溶液照射法による99Mo製造に関する研究（2）
－ガンマ線照射下におけるモリブデン酸塩水溶液の特性評価－

Study on 99Mo Production by Solution Irradiation Method (2)
- Characterization of Aqueous Molybdate Solutions under Gamma-Ray Irradiation -

稲葉 良知 石川 幸治 飯村 光一 蔵沼 克嘉
石塚 悦男

Yoshitomo INABA, Koji ISHIKAWA, Koichi IIMURA, Katsuyoshi TATENUMA and Etso ISHITSUKA

大洗研究開発センター
照射試験炉センター

Neutron Irradiation and Testing Reactor Center
Oarai Research and Development Center

May 2009

Japan Atomic Energy Agency 日本原子力研究開発機構
This report is issued irregularly by Japan Atomic Energy Agency
Inquiries about availability and/or copyright of this report should be addressed to
Intellectual Resources Section, Intellectual Resources Department,
Japan Atomic Energy Agency
2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan
Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2009
溶液照射法による99Mo製造に関する研究（2）
—ガンマ線照射下におけるモリブデン酸塩水溶液の特性評価—

日本原子力研究開発機構 大洗研究開発センター
放射実験炉センター
稲葉 良知、石川 幸治*、飯村 光一+、
龍沼 克嘉*、石塚 悦男

（2009年2月17日受理）

溶液照射法は、放射性医薬品として利用されている99mTcの親核種である99Moを製造する新たな手法として提案しているものである。この新たな方法では、モリブデン水溶液を原子炉内で中性子照射し、（n,γ）反応とモリブデン吸着剤PZCを利用することによって、従来の製造方法と比べ効率的に低コストで99Moを製造できる。本方法の実用化に向けて、照射ターゲットとなるモリブデン水溶液の特性を評価するために、未照射試験、ガンマ線照射試験及び中性子照射試験が必要である。

本研究では、溶液照射法で用いる照射ターゲットの候補として選定した2種類のモリブデン酸塩水溶液（モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液）を用い、ガンマ線照射下において、選定水溶液と構造材料の両立性、選定水溶液の化学的安定性、循環特性、放射線分解及びガンマ発熱について調べた。これらに加えて、ガンマ線照射下におけるPZCの健全性について調べた。その結果、次のことがわかった。1. 選定水溶液とステンレス鋼の両立性は良好である。2. 選定水溶液は化学的に安定であり、水溶液の循環は滞りなく行われる。3. 選定水溶液の放射線分解によって生成したスラッシュ中における水素成分割合は、純水の場合と比べて高くなる。4. 選定水溶液に対するガンマ発熱の影響は、水の場合と同程度である。5. PZCの健全性は維持される。

大洗研究開発センター：〒311-1393 茨城県東茨城郡大洗町成田町4002

※ 外来研究員（㈱化研）
＋ 原子炉施設管理部
※ （㈱化研）
Study on 99Mo Production by Solution Irradiation Method (2)
– Characterization of Aqueous Molybdate Solutions under Gamma-Ray Irradiation –

Yoshitomo INABA, Koji ISHIKAWA*, Koichi IIMURA†,
Katsuyoshi TATENUMA* and Etsuo ISHITSUKA

Neutron Irradiation and Testing Reactor Center
Oarai Research and Development Center
Japan Atomic Energy Agency
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received February 17, 2009)

The solution irradiation method is proposed as a new production technique for 99Mo, which is the parent nuclide of 99mTc used as a radiopharmaceutical. In this new method, an aqueous molybdenum solution is irradiated with neutrons in a nuclear reactor, and more efficient and lower-cost 99Mo production than conventional 99Mo production can be realized by using the 98Mo (n, γ) 99Mo reaction and the molybdenum adsorbent of PZC. Aiming at the practical application of this method, unirradiation tests, gamma-ray irradiation tests, and neutron irradiation tests should be needed in order to characterize the aqueous molybdenum solution as the irradiation target.

In the present study, using two kinds of aqueous molybdate solutions (an aqueous ammonium molybdate solution and an aqueous potassium molybdate solution) selected as candidates for the irradiation target of the new method, the compatibility between the solutions and structural materials, the chemical stability, the circulation characteristics, the radiolysis, and the gamma heating of the solutions were investigated under gamma-ray irradiation. In addition, the integrity of PZC was investigated under gamma-ray irradiation. As a result, the following were found: 1) the compatibility between the solutions and stainless steel is very well, 2) the solutions are chemically stable and have a smooth circulation, 3) the ratios of hydrogen in the gases generated by the radiolysis of the solutions are higher than that of pure water, 4) the effect of gamma heating on the solutions is the same level as that on pure water, and 5) the integrity of PZC is maintained.

Keywords: Radiopharmaceutical, 99mTc, 99Mo, Solution Irradiation Method, Gamma-Ray Irradiation, Aqueous Molybdate Solution, PZC, Compatibility, Chemical Stability, Stainless Steel

* Visiting Researcher (from KAKEN Co., Ltd.)
† Department of JMTR Operation
* KAKEN Co., Ltd.
目 次

1. 緒 言... 1
2. モリブデン酸塩水溶液の特性評価に関するガンマ線照射試験.. 4
 2.1 ガンマ線照射施設の概要... 4
 2.2 試験装置及び試験方法.. 4
 2.2.1 試験装置.. 4
 2.2.2 試験方法.. 6
 2.3 試験結果及び考察.. 10
 2.3.1 水溶液静置型照射試験.. 10
 2.3.2 水溶液循環型照射試験.. 15
3. PZC の健全性に関するガンマ線照射試験... 60
 3.1 試験装置及び試験方法.. 60
 3.2 試験結果及び考察.. 61
4. 結 言... 69

謝 辞.. 70

参考文献.. 72
Contents

1. Introduction .. 1
2. Gamma-Ray Irradiation Tests on Characterization of Aqueous Molybdate Solutions .. 4
 2.1 Outline of Gamma-Ray Irradiation Facility .. 4
 2.2 Test Systems and Test Methods .. 4
 2.2.1 Test Systems ... 4
 2.2.2 Test Methods ... 6
 2.3 Test Results and Discussions .. 10
 2.3.1 Irradiation Test of Static Aqueous Solutions ... 10
 2.3.2 Irradiation Test of Circulating Aqueous Solutions ... 15
3. Gamma-Ray Irradiation Test on Integrity of PZC .. 60
 3.1 Test System and Test Method .. 60
 3.2 Test Results and Discussions .. 61
4. Concluding Summary .. 69
Acknowledgements ... 70
References ... 72
1. 緒言

テクネチウム 99m（99mTc、半減期：6.01 時間）は、シンチグラムと呼ばれる骨へのがん転移診断や脳・内臓機能検査の際に用いられる放射性医薬品である。99mTc の特徴として、診断に使用する薬剤に容易に付加できること、ベータ線を出さず、核異性体転移（Isomeric Transition: IT）によって生じるガンマ線のエネルギーが0.14 MeV で体外から測定しやすいこと、半減期が短いため放射線による患者の被ばくを最小限にできること、等がある。これらの特徴から、99mTc は、医療用の放射性同位元素 (Radioisotope: RI) の中で最も多く利用されており、日本を含め世界中で広く使われている。日本では年間 120 万件以上、世界では年間 2 千万件以上の需要がある (1)。ただし、99mTc は、その半減期が約 6 時間と短く、直接製造してもすぐに減衰してしまうため、製品種であるモリブデン 99（99Mo、半減期：65.94 時間）からミリングによって抽出分離され、使用されている。従って、99Mo の製造及び供給が安定的に行われないと、99mTc の核医学的診断・検査利用に大きく影響することになる。

これまで一般的に行われてきた 99Mo 製造では、濃縮ウランが原料として使われているため、核不拡散や量の放射性廃棄物発生等の問題がある。また、日本では現在、99Mo を 100%海外からの輸入に頼っているため、海外にある原子炉の老朽化や輸入時のトラブルによる供給不足の問題もある (1) (2) (3)。これらの問題を解決するため、効率的で低コストな 99Mo 製造方法を確立・実用化し、国内において 99Mo の安定的な生産と供給を目指す必要がある。

従来の 99Mo 製造方法と比べ、99Mo を効率的に低コストで製造できる新たな手法として、溶液照射法 (4) が考案されている。そこで、99Mo の安定的な生産と供給を目指して、溶液照射法による 99Mo 製造に関する研究開発を開始した。溶液照射法では、モリブデン酸塩水溶液（モリブデン化合物の水溶液）を照射ターゲットとするため、まずその特性を評価するための未照射試験、ガンマ線照射試験及び中性子照射試験が必要である。Fig. 1.1 に、溶液照射法による 99Mo 製造システムの研究開発プロセスを示す。網掛けの部分が既に実施した未照射試験 (5) の範囲であり、グレーの部分が本研究で実施したガンマ線照射試験の範囲である。

未照射試験（未照射下におけるモリブデン酸塩水溶液の特性評価） (5) では、溶液照射法による 99Mo 製造システムの全体構成を概略検討し、溶液照射法で用いる照射ターゲットの候補として 2 種類のモリブデン酸塩水溶液（モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液）を選定した後、未照射下において、選定モリブデン酸塩水溶液を用いた PZC のモリブデン吸着性能、選定水溶液の基となるモリブデン酸塩の性状・熟物性、選定水溶液と構造材料との両立性及び選定水溶液の化学的安定性について調べた。その結果、モリブデン酸カリウム水溶液が、モリブデン含有量、構造材との両立性及び化学的安定性の観点から、照射ターゲットとして有望であることがわかった。また、モリブデン酸アンモニウム水溶液に関しては、pH 調整を行うことにより、照射ターゲットとしない適性を持つことがわかった。さらに、モリブデン酸塩水溶液との両立性が良好なステンレス鋼を、キャプセル材配管等の構造材料として使用できる見通しを得た。

本研究（ガンマ線照射試験：ガンマ線照射下におけるモリブデン酸塩水溶液の特性評価）では、溶液照射法で用いる照射ターゲットの候補として選定した 2 種類のモリブデン酸塩水溶液（モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液）を用い、ガンマ線照射下において、選定水
溶液と構造材料との両立性、を選定水溶液の化学的安定性、循環特性、放射線分解及びガンマ発熱について調べた。ガンマ線照射下では、未照射下と異なり、以下のような現象を引き起こす可能性がある。
・水溶液の放射線分解によって生成したラジカルが、構造材料を腐食させる。
・水溶液の放射線分解と酸化還元反応によって、水に不溶のモリブデン化合物が形成され、これが構造材料に沈着し、流路を閉塞させる。
これらを調べることによって、選定したモリブデン水溶液のガンマ線照射下における特性を評価し、照射ターゲットとしての適性を検討した。さらに、高性能モリブデン吸着剤である高分子ジルコニウム化合物（Poly-Zirconium Compound: PZC）を用いたガンマ線照射試験を行い、ガンマ線照射下におけるPZCの健全性について調べた。
Fig. 1.1 溶液照射法による 99Mo 製造システムの研究開発プロセス
２．モリブデン酸塩水溶液の特性評価に関するガンマ線照射試験

本章では、ガンマ線照射試験で用いた試験装置（ガンマ線照射試験装置）を設置した（独）日本原子力研究開発機構（以下、原子力機構）高崎量子応用研究所のガンマ線照射施設の概要、試験装置、試験方法、試験結果及び考察について述べる。なお、試験で用いたモリブデン酸塩水溶液は、関東化学(株)製のモリブデン酸アンモニウム（特級品、純度：99.0%以上）及び和光純薬工業(株)製のモリブデン酸カリウム（純度：98%以上）から作製した。

２．１ ガンマ線照射施設の概要

原子力機構 高崎量子応用研究所のガンマ線照射施設第1照射棟第2照射室（ガンマ線照射室）内及び室外に、ガンマ線照射試験装置を設置し、これを用いてモリブデン酸塩水溶液のガンマ線照射試験を行った。ガンマ線照射室の概要及び試験装置の設置位置を、Fig. 2.1 に示す。本施設では、密封コバルト 60（60Co）線源をプール水中に格納し、線源昇降装置により照射室内に上昇させ、ガンマ線照射を行うことができる。線源の形状は、幅 2,000 mm、高さ 450 mm の板状で、ガンマ線強度は最大約 1.3 × 10^4 Gy/h である。ガンマ線照射室の線量率分布を、Table 2.1 及び Fig. 2.2 に示す。60Co 線源の前後には、照射架台が既設されており、照射架台上に試験装置を設置した（図の点線部分）。照射架台の大きさは、幅 2,400 mm、奥行き 3,000 mm である。照射室内にはいくつか貫通孔（直径 10 cm）があり、ここから外部へと配管及び配線を行うことができる。

２．２ 試験装置及び試験方法

ガンマ線照射試験に関しては、水溶液静置型照射試験装置を用いた水溶液静置型照射試験と水溶液循環型照射試験装置を用いた水溶液循環型照射試験に分けて行った。本節では、ガンマ線照射試験装置及び試験方法について述べる。

２．２．１ 試験装置

Fig. 2.3 及び Fig. 2.4 に、ガンマ線照射室内及び室外に設置したガンマ線照射試験装置を示す。Fig. 2.5 に、ガンマ線照射試験装置と各種機器内の配管・配線の概要を示す。本試験装置は、一定量の水溶液を静置して照射する水溶液静置型照射試験装置と水溶液を循環させながら照射する水溶液循環型照射試験装置に分けられ、照射容器やヒーター等、試験装置本体を照射室内に、循環ポンプ及び計測・制御機器を照射室外に設置した。Fig. 2.6 に水溶液静置型ガンマ線照射試験装置本体の詳細を、Fig. 2.7 に水溶液循環型ガンマ線照射試験装置本体の詳細を示す。照射室内の 60Co 線源カバーから約 10 cm 離れた位置に水溶液静置型照射試験装置本体を、それに隣接して水溶液循環型照射試験装置本体を設置した。照射室の貫通孔から、装置本体に接続された循環水溶液用配管、水溶液加熱用ヒーターのリード線及び水溶液温度測定用熱電対の補償導線を通し、照射室外に設置した循環ポンプ及び
計測・制御機器に配管・配線を行った。

（1）水溶液静置型照射試験装置

水溶液静置型照射試験装置は、水溶液を静置した状態で、水溶液と構造材料との両立性、水溶液の化学的安定性及びガム発熱について調べるための装置である。本装置は、容器架台、容器架台に設置された最大15個のパイレックスガラス製試験管（照射容器：外径38 mm、高さ618 mm、容量700 ml）、水溶液加熱用として試験管内に取り付けられた10個のマントルヒーター（電熱容量27 W）とリード線10本、水溶液温度測定用の熱電対（クロメル・アルメル）と補償導線15本、制御盤、データロガー及びソナルコンピュータ（PC）で構成された。照射容器のうち10個にマントルヒーターを取り付け、容器中の水溶液を任意の温度に調整可能とした。熱電対は、全ての照射容器内に挿入され、水溶液の温度を測定した。制御盤は、温調のためのヒーター出力の調整や各種機器（ヒーター、循環ポンプ及び流量計）の電源管理を行った。データロガーは、熱電対及び流量計出力する電圧信号を取り込んで、任意の時間ごとにデータ（温度及び流量）を表示・記録（蓄積）し、PCにデータを出力した。PCは、データロガーから出力されたデータを保存した。照射容器は密閉型とし、水溶液の蒸発によって発生したガスを凝縮させるため、高さのある容器を使用した。これによって水溶液の完全蒸発を防止し、照射前に水溶液の分析ができるようにした。さらに、ヒーターを取り付けた照射容器に対しては、水溶液の蒸発量増加や放射線分解に伴う体積膨張によって容器が破損するのを防ぐため、容器上部からの細管（発生ガス逃し管）で繋がった注射器状のピストン付き容器（ピストン容器）を取り付けた。水溶液の蒸発によって体積が膨張すると、ピストンが上昇することで容器内の圧力上昇を吸収し、ピストン容器の容量を越えて膨張が生じた場合には、ピストン容器上部に開けられた貫通孔からガスが外部へ逃げる構造とした。

ガムマ線照射実験時には、照射容器内にモリブデン酸塩水溶液を注入して試験片を浸漬し（試験ケースによっては試験片の浸漬無し）、水溶液温度を室温とするか、または制御盤の温調機能（ヒーター出力の調整）によって容器内の水溶液温度を一定に維持した。照射容器に関しては定期的に回収・交換し、容器内の水溶液及び試験片の分析を行った。

（2）水溶液循環型照射試験装置

水溶液循環型照射試験装置は、水溶液を循環させた状態で、水溶液と構造材料との両立性、水溶液の化学的安定性、放射線分解及びガム発熱について調べるための装置である。本装置は、容器架台、容器架台に設置された4個のパイレックスガラス製丸底フラスコ（照射容器：外径172 mm、高さ250 mm、容量2,000 ml）、水溶液加熱用としてフラスコに取り付けられた4個のマントルヒーター（電熱容量500 W）とリード線4本、循環水溶液用配管（外径6 mm、内径4 mm）、パイレックスガラス製試料採取容器（容量約50 ml）、水溶液循環用ポンプ、循環流量測定用流量計、水溶液温度測定用の熱電対（クロメル・アルメル）と補償導線4本、制御盤、データロガー及びPCで構成された。なお、制御盤、データロガー及びPCは、水溶液静置型照射試験装置と共通である。全ての照射容器にマントルヒーターを取り付け、容器内の水溶液を任意の温度に調整可能とした。熱電対は、全ての照射容器内に挿入され、水溶液の温度を測定した。循環水溶液用配管に関しては、上流側・下流側共、線源近傍である照射容器から照射架台下までの1.5〜2.2 m（照射容器の位置によって異なる。）を耐放射
線性に優れたステンレス鋼（SUS304）製とし、それ以外をテフロン製とした。なお、ステンレス管とテフロン管を合わせた配管長は、約30 mとなった。試料採取容器には水溶液の放射線分解等で発生したガスが滞留し、さらに、容器の容量以上にガスが発生した場合に備えて、容器上部にシリンジを取り付けた。

