NBI用大電力イオン源プラズマ生成部の製作
Development of a Plasma Generator for a High Power NBI Ion Source

大原 正幸 渡邉 和弘 戸塚 誠之 柏木 美恵子
井上 多加志 坂本 賢司 花田 輝也 秋野 昇
池田 佳隆 山本 巧

Masayuki DAIKAKU, Kazuhiro WATANABE, Hiroyuki TOBARI, Mieko KASHIWAGI
Takeshi INOUE, Keishi SAKAMOTO, Manaya HANADA, Noboru AKINO
Yoshitaka IKEDA and Takumi YAMAMOTO

核融合研究開発部門
加熱工学研究グループ
Plasma Heating Technology Group
Fusion Research and Development Directorate

March 2009
Japan Atomic Energy Agency
日本原子力研究開発機構
国際単位系 (SI)

表 1. 国際単位制

<table>
<thead>
<tr>
<th>基本量</th>
<th>単位</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>質</td>
<td>kg</td>
<td>物質の量を示す</td>
</tr>
<tr>
<td>長さ</td>
<td>m</td>
<td>物体の間隔を示す</td>
</tr>
<tr>
<td>時間</td>
<td>s</td>
<td>物体が一定の距離を走るのに要する時間</td>
</tr>
<tr>
<td>面積</td>
<td>m²</td>
<td>長さの二乗を示す</td>
</tr>
<tr>
<td>エネルギー</td>
<td>J</td>
<td>動力と動脈を合わせたもの</td>
</tr>
<tr>
<td>速度</td>
<td>m/s</td>
<td>長さを時間で除したもの</td>
</tr>
<tr>
<td>加速度</td>
<td>m/s²</td>
<td>速度を時間で除したもの</td>
</tr>
<tr>
<td>動力</td>
<td>N</td>
<td>長さを時間の二乗で除したもの</td>
</tr>
<tr>
<td>トルク</td>
<td>Nm</td>
<td>角速度を時間で除したもの</td>
</tr>
<tr>
<td>電圧</td>
<td>V</td>
<td>電流を時間で除したもの</td>
</tr>
<tr>
<td>電流</td>
<td>A</td>
<td>電圧を抵抗で除したもの</td>
</tr>
<tr>
<td>光度</td>
<td>cd</td>
<td>高度を距離で除したもの</td>
</tr>
<tr>
<td>質量密度</td>
<td>kg/m³</td>
<td>物質の量を容積で除したもの</td>
</tr>
<tr>
<td>压力</td>
<td>Pa</td>
<td>長さの二乗を時間で除したもの</td>
</tr>
<tr>
<td>体積</td>
<td>m³</td>
<td>物体の内部の空間を示す</td>
</tr>
<tr>
<td>無次元</td>
<td></td>
<td>二つの物理量の比を示す</td>
</tr>
</tbody>
</table>

表 2. 国際単位系から導かれる単位

<table>
<thead>
<tr>
<th>単位</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>m/m = 1/m²</td>
</tr>
<tr>
<td>μm</td>
<td>m/m³ = 1/m³</td>
</tr>
<tr>
<td>ng</td>
<td>g/m³ = 1/m³</td>
</tr>
<tr>
<td>pm</td>
<td>m/m³ = 1/m³</td>
</tr>
<tr>
<td>nL</td>
<td>mL/m³ = 1/m³</td>
</tr>
<tr>
<td>μL</td>
<td>mL/m³ = 1/m³</td>
</tr>
<tr>
<td>ng/L</td>
<td>mg/mL = 1/mL</td>
</tr>
<tr>
<td>pm/L</td>
<td>mg/mL = 1/mL</td>
</tr>
<tr>
<td>nL/L</td>
<td>mL/mL = 1/mL</td>
</tr>
<tr>
<td>μL/L</td>
<td>mL/mL = 1/mL</td>
</tr>
<tr>
<td>ng/m³</td>
<td>mg/m³ = 1/m³</td>
</tr>
<tr>
<td>pm/m³</td>
<td>mg/m³ = 1/m³</td>
</tr>
<tr>
<td>nL/m³</td>
<td>mL/m³ = 1/m³</td>
</tr>
<tr>
<td>μL/m³</td>
<td>mL/m³ = 1/m³</td>
</tr>
<tr>
<td>ng/L/m³</td>
<td>mg/mL = 1/mL</td>
</tr>
<tr>
<td>pm/L/m³</td>
<td>mg/mL = 1/mL</td>
</tr>
<tr>
<td>nL/L/m³</td>
<td>mL/mL = 1/mL</td>
</tr>
<tr>
<td>μL/L/m³</td>
<td>mL/mL = 1/mL</td>
</tr>
</tbody>
</table>

This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intelligence Resources Section, International Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5502, E-mail:irr-support@jaea.go.jp

