 内面腐食層(0.7%)を合算した値になり、被覆管全重量比率で2.1~9.5%となる。

個別プロセスの成立性への影響を評価する場合、想定すべき溶解量は 9.5%を保守側にまるめた 10%を設定するのが妥当と考えられる。

4.2.2 全ての炉心燃料集合体からの積算値:高レベル放射性廃棄物(ガラス固化体)への影響 表 4.3 に計算結果をまとめて示す。

母相相当領域の連続溶解槽における溶解速度は、最高温度炉心燃料集合体と同じであり、溶解 量は被覆管全重量比率(被覆管重量:457g/本)で1.4%になる。

外面腐食層については、最高温度炉心燃料集合体と同じく、最大値はケース D としきい温度 590℃の組合せから 2.4%になる。内面腐食層からの溶解量は、最高温度炉心燃料集合体と同じ (0.7%)である。

よって、全ての炉心燃料集合体からの溶解量を積算すると、母相相当領域(1.4%)、外面腐食 層(0~2.4%)、内面腐食(0.7%)を合算した値になり、被覆管全重量比率で2.1~4.5%となる。

ガラス固化体の発生量への影響を評価する場合、想定すべき溶解量は 4.5%を保守側にまるめた 5%を設定するのが妥当と考えられる。

4.3 評価精度の向上方策の検討

4.3.1 評価値の保守性

今回の溶解工程における溶解量の評価は、再処理システムの設備機器、運転条件等の設計評価 への適用に加え、実証炉以降の大型炉における炉内使用にともなう外面腐食挙動、照射効果等に よる硝酸溶解特性への影響に不確かさがあるため、計算過程に適宜保守性を設けることで、上限 値を評価(溶解量を大きめに評価)する方針とした。そこで、今後の試験データの拡充に期待し、 表 4.4 に計算過程において設定した保守性を整理しておいた。外面腐食現象(質量移行現象)は 拡散現象であるため、温度の設定に保守性を与えた例が多い。

4.3.2 評価精度の向上方策の検討(表 4.5)

4.3.2.1 外面腐食举動

ODS 鋼に対する流動ナトリウム中の試験データは、ナトリウムループ試験と BOR-60 照射試験に限られており、外面腐食挙動の把握は十分ではない。具体的な方策は下記のとおり。

冷却系化学環境の予測評価手法の開発

質量移行現象は、冷却材の流動条件に加え、Ni、Cr、Fe、C等の活量(温度と濃度)に依存す るため、実際にはプラント固有の挙動を示す。そこで、実証炉以降の大型炉における一次冷却系 ナトリウムの化学環境(金属元素と非金属元素の活量)の評価手法を開発し、質量移行現象を予 測評価する必要がある。

② 質量移行現象(脱Cr、脱炭浸炭等)に対する流速効果の解明

脱 Cr、Ni 浸入等の金属元素の質量移行現象の発生には流速効果が必要であり、しきい温度も存在し、流動ナトリウムとの接触試験が必要である。脱炭・浸炭の挙動も同様である。 ③ 拡散係数の取得と状態図の作成

燃料集合体は使用期間が9年と長いため、比較的短時間の試験データをもとに長時間側に外挿 する必要がある。質量移行現象による表面付近の組織変化(濃度、相)を予測するためには、Fe、 Cr、Ni等の相互拡散係数に加え、相変化も予測する必要がある。特に、Ni浸入が顕著になると フェライト相からオーステナイト相に変化し、拡散速度に顕著に影響する。

④ ナトリウムループ試験設備の整備

①~③の実施には、実証炉以降の大型炉を模したナトリウムループ試験の整備が必要である。 照射試験は所要期間が長いため、炉外試験が不可欠と考えられる。

4.3.2.2 内面腐食举動

⑤ 高燃焼度燃料ピン照射試験

内面腐食現象は、炉外における模擬試験が最も困難な現象として知られている。照射試験デー タが少なく、高燃焼度燃料ピンにおける内面腐食挙動の把握は現状十分ではない。特に、実証炉 以降の大型炉に相当する低 O/M 比の炉心燃料ペレットとの組み合わせによる照射試験データの 拡充が不可欠である。また、燃焼による O/M 比の増大と被覆管の酸化反応に消費可能な酸素量に ついては、化学熱力学的な検討を深めることによって精度が上がると期待できる。

4.3.2.3 照射効果

⑥ 高燃焼度燃料ピン/高照射量材料照射試験

高速中性子束と流動ナトリウムに接触した環境に曝された照射後試料の硝酸溶解特性に関する 試験データを取得し、溶解速度に及ぼす影響を把握する必要がある。

5. 溶解量の低減方策に関する検討

5.1 被覆管鋼種の変更: 12Cr-ODS 鋼

12Cr-ODS 鋼 (ロット名: F13・F14) について、表 5.1 に材料仕様、表 5.2 に溶解速度データ を示す。さらに、表 5.3 に溶解速度データを一覧表にして示す。そして、9Cr-ODS 鋼と同様の計 算を行った結果を表 5.4 と表 5.5 に示す。さらに、表 5.6 と表 5.7 に 9Cr-ODS 鋼と 12Cr-ODS 鋼の結果を対比して示す。

母材相当量領域の溶解量は、見込むべき溶解速度が 2mm/y になるため、溶解量は被覆管全重 量比率(被覆管重量:457g/本)で1.4%から0.3%に低下する。

外面腐食層からの溶解量は、最高温度炉心燃料集合体では被覆管全重量比率で0~7.4%から0~4.5%、全ての炉心燃料集合体の積算値では0~2.4%から0~1.5%に低下する。

内面腐食の影響については、内面腐食の評価式が 9Cr-ODS 鋼と 12Cr-ODS 鋼に共通であり、 変更はない(0.7%)。

12Cr-ODS 鋼の炉内使用の影響を含む溶解工程における溶解量は、最高温度炉心燃料集合体で は被覆管全重量比率で 2.1~9.5%から 1.0~5.5%、全ての炉心燃料集合体の積算値では 2.1~ 4.5%から 1.0~2.5%に低下する。12Cr-ODS 鋼に転換すると、個別プロセスの成立性の評価は 10%から 6%、ガラス固化体の発生量の評価は 5%から 3%に低減できる可能性がある。

5.2 被覆管鋼種の変更:高 Ni 鋼

ボイドスエリング特性の改善に有効な Ni 濃度を増量した高 Ni 鋼の高燃焼度被覆管への適用性 の評価も進められている。高 Ni 鋼には表 5.8 のように 2 種類あり、「炭窒化物析出強化型」と「金 属間化合物析出強化型(y'/y")」がある。高速実験炉「常陽」MK-II 炉心や高速増殖原型炉「も んじゅ」の運転用燃料の被覆管には、オーステナイト系ステンレス鋼(SUS316 相当鋼:以下、 PNC316²¹⁾と略す)が採用されている。PNC316 の材料仕様を表 5.8 に示す。また、表 5.9 と表 5.10 に高 Ni 鋼 2 鋼種の各種硝酸水溶液への溶解速度データを示す。

高 Ni 鋼 2 鋼種と PNC316 の母材の溶解速度データを表 5.3 に追記する。高 Ni 鋼 2 鋼種の母 材の溶解速度は、PNC316 より大きく、12Cr-ODS 鋼に近い。

母材相当量領域の溶解量は、12Cr-ODS 鋼と同様に、見込むべき溶解速度が 2mm/y になるため、溶解量は被覆管全重量比率で 0.3%に低下する。なお、12Cr-ODS 鋼(2 ロット)と高 Ni 鋼(各 1 ロット)は硝酸溶解試験データが少なく、両者が同等と判断するのは、現時点では早計である。

また、高 Ni 鋼については、ナトリウムループ試験、照射試験等が乏しく、炉内使用の影響を 検討できる段階にはない。

6. 結論

高速増殖炉サイクル実用化段階の燃料被覆管の基準材料であるマルテンサイト系酸化物分散強 化型フェライト鋼(9Cr-ODS 鋼)の再処理システム適合性評価の一環として、先進湿式法再処理 システムを構成する溶解工程を模擬した硝酸水溶液における溶解量を評価した。

9Cr-ODS 鋼の溶解量の評価にあたっては、過去の高速炉における照射試験、ナトリウムループ 試験等の結果をレビューし、炉内使用にともなう外面腐食挙動と内面腐食挙動による硝酸溶解特 性の変化を考慮した評価体系を新たに構築した。なお、炉内使用による硝酸溶解特性への影響が ないと考えられる領域には、前報における母材の溶解速度を適用した。また、溶解量の評価値に は、再処理システムにおける個別プロセスの設備機器、運転条件等の設計研究に反映するため、 保守性を持たせた。

溶解、清澄、晶析、抽出等の個別プロセスへの影響の観点からは最高温度炉心燃料集合体、高 レベル放射性廃棄物(ガラス固化体)の発生量への影響の観点からは全ての炉心燃料集合体から の積算値を計算した。

溶解量は、母材相当領域、炉内使用による外面腐食層、炉内使用による内面腐食層の3値の和 として計算した。被覆管重量比率(被覆管重量:457g/本)による評価結果を以下に示す。

溶解量を要因別にみると、脱Cr、脱炭浸炭等の流動ナトリウム環境における質量移行現象に起因する外面腐食挙動の影響が大きいことがわかった。

		最高温度炉心燃料集合体単体	全炉心燃料集合体積算值
母材相当領域		1.4%	1.4%
后中住田	外面腐食起因	$0{\sim}7.4\%$	$0{\sim}2.4\%$
炉的使用	内面腐食起因	0.7%	0.7%
合計		2.1~9.5%	$2.1 \sim 4.5\%$

個別プロセス(特に、溶解工程)の成立性の評価には、内外面腐食量の最も大きくなる最高温 度炉心燃料集合体単体の評価値から、被覆管の溶解量は最大10%程度を想定するのが妥当と考え られる。

また、ガラス固化体の発生量の評価には、全ての炉心燃料集合体からの積算値から、被覆管の 溶解量は最大5%程度を想定するのが妥当と考えられる。

今回の評価は、実証炉以降の大型炉における内外面腐食挙動が不詳な状態で実施しており、今 後の試験データの蓄積によって評価値が大きく変化する可能性がある。また、今回の評価では対 象にしなかった工程要因の影響についても考慮していく必要がある。

謝辞

今回の外面腐食挙動と内面腐食挙動に基づく硝酸溶解特性への影響の評価は、過去の大洗研究 開発センターにおける研究開発成果をレビューした結果に基づくものです。福島燃料材料試験部 と技術開発部において過去から現在に至るまで試験作業に従事した皆様にあらためて敬意と謝意 を表します。

BOR-60 照射試験は、大洗研究開発センター福島燃料材料試験部燃料技術管理課の赤坂尚昭課 長、同部材料試験課の前田宏治課長・山下真一郎研究副主幹・矢野康英研究員、次世代原子カシ ステム研究開発部門 FBR 安全評価ユニット炉心安全評価グループ岡野靖サブリーダー、同部門 燃料材料技術開発ユニット燃料設計グループ永沼正行技術副主幹の協力を得ながら進めました。

「常陽」材料照射試験片の硝酸溶解試験の実施にあたっては、大洗研究開発センター福島燃料 材料試験部の燃料試験課と材料試験課の各位に多大な御協力をいただきました。

再処理システム適合性の評価にあたっては、東海研究開発センター核燃料サイクル工学研究所 核サ研福島技術開発特別チームの小山智造サブリーダー、同チーム燃料デブリ取扱技術開発グル ープの鷲谷忠博グループリーダー、次世代原子カシステム研究開発部門再処理技術ユニット再処 理設計グループの紙谷正仁サブリーダーからアドバイスをいただきました。

参考文献

1)「高速増殖炉サイクルの実用化戦略調査研究フェーズ II 技術検討書-(1)原子炉プラントシステム-」、JAEA-Research 2006-042 (2006).

2)「高速増殖炉サイクルの実用化戦略調査研究フェーズ II 技術検討書-(2)燃料サイクルシステム

-J、JAEA-Research 2006-043 (2006).

3) 次世代原子力システム研究開発部門、日本原子力発電株式会社研究開発室、「高速増殖炉サイクル実用化研究開発(FaCT プロジェクト)・フェーズ I 報告書」、

JAEA-Evaluation 2011-003 (2011).

4)皆藤威二、水田俊治、上羽智之、大塚智史、鵜飼重治、「ODS フェライト鋼被覆管の材料強度 基準(暫定案)(研究報告書)」、JNC TN9400 2005-015 (2005).

5) Gwinner, B., Auroy, M., Mas, D., Saint-Jevin, A., Pasquier-Tillette, S.,"Impact of theUse of the Ferritic/Martensitic ODS Steels Cladding on the Fuel Reprocessing PUREX Process", Journal of Nuclear Materials, Vol.428, pp.110-116 (2012).

6) Sano, Y., Katsurai, K., Washiya, T., Koizumi, T., Matsumoto, S., "Development of Simulation Code for FBR Spent Fuel Dissolution with Rotary Drum Type Continuous Dissolver", Proceedings of 19th International Conference on Nuclear Engineering (ICONE-19), Chiba, Japan, 2011, ICONE19-43317 in CD-ROM.

7) 井上賢紀、池内宏知、竹内正行、小山真一、須藤光雄、「酸化物分散強化型フェライト鋼の硝酸溶解特性評価 - マルテンサイト系 9Cr-ODS 鋼の評価 - 」、JAEA-Research 2011-057 (2012).

8) Yoshida, E., Furukawa, T.,"Corrosion Issues in Sodium-Cooled Fast Reactor (SFR) Systems", Nuclear Corrosion Science and Engineering, Woodhead Publishing, pp.773-806 (2012).

9) Borgstedt, H.U.,"Influence of Liquid Sodium on Mechanical Properties of Steels, Refractory Alloys and Ceramics", Materials Issues for Generation IV Systems, Springer, pp.461-480 (2008).

10) 鹿倉栄、野村茂雄、鵜飼重治、瀬下一郎、加納洋一、桑島幸夫、伊藤卓志、蔦木浩一、藤田 利夫、"高速炉炉心材料としての高強度フェライト/マルテンサイト鋼の開発"、日本原子力学会誌、 Vol.33、No.12、pp.1157-1170 (1991).

11) Yoshida, E., Kato, S., "Sodium Compatibility of ODS Steel at Elevated Temperature", Journal of Nuclear Materials, Vo.329-333, pp.1393-1397 (2004).

12) 日本金属学会、「金属データブック」、丸善(1974).

13) 及川洪、「Fe 中の格子拡散」、Fe と鋼、第 60 巻、第 10 号、pp.1489-1497 (1982).

14) Kaito, T., Yano, Y., Ohtsuka, S., Inoue, M., Tanaka, K., Fedoseev, A.E, Povstyanko, A.V., Novoselov, A., "ODS Cladding Fuel Pins Irradiation Tests Using BOR-60 Reactor", Journal of Nuclear Science and Technology, Vol.50, No.4, pp.387-399 (2013).

15) Ito, T., Kato, S, Aoki, M., Yoshida, E., Kobayashi, T., Wada,Y.,"Evaluation of Carburization and Decarburization Behavior of Fe-9Cr-Mo Ferritic Steels in Sodium Environment", Journal of Nuclear Science and Technology ,Vol.29, No.4, pp.367-377 (1992).

16) 井上賢紀、浅賀健男、「高速炉用ウランープルトニウム混合酸化物燃料ピンの伝熱特性に及ぼ す燃焼効果の評価-燃料組織変化に及ぼす照射条件の影響とギャップリオープン現象-」、JNC TN9400 2001-081 (2001). 17) Katsuragawa, M., Shikakura, S., Nomura, S., Asaga, T., Ukai, S., Kaneko, H.,

"Achievement of LMFBR Fuel Technology", 1990 ANS WINTER MEETING, November 11-15, 1990, Washington, D.C. (1990).

