

PSA & Applications

This is a blank page.

Session Summary III-A: PSA & Applications

Chair: Jin-Hee PARK (KAERI), Jong-Soo CHOI (KINS)

Three presentations introduced in PSA & Application session and one presentation not introduced. One was presented by TEPCO Japan and two were presented by domestic speakers, KHNP and KEERI.

Mr. Eisuke Sato from TEPCO SYSTEMS Corp. Japan presented for the Upgrade of internal events PSA model using the AESJ PSA standard. He presented the procedure of the upgrade PSA model, the PSA main elements analysis and the results of each analysis such as system Reliability, Human Reliability, Quantification, Sensitivity analysis. He concluded that this upgrade of PSA applied into new maintenance program in TEPCO and the enhancement of PSA will be performed in the future.

Mr. Hwang, Seok Won from KHNP(NETEC)-Korea, introduced the background, Data management strategy and current status for Development of Nuclear Reliability Database System(PRinS) and its application for PSA or Maintenance Rule in Korea. He concluded that this Database System could enhance plant safety and efficiency, plant economical efficiency and apply the prompt and reasonable action for regulatory inspections also.

Mr. Park, Jin Hee from KEARI-Korea introduced development of regulatory PSA Model for Graded Regulation based RIPB for KINS. He presented the background, status, plan and insight of the regulatory PSA Model.

The attendants showed the interests on PSA upgrade in Japan and Regulatory PSA model development and asked several questions about Database System development in Korea.

This is a blank page.

Failure & Unavailabili	ity Analysis	\$				
고장정비분석 기초정보 및 분석 HOME 이전확면	» DREAMS > 현	(재 데이터 : 1 / 4	14	P	저장	
▶호기 K34 ▶기기설치위치 2123	▶오더 000040061851	PM01 k-3 [G B TRIP			
→정비기기 2123-KJ-E002 STANDBY D	IESEL ENGINE 'B'	▶신뢰도분석	1용기기 <mark>Y</mark> E	BASIC D	ata Display	
▶분석기기 2123-KJ-E002 ▶ 분석기기 2123-KJ-E002	DBY DIESEL ENGINE 'B'	▶고장정비분류코드	기능상실	▶ 고장모!	E S 👂	
→ OOS 유형 1 🔎 → 이용불능기간 2005-05-30 09:31:00	~ 2005-05-30 10:02:00	▶이용불능시간	0,52 HR	▶PSA고장모	E S	
▶PSA71본사건 EGDGZ002SB ▶CCF여부 N ▼ ★K3 비상디젤발전기-B 'TRIP VIBRATION' 경보발생으로						
▶PSA기본사건(T&M) EGDGZ002MB	▶분석자 시스템	TRIP됨. Turbo Chars	per 두유로 인한	신동발생.		
▶발전소운전상태 경상 ▼	▶ 분석상태 분석완료 ▼	Failure	and Unav	ailability	Evaluation	
정비기기 분석기기 통지 (M2,M3) 오더	운전 인계 일지	LCO M F	R	IMS	PI	
▶정비기기 2123-KJ-E002 STANDBY D	IESEL ENGINE 'B'			▶PSA 대상:	7 7 Y	
▶ SyS Code (S)EG EMERGENCY D/G & DIESEL FUE	L ▶Cp Code (C)DG	DIESEL GENERATOR	1	▶MR 대상기	[7] Y	
▶ PSA 계통 EG EMERGENCY D/G & DIESEL FUE	L ▶PSA 기기유형 DG	Diesel Generator		▶신뢰도분석	(용기기 Y	
▶호기계통 KJ KJ:STAND BY DIESEL AND FUEL	C ▶기기사양 DIESEL GE	NERATOR		▶ CASESTU	DY용기기 N	
기능위치 상세정보 설비 상세정보	<mark>0</mark>	peration & Main	Itenance	Informat	ion Display	
호기 기기설치위치 기능위치번호	기능위치내역	SysCode 호기계통코드	PSA계통코드	CpCode	717	
K34 2123 2123-KJ-E002 STANDBY	DIESEL ENGINE 'B' (3	S)EG KJ	EG	(C)DG	DIESEL GENERATOR	
					▶	

Data Applicatio	n to PSA fo	r Reference	Plant	
Maintenance (2836 un	Complete Fai (92 units)	lure Incipient Failure (23 units) De	graded Failure _(92 units)	
Name	Current CDF	Updated CDF	Decrease Rate	in
Component	4.75E-06	3.81E-06	19.7%	1.
RPS/ESFAS]	4.71E-06	0.73%	and a star
Component Unavailability		4.54E-06	4.24%	- 14
Total	4.75E-06	3.64E-06	23.4%	
			() ICH	INP

Unit	Function Location	Equipment Master	Basic Data	BD Upload	F&U Evaluation	PSA Application
K1	39,999	46,429	0	0	0	
K2	50,322	46,429	0	0	0	
K34	100,778	106,444	0	0	0	0
Y12	96,492	100,653	0	0	0	
Y34	96,821	119,999	0	0	0	0
Y56	117,487	122,342	0	0	0	3 - MA
U12	76,440	82,012	0	0	0	
U34	107,720	114,708	0	0	0	0
U56	118,218	121,073	0	0	0	STY III
W1	54,922	123,724	0	0	0	
W2	52,023		0	0	0	AME
W34	118,601	123,581	0	0	0	
SUM	1,029,823	1,107,394				

Туре	Positive Impact	Negative Impact
Surveillance	o Detection of Equipment Failure or Degradation (Large)	o Potential Occurrence of Test- Caused Transients (Medium) o Equipment Unavailable during Surveillance Act (Medium)
Preventive Maintenance	o Prevention of Equipment Failure (Large)	o Equipment Unavailable during Preventive Maintenance o Potential Human Error (Medium)
Corrective Maintenance	o Restoration of Equipment Function (Large)	o Potential Human Error (Medium)
Post- Maintenance Testing	o Verification of Equipment Functionality (Large)	o Potential Occurrence of Test- Caused Transients (Medium) o Equipment Unavailable during Test (Medium)

- 394 -

	IE * HW1 * HW2 * *	* HE * RF
	Positive Impact	Negative Impact
Initiating Event	Avoid or Reduce Initiators (Large)	Cause Initiators to Occur (Small)
Hardware Failure	Increase Equipment Availability (Large)	Equipment Unavailable during Maintenance (Small)
Human Decrease Human Error Potential N/A Error (Large) N/A		N/A
Recovery	Increase Recovery Potential	N/A