© Japan Atomic Energy Agency, 2009
NBI 用大電力イオン源プラズマ生成部の製作

日本原子力研究開発機構
核融合研究開発部門
核融合エネルギー工学研究開発ユニット

大楽 正幸、渡辺 和弘、戸張 博之、柏木 美恵子、井上 多加志、坂本 慶司
花田 磨砂也*1、秋野 昇*1、池田 佳隆*2、山本 巧*1

（2008年12月19日受理）

核融合実験炉の中性子入射装置（NBI）用イオン源の大電力長パルス化に向けた技術開発の一環として、NBI 用大電力イオン源プラズマ生成部の設計、製作を実施した。イオン加速部と組み合わせた最終的な NBI 用イオン源としての出力性能目標は、120 keV、65 A、200 秒以上の重水素正イオンビームの生成である。この大電流イオンビームを引出すため、本プラズマ生成部は約 100 kW の大パワーアーク放電で生成したプラズマを長時間安定に維持可能で、且つ、大面積ビーム引出し領域（最大 12×46 cm²）に対応できる構造とした。本プラズマ生成部の設計に当たっては、高密度で一様なプラズマ生成のために特に重要な磁場配位と電子軌道についてシミュレーションを行い、磁石配置とフィラメント陰極構造を決定した。また、真空部保持を交えたパルス運転に向けた十分な冷却性能の確保など、高性能プラズマ生成と整合を取ることに留意し、大容積プラズマ源（内寸幅 25 cm×長さ 59 cm×高さ 31 cm）の製作を完了した。

那珂核融合研究所（駐在）：〒311-0193 茨城県那珂市向山 801-1
+1 トカマクシステム技術開発ユニット
+2 経営企画部（元トカマクシステム技術開発ユニット所属）
*1 日本アドバンストテクノロジー株式会社（元トカマクシステム技術開発ユニット所属）
Development of a Plasma Generator for a High Power NBI Ion Source

Masayuki DAIRAKU, Kazuhiro WATANABE, Hiroyuki TOBARI, Mieko KASIHIGAI, Takashi INOUE, Keishi SAKAMOTO, Masaya HANADA+1, Noboru AKINO+1, Yoshitaka IKEDA+2 and Takumi YAMAMOTO*1

Division of Fusion Energy Technology
Fusion Research and Development Directorate
Japan Atomic Energy Agency
Naka-shi, Ibaraki-ken

(Received December 19, 2008)

A plasma generator whose inner dimensions are 25 cm in width, 59 cm in length, and 31 cm in depth for a high power and long pulse ion source in neutral beam injector has been designed and fabricated. The plasma generator has a beam extraction area of 12 cm in width and 46 cm in length. A target of the output beam using the plasma generator is to produce deuterium positive ion beams up to 120 keV, 65 A for longer than 200 s pulses. Arrangement of the permanent magnets and filaments has been designed by using an electron trajectory simulation code to produce uniform and high density plasma with high proton yield. Cooling channels have been also designed to operate the long pulse plasma generation with a 100 kW arc discharge power.

Keywords: Plasma Generator, Ion Source, Neutral Beam Injector, NBI, Beam, Proton Yield

+1 Division of Tokamak System Technology
+2 Policy Planning and Administration Department
 (Former affiliation: Division of Tokamak System Technology)
*1 Nippon Advanced Technology Co.,Ltd.
 (Former affiliation: Division of Tokamak System Technology)
目 次

1. はじめに ... 1

2. 設計概念 ... 2
 2.1 イオンビーム電流の検討 .. 2
 2.2 NB I 入射パワーの検討 .. 2
 2.3 プロトン比の検討 ... 3

3. 磁場解析と電子軌道計算 ... 6
 3.1 基本磁石配置（上板同心四角配置） 6
 3.2 拡張磁石配置（上板 6 列直線配置） 6
 3.3 中央部増強磁石配置Ⅰ（上板同心四角＋中心 1 列直線配置） 7
 3.4 中央部増強磁石配置Ⅱ（上板 5 列直線配置） 7

4. プラズマ生成部の設計 ... 13
 4.1 アークチャンバー陽極 ... 13
 4.2 永久磁石 ... 13
 4.3 フィラメント陰極 ... 14
 4.4 絶縁機能付きガス導入配管 14
 4.5 サージ抑制用素子 ... 14
 4.6 ソーステーブル ... 15
 4.7 イオン加速部への接続部品 15
 4.8 計測用ポート ... 15

5. まとめ ... 23

謝 辞 ... 23

参考文献 ... 23
Contents

1. Introduction ... 1

2. Design concept ... 2
 2. 1 Design for required ion beam current ... 2
 2. 2 Design for injection power in NBI ... 2
 2. 3 Design for high proton ratio ... 3

3. Magnetic field distribution and electron trajectory simulation 6
 3. 1 Basic magnetic field distribution ... 6
 3. 2 Modified magnetic field distribution with 6 rows of magnets on the back plate .. 6
 3. 3 Magnetic field distribution I ... 7
 (reinforced central magnetic field, rectangular coaxial configuration with central one line magnet)
 3. 4 Magnetic field distribution II ... 7
 (reinforced central magnetic field, 5 rows of magnets on the back plate)

4. Design of the plasma generator ... 13
 4. 1 Arc chamber anode ... 13
 4. 2 Permanent magnets ... 13
 4. 3 Cathode filaments ... 14
 4. 4 Gas Feeding pipe with insulator ... 14
 4. 5 Surge absorber .. 14
 4. 6 Source table .. 15
 4. 7 Joint components of ion accelerator ... 15
 4. 8 Measurement ports .. 15

5. Summary .. 23

Acknowledgment .. 23

References .. 23
1. はじめに

本件は、核融合実験炉の中性粒子入射装置（NBI: Neutral Beam Injector）用イオン源の大電力長パルス化に向けた技術開発の一環として設計、製作した大容積プラズマ生成部（内寸幅 25 cm × 長さ 59 cm × 高さ 31 cm）に関する報告である。一般に NBI 用イオン源はプラズマ生成部とイオン加速部から構成され、プラズマ生成部において低ガス圧アーク放電により生成されたプラズマ中から水素の正または負イオンを加速電極（イオン加速部）で静電的に引き出す構造となっている。安定に大出力のイオンビームを得るには、プラズマ生成部とイオン加速部の双方に重要な構成要素となる。