18) 皆藤威二、鵜飼重治、関正之、Alexander A. MAYORSHIN、Oleg V. SHISHALOV、「露 BOR-60 での ODS フェライト鋼燃料ピンの限界照射試験(1) –契約締結から照射試験開始まで -」、JNC-TY9400 2003-032 (2004).

19) Kleykamp, H.,"The Chemical State of the Fission Products in Oxide Fuels", Journal of Nuclear Materials, Vol.131, pp.221-246 (1985).

20) 水田俊治、上平明弘、鵜飼重治、「ODS フェライト鋼被覆管の設計評価用関係式の検討」、 JNC TN9400 2000-048 (2000).

21) 立石嘉徳、柚原俊一、柴原格、伊藤正彦、野村茂雄、佐藤義則、吉田英一、鹿倉栄、"高速炉 炉心材料用改良 SUS316 ステンレス鋼の開発"、日本原子力学会誌、Vol.30、No.11、pp.1005-1019 (1988).

大項目	小項目	設定値	
	鋼種	9Cr-ODS 鋼	
	外径	10.4mm	
被覆管	肉厚	0.71mm	
	長さ	2630mm	
	重量	約 445g	
上立四世校	鋼種	9Cr-ODS 鋼	
上可り加生	長さ	25mm	
下如地校	鋼種	9Cr-ODS 鋼	
1. 旦小叫(王	長さ	35mm	
	構造	かしめ	
中間端栓	長さ	30mm	
	中子材質	未定	
	鋼種	PNC-FMS	
ラッピングワイヤ	径	1.03mm	
	巻きつけピッチ	200mm	
	材質	ウラン-プルトニウム混合酸化物	
	化学量論比:O/M比	1.97 以下 目標 1.95	
	カラム長	1000mm	
后心醉彩念しい	外径	8.74mm	
	内径	2.6mm	
MOA	直径ギャップ幅	0.24mm	
	理論密度比	$95\%\mathrm{TD}$	
	スミア密度	82%TD	
	カラム重量	約 570g	
	材質	二酸化ウラン(UO ₂)	
	化学量論比:O/M比	2.00	
曲ブランケット	上部カラム長	200mm	
=====================================	下部カラム長	200mm	
	外径	8.74mm	
002	直径ギャップ幅	0.24mm	
	スミア密度	90%TD	
	カラム重量	約 250g	
プレナム	上部	100mm	
	下部	1100mm	
全長	-	2690mm	

表 1.1 炉心・燃料設計研究における実証炉炉心燃料ピン仕様(典型例)

9Cr-ODS 鋼被覆管の密度: 7.83g/cm³、燃料ペレットの理論密度:約 11g/ cm³ MOX: ウラン-プルトニウム混合酸化物

大項目	小項目	9Cr-ODS 鋼 [ノミナル]	12Cr-ODS 鋼 [ノミナル]
	С	$0.11{\sim}0.15~[0.13]$	$0.01{\sim}0.05~[0.03]$
	Si	≤ 0.20	≤ 0.20
	Mn	≤ 0.20	≦0.20
	Р	≤ 0.02	≤ 0.02
	S	≤ 0.02	≤ 0.02
化学中八	Ni	≦0.20	≦0.20
1七字成分 mass%	Cr	8.6~9.4 [9.0]	11.6~12.4 [12.0]
	W	$1.8 \sim 2.2 \ [2.0]$	$1.8 \sim 2.2$ [2.0]
	Ti	$0.20{\sim}0.35~[0.20]$	0.24~0.28 [0.26]
	Y_2O_3*1	$0.33{\sim}0.37~[0.35]$	0.20~0.26 [0.23]
	Ex.O*2	$0.04{\sim}0.10~[0.07]$	$0.04{\sim}0.09~[0.07]$
	N	≤ 0.07	≤ 0.07
	Ar	≤ 0.007	≤ 0.007
	焼きならし	1050℃×60 分	-
最終熱処理	焼き戻し	780~800℃×60分	-
	再結晶	-	*3 (1050℃×60分)

表 1.2 ODS 鋼の材料仕様

*1 : $Y_2O_3 = 1.27Y$, *2 : Ex.O=Total O-0.27Y

*3: 再結晶熱処理=再結晶粒度等が適切な範囲に収まるように調整(0内は目安値)

表 1.3 連続溶解槽における遊離硝酸濃度と溶存金属濃度の解析例

ステージ	平均遊離硝酸濃度	平均溶存金属濃度	備考
	mol/L	gHM/L	
1	4.2	502	溶解液回収部・剪断片投入口
2	8.8	221	
3	10.6	99	
4	11.4	44	
5	11.7	20	
6	11.9	9	
7	≒12	4	
8	≒ 12	2	硝酸供給ロ・ハル回収部

計算条件

供給硝酸水溶液における遊離硝酸濃度:12mol/L

計算ツール:連続溶解シミュレーションコード

溶解反応式:
$$MO_2 + 4HNO_3 \Rightarrow MO_2(NO_3)_2 + 2NO_2 + 2H_2O_3$$

分野	評価課目	評価因子 (例)	
	母材	母材の溶解速度	
		外面腐食による増大要因	
硝酸溶解特性	炉内使用の影響	内面腐食による増大要因	
		照射効果による増大要因	
	工程要因の影響	切り粉、擦過等による増大要因	
	前処理工程	剪断処理性	
	溶解工程	燃料溶解率	
	清澄工程	沈降物	
個別プロセス成立性	晶析工程	除染係数	
	抽出工程	分配係数	
	MA回収工程	除染係数	
	廃液濃縮工程	除染係数	
高レベル放射性廃棄物発生量	ガラフ田ル工知	CP 濃度	
(ガラス固化体発生量)	ルノヘ回化工住	CP 量、FP 量、An 量	

表 1.4 ODS 鋼の再処理システム適合性に関する評価課目の整理

今回の評価は塗りつぶし部分を対象とした。

表 1.5 炉内使用による被覆管の表面性状の変化

部位	接触対象	腐食現象	化学的変化(例)	硝酸溶解特性への影響
		全面腐食	酸化物の生成と溶解	なし(冷却材に溶解)
			脱 Cr 層	
外面	流動ナトリウム	质具投行	Ni 浸入層	
		貝里的门	Fe 浸入層	たり
			脱炭・浸炭	
内五	燃焼燃料	全面腐食	酸化物層	
トル団	プレナムガス	局部腐食	粒界腐食	

JAEA-Research 2013-009

大項目	小項目	範囲 [ノミナル]
	С	$0.09{\sim}0.15~[0.12]$
	Si	≤ 0.10
	Mn	$0.40{\sim}0.80\;[0.60]$
	Р	≤ 0.030
	S	≤ 0.030
化学成分	Ni	$0.20{\sim}0.60\;[0.40]$
mass%	\mathbf{Cr}	10.0~12.0 [11.0]
	Mo	$0.30{\sim}0.70\;[0.50]$
	W	$1.70 \sim 2.30$ [2.0]
	V	$0.15{\sim}0.25\;[0.20]$
	Nb	$0.020 \!\sim\! 0.080\;[0.05]$
	Ν	$0.030{\sim}0.070~[0.05]$
金相	結晶粒度	ASTM E-112 No.7 以上
	焼きならし	1100℃×10分*1
最終熱処理	焼き戻し	780℃×60 分
	再結晶	-
加工	最終冷間加工	不可

表 1.6 高強度フェライト/マルテンサイト鋼 (PNC-FMS)の材料仕様

*1:最終熱処理:製品の結晶粒度等が仕様値に収まるように調整

	Ar		•					
	Ν		0.053	0.033	-			
化学分析值	Ex.0*2		0.123	0.130				
	$ m Y_2O_3*1$		0.27	0.47	0.46			
	$\mathrm{T_{i}}$		1.00	0.36	0.74			
鋼供試材の	W/Mo		0.31	0.004	2.75	٨٢		
7 ムループ試験における ODS 針	\mathbf{Cr}	$\mathrm{mass}\%$	13.90	20.02	12.80	otal 0-0.2'		
	Ni		0.13	0.09	0.12	Ex.O=T		
	\mathbf{v}			0.0049	0.003		27Y, *2 :	
ナトリウ	d		<0.03	0.011	-	$: Y_2O_3=1.$		
表 2.1	чМ		0.038	0.11	0.020	I *		
	Si				0.044	0.13	0.03	
	С		0.017	0.018	0.20			
	コット		MA957 板	MA956 板	63DSA			

(11年) 七三十日
F
ζ
とう いった アンマン・マ
F
((

	出典		11)	12)	12)	12)	12)	12)	12)	13)
NI • Le VJ加 欧尔致執 百岁!	備考		ナトリウムループ試験結果解析	自己拡散(638~708°C)	空孔拡散(600~680°C)	空孔拡散(810~900°C)	空孔拡散(775~875°C)	自己拡散(1171~1361°C)	空孔拡散(1150~1400°C)	空孔拡散(900~1345°C)
SUO OL.	Q	kJ/mol	146	254	246	241	241	284	314	264
	\mathbf{D}_0	$m^{2/s}$	9.37 E-09	2.75 E-03	1.40E-04	1.34E-04	2.50E-04	$4.90 ext{E-05}$	3.00E-04	1.69 E-05
女 7.7	元素		Ni	Fe	Ni	Ni	\mathbf{Cr}	Fe	Ni	\mathbf{Cr}
	相		α 単相 oray2 相	α (強磁性)	α (強磁性)	a(常磁性)	α	Υ	Υ	Υ

U	Si	Mn	Ρ	\mathbf{v}	Ni	\mathbf{Cr}	M	Τi	Y_2O_3*1	$E_{X.O*2}$	Z	Ar
0.14	<0.005	<0.01	0.001	0.003	0.01	8.83	1.95	0.21	0.343	0.137	0.0095	0.0054
0.13	<0.005	<0.01	0.001	0.003	0.01	8.82	1.94	0.20	0.343	0.137	0.0092	0.0054
0.14	0.007	<0.01	<0.005	0.003	0.01	8.84	1.97	0.20	0.343	0.097	0.013	0.0052
0.14	0.010	<0.01	<0.005	0.003	0.01	8.83	1.97	0.20	0.356	0.094	0.012	0.0050
	被覆管の	外径:6.9	mm、内径	: 6.1mm、	焼きない	らし処理	$: 1050^{\circ}C$	、关 09×0	焼き戻し処	└理:800℃>	<09>	
	$*1:Y_2O$	3=1.27Y,	*2 : Ex.O=	Total 0-0	.27Y、*3	3:過剰團	袋素 = 規 材	洛範囲外				

BOR-60 照射試験に使用した 9Cr-ODS 鋼波覆管の材料仕様(mass%)

表 2.3

Mm13*3

ロット

Mm14

JAEA-Research 2013-009

21				
	単位	炉心燃料	ブランケット燃料	合計
O/M 比	-	1.97	2.00	-
カラム長	mm	1000	400	-
カラム重量	g	571	251	-
カラム・ウラン換算	mol	2.12	0.93	-
カラム・酸素	mol	4.18	1.86	-
\downarrow		\downarrow	\downarrow	
余剰酸素	O/M 比変化	0.03	0.02	-
(想定量)	mol	0.064	0.019	-
→		\rightarrow	\downarrow	
	mol	0.042	0.012	0.054
恢復自风心里	g	2.37	0.69	3.06
				1
被覆管重量	g	-	-	457
被覆管・Fe 換算	mol	-	-	8.18

表 2.4 被覆管の酸化に消費可能な酸素量の試算

物性値:燃料密度=11g/cm³、アクチニド原子量=238

余剰酸素 (mol): 被覆管反応 (mol) = 3:2

JAEA-Research 2013-009

щi	式料	未照射	照射	
	名称	PM1	Q530MS	
П	ット	Mn	n14	
	外径	6.91mm	6.88mm	
封約の十次・重昌	内径	 	6.08mm	
汎科の力伝・ 里里	長さ			
	重量 (試験前)	0.29894g	0.30970g	
表面	仕上げ	な	l	
封殿游游	硝酸濃度	8mol/L		
武 澳 俗 仪	ARRAY ARRAY 名称 PM1 Q530 コット Mm14 外径 6.91mm 6.88 内径 6.11mm 6.08 長さ 4.92mm 4.93 重量(試験前) 0.29894g 0.309 面仕上げ なし 硝酸濃度 8mol/L 溶存金属イオン なし 温度 95℃ 浸漬時間 4、8、12hr 比液量 24cm³/cm² 温度 約49 実効時間 - 約46 照射量	L		
	温度	長さ4.92mm4.93mm重量(試験前)0.29894g0.30970g上げなし硝酸濃度8mol/L溶存金属イオンなし温度95℃浸漬時間4、8、12hr比液量24cm³/cm²温度-約 490℃		
試験条件	浸漬時間	4、8、12hr		
正式 1	24cm	³ /cm ²		
	温度	-	約 490℃	
照射条件	実効時間	-	約 4660hr	
	照射量	- 約 20dpa		

表 2.5 「常陽」材料照射試験片の硝酸溶解試験方法

+ • • • • • • • • • • • • • • • • • • •				· · · = ≈ •		111843	
試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
7*1	Mm14	#600	95	4	8	-	21.63
8*1	Mm14	#600	95	4	8	-	25.64
PM1*1	Mm14	まま	95	4	8	-	15.2
Q530MS*2	Mm14	まま	95	4	8	-	18.6
-	Mm14	まま	95	6.1	8	-	7.6
-	Mm14	まま	95	6	8	-	8.3
-	Mm14	まま	95	6	8	-	6.6
PM1*1	Mm14	まま	95	8	8	-	11.1
Q530MS*2	Mm14	まま	95	8	8	-	14.3
PM1*1	Mm14	まま	95	12	8	-	9.1
Q530MS*2	Mm14	まま	95	12	8	-	12.6
		*1 .	₩₩田封	殿世			

表 2.6 純硝酸水溶液と模擬溶解液への溶解速度:9Cr-ODS 鋼「常陽」材料照射試験片

*1:比較用試験片

*2:「常陽」CMIR-6材料照射試験片
		表 3.1 外面腐食量と内面腐食量の解析体	84
大項目	小項目	設定:外面腐食	設定:内面腐食
	外径	10	.4mm
	肉厚	0.7	71mm
批萬然止性	も見	270	00mm
恢復首114	密庚	7.8	3g/cm ³
	重重	約4	57g/本
	初期 Cr 濃度	9.01	nass%
	下部プレナム領域	無視	(低温)
	下部ブランケット領域	無視	(低温)
メッシュ分割	炉心燃料領域	$10 \text{mm}/\lambda \lor \checkmark \exists$	(計 100 メッシュ)
	上部ブランケット領域		無視(通常腐食現象なし)
	上部プレナム領域	900mm/シッシュ ()	無視(燃料接触なし)
	体系	一次元無限板(反射効果なし)	全面腐食式
	炉内滞在時間	9 年	
	燃焼度	•	>70GWd/MTM
1 十冬年	拡散係数	$D_0=9.37e-09m^{2/s}$, $Q=146kJ/mol$	-
	相変化	無視	
			シュ上端
	被覆管温度	被覆管肉厚中心温度	被覆管肉厚中心温度+15°C
		径方向分子	佑:考慮せず
	五五百令	$\mathcal{F-A}$: 8mass% (T _{th} : 590°C~650°C)	
	>>□一次 >>□一次 →□ <td>$\mathcal{F-AB}:7\mathrm{mass}\%~(\mathrm{T_{th}}:590^\circ\mathrm{C}{\sim}650^\circ\mathrm{C})$</td> <td></td>	$\mathcal{F-AB}:7\mathrm{mass}\%~(\mathrm{T_{th}}:590^\circ\mathrm{C}{\sim}650^\circ\mathrm{C})$	
	女回 OF 痰及政任同しまい。	$\mathcal{F-AC}$: 4mass% (T _{th} : 590°C~650°C)	
ローフリッ	つい、 「国人、 T th	$\mathcal{F-AD}:0$ mass% (T _{th} : 590°C~650°C)	-
	市五百个		ケース臣:供給酸素量限界(2.3節で計算済)
	[7] 山杨 凤 (什 約·•••• 丰 四 田)	•	ケースF:全面腐食式計算値(Tth:550℃)
	(天阳段米里以小)	•	ケースG:全面腐食式計算値(Tth:500℃)
	くしい 1目/X ・ I th/		ケースH:全面腐食式計算値(T _{th} :なし)
款准計角	個別プロセス成立性	最高温度燃	 秋集合体単体
	ガラス固化体発生量	全ての炉心燃	料集合体を積算
	*:上部ブラ	·ンケット領域 200mm と上部プレナム領域 1001	mm を一括

