JAEA-Review
2009-047

JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-level and TRU Wastes: Refinement of Thermodynamic Data for Trivalent Actinoids and Samarium

Akira KITAMURA, Kenso FUJIWARA and Mikazu YUI

Geological Isolation Research Unit
Geological Isolation Research and Development Directorate

本レポートは日本原子力研究開発機構が不定期に発行する成果報告書です。
本レポートの入手並びに著作権利用に関するお問い合わせは，下記あてにお問い合わせ下さい。
なお，本レポートの全文は日本原子力研究開発機構ホームページ（http：／／www．jaea．go．jp）
より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319－1195 茨城県那珂郡東海村白方白根 2 番地 4
電話 029－282－6387，Fax 029－282－5920，E－mailःird－support＠jaea．go．jp

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and／or copyright of this report should be addressed to
Intellectual Resources Section，Intellectual Resources Department，
Japan Atomic Energy Agency
2－4 Shirakata Shirane，Tokai－mura，Naka－gun，Ibaraki－ken 319－1195 Japan
Tel＋81－29－282－6387，Fax＋81－29－282－5901，E－mail：ird－support＠jaea．go．jp

JAEA Thermodynamic Database for Performance Assessment of Geological Disposal of High-level and TRU Wastes:
 Refinement of Thermodynamic Data for Trivalent Actinoids and Samarium

Akira KITAMURA, Kenso FUJIWARA and Mikazu YUI
Geological Isolation Research Unit
Geological Isolation Research and Development Directorate
Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken

(Received December 3, 2009)

Within the scope of the JAEA thermodynamic database project for performance assessment of geological disposal of high-level radioactive and TRU wastes, the refinement of the thermodynamic data for the inorganic compounds and complexes of trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) was carried out. Refinement of thermodynamic data for these elements was based on the thermodynamic database for americium published by the Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA). Based on the similarity of chemical properties among trivalent actinoids and samarium, complementary thermodynamic data for their species expected under the geological disposal conditions were selected to complete the thermodynamic data set for the performance assessment of geological disposal of radioactive wastes.

Keywords: Thermodynamic Database, Performance Assessment, Geological Disposal, High-Level Radioactive Waste, TRU Waste, Data Selection, Actinium, Plutonium(III), Americium, Curium, Samarium

[^0]高レベルおよび TRU 廃棄物地層処分の性能評価のための JAEA 熱力学データベース：
3 価アクチノイド元素およびサマリウムの熱力学データの再選定

日本原子力研究開発機構 地層処分研究開発部門
地層処分基盤研究開発ユニット
北村 暁，藤原 健壮，油井 三和 ${ }^{+}$

（2009年12月3日受理）

高レベル放射性廃棄物および TRU 廃棄物の地層処分の性能評価に用いるための熱力学データベースの整備の一環として， 3 価アクチノイド元素（アクチニウム（III），プル トニウム（III），アメリシウム（III）およびキュリウム（III））およびサマリウム（III）の熱力学 データ選定を実施した。熱力学データ選定は，経済協力開発機構原子力機関 （OECD／NEA）が公開しているアメリシウム熱力学データベースの内容を基に行った。地層処分における地下水条件のもとで存在の可能性がある化学種でありながら，これら の調査でそのデータが欠落しているものについては，3 価アクチノイドおよびサマリウ ムの化学挙動が類似していると考えられることを利用して，熱力学データを推定してデ ータベースの補完を行った。

核燃料サイクル工学研究所（駐在）：〒319－1194 茨城県那珂郡東海村村松 4－33

+ 地層処分研究開発部門

Contents

1. Introduction 1
2. Procedure for Refinement of Thermodynamic Data for JAEA-TDB 4
2.1 General Approach 4
2.2 Brief Procedure of Selection of Thermodynamic Data for Trivalent Actinoids and Samarium(III) 5
3. Detailed Procedure of Selection of Thermodynamic Data for Trivalent Actinoids and Samarium(III) 6
3.1 Americium(III) and Curium(III) 6
3.2 Plutonium(III) 7
3.3 Samarium(III) 8
3.4 Actinium(III) 9
4. Conclusions 11
Acknowledgement 11
References 12

目次
1．緒言 1
2．JAEA－TDB 整備のための基本方針 4
2.1 全体概要 4
2.23 価アクチノイドおよびサマリウム（III）の熱力学データ選定の概要． 5
3． 3 価アクチノイドおよびサマリウム（III）の熱力学データ選定の詳細 6
3.1 アメリシウム（III）およびキュリウム（III） 6
3.2 プルトニウム（III） 7
3.3 サマリウム（III） 8
3.4 アクチニウム（III） 9
4．結言 11
謝辞 11
参考文献 12

List of Tables

Table 1 Part of selected thermodynamic data for americium(III) by the OECD/NEA 15
Table 2 Part of selected thermodynamic data for plutonium(III) by the OECD/NEA 17
Table 3 Crystal radius of trivalent actinoids and samarium(III) 18
Table 4 Thermodynamic data for americium(III) selected by the authors for the JAEA-TDB 19
Table 5 Selected Gibbs free energy of formation $\left(\Delta_{\mathrm{f}} G_{\mathrm{m}}^{\circ}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)\right.$) for actinoid(III) aqua ions by the OECD/NEA and the literature by Fuger and Oetting 20
Table 6 Thermodynamic data for curium(III) selected by the authors for the JAEA-TDB 21
Table 7 Thermodynamic data for plutonium(III) selected by the authors for the JAEA-TDB 22
Table 8 Solubility product and hydrolysis constants for samarium(III) and actinium(III) comparing with those for americium(III) and plutonium(III) selected by the OECD/NEA 23
Table 9 Thermodynamic data for samarium(III) selected by the authors for the JAEA-TDB 24
Table 10 Stablity constants of the chloride and bromide complexes of some lanthanoidsand actinoids with reaction of $\mathrm{M}^{3+}+x \mathrm{~L}^{-} \Leftrightarrow \mathrm{ML}_{x}^{3-x}(x: 1$ and 2$)$ at $3.0 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$LiCl or LiBr solutions25
Table 11 Thermodynamic data for actinium(III) selected for the JAEA-TDB 26

This is a blank page.

1. Introduction

Many radionuclides are contained in high-level radioactive waste (HLW) and are part of TRU waste packages, and some of them have long half-lives (more than 10^{4} year). It is necessary to estimate solubility of these radionuclides in ground and pore waters in natural and engineered barriers, respectively, for performance assessment of geological disposal of HLW and some TRU wastes (e.g. hulls and ends). Thermodynamic data, e.g. the solubility product of solubility limiting solids and equilibrium constants for aqueous complexes at standard state (i.e. ionic strength of 0), are needed to estimate the solubility and aqueous species in the ground waters and pore waters: these data are fundamental to estimating sorption and diffusion behaviors on/in engineered barriers and host rocks. The chemical properties of elements of interest have been investigated, and many thermodynamic values were obtained which are considered to be more reliable than those previously available. Therefore, the latest and the most reliable thermodynamic data with transparency and traceability will be published to carry out the reliable performance assessment by an implementer or a regulator.

Eighteen elements (actinoids, fission products, radiation products and their daughters, etc.) were selected in the second progress report on research and development of geological disposal of HLW in Japan (H12) ${ }^{1)}$ by the Japan Nuclear Cycle Development Institute (JNC), which was one of the predecessors of the Japan Atomic Energy Agency (JAEA). The JNC's thermodynamic database (JNC-TDB) was developed for the performance assessment of the geological disposal in $1999{ }^{2)}$. To develop JAEA's thermodynamic database (JAEA-TDB), thermodynamic data for more than 20 elements (not only for the performance assessment of HLW but also for that of TRU waste in geological disposal) will be selected. Selection of thermodynamic data for americium(III) in the JNC-TDB was based on the first version of TDB by the OECD/NEA ${ }^{4)}$ with a slight modification. Thermodynamic data on samarium(III), actinium(III) and curium(III) were assumed to be the same as those for americium(III) due to insufficient experimental data for these elements and because these elements have similar ionic radii and are known to form isostructural compounds and complexes that show, where reliable data are available, similarity in the values of equilibrium constants. We consider that reasonableness of the assumption should be further discussed to enhance reliability of the TDB.

The Nuclear Energy Agency in the Organisation for Economic Co-operation and Development (OECD/NEA) has developed thermodynamic databases (NEA-TDBs) for some actinides (thorium, uranium, neptunium, plutonium and americium). All the published articles
containing experimentally determined thermodynamic values were carefully reviewed and discussed among experts gathered from all over the world. Procedure for the selection of thermodynamic data is based on the guideline "TDB-1" published by the OECD/NEA ${ }^{3}$. The first and the revised version of the TDB of americium were published in $1995{ }^{4)}$ and $2003{ }^{5}$, respectively. The first and the revised version of the TDB of plutonium were published in $2001{ }^{6)}$ and $2003{ }^{5}$, respectively. Although the revised version of TDB ${ }^{5)}$ also contains some thermodynamic data for uranium(III) and neptunium(III), we will not select these data because these redox states are stable only under extremely reducing conditions and are unlikely to be stable in geological media. Selected thermodynamic data for americium(III) and plutonium(III) are listed in Table 1 and Table 2, respectively. The most enhanced thermodynamic data for trivalent actinoids are of americium(III), hence the refinement of thermodynamic data for the JAEA-TDB will be based on the thermodynamic data for americium(III) as mentioned below.

The National Cooperative for the Disposal of Radioactive Waste in Switzerland (Nagra) and the Paul Scherrer Institut (PSI) published their own TDB (Nagra/PSI-TDB) jointly in 2002 ${ }^{7)}$. Their selection of thermodynamic data on americium(III) was based on the first version of the NEA-TDB ${ }^{4}$, modified with the literature data (e.g., Neck et al. ${ }^{8)}$ that became available after the NEA-TDB review in 1995 and before they carried out their review in 2002. They also selected thermodynamic data for europium but their review did not address the selction of data for samarium and actinium. .The update version of NEA-TDB was published later (2003), hence we did not review their selected data but referred only the Nagra/PSI-TDB.

The Swedish Nuclear Fuel and Waste Management Co. (SKB) also developed their own TDB (SKB-TDB) and published in $2006{ }^{9}$. . Most of thermodynamic data were taken from the Nagra/PSI-TDB with some modifications, especially the selection of enthalpy. Selection of thermodynamic data for americium(III) and plutonium(III) was based on the Nagra/PSI-TDB, while thermodynamic data for curium(III) were assumed to be the same values as those for americium(III). It is interesting that they selected and reviewed the thermodynamic data for samarium and holmium as elements of interest in lanthanoids, but did not select actinium for review

Although the above TDBs except the JNC-TDB have not selected thermodynamic data for actinium, Ac-227, with a half-life of 21.8 y , is one of the important radionuclides as a daughter of the actinium decay series for the performance assessment of geological disposal in Japan. Therefore, we consider that thermodynamic data for actinium should be selected.

Based on the above circumstances, refinement of thermodynamic data for trivalent actinoids (actinium(III), plutonium(III), americium(III) and curium(III)) and samarium(III) (which is the only element of interest among lanthanoids in the H 12 report ${ }^{1 \text {) }}$) was carried out in the present report. In selecting the data for the JAEA-TDB, a great advantage was taken of the fact that these elements show analogous behavior in their thermodynamic properties and that a very comprehensive good quality data are available for Am(III), which forms the basis for filling in the data gaps for other elements in this group.
2. Procedure for Refinement of Thermodynamic Data for JAEA-TDB

2.1 General Approach

Selection of thermodynamic data for the JAEA-TDB is based on the fundamental plan ${ }^{10}$, the content of which is briefly described below.

Selection of standard Gibbs free energy of formation $\left(\Delta_{\mathrm{f}} G_{\mathrm{m}}^{\mathrm{o}}\right)$, equilibrium constant of reaction at standard state $\left(K^{\circ}\right)$ and standard Gibbs free energy of reaction $\left(\Delta_{\mathrm{r}} G_{\mathrm{m}}^{\mathrm{o}}=-R T \ln K^{\mathrm{o}}\right.$, where R and T are gas constant and absolute temperature, respectively) is obligatory, and selection of other thermodynamic values on enthalpy, entropy and heat capacity is recommended.

