

捨石たい積場周辺環境の監視測定結果

(平成20年度)

一鳥取県内一

The Annual Report on the Environmental Monitoring around the Waste Rock Sites 2008

- Tottori -

相馬 丞 小野 高行 石森 有 川﨑 悟

Susumu SOMA, Takayuki ONO, Yuu ISHIMORI and Satoru KAWASAKI

人形峠環境技術センター

Ningyo-toge Environmental Engineering Center

March 2010

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(http://www.jaea.go.jp) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課 〒319-1195 茨城県那珂郡東海村白方白根 2 番地 4 電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2010

捨石たい積場周辺環境の監視測定結果(平成20年度)一鳥取県内一

日本原子力研究開発機構人形峠環境技術センター 相馬 丞、小野 高行、石森 有、川﨑 悟

(2009年12月18日受理)

人形峠環境技術センターでは、良好な自然環境の確保等を目的として岡山県・鳥取県と締結した環境保全協定に従って、センターやウラン鉱山跡の捨石たい積場周辺等の環境監視測定を実施している。

これらの監視測定結果は、各々の県に定期的に報告するとともに、専門家で構成される岡山県 環境放射線等測定技術委員会(岡山県)や鳥取県放射能調査専門家会議(鳥取県)において審 議・評価を受けている。

本資料は鳥取県に報告し、鳥取県放射能調査専門家会議において評価を受けた平成20年度の 捨石たい積場周辺の環境監視結果についてまとめたものである。

人形峠環境技術センター:〒708-0698 岡山県苫田郡鏡野町上齊原1550

JAEA-Review 2009-068

The Annual Report on the Environmental Monitoring around the Waste Rock Sites

2008

- Tottori -

Susumu SOMA, Takayuki ONO, Yuu ISHIMORI and Satoru KAWASAKI

Ningyo-toge Environmental Engineering Center

Japan Atomic Energy Agency

Kagamino-cho, Tomata-gun, Okayama-ken

(Received December 18, 2009)

The Ningyo-toge Environmental Engineering Center of the Japan Atomic Energy Agency performs the environmental monitoring around the Ningyo-toge and the waste rock sites according to the agreements with local governments, Okayama and Tottori prefectures.

Each prefectural committee on the environmental monitoring evaluates the monitoring data annually.

This report summarized the results of the environmental monitoring in Tottori prefecture in the fiscal year 2008. The results show that the levels of the radiation doses and the radioactive concentrations in the environment were within natural variations, and the waste rock sites have been well maintained. The committee concluded the environmental impacts from the sites were negligible.

Keywords: Environmental Monitoring, Waste Rock Sites, Agreements with Local Governments, Tottori

目 次

1. まえがき	 1
2. 監視測定結果	 2
2.1 監視測定計画	 2
2.2 監視測定結果	 7
2.2.1 概 要	 7
2.2.2 詳細データ	 8

CONTENTS

1. Intorduction	 1
2. Monitoring results	 2
2.1 Monitoring program	 2
2.2 Monitoring results	 7
2.2.1 Summary	 7
2.2.2 Detailed data	 8

This is a blank page.

1. まえがき

人形峠環境技術センターでは、鳥取県に点在するウラン鉱山跡の捨石たい積場管理について、 鳥取県及び関係自治体との間で「環境保全協定」を締結し、その内容に従って捨石たい積場周辺 環境の放射線等の監視測定を実施している。

平成20年度も前年度に引き続き、監視測定計画に沿って放射線、放射能の測定を実施した。 また、平成18年度に締結された「方面ウラン残土の措置に関する協定書」に基づき、レンガ 加工施設周辺地域の環境監視も監視計画に沿って放射線、放射能の測定を実施した。

これらの監視測定結果は鳥取県に定期的(四半期毎)に報告し、平成21年3月に開催された 鳥取県放射能調査専門家会議において審議され、異常値は見られないことが確認された。

2. 監視測定結果

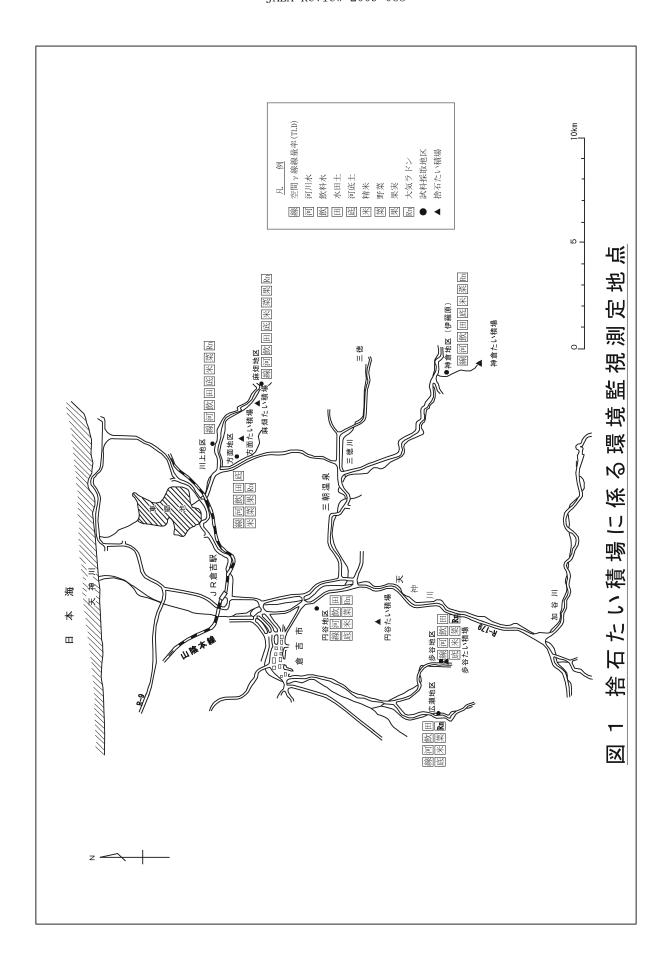
2. 1 監視測定計画

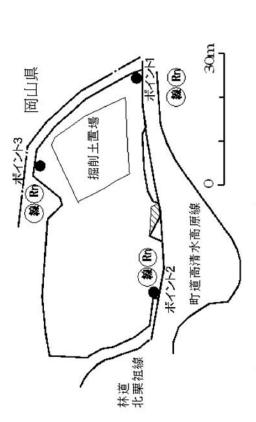
鳥取県側には方面・麻畑などの捨石たい積場が点在しており、環境監視測定は主としてたい積場のあるそれぞれの居住地区を対象に実施している。監視測定計画は、毎年度鳥取県と協議し決定している。

また、平成18年度に締結された「方面ウラン残土の措置に関する協定書」に基づいた人形峠 レンガ加工場周辺地域の環境監視測定も実施しており、その監視測定計画も鳥取県と協議し決定 している。

