SPring-8 原子力機構軟 X 線ビームライン
BL23SU における
ノンストップ吸収スペクトル計測システムの導入
Installation of Nonstop Absorption Measurement System
in JAEA Soft X-ray Beamline BL23SU at SPring-8

福田 義博 竹田 幸治 岡根 哲夫 斎藤 祐児
小林 啓介*

Yoshihiro FUKUDA, Yukiharu TAKEDA, Tetsuo OKANE, Yuji SAITO
and Keisuke KOIBAYASHI*

量子ビーム応用研究部門
放射光技術開発グループ
Advanced Beamline Development Group
Quantum Beam Science Directorate

March 2007
Japan Atomic Energy Agency

日本原子力研究開発機構
国際単位系 (SI)

表 1. 国際単位系

<table>
<thead>
<tr>
<th>基本単位</th>
<th>記号</th>
<th>测定装置</th>
<th>比較装置の類型</th>
<th>比較装置の数</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>m</td>
<td>レーザー</td>
<td>レーザー</td>
<td>1</td>
</tr>
<tr>
<td>質量</td>
<td>kg</td>
<td>デシバルク</td>
<td>デシバルク</td>
<td>1</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>デジタル時計</td>
<td>デジタル時計</td>
<td>1</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>セルを用いる</td>
<td>セルを用いる</td>
<td>1</td>
</tr>
<tr>
<td>タンジェント</td>
<td>rad</td>
<td>ハログンランプ</td>
<td>ハログンランプ</td>
<td>1</td>
</tr>
<tr>
<td>光速</td>
<td>m/s</td>
<td>レーザー</td>
<td>レーザー</td>
<td>1</td>
</tr>
</tbody>
</table>

表 2. 国際単位系を示すことができる慣用単位

<table>
<thead>
<tr>
<th>惯用単位</th>
<th>変換因子</th>
</tr>
</thead>
<tbody>
<tr>
<td>センチメートル</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>ミリメートル</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>ニンメートル</td>
<td>10^{-9}</td>
</tr>
</tbody>
</table>

表 3. 国際単位系と慣用単位の変換

<table>
<thead>
<tr>
<th>惯用単位</th>
<th>国際単位系</th>
</tr>
</thead>
<tbody>
<tr>
<td>センチメートル</td>
<td>m</td>
</tr>
<tr>
<td>ミリメートル</td>
<td>cm</td>
</tr>
<tr>
<td>ニンメートル</td>
<td>mm</td>
</tr>
</tbody>
</table>

表 4. 国際単位系の基本単位とその他の単位の定義

<table>
<thead>
<tr>
<th>基本単位</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
</tr>
<tr>
<td>時間</td>
<td>セカンド</td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
</tr>
<tr>
<td>タンジェント</td>
<td>ラジアン</td>
</tr>
<tr>
<td>光速</td>
<td>カンペア</td>
</tr>
</tbody>
</table>

表 5. 国際単位系の補助単位

<table>
<thead>
<tr>
<th>補助単位</th>
<th>記号</th>
<th>测定装置</th>
<th>比較装置の類型</th>
<th>比較装置の数</th>
</tr>
</thead>
<tbody>
<tr>
<td>温度</td>
<td>K</td>
<td>サンダルフード</td>
<td>サンダルフード</td>
<td>1</td>
</tr>
<tr>
<td>压力</td>
<td>Pa</td>
<td>サンダルフード</td>
<td>サンダルフード</td>
<td>1</td>
</tr>
</tbody>
</table>

表 6. 国際単位系と慣用単位の変換

<table>
<thead>
<tr>
<th>惯用単位</th>
<th>国際単位系</th>
</tr>
</thead>
<tbody>
<tr>
<td>センチメートル</td>
<td>m</td>
</tr>
<tr>
<td>ミリメートル</td>
<td>cm</td>
</tr>
<tr>
<td>ニンメートル</td>
<td>mm</td>
</tr>
</tbody>
</table>

表 7. 国際単位系と慣用単位の変換

<table>
<thead>
<tr>
<th>惯用単位</th>
<th>国際単位系</th>
</tr>
</thead>
<tbody>
<tr>
<td>センチメートル</td>
<td>m</td>
</tr>
<tr>
<td>ミリメートル</td>
<td>cm</td>
</tr>
<tr>
<td>ニンメートル</td>
<td>mm</td>
</tr>
</tbody>
</table>