JAEA-Research 2013-009

X/L*1	被覆管肉厚中心温度℃
1.000	637.0
0.900	626.5
0.800	610.1
0.700	588.9
0.600	564.2
0.500	537.1
0.400	508.9
0.300	480.6
0.200	453.5
0.100	428.7
0.000	407.4

表 3.2 実証炉における被覆管肉厚中心温度の軸方向分布の典型例

*1: 炉心燃料カラム下端を 0.000、上端を 1.000 とした相対値

衣 5.5 夫用炉にわける果合体毋の恢復官肉厚中心取局温度の万巾例:内側炉心燃料果

整理番号	温度℃	整理番号	温度℃	整理番号	温度℃	整理番号	温度℃
1	597	39	598	77	574	115	582
2	616	40	599	78	577	116	593
3	617	41	580	79	611	117	566
4	593	42	580	80	591	118	561
5	577	43	600	81	579	119	588
6	577	44	601	82	590	120	602
7	590	45	582	83	597	121	586
8	608	46	602	84	596	122	567
9	597	47	602	85	617	123	591
10	583	48	593	86	635	124	617
11	600	49	619	87	627	125	618
12	593	50	612	88	622	126	600
13	601	51	605	89	636	127	601
14	580	52	597	90	599	128	614
15	577	53	574	91	619	129	610
16	599	54	589	92	587	130	613
17	597	55	577	93	569	131	630
18	589	56	565	94	578	132	614
19	566	57	585	95	583	133	598
20	580	58	587	96	564	134	597
21	580	59	585	97	596	135	573
22	591	60	571	98	593	136	561
23	599	61	591	99	596	137	576
24	583	62	602	100	578	138	557
25	586	63	595	101	578	139	571
26	581	64	568	102	603	140	586
27	592	65	581	103	590	141	579
28	598	66	619	104	603	142	570
29	576	67	624	105	627	143	597
30	566	68	608	106	626	144	561
31	580	69	643	107	613	145	610
32	595	70	625	108	633	146	620
33	584	71	581	109	638	147	595
34	568	72	596	110	595	148	583
35	587	73	560	111	626	-	-
36	609	74	564	112	596	-	-
37	588	75	575	113	610	-	-
38	598	76	590	114	570	-	-

注記1:温度=該当集合体における最大値 注記2:2分の1炉心の148体を抽出

表 3.4 実	用炉におけ	る集合体毎の	被覆管肉厚中心	、最高温度の分布例	:外側炉心燃料集合体
---------	-------	--------	---------	-----------	------------

整理番号	温度℃	整理番号	温度℃	整理番号	温度℃	整理番号	温度℃
1	585	39	637	77	638	115	590
2	558	40	620	78	642	116	604
3	577	41	627	79	599	117	575
4	637	42	635	80	643	118	569
5	595	43	655	81	589	119	587
6	619	44	612	82	632	120	552
7	626	45	632	83	586	121	574
8	556	46	628	84	597	122	601
9	596	47	599	85	550	123	582
10	593	48	611	86	581	124	554
11	566	49	600	87	569	125	572
12	590	50	573	88	545	126	537
13	622	51	590	89	572	127	588
14	611	52	569	90	596	128	594
15	585	53	565	91	578	129	609
16	602	54	593	92	555	130	602
17	654	55	572	93	584	131	602
18	629	56	549	94	593	132	645
19	668	57	575	95	573	133	618
20	609	58	565	96	577	134	605
21	647	59	553	97	580	135	575
22	586	60	583	98	559	136	583
23	619	61	567	99	558	137	579
24	569	62	555	100	586	138	570
25	554	63	565	101	565	-	-
26	550	64	592	102	592	-	-
27	575	65	594	103	616	-	-
28	561	66	586	104	619	-	-
29	559	67	602	105	608	-	-
30	602	68	620	106	581	-	-
31	561	69	605	107	612	-	-
32	568	70	596	108	592	-	-
33	607	71	631	109	589	-	-
34	588	72	658	110	618	-	-
35	559	73	625	111	610	-	-
36	582	74	600	112	622	-	-
37	600	75	592	113	630	-	-
38	586	76	652	114	598	-	-

注記1:温度=該当集合体における最大値 注記2:2分の1炉心の138体を抽出

JAEA-Research 2013-009

最高温度℃	内側炉心(体数)	外側炉心(体数)
~ 540	0	1
$540 \sim 550$	0	2
$550 \sim 560$	1	14
$560\!\sim\!570$	15	13
$570 \sim 580$	24	15
$580 \sim 590$	25	22
$590 \sim 600$	38	19
$600 \sim 610$	16	16
$610 \sim 620$	15	10
$620 \sim 630$	8	10
$630 \sim 640$	5	7
$640 \sim 650$	1	4
$650 \sim 660$	0	4
$660\!\sim\!670$	0	1
$670 \sim 680$	0	0
$680 \sim 690$	0	0
$690 \sim 700$	0	0
合計	148	138

表 3.5 実用炉における被覆管肉厚中心最高温度に着目した炉心燃料集合体数分布

(全炉心の半分を抽出)

注記:該当集合体における被覆管肉厚中心温度の最大値

(集合体内には温度分布があるため、集合体平均値はより低い値になる)

																				(3-3)式が成
	備考			ケースD	•	•		ケース C			ケース B	ケースD	•	•	I	ケース C	•	•	ケースB	数 D の間には、
ための係数	係数	R		1.12560	1.08352	1.03446	0.97771	0.90546	0.81304	0.68388	0.47669	0.68410	0.64242	0.59516	0.54078	0.47698	0.40021	0.30458	0.17955	目 t、拡散係
浸入深さを計算する;	Cr濃度指定值		‰ssem								Q	ø								iからの距離 x、時間
r 濃度指定値に対する	最表面 Cr 濃度	Q	$\mathrm{mass}\%$	0	1	2	3	4	5	9	7	0	1	2	3	4	5	9	<i>L</i>	Jx、任意位置の表面
表 3.6 C	母材初期 Cr 濃度	Р	$\mathrm{mass}\%$				c	מ							Q F	12				任意位置の濃度(
	<u>त्त</u>																			初期濃度 Co、

立する。 表面濃度 C。、

$$\frac{C_x - C_0}{C_s} = 1 - erf\left\{\frac{x}{2\sqrt{Dt}}\right\} \quad (3.3)$$

$$\frac{C_s - C_0}{C_s} = 1 - erf\left\{\frac{x}{2\sqrt{Dt}}\right\} \quad (3.3)$$

$$\begin{array}{cccc}
C_s : & & & & & \\
C_s : & & & & & & \\
C_s : & & & & & \\
C_s : & & & & & \\
C_s : & & & & & \\
erf(z) : & & & & & \\
x : & & & & & \\
D : & & & & & \\
D : & & & & & \\
t & & & & & \\
\end{array}$$

t: 時間 (8) 例えば、初期濃度 Pmass%、時間 9 年、拡散係数(2-1)式に対し、表面濃度 Qmass%を設定し、Cr 濃度が 8mass%になる表面からの距離 x (m) は、 下式から計算できる。

 $x = R \times 2 \times \sqrt{D} \times \sqrt{9 \times 365.24219 \times 24 \times 3600}$

11
簷
掹
NO
1
T
喪
N
<u>م</u> ک
Ē
₩
6
Ŭ∰∏
<u></u>
Ö
<u> </u>
膨
た
<u>``</u>
)
いい
タにし
ータにし
イータにし
シメータにし
ラメータにし
パラメータにし
をパラメータにし
司をパラメータにし
間をパラメータにし
時間をパラメータにし
と時間をパラメータにし
度と時間をパラメータにし
乱度と時間をパラメータにし
温度と時間をパラメータにし
温度と時間をパラメータにし
.7 温度と時間をパラメータにし

JAEA-Research 2013-009

別 試料形態 状態		造板 N*1	造 板 N*1	造 板 N*1	送 板 N*1	造 板 N*1	送 板 N*1	·造 板 N*1	造 板 N*1	送 板 N*1	·造 板 N*1	造板 N*1	送 板 N*1	造 板 N*1	造板 NT*2	造板 NT*2	造 板 NT*2	造 板 NT*2	造 板 NT*2	這 板 NT*2		
原料種		溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳	溶解鋳		
Τi	mass%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		(学)
C	mass%	0	0	0	0	0	0	0	0	0	0	0	0	0	0.13	0.50	1.00	0.13	0.13	0.13		$0^{C\times1hr\times j}$
M	mass%	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		き戻し (78
Ni	mass%	0	0	0	0	0	0	0	0	0	0	4	8	12	0	0	0	0	0	0	(空冷) (空冷)	水冷) →焼
\mathbf{Cr}	mass%	12	11	10	6	8	8	9	$\mathbf{\tilde{c}}$	4	2	4	4	4	6	6	6	8	7	9	$0^{C\times1hr\times2}$)50°C×1hr×
口ット名		12Cr-0Ni	11 Cr-0Ni	10Cr-0Ni	9Cr-0Ni	8Cr-0Ni	7Cr-0Ni	6Cr-0Ni	5Cr-0Ni	4 Cr-0Ni	2Cr-0Ni	4Cr-4Ni	4Cr-8Ni	4 Cr - 12 Ni	9Cr-2W-0.13C	9Cr-2W-0.50C	9Cr-2W-1.00C	8Cr-2W-0.13C	7 Cr-2 W-0.13 C	6Cr-2W-0.13C	: 焼きならし(105	2:焼きならし(10
合金系						多日 o MoO	re-cr-zw う JL赤						Fe-4Cr-2W-Ni 4 元系				多日 V J-WoJ	LE-UL-ZW-U 4 JL示			1*N	NT*!

- 34 -

	Μ		2.01	1.95	2.01	1.94	2.01	1.94	2.00	1.89	1.96	1.91	1.96	2.00	1.97	1.89	1.99	2.00	1.95	1.95	1.99	1.96
	Ni		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	ı	ı	<0.002	<0.002	•		<0.002	<0.002	<0.002	<0.002
	Cr		11.68	11.67	10.76	10.71	9.80	9.77	8.83	8.75	7.83	7.77	7.00	6.98	5.93	5.78	4.98	5.00	3.84	3.88	1.94	1.92
	Ti		<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	<0.002	<0.002
デル合金	0		0.0515	0.0694	0.0501	0.0695	0.0489	0.0626	0.0502	0.0728	0.0482	0.0624	0.0385	0.0451	0.0380	0.0683	0.0043	0.0056	0.0702	0.0608	0.0600	0.0510
:3元系モ	Ν	nass%	0.0022	0.0015	0.0024	0.0025	0.0024	0.0040	0.0027	0.0032	0.0019	0.0020	0.0015	0.0018	0.0030	0.0028	0.0040	0.0023	0.0010	0.0013	0.0014	0.0013
)化学分析値	\mathbf{S}	n	0.0035	0.0036	0.0031	0.0036	0.0029	0.0028	0.0030	0.0028	0.0028	0.0024	<0.0003	<0.0003	0.0019	0.0019	-	-	0.0019	0.0016	0.0013	0.0012
9 供試材 ⁰	Р		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002	<0.002	<0.002
表 3.	Mn		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			<0.002	<0.002	<0.002	<0.002
	\mathbf{Si}		0.004	0.008	0.006	0.006	0.005	0.004	0.002	0.002	0.002	0.003	<0.002	<0.002	0.004	0.003	ı		0.003	0.003	0.004	<0.002
	С		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0012	0.0013	<0.001	<0.001	0.0014	0.0016	<0.001	<0.001	0.001	0.001
	ПУЪ		10001	12UF-2W	110011	TTOLZA	100001	TUCTZW	MeOO	30F 2W	o, C ور	001 Z W		101201	111002	00F-2W		00F2W	1001V	401 ZW	0.0 m 04V	201-2W

④	
⟨□	
Ź	
1h	
Ĥ	
Ń	
iĤ	
က	
••	
圁	ŀ
析	
尔	
沪	
Ę,	
à	
Ĭ	
R	
Ŧ	
~	
<u>с</u>	
÷	r

	W		1.95	1.91	1.96	1.94	1.92	1.92	1.95	2.02	1.98	1.96	2.06	2.07	2.03	2.02	2.12	2.11	2.07	2.04	2.00	2.05
	Ni		3.98	3.96	8.02	7.99	11.93	11.91	-	-	-	-	-	-	-	-	-	-	-	-		
	\mathbf{Cr}		3.87	3.83	3.89	3.90	3.86	3.89	8.99	9.05	9.09	9.12	8.97	9.03	9.05	9.09	8.01	8.05	7.03	7.04	6.03	6.02
	Ti		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
合金	0		0.0610	0.0564	0.0633	0.0582	0.0574	0.0546	0.0045	0.0038	<0.001	<0.001	0.0055	0.0047	0.0048	0.0059	<0.001	0.0012	<0.001	<0.001	<0.001	<0.001
元系モデル	Ν	ass%	0.0028	0.0024	0.0030	0.0030	0.0024	0.0019	0.0031	0.0035	0.0014	0.0016	0.0047	0.0042	0.0048	0.0052	0.0043	0.0031	0.0027	0.0021	0.0017	0.0018
全分析值:4	\mathbf{s}	m	0.0013	0.0013	0.0018	0.0016	0.0016	0.0018	-	I	0.0023	0.0016	I	ı	I	ı	0.0015	0.0016	0.0013	0.0015	0.0013	0.0013
は武材の化学	Р		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	ı	<0.002	<0.002		•			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
表 3.10 俳	Mn		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	-	ı	<0.002	<0.002		-			<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
	Si		<0.002	<0.002	0.002	<0.002	0.002	0.003		I	0.003	0.006	I	I	I	ı	0.005	0.004	<0.002	<0.002	<0.002	<0.002
	С		<0.001	<0.001	0.001	<0.001	<0.001	<0.001	0.071	0.071	0.13	0.13	0.36	0.36	0.72	0.74	0.12	0.13	0.11	0.12	0.13	0.12
	цућ		A CuAVI-	401 Z W 41NI	Ino-Wo-wOV	40172W 201	10011-10NE	40L-2 W - 1 21N1		TINCT. N. T. TOR	(6)J61 0 <u>-1116</u> J0	2000T.0.1200		DUC.0 M 7 JOR	000 1-147600	DUUT W TUUU	Jet U-INGJo	001.0 M Z 100		00T.0-W2-101	60-10-130	001.2 W 0.100