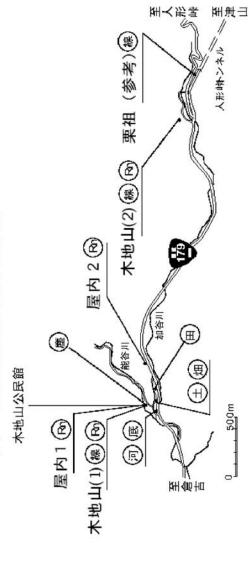
平成20年度の監視測定計画に係る測定対象、項目、地点を表1-1、表1-2に、それぞれ 試料の測定方法を表1-3に示す。また、試料採取地点を図1、図2、図3に示す。

表1-1 測定対象・項目・地点(捨石たい積場に係る)


測	定文	十 象	測定項目	測 定 地点数	測 回 数	年 間 検 体	測 定 項目数	測定地点
空	間縛	量	γ線線量率 (γ線積算線量)	7	4	28	28	麻畑地区
河	JII	水	U-238 Ra-226	7	3	21	63	川上地区
飲	料	水	Rn-222	7	3	21	63	方面地区
河	底	土	U-238	7	3	21	42	神倉地区
水	田	土	Ra-226	7	3	21	42	円谷地区
大気	中ラ	ドン	Rn-222	7	4	28	28	歩谷地区
生	精	米	U-238	7	1	7	14	広瀬地区
物	野	菜	Ra-226	7	1	7	14	
質	果	実	Na 220	2	1	2	4	方面地区,麻畑地区
	合		計	58	-	156	298	-


表1-2 測定対象・項目・地点 (レンガ加工場に係る)

測定対象	測定項目	測 定 地点数	測 回 数	年 間 検 体	測 定 項目数	測定地点
空間線量	γ 線線量率 (γ 線積算線量)	3	4	12	12	県境
大気中ラドン (屋外)	Rn-222	3	4	12	12	宗 児
空間線量	γ線線量率 (γ線積算線量)	2	4	8	8	
大気中ラドン (屋外)	Rn-222	2	4	8	8	
大気中ラドン (屋内)	Rn-222	2	4	8	8	
河 底 土		1	3	3	3	
畑土		1	3	3	3	木地山地区
水 田 土	U-238 U-234	1	3	3	3	
表土	Ra-226	1	2	2	2	
河 川 水		1	3	3	3	
大気浮遊塵		1	2	2	2	
合	計	18	_	64	64	-


表1-3 測定方法

測定対象	測定項目	試料採取方法	測 定 方 法	測定器
空間線量	γ線線量	熱ルミネセンス線量計 を用いた環境 γ 線測定 法による	同左	TLD素子 松下電器UD-200S型 読取装置 松下電器UD-5120PGL
河川水	U-238 U-234 Ra-226 Rn-222	文部科学省編(S58) 環境試料採取法による	U-238・U-234 TBP-トルエン抽出+α線 スペクトロメトリ法 Ra-226 BaSO4捕集, EDTA-4Na 溶解, 液体シンチレーションカウンタ法 Rn-222 トルエン抽出-積分計数法	U-238・U-234 α 線スペットロメータ (セイコーEG&G製または東芝製) Ra-226 アロカ製液体シンチレーションカウンタ Rn-222 アロカ製液体シンチレーションカウンタ
飲料水	U-238 Ra-226 Rn-222	同上	U-238 キレート樹脂法+ α 線スペックト ロメトリ法 Ra-226 炭酸カルシウム共沈,電離箱 -電位計による測定 Rn-222 河川水と同様	U-238 セイコーEG&G製 a 線スペックトロメータ Ra-226 大倉電気製振動容量電 位計,電離箱 Rn-222 河川水と同様
河底土 土 壌 (畑土) (水田土) (表土)	U-238 U-234 Ra-226	同上	U-238・U-234 硝酸浸出, TBP-トルエン 抽出-α線スペットロメトリ法 Ra-226 硝酸浸出, BaSO4捕集, EDTA-4Na溶解, 液体シンチ レーションカウンタ法	U-238・U-234 α線スペットロメータ (セイコーEG&G製または東芝製) Ra-226 アロカ製液体シンチレーションカウンタ
大気デン	Rn−222	パッシブ法静電捕集型計 ンモニタニよる積分測定	モニタ内のRn-222起源の子孫 核種のα線計測	ア叻製 積分型計シモニタ
生物質 (精米) (野菜) (果実)	U−238 Ra−226	文部科学省編(S58) 環境試料採取法による	U-238 硝酸浸出,TBP-トルエン 抽出- α線スペクトロメトリ法 Ra-226 ①硝酸浸出, BaSO4捕集, EDTA-4Na溶解, 液体シンチ レーションカウンタ法(精米・野菜) ②灰化, 炭酸ナトリウムアルカリ溶 融, 塩酸で溶解後真空封 入,電離箱-電位計による 測定(果実)	U-238 α線スペクトロメータ (セイコーEG&G製または東芝製) Ra-226 ①アロカ製液体シンチレーションカウンタ ②大倉電気製振動容量電 位計, 電離箱
大気浮遊じん	U-238 U-234 Ra-226	文部科学省放射能測定 シリーズ 「環境試料採取法」(S58) による	U-238・U-234 イオン交換+α線スペットロ外リ Ra-226 灰化,酸浸出、イオン交換、 真空封入電離箱-電位計による測定	U-238·U-234 セイコ-EG&G製 α 線スペクトロメータ Ra-226 大倉電気製振動容量電位計 電離箱

図2 環境監視測定地点図(県境)

図3 環境監視測定地点図(木地山地区)

田東田

注)栗祖(参考)での測定については、従来から「人形峠事業所周辺環境保全等に関する報告・連絡等について」(昭和55年1月31日)に基づいて実施しており、また、本環境監視測定結果報告の際にも、参考として報告している。

2. 2 監視測定結果

2. 2. 1 概要

捨石たい積場に係る測定は監視測定計画に則り実施したが、大気中ラドンの第4四半期神倉地区の、観測ポストが雪中埋設のため、測定が出来なかった。その他の項目については計画通り実施した。

測定結果は、管理目標値が設定されている河川水、河底土、水田土のU-238及びRa-226は従来と同様の値であり管理目標値未満であった。

管理目標値が設定されていない空間 y 線線量率及び飲料水、生物質のU-238、Ra-226、飲料水、 大気中のRn-222についても、自然放射能レベルの分布・変動範囲内であることが確認された。

「方面ウラン残土の措置に関する協定書」に基づく、レンガ加工施設周辺地域の監視測定においては、大気中ラドンの第4四半期の県境、木地山地区は、観測ポストの雪中埋設のため、測定が出来なかった。その他の項目については計画通り実施した。

測定結果は、空間 y 線線量率及び河底土、畑土、水田土、表土、河川水、大気浮遊塵のU-234、U-238、Ra-226、大気中のRn-222についても、自然放射能レベルの分布・変動範囲内であることが確認された。

これらの結果は、平成21年3月に開催された鳥取県放射能調査専門家会議にて審議され、異常値は見られないことが確認された。

2. 2.2 詳細データ

(1) 平成20年度 捨石たい積場周辺環境監視測定結果

表 2-1. 空間 y 線線量率 (TLD)

