Session V-A
Risk Informed Application (II)
This is a blank page.
At this section chaired by Akihide Hidake of JAEA and Myung-Ki Kim of KEPRl, four papers are presented in the Diamond Hall A on the second of the workshop. About 20 people took part in the section and made interesting questions and good comments. Through the section Korea participants and Japan participants have an opportunity of knowing each side of RIR status.

The first paper is "Current Status of RIR Implementation in Korea" presented by Namduk Suh worked at KINS of Korea. It deals with Korea RIR implementation status and future activities. He expresses the role of the utility and more aggressive implementation for successful settlement of RIR. He make a conclusion that the objective and outcomes of RIR is not clearly shown until now so that more systematic and integrated way is needed and deregulation and enhanced safety are in parallel considered in RIR.

The second paper is "Shutdown Risk Monitoring in TEPCO" presented by Hidetaka Imai of TEPCO of Japan. He presents the risk monitoring system during shutdown using PSA results and the lessons learned by introducing risk monitoring system. He make known that even though its initial stage, the staff and engineers of the plant have positive mind set.

The third paper is "Increase Safe and Operating Reliability by Development of Planned Outage Process Standardization" presented by Jonghyuck Park of KEPRl of Korea. This paper deals with the plant outage process standardization considering the time-lines and adequacy of pre-outage planning and outage scheduling. He explained the standardized schedule program the so-called, NPOMS, is currently applied in KHNP all plants.

The last paper is "Safety and Economic Results of Risk-Informed Inservice Inspection Program at Ulchin Units 3&4" presented by Bag Soon Chung of KEPRl of Korea. He explained the status of RIR, that the RI-ISI research was started 10 year ago, and through long term regulatory institute's review the topical report of RIR has been approved and RIR for plants are being prepared with topical report. He presents the estimating costs saving is 1000,000 USD for one unit by applying RIR program and strongly expressed RIR yields both enhancing safety and reducing radiation exposure.
This is a blank page.
Current Status of RIR Implementation in Korea

May 18~19, 2009

Presented by Namduk SUH
RIR P.M.
Korea Institute of Nuclear Safety

Contents

I. Introduction
II. Current Status of RIR Implementation
 II.1 Risk Informed Licensing Amendment
 II.2 Risk Informed ILRT
 II.3 Risk Informed ISI
 II.4 Maintenance Rule
 II.5 Risk Informed Periodic Inspection
 II.6 Risk Monitoring System

III. Perspectives of Future Activities
I. Introduction

- Historical Background

 - Sept. 1994, policy statement on nuclear safety
 - recommend to introduce risk informed regulation
 - Aug. 2001, policy statement on severe accident of NPP
 - safety goal
 - probabilistic safety assessment
 - severe accident prevention and mitigation capability
 - severe accident management program
 - Dec. 2002, NSC (Nuclear Safety Commission) recommends introduction of maintenance program to enhance safety

- Items in Implementation

 - RIR items currently on going in Korea
 - RI Licensing Amendment
 - RI Integral Leak Rate Test
 - RI In-Service Inspection of Piping
 - Maintenance Rule
 - RI Periodic Inspection
 - Risk Monitoring System
I. Introduction

- Needs to evaluate current status of RIR Implementation
 - Utility side
 - utility wants expansion of RIA, given the efforts for PSA of all operating plants in Korea
 - Regulatory body side
 - efforts to pursue effectiveness and efficiency
 - More than 15 yrs of activities need to be reviewed and evaluated to step forward with confidence
 - are we on right way?
 - optimization through RIA seems good, but what about the safety?

II. Current Status of RIR Implementation

II.1 Risk-Informed Licensing Amendment

- Introduction
 - Integrated regulatory decision-making on the application of risk-informed licensing amendment: Extension of STI / AOT

- Comparison with current approach

<table>
<thead>
<tr>
<th>Current Approach</th>
<th>Risk-Informed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Engineering judgment</td>
<td>- Engineering judgment</td>
</tr>
<tr>
<td>- Deterministic safety assessment (Defense-in-depth,</td>
<td>- Deterministic safety assessment (Defense-in-depth, safety</td>
</tr>
<tr>
<td>safety margin)</td>
<td>margin)</td>
</tr>
<tr>
<td></td>
<td>- Probabilistic safety assessment and operating experience</td>
</tr>
<tr>
<td></td>
<td>- Performance monitoring after change</td>
</tr>
</tbody>
</table>
II. Current Status of RIR Implementation

II.1 Risk-Informed Licensing Amendment

- Current Status
 - ESFAS/STI extended from 1 month to 3 months for 4 NPPs
 - STI/AOT extension for Kori-1 allowed recently
 - AOT of essential Invertor for Uljin 3&4 extended from 24 hrs to 7 days
 - Engineering judgement based on availability of the system, and then the risk information are integrally taken into account
 - Performance monitoring after change is specified in technical specifications
 - MR is not credited yet for performance monitoring

II.2 Risk-Informed Integral Leak Rate Test

- Current Status
 - Interval of ILRT extended from 5 yrs to 10 yrs
 - 2 consecutive tests of 5 yr interval should satisfy the performance criteria before applying for the extension of test interval
 - Interval extended for 11 units among 20 operating units
 - Other units are waiting for the condition to be fulfilled
II. Current Status of RIR Implementation

II.3 Risk-Informed Piping In-Service Inspection (ISI)

- **Introduction**
 - Developing integrated regulatory decision-making on the application of risk-informed piping ISI licensing amendment
 - Allowing risk-informed alternate methods to select areas for ISI

- **Comparison with current approach**

<table>
<thead>
<tr>
<th></th>
<th>Current Approach</th>
<th>Risk-Informed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of inspection points</td>
<td>- Section XI of ASME code</td>
<td>- Based on high risk significance by PSA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Selecting points by integrated information (piping failure probability, risk impacts, expert panel, etc.)</td>
</tr>
<tr>
<td>Inspection method</td>
<td>- Depending on piping size, welding type</td>
<td>- Depending on failure mechanism considering piping failure probability, risk impact of piping failure,</td>
</tr>
</tbody>
</table>

II. Current Status of RIR Implementation

II.3 Risk-Informed Piping In-Service Inspection (ISI)

- **Current Status**
 - Technical Report for ISI reviewed and accepted on July, 2008
 - Utility is preparing for a plant specific application based on the allowed TR methodology
 - First application is expected for Uljin 3&4 plants
II. Current Status of RIR Implementation

II.4 Maintenance Rule

- Introduction
 - NSC recommends introduction of a maintenance system on 2002. Reduction of reactor trip or power transient caused by BOP in U.S referenced
 - Utility opposes a rule-making for MR, but has developed standard implementation programs
 - Pilot application since Jan., 2007, beginning with Uljin 3&4 and Kori 3&4

- Current Status
 - Nov., 2008, KINS evaluated the status of pilot application of Uljin 3&4, with a team of 11 staffs for 5 days
 - General conclusion is as follows

- Main Conclusion on Pilot Application
 - Direct relation between MR implementation and the reduction of Rx trip or power transient is not clear.
 - Capacity factor seems sacrificed for safety in case of Japan, but proof of causality in real life is not an easy job anyway!
II. Current Status of RIR Implementation

II.4 Maintenance Rule

- Capability of system engineers in coping the safety issues enhanced
- MR enables reliability data to be gathered more systematically and reliably
- MR contributes in enhancing PSA quality
- MR provides tool for performance monitoring after LB changes

- Still, lack of clear quantitative effects of implementing MR
- MR in Korea is not mature enough yet for a full scope rule-making as in U.S.

II.5 Risk-Informed Periodic Inspection (RIPI)

- Regulatory Periodic Inspection
 - Utility shall receive the RPI during refuelling outage
 - 18 months currently
 - Standard inspection items for KSNP are 80
 - Inspection items include:
 - Surveillance tests specified in Tech. Spec. (~50%)
 - In-service inspection and in-service testing (~20%)
 - BOP (~20%); introduced into the RPI since May, 2005

- Concept of current RIPI
 - Developed and applied since 2006
II. Current Status of RIR Implementation

II.5 Risk-Informed Periodic Inspection (RIPI)

- Objectives of RIPI
 - enhance safety and inspection effectiveness by focusing on risk significant systems
 - enhance regulatory efficiency by allocating regulatory resources to risk significant systems
 - graded inspection was in mind

- Current Status
 - 54 major failure events were evaluated. 24 inspection items were selected and added to the current inspection checklist
 - Selected items came mainly from CCF because CCF is a main contributing factor in the fault trees of PSA
II. Current Status of RIR Implementation

II.5 Risk-Informed Periodic Inspection (RIPI)

- RIPI has been applied for more than 3 yrs, but the acceptance of RIPI by KINS inspectors are still low
- Difficulties of CCF related inspection
 - not clear how and what to inspect
 - CCF was already checked during design review and why we should confirm it every outage period?
- Current RIPI methodology needs to be revised
- PSA can provide new insights on the meaning of regulatory inspection.
- Efforts to reduce the number of inspection items, thus enhancing a regulatory efficiency while maintaining the current safety level

II.6 Risk Monitoring System

- Introduction
 - Developed and implemented in compliance with the policy statement on severe accident of 2001
 - RIMS for all operating plants were developed and implemented on site
- Current Status
 - Use is not active at this time
 - Use is not officially credited yet
 - Utility expects RIMS to be a tool for on-line maintenance
III. Perspectives of Future Activities

- Conclusion from evaluation of current RIR implementation
 - RIA is implemented per item and per plants
 - Objectives and outcomes are not clearly shown
 - RIR needs to be pursued in more systematic and integrated way
 - Korean regulatory environment requires to show that the RIA does not reduce the overall risk of a specific plant
 - Efforts to enhance safety in compensation of risk reduction following RIA are needed
- Systematic and integrated strategy for RIR implementation is in need
- Efforts to enhance safety are needed in parallel
- Hope to establish a strategic plan of RIR implementation before the end of this year
Shutdown Risk Monitoring in TEPCO

Hiroki Sato*, Takahiro Masuda*, Yasutaka Denda*, Mitsuru Yoneyama*,
Hidetaka Imai*, Shun-ichi Imai*, Koichi Miyata*

*1: Fukushima-Daiichi NPS, TEPCO
*2: Nuclear Engineering Department, TEPSYS
*3: Nuclear Asset Management Department, TEPCO

Contents

- Risk evaluation trial
 - Fukushima-Daiichi #5 22nd refueling outage risk evaluation
 - Maintenance schedule modification

- Lessons learned from our trial
Introduction

◆ Background
Risk-informed safety management
✓ has been discussed among Japanese utilities and regulatory parties
✓ is accumulating industry-wide interest
✓ is expected to advance further in the future

◆ Aiming of our trial
TEPCO introduced risk monitors in its 3 nuclear power stations; Fukushima-Daiichi, Fukushima-Daini and Kashiwazaki-Kariwa
✓ To optimize plant risks during refueling outages
✓ To raise personnel awareness for reactor safety

Risk evaluation result
✓ Example case
→ Fukushima-Daiichi #5 22nd refueling outage
✓ Risk at the day 19th to 26th exceeds the CDF at-power ×10

![Risk evaluation graph](image-url)
Reason of risk peaking

At the risk peak

<table>
<thead>
<tr>
<th>Plant Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ All Fuels unloaded</td>
</tr>
<tr>
<td>✓ Pool Gate opened</td>
</tr>
<tr>
<td>✓ 1 Water intake channel out-serviced</td>
</tr>
</tbody>
</table>

Reason of risk peaking

- 2 heat removal systems unavailable
- If RHR(A) is lost, decay heat cannot be removed enough
- MUWCs (highly reliable injection systems) are unavailable

Heat Removal |

<table>
<thead>
<tr>
<th>MUWC(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUWC(B)</td>
</tr>
</tbody>
</table>

Injection |

<table>
<thead>
<tr>
<th>LPCI(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPCI(B)</td>
</tr>
<tr>
<td>CS(A)</td>
</tr>
<tr>
<td>CS(B)</td>
</tr>
<tr>
<td>MUWC(A)</td>
</tr>
<tr>
<td>MUWC(B)</td>
</tr>
</tbody>
</table>

To reduce peak level

simultaneous maintenance

- MUWC(A)(B)
- FPC(B)

separated maintenance

- MUWC(A)(B)
- FPC(B)

![Graph showing risk reduction](image-url)
Lessons learned from the trial (1)

Timing of risk evaluation

- Start
- Maintenance schedule planning
- Operation
- Complete
- Outage

1st draft
2nd draft
3rd draft
Final

Too early for risk evaluation
Too Late for rescheduling

Communication between maintenance div. and risk evaluation div.