今回製作したプラズマ生成部は、最終的にイオン加速部と組み合わせて 1 台の正イオン源を構成するものであり、イオン源としてのビーム出力性能目標は、120 keV、65 A、200 秒以上である。製作に当たっては、安定なアーク放電を点弧させることももちろんのこと、ビーム引出し領域に高密度水素プラズマを一様に生成すること、高いアーク効率（プラズマ生成用アーク放電の投入電力に対する正イオン引出し電流の比）を得ること、高い原子イオン組成比（プロトン比）を得ることなどが重要な課題であった。特に、これらの性能に大きく影響を及ぼす磁場配位やフィラメント陰極の形状、位置は重要であり、長年に亘るイオン源開発で培われた経験を活かして磁場解析や電子軌道計算を行い、アークチャンバー陽極の磁石配置とフィラメント陰極の形状、位置を決定した。

一方、韓国でも超伝導トカマク先進研究（KSTAR: Korea Superconducting Tokamak Advanced Research）計画において、300 秒入射の NBI 開発を行っており、韓国原子力研究所（KAERI: Korea Atomic Energy Research Institute）では既に大電力長パルス NBI 試験装置を有している。これら NBI 用イオン源の大電力長パルス化に向けた日韓共通の課題から「核融合研究開発における協力に関する日本原子力研究開発機構（JAEA）と韓国核融合研究所（NFRI: National Fusion Research Institute, Korea）との間の取決め」に基づき、プラズマ加熱・電流駆動装置に関する日韓協力計画の一環として大電力長パルス試験が実施可能な KAERI の試験装置に今回製作した大容積プラズマ生成部を取付けて試験運転を行う計画である。そこで、高真空の保持や十分な冷却機能を持たせることも長パルス運転には不可欠な要素であり、本プラズマ生成部ではこれら全ての要件を満足するよう設計した。さらに、KAERI において実施する長パルス試験運転も踏まえて、NBI 用大電力イオン源の運転に必要な電源容量等についても検討した。

本稿では、まず第 2 章で今回製作したプラズマ生成部の設計概念をまとめる。第 3 章では、この設計概念を実現すべく実施した、磁場解析と電子軌道計算の結果を述べる。第 4 章ではこれら解析検討の結果を反映させたプラズマ生成部主要構造を詳述し、第 5 章で本研究開発の成果をまとめた。
2. 設計概念

新規製作する NBI 用正イオン源の出力性能目標は、120 keV、65 A の大出力重水素イオンビームを 200 秒以上の長時間に亘り安定に引出すことである。JT-60 NBI 用正イオン源と比較すると、ビームエネルギーは同程度であるが、ビーム引出し電流が 1.6 倍に相当する大電流である。この大電流イオンビームを引出すために、JT-60 NBI 用正イオン源のビーム引出し面積（12×27 cm²）を基準に長手方向を 19 cm 延長する形で検討し、ビーム引出し面積を 12×46 cm² とすることでおび本プラズマ生成部を設計した。また、この大電流イオンビームを得るためには、本プラズマ生成部において約 100 kW の大電力アーク放電により長時間安定にプラズマを生成することを想定した。

2.1 イオンビーム電流の検討

JT-60 NBI 用正イオン源を拡張して製作した場合に得られるビーム電流値、それを得るために必要な電源容量等を表 2-1 の JT-60 NBI 用正イオン源の運転実績をベースに検討した。

重水素イオンビームに関して、表 2-1 に示すとおり JT-60 NBI 用正イオン源では 48 kW のアークパワー（プラズマ生成用アーク放電の投入電力）で 319 mA/cm² 的電流密度（単位面積当たりのイオン引出し電流値）が得られている。今回製作したイオン源プラズマ生成部のプラズマ閉じ込め特性は JT-60 NBI 用正イオン源と同等と仮定し、必要なアークパワーは体積に比例するとして、表 2-1 と同等の電流密度を得るためには、JT-60 NBI 用正イオン源プラズマ生成部の 1.47 倍の体積が必要である。つまり、48 kW×1.47≈70 kW のアークパワーを投入することが必要となる。アーク放電電圧を 70 V 程度と仮定すると、アーク放電電流が約 1,000 A で 319 mA/cm² の電流密度のイオンビームが生手可能である。イオン引出し面積を 12×46 cm² （透過度 40%として約 220 cm²）とすると、ビーム電流値は 70 A 以上となり、大電力イオン源の目標とするビーム電流値 65 A を十分に発生することができる。

また、軽水素イオンビームに関しては、表 2-1 から JT-60 NBI 用正イオン源においてアークパワーが 60 kW で電流密度 375 mA/cm² が得られている。本イオン源プラズマ生成部において表 2-1 と同等の電流密度を得るためには、体積比 1.47 倍に相当するアークパワー約 88 kW が必要となる。アーク放電電圧を 70 V 程度と仮定すると、アーク放電電流は約 1,260 A となる。このアークパワーで、ビーム電流は 82.5 A の大電流が得られると期待できる。