国際単位系と慣用単位の変換

- センチメートル → カンペア
- ミリメートル → カンペア
- ニンメートル → カンペア

© Japan Atomic Energy Agency, 2007
SPring-8 原子力機構軟 X 線ビームライン BL23SU におけるノンストップ吸収スペクトル計測システムの導入

日本原子力研究開発機構 量子ビーム応用研究部門 放射光科学研究ユニット
福田 謙博*・竹田 幸治・岡根 哲夫・斎藤 祐晃・小林 啓介*

(2007年1月15日 受理)

SPring-8 BL23SU に設置されている軟X線内観吸収磁気二色性測定装置に”ノンストップ吸収測定システム”を導入した。この測定システムを用いることにより、測定時間を従来の1/10程度に短縮することに成功した。本報告では、その詳細について記述する。
Installation of Nonstop Absorption Measurement System
in JAEA Soft X-ray Beamline BL23SU at SPring-8

Yoshihiro FUKUDA*, Yukiharu TAKEDA, Tetsuo OKANE, Yuji SAITOH
and Keisuke KOBAYASHI*

Synchrotron Radiation Research Unit
Quantum Beam Science Directorate
Japan Atomic Energy Agency
Tokai-mura, Naka-gun, Ibaraki-ken

(Received January 15, 2007)

We have introduced a "Nonstop absorption measurement system" into the XMCD station of BL23SU at SPring8. This system allows us to shorten the measuring time by about 1/10 in comparison to conventional one. We report on the detail of the system.

Keywords : SPring-8, BL23SU, Nonstop Absorption Measurement System, XMCD
目次

1. はじめに 1

2. ノンストップ吸収スペクトル計測システム 3
 2.1 システム概要 3
 2.2 光電流測定部 7
 2.3 回折格子の角度測定部 11
 2.4 測定ソフトウェア 13

3. 実験結果 19

4. まとめと今後の展望 21

謝辞 23

参考文献 23
Contents

1. Introduction .. 1

2. Nonstop absorption measurement system 3
 2.1 Outline .. 3
 2.2 Photocurrent measurement devices 7
 2.3 Encoder devices ... 11
 2.4 Softwares ... 13

3. Experiments and results .. 19

4. Conclusion .. 21

Acknowledgements .. 23

References ... 23
1. はじめに

大型放射光施設 SPring-8 の原子力機構専用軟 X 線ビームライン BL23SU [1]（図 1.1）の RI 棟実験ステーションでは、可変偏光アンジュレータ APPLE-2 からの高輝度円偏光放射光を利用し、X 線吸収磁気円二色性（XMCD）測定により、強磁性ウラン化合物の磁性研究を進めてきた。軟 X 線領域には、ウラン元素の 4d→5f 吸収端、鉄族遷移元素の 2p→3d 吸収端、希土類元素の 3d→4f 吸収端が存在し、多元系化合物であっても、磁性を主に担うウラン元素の 5f、鉄族遷移元素の 3d、希土類元素の 4f の電子状態を元素選択的に抽出する事ができる。XMCD は、左右側偏光に対する吸収強度の差により定義される量であり、対象元素が持つ磁気モーメントの大きさを反映する。さらに、総合的に適用により、スピン磁気モーメントと軌道磁気モーメントの定量評価が可能であるため[2]、XMCD は、特定元素の特定の電子軌道についてのスピン分極の様子を調べるための磁性研究には欠かせない手法である。

図 1.1 BL23SU 概要図

BL23SU では、従来、分光器の機械的再現性に由来するエネルギーずれなどによる偽の XMCD シグナルを生じさせないために各測定エネルギー点でアンジュレータの磁石列の機械的運動により左右側偏光をスイッチングし、XMCD スペクトルを得る方法を採用してきた[3]。この方法では、U 化合物の XMCD スペクトルを得るには 30 分程度の測定時間が必要であった。2007 年夏に予定している新規ツインヘリカルアンジュレータの導入により、同様な手法による測定時間は 1/2 程度に短縮の見通しである。しかしながら、多くのウラン化合物では、詳細な測定条件は、開示を依頼性の測定が必要となる一方で、試料表面の劣化（酸化）が早いため、測定時間の短縮は実験の成否に大きく関わる。本報告では、U 化合物における比較的大きな XMCD の高速データ取得を目指して導入したノンストップ吸収スペクトル計測システムの詳細とそれを用いた実験例について記述する。
2. ノンストップ吸収スペクトル計測システム