Lesson learned from the trial (2)

Cost vs safety

Outage cost
Nuclear safety

Outage cost
Nuclear safety
Lessons learned from the trial(3)

- Coexistence of risk-informed management and deterministic management

Conclusion

- We have introduced a risk monitor and carried out shutdown risk monitoring trial for about a year.
- We already have some examples of maintenance schedule modification using risk information.
- We obtained some lessons learned through the trial.
 - Timing of risk evaluation
 - Cost vs safety
 - Coexistence of risk-informed management and deterministic management
Introduction

1. Study to make standard outage process from the preparation stage to outage performance monitoring and evaluation stage.

 - The first critical factors is the timelines and adequacy of pre-outage planning and preparation.
 - Developed effective pre-outage planning to manage high levels of nuclear safety and performance.

 - The second critical factors is outage scheduling which reflects the plant's expectation for the conduct of outage.
 - Outage performance cannot be optimized if a schedule is not available to control and properly sequence outage tasks.
 - Developed 5 standard groups which can be applied to power plants in Korea.

 - The integration of outage activities is key to a successful schedule:
 - Preventive and corrective maintenance, modification, surveillance testing,
 - Post-maintenance and post-modification testing and inspection.

2. The third critical factors is outage performance monitoring and evaluation
 - Monitor the progress toward meeting outage goals and gather lessons learned from outages.
 - Management uses information about problems and successes from recent outages to improve performance of subsequent outages.

3. In this paper, we apply the several concept of plant outage process standardization to develop the nuclear power plant outage management system (NPOMS).

4. The main contribution of this paper is an standard outage management system development to use 20 nuclear power plant in Korea.
Methods and Results

1. Selection of the Outage Standardization Objects

- The quality of work performed during an outage directly impacts plant reliability during the next operating cycle.
- Prior to selecting the outage standardization objects, the design requirements and equipment suppliers and electrical power capacity for 20 operating plants are reviewed and classified to maximize the effects of standardization.
- The selected standardization objects:
 - 5 groups of operating plants classification
 - outage schedule structure
 - work breakdown structure
 - work group and task list
 - outage planning and performance monitoring
 - outage management system development

<table>
<thead>
<tr>
<th>Group</th>
<th>Reactor Type</th>
<th>Capa. (Mw)</th>
<th>Plant Supplier</th>
<th>Plant Site</th>
<th>Plant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PWR 600</td>
<td>687</td>
<td>WH</td>
<td>KORI1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>660</td>
<td></td>
<td></td>
<td>KORI2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>PWR900</td>
<td>950</td>
<td>WH</td>
<td>YGN1</td>
<td>1&2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EULJIN1</td>
<td>1&2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PWR900</td>
<td>950</td>
<td>FRAMATOME</td>
<td>YGN2</td>
<td>3&4</td>
</tr>
<tr>
<td></td>
<td>PWR1000</td>
<td>1,000</td>
<td>DOOSAN</td>
<td>YGN3</td>
<td>5&6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EULJIN2</td>
<td>3&4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EULJIN3</td>
<td>5&6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PHWR600</td>
<td>679</td>
<td>AECL</td>
<td>WOL-</td>
<td>1&2</td>
</tr>
<tr>
<td></td>
<td>700</td>
<td></td>
<td></td>
<td>SONG1,2</td>
<td>3&4</td>
</tr>
</tbody>
</table>
3. Outage Schedule Structure Standardization

- The integrated outage schedule is built on details developed during the planning process:
 - work scope and priorities
 - estimated job duration
 - requirements and activity interrelations
 - resources and constraints

- To make more efficient use of resources, the standardization of outage schedule structure developed:
 - definition of each level of schedule
 - terminology and schedule handling procedure
 - activity and milestone numbering system
 - standard template of each level schedule

4. Work Breakdown Structure (WBS) Standardization

- The standard template of outage preparation and management schedule was developed to perform the function of progress monitoring and control of each level of schedule.

- The WBS of outage preparation schedule
 - WBS description and structure, numbering system
 - start and finishing date of individual work
 - performance measuring methods
 - progress input methods

- The WBS of outage management schedule
 - WBS work group code and structure
 - WBS numbering system and description
 - work relation code and relation type and value
 - essential control point
5. Work Group and Task List Standardization

- The work group code which is installed in the present SAP system and task list of main and supplementary outage schedule is standardized by reactor types and power capacity.
- The work group is standardized by the WBS level 2 of work group numbering system department is defined for the other of other.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Work Group No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Schedule</td>
<td>116</td>
<td>Fuel / Reactor</td>
</tr>
<tr>
<td></td>
<td>151</td>
<td>ILRT</td>
</tr>
<tr>
<td></td>
<td>167</td>
<td>SI Check VV</td>
</tr>
<tr>
<td></td>
<td>169</td>
<td>RCP Internal Replacement</td>
</tr>
<tr>
<td></td>
<td>210</td>
<td>Steam Generator</td>
</tr>
<tr>
<td>Non-standard Schedule</td>
<td>260</td>
<td>Condenser</td>
</tr>
<tr>
<td></td>
<td>270</td>
<td>Main Feedwater Pump</td>
</tr>
<tr>
<td>Division Schedule</td>
<td>310</td>
<td>Pump</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>Valve</td>
</tr>
<tr>
<td></td>
<td>510</td>
<td>Main Transformer</td>
</tr>
<tr>
<td></td>
<td>520</td>
<td>Motor</td>
</tr>
<tr>
<td></td>
<td>994</td>
<td>NOT Test</td>
</tr>
</tbody>
</table>

6. Outage Planning and Performance Monitoring Standardization

- The design features of the outage management schedule give a weight factor to each WBS activity progress rolling up process.
- Total weight factor of WBS level 1 is 100.
- The basic principal of pre-outage performance monitoring design.
 - grouping of activities
 - each activity’s performance progress calculation
 - automatic activity progress rolling up process
Methods and Results

7. Computerized Work Control System Standardization

◆ An efficient computerized outage management system is a key tool to optimize and standardize of the outage schedule control.

➢ The nuclear power plant outage
 ✓ Web based system
 ✓ Connect to the ERP system
 ✓ Upgraded system with updating the existing system’s problems
 ✓ Real time based management,
 ✓ Cover from the outage preparation stage to the post outage review stage.

Conclusion

◆ Developed the effective and standard nuclear power plant outage management system (NPOMS) applicable to operating 20 plant in Korea.

◆ The developed outage management system (NPOMS) is much more practical method to apply operating power plants than the one currently in use by the other utilities and industries.
 ✓ Reduce the outage planning and scheduling time
 ✓ Save labor cost
 ✓ Optimize real-time outage process using computerized system.

◆ The NPOMS is composed 3 parts such as
 ✓ 1 standard pre-outage planning
 ✓ 5 standard outage schedule
 ✓ 1 standard post-outage evaluation program.

◆ We expect that the safety and operating reliability will be increased by using the developed real-time management system.
Thank You
Safety and Economic Results of RI-ISI Program at Units 3 & 4

Korea Electric Power Corporation
Korea Electric Power Research Institute

Bagsoon Chung

May 18-19, 2009 10th Korea-Japan PSA Workshop

Contents

I. Introduction & Background
II. Summary of Risk-Informed ISI Process
III. Exams Reduction Rate
IV. Change in Risk Calculations
V. Estimated Costs Saving
VI. Conclusions
I. Introduction & Background

Risk-Informed Inservice Inspection

- An alternative to ASME Section XI periodic inspections that will focus on safety while reducing cost & radiation exposure. This approach is a blend of probabilistic & deterministic methods

Change in NRC Policy

- Change in NRC Policy - PRA technology should be increased in all regulatory matters to the extent supported by the state-of-the-art in PRA methods & data & in a manner that complements the NRC’s deterministic approach & supports the NRC’s traditional defense-in-depth philosophy

ASME Section XI Enhanced by Risk-Informed ISI

<table>
<thead>
<tr>
<th>ASME Section XI Process</th>
<th>Risk-Informed ISI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consequence</td>
<td>Class 1, 2 and 3</td>
</tr>
<tr>
<td></td>
<td>Exercising of PSA model (CDF, LERF, others)</td>
</tr>
<tr>
<td>Failure Probability</td>
<td>High design stress and fatigue locations augmented by random selection</td>
</tr>
</tbody>
</table>

Ⅱ. Summary of Risk-Informed ISI Process

[Diagram showing the process flow]
III. Exams Reduction Rate

<table>
<thead>
<tr>
<th>Plant</th>
<th>ASME Class</th>
<th>Current NDE Exams</th>
<th>RI-ISI Exams</th>
<th>Reduction Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulchin 3</td>
<td>Cl. 1</td>
<td>491</td>
<td>310</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>Cl. 2</td>
<td>591</td>
<td>314</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,082</td>
<td>624</td>
<td>42.3</td>
</tr>
<tr>
<td>Ulchin 4</td>
<td>Cl. 1</td>
<td>491</td>
<td>321</td>
<td>34.6</td>
</tr>
<tr>
<td></td>
<td>Cl. 2</td>
<td>591</td>
<td>314</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1,082</td>
<td>635</td>
<td>41.3</td>
</tr>
</tbody>
</table>

IV. Change in Risk Calculations

<table>
<thead>
<tr>
<th>Cases</th>
<th>Current NDE EXAMS</th>
<th>RI-ISI EXAMS</th>
<th>Reduction (%)</th>
<th>Change in Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF w/o</td>
<td>1.14E-07</td>
<td>8.90E-08</td>
<td>21.9</td>
<td>Risk Reduction</td>
</tr>
<tr>
<td>CDF with</td>
<td>6.83E-08</td>
<td>6.22E-08</td>
<td>8.9</td>
<td></td>
</tr>
<tr>
<td>LERF w/o</td>
<td>2.02E-08</td>
<td>8.96E-09</td>
<td>55.6</td>
<td></td>
</tr>
<tr>
<td>LERF with</td>
<td>9.12E-10</td>
<td>4.87E-10</td>
<td>46.6</td>
<td></td>
</tr>
</tbody>
</table>
Change in Risk Calculations Method

- Impact on Risk Calculation Process
 - Identify segments addressed by current Section XI program
 - Identify segments addressed by risk-informed ISI program
 - For segments being inspected by NDE, use failure probability that credits ISI effectiveness (probability of detection and frequency)
 - Compare change in risk for current Section XI program and risk-informed ISI program by system and by total plant piping

NOTE: Assumption is made that current location within the segment addresses the risk associated with that segment

V. Estimated Costs Saving

<table>
<thead>
<tr>
<th>Description</th>
<th>Considerations</th>
<th>Saving per Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Inspection Costs</td>
<td>NDE (Including Scaffold, Insulation Removal etc.) (42% Reduction)</td>
<td>US$70,000</td>
</tr>
<tr>
<td>ALARA Costs</td>
<td>Using $10,000/Rm Saved (3 Person-Rem/inspection Estimated)</td>
<td>US$30,000</td>
</tr>
<tr>
<td>Indirect Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrative Costs</td>
<td>Paper work including work orders Surveillance and Clearance</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Outage Critical Path</td>
<td>Reduction of 1 days of Outage time anticipated as outages become shorter</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Analysis Costs</td>
<td>From flaw indication evaluations in low safety significant piping</td>
<td>Not Estimated</td>
</tr>
<tr>
<td>Total Estimated Costs</td>
<td></td>
<td>US$100,000</td>
</tr>
</tbody>
</table>
VI. Conclusions

- Implementation of Risk-Informed ISI methodology will yield costs saving while enhancing safety and reducing radiation exposure.
Session V-B

Seismic PSA
This is a blank page.
Summary of Session V-B: Seismic PSA

Chair: Katsunori OGURA (JNES), In-Kil CHOI (KAERI)

1. "Study on Effects of Correlative Degree of Component Damages on Seismic PSA During Component Outage"

 Cancelled

2. "Recent R&D Activity on Seismic PSA in KAERI" presented by Dr In-Kil Choi of KAERI

 This paper presents recent research and development activity on seismic PSA in Korea Atomic Energy Research Institute. This five year project, from 2007 to 2011, consists of four main categories.
 - Uncertainty reduction of probabilistic seismic hazard analysis
 - Development of seismic fragility analysis methodology for degraded components
 - Experimental studies on the fragility level of safety significant components
 - Development of plant specific seismic risk quantification model

 The detailed R&D activity related to the main topics and the interim results of this project were introduced.

3. "Radiological Consequence Analysis for Seismic Events in BWR Plants" presented by Ms. Kyoko FUNAYAMA of JNES

 The purpose of this study is to examine the effect of evacuation on individual risk for a typical BWR plant, and identify dominant accident sequences and those individual risks. The conditional probability of individual risk was reduced about 1/10 - 3/5 by evacuation. For the realistic evaluation of individual risk by evacuation, the evacuation model should be realistic enough to reflect the possibility of evacuation under strong earthquake condition.

