JAEA-Technology 2010-022

オーブン法による ECR イオン源からの 金属イオンビーム生成

Production of Metal Ion Beams from ECR Ion Source by Using Oven Method

仲野谷 孝充 松田 誠 Takamitsu NAKANOYA and Makoto MATSUDA

> 東海研究開発センター 原子力科学研究所 研究炉加速器管理部

Department of Research Reactor and Tandem Accelerator Nuclear Science Research Institute Tokai Research and Development Center

July 2010

Japan Atomic Energy Agency

日本原子力研究開発機構

本レポートは独立行政法人日本原子力研究開発機構が不定期に発行する成果報告書です。 本レポートの入手並びに著作権利用に関するお問い合わせは、下記あてにお問い合わせ下さい。 なお、本レポートの全文は日本原子力研究開発機構ホームページ(<u>http://www.jaea.go.jp</u>) より発信されています。

独立行政法人日本原子力研究開発機構 研究技術情報部 研究技術情報課
〒319-1195 茨城県那珂郡東海村白方白根2番地4
電話 029-282-6387, Fax 029-282-5920, E-mail:ird-support@jaea.go.jp

This report is issued irregularly by Japan Atomic Energy Agency Inquiries about availability and/or copyright of this report should be addressed to Intellectual Resources Section, Intellectual Resources Department, Japan Atomic Energy Agency 2-4 Shirakata Shirane, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan Tel +81-29-282-6387, Fax +81-29-282-5920, E-mail:ird-support@jaea.go.jp

© Japan Atomic Energy Agency, 2010

JAEA-Technology 2010-022

オーブン法による ECR イオン源からの金属イオンビーム生成

日本原子力研究開発機構 東海研究開発センター 原子力科学研究所 研究炉加速器管理部 仲野谷 孝充、 松田 誠

(2010年4月12日 受理)

原子力機構-東海タンデム加速器では気体元素の多価イオンを生成・加速する目的で ECR イオ ン源が高電圧端子内に設置されている。ECR イオン源はその特性上、気体元素の大電流の多価イ オンビームを容易に生成できるが、金属元素のイオンの生成は容易ではない。そのため、金属イ オンは負イオン源で生成して通常のタンデム加速方式で加速している。しかし、ECR イオン源か ら金属イオンを生成・加速できれば、負イオン源に比べてビーム強度、ビームエネルギーが飛躍 的に増加する可能性があり、加速器施設の利便性を大きく向上させることができる。そのため ECR イオン源からの金属イオン生成と加速を目指して、オーブン法による金属ビームの開発を行 った。

開発したオーブンを用いて実験室内に設置したテスト用 ECR イオン源にて各種金属元素のイ オン生成試験を実施した。その結果、16 種類の金属元素のイオン化に成功し、運転パラメータ、 質量スペクトルデータを得ることができた。

本報告では開発したオーブンの構造及び性能、金属イオンビームを生成する際の元素ごとの特 徴や質量スペクトルデータ等についてまとめた。 JAEA-Technology 2010-022

Production of Metal Ion Beams from ECR Ion Source by Using Oven Method

Takamitsu NAKANOYA and Makoto MATSUDA

Department of Research Reactor and Tandem Accelerator, Nuclear Science Research Institute Tokai Research and Development Center, Japan Atomic Energy Agency Tokai-mura, Naka-gun, Ibaraki-ken

(Received April 12, 2010)

An ECR ion source has been installed for producing highly charged ion beams of gaseous elements, in the 20 MV high-voltage terminal of the JAEA-Tokai tandem accelerator. The ECR ion source can easily produce intense ion beams for gaseous elements, but not for metal-ion beams. We have developed an oven method in order to produce intense metal-ion beams from the ECR ion source. We have carried out the production test for various metals on a testing stand of the ECR ion source. We have investigated operational parameters for producing 16 different metal-ion beams. In this article, we describe the oven developed in this work, and summarized experimental data of the ionization properties and mass spectrum for each metal element.

Keywords: ECR Ion Source, Oven Method, Metal Ion, Tandem Accelerator

目 次

1. はじめに	1
2. 実験装置概要	3
2.1 ECR イオン源の原理と構造	3
2.2 ビームライン構成と各電源配置	6
2.3 金属オーブンの設計	8
3. オフライン試験	12
3.1 昇温特性試験	12
3.2 熱輻射影響特性	12
4. 金属イオン生成試験	14
4.1 試験の概要	14
4.1.1 Mgイオン	16
4.1.2 Alイオン	17
4.1.3 Caイオン	18
4.1.4 Mnイオン	19
4.1.5 Feイオン	20
4.1.6 Niイオン	21
4.1.7 Cuイオン	22
4.1.8 Znイオン	23
4.1.9 Geイオン	24
4.1.10 Srイオン	25
4.1.11 Agイオン	26
4.1.12 Inイオン	27
4.1.13 Snイオン	28
4.1.14 Auイオン	29
4.1.15 Pbイオン	30
4.1.16 Biイオン	31
4.2 結果と考察	32
5. まとめ	34
参考文献	35

JAEA-Technology 2010-022

Contents

1. Introduction	1
2. Experimental equipment	3
2.1 Principle and structure of the ECR ion source	3
2.2 Beam line components and power source layout	6
2.3 Design of the metal oven	8
3. Off line test	12
3.1 Temperature raising test	12
3.2 Thermal radiation test	12
4. Metal ion production test	14
4.1 Overview of the test	14
4.1.1 Mg ion	16
4.1.2 Al ion	17
4.1.3 Ca ion	18
4.1.4 Mn ion	19
4.1.5 Fe ion	20
4.1.6 Ni ion	21
4.1.7 Cu ion	22
4.1.8 Zn ion	23
4.1.9 Ge ion	24
4.1.10 Sr ion	25
4.1.11 Ag ion	26
4.1.12 In ion	27
4.1.13 Sn ion	28
4.1.14 Au ion	29
4.1.15 Pb ion	30
4.1.16 Bi ion	31
4.2 Results and discussion	32
5. Conclusion	34
References	35

1.はじめに

タンデム加速器の高電圧端子部には図1に示すようにRF周波数14.5GHzの永久磁石型ECRイオン 源(以下ターミナルイオン源)が設置されている¹⁾。このイオン源はSUPERNANOGAN と呼ばれる フランス PANTECHNIK 社の製品である。主に、希ガスや酸素等の気体元素の大強度多価イオンを生 成可能であり、各種の実験に用いられている。ECRイオン源は気体元素の多価イオンを容易に生成す ることができるが、金属元素のイオンを生成するのは容易ではない。金属イオンの生成には、ECRイ オン源の内部で10⁻¹ Pa 程度の金属蒸気圧²⁾が必要であり、大部分の金属ではこの蒸気圧を得るには 1000℃以上に加熱しなければならないためである。逆に、ターミナルイオン源より金属元素のイオン ビームを生成することが可能となればタンデム加速器の有用性をさらに飛躍的に向上させることがで きる。

図2に加速電圧18MVにおいて、負イオン源より加速したイオンビームを荷電変換フォイル(炭素 薄膜:5 µg/cm²)によって荷電変換した際の平均電荷及びターミナルイオン源より生成するイオンの 実用電荷^{*注)}を示す。これより、金のように重いイオンをターミナルイオン源より生成した場合、負 イオン源からのビームと比較して約2倍の価数を得られるため、加速エネルギーも約2倍に向上させ ることができる。また、負イオン源から重いイオンを加速した場合、荷電変換フォイルの消耗が激し いため、数時間毎にフォイルの交換とそれに伴うビーム調整が必要となるが、ターミナルイオン源で は荷電変換フォイルを必要としないため、フォイルの寿命からは完全に解放される。その他、負イオ ン源ではイオン化が非常に困難なアルカリ金属やアルカリ土類金属のイオンもターミナルイオン源で あれば生成の可能性があり、加速可能なイオン種を増やすことができる。