Thermodynamic data for chemical compounds and species for radioelements with naturally occurring elements (e.g., halogen, oxygen, carbon, nitrogen, sulfur, phosphorus) should be selected. Thermodynamic data for elements with some organic ligands published by the OECD/NEA ${ }^{11)}$ may also be selected. Other thermodynamic data which are needed to select will be quoted from those called "Auxiliary Data" selected by the OECD/NEA ${ }^{12}$.

Review and selection of thermodynamic values obtained from experimental data should be based on the "TDB-1" guideline by the OECD/NEA ${ }^{3)}$. Thermodynamic values or databases selected by the OECD/NEA ${ }^{12)}$, the Nagra/PSI ${ }^{7)}$ and Lothenbach et al. ${ }^{13)}$, which are based on the "TDB-1" guideline ${ }^{3)}$, could be selected to the JAEA-TDB after surveying the latest literature and checking consistency of the value in the database. Otherwise review and selection of thermodynamic values should be performed after surveying the literature to collect proposed thermodynamic data.

Application of chemical analogues and models should be considered to obtain thermodynamic values for some species for which there has been no published experimental data. Some unreliable thermodynamic values, which are important for the performance assessment of geological disposal of radioactive wastes, may be selected as tentative values while specifying their reliability and the needs for the values to be determined.

All thermodynamic values should be standardized at 298.15 K and at zero ionic strength, using the Brønsted-Guggenheim-Scatchard Model (usually called the "specific ion interaction theory (SIT)") ${ }^{12)}$ for correction of ionic strength.

2.2 Brief Procedure of Selection of Thermodynamic Data for Trivalent Actinoids and Samarium(III)

Selection of thermodynamic data for americium(III) is based on the revised version of the NEA-TDB ${ }^{5)}$ with some slight modifications.

Thermodynamic data for curium(III) are taken from those for americium(III) without any modifications. In fact, some thermodynamic data for americium(III) are taken from (or together with) those for curium(III) in the NEA-TDB ${ }^{5)}$. This shows that the OECD/NEA recommends applying thermodynamic data for americium(III) to curium(III).

Some thermodynamic data for samarium(III) are briefly reviewed by us. We will take thermodynamic data from those for americium(III) after discussing reasonableness of applying a chemical analogue.

Thermodynamic data for actinium(III) are tentatively selected by us based on the experimentally determined values, although the determined values are insufficient.
3. Detailed Procedure of Selection of Thermodynamic Data for Trivalent Actinoids and Samarium(III)

3.1 Americium(III) and Curium(III)

Lists of crystal ionic radius of $\mathrm{M}^{3+}(\mathrm{M}: \mathrm{Sm}, \mathrm{Ac}, \mathrm{Pu}, \mathrm{Am}$ and Cm$)$ are shown in Table $3^{14)}$. It is shown that the variation in ionic radius of $\mathrm{Sm}^{3+}, \mathrm{Pu}^{3+}$ and Cm^{3+} against Am^{3+} is within 2%. Assuming a Coulombic interaction as a mechanism of complexation of M^{3+} (e.g., the Hard Sphere Model ${ }^{15)}$), the difference in thermodynamic equilibrium constants for trivalent actinoids (except actinium due to lack of experimental data) and samarium is expected to be within the uncertainty (or error) reported in these values.. Therefore, except for actinium a chemical analogue approach should be applicable to these trivalent elements, where available reliable data for one of these elements may be subtitled for the missing data for the others..

Selection of thermodynamic data for americium(III) is based on those selected in the NEA-TDB shown in Table 1. We accepted thermodynamic data only for trivalent americium because americium would exist only in the trivalent oxidation state in the geological disposal system. Species and compounds for which the equilibrium constants $\left(\log _{10} K^{\circ}\right)$ were not selected were excluded because they were unlikely to be useful in applying thermodynamic data to geochemical calculations. Even if the $\log _{10} K^{\circ}$ values are provided in the NEA-TDB, we excluded the $\log _{10} K^{\circ}$ values for some reactions which are not expected in geologic environments (e.g., Eq. 1 involving gaseous HCl and $\mathrm{H}_{2} \mathrm{O}$);

$$
\begin{equation*}
\mathrm{AmCl}_{3}(\mathrm{cr})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{AmOCl}(\mathrm{cr})+2 \mathrm{HCl}(\mathrm{~g}) . \tag{1}
\end{equation*}
$$

Some $\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}$ values were estimated by us. The $\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}$ for $\mathrm{NO}_{2}{ }^{-}$of $-32.200 \pm 0.100 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$ was derived from the NBS Table ${ }^{16)}$ with approximate errors added by us. Selected thermodynamic data on americium(III) for the JAEA-TDB are summarized in Table 4.

As mentioned above, some thermodynamic data for americium(III) are taken from (or together with) those for curium(III) in the NEA-TDB ${ }^{5}$. This shows that the OECD/NEA recommends applying thermodynamic data for americium(III) to curium(III), although there are no solubility data for curium(III). Therefore, equilibrium constants for curium(III) are taken from those for americium(III) without any modifications in the JAEA-TDB.

On the other hand, Gibbs free energy of formation $\left(\Delta_{\mathrm{f}} \mathrm{G}^{\circ}{ }_{\mathrm{m}}\right)$ for Cm^{3+} should be taken from elsewhere because it has not been selected by the OECD/NEA. We have found that

Fuger and Oetting ${ }^{17)}$ have thoroughly reviewed and selected thermodynamic data for actinoid (from actinium through lawrencium) elements and compounds. Some of molar enthalpies and entropies of formation for curium(III) selected by Fuger and Oetting ${ }^{17}$) were accepted by the OECD/NEA. Although the $\Delta_{f} G^{\circ}{ }_{\mathrm{m}}$ values for actinoid(III) aqua ions were reevaluated in the NEA-TDB, selected values by the OECD/NEA were quite similar to those by Fuger and Oetting as shown in Table 5. Therefore, for consistency the $\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}$ value of $\mathrm{Cm}^{3+}((-595.802 \pm 6.276)$ $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$) was taken from Fuger and Oetting ${ }^{17}$. Gibbs free energies of formation for other curium(III) aqueous complexes and solid phases were determined from $\log K^{\circ}$ values of reactons involving these species, and Gibbs free energies of formation of Cm^{3+} and other other non-curium species involved in the reactions.

Selected thermodynamic data for curium(III) for the JAEA-TDB are summarized in Table 6. Thermodynamic data of enthalpy, entropy and heat capacity were not selected in the JAEA-TDB due to insufficiency of data and models used.

3.2 Plutonium(III)

Thermodynamic data on plutonium(III) were selected by the OECD/NEA ${ }^{5)}$ as shown in Table 2. However, it is found that the selected thermodynamic data for plutonium(III) is much more limited than that for americium (compare Table 2 and Table 1). The reason for the difference is a basic policy to select thermodynamic data by the OECD/NEA, which focuses on experimental data, careful review of literature, and exclusion of unreliable data and/or conclusions. Hence selected thermodynamic data are considered to be very reliable. However, only using the selected data for plutonium(III) from the NEA-TDB may sometimes because of incompleteness of the data lead to wrong conclusions from the point of view of performance assessment.

Comparing selected equilibrium constants for plutonium(III) species and compounds to those for americium(III), it is found that the values of equilibrium constants are similar. Furthermore, the ionic radius of Pu^{3+} is quite similar to that of Am^{3+} as shown in Table 3, therefore interaction between a central ion (i.e. Am^{3+} or Pu^{3+}) and ligands is expected to be quite similar, as the comparisons of the values of equilibrium constants show. Thus equilibrium constants for americium(III) species and compounds, where the data for corresponding reactions for $\mathrm{Pu}(\mathrm{III})$ are lacking, are considered to be applicable to use for plutonium(III) reactions.

Plutonium(III) easily oxidizes to the tetravalent state. Even in the reducing conditions, oxidation state of plutonium tends to become tetravalent in basic solutions, and no
thermodynamic data for plutonium(III) carbonates and carbonate complexes ${ }^{\text {a) }}$ are recommended by the OECD/NEA. We basically agree with the recommendation, but we select thermodynamic data for carbonate complexes and solids of plutonium(III) from the comprehensive point of view.

Gibbs free energy of formation for $\mathrm{Pu}^{3+}\left((-578.984 \pm 2.688) \mathrm{kJ}^{2} \mathrm{~mol}^{-1}\right)$ is taken from the NEA-TDB ${ }^{5)}$. Gibbs free energies of formation of other plutonium(III) species were estimated from Gibbs free energies of formation of Pu^{3+} and other species involved in the reaction including the given species, and from $\log K^{\circ}$ values of the reaction.

Selected thermodynamic data on plutonium(III) for the JAEA-TDB are summarized in Table 7. Thermodynamic data of enthalpy, entropy and heat capacity were not selected in the JAEA-TDB due to insufficiency of data and models used.

3.3 Samarium(III)

The OECD/NEA has no current plans to review data for samarium(III). Some experimentally determined thermodynamic data for $\mathrm{Sm}(\mathrm{III})$ are available but the total amount of data available data for Sm (III) is far less than that for americium(III). Equilibrium constants for samarium(III) hydroxides and hydrolyses species which have been experimentally determined are shown in Table 8 as an example. Although there were some studies to determine the solubility product of $\operatorname{Sm}(\mathrm{OH})_{3}(\mathrm{~s})$ as shown in Table 8, most of the experiments were performed in a short time periods (such as half an hour) ${ }^{18)}$. The short contacting time may be the reason that most of the obtained equilibrium constants for $\operatorname{Sm}(\mathrm{OH})_{3}(\mathrm{~s})$ are much lower than those for $\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})$.

We believe that the most reliable thermodynamic data for samarium(III) hydroxide and hydrolyses species is by Shibutani ${ }^{19}$. She conducted solubility experiments not only for $\mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{~s})$ but also for $\mathrm{SmCO}_{3} \mathrm{OH}(\mathrm{s})$ and approached the solubility from both over- and under-saturation directions. Contact time was up to 106 days. She determined solubility products and hydrolyses constants for samarium(III) as shown in Table 8, and the hydrolysis constant of $\operatorname{Sm}(\mathrm{OH})_{2}{ }^{+}$was revised afterwards due to large uncertainty ${ }^{20}$. The obtained equilibrium constants were quite similar to those for americium(III) as shown in Table 4. As with plutonium(III), the ionic radius of Sm^{3+} is quite similar to that of Am^{3+} as shown in Table 3, hence interaction between a central ion (i.e. Am^{3+} or Pu^{3+}) and ligands is considered to be quite similar. Thus, equilibrium constants for americium(III) species and compounds were considered to be applicable to use for samarium(III).

Gibbs free energy of formation for $\mathrm{Sm}^{3+}\left(-666.6 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ was taken from the NBS Tables ${ }^{16)}$ with addition of an uncertainty of the value $\left(1 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ because neither the OECD/NEA nor the literature by Fuger and Oetting ${ }^{177}$ has selected this value.

Gibbs free energies of formation for other samarium(III) species were estimated from Gibbs free energies of formation of Sm^{3+} and other species involved in the reaction including the given species, and from $\log K^{\circ}$ values of the reaction.

Gibbs free energies of reaction which were easily determined from $\log K^{\circ}$ values.
Selected thermodynamic data on samarium(III) for the JAEA-TDB are summarized in Table 9. Thermodynamic data of enthalpy, entropy and heat capacity were not selected in the JAEA-TDB due to insufficiency of data and models used.

3.4 Actinium(III)

The OECD/NEA has no current plans to review data for actinium(III) We found only one article about the solubility of actinium(III). Ziv and Shestakova conducted solubility experiments on actinium(III) hydroxide from the oversaturation direction in $0.001 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$ solution, and obtained a solubility product of fresh and old $\mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{~s})$ (with contacting time of one hour and one week, respectively) as shown in Table $8{ }^{21)}$. They found that the obtained solubility product for $\operatorname{Ac}(\mathrm{OH})_{3}(\mathrm{~s})$ is more than 4 orders of magnitude larger than that for $\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})$. One of the reasons may be radiation effect of α-emitters (i.e. actinium itself), but a major reason is considered to be the difference in the crystal ionic radius between Ac^{3+} (shown in Table 3) and other trivalent lanthanoid and actinoid ions. Large ionic radius may weaken Coulomb interactions between a central ion and ligands and thus destabilize solid phases. We are uncertain whether the differences in observed solubility products are a result of the experimental difficulties or truly due to the inherent differences in the chemistry of these elements. However, the study by Ziv and Shestakova ${ }^{21)}$ was the only one for solubility of actinium(III); therefore we refer the solubility data by Ziv and Shestakova ${ }^{21)}$ to estimate solubility product of $\mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{am})$.