4. "A Study on the Uncertainty of Seismic Hazard in the PSHA for a Korean NPP Site" presented by Ms. Hyun Me Rhee of KAERI.

 Korean peninsula is a low and intermediate seismicity area. The PSHA study has been performed using historical and instrumental earthquake records. But, there is no strong earthquake data. And the historical earthquake is recorded with a simple description in the old documents. So, the seismic hazard curves have a large uncertainty due the lack of strong motion data. The sensitivity analysis was performed for the input parameters. The final results show that the Gutenberg-Richter parameter which expresses the recurrence frequency was identified as a dominant input parameter to reduce the uncertainty of the seismic hazard of Korean NPP sites.
This is a blank page.
Study on Effects of Correlative Degree of Component Damages on Seismic PSA During Component Outage

Y. Narumiya*1 T. Ohya*1
Y. Katagiri*2 T. Kuramoto*2 K. Toyoshima*2 T.Higashiyama*2

*1 Kansai Electric Power Co., Inc.
*2 Nuclear Engineering, Ltd. (NEL)

Contents

1. Background

2. Evaluation Method
 2.1 Evaluation Conditions
 2.2 Assumptions of Correlation of Component Damages
 2.3 Outline of System Analysis Model for Seismic PSA
 2.4 Selection of Systems to be Evaluated

3. Evaluation Results
 3.1 Effects on Core Damage Frequency (CDF)
 3.2 Effects on RAW
 3.3 Effects on Component Out of Service, etc

4. Conclusion
1. Background

Risk-informed Decision Making about Plant Safety Management Activities is under discussion.

For the purpose of those activities, All Risks from Internal and External Events that affect those activities should be evaluated.

Seismic Effects are particularly important in Japan

Effects of Risk Increase attributable to an Earthquake during Component Outage are evaluated in viewpoints below.

- Correlative Degree of Component Damages caused by Earthquake.
- Difference of Component which is set Out of Service.

2.1 Conditions

- Using the Event Tree Linking Approach
- Evaluation is performed by RISKMAN
- Evaluation Items are CDF and RAW

RAW's Definition in this study

\[
RAW = \frac{CDF \text{ with Component Outage} \text{ (Train-A is set Out of Service)}}{CDF \text{ without Component Outage}} \text{ Baseline CDF}
\]
2.2 Assumptions of Correlation of Component Damages

To identify the conservative condition, Different Correlative Degrees of Component Damages during Component Outage are considered.

(a) Between Different Systems
- Completely Independent correlation is assumed.

(b) Among Redundant Components in Same System
- Different correlative degrees of component damages are assumed.
 (Completely Dependent, Partially Dependent, Completely Independent)

2.3 Outline Of System Analysis Model for Seismic PSA

Initiator (Seismic Level) → SEISINI → SEISPRE → SUPPORT → SEISEARLY → SEISLATE → End State [CDF]

- Seismic induced Initiating Events are considered, e.g. LLOCA.
- Split Fractions are created from Component Fragility.
- Seismic Component Damages and Correlative degree of Component Damages are considered.
- Split Fractions are created from Component Fragility.
- Top Events are divided by Train.
- Based on Internal Event PSA Model.
- Linking to the Top Event of SEISPRE is modeled.
- Component Outage is considered.
2.4 Selection of Systems to be Evaluated

Viewpoints of Selection
- AOT-applicable Redundant Systems selected according to the Safety Preservation Rules.
- Systems showing a high RAW on Internal Events PSA.
- Systems for which effects caused by different functions (Electrical Support, Mechanical Support and Front Line Systems) can be identified separately.

Selected Systems

<table>
<thead>
<tr>
<th>Electrical Support System</th>
<th>6.6kV AC Bus (AC BUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emergency Diesel Generator (DG)</td>
</tr>
<tr>
<td>Mechanical Support System</td>
<td>Sea Water System (SWS)</td>
</tr>
<tr>
<td></td>
<td>CCW System (CCWS)</td>
</tr>
<tr>
<td>Front Line System</td>
<td>RHR System (RHRS)</td>
</tr>
<tr>
<td></td>
<td>Auxiliary Feed Water System (AFWS)</td>
</tr>
</tbody>
</table>

3.1 Effects on Core Damage Frequency

<table>
<thead>
<tr>
<th></th>
<th>Completely Dependent</th>
<th>Partially Dependent</th>
<th>Completely Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC BUS</td>
<td>10.0</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>DG</td>
<td>6.2</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>SWS</td>
<td>3.1</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>CCWS</td>
<td>3.1</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>RHRS</td>
<td>1.6</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>AFWS*</td>
<td>1.7</td>
<td>1.2</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Baseline CDF 1.6 1.1 1.0

CDFs are normalized by Baseline CDF of Completely Independent Case.

*Turbin Driven Auxiliary Feed Water Pump is set Out of Service.

- CDF for Completely Dependent Correlation is largest followed by Partial Dependence and Complete Independence in descending order.
- Frequencies of System Damage increase as the Correlative Degree of Component Damages becomes higher.
3.2 Effects on RAW

<table>
<thead>
<tr>
<th>Component</th>
<th>Seismic PSA</th>
<th></th>
<th></th>
<th>Internal Events PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completely Dependent</td>
<td>Partially Dependent</td>
<td>Completely Independent</td>
<td></td>
</tr>
<tr>
<td>AC BUS</td>
<td>6.3</td>
<td>8.8</td>
<td>9.7</td>
<td>123.9</td>
</tr>
<tr>
<td>DG</td>
<td>3.9</td>
<td>5.3</td>
<td>5.9</td>
<td>2.4</td>
</tr>
<tr>
<td>SWS</td>
<td>1.9</td>
<td>2.4</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>CCWS</td>
<td>2.0</td>
<td>2.5</td>
<td>2.7</td>
<td>1.1</td>
</tr>
<tr>
<td>RHRS</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>3.4</td>
</tr>
<tr>
<td>AFWS*</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

*Turbine Driven Auxiliary Feed Water Pump is set Out of Service

- RAW is largest for Completely Independent Correlation, followed by Partially Dependence and Complete Dependence in descending order.
- RAW Dependence on Component Outage increases as Correlative Degree decreases.

3.3 Effects on Component Out of Service, etc

- Both CDF and RAW orders according to the Correlative Degree of Component Damages do not change depending on the Component set Out of Service.

- CDF and RAW become higher as effects for other systems due to Component Outage become larger.

- RAW for Seismic PSA is less than Three times that for Internal Events PSA at the largest.
4. Conclusion

• Conservative condition of Correlative Degree of Component Damages

 For CDF: \textit{Completely Dependent}
 For RAW: \textit{Completely Independent}

• Effects on Component Out of Service

 \textit{CDF and RAW become higher as effects for other systems due to Component Outage become larger.}

• Relation Between Seismic PSA and Internal PSA

 \textit{RAW for Seismic PSA is not excessively higher than that for Internal Events PSA.}
Recent R&D Activities on Seismic PSA in KAERI

May 19, 2009

In-Kil Choi

Korea Atomic Energy Research Institute

CONTENTS

- Introduction
- SPRA Research Plan in KAERI
- International Collaboration
- Interim Research Results
- Conclusion
Introduction

- Seismic safety of NPP
 - Important after 2007 Chuetsu event
 - Recent large earthquake event causes great damage to structures and a loss of lives
- Degradation of SSCs
 - Aging related degradation of SSCs can cause a reduction of seismic safety margin
 - Individual components
 - Plant level seismic safety – CDF
- Systematic Aging Management
 - Realistic seismic risk evaluation based on the operating conditions
 - Risk based aging management

SPRA Research Plan

- 5 year project (2007 – 2011)

PSHA
- PSHA Methodology
- Logic Tree Model, etc.
- Uncertainty Reduction
- Re-evaluation of Historical Earthquake Data, etc.

SYSTEM
- Accident Scenario
- ET/FT
- Seismic Risk Quantification (Methodology, Tool)

EXPERIMENT
- Electrical Cabinet
- Anchorage
- Piping System
- Support Structure

FRAGILITY
- Response and Capacity
- Fragility Analysis
- Aging Effect
- Response and Capacity
- KAERI-BNL Cooperation

Seismic PSA

International Collaboration

KAERI–BNL Cooperation

<table>
<thead>
<tr>
<th>Year</th>
<th>KAERI</th>
<th>BNL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>• Collection and database of degradation occurrences in Korean NPPs</td>
<td>• Collection and review of degradation occurrences in US NPPs</td>
</tr>
<tr>
<td></td>
<td>• Evaluation of degradation in NPPs</td>
<td>• Evaluation of degradation in NPPs</td>
</tr>
<tr>
<td></td>
<td>• Analysis of degradation in NPPs</td>
<td>• Analysis of degradation in NPPs</td>
</tr>
<tr>
<td></td>
<td>• Evaluation of construction materials in Korean NPPs</td>
<td>• Evaluation of construction materials in US NPPs</td>
</tr>
<tr>
<td></td>
<td>• Modeling of degradation in NPPs</td>
<td>• Modeling of degradation in NPPs</td>
</tr>
<tr>
<td>2009</td>
<td>• Development of degradation models for NPPs</td>
<td>• Development of seismic fragility evaluation methodology for NPPs</td>
</tr>
<tr>
<td></td>
<td>• Development of criteria for degradation in NPPs</td>
<td>• Development of criteria for degradation in NPPs</td>
</tr>
<tr>
<td></td>
<td>• Evaluation of construction materials in Korean NPPs</td>
<td>• Evaluation of construction materials in US NPPs</td>
</tr>
<tr>
<td>2010</td>
<td>• Development of seismic fragility evaluation methodology for NPPs</td>
<td>• Development of seismic fragility evaluation methodology for NPPs</td>
</tr>
<tr>
<td></td>
<td>• Case study: Application of seismic fragility evaluation methodology considering age-related degradation</td>
<td></td>
</tr>
</tbody>
</table>

International Collaboration

SMART 2008

Reinforced Concrete Structure

Acceleration Response

Floor Response Spectra
Interim Research Results

- **PSHA Code Development**
 - EQHAZ + Attenuation Eq.
 - Foreign Country: 4, Korean: 4
 - CONPAS: Pre-processor for LT
 - Automatic Input Generation
 - Post-processor for Statistical Analysis
 - Automatic Analysis for PSHA Results

- **Sensitivity Analysis for Input Parameter**
 - Organize Expert Panel
 - Team for Source Model: 4 Team
 - Attenuation Equation: 2 Expert
 - Sensitivity Analysis for 5 Input Parameter
 - Richter a, b, Mw_c, Mw_p, Focal Depth
 - Uncertainty Analysis
 - Uncertainty for Individual Team
 - Total Uncertainty

Interim Research Result

- **Component degradation in Korean NPP**
 - Select oldest NPP
 - Plant walkdown for investigation
 - Total of 530 components
 - Develop database system for managing collected data
 - Component specification
 - Location (Building, Floor)
 - Anchorage detail
 - Degradation occurrence
Interim Research Results

- Degradation Phenomena in Korean NPP
 - Mainly Crack and Corrosion

Interim Research Result

- Fragility Analysis of Expansion Anchor
 - Electrical panel
 - With hairline/small crack in anchorage

<table>
<thead>
<tr>
<th>Condition</th>
<th>No Crack</th>
<th>Hairline Crack (0.25 mm)</th>
<th>Small Crack (0.25-0.31 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HClF</td>
<td>0.27 g</td>
<td>0.17 g</td>
<td>0.15 g</td>
</tr>
<tr>
<td>Reduction (%)</td>
<td>37</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Interim Research Results

- Component Degradation Occurrence in US NPP
 - Under KAERI–BNL collaboration
 - Identify a list of SSCs important for plant seismic risk
 - Collect and review degradation occurrences in US nuclear power plants
 - Assess the trending of degradation of SSCs

![Degradation Occurrences by Components](chart)

Aging–related Degradation

- Trending analysis results
 - Degradation occurrences slightly grow as the plant age
 - Absolute magnitude of degradation occurrences is relatively low
 - Most degradation occurrences are piping system, exchanger, and RPV
 - Most vulnerable system is RCS
 - Most significant aging effect is cracking
 - Most common aging mechanism is SCC
Interim Research Results

- Component Fragility Test Plan
 - Electrical Cabinet
 - Anchorage
 - Piping System
 - Support Structure

- Electrical Cabinet Test (2008)
 - 480V MCC for Shin Uljin NPP
 - 3 Kinds of Input Motion
 - Under the 480V Electricity Supplied
 - Measure Structure Response and Relay Signal

<table>
<thead>
<tr>
<th>Input Motion</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Guide 1.60</td>
<td>Design Earthquake (Artificial Motion)</td>
</tr>
<tr>
<td>FRS</td>
<td>FRS of Aux. Bldg.</td>
</tr>
<tr>
<td>UHS</td>
<td>(Artificial Motion)</td>
</tr>
</tbody>
</table>

Interim Research Results

- Component Fragility Test Results
 - Identify Failure Mode and Criteria
 - Structural Failure
 - Functional Failure
 - Identify New Failure Mode
 - Identify the In-Cabinet Response
 - Response for Different Input Motion
Interim Research Results

- **SPRA Model Development**
 - AIMS Based One-Top Model
 - Automatic Seismic Risk Quantification

Interim Research Results

- **Necessity of Program Development**
 - Quantification Code for Past SPRA Study in Korea
 - EQESRA
 - SEISMIC
 - Need New Program
 - Status of Existing Code
 - Have Only Execution File (DOS Version)
 - Need 2 Steps for Boolean Equations
 - Condensation Method for Uncertainty Analysis
 - SEISMIC Code
 - Need Modification of the Subroutine for Boolean Equation
 - Monte Carlo Simulation Method for Uncertainty Analysis
 - Linear Interpolation for Hazard Curves
 - RISKMAN Code
 - Large ET/Small FT
Interim Research Results

- **Development of Risk Quantification Program**
 - Language: Fortran 90
 - Uncertainty Analysis: LHS and MCS
 - Specifications
 - Multiple Event Analysis Capability (System)
 - Easy Input for Boolean Equation
 - Logarithmic Interpolation for Hazard Curves
 - Graphic User Interface

- **Comparison MCS vs. LHS Results**
Interim Research Results

- Hazard Curve Interpolation

![Graph showing hazard curve interpolation with linear and logarithmic scales.]