ECR イオン源からの金属ビームの生成には、イオン源の内部に小型のるつぼを挿入しこれにより金属を加熱し蒸気を発生させるオーブン法という手法が広く用いられている。この他に金属ビームを生成する方法として、金属のロッドを ECR プラズマに接触させスパッタリングにより金属イオンを生成させるスパッタ法や、低温でも高い蒸気圧を持つフェロセン (Fe(C₅H₅)₂)等の有機金属化合物の蒸気をイオン源内部に導入してイオン生成させる MIVOC (Metal Ions from Volatile Compounds) 法などがある。スパッタ法では原理的には大部分の金属のイオンを簡単な装置で得ることができるが、生成するイオンの量が少ないといった欠点がある。また MIVOC 法は大電流のイオンを容易に得ることができるが、イオン源が試料を構成する炭素によって汚れるため頻繁なクリーニングが必要となり長時間の連続運転が難しい。このため、タンデム加速器の高電圧端子部に設置した ECR イオン源より金属ビームを得るには不向きである。一方でオーブン法は上述の方法に比べて構造が複雑ではあるが、大強度のイオンを得ることができ、生成した金属イオン以外にイオン源を汚す物が発生しないといった特徴がある。そこで、我々はオーブン法により ECR イオン源から金属ビームを生成させるため、新規にオーブンの開発を行い、金属イオンビームの生成を試みた。

*注)実用電荷: 1pµA以上の電流値を持つ最大の価数

図2 各イオン源での電荷状態

2. 実験装置概要

2.1 ECR イオン源の原理と構造

ECR イオン源は、主に気体元素の多価イオンを容易に生成可能なイオン源である。イオン源には、 軸方向の磁場を形成するミラー磁石と径方向の磁場を形成するカスプ磁石が取付けられている。これ らの磁石の合成磁場により、イオン源内部の電子は磁場に対し垂直な平面で円運動を行う。この電子 のサイクロトロン運動の周波数と等しい周波数のマイクロ波を外部より入射すると電子サイクロトロ ン共鳴吸収 (Electron Cyclotron Resonance) が起こり、電子はエネルギーを得て選択的に加速される。 イオン源内部の中性原子は、高エネルギー状態となった電子と逐次的に衝突することで多価イオン化 が生成される。プラズマはミラー磁場とカスプ磁場によりプラズマチェンバー内に閉じ込められる。 この磁場によりプラズマが効率的に長時間閉じ込められると逐次電離の機会が増え、より高多価のイ オンが生成される³⁾。

実験に使用した ECR イオン源は NANOGAN と呼ばれるもので SUPERNANOGAN の下位機種であ り、非常にコンパクトなイオン源である⁴。通常、我々はこのイオン源をターミナルイオン源に搭載 されるガス試料の質量スペクトル確認や調整等に用いている。図3にこのイオン源の概略と、図4に その外観及びイオン源の諸元表を示す。

このイオン源は、ミラー磁石、カスプ磁石ともにネオジウム永久磁石で構成されている。バイアス 電極は、ビーム強度を増加させるために広く用いられている。電極には通常数 10~数 100 V の負電圧 が印加される。これにより磁場閉じ込めより逃げ出した電子は再びプラズマ中へ押し戻され、電子密 度が増加してビーム強度の増強につながる。電極には直径 10 mm の銅棒を使用している。RF アンプ の周波数は 10 GHz で最大出力は 200 W である。高周波はセラミック製の RF 窓を通じてプラズマチ ェンバー内部へ導入される。RF 導入口と直交する面には RF チューナーが取付けられており、RF の 入射効率が最適になるよう調整可能である。

図3 NANOGAN 断面図

図4 NANOGAN 外観

ECR イオン源 (Nanogan) 諸元

1.ミラー磁場	
永久磁石材質	FeNbB
磁場強度	
RF 側	0.75 T
引出側	0.50 T
2.カスプ磁場	
永久磁石材質	FeNbB
極数	8極
3.イオン源本体	
重量	12 kg
寸法	直径 130 mm×全長 250 mm
冷却方式	空気コンプレッサによる強制空冷
4.プラズマチェンバ	_
材質	アルミニウム製
寸法	内径 25 mm×全長 200 mm
5.バイアスロッド	
材質	純銅
寸法	直径 8 mm×190 mm
6.RF アンプ	
周波数	10 GHz
最大出力	200 W

2.2 ビームライン構成と各電源配置

図5にイオン源とビームラインの配置を示す。イオン源の下流のフォーカスチェンバーにはビーム を収束させるためアインツェルレンズが備わっており、最大20kVが印加できる。イオン源本体とフ ォーカスチェンバーはアルミナ製の絶縁管により電気的に絶縁されている。Yステアラーは磁場型偏 向器であり、両極性電源により励磁されるのでビームを±Y方向に偏向させることが可能である。最 大発生磁場は20mTである。引き出されたイオンビームはその後、分析電磁石により90°曲げられ質 量分離される。分析電磁石の曲率半径は0.5mであり、最大磁場は200mT、偏向能力0.48 amu·MeV である。質量分離されたビームはX-Yステアラーにより位置の微調が可能である。このステアラーは 静電型であり、それぞれの方向に対し最大1kVの静電圧が印加可能である。ファラデーカップの直前 にはX-Yスリットが配置されている。このスリットは±X, ±Yの4方向をそれぞれ独立に開度調整 が可能である。ビームを受け止めビーム電流を測定するファラデーカップはタンタル製でカップ径は 25.4 mmである。カップの外側にはイオンビームの衝突により発生する二次電子を抑制するため、-600 Vのサプレッサー電圧が印加されている。

フォーカスチェンバー直下には主にイオン源を排気するため排気能力 800 *l/s* のターボ分子ポンプが 設置されている。また X-Y ステアラーのチェンバーの直下にはビームライン排気用として排気能力 600 *l/s* のターボ分子ポンプが設置されている。イオン源運転時の真空度はイオン源ガス導入部で1×10⁻³ Pa、ビームライン上流側(イオン源周辺)で1×10⁻⁵ Pa、ビームライン下流側(ファラデーカップ周辺) で 5×10⁻⁶ Pa 程度である。

図6にイオン源本体の電位配置図を示す。イオン源の引出し電圧は最大30kVで、通常は20kVで 使用している。イオン源本体に引出し電圧が印加されるため、地上電位に対して絶縁されている。引 出し電位の上にバイアス電源が配置される。バイアス電源は最大で-1kV印加できるため、バイアス 電極は地上電位から見て~19kVとなる。さらにバイアス電位上にオーブン電源が配置されている。 これらの引出し電位の上に配置された電源の制御は光ファイバーを介して行われる。

イオン源の冷却はスクロールコンプレッサからの圧空の連続送風により行う。送風量は 220 *l*/min である。送風配管の入口及び出口で圧空の温度や圧力を監視しており、温度異常(イオン源入口側: 30℃以上、出口側 35℃以上)や圧力低下(100 kPa 以下)を検出した際、自動的に RF 電源及びオーブン電源の出力をゼロにするインターロック機構が備えられている。

図5 ビームライン配置図

図6 高電圧配置図

2.3 金属オーブンの設計

新規にオーブンを開発するに当り、最も重要視したのはオーブンの到達温度である。表1に様々な 金属の融点と蒸気圧10⁻¹ Pa を示す温度(以下 *T*_vとする)を示す^{5,0}。ECR イオン源の内部で金属イオ ンを生成するのに必要な蒸気圧は10⁻¹ Pa 程度と言われている。この蒸気圧を示す温度は金属によって 様々であり、各金属の融点には依存せず、概ね 1000 ℃以上の高温が必要である。したがって、オー ブンの到達温度が低ければ生成できる金属イオンの種類は少なくなり、蒸気圧の調整幅も狭くなって しまう。一方、オーブンの温度が高くなると輻射熱による磁石への悪影響が大きくなる。このため、 すでに他機関で実用化されているオーブンの設計温度の多くは1000℃~1500℃である⁷⁾。我々は、需 要が期待される鉄や金等を生成するのに十分と思われる1500℃を目標到達温度として設計を行った。 また、実際にタンデム加速器で使用した場合、一度装填した試料は約4ヶ月のマシンタイム中は交換 ができない。このため、試料を格納するるつぼの容量はなるべく大きい方が望ましい。一方でプラズ マチェンバーの内径は25 mm しかないため、オーブン筐体の寸法は大きく制限される。したがって、 るつぼの容量を確保しつつ、オーブン筐体を可能な限り小型にする必要があった。