On the other hand, formation constants for actinium(III) complexes may be similar to those of other trivalent lanthanoid and actinoid ions. Stability constants for actinium(III) with chloride and bromide ions were determined by Fukasawa et al. ${ }^{22)}$ together with some trivalent lanthanoids and actinoids by solvent extraction method as shown in Table $10{ }^{22)}$. It was found that differences in the values of stability constants between actinium(III) and other trivalent lanthanoids/actinoids were quite small (within 0.2). This result suggests that the effect of
crystal ionic radius is negligible in the aqueous species.
Based on above experimental observations, we decided refinement of thermodynamic data for actinium(III) as follows:

- Refinement of thermodynamic data for actinium(III) was based on those for americium(III),
- Solubility products for amorphous actinium(III) compounds $\left(\mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{am})\right.$, $\mathrm{AcPO}_{4}(\mathrm{am}, \mathrm{hydr}), \mathrm{Ac}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$ and $\left.\mathrm{AcCO}_{3} \mathrm{OH}(\mathrm{am})\right)$ were set to the values as those for americium(III), with addition of larger uncertainties (4 order of magnitude),
- Solubility products for crystalline actinium(III) compounds were not selected due to destabilization by self α-radiation effect of actinium,
- Stability constants for actinium(III) complexes were taken from those of americium(III) with addition of larger uncertainties (0.2 order of magnitude).

Gibbs free energy of formation for $\mathrm{Ac}^{3+}\left(-640.152 \pm 25.104 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ was taken from Fuger and Oetting ${ }^{17}$ on the same basis as that of Cm^{3+}. Gibbs free energies of formation of complex actinium(III) species were estimated from the Gibbs free energies of formation of Ac^{3+} and of other species involved in the given reaction and from $\log K^{\circ}$ values of the reaction.

Selected thermodynamic data for actinium(III) for JAEA-TDB are summarized in Table 11. Thermodynamic data of enthalpy, entropy and heat capacity were not selected in the JAEA-TDB due to insufficiency of data and models used. All the obtained thermodynamic data for actinium(III) should be treated as tentative values, because the correction of values and addition of uncertainties are not quantitative.

4. Conclusions

Thermodynamic data for samarium(III), actinium(III), plutonium(III), americium(III) and curium(III) were refined on the basis of those of americium(III) from the OECD/NEA. It was found that equilibrium constants for samarium(III), plutonium(III) and curium(III) were almost the same as those for americium(III). Solubility products and stability constants for actinium(III) were set to the same mean values as those for americium(III) with addition of much larger uncertainties based on experimental observations noted in the literature. Selected thermodynamic data will be included in the JAEA-TDB, and revision of thermodynamic data will enhance reliability of thermodynamic database comparing with previous ones.

Acknowledgement

We acknowledge Dr. Dhanpat Rai of Rai Enviro-Chem LLC for reviewing and commenting on the present paper as an external reviewer.

References

1. Japan Nuclear Cycle Development Institute: H12: Project to establish the scientific and technical basis for HLW disposal in Japan - 2nd progress report on research and development of geological disposal of HLW, Japan Nuclear Cycle Development Institute, JNC TN1410 2000-001 - 2000-004 (2000).
2. M. Yui, J. Azuma and M. Shibata: JNC thermodynamic database for performance assessment of high-level radioactive waste disposal system, Japan Nuclear Cycle Development Institute, JNC TN8400 99-070 (1999).
3. H. Wanner: TDB-1: Guidelines for the review procedure and data selection, Nuclear Energy Agency in Organisation for Economic Co-operation and Development (OECD/NEA) (2000).
4. R. J. Silva, G. Bidoglio, I. Puigdomenech, M. H. Rand, P. B. Robouch and H. Wanner: Chemical thermodynamics of americium, Organisation for Economic Co-operation and Development, Elsevier B. V. (1995).
5. R. Guillaumont, Th. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer and M. H. Rand: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Organisation for Economic Co-operation and Development, Elsevier B. V. (2003).
6. R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge and H. Wanner: Chemical thermodynamics of neptunium and plutonium, Organisation for Economic Co-operation and Development, Elsevier B. V. (2001).
7. W. Hummel, U. Berner, E. Curti, F. J. Pearson and T. Thoenen: Nagra / PSI chemical thermodynamic data base $01 / 01$, National Cooperative for the Disposal of Radioactive Waste in Switzerland (Nagra), Technical Report 02-16 (2002).
8. V. Neck, Th. Fanghänel and J. I. Kim: Aquatic chemistry and thermodynamic modelling on trivalent actinoids, Scientific Report FZKA 6110, Forschungszentrum Karlsruhe (FZK) (1998) [in German].
9. L. Duro, M. Grivé, E. Cera, C. Domènech and J. Bruno: Update of a thermodynamic database for radionuclides to assist solubility limits calculation for performance assessment, Technical Report TR-06-17, Swedish Nuclear Fuel and Waste Management Co. (SKB) (2006).
10. A. Kitamura, M. Shibata, Y. Tachi, K. Fujiwara, R. Doi, Y. Yoshida, T. Yamaguchi and M. Yui: "JAEA thermodynamic database for performance assessment of geological disposal of high-level and TRU radioactive wastes: fundamental plan for selection of thermodynamic data", to be presented at 12th International Conference on the Chemistry and Migration Behaviour of Actinoids and Fission Products in the Geosphere (Migration '09), PC1-4, September 2009, Kennewick, WA, USA (2009).
11. W. Hummel, G. Anderegg, I. Puigdomènech L. Rao, and O. Tochiyama: Chemical thermodyanmics of compounds and complexes of $\mathrm{U}, \mathrm{Np}, \mathrm{Pu}, \mathrm{Am}, \mathrm{Tc}, \mathrm{Se}, \mathrm{Ni}$ and Zr with selected organic ligands, Organisation for Economic Co-operation and Development, Elsevier B. V. (2005).
12. M. Rand, J. Fuger, I. Grenthe, V. Neck and D. Rai: Chemical thermodynamics of Thorium, Organisation for Economic Co-operation and Development, Elsevier B. V. (2009).
13. B. Lothenbach, M. Ochs, H. Wanner and M. Yui: Thermodynamic data for the speciation and solubility of $\mathrm{Pd}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Nb}$ and Bi in aqueous solution, Japan Nuclear Cycle Development Institute, JNC TN8400 99-011 (1999).
14. F. David: "Thermodynamic properties of lanthanoid and actinoid ions in aqueous solution", J. Less-Common Met., 121, pp. 27-42 (1986).
15. H. Moriyama, A. Kitamura, K. Fujiwara and H. Yamana: "Analysis of mononuclear hydrolysis constants of actinoid ions by hard sphere model", Radiochim. Acta, 87, pp. 97-104 (1999).
16. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall: "The NBS tables of chemical thermodynamic properties Selected values for inorganic and C_{1} and C_{2} organic substances in SI units", J. Phys. Chem. Ref. Data, 11, Suppl. 2, p. 2-234 (1982).
17. J. Fuger and F. L. Oetting: The chemical thermodynamics of actinoid elements and compounds Part 2: The actinoid aqueous ions, International Atomic Energy Agency (1976).
18. J. Kragten and L. G. Decnop-Weever: "Hydroxide complexes of lanthanoids: III. Samarium(III) in perchlorate medium", Talanta, 26, pp. 1105-1109 (1979).
19. S. Shibutani: "Solubility measurement of trivalent lanthanoid for performance assessment", PNC Technical Review, Power Reactor and Nuclear Fuel Development Corpolation (PNC), No. 97, pp. 67-75 (1996) [in Japanese].
20. S. Shibutani and M. Yui: "Status of PNC-TDB development for performance assessment", PNC Technical Review, Power Reactor and Nuclear Fuel Development Corpolation (PNC),

No. 105, pp. 57-66 (1998) [in Japanese].
21. D. M. Ziv and I. A. Shestakova: "Investigation of the solubility of certain actinium compounds II. Determination of the solubility and estimation of the relative basicity of actinium hydroxide", Sov. Radiochem., 7, pp. 176-186 (1965).
22. T. Fukasawa, I. Kawasuji, T. Mitsugashira, A. Sato and S. Suzuki: "Investigation of the complex formation of some lanthanoids(III) and actinoids(III) with chloride and bromide", Bull. Chem. Soc. Japan, 55, pp. 726-729 (1982).
23. T. Moeller and H. E. Kremers: "Observations on the rare earths: LI. An electrometric study of the precipitation of trivalent hydrous rare earth oxides or hydroxides", J. Am. Chem. Soc., 48, pp. 395-406 (1944).
24. C. Meloche and F. Vratny: "Solubility product relations in the rare earth hydrous hydroxides", Anal. Chim. Acta, 20, pp. 415-418 (1959).
25. Z. Orhanovic, B. Pokric, H. Furedi and M. Branica: "Precipitation and hydrolysis of metallic ions: III. Studies on the solubility of yttrium and some rare earth hydroxides", Croat. Chim. Acta, 38, pp. 269-276 (1966).
26. P. N. Kovalenko, L. T. Azhipa and M. M. Evstifeev: "Oscillopolarographic determination of the pH of precipitation and activity products of samarium and dysprosium hydroxides", Russ. J. Inorg. Chem., 11, pp. 1143-1145 (1966).
27. N. V. Akselrud and V. B. Spivakovskii: "Basic chlorides and hydroxide of samarium", Russ. J. Inorg. Chem., 5, pp. 163-167 (1960).
28. T. Moeller: "Observations on the rare earths. LV ${ }^{1}$. Hydrolysis studies upon yttrium and certain rare earth(III) sulfate solutions at $25^{\circ} \mathrm{C}$ ", J. Phys. Chem., 50, pp. 242-250 (1946).
29. U. K. Frolova, V. N. Kumok, and V. V. Serebrennikov: "Hydrolysis of ions of the rare earth elements and yttrium in aqueous solutions", Izv. Vyssh. Uchebn. Zaved. SSSR, Khim. i Khim. Tekhnol., 9, p. 176 (1966).
30. R. Guillaumont, B. Désiré and M. Galin: "Première constante d'hydroyse des lanthanoids", Radiochem. Radioanal. Lett., 8, pp. 189-198 (1971).
31. J. Kragten and L. G. Decnop-Weever: "Hydroxide complexes of lanthanoids: VI", Talanta, 30[2], p. 134 (1983).
32. I. I. Diakonov, K. V. Ragnarsdottir and B. R. Tagirov: "Standard thermodynamic properties and heat capacity equations of rare earth hydroxides: II. Ce(III)-, Pr-, $\mathrm{Sm}-, \mathrm{Eu}(\mathrm{III})$-, Gd-, Tb-, Dy-, Ho-, Er-, Tm-, Yb-, and Y-hydroxides. Comparison of thermochemical and solubility data", Geochim. Cosmochim. Acta, 151, pp. 327-347 (1998).
Table 1 Part of selected thermodynamic data for americium(III) by the OECD/NEA ${ }^{5)}$