<table>
<thead>
<tr>
<th>Component</th>
<th>Median Capacity (g)</th>
<th>β_F</th>
<th>β_U</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.63</td>
<td>0.39</td>
<td>0.00</td>
</tr>
<tr>
<td>B</td>
<td>0.73</td>
<td>0.41</td>
<td>0.00</td>
</tr>
<tr>
<td>C</td>
<td>0.73</td>
<td>0.43</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Verification of Code

- Simple Problem: $A \cup B \cup C$

<table>
<thead>
<tr>
<th>Code</th>
<th>Plant Damage Frequency (1/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRASSE(LHS)</td>
<td>$4.57E-06$</td>
</tr>
<tr>
<td>PRASSE(MCS)</td>
<td>$4.57E-06$</td>
</tr>
<tr>
<td>EAESRA</td>
<td>$4.55E-06$</td>
</tr>
</tbody>
</table>
Interim Research Results

- Degradation Effect on Seismic Risk
 - 6 seismic induced initiating events
 - Small LOCA (SLOCA)
 - Loss of essential Power (LEP)
 - Loss of secondary heat removal (LHR)
 - Loss of CCW (LOCCW)
 - Loss of offsite power (LOOP)
 - General transient

- Component Degradation
 - 7 component
 - 10% to 50% reduction of median acceleration capacity (with same logarithmic standard deviation for uncertainty and randomness)
 - One seismic hazard curve
Interim Research Results

- Degradation Effect on IEF
 - Instrumentation Tube (max. 15)
 - Condensate Storage Tank (max. 11)

![Graph showing degradation effect on IEF](image1)

Interim Research Results

- Degradation Effect on IEF
 - Diesel Generator (max. 4.3)
 - Loss of Offsite Power (max. 4.7)

![Graph showing degradation effect on IEF](image2)
Interim Research Results

- Degradation Effect on CDF
 - CDF is affected by the failure probability of mitigating system
 - Biggest seismic risk contributor due to the degradation
 - ECW Compression Tank
 - Condensate Storage Tank
 - Diesel Generator

- Degradation Effect Analysis Using SPRA
 - Identification of significant seismic risk contributor by aging-related degradation is possible from the Seismic PSA study
 - Possible to identify the safety significant components to secure a long term seismic safety of a plant
Conclusion

- Introduce Research Activity on SPRA in KAERI
 - Hazard, Fragility and Risk Quantification
 - Develop Plant Specific SPRA Model
 - Development of SPRA Tools
 - Realistic Seismic Risk Evaluation
- International Cooperation

Thank You!!!
Radiological Consequence Analysis for Seismic Events in BWR plants

K-J PSA, May 18-20, 2009

Kyoko FUNAYAMA, Toru TACHINO and Mitsuhiro KAJIMOTO

Severe Accident Evaluation Group,
Nuclear Safety Analysis and Evaluation Office,
Nuclear Energy System Safety Division,
Japan Nuclear Energy Safety Organization (JNES)

The 10th Workshop on K-J PSA at Jeju, Korea, May 18-20, 2009

Contents

- Background and Objectives
- Analytical Conditions
- Calculated Results
 - Reduction of Individual Risk by Evacuations
 - Risk Dominant Sequences in Individual Risks
- Conclusions
Background and Objectives

Background

- Japan Nuclear Energy Safety Organization (JNES) in Japan has been promoting the Level 3 PSA program.
- In the program, the MACCS2 code has been extensively applied to analyze radiological consequences for typical BWR and PWR plants in Japan.
- In addition, effects of accident management (AM) on radiological consequence for a typical BWR plants based on Level 2 PSA results have been discussing at JNES.

Objectives

- To examine effect of evacuation on individual risks for typical BWR plants in Japan, and
- Identify dominant accident sequences and these Individual risks

Analytical Conditions

Level 2 PSA

- Frequencies of accident sequences that lead to large release
- Source terms of accident sequences

Level 3 PSA

- Site conditions
- Evacuation effect of evacuation
- Individual risk dominant accident sequences

Reference Plants

- a typical BWR-4 (540MWe) with a Mark-I Containment
- a typical BWR-4 (840MWe) with a Mark-I Containment
- a typical BWR-5 (1,100MWe) with a modified Mark-II Containment
- a typical ABWR (1,380MWe) with a RCCV Containment
Evacuation models

Evacuation model of internal event is based on information of nuclear emergency response drill.
- Evacuation velocity (1st: 4km/h, on foot / 2nd: 35km/h, by bus)
- No sheltering

Evacuation model of seismic event is based on condition of evacuation at the earthquake.
- Evacuation velocity (2km/h, on foot)
- Sheltering for 24 hours at the evacuation places in local area.
Evacuation models (continued)

- **Emergency Planning Zone**
 An emergency planning zone (EPZ) that is provided by the disaster prevention guideline is 8 – 10 km radius from the reactor site, and a **10km radius** is assumed in the present study.

- **Warning Time**
 A declaration of "nuclear emergency" that is provided by the 15th article of the nuclear disaster special measures law is assumed to **be issued at the event of the earthquake's occurrence**.

- **Time Delay to Start Evacuation**
 The time delay to start evacuation is determined by the time to receive warning, the time before leaving the office, the time to return home and the time before leaving home. **It is based on the nuclear disaster drill in Japan.**

- **Release Rate and Duration of Radionuclides**
 The release rate and duration of radionuclides of Level 2 PSA results are simulated with a multiple plume model of MACCS2, but the tailing parts are neglected.

Reduction of Individual Risk by Evacuation

Individual risk in the present study is defined by conditional probability with population weighted individual risk. These risks in the figures are summated values of analysis cases.

![Graphs showing conditional probability of individual risk for different distances and reactor types](image)

Cancer fatality in the present study is assumed exposure period for 7 days.
Evacuation and timing of radionuclides release to the environment

The risk reduction effect strongly depends on whether residents could evacuate quickly before the timing of radionuclides release or not.
Evacuation and timing of radionuclides release to the environment

- BWR-5
- ABWR

Evacuation and timing of radionuclides release to the environment
Contribution of Containment Failure modes to Individual Risk

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Timing radionuclides release to the environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500MWe BWR-4</td>
<td>800MWe BWR-4</td>
</tr>
<tr>
<td>Alpha</td>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>Beta</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Lambda</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Mu</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Sigma</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>Phi</td>
<td>Large</td>
<td>Early</td>
</tr>
<tr>
<td>Delta</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Theta-TW</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Theta-TC</td>
<td>Large</td>
<td>Large</td>
</tr>
<tr>
<td>Nu</td>
<td>Large</td>
<td>Small</td>
</tr>
</tbody>
</table>

- : Dominant mode of Individual Risk (Early Fatality) at 1km from the site in non-evacuation case
- : Dominant mode of Individual Risk (Early Fatality) at 1km from the site in evacuation case

Conclusions

- **Effect of evacuation**

The conditional probability of individual risks of early fatalities and cancer fatalities became level of 10^{-3} in the case of non-evacuation in each plant. Considering evacuations, the conditional probability of individual risks in each plant reduced about 1/10 - 3/5 than those of the non-evacuation cases.

 [Problem] Can we evacuate under the condition of large earthquake? (is this unrealistic?)

 It is necessary to examine the evacuation model that is considered site specific condition and preparation of human resource system.

<table>
<thead>
<tr>
<th></th>
<th>Early Fatality (0.8-2.0km) (dominant sequence)</th>
<th>Cancer Fatality (0.8-5.0km) (dominant sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N* : 1.8E-3 (TC-theta) E* : 3.6E-4 (TC-theta, S2C-theta) (1/5)</td>
<td>N : 2.9E-3 (TC-theta) E : 1.4E-3 (TC-theta) (1/2)</td>
</tr>
<tr>
<td>500MWe BWR-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800MWe BWR-4</td>
<td>N : 2.2E-3 (TC-theta, TB-phi) E : 4.5E-4 (TC-theta, TB-phi) (1/5)</td>
<td>N : 2.0E-3 (TC-theta) E : 1.1E-3 (TC-theta) (3/5)</td>
</tr>
<tr>
<td>BWR-5</td>
<td>N : 5.8E-3 (TW-theta, TB-mu) E : 4.6E-4 (TB-mu) (1/10)</td>
<td>N : 3.4E-3 (TW-theta) E : 3.2E-4 (TB-mu, TB-delta) (1/10)</td>
</tr>
<tr>
<td>ABWR</td>
<td>N : 3.9E-3 (TC-theta, RBR-lambda) E : 3.0E-3 (TC-theta, RBR-lambda) (3/5)</td>
<td>N : 2.2E-3 (TC-theta) E : 1.8E-3 (TC-theta, RBR-lambda) (3/5)</td>
</tr>
</tbody>
</table>

- N : non-evacuation case
 E : evacuation case
A Study on the Uncertainty of Seismic Hazard in the PSHA for a Korean NPP Site

19 May 2009

Hyun-Me Rhee, Jeong-Moon Seo, In-Kil Choi
KAERI

Contents

1. Introduction
2. Expert Evaluation of Input Seismicity Parameters
3. Results of Sensitivity Analysis on the Seismic Hazard
4. Uncertainty of Seismic Hazard
5. Conclusion
1. Introduction

- More than ten PSHAs have been performed since 1986 for nuclear power plant sites in Korea.
- Although abundant information have been accumulated since 1990s in seismology and earthquake engineering, there still exist wide gaps in the input parameters among experts.
- The attenuation equation was known as the most uncertain parameter in the PSHA for Korean NPP sites.
- To identify the area of further improvement for reducing uncertainty, we performed this study by selecting Shinwuljin 1&2 site as a reference site.