元素	蒸気圧 10 ⁻¹ Pa を示す温度 <i>T</i> v	融点 T _{mp}
Zn	293	420
Mn	867	1246
Fe	1332	1536
Ni	1387	1455
Au	1272	1064
In	832	157
Al	1097	660

表1 様々な金属の融点と蒸気圧 10⁻¹ Pa を示す温度

図7、8に開発したオーブンの断面図と写真を、表2に各部品の仕様を示す。オーブン本体はタンタ ル製であり、オーブン支持ロッドはステンレス製である。オーブン本体とオーブン支持ロッドは M4 細目ネジにより接続される。ロッドの中心を通るタンタル線によりオーブンヒーターに電流が供給さ る。ヒーターは線径が 0.3 mm のタングステンをコイル状に巻いたもので先端部にてタンタル製のキ ャップにより留められている。ここでオーブン筐体と電気的に接続されるため、オーブン電流は筐体 とロッドを通じて電源に戻る。キャップには幅1 mm のスリットが切ってあり、かしめてオーブン本 体と接続する。るつぼはアルミナ製で内容積は 0.20 cm³ である。オーブンを構成する部品は可能な限 り交換可能な構造とした。このため、キャップ、ヒーター、絶縁碍子及びるつぼ等、汚れや破損が生 じ易い箇所でも簡単に着脱、交換することができるため、ランニングコストを押さえることができる。 オーブンはイオン源の後方よりイオン源内部へ挿入する。このままでは、図3 に示したバイアス電 極と干渉してしまうため、バイアス電極の形状を棒状から中空薄肉のチューブに置き換え、このチュ ーブの内側にオーブンを導入する様にした。バイアス電極を取外しても、オーブンロッドをイオン源 筐体から電気的に絶縁してバイアス電圧を印加すればバイアス電極と同様の効果を得ることは可能で ある。しかし、以下に示す2つの理由によりバイアス電極を残すこととした。

一つはオーブンをプラズマから保護するためである。オーブン本体は ECR プラズマに絶えず晒され スパッタリングによる損傷を受ける。つまり中空状のバイアス電極でオーブンを覆うことによりスパ ッタ損傷を低減させ、オーブンの寿命を長くするためである。

もう一つは永久磁石をオーブンの輻射熱から保護するためである。オーブンはプラズマチェンバー 内で 1000 ℃以上の高温になるが、チェンバーのすぐ外側の位置にはミラー磁場とカスプ磁場を形成 するネオジウム磁石が配置されている。ネオジウム磁石は非常に強力な磁石であるが、熱減磁が大き く高温環境に弱いため 80℃が使用限界である。したがって、磁石は常に圧空により冷却されてはいる が、オーブンの輻射熱の影響が大きければ深刻な損傷を受ける恐れがある。このため、バイアス電極 により輻射熱をしゃへいし、内部で発生した熱をイオン源の外部に効率的に逃がすヒートシールドと ヒートダンプの役割をさせる。

実際の使用では図9に示すようにロードロック室で予備排気された後、バイアスチューブ内を通っ てプラズマチェンバー内に導入される。ロードロック機構により、イオン源本体の真空を破ることな く試料やオーブンの交換が可能となっている。

図7 オーブン断面図

図8 オーブン部品外観

表2 オーブン諸元

オーブン筐体	
材質	タンタル
形状	外径 7 mm×全長 47.3 mm
るつぼ	
材質	高純度アルミナ
形状	内径 3 mm×全長 30 mm 外径 4 mm
容積	0.2 cm^3
ヒーター	
材質	タングステン
形状	巻径 4.5 mm×全長 35 mm 43 ターン
	線形 0.3 mm、
オーブンロッド	
材質	ステンレス 304
形状	外径 7 mm×全長 314 mm

図9 オーブン取り付け時の ECR イオン源模式図

3.オフライン試験

3.1 昇温特性試験

開発したオーブンを ECR イオン源を模擬した真空容器内部(図 11 参照)で昇温試験を行った。ダ ミープラズマチェンバーは実際に ECR イオン源で使用されているものと全く同じ物である。温度の測 定は R 熱電対をオーブン内部のるつぼに接触させた状態で測定した。昇温試験の結果を図 10 に示す。 50 W の投入電力でるつぼ内の温度は 1650 ℃に達した。開発当初の目標温度 1500 ℃を十分満足する 性能であることが確認できた。また、るつぼ内部の温度変化は非常に安定しており、オーブン出力を 50 W に固定した状態で 30 分間での温度変化は±2 ℃以下であった。投入電力にまだ余裕があるが、 絶縁材料として使用しているアルミナの耐熱温度が 1800 ℃であるため、昇温試験は 1650 ℃で終了し た。

図10 オーブン性能曲線

3.2 熱輻射影響特性

投入電力を50Wに固定し室温中に30分静置した状態で熱輻射によるプラズマチェンバーへの影響 を調べた。図11にオーブンと温度測定点の位置関係を示す。ダミーチェンバーの温度はK熱電対を 用いて測定した。結果、オーブン近傍が最も温度が低く、オーブンから離れるに従い温度が高くなり、 バイアスチューブを支えるDの位置で最も高くなった。これはオーブンを取り巻くバイアスチューブ が熱輻射を遮り、チェンバー後方に効果的に熱を逃がしたためと考えられる。実際のECRイオン源で はプラズマチェンバーと永久磁石は絶えず圧空により冷却される。さらに、バイアスチューブを支持 しているバイアス電圧端子も真空外部より空冷される。このため、オーブンを最高温度 1650 ℃で長時 間使用し続けてもネオジウム磁石に対して十分安全だと考えられる。

図11 輻射熱影響

4. 金属イオン生成試験

4.1 試験の概要

オフライン試験の結果より、開発したオーブンの性能が十分であることが確認できた。このため、 実際に ECR イオン源に組込んで様々な金属元素ビームの生成を試みた。結果をイオン種ごとに試料形 状、同位対比、物性値、運転条件、ビーム電流、コメント、質量スペクトルとして表にまとめた。こ こで試料は余分なマスピークを避けるため可能な限り単体金属としたが、単体が得にくい元素は化合 物を用いている。

全ての測定に対してイオンの引出し電圧は20 kV に固定し、サポートガス*^{注)} は窒素を用いた。記載したイオンビームの電流値は分析電磁石直下のファラデーカップの実測値である。質量スペクトルの記録はX-Y レコーダーで行った。X 軸にホールプローブで測定した分析電磁石磁場を、Y 軸にビーム電流の実測値を記録した。また、全ての測定に対してX-Y スリットは全開の状態で行った。得られるイオンビームは多価イオンであるため、イオン種毎に最適化する価数と質量数を決め、そのイオンに対してビーム電流が最大となるように RF 電力やフォーカス電圧の値を調整した。最適化した質量数と価数は表中で太字で示した。また用いた試料は全て天然同位対比である。

比較のために図 12 に十分にチェンバー内が清浄な状態で窒素ガスのみを供給した場合の質量スペクトルを示す。観察される主要なピークは H、Nⁿ⁺、Cⁿ⁺、Oⁿ⁺、OH⁺、H₂O⁺である。チェンバー内が有機物で汚染されていると Cⁿ⁺のピークが大きくなり、また脱ガスが不十分であれば Oⁿ⁺、OH⁺、H₂O⁺のピークが顕著になる。