ガンマ線照射試験時には、照射容器内にモリブデン酸塩水溶液を満たして試験片を浸漬し（試験ケースによっては試験片の浸漬無し）、水溶液温度を室温とするか、または制御盤の温調機能（ヒーター出力の調整）によって容器内水溶液温度を一定に維持しながら、循環ポンプによって水溶液を循環させた。照射容器、循環水溶液用配管及び試料採取容器を合わせた循環流量は、約2,500 ml（照射容器内2,000 ml、その他約500 ml）であった。試料採取容器に関しては定期的に回収・交換し、容器内のガス及び水溶液の分析を行った。また、照射試験終了後、照射容器を回収し、容器内の水溶液及び試験片の分析を行った。

2.2.2 試験方法

（1）水溶液静置型照射試験

静置した2種類のモリブデン酸塩水溶液（モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液）中に、キャプセルや配管等の構造材料として使用予定の材料試験片を浸漬し、ガンマ線照射下において、水溶液と構造材料の互立性、水溶液の安定性及びガマ照射によって変化した。モリブデン酸塩水溶液に浸漬する試験片として、照射試験（5）の結果に基づき、モリブデン酸塩水溶液に対する耐食性が良好であったステンレス鋼（SUS304）及びアルミナイト処理済みアルミニウム合金（A6063）を用いた。試験片（SUS304及びA6063）の化学組成を、Table 2.2に示す。浸漬試験片の状態変化に関しては、照射試験前後において、試験片の表面観察及び重量測定を行った。モリブデン酸塩水溶液の状態変化に関しては、照射試験前後において、水溶液の状態確認、pH測定及び元素分析を行った。元素分析において、試験片を浸漬しない水溶液に関してはMo元素に、ステンレス鋼試験片浸漬水溶液に関してはMo元素及び試験片から溶出の可能性があるCr、Fe、Ni元素に、アルミニウム合金試験片浸漬水溶液に関してはMo元素及び試験片から溶出の可能性があるAl元素に着目した。モリブデン酸塩水溶液のガンマ照射に関しては、ガンマ線の照射時と照射中断時において、温度制御をしない水溶液の温度変化に着目した。

試験では、モリブデン酸塩水溶液の種類・温度、浸漬する試験片の材質・有無及び照射時間をパラメータとした。試験条件及び試験手順は、以下のとおりである。

（i）試験条件

・水溶液：pH調整済みモリブデン酸アンモニウム水溶液50 ml（濃度：飽和の80％）
 モリブデン酸カリウム水溶液50 ml（濃度：飽和の90％）
（水溶液の蒸発や放射線分解に伴い濃度が上昇し、水溶液が過飽和となって析出を生じる可能性があるため、飽和の80％～90％水溶液を用いた。なお、水溶液の飽和濃度に関しては、実測の溶解度（モリブデン酸アンモニウム：47.8 g/100 g-H2O、モリブデン酸カリウム：176.4 g/100 g-H2O）（5）を基準とした。）
純水（参照用） 50ml

温度：室温（温度未制御）または80°C
（ガンマ発熱による水溶液の沸騰や完全蒸発を避けるため、未照射試験の100°Cから80°Cに変更した。）

試験片：ステンレス鋼（SUS304）、アルミニウム合金（アルマイト処理済みA6063）、試験片無し（参照用）
大きさ：10W×30L×1T mm

浸漬時間：10日間、30日間及び60日間
（照射は完全な連続ではなく、装置運転の都合上中断が生じるため、照射時間より浸漬時間の方が長くなった。）

照射位置：試験装置を設置した60Co線源の前方に11〜15 cm、横方向：0〜96 cmの領域（Fig.2.1及びFig.2.3参照）

照射時間：約3日間、10日間、30日間及び60日間

照射強度：6.4×10⁵ Gy（約3日間）〜1.4×10⁷ Gy（約60日間）=2.3×10⁵ Gy/d
（原子力機構JRR-3水力照射設備における約5.5時間のガンマ線照射量相当）

測定項目：試験片の表面状態・重量及び水溶液の状態・pH含有元素（SUS304：Mo, Cr, Fe, Ni；A6063：Mo, Al）

各試験ケースにおける試験条件を、Table 2.3に示す。Table 2.3中の試験ケース名において、1文字目は液体の種類（H：純水、A：モリブデン酸アンモニウム水溶液、K：モリブデン酸カリウム水溶液）を、2文字目は液体の温度（R：室温、H：80°C）を、3及び4文字目の数値は照射時間（日数）を、5文字目は試験片の材質（S：SUS304、A：A6063）を示す。

モリブデン酸アンモニウム水溶液に関して、未照射試験の結果に基づき、沈殿抑制のため、アンモニア水を用いて、濃度調整を兼ねたpH調整（弱酸性から弱アルカリ性への調整）を行った。

（ii）試験手順

1）純水（参照用）または所定の濃度・pHに調整したモリブデン酸塩水溶液50mlを照射容器内に注入し、必要な場合、試験片を浸漬し、密栓した。

2）水溶液を注入した照射容器を、試験装置の所定の場所に固定した。また、加熱を行う照射容器には、上部にピストン容器を取り付けた。

3）照射容器内の水溶液を室温（雰囲気温度）とするか80°Cに加熱・保温し、最大で約60日間、ガンマ線を照射した。

4）試験中、各水溶液の温度を熱電対により測定し、データロガー及びPCに収録した。

5）決められた照射時間経過後に、照射容器を回収・交換した。

6）各試験片に関しては、照射試験の前後において、目視や顕微鏡（マイクロスコープ）による表面観察及び電子顕微鏡による重ね測定を行った。また、試験後に、試験片表面の走査型電子顕微鏡（Scanning Electron Microscope：SEM）による観察を行うと共に、エネルギー分散型X線分析装置（Energy Dispersive X-ray spectrometer：EDX）による元素分析を行った（SEM-EDX分析）。なお、表面観察及び重量測定は、試験片を水溶液中から取り出し、純水での洗浄後、乾燥機内（50°C
～60℃で乾燥させてから行った。また、電子天秤の測定精度に関しては、500 mg±3 mg、1 g ±5 mg及び10 g±20 mg以内となるよう計測した。
7）各水溶液に関しては、照射試験の前後において、目視による水溶液の状態確認及びpH計によるpH測定後の水溶液の一部（0.5 ml）を抜き取り、誘導結合プラズマ発光分光分析法（Inductively Coupled Plasma Atomic Emission Spectrometry：ICP-AES）や原子吸光分析法（Atomic Absorption Spectrometry：AAS）による元素分析を行った。

（2）水溶液循環型照射試験
循環する2種類のモリブデン酸塩水溶液（モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液）中に、キップセルや配管等の構造材料として使用予定の材料試験片を浸漬し、ガラス汚染下において、水溶液と構造材料との両立性、水溶液の化学的安定性、循環特性、放射線分解及びガラス汚染下において調べた。モリブデン酸塩水溶液に浸漬する試験片として、未照射試験（5）の結果に基づき、モリブデン酸塩水溶液に対する耐食性が最も良好であったステンレス鋼（SUS304）を用いた。SUS304試験片の化学組成に関しては、Table 2.2を参照のこと。照射試験におけるモリブデン酸塩水溶液の状態変化及び水溶液からの放射線分解生成物（ガス）に関しては、試験中定期的に試料採取容器を回収し、水溶液の状態確認、pH測定、モリブデン定量分析及び発生ガス（水素、酸素及び窒素）の分析を行った。浸漬試験片に関しては、照射試験前後において、試験片の表面観察及び重量測定を行った。モリブデン酸塩水溶液の状態変化に関しては、照射試験前後において、水溶液の状態確認、pH測定及び元素分析を行った。試験片において、窒素が浸漬しない水溶液に関してはMo元素に、ステンレス鋼試験片浸漬水溶液に関してはMo元素及び試験片から溶出の可能性があるCr、Fe、Ni元素に着目した。モリブデン酸塩水溶液のガラス汚染下に関しては、ガラス汚染の未照射時と照射時において、温度制御をしない水溶液（純水）の温度変化に着目した。
試験では、循環モリブデン酸塩水溶液の種類、浸漬する試験片の有無及び照射時間をパラメータとした。試験条件及び試験手順は、以下のとおりである。

(i) 試験条件
・水溶液：pH調整済みモリブデン酸アンモニウム水溶液 約2,500 ml（濃度：飽和の80%）
モリブデン酸カリウム水溶液 約2,500 ml（濃度：飽和の90%）
（水溶液の放射線分解に伴い濃度が上昇し、水溶液が過飽和となること、循環用配管が長く、照射容器内とそれ以外との温度差が大きくなること（80℃→室温）により析出を生じる可能性があるため、飽和の80%〜90%水溶液を用いた。なお、モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液の飽和濃度に関しては、水溶液静置型照射試験と同様に、実測の溶解度を基準とした。）
純水（参照用） 約2,500 ml
温度：室温（温度未制御）または80℃（照射容器内の水溶液温度）
（ガラス汚染による水溶液の沸騰を避けるため、80℃とした。）
循環流量：10 ml/min
・試験片：ステンレス鋼（SUS304）、試験片無し（参照用）
大きさ：20W×50T×2T mm
浸漬時間：60日間以上
（照射は完全な連続ではなく、装置運転の都合上中断が生じるため、照射時間より浸漬時間の方が長くなった。）
・照射位置：照射容器を設置した60Co線源中心より縦方向：22〜40 cm、横方向：0〜96 cmの領域
（Fig. 2.1 及び Fig. 2.3 参照）
・照射時間：約60日間
・照射強度：1.0×10^5 Gy（約60日間）=1.6×10^5 Gy/d
（原子力機関 JRR-3 水力照射設備における約4時間のガンマ線照射量相当）
・測定項目：試験片の表面状態・重量、水溶液の状態・pH・含有元素（Mo、Cr、Fe、Ni）・温度及び水溶液からの発生ガス成分（H₂、O₂、N₂）
各試験ケースにおける試験条件を、Table 2.4 に示す。Table 2.4 中の試験ケース名において、1文字目は液体の循環を、2文字目は液体の種類（H：純水、A：モリブデン酸アンモニウム水溶液、K：モリブデン酸カリウム水溶液）を、3及び4文字目の数値は照射時間（日数）を、5文字目は試験片の材質（S：SUS304）を示す。
モリブデン酸アンモニウム水溶液に関しては、沈殿抑制のため、アンモニア水を用いて、濃度調整を兼ねたpH調整（弱酸性から弱アルカリ性への調整）を行った。
（ii）試験手順
1）純水（参照用）または所定の濃度・pHに調整したモリブデン酸塩水溶液 2,000 ml を照射容器内に充填し、必要な場合、試験片を浸漬した。
2）水溶液を充填した照射容器を試験装置に固定し、水溶液循環用配管を接続した。
3）循環水溶液用配管内に水溶液を充填して循環を開始し、エア抜きを行った。
4）照射容器内の水溶液を室温（雰囲気温度）とするか80℃に加熱・保温し、最大で約60日間、ガンマ線を照射した。
5）試験中、各水溶液の温度を熱電対により測定し、データロガー及びPCに収録した。
6）照射試験中定期的（照射開始から3, 10, 20, 30, 40, 50, 60日目）に、照射容器内や循環水溶液用配管を目視確認し、試料採取容器を回収した。試料採取容器内に集まったガスをセプタム部よりシリンジで採取し、ガスクロマトグラフィーによる発生ガス（水素、酸素及び窒素）の分析を行った。ガス分析後、水溶液を採取し、pH計によるpH測定及びICP-AESによるモリブデン定量分析を行った。
7）各試験片に関しては、照射試験の前後において、目視やマイクロスコープによる表面観察及び電子顕微鏡による重量測定を行った。また、試験後に、試験片表面のSEMによる観察を行うと共に、EDXによる元素分析を行った（SEM-EDX分析）。
8）各水溶液（照射容器内水溶液または試料採取容器内水溶液）に関しては、照射試験の前後において、目視による水溶液の状態確認及びpH計によるpH測定後、水溶液の一部（0.5 ml）を抜き取り、ICP-AESやAASによる元素分析を行った。
2.3 試験結果及び考察

2.3.1 水溶液静置型照射試験

静置したモリブデン酸アンモニウム水溶液（濃度：飽和の80%～90%程度）に試験片を浸漬し、常圧下で水溶液を80℃に加熱・保溫するか室温（温度制御無し）とし、ガンマ線を照射した。また、参照用として、純水及びモリブデン酸アンモニウム水溶液のみを80℃に加熱・保溫するか室温とし、ガンマ線を照射した。約10日間、30日間及び60日間のガンマ線照射後、試験片の表面観察と重量測定及び水溶液のpH測定と元素分析を行った。水溶液の温度に関しては、常時測定を行った。Table 2.5～Table 2.8に、試験片の表面観察（目視）と重量測定及び水溶液のpH測定と元素分析の結果を示す。

ステンレス鋼（SUS304）試験片をモリブデン酸アンモニウム水溶液に浸漬した場合、表面の光沢が消え、薄白色的皮膜が形成された。一方、SUS304試験片をモリブデン酸カリウム水溶液に浸漬した場合、腐食が認められなかった。アルマイト処理済みアルミウム合金（A6063）試験片をモリブデン酸アンモニウム水溶液に浸漬した場合、腐食が認められると共に白色の皮膜が形成された。一方、アルマイト処理済みA6063試験片をモリブデン酸カリウム水溶液に浸漬した場合、表面の光沢が消え、薄白色的皮膜が形成された。なお、モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液の両者共、試験期間中、沈殿の発生は無かった。また、照射容器中の水溶液量は、蒸発や放射線分解に影響されず、試験前後ではほぼ一定に維持された。

（1）試験片の腐食状態、重量及び侵食度の経時変化

試験片表面の経時変化（マイクロスコープ50倍及び300倍による表面観察の結果）をTable 2.9とTable 2.10（以上、SUS304試験片）及びTable 2.11～Table 2.13（以上、アルマイト処理済みA6063試験片）に、試験片表面のSEM-EDX分析結果をTable 2.14～Table 2.16（以上、SUS304試験片）及びTable 2.16～Table 2.21（以上、アルマイト処理済みA6063試験片）に、試験片の浸漬時間と腐食減量、腐食度（表のみ）及び侵食度との関係をTable 2.22、Fig. 2.8とFig. 2.9（以上、SUS304試験片）及びTable 2.23、Fig. 2.10とFig. 2.11（以上、アルマイト処理済みA6063試験片）に示す。なお、腐食減量、腐食度及び侵食度は、次式から求めた。単位時間、単位面積当たりの腐食量を示す腐食度及び単位時間当たりの侵食深さを示す侵食度は、共に腐食速度を表す。

\[
\text{腐食減量 (g/m}^2\text{)} = \frac{\text{試験片の重量変化量 (g) \times \text{試験片の表面積 (m}^2\text{)}}}{\text{浸漬時間 (h) (2.1)}} \\
\text{腐食度 (g/(m}^2\cdot\text{d}) = \frac{\text{腐食減量 (g/m}^2\text{)} }{\text{浸漬時間 (d)}} (2.2)} \\
\text{侵食度 (mm/y) = \frac{\text{腐食度 (g/(m}^2\cdot\text{d}) \times 0.365}{\text{試験片の密度 (g/cm}^3\text{)}} (2.3)}
\]

Fig. 2.8～Fig. 2.11には、未照射試験（5）（濃度：飽和の85%、液温：100℃のモリブデン酸アンモニウム水溶液及び濃度：飽和の90%、液温：100℃のモリブデン酸カリウム水溶液にSUS304試験片を浸漬した場合、濃度：飽和の90%、液温：100℃のモリブデン酸アンモニウム水溶液及び濃度：飽和、液温：100℃のモリブデン酸カリウム水溶液にアルマイト処理済みA6063試験片を浸漬した場合）の結果も併せて示す。
(1) SUS304 試験片

① 80℃のモリブデン酸アンモニウム水溶液浸漬

SUS304 試験片を 80℃のモリブデン酸アンモニウム水溶液に浸漬した試験ケースでは、試験片の表面観察及び重量測定の結果、10.7 日間照射（10.9 日間浸漬）の場合、外観上腐食が認められず、重量はほとんど変化しなかったが、31.1 日間照射（46.0 日間浸漬）及び 60.6 日間照射（76.7 日間浸漬）の場合、表面の光沢が消え、薄白色の皮膜が形成されて、重量はわずかに増加した。

試験片表面の SEM-EDX 分析を行ったところ、31.1 日間照射及び60.6 日間照射の場合、かなりの割合（100～47.0 wt%）でケイ素（Si）が検出された。なお、試験片表面の状態に関しては、10.7 日間照射の場合、特に大きな変化は無く、31.1 日間照射の場合、結晶のようなものが付着・成長しており、60.6 日間照射の場合、粒状態のある比較的しっかりと皮膜が形成されていた。試験後に 10.7 日間、31.1 日間及び 60.6 日間の照射で使用していた照射容器（パイレックスガラス製）を確認したところ、腐食（溶出）が認められた。Fig. 2.12 に、照射容器の腐食状態を示す。水溶液に接触していなかった部分では、ガンマ線照射に伴う茶褐色への変色のみであるが、水溶液に接触していた部分では、茶褐色への変色に加えて、腐食（溶出）が生じていた。容器の腐食は、照射時間が長いほど進行していた。従って、試験片表面に形成された皮膜は、照射容器の腐食によって溶出した Si または二酸化ケイ素（SiO2）によるものであると考えられる。