2. Expert Evaluation of Input Seismicity Parameters

2. Expert Evaluation of Input Seismicity Parameters

- Expert Panels
 - 4 teams for seismicity evaluation, each team consisted of 1 seismologist and 1 geologist
 - 2 experts for attenuation equation evaluation

- Seismotectonic Structures
 - Agreement on the area sources
 - Significant differences among experts

2. Expert Evaluation of Input Seismicity Parameters

- Seismic Source Maps, best and alternative estimate
2. Expert Evaluation of Input Seismicity Parameters

- **Input by Experts**
 - Gutenberg-Richter Parameter Values
 - Minimum: $a=4.32, b=0.43$
 - Maximum: $a=6.25, b=0.99$
 - Maximum Magnitude
 - $6.2 < M < 7.2$
 - Focal Depth
 - 3-15 km

- **Gutenberg-Richter Parameter Values of Previous Studies**

<table>
<thead>
<tr>
<th></th>
<th>a-value</th>
<th>b-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee, K</td>
<td>6.09</td>
<td>0.71</td>
</tr>
<tr>
<td>Lee and Jung</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Noh, M-H</td>
<td>5.66</td>
<td>1.11</td>
</tr>
<tr>
<td>KEPRI</td>
<td>0.61-0.64</td>
<td>0.98</td>
</tr>
<tr>
<td>0.89-0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seo, J-M</td>
<td>5.44</td>
<td>0.84</td>
</tr>
<tr>
<td>(China)</td>
<td>4.77</td>
<td>1.01</td>
</tr>
</tbody>
</table>

2. Expert Evaluation of Input Seismicity Parameters

- **Attenuation Equation**

<table>
<thead>
<tr>
<th>Equation</th>
<th>expert 1</th>
<th>expert 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atkinson and Boore (1997)</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Midcontinent of Toro et al. (1997)</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Gulf Coast plain of Toro et al. (1997)</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Atkinson and Silva (2000)</td>
<td>30%</td>
<td>10%</td>
</tr>
<tr>
<td>Baag (1997)</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Lee (2002, KINS)</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Jinn et al. (2002)</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Jo, N== & Baag, C== (2003)</td>
<td>70%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Comparison of Att. Eqs. ($M=6, D=10$ km)
3. Results of Sensitivity Analysis

❖ Range of Input Values (best estimate)

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-value</td>
<td>5.5±0.5</td>
</tr>
<tr>
<td>b-value</td>
<td>0.8±0.1</td>
</tr>
<tr>
<td>M_{MAX}</td>
<td>6.7±0.5</td>
</tr>
<tr>
<td>Focal depth</td>
<td>10±5</td>
</tr>
</tbody>
</table>

❖ Attenuation Equations

Table (slide 8)

3. Results of Sensitivity Analysis

❖ Sensitivity of Seismic Source Map (best estimate)

Team A Team B Team C Team D
3. Results of Sensitivity Analysis

- Sensitivity of Seismic Source Map (alternative)

4. Results of Sensitivity Analysis

- Sensitivity of Maximum Magnitude
 - Hazard for larger maximum magnitude ($M=7.2$) is much less sensitive than smaller maximum magnitude ($M=6.2$)
 - Hazard for $\Delta M=1.0$ shows maximum of about 1/2 order deviation at 1.0g
4. Results of Sensitivity Analysis

- Sensitivity of Gutenberg-Richter Value (a-b pair)
 - Hazard for $\triangle a=1.0$ and $\triangle b=0.2$ shows more than 2-order of deviation throughout the PGA level.
 - Hazard increases with bigger a-value and smaller b-value pair.
 - The b-value determines uncertainty range and a-value determines total hazard level.

- Sensitivity of Focal Depth
 - Hazard for $\triangle d=5$ km shows deviation of about 1/2-order maximum at PGA=1.0 g.
4. Results of Sensitivity Analysis

- Sensitivity of Attenuation Equation
 - Eq. of Toro et al. (1997) shows the largest hazard, and the eq. of Atkinson and Silva (2000) shows the smallest hazard.
 - Maximum deviation is about 2-order at PGA level of 1.0g, and the deviation increases as PGA level increases.

4. Uncertainty of Seismic Hazard

- Hazard of each team
- Uncertainty of hazard
5. Conclusion(1)

- Sensitivity analysis showed that the uncertainty decreases in the order of recurrent frequency, attenuation equation, focal depth, maximum magnitude, seismic source.

- The Gutenberg-Richter parameter (or recurrent frequency) which was identified as the most uncertain in this study, showed more than 2-order of deviation in the hazard throughout the acceleration level considered.

5. Conclusion(2)

- It was revealed also that the seismic parameter of the source within which a site is located primarily affected the seismic hazard.

- To reduce the excessive uncertainty which occurred in the PSHA for NPP, studies should be continuously performed with respect to the most uncertain recurrent frequency parameter.
Thank you for your attention.
This is a blank page.
Appendix 1 Special Session: Status of PSA in each country or proposal for cooperation

China: Tao LIU (INET of Tsinghua University)
Professor Liu summarized recent PSA activities in China including model, technology, regulation, severe accident management, and application for advanced NPPs. She wants more and more exchange between China and other country to develop the PSA technology which will take a more important role in China.

Taiwan: Chung-Kung LO (INER)
Dr. Lo introduced background and brief history of PRA in Taiwan. The main issue of current PSA in Taiwan is the PEER review and its results of Taiwan NPPs. He provided a particular presentation on the review results and reviewer’s recommendations of further enhancements. Some on-going PRA applications in Taiwan and their prospects are also explained.

Korea: Joon-Eon Yang (KAERI)
Dr. Yang presented the current PSA status & its applications in Korea. For the international cooperation, he suggested some future directions including the sharing of the experience, the expertise, and the knowledge. He emphasize that the establishment of the channel for cooperation in PSA is most important for the creation of new knowledge for us.

Japan: Mitsuhiro KAJIMOTO (JNES)
Dr. Kajimoto introduced the current status of PSA in Japan. Especially, he presented the detailed progress, activities, and database resources of PSA at JNES. For the future cooperation, he commented that the lack of human resource can be a serious problem. He insisted that the establishment of researchers list including the expert and young researchers is urgently needed.
This is a blank page.
Overview of the PSA Related Activities in China

May 18, 2009
Jeju, Korea
The 10th Korea-Japan Joint Workshop on PSA

Tao Liu
INET of Tsinghua University, Beijing, China

Outline

- Booming Nuclear Energy Industry in China
- PSA Related Policy and Requirements
- PSA Related Organisations
- PSA Activity Categories
- HTRG PSA in INET
Booming Nuclear Energy Industry in China—Expected Goal of Nuclear Energy Development in 2020

- Installed Capacity: 40GW
- Estimate portion: 4%
- At least 2-3 units of 1000MW be constructed per year
PSA Related Policy and Requirements --- Legal base

- “Technical policies on several significant safety issues in new NPP design”, NNSA, including safety goal, severe accident requirements, Aug, 2002.
 - “Both deterministic approach and probabilistic approach should be used in the safety analysis during the design process”
 - Two quantitative probabilistic safety goal are given:
 - CDF < 10^-5 / RY
 - LERF < 10^-6 / RY

PSA Related Policy and Requirements --- Legal base

- “Important event sequences that may lead to a severe accident shall be identified using a combination of probabilistic methods, deterministic methods and sound engineering judgment” is issued by NNSA’s latest rules published on April 18th, 2004. (Code on the Safety of NPP: Design. No. NS-R-1)

- “PSA should be performed for NPPs during safety assessment”. (Code on the Safety of NPP: Design. No. NS-R-1)
PSA Related Policy and Requirements

- For New NPPs, PSA is required and normally PSA report shall be submitted with FSAR
 - TQNPC, Tianwan, Ling dong,…
 - PSA quantitative goal should be satisfied

- For NPP in operations, PSA is positively encouraged and may be required in the period safety review

Relevant Organizations Working on PSA in China

- **Nuclear Regulatory Body**
 - National Nuclear Safety Administration (NNSA), State Environment Protection Administration

- **Research Institute and University**
 - Institute of Nuclear and New Energy Technology(INET), Tsinghua University
 - Haer bin Engineering University, Shanghai Jiao Tong University, Xi’an Jiao Tong University, ….
 - China Institute of Atomic Energy(CIAE)
 - Institute of Plasma Physics, Chinese Academy of Sciences……
Relevant Organizations Working on PSA in China

- Nuclear Energy Utilities and their research institute:
 - China National Nuclear Corporation (CNNC)
 - Nuclear Power Institute of China
 - Beijing Institute of Nuclear Engineering, …
 - State nuclear power technology Corporation (SNPTC)
 - Shanghai Nuclear Engineering Research and Design Institute
 - State Nuclear Power Technology Research Center, …
 - China Guangdong Nuclear Power Holding Co., Ltd (CGNPC)
 - China Nuclear Power Technology Research Institute
 - Suzhou Nuclear Power Institute, …

PSA Activity Categories in China

- PSA Model and technology research
- Risk-informed regulation
- Severe accident management
- Advanced NPP PSA activities
- PSA technical intercommunion
PSA Activity Categories in China

1. Model and technology Development
- 1980s the first PSA exercise founded by NNSA
- Present possess level 1/2/3 PSA model construction ability.
- Fire PSA and Seismic PSA model research,…
 - Dynamic PSA model
 - Computer-aided Fault Tree Expert System
 - Fault Tree Solution Engine based on BDD,…
 - Passive System Reliability Assessment
 - Reliability of Software/Digital-based System
 - Computerized EOP
 - Dynamic PSA technique, …

2. Risk-informed regulation
- From 2001, PSA-related regulations research
 - Risk Monitor System
 - Daily risk management
 - Period trend risk
 - Risk-informed …
 - Risk-informed TS
 - Risk-informed SSC categorization
 - Risk-informed ISI
 - MSPI for other systems
 - Technology policy of PSA application in the field of nuclear safety is to be built…
PSA Activity Categories in China

3. Severe Accident Management

- Establishment of the database
- Severe accident simulation based on PSA I results, to know plant-specific severe accident phenomena
- Computational Aid (CA) calculations to establish curves for quick help in SAMG
- Development of plant specific SAMG
- Review and Engineering modifications for plant-specific systems and equipment
- Revision of site emergence plan

4. Advanced NPP PSA

- PSA development and application with respect to high temperature gas cooled reactor.
- PSA development with respect to Advanced light water reactor Plant.
PSA Activity Categories in China

5. PSA Inter-communication

- Annual PSA forum from 2007
 - The 1st PSA forum organized by INET of Tsinghua University.
 - The 2nd PSA forum organized by China nuclear energy association...
 - Participated by all of PSA related researchers and customers.
 - 2009 PSA forum will be held in Nov.

- PSA Training Courses

HTGR PSA in INET

- Role of PSA in HTGR design
 - To support to specify the top level regulatory criteria for HTGR;
 - To provide inputs to identify licensing basis events including dominant beyond-design basis events which will be further evaluated within the severe accident management;
 - To identify the dominant accident sequences and confirm that top level design criteria are met;
HTGR PSA in INET

Role of PSA in HTGR design (con’d)

- To identify the dominant source terms and possible release paths to provide input to the emergency planning specifications,
- To provide inputs to the HTGR design, e.g. to check that the level of redundancy and diversity provided in the safety system is adequate, and to assess more detailed design issues such as the consideration of the second shutdown system, the residual heat removal system and so on.

HTGR PSA in INET

- Present Status – preliminary PSA report.
 - Initiating event identification
 - Major accident sequences development
 - Database establishment
 - System model development
HTGR PSA in INET

Special Features for HTGR PSA Development

- No “core damage” or “large early release” pinchpoints; CDF and LERF not applicable; release categories defined for event trees
- Integrated 1&2 (&3) PSA
- Integrated passive system reliability assessment

Prospect

- PSA will play an more important role, and China urgently needs to develop PSA technology.
- More and more exchange between China and other country will benefit for PSA development.
- Welcome to our PSA forum, you will be one of us in the future…
Thank you for your attention
Overview

• Background and Brief History
• Peer Review Results and Gap Analyses
• Comments and Regulatory Response
• PRA Applications
The Need of Robust PRA Quality

- Maintenance Rule being implemented at the three operating NPPs in Taiwan
 - A complementary measure to the license renewal program
- Regulatory decisions of AEC on some incidents
- Urge for more “routine” on-line maintenances
- Efforts to achieve significant refueling outage shortening and lower collective exposure
 - Risk-informed inservice inspection
 - Risk-informed inservice testing

A Brief History of PRA in Taiwan

<table>
<thead>
<tr>
<th>Major PRA Projects (Main Sponsor)</th>
<th>Periods</th>
<th>Scope</th>
<th>Application</th>
<th>Task Force Man-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kuosheng (AEC)</td>
<td>1983-1985</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Base PRA Model</td>
<td>37 (4.5)*</td>
</tr>
<tr>
<td>Maanshan (AEC)</td>
<td>1985-1987</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓ (1992)</td>
<td>Base PRA Model</td>
<td>27.5 (2.0)</td>
</tr>
<tr>
<td>Chinshan (AEC)</td>
<td>1988-1990</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Base PRA Model</td>
<td>34.5 (1.9)</td>
</tr>
<tr>
<td>1st-3 (Taipower)</td>
<td>1994-1997</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>Few cases of justification of continued operation</td>
<td>52</td>
</tr>
<tr>
<td>2nd-3 (Taipower)</td>
<td>1997-2000</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>CSET CFET</td>
<td>66</td>
</tr>
<tr>
<td>3rd-3 (Taipower)</td>
<td>2000-2003</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>LERF</td>
<td>66</td>
</tr>
<tr>
<td>4th-3 (Taipower)</td>
<td>2004-2007</td>
<td>✓ ✓ ✓ ✓ ✓ ✓ ✓</td>
<td>LERF</td>
<td>66</td>
</tr>
</tbody>
</table>

P: Internal at-power; SM: Seismic; TY: Typhoon; FR: Internal Fire; FL: Internal Flood; SD: Shutdown; L2: Level-2
* from US Consultant
The first peer review of PRA models in Taiwan was conducted in 2002 per NEI-00-02