なお、本節の図中に用いた用語は下記の通りである。

 $T_{\rm v}$: 蒸気圧 1.33×10⁻¹ Pa を示す温度である。

EXT:引出し電圧及び引出し電流

FOC:フォーカス電圧

BIAS:バイアス電圧

真空度: サポートガス導入部での真空度

オーブン電力:オーブンに投入した電力

(オーブン電力の後に括弧書きで示した温度は図 10 より求めたるつぼ内温度の推測値) RF 電力: RF パワーメーターの実測値

*注) サポートガス:目的とする元素の多価イオンの生成量を増やすために導入する軽いガス

JAEA-Technology 2010-022

図12 窒素ガスのみを供給した場合の質量スペクトル

4.1.1 Mgイオン

イオン種	Mg
試料形状	Mg リボン 純度 99.9%
同位体比	$^{24}Mg: 79.0\% \ ^{25}Mg: 10.0\% \ ^{26}Mg: 11.0\%$
物性値	融点: 650 ℃ 沸点: 1095 ℃ T_{v} : 369 ℃
運転条件	EXT: 20 kV、0.34 mA FOC: 10.5kV BIAS: -1000 V 真空度 1.8×10 ⁻³ Pa オーブン電力: 1.72 W (~420°C) RF 電力: 7.5 W
ビーム電流	26 Mg ³⁺ : 0.75 eµA, 26 Mg ⁵⁺ : 0.02 eµA, 26 Mg ²⁺ : 2.1 eµA
コメント 質量スペクト/	試料導入後の真空の回復は早い。 ²⁴ MgはCやOとピークが一致するため分離不可能。このため ²⁶ Mg ³⁺ で最適化する。 オーブン0.3WからMgのピークが現れる。 必要温度が低いため、オーブン電力はわずかで十分である。またオーブン電力はゆ っくり上昇させないと急激にビーム電流及び引出し電流が増えてしまい放電する。 イオン化は容易でありビーム電流も非常に安定している。ただしRFを上げても5価 以上の多価イオンは出ない。 るつぼの汚れは比較的多く全体的に濃い灰色に変色する。また、Mgの供給過剰とな りやすくチェンバーを汚しMgのピークが残留する。 試料の溶融や流出は無い。
	$^{24}Mg^{4+} + C^{2+}$
OVEN	1.72 W $\frac{1}{2^{24}Mg^{2+} + C^{+}}$
O.1μA	

4.1.2 Alイオン

イオン種	Al
試料形状	単線 φ1.0 純度 99.9%
同位体比	²⁷ Al 100%
物性値	融点:660 ℃ 沸点:2520 ℃ <i>T</i> _v :1097 ℃
運転条件	EXT: 20 kV、- mA FOC: 10.0 kV Bias: -1000 V 真空度 2.0×10 ⁻³ Pa オーブン電力: 11.4 W(~1000℃) RF 電力: 7.5 W
ビーム電流	$Al^{3+}: 0.8 e\mu A$, $Al^{4+}: 1.0 e\mu A$
コメント	試料導入後の真空度は速やかに回復する。 Al ²⁺ 、Al ⁵⁺ 、Al ⁶⁺ は残留気体のバックグラウンドに隠れて判別不能。 オーブン電力4.0 W(~650℃)投入した時点で Al ³⁺ 20 enA を確認。その後オーブ ン電力に比例して電流値は上昇し、オーブン11.4 W で Al ³⁺ 0.8 eµA。17W 投入時点 で Al ³⁺ は一時2.5 eµA まで増える。その後、ビーム電流は急激に減少し、オーブン電 流も不安定となる。原因は、溶融した Al がるつぼからヒーター部に流れ込みショー トキサケため
「好景スペクト」	AIは俗簡時の痛れが良く、るうはのかやく加山してすい。
貝里ハット	
	DVEN 11.4 W \downarrow $1\mu A$ \downarrow $1\mu A$ \downarrow $1\mu A$ \downarrow 1μ \downarrow 1μ μ \downarrow 1μ \downarrow 1μ μ μ μ μ μ μ μ
	DVEN 8.9 W

4.1.3 Caイオン

4.1.4 Mnイオン

試料形状 粉末 純度 99.9% 同位体比 ⁵⁵ Mn 100% 物性値 融点: 1246 ℃ 沸点: 2062 ℃ T,: 867 ℃ 運転条件 真空度 1.9×10 ³ Pa オーブン電力: 10.8 W (~1000℃) RF 電力: 7.5 W ビーム電流 Mn ⁵⁺ : 6.2 eµA、 Mn ⁷⁺ : 3.3 eµA 試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着 た酸素や水分の影響により、再び真空が悪化する。この状態では 0、OH、H ₂ O の1 ークが非常に多く引出し電流が 5mA を超える。このため、実験開始まで 6 時間程J コメント RF コンディショニングが必要。また、オーブン投入直後も多量のアウトガスがでる7 め注意を要する。 オーブン電力 3.3W 程度投入した時点で Mn ⁵⁺ のビークを確認。その後オーブン電力 此内し Mn ⁵⁺ の電流値は上昇するが、約 10W (~1000℃) 以上でほぼ平衡となる。2 電流のビームを安定して生成可能。 質量スペクトル 	イオン種	Mn
同位体比 ⁵⁵ Mn 100% 物性値 融点: 1246 °C 沸点: 2062 °C <i>T</i> , : 867 °C 運転染件 真空度 1.9×10 ³ Pa FOC : 10.2 kV Bias : -1000 V 運転染件 真空度 1.9×10 ³ Pa オーブン電力: 10.8 W (~1000°C) RF 電力: 7.5 W ビーム電流 Mn ⁵⁺ : 6.2 εµA, Mn ⁷⁺ : 3.3 εµA	試料形状	粉末 純度 99.9%
物性値 融点: 1246 ℃ 沸点: 2062 ℃ T _v : 867 ℃ 運転条件 EXT: 20 kV, 0.51 mA FOC: 10.2 kV Bias: -1000 V 運転条件 真空度 1.9×10 ³ Pa オープン電力: 10.8 W (~1000℃) RF 電力: 7.5 W ビーム電流 Mn ^{5*} : 6.2 cp4, Mn ^{7*} : 3.3 cp4 試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着た酸素や水分の影響により、再び真空が悪化する。この状態では O、OH, H ₂ O の) ークが非常に多く引出し電流が SmA を超える。このため、実験開始まで 6 時間程 RF コンディショニングが必要。また、オープン投入直後も多量のアウトガスがでるかめ注意を要する。 オープン電力 3.3W 程度投入した時点で Mn ⁵⁺ のビークを確認。その後オープン電力1 比例し Mn ⁵⁺ の電流値は上昇するが、約 10W (~1000℃) 以上でほぼ平衡となる。コ電流のビームを安定して生成可能。 質量スペクトル グVEN 10.8W 1µA	同位体比	⁵⁵ Mn 100%
運転条件 EXT: 20 kV、 0.51 mA FOC: 10.2 kV Bias: -1000 V 運転条件 真空度 1.9×10 ³ Pa オーブン電力: 10.8 W (~1000°C) RF 電力: 7.5 W ビーム電流 Mn ^{5*} : 6.2 cµA、 Mn ^{7*} : 3.3 cµA 試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着た酸素や水分の影響により、再び真空が悪化する。この状態では O、OH, H ₂ O の) ークが非常に多く引出し電流が SmA を超える。このため、実験開始まで 6 時間程 RF コンディショニングが必要。また、オーブン投入直後も多量のアウトガスがでるかめ注意を要する。 オーブン電力 3.3W 程度投入した時点で Mn ⁵⁺ のビークを確認。その後オーブン電力は比例し Mn ⁵⁺ の電流値は上昇するが、約 10W (~1000°C) 以上でほぼ平衡となる。コ電流のビームを安定して生成可能。 質量スペクトル グVEN 10.8W 1µA	物性値	融点:1246 ℃ 沸点:2062 ℃ <i>T</i> v :867 ℃
ビーム電流 Mn ⁵⁺ : 6.2 εμA、Mn ⁷⁺ : 3.3 εμA 試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着た酸素や水分の影響により、再び真空が悪化する。この状態では O、OH、H ₂ O のロークが非常に多く引出し電流が 5mA を超える。このため、実験開始まで 6 時間程J コメント RF コンディショニングが必要。また、オープン投入直後も多量のアウトガスがでるかめ注意を要する。 オープン電力 3.3W 程度投入した時点で Mn ⁵⁺ のピークを確認。その後オープン電力は低い上昇するが、約 10W (~1000°C) 以上でほぼ平衡となる。つ電流のビームを安定して生成可能。 質量スペクトル グVEN 10.8W ・1μA	運転条件	EXT: 20 kV、0.51 mA FOC: 10.2 kV Bias: -1000 V 真空度 1.9×10 ⁻³ Pa オーブン電力: 10.8 W(~1000℃) RF 電力: 7.5 W
コメント 試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着 た酸素や水分の影響により、再び真空が悪化する。この状態では O、OH、H₂O の) ークが非常に多く引出し電流が SmA を超える。このため、実験開始まで 6 時間程J RF コンディショニングが必要。また、オーブン投入直後も多量のアウトガスがでるか め注意を要する。 オーブン電力 3.3W 程度投入した時点で Mn ^{5*} のピークを確認。その後オーブン電力 比例し Mn ⁵⁺ の電流値は上昇するが、約 10W(~1000℃)以上でほぼ平衡となる。つ 電流のビームを安定して生成可能。 質量スペクトル	ビーム電流	Mn^{5+} : 6.2 eµA, Mn^{7+} : 3.3 eµA
質量スペクトル Mn ^{5†} OVEN 10.8W ↓ 1µA	コメント	試料導入後の真空の回復は遅い。真空が回復した後も RF を印加すると試料に吸着した酸素や水分の影響により、再び真空が悪化する。この状態では O、OH、H ₂ O のピークが非常に多く引出し電流が 5mA を超える。このため、実験開始まで 6 時間程度 RF コンディショニングが必要。また、オーブン投入直後も多量のアウトガスがでるため注意を要する。 オーブン電力 3.3W 程度投入した時点で Mn ⁵⁺ のピークを確認。その後オーブン電力に比例し Mn ⁵⁺ の電流値は上昇するが、約 10W (~1000℃) 以上でほぼ平衡となる。大電流のビームを安定して生成可能。
OVEN 10.8W $1\mu A$ Mn^{5+} Mn^{7+} Mn^{7+} Mn^{3+} Mn^{3	質量スペクトノ	
OVEN 8.8W	0	VEN 10.8W 1μA VEN 8.8W VEN 8.8W