試験片の浸漬時間と腐食減量、腐食度及び浸食度の関係を調べたところ、腐食減量、腐食度及び浸食度は、初期にほぼゼロであったが、その後、皮膜形成に伴う重量増加によってマイナスとなっていた。Table 2.24 に、耐食度の一般的基準 (g) を示す。腐食度は -0.1 g/(m²・d) を超えたが±1.0 g/(m²・d) 以内であり、侵食度は±0.051 mm/y 以内であった。従って、SUS304 は、80℃のモリブデン酸アンモニウム水溶液による腐食に対して、十分に耐える材料（完全耐食性材料）であると言える。ただし、皮膜形成によって、腐食が抑制された可能性がある。

② 80℃のモリブデン酸カリウム水溶液浸漬

SUS304 試験片を 80℃のモリブデン酸カリウム水溶液に浸漬した試験ケースでは、試験片の表面観察及び重量測定の結果、9.8 日間照射（10.1 日間浸漬）、32.0 日間照射（36.0 日間浸漬）及び 60.6 日間照射（76.7 日間浸漬）の何れの場合においても外観上腐食が認められず、重量はほとんど変化しなかった。また、試験後に照射容器を確認したところ、容器の腐食も認められなかった（Fig. 2.12 参照）。

試験片の浸漬時間と腐食減量、腐食度及び浸食度の関係を調べたところ、腐食減量、腐食度及び浸食度は、ほぼゼロで推移した。腐食度及び浸食度は、それぞれ 0.1 g/(m²・d) 及び 0.051 mm/y 以内であった。従って、SUS304 は、80℃のモリブデン酸カリウム水溶液による腐食に対して、完全に耐える材料（完全耐食性材料）であると言える。

(ii) アルマイト処理済み A6063 試験片

① 室温のモリブデン酸アンモニウム水溶液浸漬

アルマイト処理済み A6063 試験片を室温のモリブデン酸アンモニウム水溶液に浸漬した試験ケース（60.6 日間照射（76.7 日間浸漬）の場合のみ）では、試験片の表面観察及び重量測定の結果、試験片全体の黒茶色への変色が生じて腐食が認められ、試験片の重量は減少した。
試験片表面のSEM-EDX分析を行ったところ、アルミニウム（Al）及びモリブデン（Mo）が検出された。なお、試験片表面の状況に関して、腐食による凹凸とわずかな付着物が生じており、皮膜の形成は無かった。この付着物は、試験片表面の腐食に伴い水溶液から生じたMoの化合物であると考えられる。また、試験後に照射容器を確認したところ、容器の腐食は認められなかった。

試験片の腐食度は0.1 g/(m²·d)を超えたが1.0 g/(m²·d)以内であり、侵食度は0.051 mm/y以内であった。従って、アルマイト処理済みA6063は、室温のモリブデン酸アノニウム水溶液による腐食に対して、十分に耐える材料（完全耐食性材料）であると言える。腐食が認められたものの、その程度は非常にわずかであった。

② 80℃のモリブデン酸アノニウム水溶液浸漬

アルマイト処理済みA6063試験片を80℃のモリブデン酸アノニウム水溶液に浸漬した試験ケースでは、試験片の表面観察の結果、10.7日間照射（10.9日間浸漬）の場合、茶色及び黒茶色への変色が生じて腐食が認められ、31.1日間照射（46.0日間浸漬）の場合、黒茶色への変色と共に腐食が進行する一方で、白色の皮膜形成が一部に認められ、60.6日間照射（76.7日間浸漬）の場合、白色の皮膜部分が試験片全体に広がった。試験片の重量は、浸漬初期に減少し、その後の白色皮膜の広がりと共に増加した。

試験片表面のSEM-EDX分析を行ったところ、10.7日間照射、31.1日間照射及び60.6日間照射の場合、Al、Mo及び常温のモリブデン酸アノニウム水溶液浸漬の場合に検出されなかったSiが検出された。なお、試験片表面の状況に関しては、10.7日間照射の場合、層状にびび割れのある付着物が認められ、31.1日間照射の場合、びび割れのある皮膜上に結晶のようなものが付着しており、60.6日間照射の場合、びび割れのある層状の皮膜が形成されていた。試験後に10.7日間、31.1日間及び60.6日間の照射で使用していた照射容器（バイレックスガラス製）を確認したところ、SUS304を浸漬した場合と同様に、水溶液に接触していた部分の腐食が認められた（Fig. 2.12参照）。従って、試験片表面に形成された皮膜は、試験片表面の腐食に伴い水溶液から生じたMoの化合物と、照射容器の腐食によって溶出したSiまたはSiO₂によるものであると考えられる。

試験片の浸漬時間と腐食減量、腐食度及び侵食度の関係を調べたところ、腐食減量、腐食度及び侵食度は、初期に増加しプラスとなったが、その後、皮膜形成に伴う重量増加によってマイナスとなった。腐食度は1.0 g/(m²·d)を超えたが3.0 g/(m²·d)以内であり、侵食度は0.051 mm/yを超えたが0.762 mm/y以内であった。従って、アルマイト処理済みA6063は、80℃のモリブデン酸アノニウム水溶液による腐食に対して、相当に耐える材料（適材・使用可能材料）であると言える。ただし、皮膜形成によって、腐食が抑制された可能性がある。

③ 80℃のモリブデン酸カリウム水溶液浸漬

アルマイト処理済みA6063試験片を80℃のモリブデン酸カリウム水溶液に浸漬した試験ケースでは、試験片の表面観察及び重量測定の結果、9.8日間照射（10.1日間浸漬）の場合、32.0日間照射（36.0日間浸漬）及び60.6日間照射（76.7日間浸漬）の場合、表面の光沢が消え、薄白色の皮膜が形成されたが、重量はわずかに減少した。

試験片表面のSEM-EDX分析を行ったところ、9.8日間照射、32.0日間照射及び60.6日間照射の場合、Al、Mo及びカリウム（K）が検出された。なお、試験片表面の状況に関しては、9.8日間照射の
場合、結晶のようなものが付着・成長しており、32.0 日間照射の場合、ひび割れのある皮膜が形成され、60.6 日間照射の場合、さらにしっかりとひび割れのある皮膜が形成されていた。試験片表面に形成された皮膜は、試験片表面の腐食に伴い水溶液から生じた Mo と K を含む化合物によるものであると考えられる。また、試験後に照射容器を確認したところ、水溶液の液面付近にわずかながら容器の腐食が認められた（Fig. 2.12 参照）。

試験片の浸漬時間と腐食減量、腐食度及び侵食度の関係を調べたところ、腐食減量、腐食度及び侵食度は、初期にわずかに増加し、その後、ほぼゼロで推移した。腐食度は 0.1 g/(m²・d) を超えたが 1.0 g/(m²・d) 以内であり、侵食度は 0.051 mm/y 以内であった。従って、アルマイト処理済み A6063 は、80°C のモリブデン酸カリウム水溶液による腐食に対して、十分に耐える材料（完全耐食性材料）であると言える。ただし、皮膜形成によって、腐食が抑制された可能性がある。

SUS304 試験片及びアルマイト処理済み A6063 試験片の両者共、未照射試験（5）との比較から、ガス線照射によって腐食が進行する傾向は認められなかった。また、試験片をモリブデン酸アンモニウム水溶液に浸漬した試験ケースでは、試験片表面にガラス成分等の皮膜が形成されると共に、試験片の重量が増加したため、耐食性を正しく評価することはできなかった。

照射容器（ガラス）の腐食は、試験片の材質や有無に関わらず、80°C のモリブデン酸アンモニウム水溶液にガス線を照射した場合及びアルマイト処理済み A6063 試験片を浸漬した 80°C のモリブデン酸カリウム水溶液にガス線を照射した場合に生じた。ただし、未照射試験（5）では、100°C のモリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液を用いた場合でも、ガラスの腐食は生じなかった。従って、照射容器の腐食及びその進行は、水溶液の種類、水溶液の温度（室温よりも高い温度）及びガス線照射に依存すると考えられる。

（2）水溶液の pH 経時変化及び化学的安定性

水溶液の温度（平均値）、pH 及びモリブデン濃度の測定結果を照射時間及び吸収線量と共に Table 2.25 に示す。

(i) モリブデン酸アンモニウム水溶液

試験後の水溶液の pH は、試験片の材質や有無によらず、試験前より若干下がるものの、pH=8 弱程度で安定していた。

水溶液の状態に関しては、試験片の材質や有無によらず、沈殿の発生は無かったが、試験片（SUS304 及びアルマイト処理済み A6063）を浸漬した場合、藍色の着色が生じた。なお、ガス線の照射が終了すると、水溶液の藍色は消えたが、黄色の着色が残った。黄色の着色は、照射時間が長く、水溶液温度が高いほど濃くなった。着色の原因として、ガス線照射、試験片や照射容器の腐食によって溶出した元素等が考えられる。

(ii) モリブデン酸カリウム水溶液

試験後の水溶液の pH は、試験片の有無によらず、試験前より若干下がるもの、pH=10 程度で安定していた。

水溶液の状態に関しては、試験片の有無によらず、沈殿及び着色の発生は無く、安定していた。
（3）水溶液の元素分析

モリブデン酸亜鉛水溶液を用いた試験ケースに関して、試験前後における分取液のモリブデン定量分析をICP-AESによって行った（Table 2.25参照）。水溶液中のモリブデン含有量（濃度）は、モリブデン酸アンモニウム水溶液の場合、試験前後において-8.7％～+1.0％の増減率となり、モリブデン酸カリウム溶液の場合、試験前後において-2.4％～+2.5％の増減率となった。全ての試験ケースにおいて、沈殿の発生が無かったため、水溶液中のモリブデン含有量は、ほぼ一定で安定していた。アルマイト処理済み A6063 試験片にモリブデン酸塩水溶液に浸漬した場合、試験片上にモリブデンが析出したが、それによる水溶液中のモリブデン含有量への影響は、ほとんど無かった。

SUS304 試験片を浸漬した水溶液に関して、試験後に AAS による分析を行ったところ（Table 2.5及び Table 2.6参照）、全ての水溶液中に Cr、Fe 及び Ni が微量ながら検出され、SUS304 の溶出が認められた。未照射試験の（5）において、SUS304 試験片を 20 日間浸漬した水溶液中の Cr、Fe 及び Ni 含有量は各々 0.01 mg/l（検出限界）未満であったことから、溶出にはガマ線照射や処理時間が影響していると考えられる。文献（7）によれば、水中に固体材料を共存させ、ガマ線を照射することで、水中の分解反応が固体材料の表面近傍で促進される。これに起因し、金属表面の腐食（溶出）が、未照射試験と比較して進行した可能性がある。ただし、Cr、Fe 及び Ni の検出量は極わずかであることから、ガマ線照射の影響かどうか含め、正確な溶出メカニズムについて、今後の検討が必要である。また、未照射試験の（5）より処理時間が短い場合（約 10 日間の浸漬）でも Cr、Fe 及び Ni が検出されていることから、浸漬時間の影響は小さいと考えられる。

アルマイト処理済み A6063 試験片を浸漬した水溶液に関して、試験後に ICP-AES による分析を行ったところ（Table 2.7及び Table 2.8参照）、Al の含有量は検出限界の 10 mg/l 未満となった。

（4）ガマ線発熱の影響

温度制御をせず、室温でガマ線が照射された純水及びモリブデン酸亜鉛水溶液の温度変化から、ガマ線発熱の影響について調べた。Fig. 2.13 に、純水（以下、HR60）及びモリブデン酸アンモニウム水溶液（以下、AR60）及びアルマイト処理済み A6063 試験片を浸漬したモリブデン酸アンモニウム水溶液（以下、AR60A）の温度変化を示す。

試験期間中、ガマ線の照射は、常に連続して行われたわけではない、Fig. 2.13 に示すように中断された期間があった。そこで、ガマ線が照射されていない場合の代表温度を、約 13 日間の照射中断期間のうち温度変化が少なかった 6 日間の平均温度とした。また、ガマ線が照射されている場合の代表温度を、試験開始から約 25 時間の照射中断まで 27.6 日間（この期間も、短時間の照射中断は随時行われた。）の平均温度とした。ガマ線が照射されていない場合の代表温度は、HR60：21.1℃、AR60：18.7℃及び AR60A：18.9℃となり、ガマ線が照射されている場合の代表温度は、HR60：27.5℃、AR60：24.9℃及びAR60A：24.3℃となった。ガマ線照射（照射強度：2.3×10^5 Gy/d）に伴い、HR60：6.4℃、AR60：6.2℃及び AR60A：5.3℃の温度上昇が生じたことになり、ガマ線発熱の影響が認められた。ただし、温度上昇幅に関して、3ケース間に大きな違いは生じなかった。照射容器（ガラス）のガマ線発熱による温度上昇への影響は、3ケース共ほとんどであり、ガマ線照射に伴う液体の発熱量は、ガラスの発熱量を試料上昇率に予想される（軽水及びミロニウムの材料試験炉（Japan Materials Testing Reactor：JMTR、原子力機構 大洗研究開発センターに設置されている原子炉）におけるガマ線の発熱量を用いて計算されるもの）に比べて非常に小さい。
発熱率（8）と密度及び液体と照射容器の体積から推定）。従って、モリブデン酸アンモニウム水溶液のガンマ発熱率は、純水のガンマ発熱率とはほぼ同じであると考えられる。

2.3.2 水溶液循環型照射試験

循環するモリブデン酸塩水溶液（濃度：飽和の80%～90%程度）に試験片を浸漬し、常圧下で照射容器内水溶液を80℃に加熱・保湿し、ガンマ線を照射した。また、参照用として、純水及びモリブデン酸アンモニウム水溶液のみを80℃に加熱・保湿するか室温とし、ガンマ線を照射した。試験中、定期的に水溶液のpH測定、モリブデン濃度分析及び発生ガス分析を行い、試験終了後、試験片の表面観察と重量測定及び水溶液のpH測定と元素分析を行った。水溶液の温度に関しては、常時測定を行った。Table2.26に、試験片の表面観察（目視）と重量測定及び水溶液のpH測定と元素分析の結果を示す。

ステンレス鋼（SUS304）試験片を循環するモリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液に浸漬した場合、腐食が認められなかった。モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液の循環に関しては、試験期間中ほぼ順調であり、沈殿物や付着物による流れの阻害は生じなかった。

（1）試験片の腐食状態、重量及び侵食度の経時変化

試験片表面の経時変化（マイクロスコープ50倍及び300倍による表面観察の結果）をTable 2.27（SUS304試験片）に、試験片表面のSEM-EDX分析結果をTable 2.28（SUS304試験片）に、試験片の浸漬時間と腐食減量、腐食度及び侵食度の関係をTable 2.29（SUS304試験片）に示す。

SUS304試験片を循環する80℃のモリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液に浸漬した試験ケースでは、試験片の表面観察及び重量測定の結果、約60日間の照射（約80日間浸漬）後においても、外観上腐食は認められず、重量はほとんど変化しなかった。水溶液静置型試験において、SUS304試験片を80℃のモリブデン酸アンモニウム水溶液に浸漬した試験ケースで認められた皮膜の形成は、認められなかった。また、試験後に照射容器を確認したところ、容器の腐食も認められなかった。

試験片の腐食減量、腐食度及び侵食度を求めたところ、腐食減量、腐食度及び侵食度はほぼゼロであり、それぞれ0.1 g/(m²・d)及び0.051 mm/y以内であった。従って、SUS304は、循環する80℃のモリブデン酸カリウム水溶液による腐食に対して、完全に耐える材料（完全耐食性材料）であると言える。

（2）水溶液のpH経時変化、化学的安定性及び循環特性

水溶液の温度（平均値）、pH及びモリブデン濃度の測定結果を照射時間及び吸収線量と共に、Table 2.30に示す。

（i）モリブデン酸アンモニウム水溶液

水溶液のpHは、試験片の有無によらず、試験期間中を通してpH=8弱程度で安定していた。
水溶液の状態に関しては、試験片の有無によらず、沈殿の発生は無く、沈殿物や付着物による管の閉塞も生じず、循環状態は常に良好であったが、青色の着色が生じた。なお、ガンマ線の照射が終了すると、液体の青色は消え、水溶液は無色透明に戻ったが、ガンマ線の照射が再開されると、水溶液は再び青色に着色した。この様子を、Fig. 2.14 に示す。

(ii) モリブデン酸カリウム水溶液
水溶液の pH は、試験期間中を通して pH=10～11 基本的に安定していた。
水溶液の状態に関しては、沈殿の発生は無かったが、ポンプ下流部の循環水溶液用配管（テフロン管）内部に無色透明の析出物（付着物）が生じた。この付着物の様子を、Fig. 2.15 に示す。本図に示すように、管内にガス（気泡）が滞留し、ガスと水溶液の境界部分で付着物が生じた。しかしながら、付着物による流れの阻害はほとんど無く、循環状態は良好であった。