The Follow-on peer reviews
- 3 reviews on Chinshan (BWR 4), Kuosheng (BWR 6), Maahshan (PWR) PRA models respectively in August, November of 2006, and January of 2007
- Review team organized by ABS Consulting Inc. authorized via bid process
- Team members from ABS and FP&L

Scope includes Level 1+ (ie. Level 1 and Containment system analyses), internal and external at-power and shutdown events PRA

Review Results after F&O Addressed

F&O levels distribution (Chinshan NPP at-power PRA)

<table>
<thead>
<tr>
<th>Technical Element</th>
<th>Number of Fact and Observation’s</th>
<th>Importance Level of F&Os</th>
<th>F&O SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Sequence</td>
<td>8 0 10 6 7 3 2 1 0 21 16</td>
<td>4 0 9 3 2 7 7 2 1 20 15</td>
<td></td>
</tr>
<tr>
<td>Data Analysis</td>
<td>1 0 8 7 0 0 1 1 9 9</td>
<td>5 0 11 5 9 3 4 3 5 1 20 17</td>
<td></td>
</tr>
<tr>
<td>Dependence</td>
<td>0 0 6 0 2 2 0 0 1 0 10 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire</td>
<td>5 0 11 5 9 3 4 3 5 1 20 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Reliability Analysis</td>
<td>8 0 18 10 6 3 1 5 0 20 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiating Event Analysis</td>
<td>2 0 3 2 0 4 1 1 0 9 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2 (Containment System)</td>
<td>3 0 4 4 1 4 4 1 1 0 11 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantification</td>
<td>2 0 10 6 1 1 1 0 0 13 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seismic Analysis</td>
<td>2 0 16 11 2 1 1 2 2 21 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure Analysis</td>
<td>1 0 9 4 1 1 1 2 11 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Analysis</td>
<td>1 0 3 3 0 0 0 0 0 4 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUM</td>
<td>41 0 111 69 25 30 23 19 6 182 142</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Gap Analysis after F&O Addressed

- ASME Standard Gap Analysis (Chinshan at-power PRA)

<table>
<thead>
<tr>
<th>High Level Requirements</th>
<th># of Supporting Requirements</th>
<th># of CC I</th>
<th># of CC II</th>
<th># of CC III</th>
<th># Not met</th>
<th>NA</th>
<th>Not reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLR-AS</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HLR-DA</td>
<td>28</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-HR</td>
<td>34</td>
<td>3</td>
<td>8</td>
<td>18</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IE</td>
<td>29</td>
<td>3</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IF</td>
<td>28</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>HLR-LE</td>
<td>36</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HLR-QU</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HLR-SY</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sum (Internal Events)</td>
<td>283</td>
<td>15</td>
<td>54</td>
<td>132</td>
<td>46</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>HLR-FR</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>HLR-HA</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HLR-SA</td>
<td>24</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sum (Seismic Event)</td>
<td>74</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Typhoon Event</td>
<td>14</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Total*</td>
<td>351</td>
<td>23</td>
<td>63</td>
<td>139</td>
<td>64</td>
<td>6</td>
<td>56</td>
</tr>
</tbody>
</table>

* Fire events not included

Review Results after F&O Addressed

- F&O levels distribution (Kuosheng NPP at-power PRA)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIR</td>
<td>C</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident Sequence</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dependence</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fire</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Human Reliability Analysis</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Initiating Event Analysis</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L2 (Containment System)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Quantification</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Seismic Analysis</td>
<td>2</td>
<td>0</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Structure Analysis</td>
<td>7</td>
<td>0</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>System Analysis</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thermohydraulic Analysis</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Typhoon Analysis</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>SUM</td>
<td>43</td>
<td>0</td>
<td>87</td>
<td>46</td>
<td>22</td>
<td>17</td>
<td>15</td>
</tr>
</tbody>
</table>

JAEA-Review 2009-038
Gap Analysis after F&O Addressed

- **ASME Standard Gap Analysis (Kuosheng at-power PRA)**

<table>
<thead>
<tr>
<th>High Level Requirements</th>
<th># of Supporting Requirements</th>
<th># of CC I</th>
<th># of CC II</th>
<th># of CC III</th>
<th>Not met</th>
<th>NA</th>
<th>Not reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLR-AS</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HLR-DA</td>
<td>28</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-HR</td>
<td>34</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IE</td>
<td>29</td>
<td>4</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IF</td>
<td>28</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>HLR-LE</td>
<td>36</td>
<td>4</td>
<td>12</td>
<td>12</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>HLR-QU</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>HLR-SC</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HLR-SY</td>
<td>41</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum (Internal Events)

<table>
<thead>
<tr>
<th></th>
<th>263</th>
<th>16</th>
<th>53</th>
<th>131</th>
<th>47</th>
<th>4</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLR-FR</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>HLR-HA</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>HLR-SA</td>
<td>24</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum (Seismic Event)

| | 74 | 7 | 6 | 6 | 14 | 1 | 40 |

Typhoon Event

| | 14 | 0 | 3 | 1 | 5 | 1 | 4 |

Total

| | 351 | 23 | 62 | 138 | 66 | 6 | 56 |

Fire events not included

Review Results after F&O Addressed

- **F&O levels distribution (Maashshan NPP at-power PRA)**

<table>
<thead>
<tr>
<th>Technical Element</th>
<th>Number of ‘Fact and Observation’</th>
<th>Importance Level of F&Os</th>
<th>F&O SUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Sequence</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>30</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Dependence</td>
<td>00</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Fire</td>
<td>00</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Human Reliability Analysis</td>
<td>10</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Initiating Event Analysis</td>
<td>80</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>L2 (Containment System)</td>
<td>10</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Quantification</td>
<td>20</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Seismic Analysis</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Structure Analysis</td>
<td>20</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>System Analysis</td>
<td>30</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Thermohydraulic Analysis</td>
<td>10</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Typhoon Analysis</td>
<td>00</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

SUM

| | 230 | 104 | 34 | 12 | 51 | 30 | 34 | 6 | 178 | 116 |
Gap Analysis after F&O Addressed

- **ASME Standard Gap Analysis (Maanshan at-power PRA)**

<table>
<thead>
<tr>
<th>High Level Requirements</th>
<th># of Supporting Requirements</th>
<th># of CC I</th>
<th># of CC II</th>
<th># of CC III</th>
<th># Not met</th>
<th>NA</th>
<th>Not reviewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HLR-AS</td>
<td>21</td>
<td>0</td>
<td>3</td>
<td>17</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>HLR-DA</td>
<td>28</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-HR</td>
<td>34</td>
<td>3</td>
<td>8</td>
<td>18</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IE</td>
<td>29</td>
<td>4</td>
<td>5</td>
<td>14</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-IF</td>
<td>28</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>HLR-LE</td>
<td>36</td>
<td>4</td>
<td>14</td>
<td>12</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HLR-QU</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HLR-SC</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HLR-SY</td>
<td>41</td>
<td>0</td>
<td>7</td>
<td>32</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum (Internal Events)

- **HLR-FR**
 - 25
 - 0
 - 1
 - 1
 - 2
 - 1
 - 0
 - 2
 - 20
- **HLR-DA**
 - 25
 - 2
 - 1
 - 0
 - 2
 - 0
 - 20
- **HLR-SA**
 - 24
 - 6
 - 4
 - 5
 - 9
 - 0
 - 0

Sum (Seismic Event)

- **HLR-FR**
 - 74
 - 8
 - 6
 - 6
 - 13
 - 1
 - 40
- **HLR-DA**
 - 14
 - 0
 - 3
 - 1
 - 5
 - 1
 - 4

Total

- **HLR-FR**
 - 351
 - 24
 - 64
 - 140
 - 64
 - 4
 - 55

* Fire events not included

Calculated Risk Variation

![Calculated Risk Variation Graph](image)

- **AEC (1983-1990)**
- **1st-3 (Yellow Book, 1997)**
- **2nd-3 (PRAM, 2000)**
- **3rd-3 (LERF, 2003)**
- **4th-3 (PEPRA, 2007)**

* Fire/Flood not included

Major FRA Projects

- **Chinshan**
- **Kuosheng**
- **Maanshan**
Reviewers’ Recommendations of Further Enhancements

- Can be more realistically reflect the risk characteristics of the plants
 - Incorporate into PRA models the more recent generic data and new failure modes in conjunction with collected plant-specific operation experience
- Some initiating events need more rigorous presentations
 - The impact of HE events on CDFs under LOOP
 - Consideration of accident mitigation of LOIA events
 - The impact of HE events on LERF under SGTR
 - The recovery operation of feedwater under general transients
- Consider the updates of Seismic and Fire PRAs

Response of the AEC

- The PRA follow-on peer review results were submitted for record by Taipower and approved docketed by the AEC in February, 2009
- Concerns of the AEC
 - PRA documentation quality control
 - The upgrade and update of seismic PRA models to incorporate advanced methods and more recent earthquake experiences
 - Alignment of the PRA self-assessment and peer review process with RG 1.200
 - Classification and configuration control of PRA models
On-going PRA Applications

• Supporting Maintenance Rule implementation
• Base PRA models enhancement, including the Lungmen NPP, to meet ASME internal events standard
 □ Objective: Capability Category II in general
• RI-ISI program plan development for the 4-th 10-year operating interval of Kuosheng NPP
• SDP tools (ie. PRISE) kernel update and enhancement to include shutdown events
• ASME PRA standard introduction
• A fire SDP tool being developed for Chinshan

PRA Applications in View

• Supporting self management of On-line Maintenance
• Fire PRA upgrade in support of NFPA-805 transition
• SDP tools enhancement to include external events (ie. Seismic, Typhoon)
• Tech Spec AOT Extensions
• Risk-informed IST
• Risk-informed Tech Spec
Thank You for Attention
Current Status of PSA in Korea & International Cooperation

19 May 2009

Joon-Eon YANG

Integrated Safety Assessment Division
Korea Atomic Energy Research Institute

Contents

- Current Korean Status
- PSA & Its Applications in Korea
- Current Issues in Korea
- Future Directions for International Cooperation
In operation: Gen II, Gen III (APR1400), Gen III (OPR-1000)
Under construction: Kori, Ulchin
Under license review: Gen III (OPR-1000)
Planned: Yonggwang, Jeju

Current Korean Status

- Building New Plants
 - 20 operating NPPs
 - 6 under construction, 2 under licensing review process

- From PSA to RIPBA
 - Two Statements
 - Nuclear Safety Policy Statement
 - Severe Accident Policy Statement
 - From Generic to Specific

Major Milestones in Korean PSA/RIPBA

- WASH-1400 (1975)
- 1979) TMI Accident
- (1986) Safety Goals
- (1988) GL 88-20, IPE
- (1995) PRA Policy Statement
- (1998) RG 1.174
- (1998) ASME PRA Std
- (2002) ASME PRA Std
- (2004) RG 1.200
- (2006) RIP
- (2008?) Part 53 TNF
- (2009) Safety Goal
- (2009) PSAs for All Rx.s
- (2001) Severe Accidents Policy Statement
- (2006) RIP
- (2008?) Part 53 TNF
- (2009) Safety Goal
- (1994-) PSAs for All Rx.s
- (1994-) PSAs for CP/OL of New Rx.s
- (1995) PRA Policy Statement
- (1998) RG 1.174
- (2002) ASME PRA Std
- (2004) RG 1.200
- (2006) RIP
- (2008?) Part 53 TNF
- (2009) Safety Goal
Present Status of Korean PSA

<table>
<thead>
<tr>
<th>Unit</th>
<th>Scope & Purpose of PSA</th>
<th>Completed Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR-1</td>
<td>PSA for TMI action Plan</td>
<td>'02.11</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'07.05</td>
</tr>
<tr>
<td>KR-2</td>
<td>PSA for TMI action Plan</td>
<td>'03.12</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'07.06</td>
</tr>
<tr>
<td>KR-3.4</td>
<td>PSA for TMI action Plan</td>
<td>'02.08</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'03.06</td>
</tr>
<tr>
<td>YG-1.2</td>
<td>PSA (LEVEL I) for TMI action Plan</td>
<td>'02.08</td>
</tr>
<tr>
<td></td>
<td>PSA update (LEVEL I) for Severe Accident Policy statement</td>
<td>'03.12</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'07.12</td>
</tr>
<tr>
<td>YG-3.4</td>
<td>PSA (LEVEL I) for the requirement for construction & operation permits</td>
<td>'04.02</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'05.06</td>
</tr>
<tr>
<td>YG-5.6</td>
<td>PSA (LPSD PSA) for the requirement for construction & operation permits</td>
<td>'06.12</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'06.12</td>
</tr>
<tr>
<td>UC-1.2</td>
<td>PSA for Severe accident policy</td>
<td>'05.12</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'06.12</td>
</tr>
<tr>
<td>UC-1.4</td>
<td>PSA (LEVEL I) for the requirement for construction & operation permits</td>
<td>'05.06</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'06.06</td>
</tr>
<tr>
<td>UC-5.6</td>
<td>PSA (LPSD PSA) for the requirement for construction & operation permits</td>
<td>'06.12</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'07.02</td>
</tr>
<tr>
<td>WS-1</td>
<td>PSA for Severe Accident Policy statement</td>
<td>'07.02</td>
</tr>
<tr>
<td></td>
<td>PSA update for Risk monitor</td>
<td>'07.02</td>
</tr>
<tr>
<td>WS-2.3.4</td>
<td>PSA for the requirement for construction & operation permits</td>
<td>'07.02</td>
</tr>
</tbody>
</table>