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{f}} H^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{r}} H^{\circ} \mathrm{m}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
Am(cr)	0.000	0.000				
Am^{3+}	-598.698 ± 4.755	-616.700 ± 1.500				
$\mathrm{Am}_{2} \mathrm{O}_{3}(\mathrm{cr})$	-1605.449 ± 8.284	-1690.400 ± 8.000				
AmOH^{2+}	-794.740 ± 5.546		$\mathrm{Am}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{AmOH}^{2+}+\mathrm{H}^{+}$	-7.200 ± 0.500	41.098 ± 2.854	
$\mathrm{Am}(\mathrm{OH})_{2}{ }^{+}$	-986.787 ± 6.211		$\mathrm{Am}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{2}^{+}+2 \mathrm{H}^{+}$	-15.100 ± 0.700	86.191 ± 3.996	
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{aq})$	-1160.568 ± 5.547		$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-26.200 ± 0.500	149.551 ± 2.854	
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})$	--		$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})+3 \mathrm{H}^{+}$	-16.900 ± 0.800	96.466 ± 4.566	
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{cr})$	-1221.073 ± 5.861	-1353.198 ± 6.356	$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{cr})+3 \mathrm{H}^{+}$	-15.600 ± 0.600	89.045 ± 3.425	
AmF^{2+}	-899.628 ± 5.320		$\mathrm{Am}^{3+}+\mathrm{F}^{-} \Leftrightarrow \mathrm{AmF}^{2+}$	3.400 ± 0.400	-19.407 ± 2.283	
$\mathrm{AmF}_{2}{ }^{+}$	-1194.851 ± 5.082		$\mathrm{Am}^{3+}+2 \mathrm{~F}^{-} \Leftrightarrow \mathrm{AmF}_{2}^{+}$	5.800 ± 0.200	-33.107 ± 1.142	
$\mathrm{AmF}_{3}(\mathrm{cr})$	-1519.765 ± 14.126	-1594.000 ± 14.000				
$\mathrm{AmF}_{3}(\mathrm{~g})$	-1147.798 ± 16.771	-1156.500 ± 16.589	$\mathrm{AmF}_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{AmF}_{3}(\mathrm{~g})$	--	--	437.500 ± 8.900
AmCl^{2+}	-731.285 ± 4.759		$\mathrm{Am}^{3+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AmCl}^{2+}$	0.240 ± 0.030	-1.370 ± 0.171	
$\mathrm{AmCl}_{2}{ }^{+}$	-856.908 ± 4.769		$\mathrm{Am}^{3+}+2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{AmCl}_{2}^{+}$	-0.740 ± 0.050	4.224 ± 0.285	
$\mathrm{AmCl}_{3}(\mathrm{cr})$	-905.105 ± 2.290	-977.800 ± 1.300				
$\mathrm{AmOCl}(\mathrm{cr})$	-897.052 ± 6.726	-949.800 ± 6.000	$\mathrm{AmCl}_{3}(\mathrm{cr})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{AmOCl}(\mathrm{cr})+2 \mathrm{HCl}(\mathrm{g})$	-8.066 ± 1.115	46.042 ± 6.364	85.213 ± 5.900
$\mathrm{AmBr}_{3}(\mathrm{cr})$	-773.674 ± 6.728	-804.000 ± 6.000				
$\mathrm{AmOBr}(\mathrm{cr})$	-848.485 ± 9.794	-887.000 ± 9.000	$\mathrm{AmBr}_{3}(\mathrm{cr})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{AmOBr}(\mathrm{cr})+2 \mathrm{HBr}(\mathrm{g})$	-8.246 ± 2.661	47.070 ± 15.188	86.256 ± 15.000
$\mathrm{AmI}_{3}(\mathrm{cr})$	-609.451 ± 10.068	-615.000 ± 9.000				
AmSO_{4}^{+}	-1361.538 ± 4.849		$\mathrm{Am}^{3+}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{AmSO}_{4}^{+}$	3.300 ± 0.150	-18.837 ± 0.856	
$\mathrm{Am}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	-2107.826 ± 4.903		$\mathrm{Am}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{SO}_{4}\right)_{2}^{-}$	3.700 ± 0.150	-21.120 ± 0.856	
$\mathrm{AmN}_{3}{ }^{2+}$	-260.030 ± 5.190		$\mathrm{Am}^{3+}+\mathrm{N}_{3}{ }^{-} \Leftrightarrow \mathrm{AmN}^{2+}$	1.670 ± 0.100	-9.532 ± 0.571	
$\mathrm{AmNO}_{2}{ }^{2+}$	--		$\mathrm{Am}^{3+}+\mathrm{NO}_{2}{ }^{-} \Leftrightarrow \mathrm{AmNO}_{2}{ }^{2+}$	2.100 ± 0.200	-11.987 ± 1.142	
$\mathrm{AmNO}_{3}{ }^{2+}$	-717.083 ± 4.908		$\mathrm{Am}^{3+}+\mathrm{NO}_{3}{ }^{-} \Leftrightarrow \mathrm{AmNO}_{3}{ }^{2+}$	1.330 ± 0.200	-7.592 ± 1.142	
$\mathrm{AmPO}_{4}(\mathrm{am}, \mathrm{hydr})$	--		$\mathrm{Am}^{3+}+\mathrm{PO}_{4}{ }^{3-} \Leftrightarrow \mathrm{AmPO}_{4}($ am,hydr $)$	24.790 ± 0.600	-141.500 ± 3.425	
$\mathrm{AmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	-1752.974 ± 5.763		$\mathrm{Am}^{3+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \Leftrightarrow \mathrm{AmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	3.000 ± 0.500	-17.124 ± 2.854	

Table 1 (Continued)

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{f}} H^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{r}} H^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
AmCO_{3}^{+}	-1172.262 ± 5.289		$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{AmCO}_{3}^{+}$	8.000 ± 0.400	-45.664 ± 2.283	
$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{2}$	-1728.131 ± 5.911		$\mathrm{Am}^{3+}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{CO}_{3}\right)_{2}^{-}$	12.900 ± 0.600	-73.634 ± 3.425	
$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	-2268.018 ± 7.521		$\mathrm{Am}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	15.000 ± 1.000	-85.621 ± 5.708	
$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{5}{ }^{6-}$	-3210.227 ± 7.919		$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{CO}_{3}\right)_{5}{ }^{6-}+\mathrm{e}^{-}$	-20.100 ± 0.900	114.732 ± 5.137	
$\mathrm{AmHCO}_{3}{ }^{2+}$	-1203.238 ± 5.060		$\mathrm{Am}^{3+}+\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{AmHCO}_{3}{ }^{2+}$	3.100 ± 0.300	-17.695 ± 1.712	
$\mathrm{Am}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	--		$2 \mathrm{Am}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	16.700 ± 1.100	-95.324 ± 6.279	
$\mathrm{AmCO}_{3} \mathrm{OH}(\mathrm{am})$	--		$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{AmCO}_{3} \mathrm{OH}(\mathrm{cr})$	20.200 ± 1.000	-115.302 ± 5.708	
$\mathrm{AmCO}_{3} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (cr)	-1530.248 ± 5.560	-1682.900 ± 2.600	$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-}+0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OH}^{-} \Leftrightarrow \mathrm{AmCO}_{3} \mathrm{OH} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}$ (cr)	22.400 ± 0.500	-127.860 ± 2.854	
$\mathrm{AmSiO}(\mathrm{OH})_{3}{ }^{2+}$	-1896.844 ± 5.000		$\mathrm{Am}^{3+}+\mathrm{Si}(\mathrm{OH})_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{AmSiO}(\mathrm{OH})_{3}{ }^{2+}+\mathrm{H}^{+}$	-1.680 ± 0.180	9.590 ± 1.027	
AmSCN^{2+}	-513.418 ± 6.445		$\mathrm{Am}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{AmSCN}^{2+}$	1.300 ± 0.300	-7.420 ± 1.712	
$\mathrm{NaAm}\left(\mathrm{CO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	-3222.021 ± 5.605		$\mathrm{Am}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}^{+} \Leftrightarrow \mathrm{NaAm}\left(\mathrm{CO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	21.000 ± 0.500	-119.869 ± 2.854	
$\mathrm{Cs}_{2} \mathrm{NaAmCl}_{6}(\mathrm{cr})$	-2159.151 ± 4.864	-2315.800 ± 1.800				

Table 2 Part of selected thermodynamic data for plutonium(III) by the OECD/NEA ${ }^{5)}$

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{f}} H^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	$\Delta_{\mathrm{r}} H^{\circ} \mathrm{m}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{Pu}(\mathrm{cr})$	0.000	0.000				
Pu^{3+}	-578.984 ± 2.688	-591.790 ± 1.964				
$\mathrm{Pu}_{2} \mathrm{O}_{3}(\mathrm{cr})$	-1580.375 ± 10.013	-1656.000 ± 10.000				
PuOH^{2+}	-776.739 ± 3.187		$\mathrm{Pu}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{PuOH}^{2+}+\mathrm{H}^{+}$	-6.900 ± 0.300	39.385 ± 1.712	
$\mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{cr})$	-1200.218 ± 8.975		$: \mathrm{Pu}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{cr})+3 \mathrm{H}^{+}$	-15.800 ± 1.500	90.187 ± 8.562	
$\mathrm{PuF}_{3}(\mathrm{cr})$	-1517.369 ± 3.709	-1586.700 ± 3.700				
$\mathrm{PuF}_{3}(\mathrm{~g})$	-1161.081 ± 4.758	-1167.800 ± 3.700	$\mathrm{PuF}_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{PuF}_{3}(\mathrm{~g})$	--	--	418.900 ± 0.500
PuCl^{2+}	-717.051 ± 2.923					
$\mathrm{PuCl}_{3}(\mathrm{cr})$	-891.806 ± 2.024	-959.600 ± 1.800				
$\mathrm{PuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (cr)	-2365.347 ± 2.586	-2773.400 ± 2.100				
$\mathrm{PuCl}_{3}(\mathrm{~g})$	-641.299 ± 3.598	-647.400 ± 1.868	PuCl ${ }_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{PuCl}_{3}(\mathrm{~g})$			312.200 ± 0.500
$\mathrm{PuOCl}(\mathrm{cr})$	-882.409 ± 1.936	-931.000 ± 1.700				
$\mathrm{PuBr}_{3}(\mathrm{cr})$	-767.324 ± 2.697	-792.600 ± 2.000				
$\mathrm{PuBr}_{3}(\mathrm{~g})$	-529.808 ± 15.655	-488.000 ± 15.000	PuBr ${ }_{3}(\mathrm{cr}) \Leftrightarrow \mathrm{PuBr}_{3}(\mathrm{~g})$	-41.565 ± 2.728	237.257 ± 15.570	304.400 ± 15.000
$\mathrm{PuOBr}(\mathrm{cr})$	-838.354 ± 8.541	-870.000 ± 8.000	$\mathrm{PuBr}_{3}(\mathrm{cr})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{PuOBr}(\mathrm{cr})+2 \mathrm{HBrl}(\mathrm{g})$	-8.893 ± 0.914	50.764 ± 5.218	91.700 ± 5.000
PuI^{2+}	-636.987 ± 3.529		$\mathrm{Pu}^{3+}+\mathrm{I}^{-} \Leftrightarrow \mathrm{Pul}^{2+}$	1.100 ± 0.400	-6.279 ± 2.283	
$\mathrm{PuI}_{3}(\mathrm{cr})$	-579.000 ± 4.551	-579.200 ± 2.800				
$\mathrm{PuI}_{3}(\mathrm{~g})$	-366.517 ± 15.655	-305.000 ± 15.000				
$\mathrm{PuOI}(\mathrm{cr})$	-776.626 ± 20.495	-802.000 ± 20.000				
PuSO_{4}^{+}	-1261.329 ± 3.270		$\mathrm{Pu}^{3+}+\mathrm{HSO}_{4}^{-} \Leftrightarrow \mathrm{PuSO}_{4}^{+}+\mathrm{H}^{+}$	1.930 ± 0.610	-11.017 ± 3.482	-5.200 ± 2.000
$\mathrm{Pu}\left(\mathrm{SO}_{4}\right)_{2}$	-2099.545 ± 5.766	-2398.590 ± 16.244	$\mathrm{Pu}^{3+}+2 \mathrm{HSO}_{4}{ }^{-} \Leftrightarrow \mathrm{Pu}\left(\mathrm{SO}_{4}\right)_{2}^{-}+2 \mathrm{H}^{+}$	1.740 ± 0.760	-9.932 ± 4.338	-33.000 ± 16.000
$\mathrm{PuPO}_{4}(\mathrm{~s}, \mathrm{hydr})$	-1744.893 ± 5.528		$\mathrm{Pu}^{3+}+\mathrm{PO}_{4}{ }^{3-} \Leftrightarrow \mathrm{PuPO}_{4}$ (s, hydr)	24.600 ± 0.800	-140.418 ± 4.566	
PuSCN ${ }^{2+}$	-493.704 ± 5.333	-515.390 ± 5.988	$\mathrm{Pu}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{PuSCN}^{2+}$	1.300 ± 0.400	-7.420 ± 2.283	0.000 ± 4.000
$\mathrm{Cs}_{3} \mathrm{PuCl}_{6}(\mathrm{cr})$	-2208.045 ± 9.491	-2364.415 ± 9.040	CsCl$(\mathrm{cr})+0.2 \mathrm{CsPu}_{2} \mathrm{Cl}_{7}(\mathrm{cr}) \Leftrightarrow 0.4 \mathrm{Cs}_{3} \mathrm{PuCl}_{6}(\mathrm{cr})$	3.922 ± 0.638	-22.387 ± 3.640	-23.580 ± 3.426
$\mathrm{Cs}_{2} \mathrm{NaPuCl}_{6}(\mathrm{cr})$	-2143.496 ± 5.184	-2294.200 ± 2.600				