4.1.5 Feイオン

4.1.6 Niイオン

イオン種	Ni	
試料形状	Ni 単線 φ1.0mm 純度 99%	
同位体比	58 Ni : 68.3% 60 Ni : 26.1% 62 Ni : 3.6%	
物性値	融点: 1455 ℃ 沸点: 2890 ℃ <i>T</i> _v : 1387 ℃	
	EXT: 20 kV, 2.5 mA FOC: 9.7kV Bias: -1000 V	
運転条件	真空度 8.8×10 ⁻³ Pa	
	オーブン電力:51.3 W(~1650℃) RF 電力:22.0 W	
ビーム電流	⁵⁸ Ni ⁶⁺ : 1.1 eµA 58 Ni ⁷⁺ : 1.0 eµA	
	試料導入後の真空の回復は早い。しかし、オーブン投入後の真空は悪化し回復	
	しない。オーブン 32 W で Ni のピークが現れる。その後、オーブン電力の増加	
	に比例しNiビーム電流は増えるがオーブンの使用限界(1650℃)に達する。	
コメント	ビーム電流は非常に安定している。	
	オーブン電力 45.4 W 時に見える Cu のピークは前回実験で使用した Cu 試料の	
	蒸発残存物である。時間の経過とオーブン電力の上昇に伴い小さくなり最終的	
	に消滅した。	
質量スペクトル		
50Ni/T		
⁵⁸ Ni ⁵⁺		
. 58 _{Ni} 6+		
OVEN 51.3W		
* ma halalala want of VVan		
OVEN 45.4W		
I I 14A M MALLAN WWWWW W Manne Manne		
C^{7+} C^{6} C^{5+}		
Cu'' Cu' Cu''		

4.1.7 Cuイオン

イオン種	Cu
試料形状	Cu 単線 φ1.0mm 純度 99.9%
同位体比	⁶³ Cu : 69.2% ⁶⁵ Cu : 30.8%
物性値	融点: 1084 ℃ 沸点: 2571 ℃ <i>T</i> _v : 1127 ℃
	EXT: 20 kV, 1.53 mA FOC: 11.9 kV Bias: -1000 V
連転余件	具空度 $2.0 \times 10^{\circ}$ Pa
	オーフン電力: 19.4 W (~1200°C) RF 電力: 18.5 W
ビーム電流	$\sim Cu^{\circ}$: 4.2 epA, $\sim Cu^{\circ}$: 0.2 epA,
	試料導人後の真空の回復は早い。オーブン温度 350 ℃付近で一時的に真空が悪化する
	が、速やかに回復する。
コメント	オーブン9WでCuのピークが現れる。その後、オーブン電力の増加に比例しCuビ
	ーム電流は増えるが20W以上でほぼ平衡となる。
	大電流のビームを安定して得ることが可能。
	Cu試料は溶融するも流出せずにるつぼの底に溜まる。
質量スペクトル	
	_ 74
	Cu ⁶⁺
	Cu^{10+} \vee $/$ $(10+)$ $(2-)$ $(5-)$
	\bigvee
OVEN	
OVE	N 16.5 W
· ‡ 1	$\mu \Delta \qquad $

4.1.8 Znイオン

イオン種	Zn
試料形状	Zn 単線 φ1.0mm 純度 99.9%
同位体比	64 Zn: 48.6% 66 Zn : 27.9% 68 Zn : 18.8%
物性值	融点: 420 ℃ 沸点: 907 ℃ T _v : 293 ℃
	EXT: 20 kV, 1.89 mA FOC: 10.1 kV Bias: -1000 V
運転条件	真空度 9.7×10 ⁻³ Pa
	オーブン電力:0.8 W(~200°C) RF 電力:19.9 W
ビーム電流	64 Zn ⁶⁺ : 5.5 eµA, 64 Zn ⁸⁺ : 3.0 eµA,
	試料導入後の真空の回復は遅い。
	オーブン電力投入前では Zn のピークは全く観察されないが、オーブンを投入すると
	真空度が急激に悪化するとともに Zn のピークが現れる。
コメント	オーブン電力は非常にわずかで十分なビーム強度を安定して得られる。試料による汚
	れは多く、蒸発した Zn がチェンバーやバイアスチューブに付着し、試料交換後も Zn
	のピークが残る。 Zn の蒸気は極わずかなオーブン電力で得られるため、Zn が供給過
	多にならないよう注意が必要である。
質量スペクトル	
	7.8+
	$ Zn Zn^{7+}$
	Zn^{6+}
	Zn^{5+} $6^{4}Zn^{2+}$
	66 ₇₇ 2+
	$1 \qquad 1 \qquad$
•	
	Zn^{4+}
↑ 1µA	
·	

4.1.9 Geイオン

イオン種	Ge
試料形状	Ge 粉末 純度 99.9%
同位体比	70 Ge : 20.5% 72 Ge : 27.4% 73 Ge : 7.7% 74 Ge : 36.5%
物性値	融点: 937 ℃ 沸点: 2834 ℃ <i>T</i> v : 1247 ℃
運転条件	EXT: 20 kV、1.24 mA FOC: 11.1 kV Bias: -1000 V 真空度 2.4×10 ⁻³ Pa オーブン電力: 4.9W(~700°C) RF 電力: 17.2 W
ビーム電流	$^{74}\text{Ge}^{8+}$: 2.0 eµA, $^{74}\text{Ge}^{7+}$: 2.5 eµA,
コメント	試料導入後の真空の回復は非常に悪い。オーブン投入でさらに悪化するものの、時間の経過と共に徐々に回復する。 オーブン電力4.9WでGeのピークが現れる。予想されるオーブン電力20Wよりもかなり低い。その後、オーブン電力を上げるとビームは減り、約20W以上でビームの減少は止まる。 試料の一部が自然に酸化しGeOを形成し、これが昇華したため予想より低温でGeのピークが観察されたと思われる。GeOは蒸気圧が高い物質であり、約600℃以下で蒸気圧10 ⁻¹ Paを示す。オーブン20W以上では試料のGeが直接蒸発していると考えられる。
	Geビームを得るには単体GeよりもGeUの方か週当である。
	$Ge^{8^+}Ge^{7^+}Ge^{6^+}+G^{1+}$