以上のように、モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液の循環状態は良好であり、水溶液を約 30 m の管径（内径 4 mm）に中長期（延べ約 2 ヶ月間）にわたって循環させることができた。

(3) 水溶液の元素分析
モリブデン酸塩水溶液を用いた試験ケースに関して、試験前、試験中及び試験後における分取液のモリブデン定量分析を ICP-AES により行った（Table 2.30 参照）。水溶液中のモリブデン含有量（濃度）は、モリブデン酸アンモニウム水溶液の場合（以下、CA60）、照射時間によって 0%～5.5% の範囲で変動し、モリブデン酸アンモニウム水溶液に SUS304 試験片を浸漬した場合（以下、CA60S）、照射時間によって 5.6%～8.0% の範囲で変動し、モリブデン酸カリウム水溶液に SUS304 試験片を浸漬した場合（以下、CK60S）、照射時間によって 3.6%～4.1% の範囲で変動した。全ての試験ケースにおいて、沈殿の発生が無かったため、水溶液中のモリブデン含有量は、ほぼ一定で安定していた。

SUS304 試験片を浸漬した水溶液に関して、試験後に AAS による分析を行ったところ（Table 2.26 参照）、水溶液静置型照射試験と同様に、全ての水溶液中に Cr、Fe 及び Ni が微量ながら検出され、SUS304 の溶出が認められた。しかしながら、これら元素の検出量（濃度）から水溶液全体（2,500 ml）の溶出元素量を概算すると、CA60S：19.2 mg、CK60S：1 mg となり、試験片の重量変化量（CA60S：0 mg、CK60S：0.1 mg）を超えてはまっていた。特にモリブデン酸アンモニウム水溶液を用いた CA60S では、電子天秤の測定精度を考慮しても、試験片の重量変化量以上の溶出量となった。この原因として、線源近傍で用いたステンレス鋼（SUS304）製の水溶液循環用配管からの溶出が考えられる。外径 6 mm の水溶液循環用配管内では、外径 172 mm の照射容器内に比べ、100 倍以上流速が速く、これに影響されて腐食（溶出）が進行した可能性がある。今後、モリブデン酸塩水溶液の流速をパラメータとした材料の腐食試験が必要である。

（4）発生ガス成分の割合
試料採取容器から得られたガスを分析したところ、全ての試験ケースにおいて水素、酸素及び窒素が検出された。発生ガス成分の分析結果を水溶液の照射時間、吸収線量及び pH と共に Table 2.31 に、水溶液の吸収線量と発生ガス成分割合との関係を Fig. 2.16（水素）、Fig. 2.17（酸素）及び Fig. 2.18（窒
素）に示す。なお、水素、酸素及び窒素成分の割合を合計すると、ほぼ全ての試験ケースにおいて96%以上となった。

検出された水素は、ガンマ線照射に伴う水（水溶液）の放射線分解によって発生したものと考えられる。発生ガス中の水素成分割合は、純水の場合（以下、CH60）：平均1.2%、CA60：平均7.3%、CA60S：平均8.6%、CK60S：平均23.6%となり、CH60→CA60→CA60S→CK60Sの順に高くなった。CK60S、CA60S及びCA60の水素成分割合は、それぞれ最も低かったCH60の19.7倍、7.2倍及び6.1倍となった。水中に固体材料を共存させ、ガンマ線を照射することによって、水から発生する水素量が増加することが知られている（17）。本試験の場合、水素成分割合は、水のみよりも水溶液の方が、水溶液のみよりも固体（金属）材料が存在していた方が高くなり、水溶液中の固体材料による水素発生量増加を確認できた。また、CK60Sにおいて水素の割合が高くなった原因として、水溶液中に金属材料が存在したこと以外に、CA60S等と比べて多量の金属元素（Mo）をイオンとして含んでいること及び水溶液のpHが高いことが考えられるが、詳細な発生機構の解明に関しては、今後の課題である。

水素発生に関連した現象として、CK60Sでは、17.5日間の照射以降、水溶液中のモリブデン濃度増減率が数％プラスとなった。これは、水の放射線分解に伴って水分が減少し、相対的にモリブデン濃度が増加したためであると考えられる。

（5）溶液照射法による99Mo製造システムでの水素発生量

溶液照射法による99Mo製造システムをJMTRに設置することを想定し、（4）で述べた発生ガス中の水素成分割合とJMTRの1次冷却水から発生する水素量に基づき、溶液照射法による99Mo製造システムでの水素発生量を概算した。

JMTRの定格運転時のにおける水素発生量は、脱気タンクの容積が10 m³（水量5 m³、気体量5 m³、脱気量42 Nm³/h）であり、脱気ガス中の水素濃度の実測値が1.3%であることから、0.546 Nm³/hとなる。

JMTRの1次冷却水流量は約6,000 m³/hであるが、この内、標準燃料要素の冷却水流量は2,800 m³/hである。ここでは、標準燃料要素内を流れる冷却水から、0.546 Nm³/hの水素が発生すると仮定する。このとき、燃料要素の冷却水流量と通液型キャップセル内流量（277 cm³/d=11.5×10⁻⁶ m³/h）（4）の比及び（4）のCH60とCK60Sの水素成分割合の比を用い、キャップセル中のモリブデン酸カリウム水溶液から発生する水素量を推算すると、

水素発生量=0.546×(11.5×10⁻⁶/2,800)×(23.6/1.2)=4.4×10⁻⁸ Nm³/h=0.044 Ncm³/h

となる。なお、酸素の発生量は、水素発生量の半分の0.022 Ncm³/hとなる。水素及び酸素の大気圧における水（50℃）への溶解度は、水の場合0.016 cm³/ml-H₂O、酸素の場合0.021 cm³/ml-H₂Oである。このため、水素及び酸素の単位時間当りの発生量は、それぞれキャップセル内水中（照射高さ0.7 m、内径55 mmのキャップセルを想定すると有効内容積：1,663 cm³）に対する水への飽和溶解量を下回った。ただし、水素発生量は、通液型キャップセル内流量に依存する。

（2）、（4）及び（5）の結果、溶液照射法による99Mo製造システムでは、照射ターゲットとして特にモリブデン酸カリウム水溶液を用いる場合、管内にガス（気泡）が滞留した際の付着物生成の
可能性や、水素発生に伴う火災・爆発に対する安全対策の観点から、発生ガス処理装置を設置する必要性があることがわかった。装置構成やガス処理能力等の装置詳細に関しては、今後行う中性子照射試験等の結果に基づき検討する。

(6) ガンマ発熱の影響

温度制御をせずに、室温でガンマ線が照射された純水の温度変化から、ガンマ発熱の影響について調べた。照射試験前後において純水及び照射室内的平均温度を Table 2.32 に、照射試験開始後における純水の温度変化を Fig. 2.19 に示す。

照射後の循環水及び照射室内的平均温度は、照射前と比べて低下したが、循環平均温度は照射室内平均温度と比べ、照射後において1.2℃高く、照射後において2.6℃高くなった。従って、わずかではあるが、ガンマ線照射に伴い温度上昇が生じ、ガンマ発熱の影響が認められた。Fig. 2.19 に示されるように、循環水温度は、照射室内温度に追従して変化しており、ガンマ発熱よりも照射室内温度によって影響されている。その結果、照射後の循環水平均温度が低下したと考えられる。また、水溶液静置型照射試験と比べて温度上昇幅が小さかった原因として、照射強度が小さかったこと（水溶液静置型照射試験の照射強度：2.3×10^5 Gy/d に対し、水溶液循環型照射試験の照射強度：1.6×10^5 Gy/d）や、純水が照射室内外を循環しているため、室外で冷却された純水が照射容器内へ戻り、容器内の純水温度を下げたこと及び照射容器のガンマ発熱による影響が小さかったことが考えられる。なお、ガンマ線照射に伴う純水の発熱量は、照射容器（ガラス）の発熱量を3倍程度上回ると予想される（軽水及びシリコンの JMTR におけるガンマ発熱率と密度及び純水と照射容器の体積から推定）。

水溶液静置型照射試験及び水溶液循環型照射試験の結果、ガンマ発熱によるモリブデン酸塩水溶液の温度上昇が認められたが、そのガンマ発熱率は純水と同程度であると予想される。溶液照射法による^{99}Mo 製造システムでは、水溶液の熱除去用熱交換器の構成と性能に関して、純水のガンマ発熱率を基準に検討することとする。
Table 2.1 ガンマ線照射室における空気の吸収線量率分布

<table>
<thead>
<tr>
<th>線源からの距離</th>
<th>吸収線量率 (Gy/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>y = 2 cm</td>
<td>x = 0 cm 30 cm 60 cm 90 cm 120 cm</td>
</tr>
<tr>
<td>2 cm</td>
<td>1.33×10^4 1.29×10^4 1.32×10^4 1.25×10^4 7.87×10^3</td>
</tr>
<tr>
<td>5 cm</td>
<td>1.14×10^4 1.12×10^4 1.14×10^4 1.11×10^4 6.78×10^3</td>
</tr>
<tr>
<td>10 cm</td>
<td>9.86×10^3 9.86×10^3 9.43×10^3 8.67×10^3 5.38×10^3</td>
</tr>
<tr>
<td>20 cm</td>
<td>6.78×10^3 6.87×10^3 6.78×10^3 5.92×10^3 4.02×10^3</td>
</tr>
<tr>
<td>30 cm</td>
<td>5.26×10^3 5.16×10^3 4.97×10^3 4.24×10^3 3.03×10^3</td>
</tr>
<tr>
<td>60 cm</td>
<td>2.57×10^3 2.65×10^3 2.53×10^3 2.22×10^3 1.74×10^3</td>
</tr>
<tr>
<td>90 cm</td>
<td>1.53×10^3 1.56×10^3 1.52×10^3 1.34×10^3 1.13×10^3</td>
</tr>
<tr>
<td>130 cm</td>
<td>9.43×10^2 9.43×10^2 9.08×10^2 8.45×10^2 7.43×10^2</td>
</tr>
<tr>
<td>170 cm</td>
<td>6.22×10^2 6.15×10^2 6.00×10^2 5.69×10^2 5.17×10^2</td>
</tr>
<tr>
<td>200 cm</td>
<td>4.72×10^2 4.57×10^2 4.35×10^2 4.12×10^2 3.97×10^2</td>
</tr>
<tr>
<td>250 cm</td>
<td>3.30×10^2 3.23×10^2 3.00×10^2 3.00×10^2 2.78×10^2</td>
</tr>
<tr>
<td>300 cm</td>
<td>2.48×10^2 2.48×10^2 2.39×10^2 2.25×10^2 2.10×10^2</td>
</tr>
</tbody>
</table>

測定点: 高さ 22.5 cm

Table 2.2 試験片（SUS304 及び A6063）の化学組成

<table>
<thead>
<tr>
<th>試験片</th>
<th>SUS304 の化学組成 (wt%)</th>
<th>A6063 の化学組成 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUS304</td>
<td>C Si Mn P S Ni Cr Fe*</td>
<td>Si Fe Cu Mn Mg Cr Zn Ti その他 Al*</td>
</tr>
<tr>
<td></td>
<td>0.06 0.51 0.87 0.028 0.008 8.05 18.22 72.254</td>
<td>0.20-0.6 <0.35 <0.10 <0.10 0.45-0.9 <0.10 <0.10 <0.10 <98.06</td>
</tr>
</tbody>
</table>

* : Fe 及び Al の成分割合は、他の成分割合の合計から求めた算出値。
Table 2.3 水溶液静置型照射試験の条件

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>モリブデン酸塩水溶液</th>
<th>試験片* （大きさ）</th>
<th>照射時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR03</td>
<td>純水</td>
<td>室温</td>
<td>3日間</td>
</tr>
<tr>
<td>HR10</td>
<td></td>
<td></td>
<td>10日間</td>
</tr>
<tr>
<td>HR30</td>
<td></td>
<td>室温</td>
<td>30日間</td>
</tr>
<tr>
<td>HR60</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>HH60</td>
<td></td>
<td>80℃</td>
<td>60日間</td>
</tr>
<tr>
<td>AR03</td>
<td></td>
<td>室温</td>
<td>3日間</td>
</tr>
<tr>
<td>AR10</td>
<td></td>
<td></td>
<td>10日間</td>
</tr>
<tr>
<td>AR30</td>
<td></td>
<td></td>
<td>30日間</td>
</tr>
<tr>
<td>AR60</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH03</td>
<td>pH調整済みモリブデン酸アンモニウム（濃度：飽和の80%）</td>
<td>80℃</td>
<td>60日間</td>
</tr>
<tr>
<td>AH10</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH30</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH60</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH10S</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH30S</td>
<td></td>
<td>SUS304（10W×30T×1T mm）</td>
<td>10日間</td>
</tr>
<tr>
<td>AH60S</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AR60A</td>
<td></td>
<td>室温</td>
<td>60日間</td>
</tr>
<tr>
<td>AH10A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH30A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>AH60A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH10</td>
<td></td>
<td>室温</td>
<td>60日間</td>
</tr>
<tr>
<td>KH30</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH60</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH10S</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH30S</td>
<td></td>
<td>SUS304（10W×30T×1T mm）</td>
<td>10日間</td>
</tr>
<tr>
<td>KH60S</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH10A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH30A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
<tr>
<td>KH60A</td>
<td></td>
<td></td>
<td>60日間</td>
</tr>
</tbody>
</table>

※：試験片の密度 SUS304＝7.93 g/cm³, A6063＝2.69 g/cm³

Table 2.4 水溶液循環型照射試験の条件

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>モリブデン酸塩水溶液*</th>
<th>試験片（大きさ）</th>
<th>照射時間</th>
<th>循環流量</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH60</td>
<td>純水 （温度：室温または80℃）</td>
<td>無し</td>
<td>60日間</td>
<td>10 ml/min</td>
</tr>
<tr>
<td>CA60</td>
<td>pH調整済みモリブデン酸アンモニウム（濃度：飽和の80%、温度：80℃）</td>
<td>SUS304（20W×50T×1T mm）</td>
<td>60日間</td>
<td>-</td>
</tr>
<tr>
<td>CA60S</td>
<td></td>
<td></td>
<td>10日間</td>
<td></td>
</tr>
<tr>
<td>CK60S</td>
<td>モリブデン酸カリウム (濃度：飽和の90%、温度：80℃)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

※：温度は、照射容器内。
Table 2.5 試験片の表面観察と重量測定及び水溶液のpH測定と元素分析の結果（1）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試験片</th>
<th>計測項目</th>
<th>経時変化</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH10S</td>
<td>AH10S</td>
<td>SUS304</td>
<td>表面観察</td>
<td>腐食無し。</td>
</tr>
<tr>
<td>照射時間</td>
<td>(10.7 d)</td>
<td>試験片</td>
<td>重量（g）</td>
<td>2.2128</td>
</tr>
<tr>
<td>浸没時間</td>
<td>(10.9 d)</td>
<td></td>
<td>pH</td>
<td>7.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>試験片</td>
<td>Mo濃度（g/ℓ）</td>
<td>177.4</td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>Cr</td>
</tr>
<tr>
<td>元素量（mg/ℓ）</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.11</td>
</tr>
</tbody>
</table>
| AH30S | AH30S | SUS304 | 表面観察 | 腐食無し。
| 照射時間 | (31.1 d) | 試験片 | 重量（g） | 2.2179 | 2.2262 | 0.0083 g増加。 | |
| 浸没時間 | (46.0 d) | | pH | 7.68 | 7.50 | |
| | | 試験片 | Mo濃度（g/ℓ） | 177.4 | 179.2 | 1.0%増加。 |
| 溶出元素 | Cr | Fe | Ni | Cr | Fe | Ni | |
| 元素量（mg/ℓ） | <0.01 | <0.01 | <0.01 | 0.03 | 0.39 | 0.14 | |
| AH60S | AH60S | SUS304 | 表面観察 | 腐食無し。
| 照射時間 | (60.6 d) | 試験片 | 重量（g） | 2.2246 | 2.2338 | 0.0092 g増加。 | |
| 浸没時間 | (76.7 d) | | pH | 8.81 | 7.69 | |
| | | 試験片 | Mo濃度（g/ℓ） | 181.6 | 173.9 | 4.2%減少。 |
| 溶出元素 | Cr | Fe | Ni | Cr | Fe | Ni | |
| 元素量（mg/ℓ） | <0.01 | <0.01 | <0.01 | <0.01 | 0.78 | 0.32 | |