Table 3 Crystal radius of trivalent actinoids and samarium(III) ${ }^{\text {14) }}$

ion	electrical configulation	crystal radius (\AA)	
		1.12	$\mathrm{CN}^{*}=6$
Ac^{3+}	$[\mathrm{Rn}] 5 \mathrm{f}^{5}$	0.995	1.26
Pu^{3+}	$[\mathrm{Rn}] 5 \mathrm{f}^{6}$	0.980	1.123
Am^{3+}	$[\mathrm{Rn}] 5 \mathrm{f}^{7}$	0.970	1.106
Cm^{3+}	$[\mathrm{Xe}] 4 \mathrm{f}^{5}$	0.958	1.094
Sm^{3+}			1.079

[^1]Table 4 Thermodynamic data for americium(III) selected by the authors for the JAEA-TDB

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
Am(cr)	0.000			
Am^{3+}	-598.698 ± 4.755			
AmOH^{2+}	-794.740 ± 5.546	$\mathrm{Am}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{AmOH}^{2+}+\mathrm{H}^{+}$	-7.200 ± 0.500	41.098 ± 2.854
$\mathrm{Am}(\mathrm{OH})_{2}{ }^{+}$	-986.787 ± 6.211	$\mathrm{Am}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{2}^{+}+2 \mathrm{H}^{+}$	-15.100 ± 0.700	86.191 ± 3.996
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{aq})$	-1160.568 ± 5.547	$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-26.200 ± 0.500	149.551 ± 2.854
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})$	$-1213.652 \pm 6.594{ }^{*}$	$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{am})+3 \mathrm{H}^{+}$	-16.900 ± 0.800	96.466 ± 4.566
$\mathrm{Am}(\mathrm{OH})_{3}(\mathrm{cr})$	-1221.073 ± 5.861	$\mathrm{Am}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Am}(\mathrm{OH})_{3}(\mathrm{cr})+3 \mathrm{H}^{+}$	-15.600 ± 0.600	89.045 ± 3.425
AmF^{2+}	-899.628 ± 5.320	$\mathrm{Am}^{3+}+\mathrm{F}^{-} \Leftrightarrow \mathrm{AmF}^{2+}$	3.400 ± 0.400	-19.407 ± 2.283
$\mathrm{AmF}_{2}{ }^{+}$	-1194.851 ± 5.082	$\mathrm{Am}^{3+}+2 \mathrm{~F}^{-} \Leftrightarrow \mathrm{AmF}_{2}^{+}$	5.800 ± 0.200	-33.107 ± 1.142
AmCl^{2+}	-731.285 ± 4.759	$\mathrm{Am}^{3+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AmCl}^{2+}$	0.240 ± 0.030	-1.370 ± 0.171
$\mathrm{AmCl}_{2}{ }^{+}$	-856.908 ± 4.769	$\mathrm{Am}^{3+}+2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{AmCl}_{2}^{+}$	-0.740 ± 0.050	4.224 ± 0.285
AmSO_{4}^{+}	-1361.538 ± 4.849	$\mathrm{Am}^{3+}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{AmSO}_{4}^{+}$	3.300 ± 0.150	-18.837 ± 0.856
$\mathrm{Am}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	-2107.826 ± 4.903	$\mathrm{Am}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	3.700 ± 0.150	-21.120 ± 0.856
$\mathrm{AmN}_{3}{ }^{+}$	-260.030 ± 5.190	$\mathrm{Am}^{3+}+\mathrm{N}_{3}{ }^{-} \Leftrightarrow \mathrm{AmN}^{2+}$	1.670 ± 0.100	-9.532 ± 0.571
$\mathrm{AmNO}_{2}{ }^{++}$	-642.885 ± 4.991	$\mathrm{Am}^{3+}+\mathrm{NO}_{2}{ }^{-} \Leftrightarrow \mathrm{AmNO}_{2}{ }^{2+}$	2.100 ± 0.200	-11.987 ± 1.142
$\mathrm{AmNO}_{3}{ }^{2+}$	-717.083 ± 4.908	$\mathrm{Am}^{3+}+\mathrm{NO}_{3}{ }^{-} \Leftrightarrow \mathrm{AmNO}_{3}{ }^{2+}$	1.330 ± 0.200	-7.592 ± 1.142
$\mathrm{AmPO}_{4}($ am,hydr $)$	$-1765.689 \pm 6.068{ }^{*}$	$\mathrm{Am}^{3+}+\mathrm{PO}_{4}{ }^{3-} \Leftrightarrow \mathrm{AmPO}_{4}(\mathrm{am}, \mathrm{hydr})$	24.790 ± 0.600	-141.500 ± 3.425
$\mathrm{AmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	-1752.974 ± 5.763	$\mathrm{Am}^{3+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \Leftrightarrow \mathrm{AmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	3.000 ± 0.500	-17.124 ± 2.854
$\mathrm{AmCO}_{3}{ }^{+}$	-1172.262 ± 5.289	$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{AmCO}_{3}^{+}$	8.000 ± 0.400	-45.664 ± 2.283
$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	-1728.131 ± 5.911	$\mathrm{Am}^{3+}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	12.900 ± 0.600	-73.634 ± 3.425
$\mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	-2268.018 ± 7.521	$\mathrm{Am}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	15.000 ± 1.000	-85.621 ± 5.708
$\mathrm{AmHCO}_{3}{ }^{2+}$	-1203.238 ± 5.060	$\mathrm{Am}^{3+}+\mathrm{HCO}_{3}^{-} \Leftrightarrow \mathrm{AmHCO}_{3}{ }^{2+}$	3.100 ± 0.300	-17.695 ± 1.712
$\mathrm{Am}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	-2876.420 ± 11.456 *	$2 \mathrm{Am}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Am}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	16.700 ± 1.100	-95.324 ± 6.279
$\mathrm{AmCO}_{3} \mathrm{OH}(\mathrm{am})$	-1399.120 ± 7.440 *	$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{AmCO}_{3} \mathrm{OH}(\mathrm{am})$	20.200 ± 1.000	-115.302 ± 5.708
$\mathrm{AmCO}_{3} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	-1530.248 ± 5.560	$\mathrm{Am}^{3+}+\mathrm{CO}_{3}{ }^{2-}+0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OH}^{-} \Leftrightarrow \mathrm{AmCO}_{3} \mathrm{OH} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	22.400 ± 0.500	-127.860 ± 2.854
$\mathrm{AmSiO}(\mathrm{OH})_{3}{ }^{2+}$	-1896.844 ± 5.000	$\mathrm{Am}^{3+}+\mathrm{Si}(\mathrm{OH})_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{AmSiO}(\mathrm{OH})_{3}{ }^{2+}+\mathrm{H}^{+}$	-1.680 ± 0.180	9.590 ± 1.027
AmSCN^{2+}	-513.418 ± 6.445	$\mathrm{Am}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{AmSCN}^{2+}$	1.300 ± 0.300	-7.420 ± 1.712
$\mathrm{NaAm}\left(\mathrm{CO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (cr)	-3222.021 ± 5.605	$\mathrm{Am}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}^{+} \Leftrightarrow \mathrm{NaAm}\left(\mathrm{CO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	21.000 ± 0.500	-119.869 ± 2.854

[^2]Table 5 Selected Gibbs free energy of formation $\left(\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)\right)$ for actinoid(III) aqua ions by the OECD/NEA and the literature by Fuger and Oetting

ion	OECD/NEA ${ }^{5)}$	Fuger and Oetting ${ }^{17)^{*}}$
Ac^{3+}	-	-640.152 ± 25.104
U^{3+}	-476.473 ± 1.810	-
Np^{3+}	-512.866 ± 5.669	-578.647 ± 3.347
Pu^{3+}	-578.984 ± 2.688	-599.149 ± 1.255
Am^{3+}	-598.698 ± 4.755	-595.802 ± 6.276
Cm^{3+}	-	

[^3]Table 6 Thermodynamic data for curium(III) selected by the authors for the JAEA-TDB

Table 7 Thermodynamic data for plutonium(III) selected by the authors for the JAEA-TDB