4.1.10 Srイオン

4.1.11 Agイオン

4.1.12 Inイオン

イオン種	In
試料形状	In 単線
同位体比	113 In : 4.3% 115 In : 95.7%
物性値	融点: 157 ℃ 沸点: 2072 ℃ <i>T</i> v : 832 ℃
運転条件	EXT: 20 kV、1.85 mA FOC: - kV Bias: -1000 V 真空度 8.3×10 ⁻³ Pa オーブン電力: 8.5 W (~850°C) RF 電力: 31.0 W
ビーム電流	$In^{10+}: 1.8 e \mu A$, $In^{13+}: 0.3 e \mu A$,
コメント	試料導入後の真空の回復は早い。 オーブン 6.7 W 付近より In のピークが現れる。ビーム電流はオーブン電力に比例し て増えるが、11 W 以上では溶融した In がヒーター部に侵入し、オーブン電流が不 安定となる。その結果ビーム電流も大きく変動する。 大電流を安定に得るのは難しい。
質量スペクトル	<u>.</u>
1μΑ	

4.1.13 Snイオン

イオン種	Sn				
試料形状	Sn 単線 φ 1.0 mm 純度 99.9%				
同位体比	¹¹⁶ Sn : 14.5% ¹¹⁸ Sn : 24.2% ¹¹⁹ Sn : 8.6% ¹²⁰ Sn : 32.6%				
物性值	融点: 232 ℃ 沸点: 2603 ℃ <i>T</i> _v : 1107 ℃				
運転条件	EXT: 20 kV、1.85 mA FOC: 10.5 kV Bias: -1000 V 真空度 2.9×10 ⁻³ Pa オーブン電力: 26 9 W (~1350°C) RF 電力: 21 7 W				
ビーム雷流	$Sn^{12+} \cdot 01 \text{ and} Sn^{6+} \cdot 04 \text{ end}$				
	オーブン電力 13 W で Sn のピークが現れる				
	オーブン電力 20 W 以上でけ Sn のビーム電流けほぼ的和する				
	スープン电力20 W 以上では Sh の ビーン电池はははにつけ 3 。 Sn の 指称 ある 同位 休 を 分離 できかいため ビーク 幅け 極め て 庁 い				
コメント	Show 後数のの同世体を力離くさないため、ビーン幅は極めて広い。 家語した S_n けるつぼの失端に溜まり 一部けるつぼ内部上りキャップリを伝って				
	福祉した Sin なる うなのうし端に備より、 印はる うなり 印よりイイ シノ れを広う (流出) キャップ表面に一样に付差する トーター部への流出け無いため オーブ				
	い電流が不安定にたることけ無いがビーム電流け大きく変動する				
	「大雷流のビームを安定に得ることけ難しい				
督量スペクトル					
g 1 /~ / ///					
OVEN 26.9W ↓ 1μΑ	Sn^{11+} Sn^{6+} Sn^{5+} M				
OVEN 18.5W					
μA	_ Laulall MUUL				

4.1.14 Auイオン

イオン種	Au			
試料形状	Au 単線 φ1.0 mm 純度 99.9%			
同位体比	¹⁹⁷ Au : 100%			
物性值	融点: 1064 ℃ 沸点: 2857 ℃ <i>T</i> _v : 1272 ℃			
運転条件	EXT: 20 kV、- mA FOC: 9.9 kV Bias: -1000 V 真空度 2.8×10 ⁻³ Pa オーブン電力: 36.0W(~1500℃) RF 電力: 15.7 W			
ビーム電流	$Au^{9+}: 3.6 e\mu A$, $Au^{11+}: 1.5 e\mu A$,			
コメント	試料導入後の真空の回復は早い。 オーブン電力の増加に伴う真空度の悪化はほとんど無く、安定している。 オーブン電力 8.5 W で Au のピークが現れる。26 W でほぼ平衡となる。 溶融した Au はるつぼの外へ流れ出すことなくるつぼの先端に集中する。試料に よる汚れはほとんど無い。 大電流のビームを安定に得ることができる。			
質量スペクトル				
OVEN 36W ↓ 1μΑ OVEN 27.5W ↓ 1μΑ				

4.1.15 Pbイオン

イオン種	Pb						
試料形状	Pb 単線						
同位体比	²⁰⁶ Pb : 24.1% ²⁰⁷ Pb : 22.1% ²⁰⁸ Pb : 52.4%						
物性值	融点: 327 ℃ 沸点:1750 ℃ <i>T</i> _v : 627 ℃						
	EXT: 20 kV, 0.42 mA FOC: 10.2 kV Bias: -1000 V						
運転条件	真空度 1.6×10 ⁻³ Pa						
	オーブン電力: 4.8 W (700°C) RF 電力: 20.0 W						
ビーム電流	Pb¹¹⁺ : 1.7 eµA Pb ¹⁶⁺ : 0.6 eµA Pb ⁸⁺ : 3.1 eµA						
	試料導入後の真空の回復は早い。オーブン出力を上げても真空の悪化はほとんど無						
	い。また、引出し電流も少なく安定である。						
コメント	Pbの同位体は全く質量分離できない。						
	溶融した Pb はるつぼの底に溜まる。オーブン及びるつぼの汚れは少ない。						
「「「「」」の「」」の「「」」の「」では、「」の「」では、「」の「」では、「」の「」のでは、「」の「」のでは、「」の「」のでは、「」の「」のでは、「」の「」のでは、「」の「」のでは、「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「							
	Pb ¹¹⁺						
	Pb^{16+} Pb^{10+}						
OVEN 4 8W	$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $						
1μA							
. .							

4.1.16 Biイオン

イオン種	Bi
試料形状	Bi 単線 φ1.0 mm 純度 99.9%
同位体比	²⁰⁹ Bi : 100%
物性値	融点: 271 ℃ 沸点:1561 ℃ <i>T</i> v : 595 ℃
	EXT : 20 kV, - mA FOC : 10.2 kV Bias : -281 V
運転条件	真空度 2.3×10 ⁻³ Pa
	オーブン電力:4.5W(650°C) RF 電力:15.5W
ビーム電流	Bi ¹⁰⁺ : 2.5 $e\mu$ A Bi ⁸⁺ : 4.2 $e\mu$ A
	試料導入後の真空の回復は早い。
	オーブン電力 1.8W で Bi のピークが現れる。
コメント	るつぼ内より溶融した Bi がキャップの隙間からヒーター側へ流れ込む。このため
	オーブン電流が不安定になりやすい。
哲量スペクトル	
	n:11+
OVEN 4.5W	
μ Α	
OVEN 1.8W	
1μΑ	

4.2 結果と考察

開発したオーブンを用いて 16 種類の金属のイオンを生成することができた。図 13 に得られた金属 イオンの価数毎の電流量を示す。核種の存在比によるビーム強度への影響を排除するため、ビーム電 流は各核種の存在比に対して規格化している。(例: $^{107}Ag^{8+}$ の場合、見かけの電流値は 6.8µA であるの で規格化した電流値はこれを ^{107}Ag の存在比 51.8%で除した 13.1µA となる)なお、質量分離が不可能 であった Sn や Pb の電流値は規格化していない。

ほぼすべての単体試料において、leµA オーダーのビームを得るのにるつぼ温度を *T*_vと同程度まで 上げる必要があることがわかった。これは参考文献 2) に示された内容と一致する。例として図 14 に Mg、In、Cu に対する規格化したイオン電流と蒸気圧の関係を示す。温度はオーブン電力をもとに図 10 より換算したものである。Mg の場合、蒸気圧曲線に対してより低い温度でビーム電流が増加して いる。るつぼはオーブン電力以外にもプラズマにより常に加熱される。このため、*T*_vが低い Mg では プラズマによる加熱の影響が顕著になり、見かけ上少ないオーブン電力で必要な温度 *T*_vに達するため だと考えられる。

金属単体を試料として用いた場合、イオン生成の安定性よりおおよそ3種類のグループに分類する ことができる。

Iグループ (Zn、Mg)

*T*_vが融点よりも低い金属はわずかなオーブン電力で大強度のイオンビームを安定に得ることができる。しかし、低温領域ではオーブンの温度勾配が急峻であり、またプラズマによる熱がオーブン本体にも加わるため詳細な温度制御が難しい。このため金属蒸気の供給過剰な状態となりやすく、試料交換後もチェンバー内部やオーブンに付着した金属の再蒸発によってマスピークが残留する。残留したピークは長時間 RF コンディショニングとオーブンの空焚きを続けることにより消すことができる。

IIグループ (Cu、Ag、Au、Fe、Ni、Mn、)