X	Impact of On-Line Maintenance on TMI-2 Accident
	ISSA Technol
	Likely Impact on TMI-2 Accident
	(Assumption of On-Line Maintenance)
Initiating Event	Prevention of the Loss of Main Feedwater and the Small-Break LOCA: The loss of main feedwater initiating event could have been prevented if the condensate polishing system had been maintained in a good condition by implementation of the maintenance rule. In addition, the induced occurrence of a small-break loss of coolant through the stuck-open PORV also could have been prevented if the cyclic operation of the PORV had been improved by an effective maintenance program.
Hardware Failure	o Prevention of Failure of the Condensate Polishing System: The two failures in the condensate polishing system (i.e., failure of the air-operated polisher bypass valve and a faulted valve on one of the polishers) might have been fixed by a good maintenance program. If it had been the case, the condensate pumps would not have lost their suction pressure because of the improved margin due to the bypass valve, even though some water had leaked into the instrument air system. o Prevention of the PORV Failure: If the reliability of the PORV (especially, the cyclic on-off operation) had been improved by a good maintenance program, the loss of main feedwater incident at TMI-2 would not have led to a small LOCA. It is very likely that the plant could achieve a safe shutdown condition following the loss of main feedwater initiator since the operators were well trained for this inicident ar there was an event-oriented EOP for this specific transient.

	Impact of On-Line Maintenance on TMI-2 Accident
,	ISSA Technology
	Likely Impact on TMI-2 Accident (Assumption of On-Line Maintenance)
Human Error	o <u>Less Likely Error on the EFW Block Valve</u> : The emergency feedwater system is a safety-related system; as such, the increase in risk would have been assessed for this system before performing the test. The operators might have been more careful to ensure the system functionality, and so they might not have committed a restoration error for the block valve. o <u>Decreased Likelihood of Operator Misdiagnosis</u> : One of the most important causes of the TMI-2 accident is that the control room operators misdiagnosed the condition of the primary system such that they thought it were going solid, although the coolant was being lost through the stuck-open PORV. If the EFW block valve was not mispositioned, then the operators might not have committed the misdiagnosis error because more time would have been available to them before core damage occurs.
Recovery Failure	Not directly relevant to the TMI-2 accident
	17

Human Factor	Human Factor			Number of Instances and Description
Layers	Categories			
Unsafe Acts	Decision Error	2	2	persistent trial of removing clogged resin from the condensate polishing system
				misjudgment of the primary system status following the PORV stuck-open failure
	TE - Human-Machine Interface	2		poor alarm system design
				key indicators on the back panel
	TE - Procedural or Diagram Error	1	1	poor operating procedures
				faulty valve on one of the polishers that allowed water intrusion into IAS
Preconditions for	TE - Equipment Deficiencies	3	12	chronically leaking PORV or some other valve
Unsafe Acts			ļ	PORV failure to close upon a command signal
	TE - Configuration Error	1		misalignment of the EFW system
	Personal Readiness	1		insufficient training
	Adverse Mental State	1		extremely high stress especially due to too many alarms
	Physical/Mental Limitation	3		information overload, insufficient reaction time, and complexity
Unsafe	Inadequate Work Control	1	3	inadequate work package for the condensate polishing system
Supervision	Problem Identification & Resolution	2		lack of corrective action on two previous occasions of water introduction into IAS
oupervision				failure of operating experience feedback from the Davis-Besse event
Organizational	Resource Management	2	2	maintenance and engineering backlog of the problem of water introduction to IA
Influences	Resource Management	-	-	inadequate training program

R	Impac	ct of Maintenance Rule on TMI-2 Accident
Item	Content	ISSA Technolo Likely Impact of Maintenance Rule onTMI-2 Accident (Implementation Assumed)
(a)(1)	Performance Monitoring	o If an effective maintenance program had been in place at TMI-2, the loss of main feedwater due to failure of the condensate polishing system could have been averted because of the appropriate corrective action potentially taken as a result of the system degradation o If the operating experience of the PORV stuck failure at Davis Besse (a similar B&W plant) in September 1977 had been properly accounted for at TMI-2, the TMI-2 operators might have diagnosed the stuck-open failure of the PORV during the accident evolution
(a)(4)	Risk Evaluation	o The assessment of the increase in risk would have been carried out for the emergency feedwater system before performing the test, and the operators might have been more careful to ensure the system functionality o It is very likely that the risk impact might not have been evaluated for the condensate polishing system under (a)(4) because it is typically not a risk-significant system. However, more effective maintenance would have been performed for this system, because it is included in the scope of maintenance rule by item (b)(2)
(b)(1)	Inclusion of Safety- Related SSCs in (a)(1)	The emergency feedwater system would have been included in the scope o the maintenance rule at TMI-2 because it is safety related
(b)(2)	Non-Safety- Related SSCs to be Included in (a)(1)	The condensate polishing system would have been included in the scope of the maintenance rule at TMI-2 because its failure can cause a reactor scrar or actuation of a safety-related system

viou	el Development	
To Ider • PI • Do • EC • Do • In	the utility PSA model for ntify the items be needed improven ant operation information esign document DP & AOP esign change items terview with plant operation staff	each reactor type nent for MPSA model
Develo	p list of items be needed improven	nent for esch PSA element
Element	Items for Improvement	remarks
Element	Items for Improvement Transfer between IE after transient	remarks Clear transfer logic develop in quantification
Element	Items for Improvement Transfer between IE after transient ATWS IE analysis	remarks Clear transfer logic develop in quantification UET reanalysis & Clear transfer in Accident analysis
IE	Items for Improvement Transfer between IE after transient ATWS IE analysis Specific IE analysis	remarks Clear transfer logic develop in quantification UET reanalysis & Clear transfer in Accident analysis LOOP, Transient IE reanalysis using Korean Specific Dat
Element	Items for Improvement Transfer between IE after transient ATWS IE analysis Specific IE analysis SGTR Accident analysis	remarks Clear transfer logic develop in quantification UET reanalysis & Clear transfer in Accident analysis LOOP, Transient IE reanalysis using Korean Specific Dat Reanalysis to consistent with Regulatory PSA models
IE	Items for Improvement Transfer between IE after transient ATWS IE analysis Specific IE analysis SGTR Accident analysis Seal LOCA reanalysis during LOCCW, SBO	remarks Clear transfer logic develop in quantification UET reanalysis & Clear transfer in Accident analysis LOOP, Transient IE reanalysis using Korean Specific Dat Reanalysis to consistent with Regulatory PSA models Using recent information
IE	Items for Improvement Transfer between IE after transient ATWS IE analysis Specific IE analysis SGTR Accident analysis Seal LOCA reanalysis during LOCCW, SBO Respect the plat design change items (AAC D/G)	remarks Clear transfer logic develop in quantification UET reanalysis & Clear transfer in Accident analysis LOOP, Transient IE reanalysis using Korean Specific Dat Reanalysis to consistent with Regulatory PSA models Using recent information Reanalysis needed