KAERI の大電力長パルス NBI 試験装置では、放射線遮へい設備の制限から、現状では軽水素での試験運転のみが実施可能である。表 2-2 に KAERI の大電力長パルス NBI 試験装置の各電源の電源容量を示す。アーク電源の定格は 160 V×1,200 A であり、アーク電圧を 73 V 程度にすれば、82.5 A の大電流ビーム引出しのためのプラズマ生成は十分可能である。

2.2 NBI 入射パワーの検討

中性粒子ビームの入射パワーについて概算の検討を行った。運転範囲の検討の一つとして、最大加速電圧 120 kV における最大電流 65 A のビームと約 80% の加速電圧である 100 kV で最大電流 65 A のビームを引出した場合の入射パワーを比較した。イオン種は重水素正イオンを対象とした。次式では、NBI のイオンビーム定格出力に対して、中性化効率をビームエネルギーに応じて考慮し、さらに幾何学的効率や再電子効率を含めた効率を 82% と仮定して計算した。すなわち、
ビームエネルギー120 keV 及び 100 keV での運転時の入射パワーは、

120 keV × 65 A × 0.42 × 0.82 = 2.7 MW
100 keV × 65 A × 0.52 × 0.82 = 2.8 MW

このことから、エネルギー100 keV で最大電流を発生した方が 120 keV で最大電流とするより幾分高い NBI 入射パワーが期待できる。H モード遷移による閉じ込め改善を狙うようなビームエネルギーよりも入射パワーに重点を置く運転の場合には、加速電圧 100 kV 程度で最大電流のイオンビームを加速するようイオン加速部の設定を選択することも考えられる。

2. 3 プロトン比の検討

水素や重水素正イオン源では、単原子イオンの他に分子イオンも生成される。これらの分子イオンは、加速され中性粒子に変換される過程で解離し、低エネルギー成分となる。NBI でビームを入射する場合、目的のエネルギーを得るための加速電圧でイオンを加速しても、分子イオンの含有が多いとイオンビームの実効的エネルギーが低下してしまう。これを防ぐために単原子イオンの組成比を高めることが重要である。

これまでの研究成果[1]より、正イオン源のプロトン比 γ は式 (1) で得ることができる。

この式、V_p はプラズマ体積、S_L はイオン損失面積を示す。この式は、磁石としてサマリウム・コバルト永久磁石を用いた場合に導出されたものである。

\[\gamma = 0.23 \frac{V_p}{S_L} \frac{1 + 0.23 \frac{V_p}{S_L}}{1 + 0.23 \frac{V_p}{S_L}} \] ⋯⋯ 式 (1)

プラズマ体積は、アークチャンバー陽極の壁面から両側 3 cm を除外し、深さ方向はイオン加速部のプラズマ電極（第 1 正多孔電極）までの距離も考慮すると、次のとおりとなる。

\[\frac{[59 \text{ cmL} - (3 \text{ cm} \times 2)] \times [25 \text{ cmW} - (3 \text{ cm} \times 2)] \times [(31 \text{ cmH} + 2 \text{ cm}) - 3 \text{ cm}]}{3.0 \times 10^4 \text{ cm}^3} \]

プラズマ生成部全体のイオン損失面積は、アノード面、カソード面及びプラズマ電極面でのイオン損失面積の合計で求めることができる。アノード面（アークチャンバー陽極）でのイオン損失面積は、ラインカスプ磁場の全長を 1,306 cm、ラインカスプ磁場でのプラマ直径を 0.17 cm と仮定すると、次のとおりとなる。

\[S_A = 1,306 \text{ cm} \times 0.17 \text{ cm} \approx 222 \text{ cm}^2 \]

カソード（フィラメント陰極）は全部で 12 本あり、2.0 mm φ のタンクステン棒をヘアピン形に加工して使用する。フィラメント固定用のモリブデン製チップを含めた全カソードのイオン損失面積は、次のとおりとなる。

\[S_C = 0.2 \pi \text{ cm} \times [(5.8 \text{ cmL} + 7.3 \text{ cmL}) \times 2] \times 12 \text{ 本} \approx 197 \text{ cm}^2 \]
プラズマ電極面でのイオン損失面積を次のように仮定する。

\[S_{pg} = (59 \text{ cmL} - (3 \text{ cm} \times 2)) \times (25 \text{ cmW} - (3 \text{ cm} \times 2)) \times 0.5 = 503 \text{ cm}^2 \]

従って、プラズマ生成部全体のイオン損失面積は、次のとおりとなる。

\[S_L = S_a + S_c + S_{pg} = 222 + 197 + 503 = 922 \text{ cm}^2 \]

このようにして求めたプラズマ体積とイオン損失面積から、プロトン比は式（1）から約 88%と算出できる。JT-60 NBI 用正イオン源の設計上のプロトン比も 88%で、実測値が 91%であることから、今回製作したイオン源プラズマ生成部でも 90%近いプロトン比が得られると期待できる。

表 2-3 は、今回製作した NBI 用大電力イオン源（プラズマ生成部のみ）と JT-60 NBI 用正イオン源並びに KAERI 製 KSTAR-NBI 用イオン源の主な仕様を比較した一覧表である。
表2-1. JT-60 NBI用正イオン源のイオンビーム引出し運転時の代表値（実績）

| 重水素 | 加速電圧 | 81.6 A÷2 | B: 73 V×655 A | 0.85 A/kW | 4 A÷2 = 2 A | 1.89 秒 |
| 軽水素 | 93.5 kV | 81.6 A÷2 | B: 73 V×655 A | 0.85 A/kW | 4 A÷2 = 2 A | 1.89 秒 |