※注：Table 2.5～Table 2.8 及び Table 2.26 中に示した水溶液濃度は、各水溶液の密度を測定していないため、飽和濃度とMo濃度から求めた参考値である。
Table 2.6 試験片の表面観察と重量測定及び水溶液のpH測定と元素分析の結果（2）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試験片</th>
<th>測定項目</th>
<th>测定</th>
<th>経時変化</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH10S</td>
<td>SUS304試験片</td>
<td>表面観察</td>
<td>2.2298</td>
<td>増減無し。</td>
<td></td>
</tr>
<tr>
<td>照射時間（9.8d）</td>
<td>重量（g）</td>
<td>2.2298</td>
<td>増減無し。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸漬時間（10.1d）</td>
<td>pH</td>
<td>10.44</td>
<td>10.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo濃度（g/l）</td>
<td>405.3</td>
<td>405.3</td>
<td>増減無し。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td><0.01</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUS304試験片</td>
<td>表面観察</td>
<td>2.2257</td>
<td>増減無し。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射時間（32.0d）</td>
<td>重量（g）</td>
<td>2.2257</td>
<td>増減無し。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸漬時間（36.0d）</td>
<td>pH</td>
<td>10.44</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo濃度（g/l）</td>
<td>405.3</td>
<td>409.2</td>
<td>1.0%増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td><0.01</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td><0.01</td>
<td>4.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUS304試験片</td>
<td>表面観察</td>
<td>2.2326</td>
<td>増減無し。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射時間（60.6d）</td>
<td>重量（g）</td>
<td>2.2326</td>
<td>0.0006g減少</td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸漬時間（76.7d）</td>
<td>pH</td>
<td>10.56</td>
<td>9.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo濃度（g/l）</td>
<td>404.9</td>
<td>399.1</td>
<td>1.4%減少</td>
<td></td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td><0.01</td>
<td><0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td><0.01</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td><0.01</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.7 試験片の表面観察及び重量測定及び水溶液のpH測定と元素分析の結果（3）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試験対象</th>
<th>測定項目</th>
<th>経時变化</th>
<th>備考</th>
</tr>
</thead>
</table>
| AR60A | アレミット処理済みA6063試験片 | 表面観察 | | 腐食有り。
| 照射時間（60.6 d） | | | | 0.0132 g減少。 |
| 浸漬時間（76.7 d） | | | | |
| 重量（g） | | 0.7805 | | |
| | | 0.7673 | | |
| pH | | 7.68 | | |
| | | 7.72 | | |
| Mo濃度(g/l) | | 177.4 | | 6.4%減少。 |
| | | 166.0 | | |
| 溶出元素 | Al | Al | | |
| 元素量（mg/l） | <10 | <10 | | |
| AH10A | アレミット処理済みA6063試験片 | 表面観察 | | 腐食有り。皮膜形成。
| 照射時間（10.7 d） | | | | 0.0093 g減少。 |
| 浸漬時間（10.9 d） | | | | |
| 重量（g） | | 0.7853 | | |
| | | 0.7760 | | |
| pH | | 7.68 | | 7.60 |
| Mo濃度(g/l) | | 177.4 | | 4.5%減少。 |
| | | 169.5 | | |
| 溶出元素 | Al | Al | | |
| 元素量（mg/l） | <10 | <10 | | |
| AH30A | アレミット処理済みA6063試験片 | 表面観察 | | 腐食有り。皮膜形成。
| 照射時間（31.1 d） | | | | 0.0004 g増加。 |
| 浸漬時間（46.0 d） | | | | |
| 重量（g） | | 0.8008 | | |
| | | 0.8012 | | |
| pH | | 7.68 | | 7.59 |
| Mo濃度(g/l) | | 181.6 | | 3.7%減少。 |
| | | 174.9 | | |
| 溶出元素 | Al | Al | | |
| 元素量（mg/l） | <10 | <10 | | |
| AH60A | アレミット処理済みA6063試験片 | 表面観察 | | 腐食有り。皮膜形成。
| 照射時間（60.6 d） | | | | 0.0032 g増加。 |
| 浸漬時間（76.7 d） | | | | |
| 重量（g） | | 0.7867 | | |
| | | 0.7899 | | |
| pH | | 8.81 | | 7.60 |
| Mo濃度(g/l) | | 181.6 | | 2.9%減少。 |
| | | 176.3 | | |
| 溶出元素 | Al | Al | | |
| 元素量（mg/l） | <10 | <10 | | |
Table 2.8 試験片の表面観察及び重量測定及び溶液中の pH 測定と元素分析の結果 (4)
(水溶液静置型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>試験対象</th>
<th>試験項目</th>
<th>経時変化</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>KH10A 9.8 d</td>
<td>アルミ</td>
<td>表面観察</td>
<td>腐食無し。皮膜形成。</td>
<td></td>
</tr>
<tr>
<td>10.1 d</td>
<td>処理済み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6063</td>
<td>試験片</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量 (g)</td>
<td>0.7777</td>
<td>0.7762</td>
<td>0.0015 g減少。</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>10.44</td>
<td>10.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo 濃度 (g/ℓ)</td>
<td>405.3</td>
<td>395.5</td>
<td>2.4%減少。</td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Al</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素量 (mg/ℓ)</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH30A 32.0 d</td>
<td>アルミ</td>
<td>表面観察</td>
<td>腐食無し。皮膜形成。</td>
<td></td>
</tr>
<tr>
<td>36.0 d</td>
<td>処理済み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6063</td>
<td>試験片</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量 (g)</td>
<td>0.7678</td>
<td>0.7673</td>
<td>0.0005 g減少。</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>10.44</td>
<td>9.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo 濃度 (g/ℓ)</td>
<td>405.3</td>
<td>415.6</td>
<td>2.5%増加。</td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Al</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素量 (mg/ℓ)</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH60A 60.6 d</td>
<td>アルミ</td>
<td>表面観察</td>
<td>腐食無し。皮膜形成。</td>
<td></td>
</tr>
<tr>
<td>76.7 d</td>
<td>処理済み</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6063</td>
<td>試験片</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量 (g)</td>
<td>0.7666</td>
<td>0.7661</td>
<td>0.0005 g減少。</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>10.56</td>
<td>9.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo 濃度 (g/ℓ)</td>
<td>404.9</td>
<td>398.2</td>
<td>1.7%減少。</td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Al</td>
<td>Al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素量 (mg/ℓ)</td>
<td><10</td>
<td><10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.9 試験片（SUS304）表面の経時変化（マイクロスコープによる表面観察の結果）（1）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>倍 率</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>試験前</td>
</tr>
<tr>
<td>AH10S</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>AH30S</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>AH60S</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>試験ケース</td>
<td>倍率</td>
<td>経時変化</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>KH10S</td>
<td>×50</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td> </td>
</tr>
<tr>
<td>KH30S</td>
<td>×50</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td> </td>
</tr>
<tr>
<td>KH60S</td>
<td>×50</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td> </td>
</tr>
</tbody>
</table>
Table 2.11 試験片（A6063）表面の経時変化（マイクロスコーピーによる表面観察の結果）（3）
(水溶液静置型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>倍率</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR60A</td>
<td>×50</td>
<td> </td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td> </td>
</tr>
</tbody>
</table>
Table 2.12 試験片（A6063）表面の経時変化（マイクロスコープによる表面観察の結果）（4）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>倍率</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>試験前</td>
</tr>
<tr>
<td>AH10A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>AH30A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>AH60A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.13 試験片（A6063）表面の経時変化（マイクロスコープによる表面観察の結果）（5）
（水溶液静置型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>倍率</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>試験前</td>
</tr>
<tr>
<td>KH10A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>KH30A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>KH60A</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.14 試験片（SUS304）表面のSEM-EDX分析結果（水溶液静置型照射試験）（1）

<table>
<thead>
<tr>
<th>項目</th>
<th>AH10S</th>
<th>AH30S</th>
<th>AH60S</th>
</tr>
</thead>
<tbody>
<tr>
<td>目視画像</td>
<td>![SEM-EDX image]</td>
<td>![SEM-EDX image]</td>
<td>![SEM-EDX image]</td>
</tr>
<tr>
<td>SEM画像</td>
<td>倍率: 1,000倍</td>
<td>倍率: 1,000倍</td>
<td>倍率: 1,000倍</td>
</tr>
<tr>
<td>EDX分岐</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素</td>
<td>濃度（wt%）</td>
<td>元素</td>
<td>濃度（wt%）</td>
</tr>
<tr>
<td>Cr</td>
<td>18.42</td>
<td>Cr</td>
<td>－</td>
</tr>
<tr>
<td>Fe</td>
<td>70.57</td>
<td>Fe</td>
<td>－</td>
</tr>
<tr>
<td>Ni</td>
<td>7.58</td>
<td>Ni</td>
<td>－</td>
</tr>
<tr>
<td>Si</td>
<td>3.43</td>
<td>Si</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Table 2.15 試験片 (SUS304) 表面の SEM-EDX 分析結果（水溶液静置型照射試験）（2）

<table>
<thead>
<tr>
<th>項目</th>
<th>KH10S</th>
<th>KH30S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>目視画像</td>
<td>KH10S</td>
<td>KH30S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM画像</td>
<td></td>
<td></td>
</tr>
<tr>
<td>倍率：1,000倍</td>
<td>倍率：1,000倍</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
</tr>
<tr>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>19.28</td>
<td>Cr</td>
<td>19.03</td>
<td>Cr</td>
<td>19.23</td>
<td>Cr</td>
<td>19.16</td>
</tr>
<tr>
<td>Fe</td>
<td>72.86</td>
<td>Fe</td>
<td>73.12</td>
<td>Fe</td>
<td>73.34</td>
<td>Fe</td>
<td>73.03</td>
</tr>
<tr>
<td>Ni</td>
<td>7.85</td>
<td>Ni</td>
<td>7.85</td>
<td>Ni</td>
<td>7.43</td>
<td>Ni</td>
<td>7.81</td>
</tr>
<tr>
<td>Si</td>
<td>—</td>
<td>Si</td>
<td>—</td>
<td>Si</td>
<td>—</td>
<td>Si</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 2.16 試験片（SUS304及びA6063）表面のSEM-EDX分析結果（水溶液静置型照射試験）（3）

<table>
<thead>
<tr>
<th>項目</th>
<th>KH60S</th>
<th>AR60A</th>
</tr>
</thead>
<tbody>
<tr>
<td>目視画像</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM画像</td>
<td>倍率：1,000倍</td>
<td>倍率：1,000倍</td>
</tr>
<tr>
<td>EDX分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>18.94</td>
<td>Cr</td>
<td>19.02</td>
</tr>
<tr>
<td>Fe</td>
<td>72.43</td>
<td>Fe</td>
<td>72.52</td>
</tr>
<tr>
<td>Ni</td>
<td>7.78</td>
<td>Ni</td>
<td>7.83</td>
</tr>
<tr>
<td>Si</td>
<td>0.86</td>
<td>Si</td>
<td>0.63</td>
</tr>
<tr>
<td>Al</td>
<td>78.84</td>
<td>Mo</td>
<td>21.16</td>
</tr>
<tr>
<td>Si</td>
<td>—</td>
<td>Si</td>
<td>—</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 2.17 試験片（A6063）表面の SEM-EDX 分析結果（水溶液静置型照射試験）（4）

<table>
<thead>
<tr>
<th>項目</th>
<th>AH10A-1</th>
<th>AH10A-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>日視画像</td>
<td>丸部分を観察</td>
<td>丸部分を観察</td>
</tr>
<tr>
<td>SEM 画像</td>
<td>倍率：1,000倍</td>
<td>倍率：1,000倍</td>
</tr>
<tr>
<td>EDX 分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
</tr>
<tr>
<td>元素</td>
<td>濃度（wt%）</td>
<td>元素</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Al</td>
<td>50.5</td>
<td>Al</td>
</tr>
<tr>
<td>Mo</td>
<td>15.9</td>
<td>Mo</td>
</tr>
<tr>
<td>Si</td>
<td>33.6</td>
<td>Si</td>
</tr>
</tbody>
</table>
表2.18 試験片（A6063）表面のSEM-EDX分析結果（水溶液静置型照射試験）（5）

<table>
<thead>
<tr>
<th>項目</th>
<th>AH30A-1</th>
<th>AH30A-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>目視画像</td>
<td>丸部分を観察</td>
<td>丸部分を観察</td>
</tr>
<tr>
<td>SEM画像</td>
<td>倍率：1,000倍</td>
<td>倍率：1,000倍</td>
</tr>
<tr>
<td>EDX分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
</tr>
<tr>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td>丸部分を分析</td>
</tr>
<tr>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td>丸部分を分析</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>22.39</td>
<td>Al</td>
<td>25.02</td>
<td>Al</td>
<td>20.71</td>
<td>Al</td>
<td>20.0</td>
</tr>
<tr>
<td>Mo</td>
<td>15.35</td>
<td>Mo</td>
<td>21.36</td>
<td>Mo</td>
<td>8.75</td>
<td>Mo</td>
<td>43.72</td>
</tr>
<tr>
<td>Si</td>
<td>62.26</td>
<td>Si</td>
<td>53.62</td>
<td>Si</td>
<td>70.54</td>
<td>Si</td>
<td>36.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>項目</td>
<td>AH60A−1</td>
<td>AH60A−2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>目視画像</td>
<td>丸部分を観察</td>
<td>丸部分を観察</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEM画像</td>
<td>倍率：1,000倍</td>
<td>倍率：150倍</td>
<td>倍率：1,000倍</td>
<td>倍率：150倍</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
<th>元素</th>
<th>濃度（wt%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>30.05</td>
<td>Al</td>
<td>63.55</td>
<td>Al</td>
<td>75.75</td>
<td>Al</td>
<td>29.69</td>
</tr>
<tr>
<td>Mo</td>
<td>27.90</td>
<td>Mo</td>
<td>28.80</td>
<td>Mo</td>
<td>23.16</td>
<td>Mo</td>
<td>24.52</td>
</tr>
<tr>
<td>Si</td>
<td>42.04</td>
<td>Si</td>
<td>7.65</td>
<td>Si</td>
<td>1.10</td>
<td>Si</td>
<td>45.80</td>
</tr>
</tbody>
</table>

Table 2.19 試験片（A6063）表面のSEM-EDX分析結果（水溶液静置型照射試験） (6)
Table 2.20 試験片（A6063）表面の SEM-EDX 分析結果（水溶液静置型照射試験）（7）

<table>
<thead>
<tr>
<th>項目</th>
<th>KH10A-1</th>
<th></th>
<th>KH10A-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>目 視 画 像</td>
<td> 倍率：1,000 倍</td>
<td></td>
<td> 倍率：1,000 倍</td>
</tr>
<tr>
<td>SEM 画 像</td>
<td> 丸部分を分析</td>
<td></td>
<td> 丸部分を分析</td>
</tr>
<tr>
<td>EDX 分析</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>元 素</th>
<th>濃 度 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>72.49</td>
<td>Al</td>
<td>74.05</td>
<td>Al</td>
<td>73.53</td>
<td>Al</td>
<td>78.71</td>
</tr>
<tr>
<td>K</td>
<td>3.09</td>
<td>K</td>
<td>3.44</td>
<td>K</td>
<td>1.63</td>
<td>K</td>
<td>1.83</td>
</tr>
<tr>
<td>Mo</td>
<td>24.42</td>
<td>Mo</td>
<td>22.51</td>
<td>Mo</td>
<td>24.84</td>
<td>Mo</td>
<td>19.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.21 試験片（A6063）表面のSEM-EDX分析結果（水溶液静置型照射試験）（8）

<table>
<thead>
<tr>
<th>項目</th>
<th>KH30A</th>
<th>KH60A</th>
</tr>
</thead>
<tbody>
<tr>
<td>表面観察画像</td>
<td>倍率：1,000倍</td>
<td>倍率：1,000倍</td>
</tr>
<tr>
<td>SEM画像</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX分析</td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素</td>
<td>濃度（wt%）</td>
<td>元素</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>Al</td>
<td>65.25</td>
<td>Al</td>
</tr>
<tr>
<td>K</td>
<td>6.16</td>
<td>K</td>
</tr>
<tr>
<td>Mo</td>
<td>28.59</td>
<td>Mo</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 2.22 試験片（SUS304）の浸漬時間と腐食減量、腐食度及び侵食度との関係（1）
(水溶液静置型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>測定対象</th>
<th>測定項目</th>
<th>経時変化</th>
<th>耐食性</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH10S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2128</td>
<td>2.2127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0.1471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>0.0135</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>0.0006</td>
</tr>
<tr>
<td>AH30S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2179</td>
<td>2.2262</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>-0.0083</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>-12.2059</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>-0.2653</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>-0.0122</td>
</tr>
<tr>
<td>AH60S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2246</td>
<td>2.2338</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>-0.0092</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>-13.5294</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>-0.1764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>-0.0081</td>
</tr>
<tr>
<td>KH10S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2298</td>
<td>2.2298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KH30S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2257</td>
<td>2.2257</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>KH60S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>2.2326</td>
<td>2.2320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0.0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0.8824</td>
</tr>
<tr>
<td></td>
<td></td>
<td>腐食度 (g/(m²・d))</td>
<td>0</td>
<td>0.0115</td>
</tr>
<tr>
<td></td>
<td></td>
<td>侵食度 (mm/y)</td>
<td>0</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

*: 重量変化、腐食減量、腐食度及び侵食度の値は、十が重量減少を、－が重量増加を示している。
<table>
<thead>
<tr>
<th>試験ケース</th>
<th>測定対象</th>
<th>測定項目</th>
<th>経時変化</th>
<th>耐食性</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR60A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7805</td>
<td>0.7673</td>
</tr>
<tr>
<td>照射時間（60.6 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>0.0132</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（76.7 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>19.4118</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>0.2531</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>0.0343</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH10A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7853</td>
<td>0.7760</td>
</tr>
<tr>
<td>照射時間（10.7 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>0.0093</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（10.9 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>13.6765</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>1.2547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>0.1703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH30A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.8008</td>
<td>0.8012</td>
</tr>
<tr>
<td>照射時間（31.1 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>-0.0004</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（46.0 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>-0.5882</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>-0.0128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>-0.0017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AH60A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7867</td>
<td>0.7899</td>
</tr>
<tr>
<td>照射時間（60.6 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>-0.0032</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（76.7 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>-4.7059</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>-0.0614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>-0.0083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH10A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7777</td>
<td>0.7762</td>
</tr>
<tr>
<td>照射時間（9.8 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>0.0015</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（10.1 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>2.2059</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>0.2184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>0.0296</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH30A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7678</td>
<td>0.7673</td>
</tr>
<tr>
<td>照射時間（32.0 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（36.0 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>0.7353</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>0.0204</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>0.0028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KH60A</td>
<td>試験片</td>
<td>重量（g）</td>
<td>0.7666</td>
<td>0.7661</td>
</tr>
<tr>
<td>照射時間（60.6 d）</td>
<td>重量変化（g）*</td>
<td>0</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>浸漬時間（76.7 d）</td>
<td>腐食減量（g/m²）*</td>
<td>0</td>
<td>0.7353</td>
<td></td>
</tr>
<tr>
<td>腐食度（g/(m²d）</td>
<td>0</td>
<td>0.0096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>侵食度（mm/y）*</td>
<td>0</td>
<td>0.0013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: 重量変化、腐食減量、腐食度及び侵食度の値は、＋が重量減少を、－が重量増加を示している。
Table 2.24 耐食度の一般的基準（6）