Redefine	the success criteria for each Event tr	ee		
To respendence	ct more realistic plant response for accident	sequence		
To suppo	ort the HRA analysis	•		
 Recalcula MAPI MAR 	ation using BE code P for utility PSA model S for regulatory PSA model			
	Accident Scenario	Time to Core damage (min)		
EI		MAAP model	MARS mode	
	1' pipe rupture (Cold Leg) w/o recovery action	105.1	125.3	
Small LOCA	21' pipe rupture (Cold Leg) w/o recovery action		37.8	
SGTR	1 tube rupture w/o recovery action	156.6	208.3	
	1. Plant response after AFWS operation for 4 hours during SBO accident	147.8	435.8	
SBO	2.Seal LOCA analysis for leak rate 180, 480 gpm during SBO	-	74.8 61.3	
General	2. Total Loss of secondary cooling	85.9	57.8	
Transient	2.1 elapse time for Feed & Bleed during Transient	-	75.8	

□Compariso	n table for HR	A		
Name of HRA event		Event description	Utility Model	MPAS Model
HRTCFRPC1- 10	Core cooling recovery	OPERATOR FAILS TO RECOVER CORE COOLING RE C-1	1.15E-03	1.64E-02
HRTCFRPC1- 14	LPSI operation	OPERATOR FAILS TO MAKE-UP RCS INVENTORY (LOCCW)	2.56E-02	1.22E-02
HRFRPH1-10S	Feed & Bleed	OPERATOR FAILS TO INITIATE FEED-AND- BLEED (Small LOCA/SGTR) RE H-1	6.77E-03	1.15E-02
HRTAFRPS1-4	Emergency Boration	OPERATOR FAILS TO INJECT BORATION WATER USING CHRAGING PUMP	2.54E-03	1.63E-03
HRESP1_3- 3_4	High Pressure C/L HPSI Recirculation	Operator fails to initiate high pressure cold leg recirculation (HPCR-SLOCA) SUP 1-3	2.13E-03	1.61E-03
HRESP1_3- 3_4	High Pressure C/L HPSI Recirculation	Operator fails to initiate high pressure cold leg recirculation SUP 1-3	2.13E-03	1.61E-03

model	Development		1:
□MPAS mo	del development		
 Interview Comp Comp Final com To app 	with plant personnel(Mo are accident sequence with are system fault tree with as oparison results ply into MPAS model	CR operator) in detail plant EOP & AOP -built & as-operated condit	lion
Review item	Model developer's opinion	Plant's opinion	remarks
Loss of Vital Bus	Plant response confirm	RCP trip occur	Add in IE
ATWS	UET analysis needed	agree	UET reanalysis needed
General TR	Considering PORV stuck open during transient	agree	Add in ET
	Considering Specific data & Seal	agree	Add in ET

Session III-B

Fire PSA

This is a blank page.

Summary of Session III-B: Fire PSA

Chair: Tsuyoshi UCHIDA (JNES), Moon-Hak JEE (KEPRI)

1. "Development of fire PSA database system" presented by Dong-Kyu Kim at KOPEC

Dr. Kim's presentation for the topic related with fire PSA database system development proposes an advanced fire PSA approach for new nuclear power plants by application of fire PSA database system. This system accommodates the information of plant partitioning, fire frequencies, PSA equipment, and cable arrangement. In addition, fire PSA D/B can utilize a couple of KOPEC's A/E software such as IPIMS, KCMS, OPMS. We are sure that the fire PSA DB system can reduce a lot of time consuming for fire-induced PSA work and enhance the efficiency of analysts' solution for fire safety analysis.

2. "Development of the fire PSA methodology and the fire analysis computer code system" projected by Katsunori OGURA at JNES

It is quite impressive that JNES has developed its own fire PSA methodology to figure out the CDF status with the risk-significant fire scenarios. It was also presented that JNES has integrated the zone and CFD fire model that was introduced as CFAST/FDS network. In Japan, JNES conducts fire PSA for LPSD as well as full-power operation nuclear power plants. It is expected that at next KJPSA meeting the verification and validation result of CFAST/FDS network and the development status of seismic-induced fire PSA methodology will be introduced.

3. "A comparative study of two quantification algorithms and importance measures in fire PRA model" by presenter, Kil-Yoo KIM at KAERI

Dr. Kim presented improved algorithm for the importance measure in FV for the fire PRA model. His conclusion is that in FV calculation the failure probability of component K due to target room fire should be used as determinant factor to choose quantification method 1 that is conventional approach or quantification method 2 that is the advanced calculation. This presentation means that it is prequisite to find the failure probability of each risk-significant component in target room and it is expected the certainty of fire CDF quantification can be improved a great deal.

4. Improved fire-PSA with quantitative fire risk assessment by Moon-Hak JEE at KEPRI

The final presenter was Mr. Jee who is professional engineer of fire protection. According to his material, the contribution of fire-induced CDF to CDF in toal is very high due to the conventional approach that is prone to conservatism and to cover uncertainty in fire-induced CDF factors such as fire frequency, severity factor, non-suppression probability, and CCDP itself. He proposed that more fire compartments can be screened and fire-induced CDF will be declined by use of performance-based fire modeling and the recent fire PSA methodology. Particularly, the active fire suppression strategy with the ventilation-controlled fire and the advanced fire fighting strategy with purpose to control fire CDF at normal power operation as well as shutdown period was suggested.

This is a blank page.

10 th KJ-PSA							
2 Development Scopes (1) III. Development Plan							
	Description	KOPEC Fire PSA DB System	NUREG/CR-6850 Requirements				
Task 1	Plant Partitioning	\bigcirc	O				
Task 2	Component Selection	\bigcirc	O				
Task 3	Cable Selection	O					
Task 4	Qualitative Screening	\bigcirc	0				
Task 5	Risk Model	0	X				
Task 6	Fire Ignition Freq.	0	X				
Task 7	Quantitative Screening	\bigcirc	O				
Task 8	Scoping Fire modeling	0	X				
Task 9	Circuit Failure Analysis	Ø	O				
1		©∶Fully su ○∶Partial s	pport support				
		KOR	EAPOWER ENGINEERING COMPANY, INC.				

