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This report presents a new surface capturing method based on the phase field model for gas-
liquid two-phase flows simulation. In the conventional phase field model, the interface correction
strength parameter was determined from the maximum flow velocity in the computational domain,
but because the interface correction was applied uniformly to the entire space, it was also applied
to locations that did not require correction. In the new method, the phase field parameter or the
intensity of the phase field model is extended to have a spatial distribution, allowing us to set the
optimal parameters depending on the local flow velocity fields. We also propose a method to derive
the optimal phase field parameter based on systematic parameter scans using error analysis of the
interface advection test and bubble rising calculations. Through benchmark tests of gas-liquid two-
phase flows, the proposed model is verified, and it is shown that the proposed model has higher

accuracy than the conventional phase field model.
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1 Introduction

Understanding of gas-liquid two-phase flows is important for designing cooling systems based on
boiling refrigerants in various industrial fields, such as boiling water reactors [1, 2|, and analysis
using computational fluid dynamics (CFD) is expected to play a critical role. In analysing gas-
liquid two phase flows, there are two main numerical approaches, two-fluid models and one-fluid
models. Two-fluid models can describe dispersed two-phase flows, that include many fine bubbles,
with lower grid resolution, while their accuracy largely depends on constitutive equations describing
transfer of mass, momentum, and energy between gas and liquid phases. On the other hand, one-
fluid models directly describe gas and liquid phases by capturing the gas-liquid interface. Although
this approach requires costly computation to resolve each bubble, it does not rely on constitutive
equations, and also, it can treat the effect of the surface tension force. With increasing computing
power, the utility of the latter approach has been expanded.

The accuracy of one-fluid models depends on interface tracking/capturing methods, and so far,
various methods such as the front tracking method [3], the level set method [4], the VOF/PLIC
(volume of fluid/piecewise linear interface calculation) method [5], the THINC/WLIC (tangent of
hyperbola for interface capturing/weighted line interface calculation) method [6], and the phase field
method [7] have been proposed. The front tracking method uses Lagrangian markers to directly
track the location of the interface. Although the calculation accuracy to track the interface position
is high, the interface must be reconstructed to represent geometric changes such as coalescence
and separation of the interface. The level set method implicitly expresses the interface position
using the signed distance function (SDF) v, which gives the interface by ¢ = 0. The movement of
the interface is expressed by advecting the SDF. However, the fundamental property of the SDF,
V| = 1, breaks down as the calculation proceeds, and thus, re-initialization is required. Since
the SDF has a spatially smooth distribution, it has excellent accuracy in calculating geometric
shapes such as the curvature and normal vector of the interface. The front tracking method and
the level set method are classified as the sharp interface method, in which gas and liquid phases are
defined by computing the sharp interface, and thus, numerical errors of the interface position lead
to violation of the mass conservation. This issue was resolved by the VOF method [8], in which
the VOF function ¢ describes the gas phase with ¢ = 0 and the liquid phase with ¢ = 1, and the
interface is given by a diffused zone with a finite width. This kind of approach is called as the diffuse
interface method. In the VOF method, the mass of fluid is defined as p = ¢p; + (1 — ¢)pg, and its
conservation is guaranteed by advecting the VOF function via conservative schemes, where p, and
p1 are the mass of gas and liquid phases, respectively. In addition, the VOF method does not require
explicit tracking of interface positions, and no special treatment is required for topological changes
such as coalescence or separation of interfaces. The VOF /PLIC method has high accuracy, but its
interface reconstruction method is difficult to implement in three dimensional (3D) problems. The
THINC/WLIC method is a VOF method, in which a hyperbolic function is used as an interpolation
function to calculate advection of the interface while maintaining its width, and thus, complex

interface reconstruction is not required unlike the PLIC method. Here, the original THINC method
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[9] had a problem in the accuracy of interface geometry in multidimensional calculations. Yokoi
applied the WLIC method to the THINC method to enable interface advection that results in
smooth interface geometry even in multidimensional calculations [6].

In recent years, the VOF methods are widely used for analysing gas-liquid two-phase flows.
However, in long time simulations, the conventional VOF methods often generate fragmentation of
the VOF function due to numerical diffusion. This issue was resolved by the phase field method [7],
which was developed based on the phase field model for interfacial problems in materials science.
There are two main types of conservative phase field methods for interface tracking: the Cahn-
Hilliard (CH) equation [10] and the conservative Allen-Cahn (CAC) equation [7]. Since the CH
equation has the fourth-order spatial derivative, the stability condition for the time step width is
limited to At ~ O(Az*), where Az is the grid width. On the other hand, as the CAC equation
involves only up to the second-order spatial derivative, the stability condition is relaxed to At ~
O(Az?), allowing the use of larger time intervals than in the CH equation. In this work, we
address the phase field method based on the CAC equation. The CAC equation is given by a
convection-diffusion equation, in which both diffusion and anti-diffusion terms are involved. Here,
the anti-diffusion term can cancel errors due to numerical diffusion coming from other terms, and
the calculation results naturally approach an equilibrium solution, which is given by a hyperbolic
function as in the THINC method. Because of this advantage, the motion of the interface is described
by the computation of the VOF function via conservative Eulerian schemes with finite numerical
diffusion, and geometric reconstruction of interfaces is not needed unlike other VOF methods.

Although the phase field method is one of the promising VOF methods, it still needs to be
improved regarding the following two points. The first issue is that model parameters are defined
to be uniform over the entire space. In the conventional phase field method [7], the phase field
parameter y(t), which determines the strength of interface modification by the phase field model,
was given based on the maximum fluid velocity in the entire computational domain. However,
when the fluid velocity is largely different at each position, 7(¢) chosen by the above rule may be
too strong at the positions with lower velocities. If the interface modification is too strong, the
interface is often deformed to align the computational grid. To resolve this issue, in this study,
we propose a new phase field method, in which a new phase field parameter 7(¢,x) depends also
on the position. To facilitate this correction, we also propose a modified conservative Allen-Cahn
(MCAC) equation, which keeps a conservative form even with the spatial change of the phase field
parameter. Another issue is that the phase field parameter is determined empirically. In this study,
we derive the optimal phase field parameter based on comprehensive error analysis in fundamental
interface advection tests and single bubble rising tests. Benchmark tests of interface advection and
gas-liquid two-phase flows are performed to demonstrate the superiority of the proposed MCAC
method compared to the conventional CAC method.