<table>
<thead>
<tr>
<th>耐食度（腐食度）</th>
<th>腐食度の基準値（g/(m²·d)）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 完全に耐える</td>
<td>＜0.1</td>
</tr>
<tr>
<td>B. 十分に耐える</td>
<td>0.1〜1.0</td>
</tr>
<tr>
<td>C. 相当に耐える</td>
<td>1.0〜3.0</td>
</tr>
<tr>
<td>D. わずかに耐える</td>
<td>3.0〜10.0</td>
</tr>
<tr>
<td>E. 耐えられない</td>
<td>＞10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>耐食度（侵食度）</th>
<th>侵食度の基準値（mm/y）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 完全耐食性</td>
<td>＜0.051</td>
</tr>
<tr>
<td>2. 適材・使用可能</td>
<td>0.051〜0.762</td>
</tr>
<tr>
<td>3. 危険・要注注意</td>
<td>0.762〜1.524</td>
</tr>
<tr>
<td>4. 使用不可</td>
<td>＞1.524</td>
</tr>
</tbody>
</table>
Table 2.25 水溶液の温度（平均値）、pH 及びモリブデン濃度の測定結果
(水溶液静置型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>照射時間 (d)</th>
<th>吸収線量 (Gy)</th>
<th>平均温度 (℃)</th>
<th>pH</th>
<th>Mo 濃度 (g/l)</th>
<th>Mo 増減率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR03</td>
<td>2.8</td>
<td>6.4×10^5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR10</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>23.1</td>
<td>4.42</td>
<td>3.06</td>
<td>-</td>
</tr>
<tr>
<td>HR30</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>20.3</td>
<td>4.42</td>
<td>2.09</td>
<td>-</td>
</tr>
<tr>
<td>HR60</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>24.0</td>
<td>4.42</td>
<td>1.90</td>
<td>-</td>
</tr>
<tr>
<td>HH60</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.9</td>
<td>4.42</td>
<td>2.08</td>
<td>-</td>
</tr>
<tr>
<td>AR03</td>
<td>3.0</td>
<td>6.9×10^4</td>
<td></td>
<td></td>
<td></td>
<td>-0.1</td>
</tr>
<tr>
<td>AR10</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>22.6</td>
<td>8.81</td>
<td>8.79</td>
<td>181.6</td>
</tr>
<tr>
<td>AR30</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>19.6</td>
<td>7.68</td>
<td>7.58</td>
<td>177.4</td>
</tr>
<tr>
<td>AR60</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>21.7</td>
<td>8.81</td>
<td>7.72</td>
<td>181.6</td>
</tr>
<tr>
<td>AH03</td>
<td>2.8</td>
<td>6.4×10^5</td>
<td>79.7</td>
<td>7.68</td>
<td>7.75</td>
<td>177.4</td>
</tr>
<tr>
<td>AH10</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>79.9</td>
<td>7.68</td>
<td>7.58</td>
<td>177.4</td>
</tr>
<tr>
<td>AH30</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>80.0</td>
<td>7.68</td>
<td>7.54</td>
<td>177.4</td>
</tr>
<tr>
<td>AH60</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.8</td>
<td>8.81</td>
<td>7.47</td>
<td>181.6</td>
</tr>
<tr>
<td>AH10S</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>79.9</td>
<td>7.68</td>
<td>7.58</td>
<td>177.4</td>
</tr>
<tr>
<td>AH30S</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>79.9</td>
<td>7.68</td>
<td>7.50</td>
<td>177.4</td>
</tr>
<tr>
<td>AH60S</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>80.0</td>
<td>8.81</td>
<td>7.69</td>
<td>181.6</td>
</tr>
<tr>
<td>AR60A</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.6</td>
<td>8.81</td>
<td>7.60</td>
<td>181.6</td>
</tr>
<tr>
<td>AH10A</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>79.8</td>
<td>7.68</td>
<td>7.59</td>
<td>181.6</td>
</tr>
<tr>
<td>AH30A</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>79.8</td>
<td>7.68</td>
<td>7.50</td>
<td>181.6</td>
</tr>
<tr>
<td>AH60A</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.6</td>
<td>8.81</td>
<td>7.60</td>
<td>181.6</td>
</tr>
<tr>
<td>KH10</td>
<td>10.7</td>
<td>2.4×10^6</td>
<td>80.3</td>
<td>10.44</td>
<td>10.02</td>
<td>405.3</td>
</tr>
<tr>
<td>KH30</td>
<td>31.1</td>
<td>7.1×10^6</td>
<td>80.4</td>
<td>10.44</td>
<td>10.00</td>
<td>405.3</td>
</tr>
<tr>
<td>KH60</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.9</td>
<td>10.56</td>
<td>10.00</td>
<td>404.9</td>
</tr>
<tr>
<td>KH10S</td>
<td>9.8</td>
<td>2.2×10^6</td>
<td>80.6</td>
<td>10.44</td>
<td>10.08</td>
<td>405.3</td>
</tr>
<tr>
<td>KH30S</td>
<td>32.0</td>
<td>7.3×10^6</td>
<td>80.3</td>
<td>10.44</td>
<td>10.00</td>
<td>405.3</td>
</tr>
<tr>
<td>KH60S</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.9</td>
<td>10.56</td>
<td>9.99</td>
<td>404.9</td>
</tr>
<tr>
<td>KH10A</td>
<td>9.8</td>
<td>2.2×10^6</td>
<td>80.2</td>
<td>10.44</td>
<td>10.06</td>
<td>405.3</td>
</tr>
<tr>
<td>KH30A</td>
<td>32.0</td>
<td>7.3×10^6</td>
<td>80.2</td>
<td>10.44</td>
<td>9.99</td>
<td>405.3</td>
</tr>
<tr>
<td>KH60A</td>
<td>60.6</td>
<td>1.4×10^7</td>
<td>79.9</td>
<td>10.56</td>
<td>9.97</td>
<td>404.9</td>
</tr>
</tbody>
</table>
Table 2.26 試験片の表面観察と重量測定及び水溶液の pH 測定と元素分析の結果
（水溶液循環型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>測定対象</th>
<th>測定項目</th>
<th>経時変化</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA60S</td>
<td>SUS304</td>
<td>表面観察</td>
<td></td>
<td>腐食無し。</td>
</tr>
<tr>
<td>照射時間</td>
<td>(64.4 d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸没時間</td>
<td>(80.8 d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量（g）</td>
<td>7.4382</td>
<td>7.4382</td>
<td></td>
<td>増減無し。</td>
</tr>
<tr>
<td>pH</td>
<td>8.16</td>
<td>7.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo濃度（g/l）</td>
<td>181.6</td>
<td>181.9</td>
<td>0.2%增加</td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>Cr</td>
</tr>
<tr>
<td>元素量（mg/l）</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td>0.29</td>
</tr>
<tr>
<td>CK60S</td>
<td>SUS304</td>
<td>表面観察</td>
<td></td>
<td>腐食無し。</td>
</tr>
<tr>
<td>照射時間</td>
<td>(61.9 d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>浸没時間</td>
<td>(77.9 d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重量（g）</td>
<td>7.3760</td>
<td>7.3759</td>
<td>0.0001 g減少</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>10.44</td>
<td>10.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mo濃度（g/l）</td>
<td>405.3</td>
<td>419.4</td>
<td>3.5%增加</td>
<td></td>
</tr>
<tr>
<td>溶出元素</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>Cr</td>
</tr>
<tr>
<td>元素量（mg/l）</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Table 2.27 試験片（SUS304）表面の経時変化（マイクロスコピーによる表面観察の結果）
(水溶液循環型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>倍率</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>試験前</td>
</tr>
<tr>
<td>CA60S</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
<tr>
<td>CK60S</td>
<td>×50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>×300</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.28 試験片（SUS304）表面のSEM-EDX分析結果（水溶液循環型照射試験）

<table>
<thead>
<tr>
<th>項目</th>
<th>CA60S</th>
<th>CK60S</th>
<th>未照射SUS304</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEM 画像</td>
<td>倍率：1.000倍</td>
<td>倍率：1.000倍</td>
<td>倍率：1.000倍</td>
</tr>
<tr>
<td>SEM画像</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX分析</td>
<td>丸部分を分析</td>
<td>丸点線部分を分析</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>元素</td>
<td>濃度（wt%）</td>
<td>元素</td>
<td>濃度（wt%）</td>
</tr>
<tr>
<td>Cr</td>
<td>18.71</td>
<td>Cr</td>
<td>18.89</td>
</tr>
<tr>
<td>Fe</td>
<td>73.02</td>
<td>Fe</td>
<td>72.91</td>
</tr>
<tr>
<td>Ni</td>
<td>7.78</td>
<td>Ni</td>
<td>7.81</td>
</tr>
<tr>
<td>Si</td>
<td>0.50</td>
<td>Si</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Table 2.29 ステンレス鋼（SUS304）の浸漬時間と腐食減量、腐食度及び侵食度との関係
（水溶液循環型照射試験）

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>測定対象</th>
<th>測定項目</th>
<th>経時変化</th>
<th>耐食性</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA60S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>7.4382</td>
<td>7.4382</td>
</tr>
<tr>
<td>照射時間 (64.4 d)</td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>浸漬時間 (80.8 d)</td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腐食度 (g/(m²·d))*</td>
<td>0</td>
<td>0</td>
<td>A. 完全に耐える</td>
</tr>
<tr>
<td></td>
<td>侵食度 (mm/y)*</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CK60S</td>
<td>試験片</td>
<td>重量 (g)</td>
<td>7.3760</td>
<td>7.3759</td>
</tr>
<tr>
<td>照射時間 (61.9 d)</td>
<td>重量変化 (g)*</td>
<td>0</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>浸漬時間 (77.9 d)</td>
<td>腐食減量 (g/m²)*</td>
<td>0</td>
<td>0.0467</td>
<td></td>
</tr>
<tr>
<td></td>
<td>腐食度 (g/(m²·d))*</td>
<td>0</td>
<td>0.0006</td>
<td>A. 完全に耐える</td>
</tr>
<tr>
<td></td>
<td>侵食度 (mm/y)*</td>
<td>0</td>
<td>0.0000</td>
<td>1. 完全耐食性</td>
</tr>
</tbody>
</table>

＊：重量変化、腐食減量、腐食度及び侵食度の値は、＋が重量減を、－が重量増加を示している。
Table 2.30 水溶液の温度（平均値）、pH 及びモリブデン濃度の測定結果
(水溶液循環型照射試験)

<table>
<thead>
<tr>
<th>試験ケース</th>
<th>照射時間 (d)</th>
<th>吸収線量 (Gy)</th>
<th>平均温度 (°C)</th>
<th>pH</th>
<th>Mo 濃度 (g/l)</th>
<th>Mo 増減率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH60</td>
<td>0</td>
<td>0</td>
<td>80.3</td>
<td>4.42</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.5×10^5</td>
<td></td>
<td>4.03</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>1.5×10^6</td>
<td></td>
<td>3.73</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>3.2×10^6</td>
<td></td>
<td>3.31</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>35.1</td>
<td>5.6×10^6</td>
<td></td>
<td>3.22</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td>7.1×10^6</td>
<td></td>
<td>3.16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>55.8</td>
<td>8.9×10^6</td>
<td></td>
<td>3.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>64.4</td>
<td>1.0×10^7</td>
<td></td>
<td>3.25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CA60</td>
<td>0</td>
<td>0</td>
<td>79.9</td>
<td>8.16</td>
<td>181.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10.7</td>
<td>1.7×10^6</td>
<td></td>
<td>7.70</td>
<td>171.7</td>
<td>−5.5</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>2.8×10^6</td>
<td></td>
<td>7.69</td>
<td>181.1</td>
<td>−0.3</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>5.2×10^6</td>
<td></td>
<td>7.73</td>
<td>177.2</td>
<td>−2.4</td>
</tr>
<tr>
<td></td>
<td>41.8</td>
<td>6.7×10^6</td>
<td></td>
<td>7.75</td>
<td>179.0</td>
<td>−1.4</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>8.5×10^6</td>
<td></td>
<td>7.68</td>
<td>179.8</td>
<td>−1.0</td>
</tr>
<tr>
<td></td>
<td>61.9</td>
<td>9.9×10^6</td>
<td></td>
<td>7.84</td>
<td>174.1</td>
<td>−4.1</td>
</tr>
<tr>
<td>CA60S</td>
<td>0</td>
<td>0</td>
<td>80.2</td>
<td>8.16</td>
<td>181.6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.5×10^5</td>
<td></td>
<td>7.86</td>
<td>179.3</td>
<td>−1.3</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>1.5×10^6</td>
<td></td>
<td>7.80</td>
<td>171.4</td>
<td>−5.6</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>3.2×10^6</td>
<td></td>
<td>7.72</td>
<td>176.4</td>
<td>−2.9</td>
</tr>
<tr>
<td></td>
<td>35.1</td>
<td>5.6×10^6</td>
<td></td>
<td>7.75</td>
<td>180.5</td>
<td>−0.6</td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td>7.1×10^6</td>
<td></td>
<td>7.79</td>
<td>181.6</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>55.8</td>
<td>8.9×10^6</td>
<td></td>
<td>7.73</td>
<td>183.1</td>
<td>+0.8</td>
</tr>
<tr>
<td></td>
<td>64.4</td>
<td>1.0×10^7</td>
<td></td>
<td>7.94</td>
<td>181.9</td>
<td>+0.2</td>
</tr>
<tr>
<td>CK60S</td>
<td>0</td>
<td>0</td>
<td>79.9</td>
<td>10.44</td>
<td>405.3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10.7</td>
<td>1.7×10^6</td>
<td></td>
<td>10.14</td>
<td>390.6</td>
<td>−3.6</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>2.8×10^6</td>
<td></td>
<td>10.21</td>
<td>408.5</td>
<td>+0.8</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>5.2×10^6</td>
<td></td>
<td>10.55</td>
<td>411.1</td>
<td>+1.4</td>
</tr>
<tr>
<td></td>
<td>41.8</td>
<td>6.7×10^6</td>
<td></td>
<td>10.73</td>
<td>411.2</td>
<td>+1.5</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>8.5×10^6</td>
<td></td>
<td>10.57</td>
<td>422.1</td>
<td>+4.1</td>
</tr>
<tr>
<td></td>
<td>61.9</td>
<td>9.9×10^6</td>
<td></td>
<td>10.50</td>
<td>419.4</td>
<td>+3.5</td>
</tr>
<tr>
<td>試験ケース</td>
<td>照射時間 (d)</td>
<td>吸収線量 (Gy)</td>
<td>pH</td>
<td>発生ガス成分割合 (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>水素</td>
<td>窒素</td>
<td>酸素</td>
</tr>
<tr>
<td>CH60</td>
<td>0</td>
<td>0</td>
<td>4.42</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.5×10^5</td>
<td>4.03</td>
<td>0.4</td>
<td>74.1</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>1.5×10^6</td>
<td>3.73</td>
<td>2.8</td>
<td>72.0</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>3.2×10^6</td>
<td>3.31</td>
<td>2.0</td>
<td>74.2</td>
<td>22.3</td>
</tr>
<tr>
<td></td>
<td>35.1</td>
<td>5.6×10^6</td>
<td>3.22</td>
<td>2.7</td>
<td>71.6</td>
<td>23.1</td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td>7.1×10^6</td>
<td>3.16</td>
<td>0.1</td>
<td>74.7</td>
<td>22.2</td>
</tr>
<tr>
<td></td>
<td>55.8</td>
<td>8.9×10^6</td>
<td>3.25</td>
<td>0.5</td>
<td>76.1</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>64.4</td>
<td>1.0×10^7</td>
<td>3.25</td>
<td>0.0</td>
<td>77.4</td>
<td>20.9</td>
</tr>
<tr>
<td>CA60</td>
<td>0</td>
<td>0</td>
<td>8.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10.7</td>
<td>1.7×10^6</td>
<td>7.70</td>
<td>10.7</td>
<td>83.4</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>2.8×10^6</td>
<td>7.69</td>
<td>11.5</td>
<td>83.2</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>5.2×10^6</td>
<td>7.73</td>
<td>9.9</td>
<td>81.6</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>41.8</td>
<td>6.7×10^6</td>
<td>7.75</td>
<td>0.1</td>
<td>81.3</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>8.5×10^6</td>
<td>7.68</td>
<td>11.3</td>
<td>84.2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>61.9</td>
<td>9.9×10^6</td>
<td>7.84</td>
<td>0.0</td>
<td>77.7</td>
<td>20.6</td>
</tr>
<tr>
<td>CA60S</td>
<td>0</td>
<td>0</td>
<td>8.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>4.5×10^5</td>
<td>7.86</td>
<td>1.3</td>
<td>73.3</td>
<td>11.2</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>1.5×10^5</td>
<td>7.80</td>
<td>10.7</td>
<td>82.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>20.3</td>
<td>3.2×10^5</td>
<td>7.72</td>
<td>2.8</td>
<td>85.4</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>35.1</td>
<td>5.6×10^5</td>
<td>7.75</td>
<td>12.0</td>
<td>81.1</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>44.6</td>
<td>7.1×10^6</td>
<td>7.79</td>
<td>9.9</td>
<td>86.4</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>55.8</td>
<td>8.9×10^6</td>
<td>7.73</td>
<td>11.9</td>
<td>84.0</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>64.4</td>
<td>1.0×10^7</td>
<td>7.94</td>
<td>11.8</td>
<td>84.2</td>
<td>2.3</td>
</tr>
<tr>
<td>CK60S</td>
<td>0</td>
<td>0</td>
<td>10.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10.7</td>
<td>1.7×10^5</td>
<td>10.14</td>
<td>21.7</td>
<td>51.1</td>
<td>25.6</td>
</tr>
<tr>
<td></td>
<td>17.5</td>
<td>2.8×10^5</td>
<td>10.21</td>
<td>19.1</td>
<td>48.8</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>32.3</td>
<td>5.2×10^5</td>
<td>10.55</td>
<td>22.3</td>
<td>42.4</td>
<td>32.0</td>
</tr>
<tr>
<td></td>
<td>41.8</td>
<td>6.7×10^5</td>
<td>10.73</td>
<td>25.3</td>
<td>38.5</td>
<td>32.6</td>
</tr>
<tr>
<td></td>
<td>53.0</td>
<td>8.5×10^5</td>
<td>10.57</td>
<td>27.6</td>
<td>32.4</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>61.9</td>
<td>9.9×10^5</td>
<td>10.50</td>
<td>25.7</td>
<td>37.0</td>
<td>34.5</td>
</tr>
</tbody>
</table>
Table 2.32 水溶液循環型照射試験前後における純水の平均温度