※ビーム電流値はイオン源2台を同時に運転した時に値であり、2台とも同じ電流を仮定して電流密度を計算した。

表2-2. 大電力長パルス NBI試験装置（KAERI）の電源容量

<table>
<thead>
<tr>
<th>アーク電源</th>
<th>電 压</th>
<th>電 流</th>
<th>パルス幅等</th>
</tr>
</thead>
<tbody>
<tr>
<td>フィラメント電源</td>
<td>160 V</td>
<td>1,200 A</td>
<td>定常</td>
</tr>
<tr>
<td>加速電源</td>
<td>15 V</td>
<td>3,200 A</td>
<td>定常（1系統のみ）</td>
</tr>
<tr>
<td>減速電源</td>
<td>120 kV</td>
<td>70 A</td>
<td>350秒（30分毎）</td>
</tr>
<tr>
<td>減速電源</td>
<td>-5 kV</td>
<td>20 A</td>
<td>定常</td>
</tr>
</tbody>
</table>

表2-3. NBI用正イオン源の仕様比較

<table>
<thead>
<tr>
<th>原子力機構（日本）</th>
<th>JT-60用正イオン源</th>
<th>KAERI（韓国）</th>
</tr>
</thead>
<tbody>
<tr>
<td>プラズマ生成部</td>
<td>内寸: 25 cm×59 mL×31 cmH（矩形）</td>
<td>内寸: 26 cm×64 cmL×32 cmH（矩形）</td>
</tr>
<tr>
<td>アークチャンバー</td>
<td>内容積: 45.7リットル</td>
<td>内容積: 53.2リットル</td>
</tr>
<tr>
<td>阳極</td>
<td>※今回、製品</td>
<td></td>
</tr>
<tr>
<td>プラズマ生成部</td>
<td>直径: 2.0 mmφ</td>
<td>直径: 2.5 mmφ</td>
</tr>
<tr>
<td>タングステン製</td>
<td>員数: 12本</td>
<td>員数: 32本</td>
</tr>
<tr>
<td>フィラメント陰極</td>
<td>結線: 個別電源接続</td>
<td>結線: 全数並列接続</td>
</tr>
<tr>
<td>円筒</td>
<td>直径: 40 mmφ</td>
<td>円筒: 40 mmφ</td>
</tr>
<tr>
<td>周波数: 1,750個</td>
<td>孔数: 1,020個</td>
<td></td>
</tr>
<tr>
<td>透過度: 約40%</td>
<td>透過度: 約40%</td>
<td></td>
</tr>
<tr>
<td>引出面積: 約220 cm²</td>
<td>引出面積: 約128 cm²</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>多孔電極 (プラズマ電極)</th>
<th>面積: 12×46 cm²</th>
<th>面積: 12×45.8 cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>孔径: 4.0 mmφ（円孔）</td>
<td>孔径: 4.0 mmφ（円孔）</td>
<td>孔径: 7.8 mmφ（円孔）</td>
</tr>
<tr>
<td>孔数: 1,750個</td>
<td>孔数: 568個</td>
<td></td>
</tr>
<tr>
<td>透過度: 約40%</td>
<td>透過度: 約49%</td>
<td></td>
</tr>
<tr>
<td>引出面積: 約220 cm²</td>
<td>引出面積: 約271 cm²</td>
<td></td>
</tr>
</tbody>
</table>
３．磁場解析と電子軌道計算

NBI 用イオン源のプラズマ生成部として重要な課題の一つは、ビーム引出し面近傍で一様な高密度プラズマを生成することである。今回製作したような多極磁場型プラズマ源においては、永久磁石の配置によってラインカスプ磁場の形状を最適化し、フィラメント隣極から放出された高速電子を効率良く閉じ込めることが必要である。これによって大容積のアークチャンバー陽極内に一様なプラズマを生成し、且つ、引出し面近傍でも一様な高密度プラズマを生成することが可能となる。

本プラズマ生成部の設計に当たっては、JT-60 NBI 用正イオン源の磁場配位を基準に 4 種類の磁石配置において、フィラメント隣極からの電子軌道を計算し、各磁石配置での閉じ込め特性を比較検討した。その結果を次に示す。なお、この電子軌道計算ではフィラメント隣極を中央部の 2 本として、放出される熱電子の初期エネルギーを 40 eV、飛翔時間を 7 μs とした [2]。

３．１ 基本磁石配置（上板同心四角配置）

図 3-1 に今回製作したプラズマ生成部の基本的な磁場配置における解析結果を示す。この電子軌道計算では、JT-60 NBI 用正イオン源の磁石配置をベースにアークチャンバー陽極上板の永久磁石を同心円に 3 重に配置した。（図 4-3 参照）この磁石配置では、フィラメント隣極から放出された高速電子は効率良く閉じ込められており、水素ガスの電離と解離が促進されて高いプロトン比が得られると期待できる。また、図 3-1 の電子軌道から、大容積のアークチャンバー陽極内に一様なプラズマを生成可能であることも期待できる。この永久磁石の配列を基本磁石配置と称し、今回製作したプラズマ生成部に採用した。