JAEA-Research 2013-009

白金浜 □ット名 武将形態 状態 紙 紙紙 10M 12M 積機溶解液濃度 12(r-2W 板 - 0 <td< th=""><th></th><th>表 3.11</th><th>溶解試験と</th><th>電気化学</th><th>試験の意</th><th>式験マト</th><th>リックス</th><th>:モデ)</th><th>レ合金</th><th></th><th></th><th></th><th></th><th></th></td<>		表 3.11	溶解試験と	電気化学	試験の意	式験マト	リックス	:モデ)	レ合金					
1000000000000000000000000000000000000	合金系	安小へ口	試料形態	狀態			純硝	酸水溶液	亥濃度			模擬	溶解液	農度
12Cr-2W 板 ·· ·o ·o<					1M	2M	3.5M	5M	8M	10M	12M	恒	⊕	魚
IICr-2W 板 o		12 Cr-2 W	板		0	0	0	0	0	0	0	0	0	0
-2W 3 元系 9Cr-2W 10Cr-2W 板 0 <td></td> <td>11Cr-2W</td> <td>板</td> <td></td> <td>0</td>		11Cr-2W	板		0	0	0	0	0	0	0	0	0	0
-2W 3 元系 9Cr-2W 板 0		10 Cr-2 W	板	ı	0	0	0	0	0	0	0	0	0	0
-2W 3 元系 8Cr-2W 板 v		9Cr-2W	板	ı	0	0	0	0	0	$\nabla \circ$	0	0	0	$\nabla \nabla$
TCr-2W 板 ·· <t< td=""><td>多<u>一</u>6 1110</td><td>8Cr-2W</td><td>板</td><td>ı</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	多 <u>一</u> 6 1110	8Cr-2W	板	ı	0	0	0	0	0	0	0	0	0	0
6Cr-2W 板 ·· <th< td=""><td></td><td>7 Cr-2 W</td><td>板</td><td>ı</td><td>ı</td><td></td><td></td><td>ı</td><td>0</td><td>ı</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>		7 Cr-2 W	板	ı	ı			ı	0	ı	0	0	0	0
5Cr-2W 板 ·· <t< td=""><td></td><td>6Cr-2W</td><td>板</td><td>I</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>$\nabla \circ$</td><td>0</td><td>0</td><td>0</td><td>$\nabla \nabla$</td></t<>		6Cr-2W	板	I	0	0	0	0	0	$\nabla \circ$	0	0	0	$\nabla \nabla$
4Cr-2W 板 ·· ·o <		5 Cr-2 W	板	ı				•	0	0	0	0	0	0
2Ur-2W 板 0 <th< td=""><td></td><td>4 Cr-2W</td><td>板</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>$\nabla \circ$</td><td>0</td><td>0</td><td>0</td><td>$\mathbf{\nabla}$</td></th<>		4 Cr-2W	板		0	0	0	0	0	$\nabla \circ$	0	0	0	$\mathbf{\nabla}$
2W-Ni 4 元系 2W-Ni 4 元系 4Cr-2W-4Ni 板 - Cr-2W-8Ni 板 - Cr-2W-12Ni 板 - Cr-2W-0.13C(1) 板 - Cr-2W-0.13C(2) $-$ Cr-2 - Cr-2W-0.13C - C - C - C - C - C - C - C -		2 Cr-2 W	板		0	0	0	0	0	0	0	0	0	0
2W-Ni 4 元系 4Cr-2W-8Ni 板 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4Cr-2W-4Ni	板		0	0	0	0	0	0	0	0	0	0
4Cr-2W-12Ni 板 - o	·2W-Ni 4 元系	4Cr-2W-8Ni	板		0	0	0	0	0	$\nabla \circ$	0	0	0	0
2W-C 4 元系 9Cr-2W-0.13C(1) 板		4Cr-2W-12Ni	板	ı	0	0	0	0	0	0	0	0	0	0
2W-C 4 元系 <u>9Cr-2W-0.13C(2)</u> 板 <u>9Cr-2W-0.50C</u> 板 <u>9Cr-2W-0.50C</u> 板 <u>9Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>6Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>6Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>6Cr-2W-0.13C</u> <u>6Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.12C <u>7Cr-2W-0.13C</u> <u>7Cr-2W-0.12C <u>7Cr-2W-0.12C <u>7Cr-2W-0.</u></u></u></u>		9Cr-2W-0.13C(1)	板	ı	ı	ı	0	ı	0	0	0			
2W-C 4 元系 2W-C 4 元系 9Cr-2W-1.00C 板		9Cr-2W-0.13C(2)	板	ı	ı			ı	0	ı	0	0		
2W-C 4 元系 2W-C 4 元系 8Cr-2W-0.13C 8Cr-2W-0.13C 7Cr-2W-0.13C 7Cr-2W-0.13C 6Cr-2W-0.13C 7 6Cr-2W-0.13C 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8		9Cr-2W-0.50C	板	I	-	-	0	ı	0	0	0	I		ī
8Cr-2W-0.13C 板 -	2W-C 4 元系	9Cr-2W-1.00C	板	I	-	-	0	ı	0	0	0	-		
7Cr-2W-0.13C 板 -		8Cr-2W-0.13C	板	I	-	-		ı	0	-	0	0		·
 6Cr-2W-0.13C 板 - -<		7Cr-2W-0.13C	板	I	ı	ı	ı	ı	0	ı	0	0		ı
 ○: 浸漬@95℃、Δ: 電気化学試験@95℃ 高=高濃度模擬溶解液: <u>表 1.3</u>の第1ステージの溶液組成を模擬(H: 遊離 HNO₃濃度 3.5M+4.4gV/ℓ+2.54gRu/ℓ) 中=中濃度模擬溶解液: <u>表 1.3</u>の第2ステージの溶液組成を模擬(M: 遊離 HNO₃濃度 8M+1.76gV/ℓ+1.02gRu/ℓ) 低=低濃度模擬溶解液:表 1.3 の第3ステージの溶液組成を模擬(L: 遊離 HNO₃濃度 10M+0.88gV/ℓ+0.51gRu/ℓ) 		6Cr-2W-0.13C	板	I	-	-		ı	0	-	0	0		
高=高濃度模擬溶解液: <u>麦 1.3</u> の第 1 ステージの溶液組成を模擬(H:遊離 HNOs濃度 3.5M+4.4gVパ+2.54gRu/ℓ) 中=中濃度模擬溶解液: <u>麦 1.3</u> の第 2 ステージの溶液組成を模擬(M:遊離 HNOs濃度 8M+1.76gV/ℓ+1.02gRu/ℓ) 低=低濃度模擬溶解液:表 1.3 の第 3 ステージの溶液組成を模擬(L:遊離 HNOs濃度 10M+0.88gV/ℓ+0.51gRu/ℓ)		 ○:浸漬@95°C、Δ:¹ 	電気化学試験	@95°C										
中=中濃度模擬溶解液: <u>麦 1.3</u> の第 2 ステージの溶液組成を模擬(M:遊離 HNOs濃度 8M+1.76gV/ℓ+1.02gRu/ℓ) 低=低濃度模擬溶解液:表 1.3 の第 3 ステージの溶液組成を模擬(L:遊離 HNOs濃度 10M+0.88gV/ℓ+0.51gRu/ℓ)		高=高濃度模擬溶解液	夏: <u>表 1.3</u> の第	手1ステー	- ジの裕	液組成	を模擬 (I	H:遊離	HNO ₃	濃度 3.5N	A + 4.4 gV	$\mathcal{N}+2.5$	4gRu/4	(
低=低濃度模擬溶解液:表 1.3 の第 3 ステージの溶液組成を模擬(L:遊離 HNO3濃度 10M+0.88gV/ℓ+0.51gRu/ℓ)		中=中濃度模擬溶解液	夏: 表 1.3 の第	手2ステー	- ジの溶	液組成	を模擬(1	M:遊離	HNO3	濃度 8M	+1.76gV	l(l+1.0)	2gRu/{	
		低=低濃度模擬溶解液	夏: 表 1.3 の第	43ステー	ージの落	液組成	を模擬 (I	」: 遊離	HNO ₃ 3	農度 10M	+0.88gV	1/(1+0.8)	51gRu/	()

JAEA-Research 2013-009

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	7Cr-2W	#400	95	0.5	8	-	6.71
-	7Cr-2W	#400	95	0.5	8	-	8.96
-	7Cr-2W	#400	95	0.5	8	-	6.87
-	7Cr-2W	#400	95	4	8	-	13.72
-	7Cr-2W	#400	95	4	8	-	14.62
-	7Cr-2W	#400	95	4	8	-	14.20
-	7Cr-2W	#400	95	0.5	10	-	11.40
-	7Cr-2W	#400	95	0.5	10	-	13.16
-	7Cr-2W	#400	95	0.5	10	-	9.81
-	7Cr-2W	#400	95	4	10	-	10.74
-	7Cr-2W	#400	95	4	10	-	12.41
-	7Cr-2W	#400	95	4	10	-	10.10
-	7Cr-2W	#400	95	0.5	12	-	6.46
-	7Cr-2W	#400	95	0.5	12	-	7.65
-	7Cr-2W	#400	95	0.5	12	-	9.03
-	7Cr-2W	#400	95	4	12	-	7.71
-	7Cr-2W	#400	95	4	12	-	7.66
-	7Cr-2W	#400	95	4	12	-	8.41
-	7Cr-2W	#400	95	0.5	3.5	Н	0.46
-	7Cr-2W	#400	95	0.5	3.5	Н	0.30
-	7Cr-2W	#400	95	0.5	3.5	Н	5873
-	7Cr-2W	#400	95	4	3.5	Н	0.56
-	7Cr-2W	#400	95	4	3.5	Н	0.53
-	7Cr-2W	#400	95	4	3.5	Н	х
-	7Cr-2W	#400	95	0.5	8	М	10026
-	7Cr-2W	#400	95	0.5	8	М	9949
-	7Cr-2W	#400	95	0.5	8	М	13449
-	7Cr-2W	#400	95	4	8	М	х
-	7Cr-2W	#400	95	4	8	М	х
-	7Cr-2W	#400	95	4	8	М	×
-	7Cr-2W	#400	95	0.5	10	L	7.55
-	7Cr-2W	#400	95	0.5	10	L	4.69
-	7Cr-2W	#400	95	0.5	10	L	3.97
-	7Cr-2W	#400	95	4	10	L	2.49
-	7Cr-2W	#400	95	4	10	L	1.99
-	7Cr-2W	#400	95	4	10	L	1.88

表 3.12 純硝酸水溶液と模擬溶解液への溶解速度:Fe-7Cr-2W 3 元系モデル合金

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液、×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	4Cr-2W-4Ni	#600	95	4	1	-	×
-	4Cr-2W-4Ni	#600	95	4	1	-	х
-	4Cr-2W-4Ni	#600	95	4	1	-	×
-	4Cr-2W-4Ni	#600	95	4	3.5	-	×
-	4Cr-2W-4Ni	#600	95	4	3.5	-	×
-	4Cr-2W-4Ni	#600	95	4	3.5	-	х
-	4Cr-2W-4Ni	#600	95	4	5	-	×
-	4Cr-2W-4Ni	#600	95	4	5	-	×
-	4Cr-2W-4Ni	#600	95	4	5	-	х
-	4Cr-2W-4Ni	#600	95	4	8	-	87.10
-	4Cr-2W-4Ni	#600	95	4	8	-	86.94
-	4Cr-2W-4Ni	#600	95	4	8	-	81.73
-	4Cr-2W-4Ni	#600	95	4	10	-	41.55
-	4Cr-2W-4Ni	#600	95	4	10	-	39.12
-	4Cr-2W-4Ni	#600	95	4	10	-	32.90
-	4Cr-2W-4Ni	#600	95	4	12	-	38.49
-	4Cr-2W-4Ni	#600	95	4	12	-	54.06
-	4Cr-2W-4Ni	#600	95	4	12	-	54.82
-	4Cr-2W-4Ni	#600	95	4	3.5	Н	1.70
-	4Cr-2W-4Ni	#600	95	4	3.5	Н	1.36
-	4Cr-2W-4Ni	#600	95	4	3.5	Н	1.64
-	4Cr-2W-4Ni	#600	95	4	8	М	5.95
-	4Cr-2W-4Ni	#600	95	4	8	М	8.43
-	4Cr-2W-4Ni	#600	95	4	8	М	6.38
-	4Cr-2W-4Ni	#600	95	4	10	L	6.04
-	4Cr-2W-4Ni	#600	95	4	10	L	5.84
-	4Cr-2W-4Ni	#600	95	4	10	L	6.27

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液、×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	4Cr-2W-8Ni	#600	95	4	1	-	×
-	4Cr-2W-8Ni	#600	95	4	1	-	×
-	4Cr-2W-8Ni	#600	95	4	1	-	×
-	4Cr-2W-8Ni	#600	95	4	3.5	-	×
-	4Cr-2W-8Ni	#600	95	4	3.5	-	×
-	4Cr-2W-8Ni	#600	95	4	3.5	-	×
-	4Cr-2W-8Ni	#600	95	4	5	-	×
-	4Cr-2W-8Ni	#600	95	4	5	-	×
-	4Cr-2W-8Ni	#600	95	4	5	-	×
-	4Cr-2W-8Ni	#600	95	4	8	-	45.46
-	4Cr-2W-8Ni	#600	95	4	8	-	50.36
-	4Cr-2W-8Ni	#600	95	4	8	-	47.74
-	4Cr-2W-8Ni	#600	95	4	10	-	33.92
-	4Cr-2W-8Ni	#600	95	4	10	-	34.99
-	4Cr-2W-8Ni	#600	95	4	10	-	39.25
-	4Cr-2W-8Ni	#600	95	4	12	-	35.41
-	4Cr-2W-8Ni	#600	95	4	12	-	25.85
-	4Cr-2W-8Ni	#600	95	4	12	-	33.72
-	4Cr-2W-8Ni	#600	95	4	3.5	Н	1.51
-	4Cr-2W-8Ni	#600	95	4	3.5	Н	1.66
-	4Cr-2W-8Ni	#600	95	4	3.5	Н	1.60
-	4Cr-2W-8Ni	#600	95	4	8	М	6.81
-	4Cr-2W-8Ni	#600	95	4	8	М	6.51
-	4Cr-2W-8Ni	#600	95	4	8	М	7.29
-	4Cr-2W-8Ni	#600	95	4	10	L	4.96
-	4Cr-2W-8Ni	#600	95	4	10	L	6.77
-	4Cr-2W-8Ni	#600	95	4	10	\mathbf{L}	4.21

表 3.14	純硝酸水溶液と模擬溶解液・	への溶解速度	: Fe-4Cr-2W-8Ni 4 元系モデル合金	金

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液、×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	4Cr-2W-12Ni	#600	95	4	1	-	×
-	4Cr-2W-12Ni	#600	95	4	1	-	×
-	4Cr-2W-12Ni	#600	95	4	1	-	×
-	4Cr-2W-12Ni	#600	95	4	3.5	-	×
-	4Cr-2W-12Ni	#600	95	4	3.5	-	×
-	4Cr-2W-12Ni	#600	95	4	3.5	-	×
-	4Cr-2W-12Ni	#600	95	4	5	-	×
-	4Cr-2W-12Ni	#600	95	4	5	-	×
-	4Cr-2W-12Ni	#600	95	4	5	-	×
-	4Cr-2W-12Ni	#600	95	4	8	-	11.10
-	4Cr-2W-12Ni	#600	95	4	8	-	27.38
-	4Cr-2W-12Ni	#600	95	4	8	-	11.01
-	4Cr-2W-12Ni	#600	95	4	10	-	25.83
-	4Cr-2W-12Ni	#600	95	4	10	-	21.10
-	4Cr-2W-12Ni	#600	95	4	10	-	16.16
-	4Cr-2W-12Ni	#600	95	4	12	-	31.09
-	4Cr-2W-12Ni	#600	95	4	12	-	29.45
-	4Cr-2W-12Ni	#600	95	4	12	-	32.28
-	4Cr-2W-12Ni	#600	95	4	3.5	Н	1.47
-	4Cr-2W-12Ni	#600	95	4	3.5	Н	1.53
-	4Cr-2W-12Ni	#600	95	4	3.5	Н	1.42
-	4Cr-2W-12Ni	#600	95	4	8	М	8.07
-	4Cr-2W-12Ni	#600	95	4	8	М	5.63
-	4Cr-2W-12Ni	#600	95	4	8	М	4.59
-	4Cr-2W-12Ni	#600	95	4	10	L	5.95
-	4Cr-2W-12Ni	#600	95	4	10	L	4.16
-	4Cr-2W-12Ni	#600	95	4	10	L	6.69