On-going Programs in Korea

- **PSA**
 - Level 2 PSAs for all units have been finished & being updated (with Risk Monitor)
 - Plant Specific Reliability DB

- **Risk-informed Applications**
 - RI-ISI: Under Review of Regulatory Body
 - RI-‘TS’: Extension of STI of ESFAS/RPS
 - Permitted for some NPPs
 - New Projects are on-going for other NPPs (AOT Extension of EDG)
 - RI-ILRT

- **Performance-monitoring**
 - MR: Standardized MR Approach is being tested by KHNP

- **Regulatory Activity**
 - Guidelines for RIR & PSA Quality
 - RIFI (Risk-informed Periodic Inspection) is being tested by KINS
 - Regulatory PSA Model
Current Issues in Korea

- **RIPBA in Korea**
 - Korean Specific RIPBA Framework
 - Safety Goal
 - PSA Quality

- **Licensing/RI-Design of New NPPs**
 - Digital I&C PSA & HRA
 - PSA for the D.C. of SMART
 - RI-Design Framework

- **Another issues**
 - Human Performance
 - Seismic PSA
 - PSA Tools
 - AIMS & FTREX
 - SAREX & FORTE

Some Research Results of KAERI

- **Digital I&C PSA**
 - D&C Induced IE DB
 - Rel. Analysis Methods for HW/SW
 - HRA for Digitalized MCR
 - Based on the trainings at simulator of advanced reactor

- **Enhancing Human Performance**
 - OPERA DB
 - Video taped 100 cases of operator trainings at simulator
 - Complexity Measure: TACOM

- **Seismic PSA**
 - Korean Specific Hazard Curve
 - Seismic PSA Code
 - Shaking Table Exp. for Digital MCC

- **Integration of Internal & External PSA Model**
 - A/S/W for the Automatic Generation of External PSA Model (AIMS)
 - One Top Internal PSA Model + Few DB ➔ One Top Few PSA Model
 - New Quantification Algorithm for External PSA Model (USTAR)

- **Integrated Assessment of Risk & Performance**
 - Detailed FT Model for BOP

- **FREX**
 - ZBDD based
 - EPRI R&E CAPTA + FTREX
Nuclear Power in East Asia: 92/19/22=133

International Cooperation in the World
International Cooperation in East Asia

- Sharing the Experience
 - Ex.) CCF Data

- Sharing the Expertise
 - Ex.) Expert Pool for Peer Review
 - Ex.) Training & Education of New Generation

- Sharing the Knowledge
 - Ex.) Digital I&C, Seismic
 - Joint Development or V&V

→ Establishing the Channel for Cooperation in PSA: Creating New Knowledge for Us
Status of PSA in Japan & Future Cooperation

May 19, 2009

Mitsuhiro KAJIMOTO

Nuclear Energy System Safety Division
Japan Nuclear Energy Safety Organization (JNES)

Tokyu Reito BLDG., 7F,
3-17-1, Toranomon, Minato-ku, Tokyo,
105-0001 Japan

The 10th Korea-Japan Joint Workshop on PSA (KJPSA), at Haevichi Hotel & Resort, Jeju, Korea (May 18-20, 2009)

Status of PSA in Japan

<table>
<thead>
<tr>
<th>Methodology</th>
<th>1990 s</th>
<th>2000 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Events</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard

- **1992**: NSRA (Nuclear Safety Research Association)
- **2002**: Atomic Energy Society of Japan

Application

- **1992**: NSC Policy Statement for PAS & AM
- **2004**: Implementation of AM was completed for conventional NPPs
- **2009**: RIR started

Applications

- **1990 s**: Internal Events, External Events
- **2000 s**: Implementation of AM was completed for conventional NPPs, RIR started

Timeline

- **1992**: NSRA, NSC Policy Statement for PAS & AM
- **2004**: Implementation of AM was completed for conventional NPPs
- **2009**: RIR started
Methodology Development

<table>
<thead>
<tr>
<th>Organization</th>
<th>Field</th>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAEA</td>
<td>Level 1 PSA</td>
<td>NUPRA</td>
</tr>
<tr>
<td></td>
<td>Level 2 PSA</td>
<td>THALES-2</td>
</tr>
<tr>
<td></td>
<td>Level 3 PSA</td>
<td>OSCAAR</td>
</tr>
<tr>
<td>JNES</td>
<td>Level 1 PSA</td>
<td>NUPRA</td>
</tr>
<tr>
<td></td>
<td>Level 2 PSA</td>
<td>MELCOR</td>
</tr>
<tr>
<td></td>
<td>Level 3 PSA</td>
<td>CFD (FLUENT)</td>
</tr>
<tr>
<td>Industries</td>
<td>Level 1 PSA</td>
<td>RSIKMAN, etc.</td>
</tr>
<tr>
<td></td>
<td>Level 2 PSA</td>
<td>MAAP</td>
</tr>
<tr>
<td></td>
<td>Level 3 PSA</td>
<td>MACCS-2</td>
</tr>
</tbody>
</table>

Progress of PSA at JNES

<table>
<thead>
<tr>
<th>Category</th>
<th>Initial Events</th>
<th>Level 1 PSA</th>
<th>Level 2 PSA</th>
<th>Level 3 PSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Events</td>
<td>Random (Rated/Shutdown)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>Fire</td>
<td>In progress</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>External Events</td>
<td>Seismic</td>
<td>Green</td>
<td>Green</td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Tsunami</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

Legend:
- Green: Well established
- Yellow: In progress
- Red: Not yet
PSA Database at JNES

<table>
<thead>
<tr>
<th>PSA</th>
<th>Resource</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 PSA</td>
<td>Experience</td>
<td>event data for 55 plants (NuCIA)</td>
</tr>
<tr>
<td></td>
<td>Generic</td>
<td>CRIEPI, NSRA, PSA Data in USA</td>
</tr>
<tr>
<td>Level 2 PSA</td>
<td>Analysis</td>
<td>ROAAM Approach</td>
</tr>
<tr>
<td></td>
<td>Experiments</td>
<td>OECD/NEA Projects International Cooperation Projects</td>
</tr>
<tr>
<td>Level 3 PSA</td>
<td>measurements</td>
<td>Metrological data, population distribution around site</td>
</tr>
</tbody>
</table>

Development of PSA Standard

Standards Committee in Atomic Energy Society of Japan has been developing various standards for PSA.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Shutdown PSA (Level 1 PSA)</td>
<td>Released in 1992, Rev.1 in progress</td>
</tr>
<tr>
<td>2 Seismic PSA (Level 1.5 PSA)</td>
<td>Released in 2007</td>
</tr>
<tr>
<td>3 Level 1 PSA</td>
<td>Released in 2009</td>
</tr>
<tr>
<td>4 Level 2 PSA</td>
<td>Released in 2009</td>
</tr>
<tr>
<td>5 Level 3 PSA</td>
<td>Released in 2009</td>
</tr>
<tr>
<td>6 Parameter for PSA</td>
<td>in progress</td>
</tr>
<tr>
<td>7 RIR</td>
<td>in progress</td>
</tr>
<tr>
<td>8 Fire PSA</td>
<td>under discussion</td>
</tr>
<tr>
<td>9 Flooding PSA</td>
<td>under discussion</td>
</tr>
</tbody>
</table>

http://www.aesj.or.jp/sc/index.html
PSA Applications

Nuclear Safety Commission (NSC)

PSA & Severe Accident

Safety Goal & Performance Objectives

Risk Informed Regulation (RIR)

PSA Applications (Continued)

Nuclear & Industrial Safety Agency (NISA)

PSA & Severe Accident

Risk Informed Regulation (RIR)

1. NISA, "Basic Concept to Apply ‘Risk Information’ to Nuclear Safety Regulation," NISA Committee on Nuclear Safety (2005)
Future Cooperation

Fields of Cooperation

<table>
<thead>
<tr>
<th>Field</th>
<th>Item</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Database</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Application</td>
<td>Experience</td>
<td>Shearing Good practice Analysis</td>
</tr>
</tbody>
</table>

Future Cooperation (Continued)

Serious Problem: Lack of Human Resource

Researchers for PSA & Severe Accident at JNES

Total 23 persons

Average 53

- High Aging
- Rapid decrease this coming 10 years due to retire
Network with Rubber Strings
= How to establish Cooperation =

Local Cooperation
Similar Culture
Rubber String
Weak Interaction

International Cooperation
Different Culture
Rubber String
Strong Interaction

Flexible
Free discussions for preliminary results
Chance to Younger researchers

Formal
Many restrictions
Conservative
Use of well established Technology

Network with Rubber String:
major objective:
technical transfer for young generation, establish PSA families in Asian area

Establish List of Researchers

Lists of Expert and young researchers in various PSA field (Research Institute, Industry, University)

Families in PSA Field

Establish families and heads in each PSA Field based on the Lists
Presentation of their activities at the special session in KJPSA Workshop
Appendix 2 Panel Discussion

Theme: How to Improve the Cooperation in PSA

Moderator: Prof. Un-Chul LEE (Seoul National Univ.)
Panelists: Akihide HIDAKA, Akira YAMAGUCHI, Mitsuhiro KAJIMOTO (Japan), Byung Sik LEE, Chang-Ju LEE, Joon-Eon YANG (Korea), Chung-Kung LO (Taiwan), Tao LIU (China)

Theme: Cooperation in PSA

Dr. Akihide HIDAKA (JAEA)
- Risk Informed (RI) is introduced in Japan. Transparency is important in PSA, and DB. PSA quality of Japanese NPP could not be evaluated through peer review by Japanese experts since Japanese hesitate to criticize each other. Thus, other country could perform peer review of Japanese NPP as the 3rd party.
- NUSIA is open to public. Like Finland T-book, Japanese DB could be available to other country.

Mr. Byung Sik LEE (KHNP)
- KHNP(Utility) performed many RI applications such as RI-ILRT, RI-ISI, MRule, Risk Monitor, etc. and tried to improve PSA Quality. Equipment Reliability is developed. Finally, on-line maintenance will be performed.
- Let’s share the other international cooperation.

Prof. Akira YAMAGUCHI (Univ. of Osaka)
- Let’s share the idea, and exchange the information.
- Quality, robustness, and validation of PSA is important. Let’s do a common work to reduce an uncertainty and to improve a PSA quality.
- Infrastructure such as human resource should be enhanced. Human resource related to PSA is limited. (No PSA curriculum in University). New international nuclear research institute is going to be built around Kansai. PSA field could be trained or studied.

Dr. Chang-Ju LEE (SNU)
- It is not easy to have a cooperation between countries. For example, for COOPRA case, there is little cooperation except information exchange.
- Suggestion:
 - Let’s assign a living program coordinator each country.
 - e.g.) Hidaka for DB in Japan…
 - Technical support for special topics
Present the results to K-J PSA Workshop

- Dr. Mitsuhiro KAJIMOTO (JNES)
 - Let’s have small working group meeting within KJPSA
- Dr. Joon-Eon YANG (KAERI)
 - Informally several people were gathered and discussed about cooperation in PSA as a small working group meeting. It is necessary to issue news letters during 2 years.
- Dr. Mitsuhiro KAJIMOTO (JNES)
 - PSA peer review is industry side problem, not regulatory side issue.
 - Question: Why the component failure data is good in Japan?
 - Answer: The component failure data is not much better than others. However, the frequency of such event is very small.
- Dr. Dae-Wook CHUNG (KINS)
 - In a working group or session chairman meeting, let’s decide topics in which two countries are commonly interesting.
- Dr. Joon-Eon YANG (KAERI)
 - If a topic (i.e., young generation issue in PSA) is selected among Asian countries, then it is no problem in making a working group in OECD/NEA.
- Dr. Key Yong SUNG (KINS)
 - Severe Accident Group is active. Let’s include severe accident group in Asian networks.
- Prof. Un-Chul LEE (SNU)
 - The workshop title change from K-J PSA workshop to Asian PSA workshop is a little bit too early. Maybe, 2 years later, if many Chinese and Taiwanese participate, then let’s discuss again.
- Dr. Chung-Kung LO (INER)
 - Information Exchange: I promise I could be a contact point. If you need information, please ask me.
- Dr. Joon-Eon YANG (KAERI)
 - For an exchange of information, this k-j psa workshop internet site will be kept. The address is; asian.psa.re.kr
 - This workshop paper and presentation material will be posted in this site.