３．２ 拡張磁石配置（上板 6 列直線配置）

この磁場配置は、アークチャンバー陽極上板の永久磁石を直線上に 6 列配置したものである。JT-60 NBI 用正イオン源の磁場配置は、一次電子の閉じ込めが非常に良好なため、時として一次電子の陽極への損失が過少となってプラズマボテンシャルが低下し、フィラメント隣極周囲に十分なカソードシースが形成されないために十分なプラズマ生成ができなくなる、いわゆる「モードフリップ」に至る場合がある。本イオン源は JT-60 NBI 用正イオン源をさらに大容量化、低損失化しているために、モードフリップが発生する危険性も考えられる。そこでこの拡張磁場配置では、上板の直線磁石配置の端部での一次電子損失を許容するものである。解析結果を図 3-2 に示す。

この磁石配置においてもフィラメント隣極から放出された高速電子は効率良く閉じ込められており、高いプロトン比を得られることが期待できる。さらに、前項の 3.1 基本磁石配置よりも大容積のアークチャンバー陽極内に一様なプラズマを生成可能であることも予想できる。しかしながら、図 3-2 から電子軌道がアークチャンバー陽極の中心付近に集中していることから、プラズマはビーム引出し面近傍で希薄になり、引き出せるイオン電流密度が低い可能性がある。この永久磁石の配列を拡張磁石配置と称し、今回製作したプラズマ生成部でも試すことができるようにアークチャンバー陽極上板の磁石取付溝を加工した。
3.3 中央部増強磁石配置Ⅰ（上板同心四角＋中心1列直線配置）

この磁場配置では、3.1項の基本磁石配置を基準に中央部の垂直磁場を増強し、プラズマの高密度領域をビーム引き出し面近傍に押しつけると共に、この中央垂直磁場の周囲に一次電子が旋回する「テント型磁気フィルター」磁場による一様性改善効果を期待して、アークチャンバー陽極上板の中心に永久磁石を1列追加した。解析結果を図3.1-3に示す。この図から垂直磁場が強いアークチャンバー陽極の短手方向中央部付近で一次電子が自由に運動できず、中央部のプラズマが希薄、あるいは低電子密度プラズマとなる可能性があることが解る。また、アークチャンバー陽極の長手方向では上板に追加した磁石の極性によりプラズマが偏る可能性があり、大容積のアークチャンバー陽極内に一様なプラズマが生成できない可能性が考えられる。従って、この磁石配置は今回製作したプラズマ生成部では採用しないことにした。

3.4 中央部増強磁石配置Ⅱ（上板5列直線配置）

この磁場配置では、3.3項の中央部増強磁石配置Ⅰで問題となったアークチャンバー陽極の長手方向のプラズマの一様性を改善するために、アークチャンバー陽極上板の永久磁石を直線上に5列配置した。アークチャンバー陽極の上板中心の永久磁石は残した状態とし、プラズマの高密度領域をビーム引き出し面近傍に押し下げる効果を期待した。解析結果を図3.1-4に示す。図3.3-3と比較すると、この磁石配置ではアークチャンバー陽極の長手方向のプラズマの一様性は幾分改善されたが、垂直磁場の強いアークチャンバー陽極の短手方向中央部付近でプラズマが希薄になる可能性がある。図3.1-2に示す磁場配置での電子軌道の方が、大容積のアークチャンバー陽極内に一様なプラズマを生成可能と言える。従って、この磁石配置は今回製作したプラズマ生成部では採用しないことにした。
This is a blank page.
図3-1．基本磁石配置（上板同心四角配置）での磁場分布と電子軌道

図3-2．拡張磁石配置（上板6列直線配置）での磁場分布と電子軌道
This is a blank page.
図3－3．中央部増強磁石配置I（上板同心四角+中心1列直線配置）での磁場分布と電子軌道

図3－4．中央部増強磁石配置II（上板5列直線配置）での磁場分布と電子軌道
This is a blank page.
4. プラズマ生成部の設計

今回製作した NBI 用大電力イオン源プラズマ生成部は多極磁場型プラズマ源であり、永久磁石を用いてラインカスプ磁場を形成し、低ガス圧アーク放電により生成した高密度水素プラズマを長時間安定に閉じ込められる構造である。その形状は幅 50 cm×長さ 90 cm×高さ 70 cm、重量 300 kg相当の大型のプラズマ源である。（写真 4-1 参照）

本プラズマ生成部は、アークチャージャー陽極、永久磁石、フィラメント陰極、ソーステーブル、加速管取付部品等から構成されており、KAERI 製 KSTAR-NBI 用イオン加速器と組み合わせることとも可能な構造とした。その構図を図 4-1 に示し、各部の詳細を次に述べる。

4.1 オークチャージャー陽極

内部にプラズマを生成するアークチャージャー陽極は、JT-60 NBI 用正イオン源のプラズマ生成部を長手方向に約 1.5 倍延長した大容積（内寸幅 25 cm×長さ 59 cm×高さ 31 cm）の矩形真空容器である。詳細を図 4-2 に示す。このアークチャージャー陽極は、低ガス圧アーク放電により生成した高密度水素プラズマから受ける熱荷荷や逆流電子ビームによる熱荷荷を取り除くため水冷構造とし、主要材に熱伝導率の高い無酸素鋼を使用した。また、長パルス運転に備え冷却能力を向上するため、JT-60 NBI 用正イオン源よりも冷却チャンネルの断面積を約 1.5 倍大きくした。（写真 4-3 と写真 4-4 を参照）