In Section 2, the CAC equation and it’s equilibrium profile are explained, and the MCAC equa-
tion is proposed. In Section 3, an optimization method for the phase field parameter is presented.
Sensitivity analysis of the phase field parameter in 1D interface advection test is performed, and

the validity of the new optimization method is confirmed. The optimal phase field parameter is
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derived using error analysis of 3D interface advection tests. In Section 4, the gas-liquid two-phase
flow model is described. In Section 5, the water droplet oscillation and bubble rising problems are
calculated using the proposed MCAC methods, and the numerical results are validated against the
results of the conventional CAC method and theoretical solutions. The conclusions are summarized

in Section 6.

2 Modified conservative phase-field method

In this section, the CAC equation and its equilibrium solution developed by Chiu et al. [7] are
explained, and then the MCAC equation proposed in this paper is introduced.

2.1 Conservative phase-field method

The phase field variable or the VOF function ¢ in the CAC equation smoothly and steeply connects
the gas phase with ¢ = 0 to the liquid phase with ¢ = 1 across the interface defined at ¢ = 0.5.

The governing equation is described as

g+v.(u¢):y(av-(v¢)—v-<¢(1—¢)|§z|>>7 (1)

where u is the velocity vector describing the movement of the interface, % is the phase field parameter
describing the intensity of the phase field model, and ¢ is a constant related with the relative
magnitudes of the diffusion and anti-diffusion terms in the phase field model. Here, the thickness
of the interface is controlled by €. In Ref.[7], 7(t) = |umax(t)| and e = 0.7Az were chosen, where
|Umax|(?) is the maximum velocity in the computational domain at each time step. The advection
term was calculated using the dispersion-relation-preserving dual-compact upwind advection scheme
[11], and the overshoot and undershoot caused by advection calculations are corrected by the mass-

redistribution method.

2.2 Equilibrium profile of the conservative phase-field method

The equilibrium solution of the CAC equation is given as

boq = % [1 + tanh (;i)] , )

where 1 is the SDF with respect to the interface at ¢ = 0.5. ¢ is related to the interface width ¢

and the interface smoothness parameter A as

)
€= ?bv (3)
b=2tanh (1 —2)). (4)

In this study, A is fixed to 0.05, which gives § = 4.12Az with ¢ = 0.7Az. Figure 1 shows the

relationship between the equilibrium profile and these parameters.
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2.3 Modified conservative Allen-Cahn equation

We propose the MCAC method, in which the phase-field parameter 7(¢,x), is not a constant, but
is assumed to be spatially varied depending on the velocity field, etc. In order to facilitate this
modification while keeping the conservative formulation, we propose the following equation,

o¢

o TV (u) =V (ve(Wﬁ) -7 <<Z>(1 - ¢),§z>> ; (5)

where v is moved into the divergence. It is noted that the above MCAC equation involves correction
terms, compared to the original CAC equation, which is based on the Allen-Cahn equation for the
interfacial problems in materials science. However, in the phase field method for CFD applications,
we do not need to compute the Allen-Cahn equation, provided that the dynamics of the interface
is accurately described. The accuracy of the MCAC equation will be demonstrated in the following

sections.

2.4 Unit normal vector

The accuracy of the unit normal vector n = V¢/|V¢|, which appears in the second term of the
r.h.s., directly affects the accuracy of the interface geometry in the phase-field method as well as
the surface tension force in the two-phase flow calculation. Smoothing methods are widely used to
improve the accuracy when unit normal vectors are calculated using volume fractions. On the other
hand, the level set method is a well-known approach for accurately calculating the interface profile.
Since the level set function has a smoother distribution than the VOF function, this approach can
calculate unit normal vectors more accurately than smoothing methods using the VOF function.
In this study, unit normal vectors are re-defined as n’ = V¢ /|V1)| using the SDF ¢ (x) converted
from the VOF function ¢(x), and V¢/|V¢| in Eq.(5) is replaced by n’. It is noted that n’ is used
also in computation of the interface curvature in the surface tension force model (see Appendix).
The conversion from the VOF function to the SDF in Fig. 2 is defined as

eln 2, for ¢ <aq,
Y = sln% fora<¢<1-—a, (6)
5ln1jTa for 1 —a < ¢,
where a is a small value. In this study, a = 0.0001 is used. It can be confirmed that this choice
gives the SDF over ~ 6Ax from the interface. The phase field model and the surface tension force
work only in the vicinity of the interface or over §/2 ~ 2Az from the interface. Therefore, the SDF

defined for six grids from the interface is sufficient.

2.5 Spacial distribution of ~

In interface advection calculations using the diffuse interface method, there are two causes of nu-
merical diffusion of interface. One is numerical diffusion of the interface in advection calculations,

the other is a deformation of the interface due to velocity fields such as expansion and stretching.
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For example, in a constant velocity field or a rigid rotation velocity field as shown in Figs. 3(a)
and 3(b), deformation of the interface does not ideally occur, but numerical diffusion in advection
calculations can widen the interface width. On the other hand, in Figs. 3(c) and 3(d), velocity
fields show compression, expansion, and shearing, and the interface width may be changed by de-
formation of the interface even without numerical diffusion. When the interface width is changed
by the above effects, the phase field model modifies the interface width to a constant width, so that
the equilibrium solution is recovered. Here, the modification intensity depends of the phase field
parameter.

The conventional phase field method uses a spatially uniform phase field parameter which is
given by the maximum flow velocity in the entire computational domain, such as ¥ = 0.7|wnaz /-
Since the numerical viscosity in advection calculations is proportional to the advection velocity, the
above choice appears reasonable. However, in gas-liquid two-phase flow calculations, the velocity
can vary greatly, especially in the velocity of gas. For example, in a typical dam break problem,
the maximum flow velocity can be more than an order of magnitude larger than the average flow
velocity. In such a situation, using the maximum flow velocity in the entire computational domain
may make the phase field model too strong, resulting in unphysical deformation of the interface
shape along the grid and/or a severe numerical stability condition.