10 th KJ-PSA						
2 Development Scopes (2) III. Development Plan						
	Description	KOPEC Fire PSA DB System	NUREG/CR-6850 Requirements			
Task 10	Circuit Failure Mode Likelihood	O	O			
Task 11	Detailed Fire Modeling	X	X			
Task 12	Human Reliability	X	X			
Task 13	Seismic-Fire interaction	X	X			
Task 14	Fire-PSA Quantification	0	X			
Task 15	Uncertainty	X	X			
Task 16	Documentation	0	X			
Task 17	Walkdown	O	X			
Task 18	Fire PSA Database	O	O			
leta	12	© : Fully s ○ : Partial	support support OPEC lea power engineering company, inc.			

Ⅲ-B-2

Development of the Fire PSA Methodology and the Fire Analysis Computer Code System

May 18-20 The 10th Korea-Japan Joint Workshop on PSA (KJPSA)

Katsunori OGURA, Tomomichi ITO, Tsuyoshi UCHIDA and Yusuke KASAGAWA

1

Probabilistic Safety Assessment Group Nuclear Safety Analysis and Evaluation Office Nuclear Energy System Safety Division

Incorporated Administrative Agency Japan Nuclear Energy Safety Organization

嫠 JNES

(1)	Outline of Fire PSA Methodology
	The methodology is composed of "Spatial Interaction Analysis" to identify fire zones, "Quantitative Screening" under the conservative manner and "Detailed Analysis" to quantify fire scenarios. [Next Page]
	The risk significant fire scenarios are quantified as follows;
	$CDF_{fire} = \sum_{i} (F_{fire} \times P_{IE} \times F_{s} (\times P_{prop}) \times CCDP)_{i}$
	CDF_{fire} = Total CDF due to the risk significant fire scenarios
	F_{fire} = Fire frequency for the risk significant fire scenario "i"
	P_{IE} = Probability of initiating event in case of fire scenario "i"
	F_s = Fire severity factor in case of fire scenario "i"
	P_{prop} = Probability of fire propagation to other Fire Zones
	(Applicable only to fire propagation scenarios)
	<i>CCDP</i> = Conditional Core Damage Probability for an initiating event in case of fire scenario "i
	Fire Severity is based on phenomenological fire propagation analyses. Fire
	Severity Factors include the effect of fire suppression as well as the effect of the
	physical separation among the structure, system and components (SSCs).

(2)	Key Analysis Technique
	Fire-induced initiating events were identified and quantified, applying the event tree and fault tree technique and considering SSCs installed in each Fire Zone.
	Bayesian update technique to fire events of operational experiences of
	NPPs in U.S. and in Japan was applied to quantify the fire frequencies
	because NPPs in Japan had experienced a small amount of fire events.
	Fire frequencies developed were apportioned to each Fire Zone, based on the number of component.
	The following computer codes were applied to develop the Fire Severity
	Factors.
	α -Flow: Field Model
	COMPBRN-III: Zone Model
	HAWKS (Thermal Conduction): FEM Model
	These computer codes are being replaced with FDS and CFAST codes.
	ET and FT models developed for internal events were applied to quantify
	fire-induced accident sequences.

3. P	reliminary Fire PSA Results	
Dominant	Accident Sequences in Power Operation	ED: Fire source, BLUE: Initiating Events
Reactor Types	Dominant Sequence	Contribution to total CDF
PCCV 4 Loop PWR	Fire in emergency switchgear room (ESG) +Loss of AFW and spurious open of PORV due to <u>hot-short</u> in a control cable (SLOCA +Loss of Feed & Bleed	 Approx. 23% Contribution of CDF due to the scenarios relevant to cable / cabinet fires in switchgear room was more than about 30% of total CDF.
2 Loop PWR	Fire of a control cable in CCW pump root +Loss of CCWS, LPIS, CV-Spray, Instrumental Air system and Emergency Low Voltage Bus due to fire (Loss of CCWS) +Loss of MD-AFWP due to power cable failure caused by fire (Degradation of secondary side cooling) The power cables failed were just above the source.	n V Approx. 49% Contribution of CDF due to fires in CCW pump room was about 78% of total CDF.

The 10th KJ PSA May 18-19, 2009

A Comparative Study of Two Quantification Algorithms and Importance Measures in a Fire PRA Model

May 18, 2009

Kilyoo Kim, Sang H. Han, Dae II Kang

Korea Atomic Energy Research Institute

Event Descriptions						
Table 1						
Fire Oc	currence Events	Basic Events	Initi	ating Events		
	R ₁	A ₁ , B ₁ , C ₁		IE ₁		
	R _n	C ₂ , D ₂		IE, IE,		
Name	Event Description		Frequency	Probability		
Event						
Name	Event Description		Frequency	Probability		
R1	Fire Occurrence Event in Room 1		0.15/yr			
R ₂	Fire Occurrence Event in Room 2		0.2/yr			
A ₁	Component A	Failure due to Room 1 Fire		1		
B1	Component B	Failure due to Room 1 Fire		1		
C1	Component C	Failure due to Room 1 Fire		1		
C2	Component C	Failure due to Room 2 Fire		1		
D2	Component D	Component D Failure due to Room 2 Fire		1		
Α	Component A F	ailure due to Random Failure		0.001		
В	Component B F	ailure due to Random Failure		0.005		
С	Component C F	ailure due to Random Failure		0.007		
D	Component D F	ailure due to Random Failure		0.0008		
Е	Component E F	ailure due to Random Failure		0.004		
F	Component F Fa	ailure due to Random Failure		0.003		

E	Event Descriptions- Partial Failure						
Fire Occurrence Events		Basic Events	Initiating	g Events			
	R ₁	A ₁ , B ₁ , C ₁	IE	2 ₁			
	R ₂	C ₂ , D ₂	IE ₁ ,	IE ₂			
Table Event	3.	Event Description	Frequency	Probability			
Name	Event Description		Trequency	Troouoliny			
R ₁	Fire Occurrence Event in Room 1		0.15/yr				
R ₂	Fire Occurrence Event in Room 2		0.2/yr				
A ₁	Compone	Component A Failure due to Room 1 Fire		1			
B_1	Component B Failure due to Room 1 Fire			0.1			
C1	Compone	Component C Failure due to Room 1 Fire		1			
C2	Compone	nt C Failure due to Room 2 Fire		1			
D ₂	Compone	nt D Failure due to Room 2 Fire		1			
А	Component	A Failure due to Random Failure		0.001			
В	Componen	B Failure due to Random Failure		0.005			
С	Componen	t C Failure due to Random Failure		0.007			
D	Component	D Failure due to Random Failure		0.0008			
Е	Componen	E Failure due to Random Failure		0.004			
F	Componen	t F Failure due to Random Failure		0.003			