<table>
<thead>
<tr>
<th>温度測定箇所</th>
<th>平均温度（℃）</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>照射前</td>
<td>照射後</td>
<td></td>
</tr>
<tr>
<td>照射容器内</td>
<td>21.4*</td>
<td>19.7**</td>
<td>20.9***</td>
</tr>
<tr>
<td>照射室内</td>
<td>20.2*</td>
<td>17.1**</td>
<td>18.3****</td>
</tr>
</tbody>
</table>

*: 測定日時 2008/11/16, 15:00～17:00
**: 測定日時 2008/11/16, 17:00～2008/11/19, 9:00
***: 測定日時 2008/11/17, 15:00～17:00
****: 測定日時 2008/11/18, 15:00～17:00
Fig. 2.1 ガンマ線照射施設（第1照射棟第2照射室）の概要及び試験装置設置位置

Fig. 2.2 線源中心及び線源中心から120cm位置における空気の吸収線量率分布
Fig. 2.3 照射室内に設置されたガンマ線照射試験装置（本体）

Fig. 2.4 照射室外に設置されたガンマ線照射試験装置（循環ポンプ及び計測・制御機器）
Fig. 2.5 ガンマ線照射試験装置と各種機器間の配管・配線の概要
Fig. 2.7 水素水溶波型型照射装置装置の詳細
Fig. 2.8
SUS304試験片の浸漬時間と腐食減量との関係

Fig. 2.9
SUS304試験片の浸漬時間と侵食度との関係
Fig. 2.10 アルマイト処理済み A6063 試験片の浸漬時間と腐食減量との関係

Fig. 2.11 アルマイト処理済み A6063 試験片の浸漬時間と侵食度との関係
Fig. 2.12 照射容器（バイレックスガラス製）の腐食状態

Fig. 2.13 水溶液静置型照射試験における水溶液の温度変化
Fig. 2.14 水溶液循環型照射試験における水溶液の着色

Fig. 2.15 水溶液循環用配管内に生じた付着物
Fig. 2.16 発生ガス成分（水素）の割合

Fig. 2.17 発生ガス成分（酸素）の割合
Fig. 2.18 発生ガス成分（窒素）の割合

Fig. 2.19 水溶液循環型照射試験における純水の温度変化
3. PZC の健全性に関するガンマ線照射試験

モリブデン吸着剤 PZC のガンマ線照射試験を行い、ガンマ線照射下における PZC の健全性について検討した。本章では、試験の方法と結果及び考察について述べる。

3.1 試験装置及び試験方法

PZC のガンマ線照射は、第 2 章で述べたモリブデン酸塩水溶液のガンマ線照射試験と同時に、原子力機構 高崎原子応用研究所のガンマ線照射施設第 1 照射棟第 2 照射室で行われた。

(1) 試験装置

Fig. 3.1 に、PZC 試料を入れた照射容器の概要を示す。照射容器は、PZC 試料を入れ、上部にガラスケーシングを詰めた 6 本の石英管（PZC 保持容器）、PZC 保持容器の緩衝材であるガラスウール及びこれらを内包するパイレックスガラス製照射容器本体から構成された。この照射容器を、照射時間別に 3 本用意し、Fig. 3.2 に示すように、60Co 線源カバーから吊り下げ、ガンマ線照射を行った。

(2) 試験方法

6 種類の PZC 試料（モリブデン未吸着 PZC 試料 1 種類及びモリブデン吸着 PZC 試料 5 種類）にガンマ線を照射し、ガンマ線照射下における PZC の健全性について調べた。PZC の健全性に関しては、未照射及び照射後における PZC の外観観察や主要構成元素であるジルコンビウムの脱離量及び吸着したモリブデンの脱離量から評価した。

試験では、PZC のラット番号、モリブデン吸着の有無、モリブデン吸着時の PZC 搾拌方法、モリブデン吸着時間及び照射時間をパラメータとした。試験条件及び試験手順は、以下のとおりである。

(i) 試験条件

・試料 : PZC（ロット番号 : #060330, #060426, #060713）

（モリブデン吸着の有無及びモリブデン吸着時の PZC 搾拌方法（手振り及びガス吹込み）を変えて、PZC 試料を作製した。）

・照射温度 : 室温（雰囲気温度）

・照射位置 : 60Co 線源中心より鉛直方向 : 0 ～ 5 cm、水平方向 : 0 ～ 30 cm の領域

・照射時間 : 約 10 日間、30 日間及び 60 日間

・照射強度 : 3.4 × 106 Gy（約 10 日間）～ 1.9 × 107 Gy（約 60 日間）＝ 3.2 × 108 Gy/d

（原子力機構 JRR-3 水力照射設備における約 7.7 時間のガンマ線照射相当量）

・測定項目 : PZC 試料の表面状態、ジルコニウム (Zr) 脱離量及びモリブデン (Mo) 脱離量 (率) 各試験ケースにおける試験条件を、Table 3.1 に示す。同じ照射時間の PZC 試料 6 種類（PZC1～PZC6）と同じ照射容器に入れ、ガンマ線照射を行った。
（ii）試験手順
1) 水溶液中のモリブデン含有量が 20 g-Mo/L、pH が 7 となるように、モリブデン酸ナトリウムを純水に溶解し、1 mol/L の酸化ナトリウム水溶液または塩酸で pH を調整して、モリブデン酸ナトリウム水溶液 250 ml を作製した。
2) フラスコ内に PZC 2 g を入れ、作製したモリブデン酸ナトリウム水溶液 20 ml と純水 5 ml を添加した（PZC の飽和吸着量程度のモリブデンを含む）。
3) 水溶液を 90℃ に加熱・保温し、定期的に手振りまたはガス吹込みによって摂拌しながら 5 時間または 3 時間維持し、PZC にモリブデンを吸着させた。（PZC のモリブデン吸着量は温度が高いほど速く、90℃ では 3 時間で飽和吸着量に近る。ただし、PZC のモリブデン吸着量は、温度の影響を受けない。）(9)
4) PZC とモリブデン酸ナトリウム水溶液の混合液をろ過し、PZC を分離した。
5) 分離した PZC を、100℃ で 2 時間乾燥させた。
6) PZC 試料保持容器にモリブデン未吸着 PZC 及びモリブデン吸着 PZC を入れ、照射容器本体に挿入した。
7) 照射容器を 60Co 線源カバーにぶら下げ、最大で約 60 日間、ガンマ線を照射した。なお、照射は完全な連続ではなく、装置運転の都合上中断が生じた。
8) 決められた照射時間後に、照射容器を回収した。
9) PZC 試料に関しては、照射試験の前後において、目視及びマイクロスコープによる表面観察を行った。
10) PZC 試料に関しては、未照射及び照射後において、試料の一部（0.2 g）を純水に 1 日間浸漬してからろ過し、ろ液（浸漬液）の ICP-AES による元素分析（Zr 及び Mo）を行った。

3.2 試験結果及び考察

PZC 試料を照射容器に入れ、室温（温度制御無し）でガンマ線を照射した。約 10 日間、30 日間及び 60 日間のガンマ線照射後、PZC 試料の外観観察、ジルコニウム脱離量及びモリブデン脱離量の測定を行った。PZC 試料外観の経時変化を、Table 3.2（目視による観察結果）及び Table 3.3（マイクロスコープ 150 倍による観察結果）に示す。また、PZC 試料のガンマ線照射に伴うジルコニウム脱離量を Table 3.4 に、PZC 試料のガンマ線照射に伴うモリブデン脱離量を Table 3.5 に示す。なお、モリブデン脱離量は、未照射 PZC 試料のモリブデン脱離量を 1.0 としたときの相対値で示している。PZC 試料は、ガンマ線照射によって変色したが、PZC の主要構成元素であるジルコニウムの脱離は認められず、モリブデンの脱離量も未照射 PZC の場合と比べて増加することは無かった。

（1）99Mo 吸着時における PZC の吸収線量

ガンマ線照射による PZC 試料の吸収線量が、99Mo を吸着した PZC の吸収線量に対して、どの程度に相当するかを概算した。

99Mo は、ベータ（β）崩壊によって99mTc になり、その際ベータ線及びガンマ線を放出する。ここでは、99Mo から放出されるベータ線の全エネルギーが PZC に吸収され、ガンマ線は全て PZC を透過
すると仮定する。\(^{99}\text{Mo}\)の単位時間（1時間）当りのベータ線エネルギー\(E_\beta\)は、\(^{99}\text{Mo}\)の放射能を\(A\), \(^{99}\text{Mo}\)の1崩壊当りのベータ線エネルギーを\(e_\beta\)とすると,

\[
E_\beta (\text{J/h}) = A (\text{Bq}) \times e_\beta (\text{MeV}) \times 1.6022 \times 10^{-13} (\text{J/MeV}) \times 3,600 (\text{s/h})
\] (3.1)

で与えられる。このとき、\(^{99}\text{Mo}\)のベータ線によるPZCの吸収線量率\(D_\beta\)は、ベータ線最大飛程内のPZC重量を\(m\)とすると,

\[
D_\beta (\text{Gy/h}) = E_\beta (\text{J/h}) / m (\text{kg})
\] (3.2)

で与えられる。\(^{99}\text{Mo}\)は主に3つの異なるベータ線エネルギーを放出し、それらのエネルギーと放出率（0.436 MeV：16.6％, 0.847 MeV：1.17％, 1.214 MeV：82.0％）から,

\[
e_\beta = 0.436 \times 0.166 + 0.847 \times 0.0117 + 1.214 \times 0.82 = 1.078 \text{ MeV}
\]

を得る。また、\(^{99}\text{Mo}\)のベータ線最大エネルギーは1.214 MeV（放出率82.0％）であり、このベータ線の最大飛程\(R_\beta\)は約0.5 g/cm\(^2\)である。PZCの密度\(\rho_{\text{PZC}}\)は1 g/cm\(^3\)であるので、これを用いて\(R_\beta\)の単位をg/cm\(^2\)からcmに変換する。変換後のベータ線最大飛程を\(R_{\beta}^*\)とするとき,

\[
R_{\beta}^* = R_\beta / \rho_{\text{PZC}} = 0.5 / 1 = 0.5 \text{ cm}
\]

となる。従って,

\[
m = (4/3 \times \pi \times R_{\beta}^*^3) \times \rho_{\text{PZC}} = (4/3 \times \pi \times 0.5^3) \times 1 = 0.52 \times \text{10}^{-3} \text{ kg}
\]

を得る。以上から、\(^{99}\text{Mo}\)のベータ線によるPZCの吸収線量率\(D_\beta\)は、\(A=3.7 \times 10^{10} \text{ Bq (1 Ci)}\)とするとき,

\[
D_\beta = (3.7 \times 10^{10} \times 1.078 \times (1.6022 \times 10^{-13}) \times 3,600 / (0.52 \times 10^{-3}) = 4.4 \times 10^4 \text{ Gy/h} = 10.6 \times 10^5 \text{ Gy/d}
\]

となる。

本ガンマ線照射試験において、PZC試料の平均吸収線量率は3.2×10\(^5\) Gy/dであり、3.7×10\(^10\) Bq（1 Ci）の\(^{99}\text{Mo}\)によるPZCの吸収線量率10.6×10\(^5\) Gy/dの約3分の1であった。ただし、吸収線量で考えると、10.7日間照射（3.4×10\(^6\) Gy）の場合10.6×10\(^5\) Gy/dで3.2日間の吸収線量、31.1日間照射（9.9×10\(^6\) Gy）の場合10.6×10\(^5\) Gy/dで9.3日間の吸収線量、60.6日間照射（1.9×10\(^7\) Gy）の場合10.6×10\(^5\) Gy/dで17.9日間の吸収線量に相当する。ただし、\(^{99}\text{Mo}\)の崩壊による減衰を考慮していない。

（2）PZC試料外観の経時変化

PZC試料外観の経時変化に関しては、照射時間が長くなるにつれ、モリブデン未吸着のPZC1は橙色から黑色に、モリブデン吸着のPZC2～PZC6は薄茶色から白色に変色したが、粉化等の形状変化が生じることは無かった。なお、PZC1のガンマ線照射に伴う黑色化は、二酸化ジルコニウム（ZrO\(_2\)）等のジルコニウム化合物特有の現象である。
（3）PZC 試料のジルコニウム脱離量

ジルコニウム脱離量は、全ての PZC 試料で照射時間に関わらず、検出限界の 0.2 mg/ℓ より小さく、ガンマ線照射によって大きく脱離する傾向は認められなかった。

（4）PZC 試料のモリブデン脱離率

PZC 試料のモリブデン脱離率は、未照射 PZC 試料の場合と比べて増加することは無く、照射時間が長くなるほど低くなる傾向が認められ、60.6 日間の照射後においては、最も低い PZC4 の場合 0.41、最も高い PZC2 の場合 0.75 となった。全照射時間にわたって PZC2→PZC3→PZC5→PZC6→PZC4 の順で、PZC のロット番号に関しては#060330（PZC2）、#060426（PZC3→PZC5）、#060713（PZC6→PZC4）の順で、モリブデン吸着時の攪拌方法に関しては手振り（PZC2→PZC3）、ガス吹き込み（PZC5→PZC6）、手振り（PZC4）の順で、モリブデン吸着時間に関しては 5 時間（PZC2→PZC3）、3 時間（PZC5→PZC6→PZC4）の順でモリブデン脱離率が低くなっており、ロット番号及び吸着時間に対する依存性が認められたが、攪拌方法に対する依存性は明確に生じなかった。ロット番号に対する依存性は、PZC の生産時期による品質のばらつきを示しており、PZC 生産時において品質の均一化を図る必要がある。吸着時間に対する依存性は、吸着時間を長く取れば良いというわけではなく、従来の研究（9）どおり 3 時間程度が最適であることを示している。攪拌方法に対する依存性が無いことは、どのような攪拌方法を用いても、PZC の構造を壊さず、適度な攪拌を行うことが重要であることを示している。

以上の結果、ガンマ線照射下（99Mo による 17.9 日間の照射相当）において、PZC の健全性は維持されることがわかった。従って、99Mo から放出される放射線によって、99Mo を吸着した PZC は照射損傷を受けず、そのモリブデン吸着性能も変化しないと考えられる。
<table>
<thead>
<tr>
<th>PZC試料番号</th>
<th>PZCロット番号</th>
<th>吸着水溶液</th>
<th>搖拌方法</th>
<th>吸着温度</th>
<th>吸着時間</th>
<th>吸着量</th>
<th>PZC試料重量（g）</th>
<th>照射時間（d）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>未照射試料</td>
<td>照射試料</td>
</tr>
<tr>
<td>PZC1</td>
<td>#060330</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>未吸着</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>PZC2</td>
<td>#060330</td>
<td>モリブデン酸ナトリウム水溶液</td>
<td>手振り</td>
<td>90℃</td>
<td>5時間</td>
<td>未測定</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>PZC3</td>
<td>#060426</td>
<td>25 ml + PZC 2 g</td>
<td></td>
<td></td>
<td>3時間</td>
<td></td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>PZC4</td>
<td>#060713</td>
<td>ガス吹込み</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
<td>0.21</td>
</tr>
<tr>
<td>PZC5</td>
<td>#060426</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.57</td>
<td>0.44</td>
</tr>
<tr>
<td>PZC6</td>
<td>#060713</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39</td>
<td>0.27</td>
</tr>
</tbody>
</table>