In this study, we consider a spatial change in the phase field parameter v to avoid these issues.
Firstly, we take account of the spacial distributions of the velocity and the deformation velocity

tensor, which may reflect the above two effects, and write the phase field parameter as
V(t,x) = M |u + B [S]5, (7)

where M and B are dimensionless constants, the second term is multiplied by the interface width

6 to make its dimension consistent, and S is the deformation velocity tensor

2Uz Uy"‘vx Uz+wx
S:Sij:§ Uptuy 20, v Fwy |- (8)
Wy +u, wy+v., 2w,

Here, S is defined in the Cartesian coordinate system (z,y, z), u, v, w are the x,y, z components of
the velocity vector, and the subscripts z,y, z are the derivatives in each direction. The absolute

value of the deformation velocity tensor S is defined as

S| = v/SijSij = \/5121 + 5%y + Sty + 551 + 53, + 935 + 55, + 55, + S5 (9)

The diagonal terms of S represent compression and expansion as in Fig. 3(c), while the off-diagonal

terms refer to shear as in Fig. 3(d).

2.5.1 Cutoff filter for phase field flux

The above model may be calculated for the entire computational domain. However, it works only

near the interface and is negligible in regions away from the interface. On the other hand, from the
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numerical viewpoint, when the flow velocity becomes large in regions away from the interface, the
phase field model with the second order derivative may limit the numerical stability. To avoid such

a numerical issue, the phase field parameter is modified so that it works only near the interface,

0 (¢ <a),
W)= M [ul + BISI5 (a<o<1-a), (10)
0 (1—a<a).

The optimal value of M is determined by the discretization of the advection term, and it is optimized
by a 3D advection test. On the other hand, the optimal value of B depends on a deformation of the
interface induced by the effects of compression, expansion, and shearing in the flow field. In this
work, we estimate the optimal value of B in a single bubble rising problem, which shows different
deformations of the interface depending on flow parameter regimes.

Since the MCAC equation is discretized in a flux form on the Cartesian grid system, we calculate

the velocity term (the first term) of the v on the cell-face as

+ 02 + w? , (11)
i

%7j7k /L*%:J:k

_ 2
M |u’i—%,j,k - M\/uifé,j,k
where (i, j,k) are the grid indices in the (z,y, z) directions. Here, (i — %,j, k) means the cell-face
in the ”—z” side of the (i, j, k)-th cell. Since this study employs a staggered variable configuration
and each velocity component is not defined at the same location, v and w at the cell-face in the

7 —z” side are calculated by the following equations,

1

Vieljk T g (”z‘—l,j—%,k e TVt t ”m‘+§,k> ) (12)
1

Witk = ] (wz’fl,j, ~3 T Wigk-3 T Wii15k4d T “’z',j,k+$) : (13)

The velocity components at the cell-faces in the y and z sides can be calculated in the same way.
The velocity gradient term (the second term) of ~ is also calculated in the same way on the cell-face
using the second-order centered finite difference scheme.

An example of the spatial distribution of v around a rising bubble is shown in Fig. 4. The
distribution of the velocity term is larger at the center of the bubble as shown in Fig. 4(b) due
to buoyancy. The velocity gradient term becomes large at the bubble interface, with compression
at the top, expansion at the bottom, and shearing at the sides. By combining these terms and
applying the filter near the interface, the resulting spatial distribution of the phase field parameter

is obtained as shown in Fig. 4(a).

2.5.2 Mass-redistribution method

Even with higher-order advection schemes and/or limiters, a solution of the phase field equation
may contain small undershoot/overshoot. The mass-redistribution method has been proposed to
avoid such undershoot /overshoot while keeping the global conservation of mass or the VOF function

[7]. The mass-redistribution procedure is given as follows.
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1. Filter the undershoot/overshoot values,

1 (1+1077 < 9)
0 (¢p<1077) (14)
¢ (else)

¢

2. Compute the current total mass,
3. Compute the difference of the total mass between the initial and present time,

4. Uniformly distribute the mass difference into the computational cells in the transition region
(0.05 < ¢ < 0.95).

3 Verification studies

In this section, we verify the velocity term of v in the MCAC method. Firstly, we compute 1D and
3D advection tests with uniform velocity fields, and examine an impact of the numerical diffusion
which depends on advection schemes and model parameters on the interface width. From these
tests, we derive the optimum value of M. As the CAC and MCAC methods give almost the same
results for uniform velocity fields, we show only the results from the CAC method. We then compare
the CAC and MCAC methods in the Zalesak’s solid rotation test, which uses non-uniform velocity
fields. Here, the influence of the spatial distribution of + can be confirmed because of the large
velocity difference between the center of rotation and the periphery in the rotational velocity field.
It is noted that in uniform velocity fields and in rigid rotation fields, the velocity gradient term

becomes zero, and in this section, we focus only on the velocity term.

3.1 1D advection test

Figure 5 shows the results of 1D advection tests conducted using the CAC equation (1). Here,
the computational domain is periodic, the normalized system size is L = 1, the grid width is
Az = L/100, and the normalized constant velocity is ug = 1. The initial distribution is given by
a square like wave, which satisfies the equilibrium solution (2) at the interface, and it is advected
for one period up to the normalized time of ¢ = 1 (see Fig. 5(a)). In the CAC equation, v = 1
and £ = 0.51Az (0 = 3Axz and A = 0.05) are chosen. The advection term is discretized using the
first-order upwind finite volume method (FVM) and the third and fifth-order weighted essentially
non-oscillatory (WENO) schemes. The third-order total variation diminishing (TVD) Runge-Kutta
method is used for the time integration with the time step width of At = 0.001. The interface width
is defined as the spacial distance from ¢ = X to ¢ = 1 — A, as in the equilibrium solution (see Fig.
1), and both upwind and downwind interface widths were measured and averaged.

In Fig. 5(b), it is confirmed that the interface width is different depending on the advection

scheme, and higher order schemes give solutions closer to the equilibrium solution. It is noted that
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after one period, the interface width is almost unchanged, and thus, we optimize model parameters
against numerical results after one period.

In order to clarify the relation between the phase field parameter and the numerical diffusion,
which is determined by the advection velocity and the advection scheme, we conduct ug scans at
fixed v and v scans at fixed ug. In Fig. 6, ug scans at v = 1 clearly show an impact of the numerical
diffusion on the interface width. The interface width becomes wider with larger ug, and its increasing
rate is changed depending on the advection scheme and the number of grids used to resolve the
interface. In Fig. 7, v scans at ug = 1 indicate that an influence of the numerical diffusion can
suppressed by increasing the intensity of the phase field model. In all cases, the normalized interface
width is converged to unity by increasing -, while its decreasing rate is different depending on the
advection scheme.

We then show ug scans with v = ug, which was employed in Ref.[7]. In Fig. 8, the interface
width is kept constant in all cases, while its value is different depending on the advection scheme.
These results suggests that scheme dependent parameter optimization is needed for 1D advection

tests.