Ex) Errors When Methods Applied to B₁ Only

 $\begin{array}{l} \mbox{Method 1:} \ R_1\cdot A_1\cdot B_1\cdot C_1\cdot E \ + \ R_2\cdot A\cdot B\cdot C_2\cdot E \ + \ R_2\cdot A\cdot C_2\cdot D_2\cdot F \\ \mbox{Method 2:} \ R_1\cdot A_1\cdot (B+B_1)\cdot C_1\cdot E \ + \ R_2\cdot A\cdot B\cdot C_2\cdot E \ + \ R_2\cdot A\cdot C_2\cdot D_2\cdot F \\ \mbox{Method 3:} \ \mbox{If } B_1 \ge 0.5, \ \mbox{Method 1, } \ \ \mbox{elseif Method 2} \\ \mbox{Reference:} \ R_1\cdot A_1\cdot (B+B_1-B\cdot B_1)\cdot C_1\cdot E \ + \ \ \ R_2\cdot A\cdot B\cdot C_2\cdot E \ + \ \ \ \ R_2\cdot A\cdot C_2\cdot D_2\cdot F \end{array}$

B ₁ Value		Method 1	Method 2	Method 3	Reference
1	CDF	6.006E-4	6.036E-4	6.006E-4	6.006E-4
	Error	0	3E-6	0	
0.7	CDF	4.206E-4	4.236E-4	4.206E-4	4.215E-4
	Error	9.0E-7	2.1E-6	9.0E-7	
0.5	CDF	3.006E-4	3.036E-4	3.036E-4	3.021E-4
	Error	1.5E-6	1.5E-6	1.5E-6	
0.1	CDF	6.060E-4	6.360E-5	6.360E-5	6.330E-5
	Error	2.7E-6	3.0E-7	3.0E-7	

Ⅲ-B-4

10th KJPSA

Improved Fire-PSA with Quantitative Fire Risk Assessment

May 19, 2009.

Korea Electric Power Research Institute

Moon-Hak Jee , PE (fire protection)

Topics

- Fire-induced CDF and IE CDF
- Fire PSA Improvement
- Fire PSA Factors

Fire risk management at NPPs

Fire and IE CDFs Histogram

Fire CDF Histogram by Method

- FIVE : Fire Induced Vulnerability Evaluation screening methodology
- Various FPRA : EPRI TR-105928/NUREG/CR-4840/NUREG-2300
- Combination of FIVE screening, fire IPEEE and so on

Fire CDF Histogram by Method

[Raw data (before removing outliers)]							
	5+FPRA	fire PRA	FIVE				
Mean	4.12E-04 (0.85)	1.22E-05 (0.03)	5.72E-05 (0.12)				
Median	1.78E-05	5.80E-06	3.56E-05				
Minimum	1.00E-06	1.30E-09	3.91E-06				
Maximum	5.40E-03	5.20E-05	2.00E-04				
5 th percentile	2.45E-06	8.12E-08	4.06E-06				
95th percentile	3.04E-03	3.21E-05	2.00E-04				
Count	30	31	38				

[statistical data (removing outliers)]

	5+FPRA	fire PRA	FIVE	
Mean	6.25E-05 (0.47)	1.31E-05 (0.10)	5.72E-05 (0.43)	
Median	1.73E-05	7.50E-06	3.56E-05	
Minimum	1.00E-06	1.61E-07	3.91E-06	
Maximum	4.04E-04	5.20E-05	2.00E-04	
5 th percentile	2.44E-06	2.44E-06	2.44E-06	
95 th percentile	2.70E-04	2.70E-04	2.70E-04	
Count	28	29	38	

Significant Locations Fire CDF Histogram

Significant Locations Fire CDF Histogram

	[Raw data (before removing outliers)]						
		CSR	CR	Other	SWGR	ТВ	
	Mean	7.26E-06 (0.02)	2.13E-05 (0.06)	1.49E-05 (0.04)	6.31E-06 (0.02)	3.19E-04 (0.86)	
	5 th percentile	1.94E-07	7.01E-07	6.20E-07	1.55E-07	7.70E-07	
	95 th percentile	4.02E-05	7.41E-05	5.88E-05	2.45E-05	2.69E-03	
	Count	28	41	48	51	22	
	[statistical data (removing outliers)]						
A A N		CSR	CR	Other	SWGR	тв	
	Mean	7.26E-06 (0.11)	2.13E-05 (0.34)	1.49E-05 (0.24)	6.57E-06 (0.10)	1.33E-05 (0.21)	
	5 th percentile	1.94E-07	7.01E-07	6.20E-07	3.34E-07	7.43E-07	
	95 th percentile	4.02E-05	7.41E-05	5.88E-05	2.53E-05	3.19E-05	
	Count	28	41	48	49	18	
					C		
Indications from Fire-induced CDF review

- Fire-induced CDF changes depending on analysis methods
 - FIVE, fire-PRA, IPEEE application methods
 - then, what if the newly advanced technology is approved?
 - then, what if the state-of-the-art quantitative fire risk tool is applied?

• A few compartments contribute most of fire-induced CDFs

- Is the way to classify fire ignition sources still valid for NPPs?
- Can fire frequency data be effective to NPPs up to date?

• Fire CDFs are diverse from plants, reactor types, and time

- Conventional risk analysis ways are too conservative and uncertain
- Newly developed fire modeling tools with V&V are applicable
- FIVE, COMPBRN-II/III should be replaced with new quantitative tools

Fire PRA methodology in Korea

- Identical fire PRA model based on FIVE and EPRI TR-105928
 - FIVE methodology is used for fire compartment screening purpose
 - It combines deterministic and probabilistic approaches
 - Technique at FIVE is highly conservative to include uncertainty
 - Fire modeling analysis is quite bounding rather than smart engineering
 - All Korean NPPs are still using FIVE and EPRI fire PRA methodology
- Major fire compartments contribute fire-induced CDFs

Kori-2	CR > Inverter room > SWGR > TB > CSR
Kori-3,4	CR > SWGR > TB > Others

- Major contribution compartments : different values at EPRI TR-112933
- Fire-induced CDF : order of E-05
- LE CDF : order of E-06

Fire PSA improvement with fire risk assessment

- NFPA-803 : fire protection standard for LWR (up to 2004)
- NFPA-805 : PB fire protection standard for LWR (now)
- Transition from NFPA-803 to NFPA-805 in US
 - US NRC revised 10CFR50.48 in June 2004
 - 💐 (c) National Fire Protection Association Standard NFPA 805 approved
 - 🧃 (c) (3) compliance with NFPA 805