※：照射時間 0(d) は未照射の場合であり、他の照射時間との比較用として用いた。
Table 3.2 PZC 試料外観の経時変化（目視による観察結果）

<table>
<thead>
<tr>
<th>PZC 試料番号</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>未照射 (0 Gy)</td>
</tr>
<tr>
<td>PZC1</td>
<td>![Image]</td>
</tr>
<tr>
<td>PZC2</td>
<td>![Image]</td>
</tr>
<tr>
<td>PZC3</td>
<td>![Image]</td>
</tr>
<tr>
<td>PZC4</td>
<td>![Image]</td>
</tr>
<tr>
<td>PZC5</td>
<td>![Image]</td>
</tr>
<tr>
<td>PZC6</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
Table 3.3 PZC 試料外観の経時変化（マイクロスコープ 150 倍による観察結果）

<table>
<thead>
<tr>
<th>PZC</th>
<th>試料番号</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>未照射 (0 Gy)</td>
</tr>
<tr>
<td>PZC1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZC2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZC3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZC4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZC5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PZC6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.4 PZC試料のガンマ線照射に伴うジルコニウム脱離量

<table>
<thead>
<tr>
<th>PZC</th>
<th>測定項目</th>
<th>照射時間</th>
<th>吸収線量</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>試料番号</td>
<td>0 d</td>
<td>10.7 d</td>
<td>31.1 d</td>
</tr>
<tr>
<td>PZC1</td>
<td>0 Gy</td>
<td>3.4×10^6 Gy</td>
<td>9.9×10^6 Gy</td>
<td>1.9×10^7 Gy</td>
</tr>
<tr>
<td>PZC2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>PZC3</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>PZC4</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>PZC5</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
<tr>
<td>PZC6</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
<td><0.2</td>
</tr>
</tbody>
</table>

Table 3.5 PZC試料のガンマ線照射に伴うモリブデン脱離率

<table>
<thead>
<tr>
<th>PZC</th>
<th>測定項目</th>
<th>照射時間</th>
<th>吸収線量</th>
<th>経時変化</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>試料番号</td>
<td>0 d</td>
<td>10.7 d</td>
<td>31.1 d</td>
</tr>
<tr>
<td>PZC1</td>
<td>0 Gy</td>
<td>3.4×10^6 Gy</td>
<td>9.9×10^6 Gy</td>
<td>1.9×10^7 Gy</td>
</tr>
<tr>
<td>PZC2</td>
<td>1.00</td>
<td>1.01</td>
<td>0.84</td>
<td>0.75</td>
</tr>
<tr>
<td>PZC3</td>
<td>1.00</td>
<td>0.83</td>
<td>0.69</td>
<td>0.61</td>
</tr>
<tr>
<td>PZC4</td>
<td>1.00</td>
<td>0.56</td>
<td>0.47</td>
<td>0.41</td>
</tr>
<tr>
<td>PZC5</td>
<td>1.00</td>
<td>0.79</td>
<td>0.66</td>
<td>0.59</td>
</tr>
<tr>
<td>PZC6</td>
<td>1.00</td>
<td>0.71</td>
<td>0.59</td>
<td>0.53</td>
</tr>
</tbody>
</table>

*：Mo脱離率は、未照射PZC試料（PZC1-0 d～PZC6-0 d）の場合を1.0とした時の相対値を示す。
Fig. 3.1 PZC試料用照射容器

Fig. 3.2 照射中のPZC試料
4. 結 言

溶液循環照射法による 99Mo 製造の実用化に向けて、照射ターゲットとなるモリブデン酸塩水溶液のガンマ線照射下における特性を評価するために、ガンマ線照射試験を行った。これに加えて、モリブデン吸着剤 PZC のガンマ線照射下における健全性を評価するために、ガンマ線照射試験を行った。Table 4.1 及び Table 4.2 に、ガンマ線照射下におけるリブデン酸塩水溶液の特性評価及び PZC の健全性評価のまとめを示す。

（1）ガンマ線照射下におけるモリブデン酸塩水溶液の特性

モリブデン酸塩水溶液として、未照射試験 (5) で選定したモリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液を用いた。モリブデン酸アンモニウム水溶液に関しては、沈殿防止のために pH 調整を行った。なお、ガンマ線照射試験は、水溶液を静置した状態で試験を行う水溶液静置型照射試験と水溶液を循環した状態で試験を行う水溶液循環型照射試験に分けられた。

水溶液循環型照射試験では、ガンマ線照射下において、静置した選定水溶液と構造材料との両立性、静置した選定水溶液の化学的安定性及びガンマ発熱について調べた。80℃に加熱した選定水溶液（濃度：飽和の 80%〜90%程度）と冷却を伴う処理材料（ステンレス鋼、SUS304）及びアルミイット処理表面アルミウム合金（A6063）との両立性に関しては、モリブデン酸アンモニウム水溶液浸漬の場合、ステンレス鋼に明らかな腐食を生じなかったが、アルミウム合金に腐食が生じ、モリブデン酸カリウム水溶液浸漬の場合、ステンレス鋼及びアルミウム合金共に明らかに腐食が生じなかった。モリブデン酸アンモニウム水溶液浸漬の場合、ステンレス鋼表面に照射器から溶出したガラス成分による皮膜が、アルミウム合金表面に水溶液から生じたモリブデン化合物と照射器から溶出したガラス成分の皮膜が形成された。モリブデン酸カリウム水溶液浸漬の場合、アルミウム合金表面に水溶液から生じたモリブデンとカリウムによる化合物の皮膜が形成された。これらの皮膜形成の挙動が腐食の抑制された可能性があるが、未照射試験（5）との比較から、ガンマ線照射によって腐食が進行する傾向は認められなかった。選定水溶液の化学的安定性に関しては、モリブデン酸アンモニウム水溶液の場合 pH=8 で、モリブデン酸カリウム水溶液の場合 pH=10 で安定しており、沈殿の発生は無かった。ガンマ発熱に関しては、ガンマ線照射に伴って、純水と同程度にモリブデン酸アンモニウム水溶液の温度上昇が認められた。

水溶液循環型照射試験では、ガンマ線照射下において、循環する選定水溶液と構造材料との両立性、循環する選定水溶液の化学的安定性、循環特性、放射線分解及びガンマ発熱について調べた。80℃に加熱した選定水溶液（濃度：飽和の 80%〜90%程度）と構造材料（ステンレス鋼 SUS304）との両立性に関しては、モリブデン酸アンモニウム水溶液浸漬及びモリブデン酸カリウム水溶液浸漬の場合、ステンレス鋼に腐食は生じなかった。選定水溶液の化学的安定性に関しては、モリブデン酸アンモニウム水溶液の場合 pH=8 で、モリブデン酸カリウム水溶液の場合 pH=10 で安定しており、沈殿の発生は無かった。選定水溶液の循環特性に関しては、モリブデン酸アンモニウム水溶液及びモリブデン酸カリウム水溶液の場合、沈殿の発生は顕著でないが、水溶液の循環状態は良好であった。選定水溶液の放射線分解に関しては、発生ガス中の水素成分割合が、モリブデン酸アン
モニウム水溶液にステンレス鋼を浸漬した場合、純水の約7倍となり、モリブデン酸カリウム水溶液にステンレス鋼を浸漬した場合、純水の約20倍となった。ガンマ発熱に関しては、ガンマ線照射に伴って、わずかではあるが純水の温度上昇が認められた。

以上の結果、選定水溶液であるモリブデン酸アンモニウム水溶液（pH調整済み）及びモリブデン酸カリウム水溶液は、純水に比べて水素発生量が多くなる可能性があるものの、構造材料との相立性及び化学的安定性の観点から、照射ターゲットとして適していることがわかった。ただし、モリブデン酸アンモニウム水溶液に関しては、モリブデン酸カリウム水溶液と比べて、アルミニウム合金に対する腐食性がやや高い。また、選定水溶液との相立性が良好なステンレス鋼を、キャプセルや配管等の構造材料として使用できる見通しを得た。なお、アルミニウム合金に関しては、皮膜形成によって腐食が抑制される可能性があり、今後も選定水溶液との相立性試験を行い、使用可能性を検討する。

さらに、選定水溶液に関しては、純水より高濃度の水素発生及び純水と同程度のガンマ発熱による温度上昇が認められたことから、これらに基づき、溶液照射法による⁹⁹Mo 製造システムにおける発生ガス処理装置及び熱交換器について検討する。

（２）ガンマ線照射下における PZC の健全性

PZC 試料にガンマ線を照射し、ガンマ線照射下における PZC の健全性について調べた。ガンマ線照射によって、PZC の主成分であるジルコニアが大きく脱離する傾向は認められず、また、未照射 PZC と比べて照射 PZC のモリブデン脱離率は低下し、PZC の健全性は維持されることがわかった。

今後は、これらの結果を基にして、長期間及び流動下におけるモリブデン酸塩水溶液と構造材料との相立性試験や中性子照射下におけるモリブデン酸塩水溶液の特性評価を行う予定である。

謝辞

（株）化研の黒澤啓子氏及び元（株）化研の菱沼行男氏には、試料の各種測定に関して御助力を頂きました。また、原子力機構照射試験炉センターの石原正博副センター長及び石田卓也氏には、本報告書をまとめるにあたり御助言を頂きました。ここに明記し、謝意を表します。
Table 4.1 ガンマ線照射下におけるモリブデン酸塩水溶液の特性評価のまとめ

<table>
<thead>
<tr>
<th>項目</th>
<th>モリブデン酸塩水溶液の特性</th>
<th>モリブデン酸カリウム水溶液</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 調整済みモリブデン酸アンモニウム水溶液</td>
<td>(NH₄)₆Mo₇O₂₄・4H₂O 水溶液</td>
<td>K₂MoO₄ 水溶液</td>
</tr>
<tr>
<td>水溶液静置時：腐食無し（ガラス成分の皮膜形成）</td>
<td>水溶液静置時：腐食無し（皮膜形成無し）</td>
<td>水溶液静置時：腐食無し（皮膜形成無し）</td>
</tr>
<tr>
<td>水溶液循環時：腐食無し（皮膜形成無し）</td>
<td>水溶液循環時：腐食無し（皮膜形成無し）</td>
<td>水溶液循環時：腐食無し（皮膜形成無し）</td>
</tr>
<tr>
<td>SUS304 (水溶液（80℃）と）構造材料との相立性（腐食の有無）</td>
<td>A6063*</td>
<td></td>
</tr>
<tr>
<td>水溶液静置時：腐食有り（Al, Mo 及びガラス成分を含む化合物の皮膜形成）</td>
<td>水溶液静置時：腐食無し（Al, Mo, 及び K を含む化合物の皮膜形成）</td>
<td>水溶液静置時：腐食無し（Al, Mo, 及び K を含む化合物の皮膜形成）</td>
</tr>
<tr>
<td>備考</td>
<td>水溶液静置時：水溶液を 80℃に加熱時、ガラス溶出</td>
<td>−</td>
</tr>
<tr>
<td>80℃ 加熱時における化学的安定性</td>
<td>安定</td>
<td>安定</td>
</tr>
<tr>
<td>沈殿物無し（pH=8）</td>
<td>沈殿物無し（pH=10）</td>
<td></td>
</tr>
<tr>
<td>循環特性</td>
<td>良好</td>
<td>良好</td>
</tr>
<tr>
<td>発生ガス中の水素成分割合</td>
<td>純水の約 7 倍</td>
<td>純水の約 20 倍</td>
</tr>
<tr>
<td>ガンマ発熱</td>
<td>純水と同程度</td>
<td>−</td>
</tr>
<tr>
<td>濃度</td>
<td>飽和の 80%程度**</td>
<td>飽和の 90%程度**</td>
</tr>
</tbody>
</table>

*：アルマイト処理済み

**：実際に溶解させることのできた飽和溶解量を基準とした。

Table 4.2 ガンマ線照射下における PZC の健全性評価のまとめ

<table>
<thead>
<tr>
<th>項目</th>
<th>PZC の特性</th>
</tr>
</thead>
<tbody>
<tr>
<td>ジルコニア脱離量</td>
<td>測定限界以下</td>
</tr>
<tr>
<td>モリブデン脱離率</td>
<td>未照射 PZC 以下</td>
</tr>
<tr>
<td>健全性</td>
<td>良好</td>
</tr>
</tbody>
</table>
参考文献

（1）小林正明：「わが国における放射性医薬品の供給と RI 原料入手の現状」，核医学技術，Vol. 21，No. 5，pp. 357-362（2001）。

（3）読売新聞，「放射性検査薬が供給不安 カナダの原子炉停止で」，2007 年 12 月 14 日夕刊 4 版，p. 2（2007）。

（4）石塚悦男，篠沼裕吾：「放射性モリブデンの製造方法と装置及びその方法と装置で製造された放射性モリブデン」，特開 2008-102078，（2008）。

（5）稲葉良知，石川幸治，石田卓也，篠沼裕吾，石塚悦男：「溶液照射法による 99Mo 製造に関する研究（1）－未照射下におけるモリブデン酸塩水溶液の特性評価－」，JAEA-Technology 2009-012，（2009）。

（6）HEISHIN：「THE ENGINEER’S BOOK Vol.17」，兵神装備株式会社，p. 79（2007）。

（7）吉田朋子，田辺哲明，アレシ・チェン：「高エネルギー放射線の化学反応への応用－γ線を利用した水からの水素製造－」，放射線化学，第 79 号，pp. 13-18（2005）。

（8）長尾美春，佐藤政四，新見素二：「JMTR における核加熱率の評価」，JAEA-Technology 2007-051，（2007）。

（9）長谷川良雄，西野瑞香，石川幸治，篠沼裕吾，槇瀬正和，黒沢清行：「99mTe ジェネレーター用高性能 Mo 吸着剤の合成と特性」，日本化学会誌，No. 12，pp. 805-811（1999）。

— 72 —
国際単位系（SI）

表1: SI基本単位

<table>
<thead>
<tr>
<th>基本量</th>
<th>SI基本単位</th>
<th>長さ</th>
<th>質量</th>
<th>時間</th>
<th>電流</th>
<th>熱力学温度</th>
<th>光速</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>kg</td>
<td>s</td>
<td>A</td>
<td>K</td>
<td>c₀</td>
</tr>
</tbody>
</table>

注: 1m = 10⁻⁹cm，1kg = 10⁻³g，1s = 10⁻³min，1A = 10⁻⁹A，1K = 10³°C，1c₀ = 299792458m/s

表3: 国別単位とその対応

<table>
<thead>
<tr>
<th>国別</th>
<th>単位</th>
<th>記号</th>
<th>SI対応</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>アメリカ合衆国</td>
<td>フィート</td>
<td>ft</td>
<td>m</td>
<td>1ft = 0.3048m</td>
</tr>
<tr>
<td></td>
<td>パント</td>
<td>in</td>
<td>cm</td>
<td>1in = 2.54cm</td>
</tr>
<tr>
<td></td>
<td>ペンギン</td>
<td>gal</td>
<td>L</td>
<td>1gal = 3.78541L</td>
</tr>
<tr>
<td></td>
<td>バルボルト</td>
<td>Ohm</td>
<td>Ω</td>
<td>1Ω = 1V/A</td>
</tr>
<tr>
<td></td>
<td>フート</td>
<td>ft</td>
<td>cm</td>
<td>1ft = 0.3048m</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>in</td>
<td>cm</td>
<td>1in = 2.54cm</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>gal</td>
<td>L</td>
<td>1gal = 3.78541L</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>Ohm</td>
<td>Ω</td>
<td>1Ω = 1V/A</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>ft</td>
<td>cm</td>
<td>1ft = 0.3048m</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>in</td>
<td>cm</td>
<td>1in = 2.54cm</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>gal</td>
<td>L</td>
<td>1gal = 3.78541L</td>
</tr>
<tr>
<td></td>
<td>ルート</td>
<td>Ohm</td>
<td>Ω</td>
<td>1Ω = 1V/A</td>
</tr>
</tbody>
</table>

表4: 単位の単位とその対応

<table>
<thead>
<tr>
<th>単位</th>
<th>記号</th>
<th>备考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1kg</td>
<td>1kg</td>
<td>1kg = 0.001t</td>
</tr>
<tr>
<td>1m³</td>
<td>1m³</td>
<td>1m³ = 1000L</td>
</tr>
<tr>
<td>1s⁻¹</td>
<td>1s⁻¹</td>
<td>1s⁻¹ = 1Hz</td>
</tr>
<tr>
<td>1A⁻¹</td>
<td>1A⁻¹</td>
<td>1⁻¹ = 1Ω</td>
</tr>
</tbody>
</table>

表5: SI対応の単位

<table>
<thead>
<tr>
<th>単位</th>
<th>名称</th>
<th>記号</th>
<th>SI対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Ft</td>
<td>ft</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>In</td>
<td>in</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Gal</td>
<td>gal</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Ohm</td>
<td>Ω</td>
</tr>
</tbody>
</table>

備考: アメリカ合衆国の電気単位は、ルートを指すものが多い。

表6: SI対応の単位

<table>
<thead>
<tr>
<th>単位</th>
<th>名称</th>
<th>記号</th>
<th>SI対応</th>
</tr>
</thead>
<tbody>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Ft</td>
<td>ft</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>In</td>
<td>in</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Gal</td>
<td>gal</td>
</tr>
<tr>
<td>ルート</td>
<td>ルート</td>
<td>Ohm</td>
<td>Ω</td>
</tr>
</tbody>
</table>

備考: アメリカ合衆国の電気単位は、ルートを指すものが多い。
この印刷物は再生紙を使用しています