表 3.15 純硝酸水溶液と模擬溶解液への溶解速度:Fe-4Cr-2W-12Ni 4 元系モ	ミモアル合金	1
--	--------	---

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液

×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
22-1	9Cr-2W-0.13C(1)	#400	95	4	3.5	-	196.5
22-2	9Cr-2W-0.13C(1)	#400	95	4	3.5	-	132.6
22-3	9Cr-2W-0.13C(1)	#400	95	4	3.5	-	120.6
7-1	9Cr-2W-0.13C(1)	#400	95	4	8	-	41.14
7-2	9Cr-2W-0.13C(1)	#400	95	4	8	-	33.49
7-3	9Cr-2W-0.13C(1)	#400	95	4	8	-	94.40
8-1	9Cr-2W-0.13C(1)	#400	95	4	10	-	8.38
8-2	9Cr-2W-0.13C(1)	#400	95	4	10	-	7.52
8-3	9Cr-2W-0.13C(1)	#400	95	4	10	-	7.86
9-1	9Cr-2W-0.13C(1)	#400	95	4	12	-	6.73
9-2	9Cr-2W-0.13C(1)	#400	95	4	12	-	5.05
9-3	9Cr-2W-0.13C(1)	#400	95	4	12	-	3.71
-	9Cr-2W-0.13C(2)	#400	95	0.5	8	-	134
-	9Cr-2W-0.13C(2)	#400	95	0.5	8	-	70
-	9Cr-2W-0.13C(2)	#400	95	0.5	8	-	98
-	9Cr-2W-0.13C(2)	#400	95	4	8	-	31.7
-	9Cr-2W-0.13C(2)	#400	95	4	8	-	15.7
-	9Cr-2W-0.13C(2)	#400	95	4	8	-	25.8
-	9Cr-2W-0.13C(2)	#400	95	0.5	12	-	13.2
-	9Cr-2W-0.13C(2)	#400	95	0.5	12	-	11.0
-	9Cr-2W-0.13C(2)	#400	95	0.5	12	-	10.7
-	9Cr-2W-0.13C(2)	#400	95	4	12	-	8.16
-	9Cr-2W-0.13C(2)	#400	95	4	12	-	7.78
-	9Cr-2W-0.13C(2)	#400	95	4	12	-	6.90
-	9Cr-2W-0.13C(2)	#400	95	0.5	3.5	Н	0.38
-	9Cr-2W-0.13C(2)	#400	95	0.5	3.5	Н	0.33
-	9Cr-2W-0.13C(2)	#400	95	0.5	3.5	Н	0.40
-	9Cr-2W-0.13C(2)	#400	95	4	3.5	Н	0.61
-	9Cr-2W-0.13C(2)	#400	95	4	3.5	Н	0.62
-	9Cr-2W-0.13C(2)	#400	95	4	3.5	Н	0.59

表 3.16 純硝酸水溶液と模擬溶解液への溶解速度:Fe-9Cr-2W-0.13C4元系モデル合金

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
25-1	9Cr-2W-0.50C	#400	95	数分	3.5	-	×
25-2	9Cr-2W-0.50C	#400	95	数分	3.5	-	×
25-3	9Cr-2W-0.50C	#400	95	数分	3.5	-	×
16-1	9Cr-2W-0.50C	#400	95	4	8	-	60.18
16-2	9Cr-2W-0.50C	#400	95	4	8	-	65.59
16-3	9Cr-2W-0.50C	#400	95	4	8	-	58.84
17-1	9Cr-2W-0.50C	#400	95	4	10	-	25.40
17-2	9Cr-2W-0.50C	#400	95	4	10	-	24.87
17-3	9Cr-2W-0.50C	#400	95	4	10	-	29.16
18-1	9Cr-2W-0.50C	#400	95	4	12	-	17.32
18-2	9Cr-2W-0.50C	#400	95	4	12	-	15.98
18-3	9Cr-2W-0.50C	#400	95	4	12	-	16.13

表 3.17 純硝酸水溶液と模擬溶解液への溶解速度:Fe-9Cr-2W-0.50C4元系モデル合金

×:活性溶解

表 3.18	純硝酸水溶液	と模擬溶解液	への溶解速度	: Fe-9Cr-2W-1.	00C4元系モラ	『ル合金

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
26-1	9Cr-2W-1.00C	#400	95	約 10 分	3.5	-	×
26-2	9Cr-2W-1.00C	#400	95	約 10 分	3.5	-	×
26-3	9Cr-2W-1.00C	#400	95	約 10 分	3.5	-	×
19-1	9Cr-2W-1.00C	#400	95	数分	8	-	×
19-2	9Cr-2W-1.00C	#400	95	数分	8	-	×
19-3	9Cr-2W-1.00C	#400	95	数分	8	-	×
20-1	9Cr-2W-1.00C	#400	95	4	10	-	27.04
20-2	9Cr-2W-1.00C	#400	95	4	10	-	27.42
20-3	9Cr-2W-1.00C	#400	95	4	10	-	25.11
21-1	9Cr-2W-1.00C	#400	95	4	12	-	16.30
21-2	9Cr-2W-1.00C	#400	95	4	12	-	16.60
21-3	9Cr-2W-1.00C	#400	95	4	12	-	16.29

×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	8Cr-2W-0.13C	#400	95	0.5	8	-	171.7
-	8Cr-2W-0.13C	#400	95	0.5	8	-	288.5
-	8Cr-2W-0.13C	#400	95	0.5	8	-	138.4
-	8Cr-2W-0.13C	#400	95	4	8	-	33.52
-	8Cr-2W-0.13C	#400	95	4	8	-	65.71
-	8Cr-2W-0.13C	#400	95	4	8	-	45.24
-	8Cr-2W-0.13C	#400	95	0.5	12	-	15.49
-	8Cr-2W-0.13C	#400	95	0.5	12	-	21.21
-	8Cr-2W-0.13C	#400	95	0.5	12	-	14.36
-	8Cr-2W-0.13C	#400	95	4	12	-	10.52
-	8Cr-2W-0.13C	#400	95	4	12	-	12.52
-	8Cr-2W-0.13C	#400	95	4	12	-	10.15
-	8Cr-2W-0.13C	#400	95	0.5	3.5	Н	456.4
-	8Cr-2W-0.13C	#400	95	0.5	3.5	Н	549.6
-	8Cr-2W-0.13C	#400	95	0.5	3.5	Н	518.1
-	8Cr-2W-0.13C	#400	95	4	3.5	Н	59.92
-	8Cr-2W-0.13C	#400	95	4	3.5	Н	71.87
-	8Cr-2W-0.13C	#400	95	4	3.5	Н	67.91

表 3.19 純硝酸水溶液と模擬溶解液への溶解速度:Fe-8Cr-2W-0.13C4元系モデル合金

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	7Cr-2W-0.13C	#400	95	0.5	8	-	164.1
-	7Cr-2W-0.13C	#400	95	0.5	8	-	304.7
-	7Cr-2W-0.13C	#400	95	0.5	8	-	213.6
-	7Cr-2W-0.13C	#400	95	4	8	-	53.99
-	7Cr-2W-0.13C	#400	95	4	8	-	86.44
-	7Cr-2W-0.13C	#400	95	4	8	-	78.23
-	7Cr-2W-0.13C	#400	95	0.5	12	-	25.04
-	7Cr-2W-0.13C	#400	95	0.5	12	-	34.99
-	7Cr-2W-0.13C	#400	95	0.5	12	-	32.30
-	7Cr-2W-0.13C	#400	95	4	12	-	15.29
-	7Cr-2W-0.13C	#400	95	4	12	-	18.80
-	7Cr-2W-0.13C	#400	95	4	12	-	17.62
-	7Cr-2W-0.13C	#400	95	0.5	3.5	Н	7602
-	7Cr-2W-0.13C	#400	95	0.5	3.5	Н	6553
-	7Cr-2W-0.13C	#400	95	0.5	3.5	Н	7078
-	7Cr-2W-0.13C	#400	95	4	3.5	Н	×
-	7Cr-2W-0.13C	#400	95	4	3.5	Н	×
-	7Cr-2W-0.13C	#400	95	4	3.5	Н	×

表 3.20 純硝酸水溶液と模擬溶解液への溶解速度:Fe-7Cr-2W-0.13C4元系モデル合金

×:活性溶解

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	6Cr-2W-0.13C	#400	95	0.5	8	-	399.8
-	6Cr-2W-0.13C	#400	95	0.5	8	-	490.8
-	6Cr-2W-0.13C	#400	95	0.5	8	-	415.4
-	6Cr-2W-0.13C	#400	95	4	8	-	122.2
-	6Cr-2W-0.13C	#400	95	4	8	-	146.4
-	6Cr-2W-0.13C	#400	95	4	8	-	138.6
-	6Cr-2W-0.13C	#400	95	0.5	12	-	77.85
-	6Cr-2W-0.13C	#400	95	0.5	12	-	69.55
-	6Cr-2W-0.13C	#400	95	0.5	12	-	68.64
-	6Cr-2W-0.13C	#400	95	4	12	-	42.27
-	6Cr-2W-0.13C	#400	95	4	12	-	41.65
-	6Cr-2W-0.13C	#400	95	4	12	-	37.49
-	6Cr-2W-0.13C	#400	95	0.5	3.5	Н	18063
-	6Cr-2W-0.13C	#400	95	0.5	3.5	Н	11031
-	6Cr-2W-0.13C	#400	95	0.5	3.5	Н	19935
-	6Cr-2W-0.13C	#400	95	4	3.5	Н	×
-	6Cr-2W-0.13C	#400	95	4	3.5	Н	×
-	6Cr-2W-0.13C	#400	95	4	3.5	Н	×

表 3.21 純硝酸水溶液と模擬溶解液への溶解速度:Fe-6Cr-2W-0.13C4元系モデル合金

×:活性溶解

	備考									*1	*2	*3	*4	
	2 Cr-	0Ni			×	×	×	×	50.2	51.2	×	×	×	
	4 Cr-	0Ni			×	×	×	58.0	24.2	23.4	×	6.1	10.5	
	5 Cr-	0Ni			ı	I	I	×	26.6	21.1	×	3.9	4.5	
	6 Cr-	0Ni			×	×	65.4	11.1	7.0	7.7	2.1	3.0	5.3	
	7 Cr-	0Ni			×	×	×	14.2	11.1	7.9	×	×	2.1	<u> </u>
	8 Cr-	0Ni			×	7.5	5.5	5.3	2.7	3.6	1.2	2.7	4.3	●
lm/y)	9Cr-	0Ni			×	2.8	2.2	2.2	2.7	2.7	1.3	1.7	3.0	「・伝〉
(m	10Cr-	$0N_{i}$			89.6	3.0	3.7	1.9	1.6	1.8	0.9	1.9	2.2	甘坞 松 42 1/2
	11 Cr-	0Ni			74.6	1.2	0.9	0.9	1.0	0.8	0.5	1.5	2.1	・日蓮 市村
	12 Cr-	0Ni			77.4	0.3	0.3	0.4	0.5	0.6	0.5	1.5	1.9	这角涩泣疠 1/1
	\mathbf{Cr}	Ni	溶存金属	イオン種			•		H	-	Н	М	L	「「「「「「「「」」」」。
			硝酸濃度	mol/L	1	3.5	5	8	10	12	3.5	8	10	ч
			液種				純硝酸	水溶液			枯苈	快快	{合 /]年/[义	

表 3.22 Fe-Cr-2W 3 元系モデル合金の純硝酸水溶液と模擬溶解液における溶解速度データー覧表

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:は濃度模擬溶解液 溶液温度=95℃、浸漬時間=標準4時間 浸漬前後の重量変化をもとに溶解速度に換算(3試料平均値) ×:活性溶解が激しく、溶解速度の定量不可

<u>連続溶解槽の模擬条件</u> *1:第4~第8ステージ相当 *2:第1ステージ相当 *3:第2ステージ相当	*4: 弗 3 イアーン 相当
---	-----------------

1														1		
	備考									*1	*2	*3	*4			
	4 Cr-	12Ni			×	×	×	16.5	21.0	30.9	1.5	6.1	5.6	擬溶解液		
	4 Cr-	8Ni			×	×	×	47.9	36.1	31.7	1.6	6.9	5.3	低濃度模		平均値)
	4 Cr-	4Ni			×	×	×	85.3	37.9	49.1	1.6	6.9	6.0	液、L:		〔(3]試約
(mm/y)	4 Cr-	0Ni			×	×	×	58.0	24.2	23.4	×	6.1	10.5	模擬溶解	「時間	国に換算
	\mathbf{Cr}	Ni	溶存金属	イオン種	ı		ı				Η	Μ	L	、M:中濃度	時間=標準4	もとに溶解速
			硝酸濃度	mol/L	1	3.5	5	8	10	12	3.5	8	10	羐 模擬溶解液	=95°C、浸渍	の重量変化を
			液種				純硝酸	水溶液			枯苈	快班	俗件攸	H:高濃/	溶液温度	浸漬前後

Fe-4Cr-2W-Ni4元系モデル合金の純硝酸水溶液と模擬溶解液における溶解速度データー覧表 表 3.23

*1:第4~第8ステージ相当 *2:第1ステージ相当 *3:第2ステージ相当 *4:第3ステージ相当

連続溶解槽の模擬条件

×:活性溶解が激しく、溶解速度の定量不可

- 48 -

m/y)	- 6Cr- 備考1 備考2	0Ni	0	0.13	溶液電位	mV(SCE)	- 941		- 985	136 1004	- 1066	40.5 *1 1157	× *2 992	- *3 1038	- *4 1093
ター覧表 (m)	8Cr- $7Cr$	0Ni 0Ni	0 0	0.13 0.12			•	•	•	48.2 72.9	•	11.1 17.2	66.6 ×	-	
痒速度デー	9 Cr-	0Ni	0	0.73				×		×	26.5	16.4			
るける溶角	9Cr-	0Ni	0	0.36			•	×	•	×	26.5	16.5	-	-	-
斉解液に は	9Cr-	0Ni	0	0.13			,	ı	,	24.4	I	7.6	0.6	•	
夜と模擬落	$9 C_{r}$	iN0	0	0.071				×		56.3	6''	5.2	-	-	-
硝酸水溶液	9Cr-	0Ni	0	0			×	2.8	2.2	2.2	2.7	2.7	1.3	1.7	3.0
デル合金の純ね	\mathbf{Cr}	Ni	Ϋ́	C	溶存金属	イオン種	ı	-	ı	-	-	-	Η	W	Т
r-C4元系モラ					硝酸濃度	mol/L	1	3.5	Q	8	10	12	3.5	8	10
4 Fe-Cr-2W					液種				純硝酸	水溶液			枯茂	次历法	谷門((2))

「「「「」」 7 エデレ会会の結晶酸水 淡添し 措格 ※ 解読に なける ※ 解決 使 デ、 1 || 2 -11/0-ځ Ē 表 3.24

H:局濃度模擬溶解液、M:中濃度模擬溶解液、L:比濃度模擬溶解液 溶液温度=95℃、浸漬時間=標準4時間 浸漬前後の重量変化をもとに溶解速度に換算(3 試料平均値) ×:活性溶解が激しく、溶解速度の定量不可