Summary by Prof. Un-Chul LEE (SNU)

- A small working group which handles the following topics should be operated as soon as possible.
 - Collaborative work in PSA
 - Information exchange program
 - Training each other
- Japanese participants showed very good job. Especially, JAES coped well the earthquake accident, and well explained it.
- For the Korean side, those who were involved in PSA is getting older and older. Fresh young generation is necessary. Please help us how to make the young generation be interested in PSA.
Summary by Dr. Toshimitsu HOMMA (JAEA)

- Participants are 80 persons.
- Participant countries are Korea, Japan, USA, China, Taiwan
- It is the 3rd times that K-J PSA workshop was held in Jeju island.
- At the beginning of K-J PSA workshop, I was the only person who presented a paper about level 3. Now, many persons presented papers about level 3.
- I thanks Dr. Yang, Dr. Han, Dr. Choi for preparing this nice K-J PSA workshop.
- Let’s publish a report about this K-J PSA workshop including this panel discussion.
This is a blank page.
Appendix 3 List of Participants

<table>
<thead>
<tr>
<th>Family Name</th>
<th>Given Name(s)</th>
<th>Organization</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHN</td>
<td>Kwang-Il</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>AHN</td>
<td>Sang-Kyu</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>BRAVERMAN</td>
<td>Joseph</td>
<td>Brookhaven National Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>CHOI</td>
<td>In-Kil</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>CHOI</td>
<td>Jong-Soo</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>CHOI</td>
<td>Kwang-Hee</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>CHOI</td>
<td>Seong-Nam</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>CHOI</td>
<td>Sun Yeong</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>CHOI</td>
<td>Young</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>CHUNG</td>
<td>Bagsoon</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>CHUNG</td>
<td>Dae-Wook</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>CHUNG</td>
<td>Ku Young</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>FUNAYAMA</td>
<td>Kyoko</td>
<td>Japan Nuclear Energy Safety Organization</td>
<td>Japan</td>
</tr>
<tr>
<td>HA</td>
<td>Jaejoo</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>HAHM</td>
<td>Daegi</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>HAN</td>
<td>Sang Hoon</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>HIDAKA</td>
<td>Akihide</td>
<td>Japan Atomic Energy Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>HOMMA</td>
<td>Toshimitsu</td>
<td>Japan Atomic Energy Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>HSU</td>
<td>Pi-Lin</td>
<td>Institute of Nuclear Energy Research</td>
<td>Taiwan</td>
</tr>
<tr>
<td>HWANG</td>
<td>Seok Won</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>IMAI</td>
<td>Hidetaka</td>
<td>Tokyo Electric Power Company</td>
<td>Japan</td>
</tr>
<tr>
<td>IN</td>
<td>Young H.</td>
<td>ERIN Engineering & Research, Inc.</td>
<td>USA</td>
</tr>
<tr>
<td>ISHIKAWA</td>
<td>Jun</td>
<td>Japan Atomic Energy Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>JANG</td>
<td>Dong Ju</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>JEE</td>
<td>Moon-Hak</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>JEONG</td>
<td>Jongtae</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>JERNG</td>
<td>Dong Wook</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>JIN</td>
<td>KwangMan</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>JIN</td>
<td>Youngho</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>JUNG</td>
<td>Tae Sang</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>KAJIMOTO</td>
<td>Mitsuhiro</td>
<td>Japan Nuclear Energy Safety Organization</td>
<td>Japan</td>
</tr>
<tr>
<td>KANG</td>
<td>Chang-Sun</td>
<td>Seoul National Univ.</td>
<td>Korea</td>
</tr>
<tr>
<td>KANG</td>
<td>Kyungmin</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>KANG</td>
<td>Sun-Koo</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>Family Name</td>
<td>Given Name(s)</td>
<td>Organization</td>
<td>Country</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>KIM</td>
<td>Do Sam</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Dong-Ha</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Dong-kyu</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Euna</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Han-Chul</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Kilyoo</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Man Cheol</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Min Kyu</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Myung-Ki</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Myung-ro</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>See Darl</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Se-Won</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Tae-Woon</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Tae-hyeong</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>KIM</td>
<td>Tae-jin</td>
<td>Seoul National Univ.</td>
<td>Korea</td>
</tr>
<tr>
<td>KONDO</td>
<td>Shunsuke</td>
<td>Tokyo Univ.</td>
<td>Japan</td>
</tr>
<tr>
<td>LEE</td>
<td>Bang Jin</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Byung Sik</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Chang-Ju</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Jong-In</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Jung-Jae</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Kwang-Nam</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Seung Jun</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Un-Chul</td>
<td>Seoul National Univ.</td>
<td>Korea</td>
</tr>
<tr>
<td>LEE</td>
<td>Yong Suk</td>
<td>Future&Challenge Technology Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>LIM</td>
<td>Hak-Kyu</td>
<td>Korea Power Engineering Company</td>
<td>Korea</td>
</tr>
<tr>
<td>LIM</td>
<td>Ho-Gon</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>LIU</td>
<td>Tao</td>
<td>INET, Tsinghua University</td>
<td>China</td>
</tr>
<tr>
<td>LO</td>
<td>Chung-Kung</td>
<td>Institute of Nuclear Energy Research</td>
<td>Taiwan</td>
</tr>
<tr>
<td>OGURA</td>
<td>Katsunori</td>
<td>Japan Nuclear Energy Safety Organization</td>
<td>Japan</td>
</tr>
<tr>
<td>OH</td>
<td>Seong Jong</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>OH</td>
<td>Hae-Cheol</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>PANG</td>
<td>Whan-Ki</td>
<td>Korea Hydro & Nuclear Power Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>PARK</td>
<td>Goon-Cherl</td>
<td>Seoul National Univ.</td>
<td>Korea</td>
</tr>
<tr>
<td>PARK</td>
<td>Jin-Hee</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>Family Name</td>
<td>Given Name(s)</td>
<td>Organization</td>
<td>Country</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>PARK</td>
<td>Jong-Hyuck</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>PARK</td>
<td>Rae-Joon</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>RHEE</td>
<td>Hyun Me</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>SATO</td>
<td>Eisuke</td>
<td>TEPCO SYSTEMS Corp.</td>
<td>Japan</td>
</tr>
<tr>
<td>SEO</td>
<td>Mi-Ro</td>
<td>Korea Electric Power Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>SONG</td>
<td>JinHo</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>SUH</td>
<td>Namduk</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>Sung</td>
<td>Key Yong</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>TAKAHARA</td>
<td>Shogo</td>
<td>Japan Atomic Energy Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>TAMAKI</td>
<td>Hitoshi</td>
<td>Japan Atomic Energy Agency</td>
<td>Japan</td>
</tr>
<tr>
<td>UCHIDA</td>
<td>Tsuyoshi</td>
<td>Japan Nuclear Energy Safety Organization</td>
<td>Japan</td>
</tr>
<tr>
<td>UEDA</td>
<td>Yoshinori</td>
<td>Japan Nuclear Energy Safety Organization</td>
<td>Japan</td>
</tr>
<tr>
<td>WOO</td>
<td>Tae-Ho</td>
<td>Seoul National Univ.</td>
<td>Korea</td>
</tr>
<tr>
<td>YAMAGUCHI</td>
<td>Akira</td>
<td>Osaka Univ.</td>
<td>Japan</td>
</tr>
<tr>
<td>YANG</td>
<td>Huichang</td>
<td>ENESYS Co., Ltd.</td>
<td>Korea</td>
</tr>
<tr>
<td>YANG</td>
<td>Joon-Eon</td>
<td>Korea Atomic Energy Research Institute</td>
<td>Korea</td>
</tr>
<tr>
<td>YOON</td>
<td>Won Hyo</td>
<td>Korea Institute of Nuclear Safety</td>
<td>Korea</td>
</tr>
<tr>
<td>YOU</td>
<td>young-woo</td>
<td>en2t Co</td>
<td>Korea</td>
</tr>
<tr>
<td>YU</td>
<td>Yu</td>
<td>INET, Tsinghua University</td>
<td>China</td>
</tr>
</tbody>
</table>
This is a blank page.
国際単位系（SI）

表1. SI基本単位

<table>
<thead>
<tr>
<th>基本単位</th>
<th>SI基準単位</th>
<th>記号</th>
<th>相当単位</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>フォートン</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>フォートン</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>シー</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>シー</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱力学温度</td>
<td>キロラジアン</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質の固有性</td>
<td>サンデル</td>
<td>cd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2. SI基準単位によって表される関連単位の例

<table>
<thead>
<tr>
<th>基本単位</th>
<th>SI基準単位</th>
<th>記号</th>
<th>相当単位</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>フォートン</td>
<td>m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>フォートン</td>
<td>kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>シー</td>
<td>s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>シー</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱力学温度</td>
<td>キロラジアン</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>物質の固有性</td>
<td>サンデル</td>
<td>cd</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表3. 固有の名称と記号をSI単位に変換する

<table>
<thead>
<tr>
<th>組立単位</th>
<th>名称</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による表</th>
<th>記号のSI単位による表</th>
</tr>
</thead>
<tbody>
<tr>
<td>平面</td>
<td>ラジアン</td>
<td>rad</td>
<td>m/m</td>
<td>m/m</td>
<td></td>
</tr>
<tr>
<td>高さ</td>
<td>グラム</td>
<td>mol</td>
<td>m/m</td>
<td>m/m</td>
<td></td>
</tr>
<tr>
<td>力</td>
<td>パスカル</td>
<td>Pa</td>
<td>N/m²</td>
<td>N/m²</td>
<td></td>
</tr>
<tr>
<td>ヨンス</td>
<td>J</td>
<td>m²</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>ヨンス</td>
<td>A</td>
<td>m²</td>
<td>m²</td>
<td></td>
</tr>
<tr>
<td>体積</td>
<td>フォートン</td>
<td>m³</td>
<td>m³</td>
<td>m³</td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>フォートン</td>
<td>kg</td>
<td>kg</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>シー</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>シー</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>熱力学温度</td>
<td>キロラジアン</td>
<td>K</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>物質の固有性</td>
<td>サンデル</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
<td></td>
</tr>
</tbody>
</table>

表4. 単位の固有の名称と記号をSI単位に変換する例

<table>
<thead>
<tr>
<th>単位</th>
<th>名称</th>
<th>記号</th>
<th>SI基準単位による</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>压力</td>
<td>パスカル</td>
<td>Pa</td>
<td>N/m²</td>
<td></td>
</tr>
<tr>
<td>日</td>
<td>リットル</td>
<td>L</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>度</td>
<td>キロラジアン</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>質量</td>
<td>フォートン</td>
<td>kg</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>時間</td>
<td>シー</td>
<td>s</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>電流</td>
<td>シー</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>熱力学温度</td>
<td>キロラジアン</td>
<td>K</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>物質の固有性</td>
<td>サンデル</td>
<td>cd</td>
<td>cd</td>
<td></td>
</tr>
</tbody>
</table>

表5. SI単位による物理量

<table>
<thead>
<tr>
<th>物理量</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度</td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>m/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>物質の固有性</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
</tr>
</tbody>
</table>

表6. SI単位による計量量

<table>
<thead>
<tr>
<th>計量量</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度</td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>m/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>物質の固有性</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
</tr>
</tbody>
</table>

表7. SI単位による数値の変換

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度</td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>m/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>物質の固有性</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
</tr>
</tbody>
</table>

表8. SI単位による計量量

<table>
<thead>
<tr>
<th>計量量</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度</td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>m/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>物質の固有性</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
</tr>
</tbody>
</table>

表9. SI単位による数値の変換

<table>
<thead>
<tr>
<th>名称</th>
<th>記号</th>
<th>記号のSI単位による</th>
<th>記号のSI単位による</th>
</tr>
</thead>
<tbody>
<tr>
<td>速度</td>
<td>m/s</td>
<td>m/s</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>m/s²</td>
<td>m/s²</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>K</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>物質の固有性</td>
<td>cd</td>
<td>cd</td>
<td>cd</td>
</tr>
</tbody>
</table>
Proceedings of
the 10th Korea-Japan Joint Workshop on PSA

- For Asian PSA Network -