NUREG/CR-6850 : Fire PRA methodology

- RI-PB approach for fire risk management
- introduction of fire modeling (zone and CFD model)
- HEP and HRA (Performance affecting/shaping factor)
- Uncertainty analysis and Sensitivity analysis
 - 3-dimentional risk distribution and configuration

Fire PSA improvement with fire risk assessment

- FPRA : FIVE, COMPBRN-II / III, fire PRA, IPEEE, etc
- Recent Tools : Zone Model, Field Model
 - FPEtool : Zone Model / Computer Program by NIST
 - CFAST : Zone Model / Computer Program by NIST
 - FDS : CFD Model of Fire Driven Fluid Flow
 - Smoke and Heat transport from Fire
 - Display FDS result by SMOKEVIEW
- Others : Magic, Flame, LES, Jasmine, Engineering tools, etc

Fire PSA improvement with fire risk assessment

Fire PSA factors : fire ignition frequency

• Fire ignition frequency for fire PSA in Korea

- EPRI fire events data for conventional and generic database (NSAC 178L)
- US NPPs between 1965 and 1988 (updated data from 1965 to 2000)

• New fire PRA methodology (NUREG/CR-6850)

• Classification fire frequency on US NPPs : 37 bins with split fractions

 Table 6-1

 Fire Frequency Bins and Generic Frequencies

ID	Landian	Ignition Source (Equipment Type)	Marta	Generic	c Split Fractions for Fire Type					
	Location		Mode	(per rx yr)	Electrical	Oil	Transient	Hotwork	Hydrogen	HEAF'
1	Battery Room	Batteries	All	7.5E-04	1.0	0	0	0	0	0
2	Containment (PWR)	Reactor Coolant Pump	Power	6.1E-03	0.14	0.86	0	0	0	0
3	Containment (PWR)	Transients and Hotwork	Power	2.0E-03	0	0	0.44	0.56	0	0

- Expansion of fire data to cover similar fire events (OECD and industry data)
- Incorporation of fire modeling results for fire initiation and propagation
- Fire control activities for advanced fire protection program (in Korea)

Fire PSA factors : SF and NSP

Conventional fire PSA

- Complete failure of safety function at compartment
- Deterministic fire suppression probability
- No benefit of incipient fire detection and response by procedures

Automatic suppression system reliability (FIVE)				
Wet pipe sprinkler	2.0E-02			
Preaction sprinkler	5.0E-02			
Deluge sprinkler	5.0E-02			
CO2	4.0E-02			
Halon	5.0E-02			

Advanced severity factor and non-suppression probability

- Severity factor : based on gamma distribution function with discretization
- NSP : estimated fire event tree for fire detection and suppression capability

Fire PSA factors : SF and NSP

Severity factor and Non-suppression probability calculation

HRR Values	HRR1	HRR2	HRR3	HRR4	 HRRn
Individual Severity Factor	Pkt	Pile	Pka	Pka	 Pion
Time to damage	5.	the state	t., .	the second	 5.n
Prob. of supp. after damage	PNS.k.1	PNSka	PNSka	PNEka	 PNSka
$[SF_k \cdot P_{n_kk}]_i$	Pki · Pmki	Pka · Pmaka	Pka · Pmka	Pka Praka	 Pkn · Pmake

- Quantitative fire risk assessment by fire model (program)
 - HRR based on fire size, MLR, combustion amount, ventilation effect
 - Fire detection and suppression capability and activation time
 - Fire suppression capability and extinguishment and so many quantities

Fire PSA factors : CCDP

- CCDP : based on IE PSA model consideration of fire events
- Advanced fire risk assessment : more rooms will be screened
 - For PWR plants in Korea, 80% of rooms screened-out
 - A few fire compartment occupied most of fire-CDF
 - Conventional and generic approach is satisfactory the present goal

More challenge for the improvement fire-induced CDF

- Recent scientific fire modeling tools can improve fire CDF more
- Newly modified fire protection program in Korean NPPs
- Credited fire protection system and managerial fire control procedure

Ventilation control for confined compartment

- Natural or forced ventilation flow rate and condition : unchanged
- FIVE and COMPBRN : as aggravated situation for bounding conditions

Predominant ventilation effect to fire growth and propagation

- At Initial and without control , combustible control fire is governing
- If controlled under-ventilated condition is easily created
- With fire suppression aid, fire growth and propagation is stopped
- More research and development for ventilation control
 - Fire fighting strategies for manual fire suppression
 - Pressure variation due to ventilation-controlled fire
 - Oxygen depletion, back-draft, flash-over, radiation concentration

Ventilation control for confined compartment

Conclusion

- More fire compartments can be screened out
 - With performance-based fire modeling
 - Recent fire PSA methodology
- Fire-induced and/or total CDF can be declined
- Advance fire fighting strategies for each fire compartment
- Active fire suppression tactics with ventilation-control fire

Session III-C

Severe Accident & Safety Analysis (I)

This is a blank page.

Session III-C Severe Accident & Safety Analysis (I)

Chair: Tao LIU (INET), Han-Chul KIM (KINS)

Four papers, contributed by KAERI, KINS and JNES, are collected into Session III-C. They deal with hydrogen issue, severe accident code validation, iodine chemistry, and safety depressurization. Main issues are severe accident code validation and adequate application.

The first one of these papers is "Evaluation of THAI-HM2 Test with MELCOR Code" presented by Dr. Jung-Jae Lee. THAI-HM2 is one of the OECD/NEA-THAI international programme. A brief introduction of THAI-HM2 test is given first including the background, test facility, test procedure, thermal hydraulic phenomena and instrumentation, and test results. MELCOR analysis follows two steps. Step1: A basic case study for several conditions in the analysis; Step2: Sensitivity study of nodalization in axial direction. The applicability of MELCOR code for a dynamic thermal hydraulic process where a stratified light gas cloud is broken-up by steam plume is verified in the paper. Some pieces of limitation and suggestion on MELCOR code application are also obtained from the work.

The second paper is about "MELCOR improvement and applications" given by Mitsuhiro Kajimoto from JNES. Severe accident research activities in Japan are summarized first, and then model development based on existing experimental data and analytical approach is described in detail. Subsequently, ongoing international cooperative research projects are also introduced. All these work show that MELCOR code improvement is necessary and is advancing towards a higher quality and reliability.

The third one is "Validation of MELCOR Iodine chemistry model with BIP Test Data". An intercomparison of MELCOR calculation and RTP experiment data is done to validate the MELCOR iodine pool chemistry model. The paper gives a detail description of pool chemistry model of MELCOR and RTF tests analysis and then presents the results of comparison. The conclusions from the work are: the MELCOR code can properly simulate the molecular iodine gas formation against sump pH in accident condition, while the calculation result shows model development needs because there is a tendency to underestimate I2(gas) concentration.