連続溶解槽の模擬条件	*1:第4~第8ステージ相当	*2:第 1 ステージ相当	*3:第 2 ステージ相当	*4:第 3 ステージ相当
------------	----------------	---------------	---------------	---------------

表 3.2	5 书买)	レ合金と	9Cr-ODS	る調の参	杠硝酸水溶液 。	と模擬溶解液	における	腐食電位測	」定結果	
口ット名	形状	\mathbf{Cr}	Ti	Ni	硝酸濃度	溶存金属	温度		腐食電位	
						東イエト		試験 1	試験 2	平均値
			mass%		mol/L		J.		mV(SCE)	
Fe-9Cr-2W	板	6	0	0	10	-	65	837	824	831
Fe-6Cr-2W	板	9	0	0	10	-	95	780	775	778
Fe-4Cr-2W	板	4	0	0	10	-	95	663	753	708
Fe-4Cr-2W-8Ni	板	4	0	8	10	-	95	705	643	674
M19L	棒	9.16	0.22	ı	10	-	95	722	724	723
Fe-9Cr-2W	板	6	0	0	10	Т	65	923	922	923
Fe-6Cr-2W	板	9	0	0	10	Т	95	865	860	863
Fe-4Cr-2W	板	4	0	0	10	Т	65	828	800	814
Fe-4Cr-2W-8Ni	板	4	0	8	10	L	95	860	850	855
M19L	奉	9.16	0.22	ı	10	Γ	95	929	914	922
	L:低濃	度模擬溶	\$.解液							

腐食電位:1分浸漬後(51~60秒)の浸漬電位の平均値

٦

Т

JAEA-Research 2013-009

• - · ·		
温度	全面腐食深さ	腐食層の重量
Т	$C_{\rm FCCI}(U)$	単位長さあたり*
°C	μm	g/cm
400	0	0.00
420	1	0.00
440	1	0.00
460	3	0.01
480	7	0.02
500	15	0.03
520	28	0.06
540	43	0.10
560	57	0.13
580	66	0.15
600	71	0.16
620	73	0.16
640	75	0.17
660	75	0.17
680	76	0.17
700	76	0.17

表 3.26 内面腐食深さの計算値(全面腐食量)

*:被覆管寸法:外径 10.4mm×肉厚 0.71mm、密度 7.83g/cm³ 腐食深さを全て 9Cr-ODS 鋼として計算

(1) 小山原県県を内面商産現象に起因する溶解量の減算マトリックス ※4.1 外面商産現象と内面商産現象に起因する溶解量の減算マトリックス (1) 小山市 (1) 小山市																													
(1) 小山市 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		枝番号		A-1	B-1	B-2	B-3	B-4	B-5	B-6	B-7	C-1	C-2	C-3	C-4	C-5	C-6	C-7	D-1	D-2	D-3	D-4	D-5	D-6	D-7	Е	F	G	Η
考 4.1 外面隊食現象と内面隊食現象に起因する溶解量の試算マトリック 現象 表 4.1 外面隊食現象と内面隊食現象に起因する溶解量の試算マトリック 間段石子 現象 内面 一(速度論) 一(速度論) 内面除食 C 限氏 (0%) 日子(速度論) 外面除食 C (脱氏子) 約 2 外面除食 C (脱Cr層C濃度 4mass% (0%) 発生しきい温度 外面除食 C (脱Cr層C濃度 4mass% (0%) 発生しきい温度 内面麻食 E (供給酸素量 (mass% (0%)) 発生しきい温度 内面麻食 E (供給酸素量 (mass% (0%)) 2 月 - - - -	K	2	設定値	•	$ m D_{\circ}062$	600° C	610°C	620°C	630°C	640°C	$650^{\circ}C$	290° C	$\rm CO0^{\circ}C$	610°C	620°C	$\rm CO^{0}C$	$640^\circ C$	$650^{\circ}C$	$ m D_{\circ}062$	$\rm O_{\circ}009$	610°C	620°C	630°C	$640^\circ C$	$650^{\circ}C$	•	250° C	500° C	なし
表 4.1 外面腐食現象に起因する溶解 現象 ケース 動限因子 動配因子 月 A 助民日子 設定値 内面腐食 C 脱氏子(平衡論) 認知38%(0%) 外面腐食 C 脱氏子属C 8mass%(0%) 外面腐食 C 脱氏子属C 8mass%(0%) 外面腐食 C 脱氏子属C 8 内面腐食 D 0mass%(0%) 内面腐食 E 供給酸素量 内面腐食 - - 月 - -	量の試算マトリック	子团砌间	因子(速度論)											数子しょしる単	先生しらく信返													発生しきい温度	
表 4.1 外面腐食現象と内面腐食 現象 ケース	現象に起因する溶解	1	設定値	8mass% (0%)				7 mass % (0%)							4 mass % (0%)							0 mass % (0%)				(本文参照)	-	-	
日本 日本<	4.1 外面腐食現象と内面腐食	子囝쥅偁	因子 (平衡論)											最表面 Cr 濃度	(脱 Cr 層 C 濃度)											供給酸素量	-	•	
現 現 家 の で に で で で で の で の で の の で の の の の の の	表	ケース		Α				В							U							D				Е	H	G	Η
		現象												反而存金	7 ▶ 囬 杨 及												七百 府今	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	

徊

2	嵌一	そ4.5 9Cr-ODS 鋼の溶解工	(程における溶解量の計	·算結果: 看	長高温度炉.	心燃料集合	·体 : #:: = = =		
領域	ケース	制限因子 1 設定値	制限因子2 設定値	枝番号			計算結果		
		最表面 Cr 濃度			最高	最高	最高	最高	最高
		(脱 Cr 層 C 濃度)	発生しきい温度		温度	温度	温度	温度	温度
		供給酸素量			$620^{\circ}\mathrm{C}$	630°C	640°C	650°C	700°C
材相当	,	1			$1.4\%^{*}$	↓	↓	Ļ	Ļ
	А	8 mass % (0%)	(考慮不要)	A-1	%0	↓	↓	Ļ	Ļ
			590°C	B-1	2.3%	2.7%	3.2%	3.6%	6.3%
			600°C	B-2	2.2%	2.6%	3.0%	3.5%	6.2%
			610°C	B-3	1.9%	2.4%	2.8%	3.3%	6.1%
	В	$7 \mathrm{mass} \% (0\%)$	$620^{\circ}\mathrm{C}$	B-4	1.4%	2.0%	2.6%	3.1%	6.0%
			$630^{\circ}\mathrm{C}$	B-5	×	1.6%	2.3%	2.9%	5.8%
			640°C	B-6	×	×	1.8%	2.5%	5.6%
			650°C	B-7	×	×	×	2.0%	5.4%
			590°C	C-1	4.4%	5.2%	6.0%	6.8%	11.8%
			600°C	C-2	4.1%	4.9%	5.7%	6.5%	11.6%
内使用			610°C	C-3	3.5%	4.4%	5.3%	6.2%	11.4%
腐食起因	C	4mass $%$ (0 $%$)	$620^{\circ}\mathrm{C}$	C-4	2.7%	3.9%	4.9%	5.8%	11.1%
			630°C	C-5	×	3.0%	4.3%	5.4%	10.9%
			640°C	C-6	×	×	3.4%	4.7%	10.5%
			650°C	C-7	×	×	×	3.7%	10.1%
			290° C	D-1	5.4%	6.4%	7.4%	8.4%	14.6%
			600° C	D-2	0.0%	6.1%	7.1%	8.1%	14.3%
			610°C	D-3	4.4%	2.5%	6.6%	7.7%	14.0%
	D	0mass $% (0%)$	620°C	D-4	3.4%	4.8%	6.1%	7.2%	13.7%
			630°C	D-5	×	3.7%	5.3%	6.6%	13.4%
			640°C	D-6	×	×	4.2%	5.9%	12.9%
			650°C	D-7	×	×	×	4.6%	12.5%
	Е	供給酸素量	-	Е	0.7%	\rightarrow	↓	↓	Ļ
内使用	F	•	$550^{\circ}C$	F	1.3%	1.5%	1.6%	1.7%	2.0%
腐食起因	G		500°C	G	1.7%	1.8%	1.8%	1.9%	2.2%
	Η	-	なし	Η	1.7%	1.8%	1.9%	2.0%	2.3%
	新工: * : 工	呈要因の影響は未考慮、×:	計算条件外						

- 53 -

JAEA-Research 2013-009

表 4.3 9Cr-	ODS 鋼の落	穿解工程における溶解量の計 (算結果:全ての炉心燃オ	料集合体の	積算値
領域	ケース	制限因子1設定値	制限因子2設定値	枝番号	計算結果
		最表面 Cr 濃度			
		(脱 Cr 層 C 濃度)	発生しきい温度		
		供給酸素量			
母材相当	•			•	$1.4\%^{*}$
	Υ	8 mass % (0%)	(考慮不要)	A-1	0%
			290° C	B-1	1.0%
			000° C	B-2	0.7%
			610°C	B-3	0.5%
	В	$7 \mathrm{mass} \% \ (0\%)$	$620^{\circ}\mathrm{C}$	B-4	0.3%
			630°C	B-5	0.2%
			640°C	B-6	0.1%
			$650^{\circ}C$	B-7	0.0%
			290° C	C-1	2.0%
			600°C	C-2	1.3%
炉内使用			610°C	C-3	0.9%
外面腐食起因	C	4mass% (0%)	$620^{\circ}\mathrm{C}$	C-4	0.6%
			630°C	C-5	0.3%
			640°C	C-6	0.2%
			650°C	C-7	0.1%
			290° C	D-1	2.4%
			000° C	D-2	1.7%
			610°C	D-3	1.2%
	D	0mass $% (0%)$	$620^{\circ}\mathrm{C}$	D-4	0.7%
			630°C	D-5	0.4%
			640°C	D-6	0.2%
			650°C	D-7	0.1%
	Е	供給酸素量		E	0.7%
炉内使用	F		$550^{\circ}C$	F	1.0%
内面腐食起因	G	-	500° C	G	1.3%
	Η		なし	Η	1.4%
*:工程要因の	影響は未考	围			

、た保守性のリスト	说是赵敏	外面腐食によって溶解する領域も溶解すると仮定した。	剪断数を実際よりも多めに設定した。	実際には、被覆管の肉厚は有限であり、内面からの反射効果が あるため、濃度勾配が漸減する。	燃料集合体あたりの溶解量を計算するときに、集合体の中の 具す温曲姆約やいの温曲をまました計増した。 生酸には、 進合体	取同価度燃料にくび価度をもてに即乗した。実験には、来口体の中に温度分布があり、平均温度は最高温度より当然低い。	炉心燃料カラム上端温度を適用した。実際には、発熱量減少と	冷却材混合の効果で温度は漸減する。	寿命期間中の温度は一定で計算した。実際には、高燃焼度にな	ると発熱量が減少し、被覆管温度は漸減する。	表面温度に肉厚中心温度を適用した。実際には、被覆管自体の	発熱と熱通過で肉厚方向に 30℃程度の温度差がある。	各メッシュの腐食層を計算するときに、メッシュ上端の温度を	もとに計算した。実際には、メッシュの中にも温度分布があ	ති. ප
表 4.4 評価体系の中で設定し	設定した保守性	全長適用	剪断片数	無限板の想定	准み床市温市へ左の無担	米口体に通送び生気がある	中語シート 1 7 早一二一: よく デブヨー	上部ノンノクツトC上部ノレノスの政化	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	緊治効果の兼協	学にシートに、			メッシュ上端温度の適用	
		射光洋	衣即傾	解析体系					世世	信心					
		구나 모깃 가지 머무 누구 "고고	▶1101111111111111111111111111111111111				54 五府今43日	У▶ 围廠 民他公						内面腔今起困	1.11年後月21日

~
К
\square
6
Ť
Ψ.
цК Тр
1
*
~
定
設
Ē
Ĥ-
Ā
N/L
14
<u>4</u>
甸
計
4
4

期待される成果	50. 法留当时 4. 10 10 10 10 10 10 10 10 10 10 10 10 10	Kuン行研!还及 uン J/例作1及 HJ 工	Fic、Cr、Ni、Fe)の最表面濃度予測精度の向上	(特に、C)の最表面濃度予測精度の向上)解明(特に、Cr、Ni、Fe)	zの解明(特に、浸炭)	: もなう相変化の予測評価 (平衡論・速度論)	●に必要な設備の整備	りの解明	料ペレットに対応する相関式の整備	J検討に基づく上限量の解明	こる溶解速度変化の実測データの拡充
有効な試験(例)	試験対象ロット数の増量	ロットあたりの製作本数の増量	約 峯 三 割 要 ┃ 数 間 の 衆 圭 卿 提 톖 去 の 算 誑 点 引 炎 腟 快 ①	非金属元素	○ 夏	一张生現象自作	③拡散係数の取得と状態図の作成	④ナトリウムループ試験設備整備 ①~③の試験	③高燃焼度燃料ピン照射試験	低 O/M 比燃	化学熱力学的	⑥高燃焼度燃料ピン/高照射量材料照射試験 照射効果に]
	夾		外面腐食起因						内面腐食起因			照射劾果起因
	母材相当領地		炉内使用									

*1:Y₂O₃=1.27Y、*2:Ex.O=Total O-0.27Y、*3:素管分析值

1							0 713
試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	F13	まま	95	100	3.5	-	0.46
-	F13	まま	95	24	8	-	0.37
-	F13	まま	100	6	8	-	0.47
-	F13	まま	沸点	6	8	-	1.3
-	F14	#400	95	0.5	1	-	218.8
-	F14	#400	95	0.5	1	-	222.9
-	F14	#400	95	0.5	1	-	309.0
-	F14	#400	95	4	1	-	27.41
-	F14	#400	95	4	1	-	27.82
-	F14	#400	95	4	1	-	38.63
-	F14	#400	95	0.5	3.5	-	46.33
-	F14	#400	95	0.5	3.5	-	20.47
-	F14	#400	95	0.5	3.5	-	8.03
Е	F14	#400	95	1	3.5	-	3.4
-	F14	#400	95	4	3.5	-	6.37
-	F14	#400	95	4	3.5	-	2.85
-	F14	#400	95	4	3.5	-	1.47
-	F14	まま	95	100	3.5	-	0.44
-	F14	まま	95	100	3.5	-	0.45
E-1	F14	#400	95	100	3.5	-	0.5
E-2	F14	#400	95	100	3.5	-	0.4
E-3	F14	#400	95	100	3.5	-	0.4
-	F14	#400	95	0.5	5	-	1.29
-	F14	#400	95	0.5	5	-	1.58
-	F14	#400	95	0.5	5	-	1.07
-	F14	#400	95	4	5	-	0.95
-	F14	#400	95	4	5	-	0.76
-	F14	#400	95	4	5	-	0.71
-	F14	#400	95	0.5	8	-	0.55
-	F14	#400	95	0.5	8	-	0.75
-	F14	#400	95	0.5	8	-	0.89
-	F14	#400	95	4	8	-	0.58
-	F14	#400	95	4	8	-	0.51
-	F14	#400	95	4	8	-	0.76