表 2-2. 河川水

表2-3. 飲料水

表 2-4. 河底土

表2-5. 水田土

表2-6. 生物質

表2-7. 大気中ラドン

(2) 平成20年度 レンガ製造等に係る環境監視測定結果

表 3-1. 空間 γ 線線量率 (TLD)

表3-2. 大気中ラドン

表 3 - 3. 土壌(木地山地区)

表 3-4. 陸水(木地山地区)

表3-5. 大気浮遊塵(木地山地区)

データの表記方法について

- 1) 測定結果に誤差が表記されている場合、その値は計数誤差(1σ)である。
- 2) 「ND」は、測定値が計数誤差の3倍(3σ)以下であったこと、すなわち不検出を示す。 なお、ラドンの誤差は、校正定数の標準偏差(σ)と計数の標準偏差(σ c)より $\sqrt{\sigma^2 + \sigma^2}$ で与えている。
- 3) 「分析目標レベル」とは、放射能測定において計数値が計数誤差の3倍(3σ)と等しく なるような、おおよそのレベルを示し、通常の測定において検出可能なレベルである。

なお、分析目標レベル未満の値で有意に検出された場合は、そのまま有意値として記載している。

4) 「平均値」とは、当年度内の測定値を平均したものであるが、データの中にNDがあった場合、ND=分析目標レベルの値として計算し、計算結果の左に不等号「<」を付記した。

(1) 平成20年度 捨石たい積場周辺環境監視測定結果表2-1. 空間γ線線量率 (TLD)

なし

管理目標值

	4	11	#	崩	۴	ग	 	崩	
監視箇所	第1四半期	半期	第2四3	四半期	第3四半期	半期	第4四き	四半期	前年度測定範囲 最小值/最大值
	測定期間	測定値	測定期間	測定値	測定期間	測定値	測定期間	測定値	
	H20.3.3		H20 6 18		H20 9 19		H20. 12. 8		0.074
神命地区	}	0.087	≀	0.085	≀	0.093	≀	0.072	
	H20 6 18		H20 9 19		H20 12 8		H21 3 3		0.089
	H20 3 3		H20 6 19		H20 9 19		H20 12 8		0.089
方面地区	1	0.096	≀	0.091	≀	960 0	}	0.094	
	H20 6 19		H20 9 19		H20 12 8		H21 3 3		0.101
	H20 3 3		H20 6 19		H20 9 19		H20 12 8		0.089
麻盆地区	}	0.093	1	0.088	≀	0.092	}	0.086	
	H20 6 19		H20 9 19		H20 12 8		H21 3 3		0.094
	H20. 3. 3		H20 6 19		H20. 9. 19		H20. 12. 8		080 0
二十若区	1	0.085	1	0 079	1	0.084	1	0.082	
	H20 6 19		H20 9 19		H20 12 8		H21 3 3		0.088
	H20. 3. 3		H20 6 18		H20. 9. 18		H20. 12. 9		0.112
粉 公	1	0 118	1	0.116	≀	0.116	1	0.113	
	H20 6 18		H20 9 18		H20 12 9		H21 3 3		0.120
	H20 3 3		H20 6 18		H20 9 18		H20. 12. 9		0.079
田谷地区	1	0.085	1	0.083	1	0.086	1	0.087	
	H20 6 18		H20 9 18		H20 12 9		H21.3.3		0.092
	H20 3 3		H20 6 18		H20 9 18		H20 12 9		0.083
広瀬地区	1	0.088	1	0.086	≀	0.089	≀	060 0	
	H20. 6. 18		H20 9 18		H20 12 9		H21 3 3		0.094

 $\mu G y / h$ 単位:

X	114	129	113
喦	0	0	0
最小	0.077	0.088	0.086
地	神倉地区	方面地区	川上地区

*神倉地区、方面地区の変動範囲の値はS54年度~H元年度までの最低値と最大値*川上地区の変動範囲の値はS54年度~S62年度及びH元年度までの最低値と最大値

単位: U-238:mBq/L Ra-226:mBq/L Rn-222:Bq/L

分析目標レベル U-238 Ra-226 R

表2-2. 河川水

下 半 期 前年度測定範囲	第 3 四 半 期 第 4四半期 最小値/最大値	Rn-222 採取日 U-238 Ra-226 Rn-222 / U-238 Ra-226 Rn-222	0.4	H20.10.22 1.4 \pm 0.5 2.5 \pm 0.7 0.9 \pm 0.03 $/$ $<$ 5.0 $<$ 5.0		H20. 10. 21 (0.5 ± 0.3) 2.5 ± 0.7 8.8 ± 0.02 $<\overline{5.0}$ $<$	ND ND \ \ \ \ \ 5.0 \ 0.3	H20. 10. 21 (0.2 ± 0.2) (0.3 ± 0.6) 0.3 ± 0.02	ND ND 1.0	0.0 ± 0.03 H20.10.21 (0.4 ± 0.2) (0.1 ± 0.6) 3.0 ± 0.02 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5	8 < 5.0	1 ± 0.04 H20.10.9 2.2 ± 0.5 (0.7 ± 0.6) 1.4 ± 0.03 $/$ 2.5 2.3 1.5 1.5	ND ND 1.2	$.6\pm0.02$ H20.10.9 (1.1 \pm 0.4) (1.8 \pm 0.6) 1.3 \pm 0.02 $ $ < 5.0 < 5.0 $ $ 1.7	ND ND 1.2	
- 二	4 四半期	/ U-238	L	< 5.0	_	× 5.0		1.3	_	/ < 5.0				< 5.0	< 5.0	
朔	無	Rn-222		0.9 ± 0.03		3.8 ± 0.02		3 ± 0.02		3.0 ± 0.02		. 4 ± 0. 03		.3 ± 0.02	_	1.5 ± 0.03
*		Ra-226		0.7			QN		QN		QN		QN	0.6)	QN	
۲	8	U-238		0.5	ND		ND	0.2 ± 0.2) (ND	0.4 ± 0.2) (0.5	ND	1.1 ± 0.4) (QN	$(0.9 \pm 0.4)(1.0 \pm 0.6)$
		採取日		H20. 10. 22		H20. 10. 21		H20. 10. 21				H20. 10. 9		H20. 10. 9		H20. 10. 9
		Rn-222		0.9 ± 0.02		7.9 ± 0.02		0.5 ± 0.02		3.0 ± 0.03		1.1 ± 0.04		1.6 ± 0.02		1.1 ± 0.02
	解 未 B	Ra-226	ND	2.0 ± 0.8)	QN	(1.4 ± 0.8)	N	0.6 ± 0.7)	ND	(1.9 ± 0.8)	ND	(1.1 ± 0.7)	ND	(1.4 ± 0.7)	ND	(2.1 ± 0.8)
朔	第 2 四	U-238	QN	(0.3 ± 0.2)	QN	1.0 ± 0.4	QN	(0.4 ± 0.3)	QN	(0.7 ± 0.3)		1.6 ± 0.5	QN	0.9 ± 0.4		1.3 ± 0.4
*		採取日		H20. 7. 16		H20. 7. 17		H20. 7. 17		H20. 7. 17		H20. 7. 15		H20. 7. 15		H20, 7, 15
₹		Rn-222		0.3 ± 0.02		5.6 ± 0.05		0.4 ± 0.03		0.9 ± 0.03		0.8 ± 0.03		1.0 ± 0.02		1, 2 ± 0 , 02
ヸ	崩 未 B	Ra-226	QN	1.7 ± 0.6	ON	1.6 ± 0.7)	ON	0.9 ± 0.6	ON	(1.1 ± 0.6)		2.3 ± 0.6		2.6 ± 0.7		2.0 ± 0.6
	第 1 四	U-238	QV	(0.7 ± 0.3)		1.9 ± 0.5	QV	(0.4 ± 0.3)	QV	0.5 ± 0.3		1.5 ± 0.5		1.4 ± 0.4		2.1 ± 0.5
		採取日		H20. 4. 22 (H20. 4. 22		H20. 4. 23 (H20. 4. 23 (H20. 4. 24		H20. 4. 24		H20. 4. 24
	監視箇所	_		神倉地区		方面地区		麻盆岩区		三上港区		步谷地区		田谷地区		広瀬地区