3.2 3D advection test

In 3D advection tests, a spherical distribution with a diameter of D = 0.5 is set up at the center
of the computational domain (see Fig. 9), and it is advected by a spatially uniform velocity field

u = (1,1,1) to evaluate the error of the distribution after one cycle. Here, the error is defined as

Dijk | Pige — Pewact,iyjkl

Error =
Zi,j,k ¢exact,i,j,k’

: (15)

The computational domain is given by a cube with L, x L, x L, = 1x1x1, and periodic boundaries
are imposed in all directions. As the velocity field is uniform, we use the CAC equation, while the
phase field parameter is chosen to be proportional to the convection velocity, v = M |ul, based on
the results of 1D advection tests. Here, M is a constant characterizing the intensity of the phase
field model, and is subject to parameter optimization. In the initial condition, the interface of
spherical distribution is given by an equilibrium solution with § = 3Az and A = 0.05, and in the
CAC equation, ¢ is given by these parameters. Grid resolution is varied for D = 16Ax, 32Az, 64Ax,
and 128Ax, and the time step width is determined by the CFL number of 0.05. In 3D advection
tests, we compare four advection schemes, the third-, fifth-, and seventh-order WENO schemes, and
the third-order MUSCL scheme.

Figure 11 shows M scans for these advection schemes. All results show the existence of optimum
values of M, where the error becomes minimum. This feature is qualitatively different from 1D
advection tests, which showed monotonic convergence toward equilibrium solutions with increasing
7. The optimum value is determined by a competition between two causes of the error. One is the
numerical diffusion due to the advection scheme. This effect was already confirmed in 1D advection
tests. The other is the interface deformation due to the phase field model. This effect does not

exist in 1D advection tests, because of the geometrical restriction in 1D problems, and is unique
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to 2D and 3D problems. In multi-dimensional problems, too large v makes the interface aligned to
the computational grid. This is attributed to computation of the CAC equation in a conservative
form via FVM type schemes, in which stencils are extended along the (x,y, z) directions. Figure
10 shows examples of solutions in 3D advection tests. When ~ is too small, the interface diffuses
(see Fig. 10(a)). On the other hand, when ~ is too large, the interface tends to be aligned to the
Cartesian grids, and the interface shape is deformed from spherical to cubic (see Fig. 10(c)). In the
optimum solution, these errors are suppressed to keep both the shape and the width of the interface
(see Fig. 10(b)).

In Fig. 11(a), the third-order WENO scheme shows different optimum values for M = 0.9 ~ 1.5
depending on the grid resolution. On the other hand, in the fifth-order WENO scheme (Fig. 11(b)),
the seventh-order WENO scheme (Fig. 11(c)), and the third-order MUSCL scheme (Fig. 11(d)),
the optimum value of M is independent of the grid resolution, and depends only on the advection
scheme. The optimum values of M for each advection scheme are summarized in Table 1. This
feature is of critical importance, because in reality, there exists multiple bubbles with different
D/Az. If the optimum value of M depends of D/Az, one cannot choose the optimum intensity
of the phase field model. Therefore, the use of higher order advection schemes is essential for the
phase field method.

We then examine the dependence of the optimal M on the interface width §. Figure 12 shows
3D advection tests with the fifth-order WENO scheme and the third-order MUSCL scheme. In
these tests, the grid resolution is fixed at D/Az = 64 and the interface width is varied for § =
2.5Ax ~ 4.0Ax. As it may be expected, the narrower interface width gives the larger numerical

diffusion, leading to the larger optimal values for M.

3.3 Zalesak’s solid rotation test

The Zalesak’s test problem[12] is widely used to verify the accuracy of interface capturing methods.
A circular profile with a diameter of 0.3 and with a blank in the region over 0.475 < x < 0.525 and
y < 0.85 is set up in the computational domain with L, x L, = 1 x 1, and is rotated with a velocity
field, u(x) = (y — 1/2,—(z — 1/2)), as shown in Fig. 13. As the velocity field is non-uniform,
it may be difficult to optimize the phase field parameter of the CAC equation. In this test, we
compare the CAC equation with ¥ = M |u;4,| and the MCAC equation with v = M|u(x)|, where
the fifth-order WENO scheme is used and the phase field parameter is chosen as M = 0.8. In the
MCAC method, we apply the cutoff filter and the velocity gradient parameter is given as B = 1.0.
In the initial condition, the interface is given by an equilibrium solution with 6 = 3Az and A = 0.05,
and in the CAC and MCAC equations, ¢ is given by these parameters. Grid resolution is varied
for L, /Ax x L,/A, =100 x 100,200 x 200, and 400 x 400, where the time step width is chosen as
At = 0.00141,0.00070, and 0.00035.

Figure 14 shows the contour plots of the VOF function after one rotation period T' = 27. As the
magnitude of the velocity becomes |u| = \/(z — 1/2)2 + (y — 1/2)2, the phase field parameter in the

CAC equation is overestimated from its optimum value, resulting in excessive modification of the
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interface by the phase field model in regions with small velocity. Accordingly, the MCAC equation,
which can employ the optimal values everywhere, gives better results than the CAC equation. The
convergence of the Zalesak’s tests is confirmed by estimating the error, Eq.(15), and the results are
summarized in Table 2. The errors of the MCAC equation is 31-37% smaller than those of the CAC

equation, while the rate of convergence is about first-order for both models.
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4 Two phase flow solver

This section describes the details of gas-liquid two-phase flow calculation models implemented in
this study.

4.1 Incompressible Navier-Stokes equation

In this study, gas-liquid two-phase flows are calculated using the incompressible Navier-Stokes equa-
tions,
V-u=0, (16)
Ou 1

1 1
i (u-Viu= ;V (p(Vu+ (Vu)T)) — ;Vp + ;F, (17)

where u is the velocity, p is the density, p is the viscosity, p is the pressure, F is the external force
including the gravitational force and the surface tension force (F = pg + Fy).

The VOF function, which is computed using the interface tracking method, is used not only for
identifying the interface but also for defining the physical properties of gas-liquid two-phase flows.
In this study, the VOF function ¢ is computed using the MCAC equation (5), and the density and

the viscosity are defined as
p=pip+ pg(l—9), (18)

p=pud+ pg(l—¢), (19)

where p;, py are the density of liquid and gas phases, and yy, 1y are the viscosity of liquid and gas

phases, respectively.