4.2 永久磁石

低ガス圧アーク放電により生成したプラズマをアークチャージャー陽極内に閉じ込むため、永久磁石を用いてアークチャージャー陽極周辺にラインカスプ磁場を形成することとは、多極磁場型プラズマ源として重要な開発要素の一つである。今回使用した永久磁石は、耐熱性に優れたサマリウム・コバルト磁石（信越化学工業製 Sm-Co 磁石 R26HS 型）である。アークチャージャー陽極の溝に合わせて各磁石を配列するため、次の①～⑧の寸法に合うように厚さ 1 cm×高さ 2 cm の短い磁石を連続及び加工して使用しており、鉄製の磁石取付プレートやステンレス製の磁石押えカバーで磁石が脱落しないようにアークチャージャー陽極へ固定している。基本的な磁石配置による極性の詳細を図 4-3 に示す。

① 厚さ 1 cm×高さ 2 cm×長さ 25.0 cm （側板用）1 2 個
② 厚さ 1 cm×高さ 2 cm×長さ 59.0 cm （側板用）1 2 個
③ 厚さ 1 cm×高さ 2 cm×長さ 26.7 cm （上板用）2 個
④ 厚さ 1 cm×高さ 2 cm×長さ 37.7 cm （上板用）2 個
⑤ 厚さ 1 cm×高さ 2 cm×長さ 48.7 cm （上板用）2 個
⑥ 厚さ 1 cm×高さ 2 cm×長さ 3.9 cm （上板用）2 個
⑦ 厚さ 1 cm×高さ 2 cm×長さ 11.9 cm （上板用）2 個
⑧ 厚さ 1 cm×高さ 2 cm×長さ 19.9 cm （上板用）2 個
4. 3 フィラメント陰極

フィラメント陰極の材質はタングステンで、汎用性のある直径2 mmの棒状のものを高さ73 mm×幅5 mmのヘアピン形に加工したものを利用した。詳細を図4-2に示す。アークチャンバー陽極内の配置は大容積の高密度プラズマを一様に生成するため、長手方向に片側6本を等間隔配置とし、短手方向では両側対称となる位置に合計12本取付けた。

フィラメント電流導入端子は水冷方式で、真空シールフランジによりアークチャンバー陽極から脱着可能な構造とした。また、フィラメント電流導入端子の真空側先端部には、モリブデン製のフィラメント固定金具を用い、消耗品であるフィラメント陰極を容易に交換できる構造とした。フィラメント陰極をアークチャンバー陽極から電気的に絶縁するため、電流導入端子にはセラミックによる電気絶縁を施した。また、逆流電子ビームの直撃からフィラメント陰極を守るため、フィラメント陰極の先端がイオン加速部の電極孔を見込まない位置となるようにした。すなわち、写真4-5と写真4-6に示すとおり、アークチャンバー陽極のフィラメント電流導入端子取付ポートからフィラメント電流導入端子の端末が必要以上に飛び出さないように、アークチャンバー陽極の内壁からフィラメント陰極先端までの横方向の突き出し距離を約58 mmに抑えた構造とした。

4. 4 絶縁機能付きガス導入配管

アークチャンバー陽極の上板には、プラズマを生成するための燃料ガスを外部からアークチャンバー陽極内に供給するガス導入用ポートを設けた。大容積のアークチャンバー陽極内へ均一に燃料ガスを供給するため、長手方向の対称な位置に2箇所のガス導入用ポートを設けた。

絶縁機能付きガス導入配管はこのガス導入用ポートに接続し、アークチャンバー陽極と試験装置側のガス導入配管を電気的に絶縁する部品である。DC200 V程度の電位差に耐えるセラミック絶縁物として使用した。

4. 5 サージ抑制用素子

サージ抑制用素子は、イオン加速部の電極間で絶縁破壊が生じた場合にプラズマ生成部の各部品間でサージ電圧が発生し、放電によって部品が損傷することを防ぐために取付けたものである。使用したコンデンサは、約0.47 μFの容量で使用電圧1 kV程度のものである。なお、コンデンサと並列に接続した1 MΩの抵抗は、運転後の電荷蓄積を放電させ感電の防止を図るための放電抵抗である。（図4-2参照）
4. 6 ソーステーブル

ソーステーブルは、アークチャンバー陽極からの全ての配線及び配管と取合うものである。イオン源用電源や冷却水ポンプ等の試験装置側の機器とプラズマ生成部が容易に取合い、接続できるようにしたものである。そのために、電源ケーブルや各種配管との取合い部となる端末には、次の①～③に示す接続維手を設けた。(写真 4-2 参照)

① 電気配線取合い部：(株)ソルトン製 大電流コネクタ（ワンタッチ接続式）
② 冷却水配管取合い部：日東工器(株)製 カプラ維手（ワンタッチ接続式）
③ ガス導入配管取合い部：Swagelok 社製 VCR 維手（ネジ込み式、金属ガスケット使用）

冷却水配管との取合い部は、マニホールドで受けてからプラズマ生成部へ冷却水配管を分岐する構造とした。その流路系統の詳細を図 4-4 に示す。また、設計上の各部の必要流量を次の④～⑥に示す。

④ アークチャンバー陽極の上板：70 L/min×1 系統（図 4-4 のチャンパカバー①②）
⑤ アークチャンバー陽極の側板：20 L/min×2 系統（図 4-4 のチャンパタンク③④と⑤⑥）
⑥ フィラメント電流導入端子：5 L/min×2 系統（図 4-4 の電流導入端子⑦⑧と⑨⑩）