注1) 測定値の誤差表記は、計数誤差(10)である。表中の「ND」は、測定値が計数誤差の3倍(30)以下であったことを示す。(次項以下同様)

表2-3. 飲料水

1																	
なし	配用	型型	Rn-222	6.0	1.4	23	27	30	38	27	29	190	250	18	23	240	250
票值	前年度測定範囲	最小値/最大値	Ra-226		< 5.0	< 5.0	2.2		< 5.0	< 5.0	1.9	1.7	2.2	< 5.0	1.7	< 5.0	2.7
管理目標値	前年	題/	U-238		< 5.0		< 5.0		< 5.0		< 5.0	9.4	13.0		< 5.0	3.7	4.2
		第4四半期		_	_	_	_	_	_	_	_	_	_				
		無			2		9		_		_		0		9	\geq	8
	崩		Rn-222		1.0 ± 0.05		27 ± 0.16		37 ± 0.11		25 ± 0.11		320 ± 1.00		22 ± 0.06		280 ± 0.78
		崩	26		+ 0.5)		0.5)	_	0.5)	_	0.6		9.0	_	0.5)		9.0
	#	計	Ra-226	Q	0.8	Q	<u>=</u> +1	ND	1. 4.	ΩN	1.4		1.9 ±	ΩN	1.2 ±		3.2 ±
	۲	က			0.4		0.6		0.5)		0.0		1.4		0.6		Ξ:
		無	U-238	QN	(0.3 ± 0.4)	QN	(0.7 ±	ND	(0.5 ±	ND	(0.7 ±		5.8 ±	ND	0.4 ±		3.9 +
			採取日		H20.10.22		H20.10.22		H20.10.21		H20.10.21		H20.10.9		H20.10.9		H20.10.9
			72										Ï				
			Rn-222		0.79 ± 0.03		26 ± 0.05		35 ± 0.15		29 ± 0.06		330 ± 1.1		21 ± 0.13		290 ± 0.64
		崩			$\overline{}$		^				^						
		#	Ra-226	Q.	0.5 ± 0.5	Q.	1.1 ± 0.5		2.5 ± 0.6	ND	1.4 ± 0.5		1.9 ± 0.5		$2.6\pm\ 0.6$		2.5 ± 0.6
		2 [2]			$\stackrel{\smile}{\sim}$		$\stackrel{\smile}{\sim}$				$\stackrel{\smile}{\sim}$				$\overline{}$		
	崩	無	U-238	9	-0.4 ± 0.4	9	0.5 ± 0.6		4.2 ± 1.2	Q	-0.1 ± 0.1		7.6 ± 1.7	Q	1.0 ± 0.6		5.0 ± 1.4
	##		Ш		$\overline{}$		$\overline{}$				$\overline{}$				$\overline{}$		
	#		採取		H20.7.9		H20.7.11		H20.7.11		H20.7.11		H20.7.9		H20.7.9		H20.7.9
			Rn-222		1.7 ± 0.04		+ 0.09		+ 0.08		± 0.06		150 ± 0.55		± 0.07		300 ± 0.77
	4		Æ				28 ±		36 ±		25 ±		150		23 ±		
		米 期	Ra-226	9	0.7 ± 0.5	₽	1.4 ± 0.5		1.6 ± 0.5	Q	1.2 ± 0.5		2.7 ± 0.6	Q	1.1 ± 0.5	Q	0.8 ± 0.5
		囙	α.		0.7		$\overline{}$		1.6		-1.2		2.7		<u>-</u>))
		無	U-238	Q	0.8 ± 0.5	Q	-0.2 ± 0.1)	ND	0.8 ± 0.6	ND	1.9 ± 0.8		5.1 ± 1.3	ND	0.0 ± 0.3		3.5 ± 1.1
			_		\smile		$\overline{}$		0.8		0.1		5.1		\smile		
			採取日		H20.4.22		H20.4.23		H20.4.23		H20.4.23		H20.4.24		H20.4.24		H20.4.24
	刑		居市		神倉地区		水道水 方面地区		麻畑地区		水道水 川上地区		步谷地区		日谷地区		広瀬地区
	: 視場		試料名		水道水相		道水力		井戸大田		道水厂		¥		水道水		¥
	閵		蓝		六		六		#		长		剰		长		嶣