The last one in this secession is "Analysis of RCS feed & bleed operation to mitigate a severe accident for OPR1000" presented by Rae-Joon Park. A feed and bleed operation of the reactor coolant system (RCS) to prevent reactor vessel failure has been analyzed in an optimized power reactor (OPR) 1000. SCDAP/RELAP5 code is used to evaluate the Feed and Bleed operation for the Total LOFW in the severe accident of the OPR1000. Effect of operator action timing on the consequences and operator action capacity on the consequences are key elements for the accident mitigation. Several cases concerning a total LOFW with and without RCS feed and bleed are introduced in the presentation. Suggestions of operator action timing and action capacity are obtained from the work.

As a summary, every paper in Secession III-C is related to severe accident calculation codes, three papers of which are refers to MELCOR and the remainder is related to SCDAP/RELAP5. These codes are important tools for severe accident analysis which has become an indispensable part in NPP safety issue. Therefore, further development in this area was called for by the presenters.

This is a blank page.

Ш-С-1

e in Ope ISFT mo iscretizat 22-axial CVH Pr (Control M	en Cal del, rad tion hav nodes s ^{ackage}	culatio lial disc ve been showed	on retizatio examine best agro FL Par (Flow	n of in d. eement ckage Path)	ner cylind	ler nodes experime
ISFT modiscretizat	del, rad tion hav nodes s ackage Volume)	lial disc ve been showed	retizatio examine best agro FL Par (Flow	n of inn d. eement	ner cylind	ler nodes experime
CVH Pa (Control V	tion hav nodes s	ve been o	examine best agro	d. eement	with the	experime
22-axial CVH Pa (Control V	nodes s ackage Volume)	showed	best agr FL Par (Flow	eement ckage Path)	HS Package	experime
CVH Pa (Control V	ackage Volume)		FL Pa (Flow	ckage Path)	HS Package (Heat Struct.)	
C · · · OV		T			(and outlet.)	
(H2/Steam)	Source data	In-cylinder division	Segment area ratio to real value	Loss Coeff.	HSFT modeling	Remark
5047300	Time-dep	No	0.5	5	Yes (partial)	Blind test case
504 / 300	Time-dep.	No	0.5	5	Yes (all)	-
504 / 300	Time-dep.	Yes ^{**} (level 4-6)	0.5	5	Yes (all)	-
504 / 300	Time-dep.	Yes (level 3-7)	0.5	5	Yes (all)	-
514/310	Time-dep.	No	0.5	5	No	-
5147400	Time-dep.	No	0.5	5	No	-
514/310	Time-dep.	No	0.5	5	No	Open test case
	(12/3001) 504/300 504/300 504/300 514/310 514/310 \$14/310 were vertically sut	(H2/steal) 504/300 Time-dep. 504/300 Time-dep. 504/300 Time-dep. 504/300 Time-dep. 504/300 Time-dep. 514/310 Time-dep. 514/310 Time-dep. 514/310 Time-dep. 514/310 Time-dep. 514/310 Time-dep.	(IL2/Steam) urvision 504 / 300 Time-dep. No 504 / 300 Time-dep. No 504 / 300 Time-dep. Yes" (devel 4-6) Yes" (devel 4-6) 504 / 300 Time-dep. Yes" 504 / 300 Time-dep. Yes" 514 / 310 Time-dep. No 514 / 310 Time-dep. No 514 / 310 Time-dep. No 514 / 310 Time-dep. No	(H2/Steinif) arvision value 504/300 Time-dep No 0.5 504/300 Time-dep. No 0.5 504/300 Time-dep. Yes" 0.5 504/300 Time-dep. Yes" 0.5 504/300 Time-dep. Yes" 0.5 504/300 Time-dep. Yes" 0.5 514/310 Time-dep. No 0.5 514/310 Time-dep. No 0.5 514/310 Time-dep. No 0.5 \$14/310 Time-dep. No 0.5 \$14/310 Time-dep. No 0.5	(II2 Stellin) Image dep No value Control 504 / 300 Time-dep No 0.5 5 504 / 300 Time-dep No 0.5 5 504 / 300 Time-dep Yes 0.5 5 504 / 300 Time-dep Yes 0.5 5 504 / 300 Time-dep Yes 0.5 5 504 / 300 Time-dep No 0.5 5 514 / 310 Time-dep No 0.5 5 514 / 310 Time-dep No 0.5 5 514 / 310 Time-dep No 0.5 5 \$14 / 310 Time-dep No 0.5 5 \$14 / 310 Time-dep No 0.5 5	(II2 Stellin) Time-dep. No 0.5 5 Yes (pathal) 504 / 300 Time-dep. No 0.5 5 Yes (all) 504 / 300 Time-dep. No 0.5 5 Yes (all) 504 / 300 Time-dep. Yes 0.5 5 Yes (all) 504 / 300 Time-dep. Yes 0.5 5 Yes (all) 504 / 300 Time-dep. Yes 0.5 5 Yes (all) 514 / 300 Time-dep. No 0.5 5 No 514 / 310 Time-dep. No 0.5 5 No 514 / 310 Time-dep. No 0.5 5 No

Acknowledgements

"The authors are grateful for the financial support of the Participating Countries to the joint cooperative THAI Project run under the auspices of the Nuclear Energy Agency (NEA), Organization for Economic Cooperation and Development (OECD)."

* Several interesting presentation for OECD THAI program will be made in NURETH-13 in Japan, this October.

Slide 22

Ш-С-2

— 🏷 JNES –

Japan Nuclear Energy Safety Organization

MELCOR Improvement and Applications

Masao Ogino and Mitsuhiro Kajimoto

Severe Accident Evaluation Group Nuclear Safety Analysis and Evaluation Office Nuclear Energy System Safety Division Japan Nuclear Energy Safety Organization

The 10th KJPSA Workshop, May 18-20, 2009 Haevichi Hotel & Resort, Jeju, Korea

Outline

- 1. Severe Accident Research Activities
- 2. Model Development based on Existing Experimental data
- 3. Model Development based on Analytical Approach
- 4. International Cooperative Experimental Research for Key phenomena and Modeling

Summary

0

— 🌺 JNES —

Japan Nuclear Energy Safety Organization

Severe Accident Research Activities

- The application area of risk-informed regulation has been expanded to improve safety decision making and improve regulatory effectiveness in Japan.
- These applications needed for the severe accident codes with higher quality and reliability.
- JNES has been using and improving MELCOR code for the severe accident analysis for NPPs in Japan:
 - (1) Code validation with existing experimental data
 - (2) International cooperative experimental researches for key phenomena
 - (3) Applications of CFD for complementation of MELCOR lumped parameter code.