表 5.2(1) 純硝酸水溶液と模擬溶解液への溶解速度:12Cr-ODS 鋼

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	F14	#400	95	0.5	10	-	0.48
-	F14	#400	95	0.5	10	-	0.24
-	F14	#400	95	0.5	10	-	0.38
-	F14	#400	95	4	10	-	0.43
-	F14	#400	95	4	10	-	0.28
-	F14	#400	95	4	10	-	0.30
-	F14	#400	95	0.5	12	-	0.67
-	F14	#400	95	0.5	12	-	0.75
-	F14	#400	95	0.5	12	-	0.59
-	F14	#400	95	4	12	-	0.47
-	F14	#400	95	4	12	-	0.49
-	F14	#400	95	4	12	-	0.45
-	F14	#400	95	0.5	3.5	Н	0.54
-	F14	#400	95	0.5	3.5	Н	0.59
-	F14	#400	95	0.5	3.5	Н	0.72
-	F14	#400	95	4	3.5	Н	0.30
-	F14	#400	95	4	3.5	Н	0.29
-	F14	#400	95	4	3.5	Н	0.29
-	F14	#400	95	0.5	8	М	0.70
-	F14	#400	95	0.5	8	М	0.83
-	F14	#400	95	0.5	8	М	0.72
-	F14	#400	95	4	8	М	0.25
-	F14	#400	95	4	8	М	0.37
-	F14	#400	95	4	8	М	0.20
-	F14	#400	95	0.5	10	\mathbf{L}	0.66
-	F14	#400	95	0.5	10	L	1.04
-	F14	#400	95	0.5	10	\mathbf{L}	0.98
-	F14	#400	95	4	10	\mathbf{L}	0.37
-	F14	#400	95	4	10	L	0.42
-	F14	#400	95	4	10	L	0.38

表 5.2(2) 純硝酸水溶液と模擬溶解液への溶解速度:12Cr-ODS 鋼

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液

		魚緒	1901-100-100	刺と同 INI 測の伸援/ 1.00ODC 細	小浴阀と倶籢 │	将弾液により 声 Mi 細) つ 浴 膵 速 反 声 Ni: 鎦	アータ 声 Ni 細	DNG916	DNICE16
		型明 (理			Mar INI (E)	Mar INI (LL)	Mar INI (III)	Mar INI (LL)	FINCATO	LINCOLD
		ロット名	F14	F14	$8NK_A$	$8NK_A$	1543G	1543G	LK051	LK051
		浸漬時間	30min	4 hr	30min	4 hr	30 min	4hr	30min	4hr
		単位	mm/y	mm/y	mm/y	mm/y	mm/y	mm/y	mm/y	mm/y
液種	硝酸濃度	溶存金属			ı	ı	I	ı	ı	I
	mol/L	イオン種	-	-	•		•		•	•
	1	•	250.22	31.29	6.13	0.78	0.44	0.10	-	0.02
	2	•	-		•		I		-	0.01
会古方法用治	3.5	•	24.97	3.56	1.43	0.34	0.46	0.10	-	0.04
FH11日次 ようないた	2		1.38	0.81	0.69	0.30	0.44	0.08	-	0.04
小街饭	8		0.72	0.62	0.71	0.39	0.53	0.10	0.08	0.06
	10	•	0.26	0.33	0.86	0.46	0.35	0.11	I	0.04
	12	-	0.68	0.46	0.94	0.54	0.36	0.12	0.15	0.11
拍丙	3.5	Н	0.55	0.28	0.57	0.42	0.48	0.11	0.38	0.28
法规试	8	M	0.67	0.27	0.38	0.34	0.22	0.09	•	0.62
伯吽似	10	L	0.82	0.39	0.75	0.54	0.41	0.17	•	0.45
		H:高漾	皀 度模擬溶解液、 M	I:中濃度模擬溶解	夜、L:低濃 _見	度模擬溶解液				

まち3 19C+-ODS 細と高 N: 細の硝酸水淡淡と精整淡解液におけろ淡解清唐データ

- 60 -

連続溶解槽の模擬条件

	表	5.4 12Cr-ODS 鋼の溶解工	「程における溶解量の計	 算結果:	長高温度炉	心燃料集合	个体		
領域	ケース	制限因子1設定値	制限因子2 設定値	枝番号			計算結果		
		最表面 Cr 濃度			最高	最高	最高	最高	最高
		(脱 Cr 層 C 濃度)	発生しきい温度		温度	温度	温度	温度	温度
		供給酸素量			$620^{\circ}\mathrm{C}$	$630^{\circ}\mathrm{C}$	640°C	$650^{\circ}C$	$700^{\circ}C$
母材相当		1			0.3%*	Ļ	↓	Ļ	Ļ
	А	8mass% (0%)	(考慮不要)	A-1	%0	Ļ	↓	Ļ	Ļ
			590° C	B-1	0.9%	1.0%	1.2%	1.4%	2.4%
			000°C	B-2	0.8%	1.0%	1.1%	1.3%	2.4%
			610°C	B-3	0.7%	0.9%	1.1%	1.3%	2.3%
	В	7mass% (0%)	620°C	B-4	0.5%	%8.0	1.0%	1.2%	2.3%
			630°C	B-5	×	%9.0	%6.0	1.1%	2.2%
			640°C	B-6	×	×	0.7%	1.0%	2.1%
			650°C	B-7	×	×	×	0.7%	2.1%
			590° C	C-1	2.3%	2.7%	3.2%	3.6%	6.3%
			000°C	C-2	2.2%	2.6%	3.0%	3.5%	6.2%
炉内使用			610°C	C-3	1.9%	2.4%	2.8%	3.3%	6.1%
外面腐食起因	C	4mass% (0%)	620°C	C-4	1.4%	2.1%	2.6%	3.1%	6.0%
			$630^{\circ}\mathrm{C}$	C-5	×	1.6%	2.3%	2.9%	5.8%
			$640^{\circ}C$	C-6	×	×	1.8%	2.5%	5.6%
			0.000	C-7	×	×	×	2.0%	5.4%
			$D_{\circ}062$	D-1	3.3%	3.9%	4.5%	5.2%	9.0%
			$\rm CO0^{\circ}C$	D-2	3.1%	3.7%	4.3%	5.0%	8.8%
			610°C	D-3	2.7%	3.4%	4.1%	4.7%	8.7%
	D	0mass% (0%)	$620^{\circ}\mathrm{C}$	D-4	2.1%	2.9%	3.7%	4.4%	8.5%
			$630^{\circ}\mathrm{C}$	D-5	×	2.3%	3.3%	4.1%	8.3%
			$640^{\circ}C$	D-6	×	×	2.5%	3.6%	8.0%
			0.020	D-7	×	×	×	2.8%	7.7%
	E	供給酸素量	•	Е	0.7%	→	→	→	→
炉内使用	F	-	$550^{\circ}C$	F	1.3%	1.5%	1.6%	1.7%	2.0%
内面腐食起因	G		500°C	G	1.7%	1.8%	1.8%	1.9%	2.2%
	Н	-	なし	Η	1.7%	1.8%	1.9%	2.0%	2.3%
	*: T [#]	呈要因の影響は未考慮、×:	計算条件外						

表 5.5 12Cr	-ODS 鋼のネ	容解工程における溶解量の計	算結果:全ての炉心燃	料集合体の	積算値																									
領域	ケース	制限因子 1 設定値	制限因子2設定値	枝番号	計算結果																									
		最表面 Cr 濃度																												
		(脱 Cr 層 C 濃度)	発生しきい温度																											
		供給酸素量																												
母材相当		ı	-	I	$0.3\%^{*}$																									
	Y	8 mass % (0%)	(考慮不要)	I-A	%0																									
			590°C	B-1	0.4%																									
			$\rm CO_{\circ}OO9$	B-2	0.3%																									
			610°C	B-3	0.2%																									
	В	$7 \mathrm{mass} \% $ (0%)	$620^{\circ}\mathrm{C}$	B-4	0.1%																									
			630°C	B-5	0.1%																									
			640°C	B-6	0.0%																									
			C_0^2	B-7	0.0%																									
			590°C	C-1	1.0%																									
			600°C	C-2	0.7%																									
炉内使用			610°C	C-3	0.5%																									
外面腐食起因	C	4mass $%$ (0%)	620°C	C-4	0.3%																									
			630°C	C-5	0.2%																									
			640°C	C-6	0.1%																									
			C_0^2	C-7	0.0%																									
			590°C	D-1	1.5%																									
			$O_{\circ}009$	D-2	1.0%																									
			610°C	D-3	0.7%																									
	D	0mass $% (0%)$	620°C	D-4	0.5%																									
			630°C	D-5	0.3%																									
			640°C	D-6	0.1%																									
			$650^{\circ}C$	D-7	0.1%																									
	Е	供給酸素量	-	Е	0.7%																									
炉内使用	F	•	$550^{\circ}C$	F	1.0%																									
内面腐食起因	G	•	500° C	G	1.3%																									
	Η	•	なし	Η	1.4%																									
*:工程要因の	影響は未考	慮																												
) 集合体 「= 二 二 二	最高温度 640°C			$.4\%^*$ $0.3\%^*$	%0 %0	3.2% $1.2%$	3.0% 1.1%	2.8% $1.1%$	2.6% 1.0%	2.3% $0.9%$	0.7% 0.7%	×	6.0% $3.2%$	5.7% 3.0%	5.3% $2.8%$	4.9% $2.6%$	4.3% $2.3%$	3.4% $1.8%$	×	7.4% 4.5%	7.1% 4.3%	6.6% $4.1%$	6.1% $3.7%$	5.3% $3.3%$	4.2% $2.5%$	×	0.7% 0.7%	1.6% $1.6%$	1.8% $1.8%$	1.9% $1.9%$
----------------------	------------	----------------------------	--	--------------------	--------------	-----------------	--------------------	-----------------------	-----------------------	---------------	-----------------------	----------------	-----------------------	----------------	-----------------------	-------------------------	---------------	-----------------------	----------------	-----------------------	----------------	-----------------------	--------------------------	-------------------------	-------------	----------------	-----------	----------------	-----------------	-------------
最高温度炉心燃料	枝畨号	oU*		-	A-1	B-1	B-2	B-3	B-4 2	B-5	B-6	B-7	C-1 (C-2	C-3	C-4	C-5	C-6	C-7	D-1	D-2	D-3 (D-4 (D-5	D-6	D-7	E (F	G	H
鋼の溶解量の比較:	制限因子2 設定値	東い「キ」を改	NT VOV		(姜慮不要)	590° C	$\rm D_{\circ}009$	610°C	620°C	$630^\circ C$	640°C	$650^{\circ}C$	590°C	00° C	610°C	$620^{\circ}\mathrm{C}$	$630^\circ C$	640°C	$650^{\circ}C$	590°C	$D_{\circ}009$	610°C	$620^{\circ}\mathrm{C}$	$630^{\circ}\mathrm{C}$	0.050	$650^{\circ}C$	-	$2^{\circ}025$	200° C	コギ
9Cr-ODS 鋼と 12Cr-ODS	制限因子 1 設定値	最表面 Cr 濃度 (脳 Cr 属 C 濃度)	vm or je o w o / m o /		8 mass% (0%)				7 mass% (0%)							4 mass% (0%)							$0 mass^{0/6} (0^{1/6})$				供給酸素量	•	I	I
表 5.6	ケース				Α				В							C							D				E	F	G	Η
2	領域			母材相当		I							I		炉内使用	外面腐食起因				I								炉内使用	内面腐食起因	

	表 5.7 9(<u>Dr-ODS 鋼と 12Cr-ODS 鋼の</u>	溶解量の比較:全ての	炉心燃料集	合体の積算値	
領域	ケース	制限因子1設定値	制限因子2設定値	枝番号	計算結果	計算結果
		最表面 Cr 濃度				
		(脱 Cr 層 C 濃度) 什灸酸姜鼻	発生しきい温度		9Cr-ODS 釽	12Cr-ODS 鋼
까마구구		医加度术里			1 10/*	000 V
日本で			(1.4 70°	
	А	8mass% (0%)	(考慮个要)	A-1	0%0	Ţ
			590°C	B-1	1.0%	0.4%
			$600^{\circ}C$	B-2	0.7%	0.3%
			610° C	B-3	%2.0	0.2%
	В	7mass% (0%)	620° C	B-4	0.3%	0.1%
			C063	B-5	0.2%	0.1%
			640° C	B-6	0.1%	0.0%
			C_029	B-7	%0.0	%0.0
			200°C	C-1	2.0%	1.0%
			$\Omega_{\circ}009$	C-2	1.3%	0.7%
炉内使用			610° C	C-3	%6.0	0.5%
外面腐食起因	C	4mass% (0%)	620°C	C-4	0.6%	0.3%
			C063	C-5	0.3%	0.2%
			640° C	C-6	0.2%	0.1%
			C°0č5	C-7	0.1%	0.0%
			290°C	D-1	2.4%	1.5%
			$\Omega_{\circ}009$	D-2	1.7%	1.0%
			610°C	D-3	1.2%	0.7%
	D	0mass $%$ (0 $%$)	620°C	D-4	0.7%	0.5%
			630°C	D-5	0.4%	0.3%
			640° C	D-6	0.2%	0.1%
			C029	D-7	0.1%	0.1%
	E	供給酸素量	-	Е	%20	\rightarrow
炉内使用	F	-	550°C	F	1.0%	\downarrow
内面腐食起因	G	-	500°C	G	1.3%	↓
	Η	-	なし	Н	1.4%	\downarrow
*	工程要因の	影響は未考慮				

JAEA-Research 2013-009

		炭窒化物	金属間化合物	PNC316 [目標値]
		析出強化型	析出強化型日本の日本の加加1543G 0.02 $0.040 \sim 0.080 [0.06]$ 0.03 $0.40 \sim 1.00 [0.70]$ 0.01 $1.40 \sim 2.00 [1.7]$ 0.005 $0.015 \sim 0.040 [0.025]$ 0.001 ≤ 0.010 42.7 $13.00 \sim 14.00 [LR]$ 14.8 $16.00 \sim 18.00 [TR]$ 1.99 $2.00 \sim 3.00 [2.5]$ 2.27 - 0.26 $0.05 \sim 0.10 [LR]$ <0.01 ≤ 0.20 2.84 $0.05 \sim 0.10 [LR]$ 0.0051 ≤ 0.0040	
	ロット名	8NK_A	1543G	
	С	0.05	0.02	$0.040{\sim}0.080~[0.06]$
	Si	0.34	0.03	$0.40{\sim}1.00~[0.70]$
	Mn	0.23	0.01	$1.40 \sim 2.00 [1.7]$
	Р	0.022	0.005	$0.015{\sim}0.040~[0.025]$
	S	0.001	0.001	≤ 0.010
	Ni	35.0	42.7	13.00~14.00 [上限]
	\mathbf{Cr}	15.3	14.8	16.00~18.00 [下限]
	Mo	2.32	1.99	$2.00{\sim}3.00$ [2.5]
化学代入	W	1.54	2.27	-
	Ti	0.01	0.26	0.05~0.10 [上限]
mass%	V	0.19	< 0.01	≤ 0.20
	Nb	0.35	2.84	0.05~0.10 [上限]
	0	0.0010	0.0051	≦0.0040
	Ν	0.04	0.001	≤ 0.010
	В	0.0036	-	0.0020~0.0060 [0.0040]
	Co	< 0.01	-	≤ 0.05
	Cu	< 0.01	-	≤ 0.20
	As	-	-	≦0.030
	Al	0.016	0.126	≤ 0.050
金相	結晶粒度	ND	ND	ASTM No.6~9 [7.5~8.5]
旦 奴劫加亚	溶体化処理	1130℃×2分	1010℃×2分	\geq 1040°C*2
取於然处理	焼き戻し*1	720℃×10 時間	750℃×8 時間	-
加工	最終冷間加工	20%	20%	20±3%