単位: U-238:mBq/L Ra-226:mBq/L Rn-222:Bq/L

Rn-222:Bq/L		Rn-222	0.2
	票レベル	Ra-226	2.0
Ra-226:mBq/L	分析目標	U-238	2.0
mBq∕L Ra-			

表2-4. 河底土

							管理	管理目標値: U-238	U-238: 1800 Bq/kg·乾		Ra-226: 1800 Bq/kg·乾	1/kg·乾
			4	}	崩			۲	半		前年度測定範囲	声
監視箇所	7-1	第 1 四 注	兼	無	井 四 乙	解 :	第	未 四 と 気	解 ;	第4四半期	最小值/最大值	景大 値
	採取日	U-238	Ra-226	採取日	U-238	Ra-226	採取日	U-238	Ra-226	/	U-238	Ra-226
神倉地区	H20. 4. 22	22 ± 2.1	44 ± 1.5	H20. 7. 16	27 ± 2.3	42 ± 1.4	H20. 10. 22	25 ± 2.2	32 ± 1.3	_	22 33	31 44
方面地区	H20. 4. 22	14 ± 1.3	14 ± 1.2	H20. 7. 17	14 ± 1.2	13 ± 1.1	H20. 10. 21	10 ± 1.0	12 ± 1.1	_	13	91
麻盆地区	H20. 4. 23	9.1 ± 1.1	6.4 ± 1.1	H20. 7. 17	9 ± 1.0	7.9 ± 1.0	H20. 10. 21	9.2 ± 1.0	6.5 ± 1.0	_	6. 6 9. 8	4.8
日本	H20. 4. 23	9 ± 1.0	10 ± 1.0	H20. 7. 17	11 ± 1.1	11 ± 1.0	H20. 10. 21	7 ± 0.8	6 ± 1.0	_	12 15	⁵ / ₂₃
步谷地区	H20. 4. 24	18 ± 1.6	15 ± 1.1	H20. 7. 15	24 ± 2.1	23 ± 1.2	H20. 10. 9	23 ± 2.0	20 ± 1.1	_	$\frac{20}{26}$	15 21
田谷地区	H20. 4. 24	17 ± 1.6	18 ± 1.2	H20. 7. 15	11 ± 1.2	13 ± 1.1	H20. 10. 9	13 ± 1.3	1.1 ± 1.1	_	11 16	0 1
広瀬地区	H20. 4. 24	18 ± 1.7	18 ± 1.2	H20. 7. 15	14 ± 1.2	18 ± 1.2	H20. 10. 9	19 ± 1.7	18 ± 1.2		$\frac{12}{24}$	20 13

単位:U-238:Bq/kg·乾 Ra-226:Bq/kg·乾

200
0000

表2-5. 水田土

							管理	管理目標值: U-23	U-238: 1800 Bq/kg·乾		Ra-226:740 Bq/kg·乾	/kg·乾
			未 エ	됬	崩			¥	米		 前年度測定範囲	定範囲
監視箇所		第1四半	# 期		第2四当	第 未		第3四半	# 期	第4四半期	最小值/最大值	最大值
	採取日	U-238	Ra-226	採取日	U-238	Ra-226	採取日	U-238	Ra-226		U-238	Ra-226
神倉地区	H20. 4. 22	28 ± 2.4	23 ± 1.2	H20. 7. 16	25 ± 2.1	19 ± 1.1	H20. 10. 22	32 ± 2.7	28 ± 1.3	<u> </u>	27 40	17 32
方面地区	H20. 4. 22	35 ± 3.1	27 ± 1.3	H20. 7. 17	35 ± 2.9	27 ± 1.2	H20. 10. 21	34 ± 2.8	27 ± 1.2	<u> </u>	²⁴	23 31
麻盆地区	H20. 4. 23	38 ± 3.3	28 ± 1.3	H20. 7. 17	20 ± 1.8	25 ± 1.2	H20. 10. 21	38 ± 3.1	29 ± 1.3	<u></u>	34 52	23 28
上地区	H20. 4. 23	35 ± 2.8	26 ± 1.3	H20. 7. 17	31 ± 2.5	25 ± 1.2	H20. 10. 21	34 ± 2.2	28 ± 1.3	<u></u>	39 35	23 29
步谷地区	H20. 4. 24	66± 5.1	44 ± 1.5	H20. 7. 15	63 ± 4.9	42 ± 1.3	H20. 10. 9	62 ± 4.7	45 ± 1.5	_	80	$\frac{32}{42}$
円谷地区	H20. 4. 24	31 ± 2.6	28 ± 1.3	H20. 7. 15	30 ± 2.7	23 ± 1.1	H20. 10. 9	43 ± 3.6	40 ± 1.4		26 34	28 30
広瀬地区	H20. 4. 24	63 ± 5.1	53 ± 1.6	H20. 7. 15	42 ± 3.3	46 ± 1.4	H20. 10. 9	57 ± 4.4	52 ± 1.5		-4 ₂	42 51

Ra-226: Bq/kg·乾 分析目標レベル U-238 Ra-226

分析目標レベル U-238 Ra-226

0.005 0.03

0.030 0.030 0.012 0.014 0.030 0.039 0.030 0.013 0.052 0.031 < 0.005 0.021</p>
Ra-226: Bq/kg・生 Ra-226 画 廀 なし 0.0050 0.0025 0.0050 0.005 0.0050 0.0050 0.0050 0.0031 件 0.0050 U-238 U-238 掘 管理目標値 第4四半期 単位: U-238: Bq/kg·生 ND 0.013 ± 0.008) ND 0.016 ± 0.008) ND 0.011 ± 0.009) ND 0.014 ± 0.008) ND 0.017 ± 0.009) ND 0.022 ± 0.009) ND 0.018 ± 0.009 ND 0.026 ± 0.009) ND 0.018 ± 0.008 ND 0.013 ± 0.008 0.029 ± 0.008 0.043 ± 0.009 0.051 ± 0.009 0.034 ± 0.009 Ra-226 ND 0.0004 ± 0.0004) (ND 0.0004 ± 0.0003) 0.0032 ± 0.0010 ND 0.0023 ± 0.0008) ND 0.0027 ± 0.0009) ND 0.0019 ± 0.0007) ND 0.0004 ± 0.0005) ND 0.0014 ± 0.0007) H20.11.13 H20.11.13 H20.11.11 H20.11.11 H20.11.11 H20.11.13 H20.11.13 H20.11.11 H20.12.8 H20.11.11 採取日 ND 0.013 ± 0.005 0.016 ± 0.006 Ra-226 Ra-226 剧 0.0005 ± 0.0006) ND 0.0009 ± 0.0007) U-238 採取日 採取日 第1四半期 占 坦 麻畑地区 步谷地区 円谷地区 広瀬地区 神倉地区 川上地区 広瀬地区 神倉地区 方面地区 川上地区 方面地区 麻畑地区 步谷地区 円谷地区 方面地区 麻畑地区 岩师 捆 払 竨 * 讇 黙 棐 Ш