4.2 Velocity-pressure coupling

To improve the stability of incompressible fluid calculations, the velocity-pressure coupling model is
defined using scalar quantities at the cell center and each directional component of vector quantities
at the cell-face as shown in Fig. 15. The SMAC method [13] is applied to correct the velocity and
the pressure for incompressible fluid calculations. The time integration procedures for the Navier-
Stokes equations are given as follows: firstly, the equation of motion is computed to calculate the

temporal velocity u* as

u* =u"+ (—(u” -V)u" + plnv (" (Va4 (Vum)T)) — p1an” + F”) At, (20)
and then, the modified pressure dp is computed by substituting the divergence of u* into the source
term of the pressure Poisson equation. Here, the superscript n means the value at the n-th time
step, and * means the value at the intermediate time step between n and n + 1. To make the
velocity field at the n + 1-th step divergence free, Eq.(5) is calculated using u™ and the density is
updated to the n + 1-th steps before calculating the pressure Poisson equation.

1 V-u*

,ll,
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The pressure Poisson equation is the most costly part of incompressible fluid calculations, especially
for gas-liquid two-phase fluid calculations with large density contrasts, which lead to ill-conditioned
matrices. A multi-grid preconditioned conjugate gradient (MG-CG) method [14] is applied to solve
the pressure Poisson equation.

The modified pressure dp obtained by solving the pressure Poisson equation is used to correct

the velocity as
1

and the pressure value is also updated as
Pt =p" 4 op. (23)

In this study, the third-order TVD Runge-Kutta method [15] is applied to the time integration
for Egs. (5) and (20), where the fifth-order WENO scheme is used for the advection term, and the

second-order centered finite difference scheme is employed for other terms.

4.3 Surface tension force model

The surface tension force F,, which is included in the external force term of the Navier-Stokes
equation, is calculated by the surface tension coefficient o, the interface curvature x, and the unit
normal vector n of the interface,

Fs = —okn. (24)

The surface tension force works only on the gas-liquid interface. However, it is difficult to define
and compute the surface tension force on a sharp interface using Eulerian methods on the Cartesian
grid system. Therefore, we adopt the continuum surface force (CSF) model [16], which calculates
the surface tension force on a diffused interface as a volume force in the direction normal to the
gas-liquid interface.

FO5T = gknd, (25)

where k is computed using the normal vector n’ defined using the SDF (see Appendix), and a
smoothed delta function 4, is defined as nd,, := V.

In this study, we employ the density-scaled model based on the balanced forcing algorithm [17].
The conventional CSF models were suffering from a gas-phase shift due to the surface tension-derived
acceleration in the direction normal to the gas-liquid interface, whereas the density-scaled model
keeps symmetry of acceleration between the gas and liquid sides of the interface. The density-scaled
model is given as

DS _ Pt
FS,f - (1 +pg)/20Hf<v¢)fa (26)

where the subscript f means the value defined at the cell-face. In the balanced forcing algorithm,
the discretization for the pressure gradient Vp is chosen to be the same as that for (V¢)¢, so
that the surface tension force is balanced with the pressure gradient. For example, both ¢ and p

are defined at the cell-center, and the x components of the surface tension force and the pressure
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gradient at the cell-face in the “—x” side are respectively calculated using the second-order centered

finite difference scheme as

(pijk + pi-14k)/2 Gijk — Gi-1,4k
T T By v (27)
g
Pijk — Pi—1,j5,k
(Vp)x,z‘q/z,j,k = % (28)

4.4 Numerical stability

In this study, all equations except the pressure Poisson equation are computed explicitly, and
the time step width for the explicit time integration is subject to numerical stability conditions
determined by various effects in Eqs. (5) and (17). The current gas-liquid two-phase flow model
has four different limitations on the time step width: the advection and viscosity terms in the
Navier-Stokes equation (17), capillary waves from the surface tension term (24), and the diffusion
term in the MCAC equation (5), which can be defined as follows

A
Atadv = Cadvixa (29)
‘umaa:’
A 2
Atvisc — Cvisciv (30)
1%
1
9\ 3
Aty = Cy ((pz-l—pg)/> : Ax%, (31)
2no
Ax? 2b
Atpf = Opfi’yE = Cpfi’y(é/Al‘) ACE, (32)

where C,qy, Clyise, Cst and Cpr are non-dimensional constants determined by the following stability
conditions. The Courant-Friedrichs-Lewy (CFL) condition limits C,qy < 1. Here, At,q, depends on
Wnae, and varies in time. Von Neumann’s stability analysis gives Clise < 0.5. The CFL condition
for the propagation of surface tension (capillary) waves gives Cyg < 1 [16]. The stability condition
for the phase field model was confirmed to be Cpt < 0.78 by 1D numerical experiments. Since 0 is
the interface width proportional to Az, §/Axz is constant, leading to At,s o< Ax.

Depending on the magnitude of the velocity, the viscosity, the surface tension coefficient, and
the phase field parameters, the stability condition is determined by different effects. In addition, the
stability condition for actual gas-liquid two-phase flow calculations depend also on other effects such
as the flow velocity distribution and convergence of the pressure Poisson equation, and thus, may
not completely match the above stability conditions. In this study, the constants of C,4q, = 0.05,
Cyise = 0.1, C¢ = 0.5 and Cpy = 0.1 are used, and the smallest time step width among four
conditions,

At = min(Ataqy, Atyise, Atst, Atpf), (33)

is applied to the simulation. The above constants are empirically adopted based on simulations of
violent flows such as dam breaking and droplet impact problems, and thus, are rather conservative

choices for droplet oscillation and bubble rising problems in this study.
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Figure 16 shows limitations on the time step widths for the droplet oscillation and bubble rising
simulations in the next section. In these simulations, the representative flow velocities are given as
0.1m/s and 0.17m/s, respectively, which are reflected to the difference of At,q4y. The stability of the
droplet oscillation simulation is dominated by the surface tension force at lower resolution and by
the viscosity at higher resolution. On the other hand, the stability of the bubble rising simulation

is dominated by the viscosity.
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5 Verification of the MCAC method

In this section, the accuracy of the MCAC method is verified by computing incompressible gas-liquid
two-phase flows. Unless otherwise noted, § = 3Ax, A = 0.05, « = 0.0001, M = 0.8, and B = 1.0.
Here, M = 0.8 is the optimal parameter commonly used for both the CAC and MCAC equations,
while B = 1.0 in the MCAC equation is the optimal parameter derived from a single bubble rising
problem in Sec. 5.1.2. The flux cutoff for the phase field equation is applied for the MCAC method.
We compare the CAC and MCAC methods in bubble rising and droplet oscillation problems. The
effects of flux cutoff and mass-redistribution on bubble rising velocity and bubble detachment will

also be investigated in the single bubble rising problem.