表 5.8 高 Ni 鋼供試材と PNC316 の材料仕様

*1:焼き戻し処理は最終冷間加工後に実施

*2:最終熱処理=製品の結晶粒度等が仕様値に収まるように調整

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	8NK_A	#400	95	0.5	1	-	6.24
-	8NK_A	#400	95	0.5	1	-	6.18
-	8NK_A	#400	95	0.5	1	-	5.91
-	8NK_A	#400	95	4	1	-	0.75
-	8NK_A	#400	95	4	1	-	0.85
-	8NK_A	#400	95	4	1	-	0.74
-	8NK_A	#400	95	0.5	3.5	-	1.67
-	8NK_A	#400	95	0.5	3.5	-	1.05
-	8NK_A	#400	95	0.5	3.5	-	1.59
-	8NK_A	#400	95	4	3.5	-	0.38
-	8NK_A	#400	95	4	3.5	-	0.28
-	8NK_A	#400	95	4	3.5	-	0.35
-	8NK_A	#400	95	0.5	5	-	0.85
-	8NK_A	#400	95	0.5	5	-	0.76
-	8NK_A	#400	95	0.5	5	-	0.45
-	8NK_A	#400	95	4	5	-	0.28
-	8NK_A	#400	95	4	5	-	0.21
-	8NK_A	#400	95	4	5	-	0.37
-	8NK_A	#400	95	0.5	8	-	0.67
-	8NK_A	#400	95	0.5	8	-	0.72
-	8NK_A	#400	95	0.5	8	-	0.68
-	8NK_A	#400	95	4	8	-	0.35
-	8NK_A	#400	95	4	8	-	0.42
-	8NK_A	#400	95	4	8	-	0.40
-	8NK_A	#400	95	0.5	10	-	0.78
-	8NK_A	#400	95	0.5	10	-	1.05
-	8NK_A	#400	95	0.5	10	-	0.60
-	8NK_A	#400	95	4	10	-	0.43
-	8NK_A	#400	95	4	10	-	0.51
-	8NK_A	#400	95	4	10	-	0.41
-	8NK_A	#400	95	0.5	12	-	0.79
-	8NK_A	#400	95	0.5	12	-	0.77
-	8NK_A	#400	95	0.5	12	-	1.16
-	8NK_A	#400	95	4	12	-	0.49
-	8NK_A	#400	95	4	12	-	0.54
-	8NK_A	#400	95	4	12	-	0.62

表 5.9(1) 純硝酸水溶液と模擬溶解液への溶解速度データ: 炭窒化物析出強化型高 Ni 鋼

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	8NK_A	#400	95	0.5	3.5	Н	0.62
-	8NK_A	#400	95	0.5	3.5	Н	0.57
-	8NK_A	#400	95	0.5	3.5	Н	0.43
-	8NK_A	#400	95	4	3.5	Н	0.48
-	8NK_A	#400	95	4	3.5	Н	0.45
-	8NK_A	#400	95	4	3.5	Н	0.28
-	8NK_A	#400	95	0.5	8	М	0.40
-	8NK_A	#400	95	0.5	8	М	0.26
-	8NK_A	#400	95	0.5	8	М	0.26
-	8NK_A	#400	95	4	8	Μ	0.38
-	8NK_A	#400	95	4	8	М	0.32
-	8NK_A	#400	95	4	8	М	0.32
-	8NK_A	#400	95	0.5	10	\mathbf{L}	0.79
-	8NK_A	#400	95	0.5	10	\mathbf{L}	0.45
-	8NK_A	#400	95	0.5	10	\mathbf{L}	0.74
-	8NK_A	#400	95	4	10	\mathbf{L}	0.56
-	8NK_A	#400	95	4	10	L	0.44
-	8NK_A	#400	95	4	10	L	0.59

表 5.9(2) 純硝酸水溶液と模擬溶解液への溶解速度データ: 炭窒化物析出強化型高 Ni 鋼

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	1543G	#400	95	0.5	1	-	0.30
-	1543G	#400	95	0.5	1	-	0.48
-	1543G	#400	95	0.5	1	-	0.63
-	1543G	#400	95	4	1	-	0.10
-	1543G	#400	95	4	1	-	0.07
-	1543G	#400	95	4	1	-	0.14
-	1543G	#400	95	0.5	3.5	-	0.53
-	1543G	#400	95	0.5	3.5	-	0.48
-	1543G	#400	95	0.5	3.5	-	0.40
-	1543G	#400	95	4	3.5	-	0.09
-	1543G	#400	95	4	3.5	-	0.11
-	1543G	#400	95	4	3.5	-	0.09
-	1543G	#400	95	0.5	5	-	0.63
-	1543G	#400	95	0.5	5	-	0.25
-	1543G	#400	95	0.5	5	-	0.48
-	1543G	#400	95	4	5	-	0.13
-	1543G	#400	95	4	5	-	0.05
-	1543G	#400	95	4	5	-	0.09
-	1543G	#400	95	0.5	8	-	0.63
-	1543G	#400	95	0.5	8	-	0.73
-	1543G	#400	95	0.5	8	-	0.40
-	1543G	#400	95	4	8	-	0.10
-	1543G	#400	95	4	8	-	0.10
-	1543G	#400	95	4	8	-	0.10
-	1543G	#400	95	0.5	10	-	0.29
-	1543G	#400	95	0.5	10	-	0.41
-	1543G	#400	95	0.5	10	-	0.53
-	1543G	#400	95	4	10	-	0.13
-	1543G	#400	95	4	10	-	0.13
-	1543G	#400	95	4	10	-	0.08

表 5.10(1) 純硝酸水溶液と模擬溶解液への溶解速度データ: 金属間化合物析出強化型高 Ni 鋼

試料	ロット	表面	温度	時間	硝酸濃度	溶存金属	溶解速度
番号		仕上げ				イオン種	
			°C	hr	mol/L		mm/y
-	1543G	#400	95	0.5	12	-	0.33
-	1543G	#400	95	0.5	12	-	0.28
-	1543G	#400	95	0.5	12	-	0.35
-	1543G	#400	95	4	12	-	0.11
-	1543G	#400	95	4	12	-	0.11
-	1543G	#400	95	4	12	-	0.11
-	1543G	#400	95	0.5	3.5	Н	0.33
-	1543G	#400	95	0.5	3.5	Н	0.68
-	1543G	#400	95	0.5	3.5	Н	0.43
-	1543G	#400	95	4	3.5	Н	0.04
-	1543G	#400	95	4	3.5	Н	0.12
-	1543G	#400	95	4	3.5	Н	0.19
-	1543G	#400	95	0.5	8	М	0.20
-	1543G	#400	95	0.5	8	М	0.30
-	1543G	#400	95	0.5	8	М	0.35
-	1543G	#400	95	4	8	М	0.07
-	1543G	#400	95	4	8	М	0.05
-	1543G	#400	95	4	8	М	0.17
-	1543G	#400	95	0.5	10	L	0.33
-	1543G	#400	95	0.5	10	L	0.50
-	1543G	#400	95	0.5	10	\mathbf{L}	0.38
-	1543G	#400	95	4	10	L	0.14
-	1543G	#400	95	4	10	L	0.18
-	1543G	#400	95	4	10	L	0.16
	TT ±			中が伸出	## # # # ? * * * * *		いった ムコンナ

表 5.10(2) 純硝酸水溶液と模擬溶解液への溶解速度データ:

金属間化合物析出強化型高 Ni 鋼

H:高濃度模擬溶解液、M:中濃度模擬溶解液、L:低濃度模擬溶解液

図1.4 連続溶解槽内での剪断片および溶液の流れ

JAEA-Research 2013-009

試験名:EBR-II/ORT/OTT/SPA-1A、ビン番号UW11049 ビーク燃焼度:4.35at%、ビーク照射量:3.77×10²²n/cm²(E>0.1MeV) 被覆管:PNC-FMS、燃料ペレット:中実、観察位置:X/L=0.88

図1.6 内面腐食に関する観察事例(PNC-FMS被覆管)

図2.1 BOR-60第2期照射試験におけるクロム濃度分布測定例その1 (ロット=Mm14、流速=1.9m/sec、時間=13570hr)

図2.2 BOR-60第2期照射試験におけるクロム濃度分布測定例その2 (ロット=Mm14、流速=1.9m/sec、時間=13570hr)

図2.3 BOR-60第3期照射試験におけるクロム濃度分布測定例その1 (ロット=Mm14、流速=1.9m/sec、時間=15442hr)

図2.4 BOR-60第3期照射試験におけるクロム濃度分布測定例その2 (ロット=Mm14、流速=1.9m/sec、時間=15442hr)

図2.6 内面腐食深さに及ぼす温度の影響その1

出典:井上賢紀、浅賀鍵男、「高速炉用ウランーブルトニウム混合酸化物燃料ビンの伝熱特性に及ぼす燃焼効果の評価 -燃料組織変化に及ぼす照射条件の影響とギャップリオープン現象-」、JNC TN9400 2001-081 (2001).

図2.8 9Cr-ODS鋼(Mm14)の「常陽」照射前後の溶解速度の比較 純硝酸水溶液:8mol/L、浸漬温度:95℃

図3.1 外面腐食と内面腐食に関する解析体系

図3.2 質量移行現象の計算のためのモデル図

図3.3 600℃・640℃・700℃における脱クロム層の深さ方向計算結果

図3.4 モデル合金(Fe-4Cr-2WとFe-4Cr-2W-8Ni)の分極曲線 温度:95℃ 黒線:10mol/L純硝酸水溶液 赤線:低濃度模擬溶解液C

表1.	SI 基本単位	7.
甘大昌	SI 基本ì	単位
盔半里	名称	記号
長さ	メートル	m
質 量	キログラム	kg
時 間	秒	s
電 流	アンペア	А
熱力学温度	ケルビン	Κ
物質量	モル	mol
光度	カンデラ	cd

表2. 基本甲位を用	いて表されるSI組立単位	立の例
和辛雪	SI 基本単位	
和立里	名称	記号
面 積平	方メートル	m^2
体 積立	法メートル	m^3
速さ,速度メ	ートル毎秒	m/s
加速度メ	ートル毎秒毎秒	m/s^2
波 数每	メートル	m ⁻¹
密度,質量密度キ	ログラム毎立方メートル	kg/m ³
面積密度キ	ログラム毎平方メートル	kg/m ²
比 体 積立	方メートル毎キログラム	m ³ /kg
電流密度ア	ンペア毎平方メートル	A/m^2
磁界の強さア	ンペア毎メートル	A/m
量濃度 ^(a) ,濃度モ	ル毎立方メートル	mol/m ³
質量濃度キ	ログラム毎立法メートル	kg/m ³
輝 度力	ンデラ毎平方メートル	cd/m^2
屈 折 率 ^(b) (数字の) 1	1
比透磁率(b)	数字の) 1	1
(a) 量濃度 (amount concentra	ation)は臨床化学の分野では	物質濃度
(substance concentration)	とも上げれる	

(substance concentration)ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

			SI 租立单位	
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
亚	5.37 v (b)	red	1 (b)	m/m
	() / / / / / / (b)	(c)	1 1 (b)	2/ 2
		sr II-	1	m m -1
同 仮 多		пг		S .
カ	ニュートン	N		m kg s ⁻²
E 力 , 応 力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー,仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率, 工率, 放射束	ワット	W	J/s	m ² kg s ⁻³
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{\cdot 3} A^{\cdot 2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^2 A^1$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^{-2} A^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m ²	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量 比エネルギー分与				
カーマ	グレイ	Gy	J/kg	m ² s ²
線量当量,周辺線量当量,方向	2 × 2 2 (g)	C	T/la a	2 -2
性線量当量,個人線量当量		SV	J/Kg	ms
酸素活性	カタール	kat		s ⁻¹ mol

酸素活性(カタール) kat [s¹ mol]
 (a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや ュヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明 示されない。
 (a)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)へルツは周崩現象についてのみ、ペシレルは抜焼性核種の統計的過程についてのみ使用される。
 (a)セルシウス度はケルビンの特別な名称で、セルシウス温度度を表すために使用される。
 (d)やレシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (d)かりたきさは同一である。しただかって、温度度差やす数値はとちらの単位でましても同じである。
 (f)放射性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト (PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	S	祖立単位			
組立量	名称	記号	SI 基本単位による 表し方		
粘度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹		
カのモーメント	ニュートンメートル	N m	m ² kg s ⁻²		
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²		
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹		
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²		
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³		
熱容量,エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{-2} K^{-1}$		
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$		
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{2}$		
熱 伝 導 率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹		
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²		
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹		
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA		
表 面 電 荷	「クーロン毎平方メートル	C/m ²	m ⁻² sA		
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m ²	m ⁻² sA		
誘 電 率	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$		
透磁 率	ペンリー毎メートル	H/m	m kg s ⁻² A ⁻²		
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$		
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^2 kg s^{-2} K^{-1} mol^{-1}$		
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA		
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{3}$		
放 射 強 度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$		
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³		
酸素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ e ⁻¹ mol		

		表5.8	I 接頭語		
乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	э 9	Y	10 ⁻¹	デシ	d
10^{21}	ゼタ	Z	10 ⁻²	センチ	с
10^{18}	エクサ	E	10 ⁻³	ミリ	m
10^{15}	ペタ	Р	10 ⁻⁶	マイクロ	μ
10^{12}	テラ	Т	10 ⁻⁹	ナノ	n
10^{9}	ギガ	G	10^{-12}	ピコ	р
10^{6}	メガ	M	10^{-15}	フェムト	f
10^{3}	+ 1	k	10 ⁻¹⁸	アト	а
10^{2}	ヘクト	h	10^{-21}	ゼプト	z
10^{1}	デカ	da	10 ⁻²⁴	ヨクト	v

表6.SIに属さないが、SIと併用される単位				
名称	記号	SI 単位による値		
分	min	1 min=60s		
時	h	1h =60 min=3600 s		
日	d	1 d=24 h=86 400 s		
度	٥	1°=(п/180) rad		
分	,	1'=(1/60)°=(п/10800) rad		
秒	"	1"=(1/60)'=(п/648000) rad		
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²		
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³		
トン	t	$1t=10^{3}$ kg		

表7. SIに属さないが、SIと併用される単位で、SI単位で

衣される剱値が美験的に侍られるもの						
名称				記号	SI 単位で表される数値	
電	子 >	ボル	ŀ	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J	
ダ	N	ŀ	\sim	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg	
統-	一原子	質量単	单位	u	1u=1 Da	
天	文	単	位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m	

表8.SIに属さないが、SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値	
バ	-	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa	
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa	
オン	グストロ・	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m	
海		里	М	1 M=1852m	
バ	-	ン	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²	
1	ツ	ŀ	kn	1 kn=(1852/3600)m/s	
ネ	-	パ	Np	CI単位しの粉値的な間接け	
ベ		N	В	対数量の定義に依存。	
デ	ジベ	ル	dB -		

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値		
エルグ	erg	1 erg=10 ⁻⁷ J		
ダイン	dyn	1 dyn=10 ⁻⁵ N		
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s		
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{-1} = 10^{-4} \text{ m}^2 \text{ s}^{-1}$		
スチルブ	$^{\mathrm{sb}}$	$1 \text{ sb} = 1 \text{ cd } \text{ cm}^{\cdot 2} = 10^4 \text{ cd } \text{m}^{\cdot 2}$		
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx		
ガ ル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²		
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$		
ガウス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T		
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ^{·1}		
(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ≦ 」				

は対応関係を示すものである。

		表	(10.	SIに 属	禹さないその他の単位の例
	名称				SI 単位で表される数値
キ	ユ	IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	ン	トゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ			K	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$			ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		\sim	7	γ	1 γ =1 nT=10-9T
フ	I.	N	"		1フェルミ=1 fm=10-15m
メー	ートル	系カラ	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ			ル	Torr	1 Torr = (101 325/760) Pa
標	進	大気	圧	atm	1 atm = 101 325 Pa
力	П	IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー) 4.184J(「熱化学」カロリー)
3	カ	17	~		$1 = 1 = 10^{-6}$ m

この印刷物は再生紙を使用しています