2.1 システム概要

BL23SU の MCD 装置では、全電子収量法により X 線吸収スペクトルの測定を行っている。図 2.1 に示すように、回折格子分光器によって単色化された放射光を試料に照射し、試料の光電流値と入射光の強度（Io モニターの光電流）を同時測定し、前者を後者で規格化することにより、試料の X 線吸収に比例した信号を得る。

図 2.1 吸収スペクトル計測概要図

本 BL では不等間隔刻線平面回折格子を用いた定偏角型分光器が採用されており[1]、回折格子の回転のみにより、高いエネルギー分解能を維持したまま波長走査を行う事ができる。回折格子はサインバープ方式によりパルスモーター駆動され、真空外に取り付けられたリニアエンコーダー（HEIDENHAIN 社製 LIP401）を用いて、回折格子の相対角度を読み取る事ができる。

図 2.2 に今回構築したノンストップ吸収スペクトル測定システムの概要を示す。測定方法は、

1. 回折格子を測定範囲について一定速度で連続駆動させ、
2. その駆動中に、周期的同期信号によりエンコーダー数値、試料光電流（Io）及び入射放射光強度（Io）をそれぞれの測定メモリに格納し、（図 2.3 に同期タイミングチャートを示す。）
3. 測定終了後に一括して制御 PC にデータ転送を行う。

従来のステップスキャン駆動では左右に偏光のスイッチングに約 2 秒要していたが、本システムでは定速度連続駆動であるため、走査時間が大幅に短縮される。このノンストップ計測システムは、SPRIng-8 の BL01B1 で開発されたもので、すでに多くの実験成果がある[4]。今回、本システムを BL23SU に導入するため、光電流測定部、回折格子の角度測定部及び吸収スペクトル測定ソフトウェアの整備を行った。
図2.2 測定システム概要図

図2.3 同期タイミングチャート
2. 光電流測定
放射光強度 I₀ 及び試料電流 I の信号処理を、
1. 高速アンプにより電流の大きさに比例した電圧に変換、
2. 電圧変換された信号を、V/F コンバータにより入力電圧に応じた周波数をもつ信号に変換、
3. 周波数カウンターで計数することにより行う。

図 2.3 に示したように、周波数カウンターで計数は、パルス信号発生器からのパルス信号をゲートとして行う。また、後述するようにこのパルス信号は光エネルギー記録のトリガ信号としても利用し、同期信号として機能する。これにより試料の光電流、強度モニターの光電流と光エネルギーの三つのデータを同期させてメモリに格納できる。

図 2.4 に本システムの制御ラックを示す。高速アンプとして KEITHLEY 社製 高速アンプ Model428、V/F コンバータとして、SEIKO EG&G 社製 2ch V/F コンバータ DS-VFC2、パルス計数器と同期信号発生器として YOKOGAWA 社製 PC ベース計測システム WE7000 シリーズの 4ch タイミング計測モジュール WE7521 と 4ch100kS/s D/A モジュール WE7282 をそれぞれ採用した。表 2.1-2.4 に、機器の主な仕様を示す。
表2.1 KEITHLEY Model428 仕様

<table>
<thead>
<tr>
<th></th>
<th>10³~10¹¹V/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ゲイン設定値</td>
<td>±2.5%±3pA</td>
</tr>
<tr>
<td>ゲイン精度(10³V/A 時)</td>
<td>±10V</td>
</tr>
</tbody>
</table>

表2.2 SEIKO EG&G DS-VFC2 仕様

<table>
<thead>
<tr>
<th></th>
<th>2ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力チャンネル数</td>
<td>2ch</td>
</tr>
<tr>
<td>変換率</td>
<td>10⁶Hz/10V</td>
</tr>
</tbody>
</table>

表2.3 YOKOGAWA WE7521 仕様

<table>
<thead>
<tr>
<th></th>
<th>4ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力チャンネル数</td>
<td>4ch</td>
</tr>
<tr>
<td>入力電圧</td>
<td>±20V</td>
</tr>
<tr>
<td>入力電圧設定分解能</td>
<td>±5%+150mV</td>
</tr>
<tr>
<td>最大入力電圧</td>
<td>±42.4V</td>
</tr>
</tbody>
</table>