4. 7 イオン加速部への接続部品

イオン加速部への接続部品は、図 4-2 のアークチャンバー陽極下部に示すイオン加速部接続用変換フランジ（ステンレス製スペーサ）を組み合わせ、取付ボルト類で構成される。

KAERI 製 KSTAR-NBI 用イオン加速部にも今回製作したプラズマ生成部を改修スペーサを介して取付け可能な構造とした。図 4-5 にイオン加速部接続用変換フランジの詳細を示す。

4. 8 計測用ポート

イオンビーム引出し面近傍のプラズマを計測するため、直径 6 mm のラングミュア・プローブを挿入できるゲージポート (Swagelok 社製 SS-4-UT-A-6BT) をアークチャンバー陽極下部に設けた。長手方向の中心位置に 3 ヶ所、短手方向の中心位置に 1 ヶ所ずつ計 5 ヶ所のゲージポートを設けた。

また、真空計測用ポートをアークチャンバー陽極の上板に 1 ヶ所設けた。この真空計測用ポートは真空フランジによりアークチャンバー陽極から取付け可能な構造とし、その先端には汸用真空測定子が取付け可能な φ18 ゲージポート付の短管を設けた。
図4-3. NBI用大電流イオン源プラズマ生成部磁石取付図（基本磁石配置）
図4-5．イオン加速部接続用変換フランジ
写真 4-1. NBI 用大電力イオン源
プラズマ生成部全景

写真 4-2. NBI 用大電力イオン源
プラズマ生成部ソーステーブル拡大

写真 4-3. NBI 用大電力イオン源
プラズマ生成部側面外観（長手方向）

写真 4-4. NBI 用大電力イオン源
プラズマ生成部側面外観（短手方向）

写真 4-5. NBI 用大電力イオン源
プラズマ生成部アークチャンバー陽極内

写真 4-6. NBI 用大電力イオン源
プラズマ生成部フィラメント陰極1本試着
This is a blank page.
5. まとめ

核融合実験炉のNBI用イオン源の大電力長パルス化に向けた技術開発の一環として、NBI用大電力イオン源プラズマ生成部の設計、製作を実施した。本プラズマ生成部を用いて構成するNBI用イオン源の出力性能として、ビームエネルギー120 keV、ビーム電流65 Aで200秒以上の重水素正イオンビームを引出すことを目標とした。

今回製作したプラズマ生成部は、JT-60 NBI用イオン源の開発及び運転保守で培われた技術を参考にして面積イオンビームの出しと長パルス運転に対応できる構造とした。ビーム出し領域の短手方向の幅は、JT-60 NBI用正イオン源（ビーム出し面積12×27 cm²）と同等であるが、長さを19 cm延長してビーム出し領域を12×46 cm²の大面積に設定した。電子軌道計算による磁場配位構造の検討では、JT-60 NBI用正イオン源の磁場配位を基本にして本プラズマ生成部に応じる永久磁石の配置を行った。さらに、ビーム引き出し面でのプラズマ密度と一様性の両立に関して、基本配位外の磁場配位の可能性についても検討し、試験運転を行う際にこれらの磁場配位に対応可能なように永久磁石の取付け構を用意した。また、約100 kWの大パワーアーケ放電により長時間安定なプラズマ生成を可能とするために、高真空保持や冷却機能の検討などイオン源特性に大きな影響を及ぼす各要素について十分な検討を行い、これらを統合して大電力長パルス運転に対応できる大容積プラズマ生成部（内寸:幅25 cm×長さ59 cm×高さ31 cm）の製作を完了した。

今後は、本プラズマ生成部の長パルス試験を日韓核融合協力の下でKAERIの大電力長パルスNBI試験装置を用いて実施する計画である。

謝辞

本件の完成に当たり、有意義な議論や助言を頂いた核融合エネルギー工学研究開発ユニット及びトカマクシステム技術開発ユニットの諸氏に感謝致します。また、本件に関する研究開発や協力研究を行う機会を頂きました高津英幸研究開発推進室長、常松俊秀核融合研究開発部門長、松田慎三郎執行役に深く感謝致します。

参考文献

This is a blank page.
国際単位系（SI）

<table>
<thead>
<tr>
<th>単位</th>
<th>物理量</th>
<th>符号</th>
<th>単位</th>
<th>肢体度</th>
<th>沿体度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ルーム</td>
<td>电流</td>
<td>I</td>
<td>A</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ルーム</td>
<td>電流密度</td>
<td>J</td>
<td>A/m²</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ルーム</td>
<td>電力</td>
<td>P</td>
<td>W</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ルーム</td>
<td>電気エネルギー</td>
<td>Q</td>
<td>J</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ルーム</td>
<td>電気出力</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ルーム</td>
<td>円周</td>
<td>θ</td>
<td>rad</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

基準定数

<table>
<thead>
<tr>
<th>定数</th>
<th>値</th>
</tr>
</thead>
<tbody>
<tr>
<td>ルーム</td>
<td>1.60218x10^-19</td>
</tr>
<tr>
<td>ルーム</td>
<td>6.62607x10^-34</td>
</tr>
<tr>
<td>ルーム</td>
<td>4.184</td>
</tr>
</tbody>
</table>

(第1回, 2006年改訂)