— 🏷 JNES –

Japan Nuclear Energy Safety Organization

Improvement of the MELCOR Code

Categories	Objectives	Resources	Codes
Utilization of Existing Experiments	Code validation with existing experimental data	Experiments at NUPEC (Containment structure behavior test / FP behavior test / Hydrogen mixing and combustion tests) PHEBUS-FP Experiment, etc.	MELCOR
Utilization of Ongoing Experiments	International cooperative experimental research for key phenomena and modeling	International Projects: PSI ARTIST Program, OECD MCCI Program, OECD MASCA Program, OECD SETH2 Program, OECD SERENA Program, OECD SFP Program, NRC CSARP Program, etc.	MELCOR & CFD
CFD Analysis	To complement lumped parameter codes	Computer fluid dynamics (CFD)	MELCOR & CFD

= 🐎 JNES =

Japan Nuclear Energy Safety Organization

4

Model Development based on Existing Experimental Results

Items	Contents	Comments
Pool Scrubbing	 Pool scrubbing models for gaseous FPs 	Applied two film model
Spray Removal	 Spray removal models for gaseous FPs 	Applied two film model
Containment Failure Model	 Failure models based on the experiments at NUPEC 	Experiments at NUPEC
FP Leak from Containment	- FP leak models at penetration in containment	Experiments at NUPEC
FP Deposition	- Chemical absorption model at high temperature	Experiments at IRSN
FP Release from Fuel	- Improvements of CORSOR-M & BOOTH	Experiments at ORNL &PHEBUS
Control Rods	- Agl formation Models	PHEBUS-FP Experiments
Spray Droplet	 Droplet size distribution model under low flow rate 	Experiments at NUPEC

- 🏷 JNES -

Japan Nuclear Energy Safety Organization

6

7

Model Development based on Analytical Approach

Items	Contents	Comments		
	- CV nodalization (change from 4 nodes to 9 nodes)	Multi-compartment CV model		
Nodalization	 Pressurizer relief tank node with pool scrubbing effect 	Pool scrubbing effect		
	- Crossover-leg (loop-seal model)	Loop seal effect		
	- FP deposition model of steam separator and dryer	Model development		
CFD Analysis	- CFD RCS model	based on mechanistic analysis		
	- CFD containment model			

experiment at JAEA (VEGA test)

Pressure dependent FP release model from fuel rod

— 🏷 JNES -	
------------	--

Japan Nuclear Energy Safety Organization

4. International cooperative experimental research for key phenomena and modeling

Items	Cooperation Projects	Objectives
Fission product behavior	PSI ARTIST (with PSI)	Aerosol deposition in the broken steam generator
	lodine Experiments (with JAEA)	lodine behavior in late phase severe accident
	OECD BIP	lodine behavior in containment
	PHEBUS-FP	Integrated experiment for FP behavior in severe accident
Debris / water	OECD MCCI	Debris-concrete interaction
interaction	OECD MASCA	In-vessel thermal behavior of debris
	OECD SERENA	Debris-coolant interaction (steam explosion)
Containment behavior	OECD SETH2	Thermal hydraulics in the containment
Out side containment	OECD SFP	LOCA (fuel heat up and zircaloy ignition) at storage fuel pool.

— 🐎 JNES -

Summary

With the expansion of application area of risk-informed regulation, severe accident codes need to have higher quality and reliability.

To Improve and validate the integrated severe accident code MELCOR:

- (1) Code validation with experimental data
- (2) Applications of CFD to complement the lumped parameter code MELCOR

Need of further experimental data and CFD analysis to complement the MELCOR and reduction of the uncertainty bound in severe accident analysis. 16

Japan Nuclear Energy Safety Organization

Analysis of R	TF test	cs (2/5)	$E \neq mc^2$
 ISP41 experime ISP41(Internation validating the a volatility with p Dose rate and to accentral address 	ent onal Standa bility of a c H change cemperature	ard Problem no. code about the b e were constant	41) is suitable for behaviour of iodine , and pH was
Controlled	e rate	1 36kGy/br	
Ten		25°C	-
Initia	al I ₂	9 x 10 ⁻⁶ mol/L Csl	-
Aqu	ieous Volume	25L	
Gas	Volume	315L	
Aqu	eous Surface Area	5200cm ²	
Inte	rfacial Surface Area	3700cm ²	
Gas	Surface Area	22000cm ²	
Poo	l pH	Fully Controlled	
10 th Korea-Japan Joint worksh	op on PSA	Jeju,	Korea, May 19, 2009 -9-

Analysis of RTF	tests (4/5)	$E \neq mc^2$
 BIP-1 experiment Actually, BIP-1 is an with organic impurit our purpose Dose rate and temporatially controlled Another conditions 	organic iodine forma cy, but l _{2(gas)} formation erature were constant are similar to ISP41	ation experiment data is available to t, and pH was
Dose rate	Less than ISP41	
Pool pH	Partially Controlled	
Organic impurity	MIBK (Methyl Isobutyl Keto	ne)
10 th Korea-Japan Joint workshop on PSA	Jeju,	, Korea, May 19, 2009 -11-

Case	SIT Actuation Time (s)	RV Failure Time (s)	RCS Pressure at RV Failure (MPa
Base	-	6,115	15.2
SDS2- 40 minutes	4,142	23,995	0.81 < 2.9 MPa
SDS2- 50 minutes	5,090	5,995	3.10
SDS1- 5 minutes	4,904	6,438	4.08
SDS1- 30 minutes	4,930	10,655	3.17
ne opening of two SDS er initial opening of SR one SDS valve cannot	valves till 40 mir V can depressur depressurize the	nutes (SAMO rize the RCS e RCS suffic	entering time) sufficiently. The

Case	SIT or HPSI Act. Time (s)	RV Fail. Time (s)	RCS Pressure a RV Fail. (MPa)
Base	-	6,115	15.2
SDS2- 40 min (*)	4,572	23,388	(0.41)
SDS2-40 min, HPSI1-20208	20,200	No RV Failure to 50,000 sec	
SDS2-40 min, HPSI1-21000	21,000	22,225	0.9
SDS2-40 min, HPSI3-21000	21,000	22,285	1.0
SDS2-40 min, HPSI1-21000 SDS2-40 min, HPSI3-21000 Only one train operation depressurization by usin	21,000 21,000 of the HPSI at g two SDS value	22,225 22,285 20,200 seconds w ves at 40 minutes	0.9 1.0 ith a RCS after an initial