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{Pu}(\mathrm{cr})$	0.000			
Pu^{3+}	-578.984 ± 2.688			
PuOH^{2+}	-775.026 ± 3.921 *	$\mathrm{Pu}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{PuOH}^{2+}+\mathrm{H}^{+}$	-7.200 ± 0.500	41.098 ± 2.854
$\mathrm{Pu}(\mathrm{OH})_{2}{ }^{+}$	$-967.073 \pm 4.816{ }^{*}$	$\mathrm{Pu}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Pu}(\mathrm{OH})_{2}^{+}+2 \mathrm{H}^{+}$	-15.100 ± 0.700	86.191 ± 3.996
$\mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{aq})$	-1193.938 ± 5.300 *	$: \mathrm{Pu}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-26.200 ± 0.500	149.551 ± 2.854
$\mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{am})$	-1140.853 ± 3.922 *	$\mathrm{Pu}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{am})+3 \mathrm{H}^{+}$	-16.900 ± 0.800	96.466 ± 4.566
$\mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{cr})$	$-1201.359 \pm 4.355 *$	$\mathrm{Pu}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Pu}(\mathrm{OH})_{3}(\mathrm{cr})+3 \mathrm{H}^{+}$	-15.600 ± 0.600	89.045 ± 3.425
PuF^{2+}	$-879.914 \pm 3.594 *$	$\mathrm{Pu}^{3+}+\mathrm{F}^{-} \Leftrightarrow \mathrm{PuF}^{2+}$	3.400 ± 0.400	-19.407 ± 2.283
$\mathrm{PuF}_{2}{ }^{+}$	-1175.137 ± 3.232 *	$\mathrm{Pu}^{3+}+2 \mathrm{~F}^{-} \Leftrightarrow \mathrm{PuF}_{2}^{+}$	5.800 ± 0.200	-33.107 ± 1.142
PuCl^{2+}	-711.571 ± 2.696 *	$: \mathrm{Pu}^{3+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{PuCl}^{2+}$	0.240 ± 0.030	-1.370 ± 0.171
$\mathrm{PuCl}_{2}{ }^{+}$	$-837.194 \pm 2.713{ }^{*}$	$\mathrm{Pu}^{3+}+2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{PuCl}_{2}^{+}$	-0.740 ± 0.050	4.224 ± 0.285
PuSO_{4}^{+}	-1341.825 $\pm 2.852 *$	$\mathrm{Pu}^{3+}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{PuSO}_{4}^{+}$	3.300 ± 0.150	-18.837 ± 0.856
$\mathrm{Pu}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	$-2088.112 \pm 2.942{ }^{*}$	$\mathrm{Pu}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{Pu}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	3.700 ± 0.150	-21.120 ± 0.856
$\mathrm{PuN}_{3}{ }^{2+}$	-240.316 ± 3.399 *	$\mathrm{Pu}^{3+}+\mathrm{N}_{3}{ }^{-} \Leftrightarrow \mathrm{PuN}_{3}{ }^{2+}$	1.670 ± 0.100	-9.532 ± 0.571
$\mathrm{PuNO}_{2}{ }^{2+}$	$-623.171 \pm 3.087{ }^{*}$: $\mathrm{Pu}^{3+}+\mathrm{NO}_{2}{ }^{-} \Leftrightarrow \mathrm{PuNO}_{2}{ }^{2+}$	2.100 ± 0.200	-11.987 ± 1.142
$\mathrm{PuNO}_{3}{ }^{2+}$	-697.370 ± 2.950 *	$\mathrm{Pu}^{3+}+\mathrm{NO}_{3}{ }^{-} \Leftrightarrow \mathrm{PuNO}_{3}{ }^{2+}$	1.330 ± 0.200	-7.592 ± 1.142
PuPO_{4} (am,hydr)	-1745.975 ± 4.630 *	$\mathrm{Pu}^{3+}+\mathrm{PO}_{4}{ }^{3-} \Leftrightarrow \mathrm{PuPO}_{4}$ (am,hydr)	24.790 ± 0.600	-141.500 ± 3.425
$\mathrm{PuH}_{2} \mathrm{PO}_{4}{ }^{2+}$	$-1733.260 \pm 4.222{ }^{*}$	$\mathrm{Pu}^{3+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \Leftrightarrow \mathrm{PuH}_{2} \mathrm{PO}_{4}{ }^{2+}$	3.000 ± 0.500	-17.124 ± 2.854
PuCO_{3}^{+}	$-1152.548 \pm 3.548{ }^{*}$	$\mathrm{Pu}^{3+}+\mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{PuCO}_{3}^{+}$	8.000 ± 0.400	-45.664 ± 2.283
$\mathrm{Pu}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	$-1708.418 \pm 4.423{ }^{*}$	$\mathrm{Pu}^{3+}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Pu}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	12.900 ± 0.600	-73.634 ± 3.425
$\mathrm{Pu}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	$-2248.305 \pm 6.417^{*}$	$\mathrm{Pu}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Pu}\left(\mathrm{CO}_{3}\right)^{3-}$	15.000 ± 1.000	-85.621 ± 5.708
$\mathrm{PuHCO}_{3}{ }^{2+}$	$-1183.524 \pm 3.197^{*}$	$\mathrm{Pu}^{3+}+\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{PuHCO}_{3}{ }^{2+}$	3.100 ± 0.300	-17.695 ± 1.712
$\mathrm{Pu}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	$-2836.992 \pm 8.348{ }^{*}$	$2 \mathrm{Pu}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Pu}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	16.700 ± 1.100	-95.324 ± 6.279
$\mathrm{PuCO}_{3} \mathrm{OH}(\mathrm{am})$	$-1379.406 \pm 6.322{ }^{*}$	$\mathrm{Pu}^{3+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{PuCO}_{3} \mathrm{OH}(\mathrm{am})$	20.200 ± 1.000	-115.302 ± 5.708
$\mathrm{PuCO}_{3} \mathrm{OH} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (cr)	$-1510.534 \pm 3.941^{*}$: $\mathrm{Pu}^{3+}+\mathrm{CO}_{3}{ }^{2-}+0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OH}^{-} \Leftrightarrow \mathrm{PuCO}_{3} \mathrm{OH} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	22.400 ± 0.500	-127.860 ± 2.854
$\mathrm{PuSiO}(\mathrm{OH})_{3}{ }^{2+}$	$-1877.129 \pm 3.101 *$	$\mathrm{Pu}^{3+}+\mathrm{Si}(\mathrm{OH})_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{PuSiO}(\mathrm{OH})_{3}{ }^{2+}+\mathrm{H}^{+}$	-1.680 ± 0.180	9.590 ± 1.027
PuSCN ${ }^{2+}$	$-493.704 \pm 5.114 *$	$\mathrm{Pu}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{PuSCN}^{2+}$	1.300 ± 0.300	-7.420 ± 1.712

[^4]Table 8 Solubility product and hydrolysis constants for samarium(III) and actinium(III) comparing with those for americium(III) and plutonium(III) selected by the OECD/NEA

element method ${ }^{* 11}$ medium			T (K)	$\log K$	ref.
$\mathrm{M}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{M}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}^{+}$					
Sm	sol	$0.1 \mathrm{M} \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$	298.15	-18.48 ($\mathrm{I}=0)^{* 2}$	23
	sol	$0.1 \mathrm{M} \mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$	298.15	-18.92 ($\mathrm{I}=0)^{* 2}$	23
	sol	$0.045 \mathrm{M} \mathrm{Sm}\left(\mathrm{ClO}_{4}\right)_{3}$	298.15	-19.99 ($\mathrm{I}=0)^{* 2}$	24
	sol	$<0.1 \mathrm{M} \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$	293.15	-17.68 ($\mathrm{I}=0)^{* 2}$	25
	sol	$(2-6) \times 10^{-4} \mathrm{M} \mathrm{SmCl}_{3}$	293.15	-17.29 ($\mathrm{I}=0)^{* 2}$	26
	sol	$0.002-4.0 \mathrm{M} \mathrm{NaCl}$	298.15	-16.13 ($\mathrm{I}=0)^{* 2}$	27
	sol	$1 \mathrm{M} \mathrm{NaClO}_{4}$	n.s.	-17.5 ($\mathrm{I}=1$)	18
	sol	$0.1 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-16.4 ($\mathrm{I}=0$)	19
Ac	sol	$0.001 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$	r.t.	$\begin{array}{r} \text { fresh: }-23.35 \pm 0.23^{* 3} \\ \text { old: }-21.11 \pm 0.14^{* 3} \end{array}$	21
Am	($\mathrm{I}=$	by the OECD/NEA)	298.15	$\begin{aligned} \text { am: }-16.9 & \pm 0.8 \\ \text { cr: }-15.6 & \pm 0.6 \end{aligned}$	5
Pu	($\mathrm{I}=0$	by the OECD/NEA)	298.15	cr: -15.8 ± 1.5	5
$\mathrm{M}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{MOH}^{2+}+\mathrm{H}^{+}$					
Sm	pot	0.001 M sulfate	298.15	-8.90	28
	pot	$0.3 \mathrm{M} \mathrm{NaClO}_{4}$	298.15	-8.36	29
	sol	$1.0 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-7.50	18
	ext	$0.1 \mathrm{M} \mathrm{LiClO}_{4}$	298.15	-4.40	30
	sol	$0.1 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-7.2 (I = 0)	19
Am	($\mathrm{I}=0$	by the OECD/NEA)	298.15	-7.2 ± 0.5	5
Pu	$(\mathrm{I}=0$	by the OECD/NEA)	298.15	-6.9 ± 0.3	5
$\mathrm{M}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{M}(\mathrm{OH})_{2}^{+}+2 \mathrm{H}^{+}$					
	sol	$1.0 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-15.0	18
	sol	$0.1 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	$\leq-15.0(\mathrm{I}=0)$	20
Am	($\mathrm{I}=0$	by the OECD/NEA)	298.15	-15.1 ± 0.7	5
$\mathrm{M}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{M}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$					
Sm	sol	$1.0 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-22.7	18
	sol	$0.1 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-24.9 (I = 0)	19
Am	($\mathrm{I}=0$	by the OECD/NEA)	298.15	-26.2 ± 0.5	5
$\mathrm{M}^{3+}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{M}(\mathrm{OH})_{4}^{+}+4 \mathrm{H}^{+}$					
Sm	sol	$1.0 \mathrm{M} \mathrm{NaClO}_{4}$	r.t.	-36.7	31

[^5]Table 9 Thermodynamic data for samarium(III) selected by the authors for the JAEA-TDB

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$	Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}}{G^{\circ}}^{\circ}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
Sm(cr)	0.000			
Sm^{3+}	$-666.600 \pm 1.000{ }^{*}$			
SmOH^{2+}	$-862.642 \pm 3.024^{* *}$	$: \mathrm{Sm}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{SmOH}^{2+}+\mathrm{H}^{+}$	-7.200 ± 0.500	41.098 ± 2.854
$\mathrm{Sm}(\mathrm{OH})_{2}{ }^{+}$	-1054.689 ± 4.120 **	$\mathrm{Sm}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Sm}(\mathrm{OH})_{2}{ }^{+}+2 \mathrm{H}^{+}$	-15.100 ± 0.700	86.191 ± 3.996
$\mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{aq})$	$-1281.554 \pm 4.676^{* *}$	$\mathrm{Sm}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-26.200 ± 0.500	149.551 ± 2.854
$\mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{am})$	$-1228.469 \pm 3.027^{* *}$	$\mathrm{Sm}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{am})+3 \mathrm{H}^{+}$	-16.900 ± 0.800	96.466 ± 4.566
$\mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{cr})$	-1288.975 ± 3.570 **	$\mathrm{Sm}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Sm}(\mathrm{OH})_{3}(\mathrm{cr})+3 \mathrm{H}^{+}$	-15.600 ± 0.600	89.045 ± 3.425
SmF^{2+}	$-967.530 \pm 2.587^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{F}^{-} \Leftrightarrow \mathrm{SmF}^{2+}$	3.400 ± 0.400	-19.407 ± 2.283
$\mathrm{SmF}_{2}{ }^{+}$	$-1262.753 \pm 2.054^{* *}$	$\mathrm{Sm}^{3+}+2 \mathrm{~F}^{-} \Leftrightarrow \mathrm{SmF}_{2}{ }^{+}$	5.800 ± 0.200	-33.107 ± 1.142
SmCl^{2+}	$-799.187 \pm 1.021{ }^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{SmCl}^{2+}$	0.240 ± 0.030	-1.370 ± 0.171
$\mathrm{SmCl}_{2}{ }^{+}$	$-924.810 \pm 1.066{ }^{* *}$	$\mathrm{Sm}^{3+}+2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{SmCl}_{2}^{+}$	-0.740 ± 0.050	4.224 ± 0.285
SmSO_{4}^{+}	$-1429.441 \pm 1.381{ }^{* *}$	$: \mathrm{Sm}^{3+}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{SmSO}_{4}^{+}$	3.300 ± 0.150	-18.837 ± 0.856
$\mathrm{Sm}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	-2175.728 ± 1.559 **	$\mathrm{Sm}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{Sm}\left(\mathrm{SO}_{4}\right)_{2}^{-}$	3.700 ± 0.150	-21.120 ± 0.856
$\mathrm{SmN}_{3}{ }^{2+}$	$-327.932 \pm 2.308{ }^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{N}_{3}{ }^{-} \Leftrightarrow \mathrm{SmN}_{3}{ }^{2+}$	1.670 ± 0.100	-9.532 ± 0.571
$\mathrm{SmNO}_{2}{ }^{2+}$	$-710.787 \pm 1.817^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{NO}_{2}{ }^{-} \Leftrightarrow \mathrm{SmNO}_{2}{ }^{2+}$	2.100 ± 0.200	-11.987 ± 1.142
$\mathrm{SmNO}_{3}{ }^{2+}$	$-784.986 \pm 1.574^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{NO}_{3}{ }^{-} \Leftrightarrow \mathrm{SmNO}_{3}{ }^{2+}$	1.330 ± 0.200	-7.592 ± 1.142
SmPO_{4} (am,hydr)	-1833.591 ± 3.900 **	$\mathrm{Sm}^{3+}+\mathrm{PO}_{4}{ }^{3-} \Leftrightarrow \mathrm{SmPO}_{4}$ (am,hydr)	24.790 ± 0.600	-141.500 ± 3.425
$\mathrm{SmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	$-1820.876 \pm 3.406{ }^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \Leftrightarrow \mathrm{SmH}_{2} \mathrm{PO}_{4}{ }^{2+}$	3.000 ± 0.500	-17.124 ± 2.854
SmCO_{3}^{+}	$-1240.164 \pm 2.523 * *$	$\mathrm{Sm}^{3+}+\mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{SmCO}_{3}^{+}$	8.000 ± 0.400	-45.664 ± 2.283
$\mathrm{Sm}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	$-1796.034 \pm 3.652^{* *}$	$\mathrm{Sm}^{3+}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Sm}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	12.900 ± 0.600	-73.634 ± 3.425
$\mathrm{Sm}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	-2335.921 ± 5.912 **	: $\mathrm{Sm}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Sm}\left(\mathrm{CO}_{3}\right)^{3-}$	15.000 ± 1.000	-85.621 ± 5.708
$\mathrm{SmHCO}_{3}{ }^{2+}$	$-1271.140 \pm 1.999{ }^{* *}$	$: \mathrm{Sm}^{3+}+\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{SmHCO}_{3}{ }^{2+}$	3.100 ± 0.300	-17.695 ± 1.712
$\mathrm{Sm}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	$-3012.224 \pm 6.693{ }^{* *}$	$2 \mathrm{Sm}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Sm}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	16.700 ± 1.100	-95.324 ± 6.279
$\mathrm{SmCO}_{3} \mathrm{OH}(\mathrm{am})$	$-1467.022 \pm 5.809{ }^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{SmCO}_{3} \mathrm{OH}(\mathrm{am})$	20.200 ± 1.000	-115.302 ± 5.708
$\mathrm{SmCO}_{3} \mathrm{OH} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	-1598.150 ± 3.050 **	$\mathrm{Sm}^{3+}+\mathrm{CO}_{3}{ }^{2-}+0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OH}^{-} \Leftrightarrow \mathrm{SmCO}_{3} \mathrm{OH} \bullet 0.5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	22.400 ± 0.500	-127.860 ± 2.854
$\mathrm{SmSiO}(\mathrm{OH})_{3}{ }^{2+}$	-1964.745 ± 1.842 **	$\mathrm{Sm}^{3+}+\mathrm{Si}(\mathrm{OH})_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{SmSiO}(\mathrm{OH})_{3}{ }^{2+}+\mathrm{H}^{+}$	-1.680 ± 0.180	9.590 ± 1.027
SmSCN^{2+}	$-581.320 \pm 4.465{ }^{* *}$	$\mathrm{Sm}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{SmSCN}^{2+}$	1.300 ± 0.300	-7.420 ± 1.712
$\mathrm{NaSm}\left(\mathrm{CO}_{3}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	-3289.922 $\pm 3.131^{* *}$	$\mathrm{Sm}^{3+}+2 \mathrm{CO}_{3}{ }^{2-}+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}^{+} \Leftrightarrow \mathrm{NaSm}\left(\mathrm{CO}_{3}\right)_{2} \bullet \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{cr})$	21.000 ± 0.500	-119.869 ± 2.854