表2.4 YOKOGAWA WE7282 仕様

<table>
<thead>
<tr>
<th></th>
<th>4ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>出力チャンネル数</td>
<td>4ch</td>
</tr>
<tr>
<td>D/A分解能</td>
<td>16bit</td>
</tr>
<tr>
<td>出力レンジ</td>
<td>±1,2,5,10V</td>
</tr>
<tr>
<td>最大出力電流</td>
<td>±10mA</td>
</tr>
<tr>
<td>出力周波数</td>
<td>10～30Hz</td>
</tr>
</tbody>
</table>
2.3 回折格子の角度測定部

本 BL の分光機には回折格子の回転角度測定用にリニアエンコーダー（HEIDENHAIN 社製 LIP401）が取り付けられており、表示カウンター（HEIDENHAIN 社製 NDP281）を用いてエンコーダー値の表示を行っていた。しかしこの表示カウンターは内蔵メモリを装備していなかったため、回折格子を連続駆動させたときのエンコーダー値を蓄積することができない。そこで、前節で述べた同期信号をトリガとしてデータを取り込むために、メモリ内蔵エンコーダーボードを追加した。図 2.5 に回折格子回転角測定部の概要図を示す。エンコーダーボードは HEIDENHAIN 社製 IK220 を採用した。表 2.5 に仕様を示す。

図 2.5 回折格子角度測定部概要図

表 2.5 リニアーエンコーダーおよびエンコーダーボード仕様

<table>
<thead>
<tr>
<th>カウンターカード</th>
<th>HEIDENHAIN</th>
<th>IK220</th>
</tr>
</thead>
<tbody>
<tr>
<td>入力信号</td>
<td>正弦波</td>
<td>11μAmp</td>
</tr>
<tr>
<td>入力周波数</td>
<td>Max 33kHz</td>
<td></td>
</tr>
<tr>
<td>トリガ入力</td>
<td>TTL レベル</td>
<td></td>
</tr>
<tr>
<td>内部メモリ</td>
<td>8192point</td>
<td></td>
</tr>
<tr>
<td>リニアーエンコーダー</td>
<td>HEIDENHAIN</td>
<td>LIP401</td>
</tr>
<tr>
<td>出力信号</td>
<td>正弦波 7～16μAmp</td>
<td></td>
</tr>
<tr>
<td>供給電源</td>
<td>DC5V±5%</td>
<td></td>
</tr>
</tbody>
</table>

XMCD 装置とエンコーダーまでの距離が遠いため、制御用 PC とは別にサーバー PC を設置し、そこにエンコーダーボードを装着した。この 2 台の PC と WE7000 測定ユニットの通信は独自に構築した LAN を介して行った。
2. 4 測定ソフトウェア

測定ソフトウェアの開発はLabView7.1を用いて行った。図2.6に測定シーケンスを示す。SPring-8 BL01B1から提供されたソフトウェアのアルゴリズムを活用し、BL23SUでの測定に適したプログラムの構築を行った。

図2.6 測定シーケンス
リニアエンコーダー値のデータサーバーソフトとして“GRATING DATA SERVER”を作成した。そのソフトの画面を図2.7に示す。このソフトはサーバーPC上に常駐しており、実行すると同期パルス待機状態となる。同期パルスを受信するとリニアエンコーダー値をメモリに格納し、制御PCからデータ取得コマンドを受信するとデータを送信する。

図2.7 GRATING DATA SERVER画面

制御および測定ソフトとして“NONSTOP SCAN XAS MEASUREMENT”を作成した。その画面を図2.8に示す。

操作手順を以下に示す。
1. 走査エネルギー範囲の開始パルスの入力（図2.8内の1：Initial Position）
2. 走査エネルギー範囲の終了パルスの入力（図2.8内の2：Final Position）
3. 測定周波数の入力（図2.8内の3：Frequency）
4. 回折格子移動速度の入力（図2.8内の4：Grating Scan Speed）
5. 測定開始（図2.8内の5：Start）
6. 測定終了後グラフを表示
図 2.8 NONSTOP SCAN XAS MEASUREMENT 画面
3. 実験結果