- 15 -

生物質

ဖ

1

 $^{\circ}$

表2-7. 大気中ラドン

								15. 瑶口作值	٥
		非 て	觧		•	非	荆		
監視箇所	第11	四半期	12第	第2四半期	第36	四半期	第46	第4四半期	前年度測定範囲値
	測定期間	測定值	測定期間	測定値	測定期間	測定値	測定期間	測定値	最小值/最大值
	H20.3.21		H20.7.2		H20.9.30		H20.12.17		12.6
神倉地区	₹	16.1 ± 1.0	?	24.2 ± 1.5	?	17.7 ± 1.1	1	*	1
	H20.7.2		H20.9.30		H20.12.17		H21.3.4		19.5
	H20.3.19		H20.6.24		H20.10.1		H20.12.22		13.8
方面地区	≀	17.8 ± 1.1	≀	20.6 ± 1.3	≀	16.9 ± 1.1	≀	15.1 ± 1.0	1
	H20.6.24		H20.10.1		H20.12.22		H21.3.4		20.8
	H20.3.19		H20.6.18		H20.9.30		H20.12.15		11.0
麻盆岩冈	≀	11.1 ± 0.7	?	18.0 ± 1.1	≀	12.7 ± 0.8	}	11.7 ± 0.8	
	H20.6.18		H20.9.30		H20.12.15		H21.3.4		16.4
	H20.3.19		H20.6.18		H20.9.30		H20.12.15		9.1
川上地区	≀	9.8 ± 0.6	≀	11.2 ± 0.7	≀	10.9 ± 0.7	?	10.9 ± 0.7	
	H20.6.18		H20.9.30		H20.12.15		H21.3.4		12.0
	H20.3.18		H20.6.17		H20.9.16		H20.12.11		37.3
书 公书区	≀	47.0 ± 2.8	≀	138.6 ± 8.1	≀	54.7 ± 3.2	≀	42.1 ± 2.5	
	H20.6.17		H20.9.16		H20.12.11		H21.3.5		123.1
	H20.3.18		H20.6.17		H20.9.16		H20.12.11		17.4
日谷地区	₹	18.2 ± 1.1	₹	27.2 ± 1.7	≀	22.9 ± 1.4	?	20.4 ± 1.3	
	H20.6.17		H20.9.16		H20.12.11		H21.3.5		25.8
	H20.3.18		H20.6.17		H20.9.16		H20.12.11		36.3
広瀬地区	≀	20.1 ± 1.2	≀	31.2 ± 1.9	≀	22.7 ± 1.4	≀	24.6 ± 1.5	
	H20.6.17		H20.9.16		H20.12.11		H21.3.5		43.5

*:観測ポストの雪中埋没のため欠測

単位: B q / m³

単位: μ Gy/hr

(2) 平成20年度 レンガ製造等に係る環境監視測定結果表3-1. 空間線量率 (TLD)

									管理目標値:なし
	靴	第1四半期	第	第2四半期	妣	第3四半期	本	第4四半期	前年度測定範囲
	測定期間	測定値	測定期間	測定值	測定期間	測定値	測定期間	測定値	【最小值】
県境	H20.3.3		H20.6.17		H20.9.17		H20.12.9		000
ポイント	1	0.071	1	0.074	1	0.079	1	0.057	0.0.0
	H20.6.17		H20.9.17		H20.12.9		H21.3.4		0.080
県境	H20.3.3		H20.6.17		H20.9.17		H20.12.9		0500
ポイント2	}	0.087	}	0.091	}	0.093	1	0.069	6/0:0
	H20.6.17		H20.9.17		H20.12.9		H21.3.4		0.089
県境	H20.3.3		H20.6.17		H20.9.17		H20.12.9		0500
ポインで3	}	0.072	}	0.075	}	0.078	}	0.062	0.070
	H20.6.17		H20.9.17		H20.12.9		H21.3.4		0.081
	H20.3.3		H20.6.17		H20.9.17		H20.12.9		0500
木粘石岩区(1)	1	0.089	}	0.090	1	960.0	1	0.077	0.0/9
	H20.6.17		H20.9.17		H20.12.9		H21.3.4		0.097
	H20.3.3		H20.6.17		H20.9.17		H20.12.9		N 90 0
木地山地区(2)	1	0.065	1	990'0	1	690.0	1	0.057	0.004
	H20.6.17		H20.9.17		H20.12.9		H21.3.4		0.07

単位:Ba/m³

*観測ポストの雪中埋没のため欠測

表3-2. 大気中ラドン

	\ - - -													管理目標値:なし
	4141	第1四半期	H		fin.	第2四半期	五		\$UCK	第3四半期		Įi	第4四半期	前年度測定範囲
	測定期間	無	測定値		測定期間	îî.	測定値		測定期間	測定値	重	測定期間	測定値	【 販小順 】 【 最大値 】
県境	H20.3.3				H20.6.17				H20.9.16			H20.12.9		d
ポインと	?	15.6	+1	1.0	?	16.1	+1	1.0	?	17.7 ±	Ξ:	?	*	D. (
	H20.6.17				H20.9.16				H20.12.9			H21.3.4		3.8
県境	H20.3.3				H20.6.17				H20.9.16			H20.12.9		0
ポイント2	1	12.5	+1	8.0	1	26.8	+1	1.6	1	13.9 ±	0.0	}	*	0.0
	H20.6.17				H20.9.16			_	H20.12.9			H21.3.4		18.2
県境	H20.3.3				H20.6.17				H20.9.16			H20.12.9		
ポインで	}	9.1	+1	9.0	?	14.5	+1	6.0	?	13.9	6.0	}	*	4.0
	H20.6.17				H20.9.16			_	H20.12.9			H21.3.4		0.01
	H20.3.3				H20.6.17				H20.9.16			H20.12.9		u C
十 名 日 日 日 日 日	1	10.0	+1	9.0	1	19.7	+1	1.2	1	11.8	0.8	1	*	. o .
	H20.6.17				H20.9.16				H20.12.9			H21.3.4		10.4
	H20.3.3				H20.6.17				H20.9.16			H20.12.9		7 0 7
木地山地区(2)	1	14.3	+1	6.0	1	20.5	+1	1.3	1	15.4 ±	1.0	1	*	13.7
	H20.6.17				H20.9.16				H20.12.9			H21.3.4		19.0
	H20.3.3				H20.6.17				H20.9.16			H20.12.9		1 20
米 书 王 郑 区	1	56.6	+1	9.1	1	35.0	+1	2.1	1	65.9	3.9	1	56.3 ± 3.4	4.72
(屋内1)	H20.6.17				H20.9.16				H20.12.9			H21.3.4		63.8
	H20.3.3				H20.6.17				H20.9.16			H20.12.9		16.0
米 书	1	16.5	+1	1.0	}	29.1	+1	1.8	1	19.4 ±	1.2	}	16.5 ± 1.0	-0.3 -0.3
(屋内2)	H20.6.17				H20.9.16				H20.12.9			H21.3.4		92.5

表3-3. 土壌(木地山地区)

な し		57	_							
值:	範囲 []	Ra-226	10	13	13	17	15	22	5.6	24
管理目標値:なし	前年度測定範囲 長小値 最大値	U-234	12	21	20	36	21	31	8.7	28
69	媊	U-238	12	23	17	33	18	27	10	27
		Ra-226	01 + 10	0 - - -	10 + 10		93 + 19	2.1 - 6.2	10 +	
	第3四半期	U-234	U-234		22 + 10	6:1 - 77	06 + 66	23 ± 2 .0	15 +	<u>†</u> -l 2
		U-238	+ + + + + + + + + + + + + + + + + + + +		+ + + 0	E: -	66 + 20	7.7 - 7.7	+	-l -l
	日付		10 02				LPO 10 22	FEO. 10.23	LPO 10 22	
		Ra-226	+ 90	9.6 -I	18 + 11	- -l 0	14 + 10 H20 10 23	- - -		
	第2四半期	U-234	00 + 10	9.2 - 1.0	75 + 21	دع ∸ د.ا	10 + 17	10 - 1./	\	\
		U-238	4 00	0.9 - 0.9	06 + 16	24 - 2.0	20 + 18	20 - 1.0		
	日付		190 0 10	120.0	190 0 10	1.0.0.0	01000	TZU.0.	I	
		Ra-226	+		70 + 13	7:	13 + 11		13 + 10	<u>?</u> ·l
Ì	第1四半期	U-234	10 +	7	06 + 66	7.7	10 +	0.1	13 + 13	<u>?</u> ·I 2
		0 − 238	10 + 10	2: -I 2:	66 + 36	7:7 - 67	10 + 16	0: -I 0:	13 + 13	? ·I 2
	日付		06 2 06 1	1 120.0.20	00 2 00	1 120.0.20	100 5 20	TEU.3.20	100 5 20	20.0.2
ί	項目		:100年十	- T. J. E. T. L.	+ 54	1	十日十	WHT.	+	¥ Į