[^6]Table 10 Stablity constants of the chloride and bromide complexes of some lanthanoids and actinoids with reaction of $\mathrm{M}^{3+}+x \mathrm{~L}^{-} \Leftrightarrow \mathrm{ML}_{x}^{3-x}(x: 1$ and 2$)$ at $3.0 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \mathrm{LiCl}$ or LiBr solutions ${ }^{22)}$

anion	metal	β_{1}	β_{2}
Cl^{-}	Sm	0.41 ± 0.04	0.25 ± 0.03
	Eu	0.52 ± 0.02	0.22 ± 0.02
	Gd	0.56 ± 0.02	0.21 ± 0.02
	Tb	0.45 ± 0.02	0.26 ± 0.02
	Ac	0.44 ± 0.02	0.31 ± 0.02
	Am	0.55 ± 0.03	0.22 ± 0.02
	Cm	0.56 ± 0.03	0.20 ± 0.02
	Bk	0.59 ± 0.02	0.25 ± 0.02
	Cf	0.61 ± 0.04	0.25 ± 0.03
Br	Sm	0.33 ± 0.04	0.24 ± 0.03
	Eu	0.38 ± 0.02	0.23 ± 0.01
	Gd	0.37 ± 0.02	0.26 ± 0.02
	Tb	0.41 ± 0.03	0.22 ± 0.01
	Ac	0.42 ± 0.02	0.29 ± 0.01
	Am	0.30 ± 0.03	0.28 ± 0.02
	Cm	0.39 ± 0.02	0.22 ± 0.02
	Bk	0.15 ± 0.04	0.29 ± 0.03
	Cf	0.30 ± 0.04	0.30 ± 0.03

Table 11 Thermodynamic data for actinium(III) selected for the JAEA-TDB *

Species	$\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$!Reaction	$\log _{10} K^{\circ}$	$\Delta_{\mathrm{r}} G^{\circ}{ }_{\mathrm{m}}\left(\mathrm{kJ} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{Ac}(\mathrm{cr})$	0.000			
Ac^{3+}	-640.152 ± 25.104	,		
AcOH^{2+}	-836.194 ± 25.420	$\mathrm{Ac}^{3+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{AcOH}^{2+}+\mathrm{H}^{+}$	-7.200 ± 0.700	41.098 ± 3.996
$\mathrm{Ac}(\mathrm{OH})_{2}{ }^{+}$	-1028.241 ± 25.624	$\mathrm{Ac}^{3+}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Ac}(\mathrm{OH})_{2}{ }^{+}+2 \mathrm{H}^{+}$	-15.100 ± 0.900	86.191 ± 5.137
$\mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{aq})$	-1202.021 ± 25.420	$\mathrm{Acc}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{aq})+3 \mathrm{H}^{+}$	-26.200 ± 0.700	149.551 ± 3.996
$\mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{am})$	-1277.938 ± 27.125	$\mathrm{Ac}^{3+}+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{Ac}(\mathrm{OH})_{3}(\mathrm{am})+3 \mathrm{H}^{+}$	$-16.900 \pm 4.800{ }^{* *}$	119.298 ± 10.274
AcF^{2+}	-941.082 ± 25.346	$\mathrm{Ac}^{3+}+\mathrm{F}^{-} \Leftrightarrow \mathrm{AcF}^{2+}$	3.400 ± 0.600	-19.407 ± 3.425
$\mathrm{AcF}_{2}{ }^{+}$	-1236.305 ± 25.246	$\mathrm{Ac}^{3+}+2 \mathrm{~F}^{-} \Leftrightarrow \mathrm{AcF}_{2}^{+}$	5.800 ± 0.400	-33.107 ± 2.283
AcCl^{2+}	-772.739 ± 25.139	$\mathrm{Ac}^{3+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AcCl}^{2+}$	0.240 ± 0.230	-1.370 ± 1.313
$\mathrm{AcCl}_{2}{ }^{+}$	-898.362 ± 25.146	$\mathrm{Ac}^{3+}+2 \mathrm{Cl}^{-} \Leftrightarrow \mathrm{AcCl}_{2}^{+}$	-0.740 ± 0.250	4.224 ± 1.427
AcSO_{4}^{+}	-1402.993 ± 25.187	$\mathrm{Ac}^{3+}+\mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{AcSO}_{4}^{+}$	3.300 ± 0.350	-18.837 ± 1.998
$\mathrm{Ac}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	-2149.280 ± 25.197	$\mathrm{Ac}^{3+}+2 \mathrm{SO}_{4}{ }^{2-} \Leftrightarrow \mathrm{Ac}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$	3.700 ± 0.350	-21.120 ± 1.998
$\mathrm{AcN}_{3}{ }^{2+}$	-301.484 ± 25.242	$\mathrm{Ac}^{3+}+\mathrm{N}_{3}^{-} \Leftrightarrow \mathrm{AcN}_{3}{ }^{2+}$	1.670 ± 0.300	-9.532 ± 1.712
$\mathrm{AcNO}_{2}{ }^{2+}$	-684.339 ± 25.227	$\mathrm{Ac}^{3+}+\mathrm{NO}_{2}{ }^{-} \Leftrightarrow \mathrm{AcNO}_{2}{ }^{2+}$	2.100 ± 0.400	-11.987 ± 2.283
$\mathrm{AcNO}_{3}{ }^{2+}$	-758.538 ± 25.211	$\mathrm{Ac}^{3+}+\mathrm{NO}_{3}{ }^{-} \Leftrightarrow \mathrm{AcNO}_{3}{ }^{2+}$	1.330 ± 0.400	-7.592 ± 2.283
$\mathrm{AcPO}_{4}(\mathrm{am}, \mathrm{hydr})$	-1807.143 ± 26.760	$\mathrm{Ac}^{3+}+\mathrm{PO}_{4}^{3-} \Leftrightarrow \mathrm{AcPO}_{4}(\mathrm{am}, \mathrm{hydr})$	$24.790 \pm 4.600{ }^{* *}$	-118.670 ± 9.133
$\mathrm{AcH}_{2} \mathrm{PO}_{4}{ }^{2+}$	-1794.428 ± 25.468	$\mathrm{Ac}^{3+}+\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} \Leftrightarrow \mathrm{AcH}_{2} \mathrm{PO}_{4}{ }^{2+}$	3.000 ± 0.700	-17.124 ± 3.996
$\mathrm{AcCO}_{3}{ }^{+}$	-1213.716 ± 25.340	$\mathrm{Ac}^{3+}+\mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{AcCO}_{3}{ }^{+}$	8.000 ± 0.600	-45.664 ± 3.425
$\mathrm{Ac}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	-1769.586 ± 25.528	$\mathrm{Ac}^{3+}+2 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Ac}\left(\mathrm{CO}_{3}\right)_{2}{ }^{-}$	12.900 ± 0.800	-73.634 ± 4.566
$\mathrm{Ac}\left(\mathrm{CO}_{3}\right)_{3}{ }^{3-}$	-2309.473 ± 26.048	$\mathrm{Ac}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Ac}\left(\mathrm{CO}_{3}\right)^{3}{ }^{3-}$	15.000 ± 1.200	-85.621 ± 6.850
$\mathrm{AcHCO}_{3}{ }^{2+}$	-1244.692 ± 25.267	$\mathrm{Ac}^{3+}+\mathrm{HCO}_{3}{ }^{-} \Leftrightarrow \mathrm{AcHCO}_{3}{ }^{2+}$	3.100 ± 0.500	-17.695 ± 2.854
$\mathrm{Ac}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	-2982.160 ± 51.632	$2 \mathrm{Ac}^{3+}+3 \mathrm{CO}_{3}{ }^{2-} \Leftrightarrow \mathrm{Ac}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{am})$	16.700 ± 5.100 **	-72.492 ± 11.987
$\mathrm{AcCO}_{3} \mathrm{OH}(\mathrm{am})$	-1463.407 ± 27.581	$\mathrm{Ac}^{3+}+\mathrm{CO}_{3}{ }^{2-}+\mathrm{OH}^{-} \Leftrightarrow \mathrm{AcCO}_{3} \mathrm{OH}(\mathrm{am})$	$20.200 \pm 5.000{ }^{* *}$	-92.470 ± 11.416
$\mathrm{AcSiO}(\mathrm{OH})_{3}{ }^{2+}$	-1938.297 ± 25.224	$\mathrm{Ac}^{3+}+\mathrm{Si}(\mathrm{OH})_{4}(\mathrm{aq}) \Leftrightarrow \mathrm{AcSiO}(\mathrm{OH})_{3}{ }^{2+}+\mathrm{H}^{+}$	-1.680 ± 0.380	9.590 ± 2.169
AcSCN^{2+}	-554.872 ± 25.580	$\mathrm{Ac}^{3+}+\mathrm{SCN}^{-} \Leftrightarrow \mathrm{AcSCN}^{2+}$	1.300 ± 0.500	-7.420 ± 2.854

[^7]| 表 1．SI 基本単位 | | |
| :---: | :---: | :---: |
| 基本量 | SI 基本単位 | |
| | 名称 | 記号 |
| 長 さ | メートル | m |
| 質 量 | キログラム | kg |
| 時 間 | 秒 | s |
| 電 流 | アンペア | A |
| 熱力学温度 | ケルビン | K |
| 物 質 量 | モ ル | mol |
| 光 度 | カンデラ | cd |