*T*_v と融点が同程度の金属も大強度のビームを安定に得ることが可能である。これらの金属は *T*_v が 1000℃以上にあるものが多く、オーブンの温度制御が容易であるため、出力調整がしやすい。また、 融点以上に加熱しても溶融した試料がるつぼ外へ流出することは無い。

Ⅲグループ (Sn、Al、In、)

これらの*T*_vが融点よりも著しく高い元素はイオンを生成することが可能であっても、溶融した金属 がヒーター部等に流出しヒーターをショートさせてしまう現象が頻発する。これにより金属イオンは 全く生成しなくなったり、ビーム電流が著しく不安定になったりする。これらの元素のイオンを安定 に得るには蒸気圧が高い化合物試料を用いるか、るつぼの形状を変えて溶けた試料が容易に流れ出さ ないような工夫が必要である。

単体試料が得にくいものや、T_vが非常に高い金属に対して化合物を用いる方法は有効である。特に SrSi₂のように一方の元素が優先的に蒸発する物質⁸⁾は不必要なマスピークが発生しないため、価数選 択の幅を広げることができる。また、金属酸化物は目的の金属以外に酸素のピークを伴うが、酸素は 残留気体として常に存在するため、余分なマスピークを発生させない試料として適当である。

図13 各金属元素のイオン電流と価数分布

5.まとめ

タンデム加速器ターミナルイオン源から金属イオンの生成を可能にするため、オーブン法による金 属イオン生成を試みた。

開発したオーブンの到達温度は1650℃に達し、設計温度を十分に満足する性能であった。また、バ イアスチューブによるシールド効果により最高温度で使用してもイオン源の永久磁石に対して十分に 安全であることが確認できた。

このオーブンとテスト用 ECR イオン源を用いて金属イオンの生成試験を行い、16 種類の金属イオンを生成することができた。イオンビームの安定度や強度は金属の種類に大きく依存し、*T*_vが融点付近、もしくは融点よりも低い金属は大強度のイオンビームを安定に得られた。一方で、*T*_vが融点よりも著しく高い場合はイオンを生成することが可能であっても、溶融した金属がヒーター部等に流出しビーム電流が不安定になることがわかった。

これらの結果より、オーブン法によるターミナルイオン源での金属イオンの生成は十分可能である ことが確認できた。今後、実際にターミナルイオン源に搭載するためには、長時間にわたるビームの 安定性の検証や SF₆ガスに対する耐圧性能の確認及び耐圧電源、制御機器の開発が必要である。

参考文献

- M.atsuda, T.Asozu, T.Nakanoya, K.Kutsukake, S.Hanashima and S.Takiuchi J.Physi. Conference Series 163, 012112 (2009)
- 2) C.Barue, J.Bossler, S.Schennach, H.Schulte, and B.H.Wolf, Rev. Sci. Instrum. 67, p.1368 (1996)
- 3) 平尾泰男他 "加速器工学ハンドブック" 日本原子力産業会議 (2000)
- 4) PANTECHNIK 社 "THE PANTECHNIK CATALOGUE" (2004)
- 5) アルバック編 "真空ハンドブック" オーム社 (2002)
- 6) 国立天文台編 "理科年表 2002"
- 7) R.Geller "Electron cyclotron resonance ion sources and ECR plasmas" Institute of physics publishing
- 8) G.Balducci, S.Brutti, A.Ciccioli, G.Gigli, G.Trionfetti, A.Palenzona, M.Pani, Intermetallics 14, p.578 (2006)

This is a blank page.

表 1. SI 基本単位					
甘大昌	SI 基本単位				
巫平里	名称	記号			
長さ	メートル	m			
質 量	キログラム	kg			
時 間	秒	s			
電 流	アンペア	А			
熱力学温度	ケルビン	Κ			
物質量	モル	mol			
光度	カンデラ	cd			

表2. 基本単位を用いて表されるSI組立単位の例					
ar the SI 表	基本単位				
和立重 名称	記号				
面 積 平方メートル	m ²				
体 積 立法メートル	m ³				
速 さ , 速 度 メートル毎秒	m/s				
加速 度メートル毎秒毎	秒 m/s ²				
波 数 毎メートル	m ⁻¹				
密度,質量密度キログラム毎立方	メートル kg/m ³				
面 積 密 度キログラム毎平方	メートル kg/m ²				
比体積 立方メートル毎キ	ログラム m ³ /kg				
電 流 密 度 アンペア毎平方	メートル A/m^2				
磁界の強さアンペア毎メー	トル A/m				
量濃度(a),濃度モル毎立方メー	トル mol/m ³				
質量濃度 キログラム毎立法	メートル kg/m ³				
輝 度 カンデラ毎平方	メートル cd/m^2				
屈 折 率 ^(b) (数字の) 1	1				
比 透 磁 率 (b) (数字の) 1	1				

(a) 量濃度(amount concentration)は臨床化学の分野では物質濃度(substance concentration)ともよばれる。
 (b) これらは無次元量あるいは次元1をもつ量であるが、そのことを表す単位記号である数字の1は通常は表記しない。

表3. 固有の名称と記号で表されるSI組立単位

	SI 組立単位			
組立量	名称	記号	他のSI単位による 表し方	SI基本単位による 表し方
平 面 隹	ラジアン ^(b)	rad	1 ^(b)	m/m
· 体 催	ステラジア、(b)	er ^(c)	1 (b)	m^{2/m^2}
周 波 数	ヘルツ ^(d)	Hz	1	s ¹
力 力	ニュートン	N		m kg s ⁻²
压力, 応力	パスカル	Pa	N/m ²	m ⁻¹ kg s ⁻²
エネルギー、仕事,熱量	ジュール	J	N m	$m^2 kg s^2$
仕事率,工率,放射束	ワット	w	J/s	$m^2 kg s^{-3}$
電荷,電気量	クーロン	С		s A
電位差(電圧),起電力	ボルト	V	W/A	$m^2 kg s^{-3} A^{-1}$
静電容量	ファラド	F	C/V	$m^{-2} kg^{-1} s^4 A^2$
電気抵抗	オーム	Ω	V/A	$m^2 kg s^{-3} A^{-2}$
コンダクタンス	ジーメンス	s	A/V	$m^{-2} kg^{-1} s^3 A^2$
磁東	ウエーバ	Wb	Vs	$m^2 kg s^{-2} A^{-1}$
磁束密度	テスラ	Т	Wb/m ²	$kg s^{2} A^{1}$
インダクタンス	ヘンリー	Н	Wb/A	$m^2 kg s^2 A^2$
セルシウス温度	セルシウス度 ^(e)	°C		K
光東	ルーメン	lm	cd sr ^(c)	cd
照度	ルクス	lx	lm/m^2	m ⁻² cd
放射性核種の放射能 ^(f)	ベクレル ^(d)	Bq		s ⁻¹
吸収線量,比エネルギー分与,	グレイ	Gv	J/kg	m ² s ⁻²
カーマ Oy on Ag III S				
線量当量,周辺線量当量,方向	SUNCE (g)	Sv	J/kg	m ² a ⁻²
性線量当量,個人線量当量			orkg	III 8
酸素活性	カタール	kat		s ⁻¹ mol

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや

(a)SI接頭語は固有の名称と記号を持つ組立単位と組み合わせても使用できる。しかし接頭語を付した単位はもはや コヒーレントではない。
 (b)ラジアンとステラジアンは数字の1に対する単位の特別な名称で、量についての情報をつたえるために使われる。 実際には、使用する時には記号rad及びsrが用いられるが、習慣として組立単位としての記号である数字の1は明示されない。
 (c)測光学ではステラジアンという名称と記号srを単位の表し方の中に、そのまま維持している。
 (d)ヘルツは周期現象についてのみ、ベクレルは放射性抜種の統計的過程についてのみ使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス温度を表すために使用される。
 (e)セルシウス度はケルビンの特別な名称で、セルシウス温度で表すために使用される。
 (f)数単位を種の大きさは同一である。したがって、温度差や温度問隔を表す数値はとちらの単位で表しても同じである。
 (f)数単性核種の放射能(activity referred to a radionuclide)は、しばしば誤った用語で"radioactivity"と記される。
 (g)単位シーベルト(PV,2002,70,205)についてはCIPM勧告2(CI-2002)を参照。