単位: Bg/kg乾

単位: ×10⁻¹²Bq/cm³

表3-4. 陸水 (木地山地区)

		 -											管理	管理目標値:なし	: なし
項目	日付		第1四半期		日付		第2四半期		日付		第3四半期		前角	前年度測定範囲 【最小値】 【最大値】	囲
		U-238	U-234	U-234 Ra-226		0⊢238	U-234	Ra-226		U-238	U-238	Ra-226	U-238	U-234	Ra-226
計	06年06日 24日底	QN	9	9	01000	ΩN	QN	QN	LPO 10 22	QN	QN.	9			
<u> </u>	120.3.20	(0.04 ± 0.11)	$(0.04 \pm 0.11) (0.04 \pm 0.11) (0.4 \pm 0.62)$	(0.4 ± 0.62)		(0.76 ± 0.36)	(0.76 ± 0.36) (0.44 ± 0.27) (0.94 ± 0.62)	(0.94 ± 0.62)	120.10.23	(0.42 ± 0.27)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1.2 ± 0.65)	<5.0	<5.0	<5.0

単位: mBq/L

表3-5. 大気浮遊塵(木地山地区)

													管理	管理目標値:なし	: なし
第1四半期 日付	四半期	四半期	日付	日付			第2四半期		日付		第3四半期		前角	前年度測定範囲 長小値 最大値	田
U-238 U-234 Ra-226 U-238	U-234 Ra-226	Ra-226		U-238	U-238	8	U-234	U-234 Ra-226		0−238	U-234	Ra-226 U-238 U-234 Ra-226	U-238	U-234	Ra-226
ON ON ON SERVICE	QN QN	QV QV	- QN	1					H20 11 5	QN	Q	QN			
$(2.0 \pm 0.67) (1.2 \pm 0.58) (2.5 \pm 5.4)$	$(2.0 \pm 0.67) (1.2 \pm 0.58) (2.5 \pm 5.4)$	$(1.2 \pm 0.58) (2.5 \pm 5.4)$	(2.5 ± 5.4)			\setminus	\		0.11.0211	(1.1 ± 0.56)	$(1.1 \pm 0.56) (0.83 \pm 0.52) (8.6 \pm 5.2) < 5.0$	(8.6 ± 5.2)	<5.0	<5.0	<50

分析目標レベル

試料	単位	U-238	U-234	Ra-226
土壌	Bq/kg载	1.0	1.0	2.0
河川木	T/bBm	5.0	2.0	2.0
大気浮遊塵	$\times 10^{-12} \text{Ba/cm}^3$	5.0	2.0	20

!!!!			

国際単位系 (SI)

表 1. SI 基本単位

基本量	SI 基本i	单位
- 本半里	名称	記号
長さ	メートル	m
質 量	キログラム	kg
時間	秒	s
電 流	アンペア	A
熱力学温度	ケルビン	K
物 質 量	モル	mol
光 度	カンデラ	cd

表2. 基本単位を用いて表されるSI組立単位の例

組立量	SI 基本単位	
和工工里	名称	記号
面積	平方メートル	m ²
体 積	立法メートル	m ³
速 さ , 速 度	メートル毎秒	m/s
加 速 度	メートル毎秒毎秒	m/s^2
波数	毎メートル	$\mathbf{m}^{\cdot 1}$
密度, 質量密度	キログラム毎立方メートル	kg/m ³
面積密度	キログラム毎平方メートル	kg/m ²
比 体 積	立方メートル毎キログラム	m ³ /kg
電流密度	アンペア毎平方メートル	A/m^2
	アンペア毎メートル	A/m
量濃度 ^(a) ,濃度	モル毎立方メートル	mol/m ³
質 量 濃 度	キログラム毎立法メートル	kg/m ³
	カンデラ毎平方メートル	cd/m ²
屈 折 率 (b)	(((() () () () () () () () (1
比 透 磁 率 (b)	(数字の) 1	1

- (a) 量濃度 (amount concentration) は臨床化学の分野では物質濃度 (substance concentration) ともよばれる。 (b) これらは無灰元量あるいは灰元1 ともっ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3 因有の名称と記号で表されるCI組立単位

表3.	固有の名称と記え	デじ衣さ		
			SI 組立単位	
組立量	名称	記号	他のSI単位による	SI基本単位による
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	記万	表し方	表し方
平 面 角	ラジアン ^(b)	rad	1 (b)	m/m
立 体 角	ステラジアン ^(b)	$\mathbf{sr}^{(c)}$	1 (b)	$m^{2/}m^2$
周 波 数	ヘルツ ^(d)	Hz		s^{-1}
力	ニュートン	N		m kg s ⁻²
圧 力 , 応 力	パスカル	Pa	N/m^2	${ m m}^{\cdot 1} { m kg \ s}^{\cdot 2}$
エネルギー、仕事、熱量	ジュール	J	N m	$\mathrm{m}^2\mathrm{kg}\mathrm{s}^{-2}$
仕事率, 工率, 放射束	ワット	W	J/s	$m^2 \text{ kg s}^{\cdot 3}$
電 荷 , 電 気 量	クーロン	C		s A
電位差 (電圧),起電力	ボルト	V	W/A	$m^2 \text{ kg s}^{-3} \text{ A}^{-1}$
静 電 容 量	ファラド	F	C/V	$m^{\cdot 2} kg^{\cdot 1} s^4 A^2$
	オーム	Ω	V/A	$m^2 \text{ kg s}^{-3} \text{ A}^{-2}$
コンダクタンス	ジーメンス	s	A/V	$m^{\cdot 2} kg^{\cdot 1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 \text{ kg s}^{-2} \text{ A}^{-1}$
	テスラ	Т	Wb/m^2	${ m kg\ s}^{2}{ m A}^{1}$
	ヘンリー	Н	Wb/A	$m^2 \text{ kg s}^{-2} \text{ A}^{-2}$
セルシウス温度	セルシウス度 ^(e)	°C		K
光 束	ルーメン	lm	$\mathrm{cd}\;\mathrm{sr}^{\mathrm{(c)}}$	cd
	ルクス	lx	lm/m^2	$m^{\cdot 2}$ cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		cd m ⁻² cd s ⁻¹
吸収線量, 比エネルギー分与,	グレイ	Gy	J/kg	$m^2 s^2$
カーマ	7 4 1	l ^{Gy}	5/Kg	m s
線量当量, 周辺線量当量, 方向	シーベルト (g)	Sv	J/kg	$\mathrm{m}^2\mathrm{s}^{\cdot2}$
性線量当量,個人線量当量	V - 4 - 7 - 1	SV	5/Kg	
酸 素 活 性	カタール	kat		s ⁻¹ mol