組立量	SI 基本単位	
	名称	記号
面 積	平方メートル	m^{2}
体 積	立法メートル	m^{3}
速 さ，速 度	メートル毎秒	m / s
加 速 度	メートル毎秒毎秒	$\mathrm{m} / \mathrm{s}^{2}$
波 数	毎メートル	m^{-1}
密度，質量密度	キログラム毎立方メートル	$\mathrm{kg} / \mathrm{m}^{3}$
面 積 密 度	キログラム毎平方メートル	$\mathrm{kg} / \mathrm{m}^{2}$
比 体 積	立方メートル毎キログラム	$\mathrm{m}^{3} / \mathrm{kg}$
電 流 密 度	アンペア毎平方メートル	$\mathrm{A} / \mathrm{m}^{2}$
磁界の強さ	アンペア毎メートル	A / m
量濃度 ${ }^{(a)}$ ，濃度	モル毎立方メートル	$\mathrm{mol} / \mathrm{m}^{3}$
質 量 濃 度	キログラム毎立法メートル	$\mathrm{kg} / \mathrm{m}^{3}$
輝 度	カンデラ毎平方メートル	$\mathrm{cd} / \mathrm{m}^{2}$
屈 折 率 ${ }^{(b)}$	（数字の）1	1
比透磁率（b）	（数字の） 1	1

（a）量漫度（amount concentration）は臨床化学の分野では物質瀑度 （substance concentration）ともよばれる。
（substance concentration）ともよばれる。
これらは無次元量あるいは次元 1 をもった量であるが，そのこと
を表す単位記号である数子の 1 は通常は記しない。

組立量	SI 組立単位			
	名称	記号	他のSI単位による表し方	SI基本単位による表し方
平 面 角	ラジアン ${ }^{\text {（b）}}$	rad	$1{ }^{\text {（b）}}$	m / m
立 体 角	ステラジアン ${ }^{\text {（b）}}$	$\mathrm{sr}^{(\mathrm{c})}$	$1{ }^{\text {（b）}}$	$\mathrm{m}^{2 /} \mathrm{m}^{2}$
周 波 数	ヘルツ（d）	Hz		
力	ニュートン	N		$\mathrm{mkg} \mathrm{s}^{-2}$
圧力，応力	パスカル	Pa	$\mathrm{N} / \mathrm{m}^{2}$	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$
エネルギー，仕事，熱量	ジュール	J	Nm	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
仕事率，工率，放射束	ワット	W	J／s	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
電 荷 ，電 気 量	クーロン	C		s A
電位差（ 電圧），起電力	ボルト	V	W／A	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
静 電 容 量	ファラド	F	C／V	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
電 気 抵 抗	オーム	Ω	V／A	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
コンダクダメス	ジーメンス	S	A／V	$\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2}$
磁 束	ウエーバ	Wb	Vs	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-1}$
磁 束 密 度	テスラ	T	$\mathrm{Wb} / \mathrm{m}^{2}$	$\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$
インダクタース	ヘンリー	H	Wb／A	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
セルジ	セルシウス度 ${ }^{(e)}$	${ }^{\circ} \mathrm{C}$		
光束	ルーメン	lm	$\mathrm{cd} \mathrm{sr}{ }^{(\mathrm{c})}$	cd
照 度	ルクス	lx	$\mathrm{lm} / \mathrm{m}^{2}$	$\mathrm{m}^{-2} \mathrm{~cd}$
放射性核種の放射能（f）	ベクレル ${ }^{(d)}$	Bq		
吸収線量，比エネルギー分与， カーマ	グレイ	Gy	J／kg	$\mathrm{m}^{2} \mathrm{~s}^{-2}$
線量当量，周辺線量当量，方向性線量当量，個人線量当量	シーベルト ${ }^{(\mathrm{g})}$	Sv	J／kg	
酸 素 活 性	カタール	kat		$\mathrm{s}^{-1} \mathrm{~mol}$

（a）SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
（b）ラジアンとステラジアンは数字の 1 に対する単位の特別な名称で，量についての情報をつたえるために使われる。実際には，使用する時には記号 rad ひひ sr が用いられるが，習慣として組立単位としての記号である数字の 1 は明示されない。
（c）測光学ではステラジアンといら名称と記号srを単位の表し方の中に，そのまま維持している。
（d）ヘルツは周期現象についてのみ，ベクレルは放射性核種の統計的過程についてのみ使用される
（e）セルシウス度はケルビンの特別な名称で，セルシウス温度を表すために使用される。セルシウス度とケルビンの
単位の大きさは同一である。したがって，温度差や温度間隔を表す数値はどちらの単位で表しても同じである。 （f）放射性核種の放射能（activity referred to a radionuclide）は，しばしば誤った用語で＂radioactivity＂と記される。 （g）単位シーベルト（PV，2002，70，205）についてはCIPM勧告2（CI－2002）を参照。

表 4．単位の中に固有の名称と記号を含むSI組立単位の例

組立量	SI 組立単位		
	名称	記号	SI 基本単位による表し方
粘 度	パスカル秒	Pa s	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-1}$
力のモーメン	ニュートンメートル	Nm	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
表 面 張 力	ニュートン毎メートル	N / m	$\mathrm{kg} \mathrm{s}^{-2}$
角 速 度	ラジアン毎秒	$\mathrm{rad} / \mathrm{s}$	$\mathrm{m} \mathrm{m}^{-1} \mathrm{~s}^{-1}=\mathrm{s}^{-1}$
角 加 速 度	ラジアン毎秒毎秒	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{m} \mathrm{m}^{-1} \mathrm{~s}^{-2}=\mathrm{s}^{-2}$
熱流密度，放射照度	ワット毎平方メートル	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{kg} \mathrm{s}^{-3}$
熱容量，エントロピー	ジュール毎ケルビン	J／K	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
比熱容量，比エントロピー	ジュール毎キログラム毎ケルビン	J／（kg K）	$\mathrm{m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
比エ ネ ル	ジュール毎キログラム	J / kg	$\mathrm{m}^{2} \mathrm{~s}^{-2}$
熱 伝 導 率	ワット毎メートル毎ケルビン	W／（m K）	$\mathrm{mkg} \mathrm{s}^{-3} \mathrm{~K}^{-1}$
体 積エネネ	ジュール毎立方メートル	$\mathrm{J} / \mathrm{m}^{3}$	$\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$
電 界の強さ	ボルト毎メートル	V／m	$\mathrm{mkg} \mathrm{s}^{-3} \mathrm{~A}^{-1}$
電 荷 密 度	クーロン毎立方メートル	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{m}^{-3} \mathrm{sA}$
表 面 電 荷	クーロン毎平方メートル	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{m}^{-2} \mathrm{sA}$
電束密度，電気変位	クーロン毎平方メートル	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{m}^{-2} \mathrm{sA}$
誘 電 率	ファラド毎メートル	F／m	$\mathrm{m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
透 磁 率	ヘンリー毎メートル	H／m	$\mathrm{mkg} \mathrm{s}{ }^{-2} \mathrm{~A}^{-2}$
モルエ ネ ルギー	ジュール毎モル	$\mathrm{J} / \mathrm{mol}$	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~mol}^{-1}$
モルエントロピー，モル熱容量	ジュール毎モル毎ケルビン	$\mathrm{J} /(\mathrm{mol} \mathrm{K})$	$\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
照射線量（X線及び γ 線）	クーロン毎キログラム	C／kg	$\mathrm{kg}^{-1} \mathrm{sA}$
吸収 線 量 率	グレイ毎秒	Gy／s	$\mathrm{m}^{2} \mathrm{~s}^{-3}$
放 射 強 度	ワット毎ステラジアン	W／sr	$\mathrm{m}^{4} \mathrm{~m}^{-2} \mathrm{~kg} \mathrm{~s}^{-3}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
放 射 輝 度	ワット毎平方メートル毎ステラジアン	$\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{sr}\right)$	$\mathrm{m}^{2} \mathrm{~m}^{-2} \mathrm{~kg} \mathrm{~s}^{-3}=\mathrm{kg} \mathrm{s}^{-3}$
酵 素 活 性 濃 度	カタール毎立方メートル	kat／m ${ }^{3}$	$\mathrm{m}^{-3} \mathrm{~s}^{-1} \mathrm{~mol}$

乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	ヨ 夕	Y	10^{-1}	デ シ	d
10^{21}	ゼ 夕	Z	10^{-2}	セン	c
10^{18}	エ ク サ	E	10^{-3}	ミ リ	m
10^{15}	ペタ	P	10^{-6}	マイクロ	μ
10^{12}	テ ラ	T	10^{-9}	ナ ノ	n
10^{9}	ギ ガ	G	10^{-12}	ピ コ	p
10^{6}	メ ガ	M	10^{-15}	フェムト	f
10^{3}	キ ロ	k	10^{-18}	ア ト	a
10^{2}	へクト	h	10^{-21}	ゼプト	z
10^{1}	デ カ	da	10^{-24}	ヨクト	y

表6．SIに属さないが，SIと併用される単位		
名称	記号	SI 単位による値
分	\min	$1 \mathrm{~min}=60 \mathrm{~s}$
時	h	$1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$
日	d	$1 \mathrm{~d}=24 \mathrm{~h}=86400 \mathrm{~s}$
度	\circ	$1^{\circ}=(\mathrm{n} / 180) \mathrm{rad}$
分	,	$1^{\prime}=(1 / 60)^{\circ}=(\mathrm{n} / 10800) \mathrm{rad}$
秒	$"$	$1^{\prime \prime}=(1 / 60)^{\prime}=(\Pi / 648000) \mathrm{rad}$
ヘクタール	ha	$1 \mathrm{ha}=1 \mathrm{hm} \mathrm{h}^{2}=10^{4} \mathrm{~m}^{2}$
リットル	L, l	$1 \mathrm{~L}=11=1 \mathrm{dm}^{3}=10^{3} \mathrm{~cm}^{3}=10^{-3} \mathrm{~m}^{3}$
トン	t	$1 \mathrm{t}=10^{3} \mathrm{~kg}$

表7．SIに属さないが，SIと併用される単位で，SI単位で

名称	記号	SI 単位で表される数値
電子ボルト	eV	$1 \mathrm{eV}=1.60217653(14) \times 10^{-19} \mathrm{~J}$
ダルトン	Da	$1 \mathrm{Da}=1.66053886(28) \times 10^{-27} \mathrm{~kg}$
統一原子質量単位	u	$1 \mathrm{u}=1 \mathrm{Da}$
天 文 単 位	ua	1ua＝1．495 $97870691(6) \times 10^{11} \mathrm{~m}$

名称	記号	SI 単位で表される数値
バ ー ル	bar	$1 \mathrm{bar}=0.1 \mathrm{MPa}=100 \mathrm{kPa}=10^{5} \mathrm{~Pa}$
水銀柱ミリメートル	mmHg	$1 \mathrm{mmHg}=133.322 \mathrm{~Pa}$
オングストローム	\AA	$1 \AA=0.1 \mathrm{~nm}=100 \mathrm{pm}=10^{-10} \mathrm{~m}$
海 里	M	$1 \mathrm{M}=1852 \mathrm{~m}$
バ－ン	b	$1 \mathrm{~b}=100 \mathrm{fm}^{2}=\left(10^{-12} \mathrm{~cm}\right) 2=10^{-28} \mathrm{~m}^{2}$
ノ ッ	kn	$1 \mathrm{kn}=(1852 / 3600) \mathrm{m} / \mathrm{s}$
ネ－パ	Np	位
ベ ル	B	対数量の定義に依存。
デ ジ	dB	

 は対応関係を示すものである。

[^0]: + Geological Isolation Research and Development Directorate

[^1]: * CN : coordination number

[^2]: * Determined or modified by the authors

[^3]: * The $\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}$ values by Fuger and Oetting were converted from a unit of $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$ to $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ by the authors using $1 \mathrm{cal}=4.184 \mathrm{~J}$.

[^4]: Determined by the authors

[^5]: ${ }^{* 1}$ sol: solubility, pot: potentiometry, ext: solvent extraction
 ${ }^{*}$ Determination of $\log K^{\circ}$ was performed by Diakonov et al. ${ }^{32)}$
 ${ }^{* 3}$ Recalculated by the authors

[^6]: ${ }_{* *}$ Taken from the literature ${ }^{16)}$ with addition of uncertainties by the authors

[^7]: ${ }^{*}$ ** All the obtained values except for $\Delta_{\mathrm{f}} G^{\circ}{ }_{\mathrm{m}}$ of $\mathrm{Ac}^{3+}\left(-640.152 \pm 25.104 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$ should be treated as a tentative value
 ${ }^{* *}$ Larger uncertainties than those for americium(III), curium(III) and samarium(III)