5.1 Single bubble rising problem

The bubble rising problem is suitable for examining the validity of surface tension and buoyancy in
gas-liquid two phase flow calculations, and has been studied experimentally and numerically. We
investigate a 3D single bubble rising problem in four typical parameter regimes, and compare the

obtained results with the experimental results in Ref. [18] and the simulation results in Ref. [19].

5.1.1 Simulation condition

4(p
Here, the four parameter regimes are characterized by the Molton number Mo = W and the
!

_ D2
g(p1—pg) D} as,
g

Eotvos number Fo =
(A) Spherical: Mo = 1.26 x 1073, Fo = 0.971,
(B) Ellipsoidal: Mo = 0.100, Bo = 9.71,

(C) Skirted: Mo = 0.971, Fo = 97.1,
(D) Dimpled: Mo = 1000, Eo = 97.1.

In these calculations, the density ratio p;/py = 100, the viscosity ratio /g = 100, the gravitational
acceleration g = 9.8m/s?, and the diameter of the initial spherical bubble D, = 0.01m are used,
as in Ref. [19]. As shown in Fig. 17 (left), the initial spherical bubble is at the bottom center of
the computational domain with L, x L, x L, = 0.04m x 0.04m x 0.12m, and the grid resolution is
chosen as D,/Ax = 16, 32.

The bubble shapes obtained by these four calculations are shown in Fig. 17 (right). The bubble
shapes are similar between the MCAC and CAC results, while in case C, the MCAC result shows
a smoother bubble edge shape.

In order to evaluate the quantitative accuracy, we compute the errors of the bubble Reynolds
number and the bubble volume error. The former error is an important measure in the bubble rising

problem, and it depends mainly on the bubble shape. The bubble Reynolds number is defined as
P Dy Vi
wo

Re = (34)
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where V; is the terminal bubble rising velocity. On the other hand, the latter error is produced by
fragmentation and separation of the VOF function from stretched or expanded interface regions. To
quantitatively evaluate the VOF detachment from the bubble, the bubble volume error is defined by
the L1 error of the VOF function in the liquid phase region, VolumeError = fQ |1 — ¢|dV, where
the inspected region (2 is defined for 1) > 2§ away from the gas-liquid interface (see Fig. 18).

5.1.2 Optimal parameter for the velocity gradient term

The buoyancy force acting on the bubble depends on the density distribution, and the higher velocity
of the gas phase inside the bubble causes a large velocity gradient near the bubble interface. As a
result, a compressive velocity field is produced on the upper surface of the bubble, while an expansive
velocity field is formed on the lower surface, which causes the gas-liquid interface to diffuse easily at
the bottom of the bubble (see Fig. 4). To evaluate an impact of the velocity gradient term on the
accuracy, B scan is performed for bubble rising calculations and the errors of the bubble Reynolds
number and the bubble detachment are investigated.

The MCAC method is implemented with and without the cutoff filter (Sec.2.5.1) and the mass-
redistribution (Sec.2.5.2). We classify the MCAC method into the following four implementations.

MCAC Without both the cutoff filter and the mass-redistribution,
MCAC-CO With the cutoff filter and without the mass-redistribution,
MCAC-MR Without the cutoff filter and with the mass-redistribution,

MCAC-COMR With both the cutoff filter and the mass-redistribution.

Figures 19, 20, 21, and 22 show the dependence of the bubble Reynolds number on the veloc-
ity gradient parameter B for the MCAC, MCAC-CO, MCAC-MR, and MCAC-COMR methods,
respectively. Compared with the CAC method, the MCAC method shows slightly better results in
the cases of the spherical bubble (case A) and the dimpled bubble (case D), and almost the same
results in the cases of the ellipsoidal bubble (case B) and the skirted bubble (case C). This tendency
is common also for other three methods. However, the cut-off filter slightly increases the bubble
Reynolds number in case A, while the mass-redistribution reduces the bubble Reynolds number in
all four cases. Depending on the competition of these two effects, the resulting accuracy becomes
slightly better and worse from the MCAC method.

Figures 23, 24, 25, and 26 show the dependence of the bubble volume error on the velocity
gradient parameter B for the MCAC, MCAC-CO, MCAC-MR, and MCAC-COMR methods, re-
spectively. The MCAC methods commonly show lower errors than the CAC method for cases A,
B, and D. However, case C with D, = 16dx shows different behavior for each method. The MCAC
and MCAC-CO methods show lower errors than the CAC method for 0.8 < B < 2.0. On the other
hand, the MCAC-MR and MCAC-COMR methods show larger errors that the CAC method, while

the mass-redistribution gives lower errors in cases A and D.
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Figures 27 and 28 respectively show comparisons of the bubble Reynolds number and the bub-
ble volume error obtained using the CAC, MCAC, MCAC-CO, MCAC-MR, and MCAC-COMR
methods with M = 0.8 and B = 1.0. Here, we choose B = 1.0 as the optimal parameter from the
above parameter scans. All methods show reasonable agreements with the experimental results,
and higher resolution cases show better agreements. Compared with the CAC results, the MCAC
results show slightly better results. Although an impact of the cutoff filter is not clear, the mass-
redistribution significantly reduces the bubble volume error in cases A, B, and D. However, it is
noted that in case C, the accuracy of the mass-redistribution is sensitive to the velocity gradient

parameter B, and thus, the use of mass-redistribution may be difficult for practical applications.

5.2 Droplet oscillation problem

A droplet oscillation problem is a standard benchmark test for the gas-liquid two-phase flow [20, 17].
Aalilija et al. [21] derived theoretical solutions for 2D and 3D viscous liquid droplet oscillations.
Various modes of droplet oscillations were simulated for liquid metallic droplets and the time histo-
ries of the oscillation amplitudes were compared with the theoretical solutions. The results of the
2D calculations showed very good quantitative agreements with the theoretical solutions, but the
3D calculations showed larger damping rates due to insufficient resolution. In this work, we verify
the performance of the proposed methods by comparing 3D water droplet oscillation simulations
with the CAC and MCAC methods against Aalilija’s theoretical solutions.