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはやコヒーレントではない。
(b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
(c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
(d)ヘルツは周期現象についてのみ、ベクレルは放射性接種の統計的過程についてのみ使用される。
(e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。セルシウス度とケルビンの単位の大きさは同一である。したがって、温度差や温度間隔差表す数値はどちらの単位で表しても同じである。
(f)放射性接種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
(g)単位シーベルト (PV,2002,70,205) についてはCIPM勧告2 (CI-2002) を参照。

表4. 単位の中に固有の名称と記号を含むSI組立単位の例

	Lieble Asset Michigan Company		TC-> D1
	S	I 組立単位	
組立量	名称	記号	SI 基本単位による 表し方
粘 度	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
力のモーメント	ニュートンメートル	N m	$m^2 \text{ kg s}^{\cdot 2}$
表 面 張 力	ニュートン毎メートル	N/m	kg s ⁻²
	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	m m ⁻¹ s ⁻² =s ⁻²
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ^{·3}
熱容量,エントロピー		J/K	$m^2 \text{ kg s}^{-2} \text{ K}^{-1}$
比熱容量,比エントロピー		J/(kg K)	$m^2 s^{-2} K^{-1}$
	ジュール毎キログラム	J/kg	$\mathrm{m^2s^{\cdot2}}$
		W/(m K)	m kg s ⁻³ K ⁻¹
体 積 エ ネ ル ギ ー	ジュール毎立方メートル	J/m^3	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
	クーロン毎立方メートル	C/m^3	m ⁻³ sA
	クーロン毎平方メートル	C/m ²	m ⁻² sA
	クーロン毎平方メートル	C/m^2	m ⁻² sA
	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透磁率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モ ル エ ネ ル ギ ー	ジュール毎モル	J/mol	m ² kg s ⁻² mol ⁻¹
モルエントロピー, モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	m ² kg s ⁻² K ⁻¹ mol ⁻¹
照射線量 (X 線及びγ線)	クーロン毎キログラム	C/kg	$kg^{\cdot 1}sA$
吸 収 線 量 率	グレイ毎秒	Gy/s	$m^2 s^{-3}$
放射 強 度	ワット毎ステラジアン	W/sr	m ⁴ m ⁻² kg s ⁻³ =m ² kg s ⁻³
放射輝度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

乗数	接頭語 記号		乗数	接頭語	記号
10^{24}	ヨ タ	Y	10 ⁻¹	デ シ	d
10^{21}	ゼタ	Z	10^{-2}	センチ	с
10^{18}	エクサ	E	10 ⁻³	ミリ	m
10^{15}	ペタ	P	10 ⁻⁶	マイクロ	μ
10^{12}	テラ	Т	10 ⁻⁹	ナーノ	n
10^{9}	ギガ	G	10^{-12}	F. =	p
10^{6}	メガ	М	10.15	フェムト	f

 $10^{\cdot 18}$ $10^{\cdot 21}$

ゼプ

 10^3

 10^2

 10^1

表 5.SI 接頭語

表6. SIに属さないが、SIと併用される単位

h

名称	記号	SI 単位による値
分	min	1 min=60s
時	h	1h =60 min=3600 s
日	d	1 d=24 h=86 400 s
度	٥	1°=(п/180) rad
分	,	1'=(1/60)°=(п/10800) rad
秒	,,	1"=(1/60)'=(π/648000) rad
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²
リットル	L, 1	$1L=11=1dm^3=10^3cm^3=10^{-3}m^3$
トン	t	1t=10 ³ kg

表7. \mathbf{SI} に属さないが、 \mathbf{SI} と併用される単位で、 \mathbf{SI} 単位で

衣される数値が表験的に待られるもの							
名称	記号	SI 単位で表される数値					
電子ボルト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J					
ダルトン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg					
統一原子質量単位	u	1u=1 Da					
天 文 単 位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m					

表8. SIに属さないが、SIと併用されるその他の単位

	名称		記号	SI 単位で表される数値
バ	_	レ	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa
				1mmHg=133.322Pa
オン	グストロー	ーム	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m
海		里	M	1 M=1852m
バ	_	ン	b	$1 b=100 fm^2=(10^{-12} cm)2=10^{-28} m^2$
1	ッ	卜	kn	1 kn=(1852/3600)m/s
ネ	_	パ	Np ~	CI単位しの数は的お即反け
ベ		ル	В	SI単位との数値的な関係は、 対数量の定義に依存。
デ	ジベ	ル	dB ~	, , , , , , , , , , , , , , , , , , , ,

表9. 固有の名称をもつCGS組立単位

名称	記号	SI 単位で表される数値
エルグ	erg	1 erg=10 ⁻⁷ J
ダ イ ン	dyn	1 dyn=10 ⁻⁵ N
ポアズ	P	1 P=1 dyn s cm ⁻² =0.1Pa s
ストークス	St	$1 \text{ St} = 1 \text{cm}^2 \text{ s}^{-1} = 10^{-4} \text{m}^2 \text{ s}^{-1}$
スチルブ	sb	$1 \text{ sb} = 1 \text{cd cm}^{-2} = 10^4 \text{cd m}^{-2}$
フ ォ ト	ph	$1 \text{ ph}=1 \text{cd sr cm}^{-2} 10^4 \text{lx}$
ガル	Gal	1 Gal =1cm s ⁻² =10 ⁻² ms ⁻²
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{G cm}^2 = 10^{-8} \text{Wb}$
ガ ウ ス	G	1 G =1Mx cm ⁻² =10 ⁻⁴ T
エルステッド ^(c)	Oe	1 Oe • (10 ³ /4π)A m ^{·1}

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ' 」 は対応関係を示すものである。

長10.	SIに属	さない	いその他	の単	位の例

	表10. 81に属さない七の他の単位の例							
	3	名利	Ķ		記号	SI 単位で表される数値		
キ	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq		
ν	ン	卜	ゲ	ン	R	$1 R = 2.58 \times 10^{-4} C/kg$		
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy		
ν				ム	rem	1 rem=1 cSv=10 ⁻² Sv		
ガ		ン		7	γ	$1 \gamma = 1 \text{ nT} = 10-9 \text{T}$		
フ	工		ル	3		1フェルミ=1 fm=10-15m		
メー	ートル	系	カラ:	ット		1メートル系カラット = 200 mg = 2×10-4kg		
1				ル	Torr	1 Torr = (101 325/760) Pa		
標	準	大	気	圧	atm	1 atm = 101 325 Pa		
カ	¤		IJ	_	cal	1cal=4.1858J(「15℃」カロリー),4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)		
ર	ク		口	ン	μ	$1 \mu = 1 \mu m = 10^{-6} m$		