表4.単位の中に固有の名称と記号を含むSI組立単位の例

	SI 組立単位		
組立量	名称	記号	SI 基本単位による 表し方
粘质	パスカル秒	Pa s	m ⁻¹ kg s ⁻¹
カのモーメント	ニュートンメートル	N m	$m^2 kg s^2$
表 面 張 九	ニュートン毎メートル	N/m	kg s ⁻²
角 速 度	ラジアン毎秒	rad/s	m m ⁻¹ s ⁻¹ =s ⁻¹
角 加 速 度	ラジアン毎秒毎秒	rad/s^2	$m m^{-1} s^{-2} = s^{-2}$
熱流密度,放射照度	ワット毎平方メートル	W/m^2	kg s ⁻³
熱容量、エントロピー	ジュール毎ケルビン	J/K	$m^2 kg s^{2} K^{1}$
比熱容量, 比エントロピー	ジュール毎キログラム毎ケルビン	J/(kg K)	$m^2 s^{-2} K^{-1}$
比エネルギー	ジュール毎キログラム	J/kg	$m^{2} s^{-2}$
熱伝導率	ワット毎メートル毎ケルビン	W/(m K)	m kg s ⁻³ K ⁻¹
体積エネルギー	ジュール毎立方メートル	J/m ³	m ⁻¹ kg s ⁻²
電界の強さ	ボルト毎メートル	V/m	m kg s ⁻³ A ⁻¹
電 荷 密 度	クーロン毎立方メートル	C/m ³	m ⁻³ sA
表 面 電 荷	クーロン毎平方メートル	C/m ²	m ⁻² sA
電 束 密 度 , 電 気 変 位	クーロン毎平方メートル	C/m^2	m ⁻² sA
誘 電 卒	ファラド毎メートル	F/m	$m^{-3} kg^{-1} s^4 A^2$
透 磁 率	ヘンリー毎メートル	H/m	m kg s ⁻² A ⁻²
モルエネルギー	ジュール毎モル	J/mol	$m^2 kg s^2 mol^1$
モルエントロピー,モル熱容量	ジュール毎モル毎ケルビン	J/(mol K)	$m^{2} kg s^{2} K^{1} mol^{1}$
照射線量(X線及びγ線)	クーロン毎キログラム	C/kg	kg ⁻¹ sA
吸収線量率	グレイ毎秒	Gy/s	$m^{2} s^{-3}$
放射 強度	ワット毎ステラジアン	W/sr	$m^4 m^{-2} kg s^{-3} = m^2 kg s^{-3}$
放射輝 度	ワット毎平方メートル毎ステラジアン	$W/(m^2 sr)$	m ² m ⁻² kg s ⁻³ =kg s ⁻³
酵素活性濃度	カタール毎立方メートル	kat/m ³	m ⁻³ s ⁻¹ mol

表 5. SI 接頭語					
乗数	接頭語	記号	乗数	接頭語	記号
10^{24}	э 9	Y	10^{-1}	デシ	d
10^{21}	ゼタ	Z	10^{-2}	センチ	с
10^{18}	エクサ	Е	10^{-3}	ミリ	m
10^{15}	ペタ	Р	10^{-6}	マイクロ	μ
10^{12}	テラ	Т	10^{-9}	ナーノ	n
10^{9}	ギガ	G	10^{-12}	ピョ	р
10^{6}	メガ	М	10^{-15}	フェムト	f
10^{3}	キロ	k	10^{-18}	アト	а
10^{2}	ヘクト	h	10^{-21}	ゼプト	z
10^{1}	デ カ	da	10^{-24}	ヨクト	У

表6.SIに属さないが、SIと併用される単位					
名称	記号	SI 単位による値			
分	min	1 min=60s			
時	h	1h =60 min=3600 s			
日	d	1 d=24 h=86 400 s			
度	۰	1°=(п/180) rad			
分	,	1'=(1/60)°=(п/10800) rad			
秒	"	1"=(1/60)'=(п/648000) rad			
ヘクタール	ha	1ha=1hm ² =10 ⁴ m ²			
リットル	L, 1	1L=11=1dm ³ =10 ³ cm ³ =10 ⁻³ m ³			
トン	t	$1t=10^3$ kg			

_

表7.	SIに属さないが、	SIと併用される単位で、	SI単位で
	まとわて粉は	ぶ 中 瞬時 ほう や て そ の	

衣される剱旭が夫缺的に待られるもの						
名称	記号	SI 単位で表される数値				
電子ボルト	eV	1eV=1.602 176 53(14)×10 ⁻¹⁹ J				
ダルトン	Da	1Da=1.660 538 86(28)×10 ⁻²⁷ kg				
統一原子質量単位	u	1u=1 Da				
天 文 単 位	ua	1ua=1.495 978 706 91(6)×10 ¹¹ m				

表8.SIに属さないが、SIと併用されるその他の単位							
	名称		記号	SI 単位で表される数値			
バ	1	ル	bar	1 bar=0.1MPa=100kPa=10 ⁵ Pa			
水銀	柱ミリメー	トル	mmHg	1mmHg=133.322Pa			
オン	グストロー	- 4	Å	1 Å=0.1nm=100pm=10 ⁻¹⁰ m			
海		里	М	1 M=1852m			
バ	-	\sim	b	1 b=100fm ² =(10 ⁻¹² cm)2=10 ⁻²⁸ m ²			
1	ッ	ŀ	kn	1 kn=(1852/3600)m/s			
ネ	-	パ	Np				
ベ		N	В	▶ 51 単位との 叙 値的 な 阕徐 は 、 対 数 量の 定 義 に 依 存.			
デ	ジベ	N	dB -				

表9. 固有の名称をもつCGS組立単位					
名称	記号	SI 単位で表される数値			
エルグ	erg	1 erg=10 ⁻⁷ J			
ダイン	dyn	1 dyn=10 ⁻⁵ N			
ポアズ	Р	1 P=1 dyn s cm ⁻² =0.1Pa s			
ストークス	St	$1 \text{ St} = 1 \text{ cm}^2 \text{ s}^{\cdot 1} = 10^{\cdot 4} \text{m}^2 \text{ s}^{\cdot 1}$			
スチルブ	$^{\mathrm{sb}}$	1 sb =1cd cm ⁻² =10 ⁴ cd m ⁻²			
フォト	ph	1 ph=1cd sr cm ⁻² 10 ⁴ lx			
ガル	Gal	$1 \text{ Gal} = 1 \text{ cm s}^{\cdot 2} = 10^{\cdot 2} \text{ ms}^{\cdot 2}$			
マクスウェル	Mx	$1 \text{ Mx} = 1 \text{ G cm}^2 = 10^{-8} \text{Wb}$			
ガウス	G	$1 \text{ G} = 1 \text{Mx cm}^{2} = 10^{4} \text{T}$			
エルステッド ^(c)	Oe	1 Oe ≙ (10 ³ /4π)A m ⁻¹			

(c) 3元系のCGS単位系とSIでは直接比較できないため、等号「 ▲ 」 は対応関係を示すものである。

表10. SIに属さないその他の単位の例						
	3	名利	尓		記号	SI 単位で表される数値
キ	ユ		IJ	ĺ	Ci	1 Ci=3.7×10 ¹⁰ Bq
$\scriptstyle u$	\sim	ŀ	ゲ	\sim	R	$1 \text{ R} = 2.58 \times 10^{-4} \text{C/kg}$
ラ				ド	rad	1 rad=1cGy=10 ⁻² Gy
$\scriptstyle u$				ム	rem	1 rem=1 cSv=10 ⁻² Sv
ガ		$\boldsymbol{\mathcal{V}}$		7	γ	1 γ =1 nT=10-9T
フ	I		N	11		1フェルミ=1 fm=10-15m
メー	- トル	系	カラゞ	ット		1メートル系カラット = 200 mg = 2×10-4kg
ŀ				ル	Torr	1 Torr = (101 325/760) Pa
標	準	大	気	圧	atm	1 atm = 101 325 Pa
力			IJ	ļ	cal	1cal=4.1858J(「15℃」カロリー), 4.1868J (「IT」カロリー)4.184J(「熱化学」カロリー)
Ξ	ク			ン	μ	$1 \mu = 1 \mu m = 10^{-6} m$

この印刷物は再生紙を使用しています