The water droplet with the volume of %’R’R% with Ry = 1lmm is placed in air with zero grav-
itational acceleration, where the computational domain is given by a cube with L, x L, x L, =
4mm X 4mm X 4mm as shown in Fig. 29. The initial droplet shape is given by an spheroid with a
disturbance ¢ = 0.08, where the radii in the x direction and in the ¥, z directions are respectively
chosen as Ro/v/1+ € and Ry(1 + €), so that the volume becomes 4mR3. As the spheroid shape is
dominated by n = 2 mode, we compare the numerical results against Aalilija’s theoretical solution

for the spheroid oscillation (mode n = 2),
1
R(0,t) = Ry <1 + €2(t) Pa(cos(0)) — 56%(t).> ) (35)

€2(t) = eexp(—Aat) cos(wa ot). (36)

Here, Py(z) = %(3w2 — 1) is the second-order Legendre polynomial, € is the angle with respect to
the major axis (z-axis), and the frequency and the damping rate of the spheroid oscillation with

n = 2 are respectively given as

8c
wo g = , 37
2,0 R (37)
oL
Ay = ——, 38
2 pR3 (38)

where py, 7, and o are the density, the viscosity, and the surface tension coefficient of the liquid,

respectively. In this study, we evaluate the droplet radius in the x direction, and compare it against
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the theoretical solution at # = 0. All oscillation data analyses are performed using the Python
libraries (LMFIT and SciPy), where the oscillation frequency w is estimated by fitting the oscillation
data using a fitting function, R(t) = Ro (14 €(t) — 2é(t)?) + ¢, é(t) = eg exp(—pt) cos(wt + 6p). On
the other hand, the damping rate 3 is obtained by extracting the maximum point of the oscillation
data, plotting it on a logarithmic scale, and fitting it using a linear function.

In Fig. 30, the oscillation data obtained using the CAC and MCAC methods are compared
against the theoretical solution. Here, we apply only the cutoff filter in the MCAC method, and
the velocity gradient parameter is varied as B = 0.0,1.0. Although these results are converged
to the theoretical solution as the resolution becomes higher, they show different damping rates at
lower resolution. Table 3 shows the dependency of the frequency and the damping rate on the
grid resolution. Comparisons of the CAC and MCAC results show no significant difference in the
frequency, while the damping rate in the CAC is much greater than that in the MCAC result at
lower resolution. In the CAC method, the phase field parameters given by |4, | are uniform within
the entire interface region, and the phase field parameter becomes too strong in regions where the
velocity of the interface is smaller than |u,,q;|. This may lead to different interface deformations
between the MCAC method and the CAC method, leading to larger damping rates. The MCAC
method using only the velocity term (B = 0) gives the best results, while the MCAC method with
B = 1.0 also overestimates the damping rate at lower resolution. This indicates that variation of
the phase field parameter depending on the velocity field in the interface region is important for
reproducing the damping rate. However, the use of the velocity gradient term does not improve the
accuracy of the MCAC method in this case.

6 Concluding remark

The MCAC equation was proposed as an interface capturing method for incompressible two-phase
flow calculations. In this model, the CAC equation [7], in which the phase field parameter 5 = |uqz|
was uniform and overestimated, was extended to allow the use of the optimized phase field parameter
depending on the local velocity and velocity gradient field v(x) = M|u| 4+ BJ|S|d. Basic verification
tests in uniform velocity fields showed that ~ proportional to the local velocity is appropriate for
the phase field model, and the optimal value of the velocity term constant M = 0.8 was derived. On
the other hand, when the interface deformation is induced by the effects of compression, expansion,
and shearing in the flow fields, as in the bubble rising problem, the velocity gradient term also
becomes important. In the single bubble rising problem, it was shown that in most flow parameter
regimes, the velocity gradient parameter of B = 1.0 was optimal. However, in the droplet oscillation
problem, the velocity gradient term lead to the overestimation of the damping rate, and the better
results were obtained with B = 0.0. Therefore, a careful choice of the velocity gradient parameter
is needed in using the MCAC method.
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Table 1: Optimal values of M for various advection schemes (§ = 3Axz)

Discretization Number of stencils Optimum M
in each dimension
3rd-order WENO 5 0.9-1.5
5th-order WENO 7 0.8
7th-order WENO 9 0.3
3rd-order MUSCL 5 0.4-0.5

Table 2: Errors and convergence rates for the Zalesak’s tests.

Mesh size(Az)  1/100 Rate 1/200 Rate 1/400
MCAC(present) 3.84x1072 1.02 1.89x10~% 1.04 9.16x1073
CAC 6.18x1072 1.16 2.75x1072 0.98 1.38x1072

Table 3: Dependency of resolution for oscillation frequency and damping rate. §/Az = 3.0