本計測システムを用いて UTeS の XMCD 実験を行った。測定は、左及び右円偏光それぞれに対する吸収スペクトル (\(\mu_+\) 及び \(\mu_-\)) を取得した後、XMCD スペクトルを得た。計測条件を以下に示す。

KEITHLEY Model 428
- Gain: 10 \(\mu\)V/A
- Filter: 10\(\mu\)s
- Bias Voltage: 0V
- Suppression Current: 0A
（I0 モニターと試料光電流とも）

XAS1 本あたりのデータ取得条件設定
- サンプリング周波数: 30Hz
- 回折格子の送り速度: 1000pps
- 測定時間: 90s
- 取得データ点: 2700 点

図 3.1 に U の 4d-5f 吸収スペクトル (\(\mu_+\) 及び \(\mu_-\)) と XMCD スペクトル (\(\mu_+\) 及び \(\mu_-\)) を示す。各吸収スペクトル測定に要した時間は約 90 秒で、従来法の 1/10 程度に短縮されている。また、取得データ点数は、従来法の 5 倍程度である。吸収スペクトルの測定では、エネルギー走査開始位置がパルス制御であるため、データ点数は同じであっても、測定エネルギー値は厳密には一致していない。このため、各吸収スペクトルに対し、直線補間による内補法から同一エネルギーにおける \(\mu_+\) 及び \(\mu_-\) を算出した後に、XMCD スペクトルを導出した。得られた XMCD スペクトルは、強磁性ウラン化合物に典型的な形状 [5] を示し、また、従来とほぼ同等の統計精度である。この結果から、エンコーダーの数値とエネルギー値の対応が良く、充分なシグナル強度で且つ取得データ点数が多いために高い精度の内補値を有し、信頼性の高い XMCD データが高速に取得可能であることが実証された。
図3.1 UTeSのU4d-5f吸収スペクトルとXMCDスペクトル

4. まとめと今後の展望

大型放射光施設SPring-8の原子力機構専用软X線ビームラインBL23SUにおいて、RI棟XMCD実験ステーションの高度化のために、ノンストップ吸収測定システムを導入した。その結果、ウラン化合物の研究に有効なXMCD測定が可能となった。

2007年夏に予定している新規ツインヘリカルアンジュレータの導入後は、本システムでの測定モードと円偏光の周期的スイッチング測定モードとを相補的に使い分けることにより、多彩なウラン化合物の磁性研究を進める予定である。
謝辞

本開発で、採用したノンストップ吸収測定システムは、Spring8 BL01XUの高速EXAFS測定システムを開発した高知度光科学研究センターの谷田肇氏と宇留貫光哉氏の指名しない技術提供とアドバイスにより実現した。感謝いたします。

参考文献

国際単位系（SI）

<table>
<thead>
<tr>
<th>表1 国際単位系</th>
<th>表2 基本単位を用いて表される物理的量の例</th>
<th>表3 国際単位系の拡張</th>
<th>表4 1979年の改正と1990年の改正</th>
<th>表5 国際単位系と旧単位系の対応関係表</th>
</tr>
</thead>
<tbody>
<tr>
<td>名称</td>
<td>基本単位</td>
<td>拡張単位</td>
<td>名称</td>
<td>基本単位</td>
</tr>
<tr>
<td>重力加速度</td>
<td>m/s²</td>
<td>1 m/s²</td>
<td>重力加速度</td>
<td>m/s²</td>
</tr>
<tr>
<td>長さ</td>
<td>m</td>
<td>1 m</td>
<td>長さ</td>
<td>m</td>
</tr>
<tr>
<td>質量</td>
<td>kg</td>
<td>1 kg</td>
<td>質量</td>
<td>kg</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>1 m/s</td>
<td>速度</td>
<td>m/s</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>1 m/s²</td>
<td>加速度</td>
<td>m/s²</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>1 s</td>
<td>時間</td>
<td>s</td>
</tr>
<tr>
<td>ローラン</td>
<td>kg m/s²</td>
<td>1 kg m/s²</td>
<td>ローラン</td>
<td>kg m/s²</td>
</tr>
</tbody>
</table>

表4 1990年の改正（法律第266号）

© Japan Atomic Energy Agency, 2007