Frequency [rad/s] Damping rate [s7!]
D/Ax 32 64 128 32 64 128
MCAC(B=0) 744.05 754.54 757.32 7.9489  3.9618  5.6278
MCAC(B=1) 748.67 754.99 757.44 13.6817 13.3851 6.0231
CAC 746.63 755.26 756.19 25.2086 19.8398 8.1323
Theoretical solution 764.37 5.0215
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Figure 1: An equilibrium solution ¢eq is shown for the interface width § = 4 and the smoothness
parameter A = 0.05.
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Figure 2: Conversion from the VOF function (black) to the level set function. Red shows an ideal
level set function. Blue and green show level set functions converted using o = 0.001 and « = 0.0001,
respectively. The VOF function is given by an equilibrium solution with 6 =4 and A = 0.05.
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Figure 3: Illustration of a typical deformation velocity field for interfacial advection.
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Figure 4: An example of the spatial distribution of (a) «, (b) velocity term, (c¢) compres-
sion/expansion component of velocity gradient term, and (d) shear component of velocity gradient
term in a single bubble rise calculation. The cross section of case (D) in Fig. 17 are shown for
M =0.8, B=1.0, and a = 0.0001.
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and A = 0.05. Green, blue, and red curves show profiles after one advection period computed using
the first-order FVM scheme, the third-order WENO scheme, and the fifth-order WENO scheme,
respectively. (b) shows the same plot near the left interface.
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Figure 10: Dependence of the shape and the width of the interface on the phase field parameter ~.
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shapes in four parameter regimes are characterized as (A) Spherical, (B) Ellipsoidal, (C) Skirted,
and (D) Dimpled. The isosurface is shown for ¢ = 0.5.
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Figure 18: Evaluation area of bubble volume error (Case-C, Skirted, MCAC, Dy/Az =32, B =1).
The four contour lines are ¢ = 0.05,0.5,0.95, and ¢ = 24, respectively.
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Figure 20: Test results using the MCAC-CO method. The same definition as Fig.19 is used.
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Figure 21: Test results using the MCAC-MR method. The same definition as Fig.19 is used.
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Figure 22: Test results using the MCAC-COMR method. The same definition as Fig.19 is used.
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Figure 23: Test results using the MCAC method. The bubble volume error fQ |1 — ¢|dV is plotted
against the parameter of velocity gradient term B. Also shown are the results using the CAC
method.
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Figure 24: Test results using the MCAC-CO method. The same definition as Fig.23 is used.
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Figure 25: Test results using the MCAC-MR method. The same definition as Fig.23 is used.
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Figure 26: Test results using the MCAC-COMR method. The same definition as Fig.23 is used.
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Figure 27: Comparisons of the bubble Reynolds numbers obtained using the CAC, MCAC, MCAC-
CO, MCAC-MR, and MCAC-COMR methods with M = 0.8, B = 1.0, and the grid resolution of
Dy/Ax = 16, 32, where Dy is the diameter of the initial spherical bubble.
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Figure 28: Comparisons of the bubble volume error for the CAC, MCAC, MCAC-CO, MCAC-MR,
and MCAC-COMR methods with M = 0.8, B = 1.0, and the grid resolution of D,/Axz = 16, 32.
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Figure 29: Set up for 3D water droplet oscillation simulation.
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Figure 30: The time histories of the droplet radius in droplet oscillation tests.
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Figure 31: Arrangement of spatial gradient variables of volume fraction for curvature calculations.
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Appendix

In computing the surface tension force, an evaluation of the curvature has a significant influence
on the accuracy of the interface geometry. The curvature of the gas-liquid two-phase interface is

defined by the divergence of the unit normal vector as in the following equation,

k=-V-n (39)

The unit normal vector is computed as n = V¢ /|V¢| using the VOF function, which is smoothed
in the same manner as the computation of the normal vector in the phase field equation, and
redefined as n’ = V1) /|V| using the SDF in Eq.6, and the curvature is calculated as

he V. (%) | (40)

As the curvature is non-conservative, it does not need to be discretized in a conservative form.
Eq.(40) can be expanded as
1 Vi - VWM)
K= V23— —— 1), 41
i ( V0 e
Eq. (41) is then discretized as

= — (W2 (Yyy + Vzz) + U] (z + thae) + 7 (Yoa + )
2ty ey + Dythathys + Vatbthn)] (02 + 2 4+ 92)3, (42)

where 1), is the x derivative of ¥. The curvature x is defined at the cell-center and is computed
using 1 on 3 x 3 x 3 cells in the following three steps. Firstly, the spatial gradient of 1 is computed
on the cell-node as follows,
1
ode — .. . . . .
@ﬁ; z—f,j—— . % - AN (dh,j,k - ¢z—1,],k + ¢z,]—1,k - sz—l,j—l,k (43>
Fi k=1 = Vic1j k=1 + Vij—1,k—1 — Vie1j—1,k—1)s

node
i é,J*l k,% (1/)1,], 1/’1',]‘—1,]@ + wi—l,j,k - wi—l,j—l,k (44)

+7/Jz‘,j,k—1 — i j—1k—1 F Vic1 k-1 — Vie1j—1k—1)s

1bnode

zz—l j

1
lpt E(¢i,j,k — Vijk—1 T Vi-1jk — Vi-1jk-1 (45)

Fij-1k = Vij—1k-1 T Vi-1j-1k — Vi-1j-1k-1)-
Next, the first-order derivative of ¥ defined at the cell-node is used to calculate the derivative
at the cell center,
z,z)g?}}] k— (w;cloz(f%,j—&-%,k+l + wg?&,j—%,k% + wi?if%,j-i—%,k—%
+ ;lcﬁrz li—tk-1 + wgﬁz,j%,mé + Ip;lz(iel

.1 1

27]7§7k+§
node node

ikt TURT 1 1),
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1

wcell' - ( node1 L . ¢node1 ) L+ 77bnode1 L
T8k T g A N it gt 5kt zi—1,j+5.k+3 zit -5 k+3
__,j,node node __ ,jnode 47
Vo tg-bard TVt gt ~ Ve el (47)
de node
+apoce, —qpnece,
$,Z+%,]*%,]€*% ¢I,l*%,]*%,k*%)7
wcell' R 1 ( node __ ,jnode + node
zy,i,5,k 4Ay Tit5,+5k+3 Tit 3.5kt Tit+3 5+ k-1
__,ynode node __snode 48

de node
+phoe, —phoe .
1/}'7377’_%7]"’_%716_% wl‘,l—%,j—%,k‘—%)

The same procedure is done for gradients such as 1y, V., yy, V.2, ¥y., and 9.,. Figure 31 shows

a 2D example of gradients explained above. Finally, the curvature x is calculated using the spatial

gradient of ¢ defined at the cell center

Rijk = — [¢§(¢yy + 1!}22) + @Z}; (wzz + 1/}9636) + Q;Z)g (¢xx + ¢yy)
—2(Pathy oy + Yy atbys + Votbethan)] /(U2 + 02 + 12)3. (49)

Since the curvature is used to calculate the surface tension force on the cell-face, the curvature on

the cell-face is calculated by the following equation

Ri lik= % (Kijk + Ki1jk) - (50)
The curvature in the surface tension force model should be defined using the values on the gas-liquid
interface, but the curvature calculated on the Cartesian grid using finite difference calculations
contains numerical errors depending on the distance between the grid and the gas-liquid interface.
Ref. [17] applied linear interpolation as in Eq. (50), when taking the average between two points
across the gas-liquid interface. Ref. [22] proposed a curvature interpolation techniques in which the
curvature on the cell-face is approximated by that on the nearest interface. Ref. [23] interpolates the
curvature computed on the gas-liquid interface by an iterative process of weighted averaging that is
highly sensitive to the effects on the gas-liquid interface to compute points away from the interface.
In this study, the above method was tried, but it failed to reproduce the damped oscillations in the

droplet oscillation problem, so a simple average as in Eq. (50) was adopted.
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