高温工学試験研究炉（HTTR）の
使用済広領域中性子検出器の動作不能調査
—原因調査及び輸送作業—
Investigation on Cause of Outage of Wide Range Monitor (WRM)
in High Temperature engineering Test Reactor (HTTR)
—Transport Operation Toward Investigation for Cause of Outage—

篠原 正憲 澤畑 洋明 川本 大樹 茂木 利弘
齋藤 賢司 高田 昌二 吉田 直昭 磯崎 涼佑
勝山 幸三

Masanori SHINOHARA, Hiroaki SAWAHATA, Taiki KAWAMOTO, Toshihiro MOTEGI
Kenji SAITO, Shoji TAKADA, Naoaki YOSHIDA, Ryosuke ISOZAKI
and Kozo KATSUYAMA

大洗研究開発センター
高温工学試験研究炉部
Department of HTTR
Oarai Research and Development Center

August 2012
Japan Atomic Energy Agency
高温工学試験研究炉（HTTR）の使用済広領域中性子検出器の動作不能調査—原因調査及び輸送作業—

日本原子力研究開発機構大洗研究開発センター
高温工学試験研究炉部
篠原 正憲・澤畑 洋明・川本 大樹・茂木 利弘†1・齋藤 賢司・高田 昌二
吉田 直昭†2・磯崎 涼佑†2・勝山 幸三†2

（2012年6月11日受理）

2010年3月の原子炉停止中に、広領域中性子検出器（WRM）が開発時の動作実績期間より短い使用時間で動作不能となる事象が発生した。本事象の原因調査を行い、WRMの使用期間を向上させることは高温ガス炉の基盤技術開発において重要である。そこで、事象発生部位の特定及び破損原因を調査するため、照射燃料集合体試験施設（FMF）にてX線CT装置を用いた照射後試験を計画した。

本報告書は、WRM動作不能の原因調査、当該WRMのFMFへの輸送方法の検討及び輸送作業の結果をまとめたものである。

大洗研究開発センター：〒311-1393 茨城県東茨城郡大洗町成田町4002
+1 安全統括部
+2 燃料材料試験部
Investigation on Cause of Outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR) —Transport Operation Toward Investigation for Cause of Outage—

Masanori SHINOHARA, Hiroaki SAWAHATA, Taiki KAWAMOTO, Toshihiro MOTEGI*1, Kenji SAITO, Shoji TAKADA, Naoaki YOSHIDA*2, Ryosuke ISOZAKI*2 and Kozo KATSUYAMA*2

Department of HTTR
Oarai Research and Development Center
Japan Atomic Energy Agency
Oarai-machi, Higashiibaraki-gun, Ibaraki-ken

(Received June 11, 2012)

An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, a post irradiation examination was planned to specify the damaged part causing the event in the WRM was also planned. For the investigation, the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF).

This report describes the preliminary investigation on the cause of outage of the WRM. The results of study for transportation method of the irradiated WRM from HTTR to FMF is also reported with the record to complete the transport operation.

Keywords: HTTR, FMF, Wide Range Monitor, Transport, Post Irradiation Examination

+1 Safety Administration Department
+2 Fuels and Materials Department
目次
1. 緒言 ............................................................................. 1
2. 高温工学試験研究炉（HTTR）の中性子計装 .......................... 2
   2.1 概要 ................................................................. 2
   2.2 核分裂計数管・電離箱 ........................................... 2
   2.3 無機絶縁（MI）ケーブル ....................................... 2
   2.4 広領域中性子検出器（WRM）の耐熱構造 ........................ 3
3. 動作不能の原因調査 .................................................... 4
   3.1 目的 ..................................................................... 4
   3.2 動作不能箇所範囲の調査 ......................................... 4
   3.3 動作不能箇所の絞込み調査 ....................................... 4
4. 広領域中性子検出器（WRM）の輸送 ..................................... 6
   4.1 概要 .................................................................... 6
   4.2 輸送方法の検討 ................................................... 6
   4.3 輸送手順 .......................................................... 7
5. 結言 ........................................................................... 8
謝辞 ............................................................................. 8
参考文献 ........................................................................ 9
付録1 HTTR使用済広領域中性子検出器が核分裂性輸送物とならない理由 .......... 30

Contents
1. Introduction .................................................................... 1
2. Neutron Instrumentation of HTTR ..................................... 2
   2.1 Outline .................................................................. 2
   2.2 Fission Counter And Ion Chamber ............................... 2
   2.3 MI Cable .............................................................. 2
   2.4 Heat Resistance Structure of WRM ............................. 3
3. Investigate the Cause of Inoperative ................................. 4
   3.1 Objectives ................................................................ 4
   3.2 Investigation of Defects Range .................................... 4
   3.3 Investigation Narrowing the Place of Defects ................. 4
4. Transport of WRM ......................................................... 6
   4.1 Outline .................................................................. 6
   4.2 Deliberation of Transportation Method .......................... 6
   4.3 Transport Procedure ............................................... 7
5. Conclusion ...................................................................... 8
Acknowledgement ............................................................. 8
References ........................................................................ 9
Appendix1 The Reason why WRM of HTTR isn't Fissile Package .......... 30
This is a blank page.
1. 緒言

日本原子力研究開発機構（以下、原子力機構）では、高温ガス炉技術基盤の確立及び高度化を図ることを目的として、我が国で初めての高温ガス炉（HTGR：High Temperature Gas Reactor）である高温工学試験研究炉（HTTR：High Temperature engineering Test Reactor）を建設し(1)、2004年4月に原子炉出口冷却材温度950℃の運転を達成し(2)、2010年1月から3月にかけて高温連続運転を完遂し(3)、HTGRの基本特性データを取得した。HTTRの主要諸元をTable 1.1に示す。

HTTRの中性子計装の一つである核分裂計数管・電離箱型である広領域中性子検出器（WRM：Wide Range Monitor）は、原子炉圧力容器内に設置され、約450℃の高温環境下で原子炉の起動から中間出力領域までの熱中性子束を計測できるように開発されたものである(4)。HTTR用WRMは、JRR-4等での長期作動試験の動作実績(5)は600℃の高温環境下で404日間であった。

2010年3月の原子炉停止中に3台のWRMのうちch.2、ch.3が動作不能となった。当該WRMは、使用開始後からの定格出力換算日数は約140日であった。開発時の動作実績期間より短い期間で動作不能事象が発生したことから、動作不能箇所の特定及び原因調査を行いWRMの改良に役立てる目的で、当該WRMの詳細な調査を行うこととした。

絶縁抵抗測定、静電容量測定及び特性インピーダンス波形観察等の電気的調査により無機絶縁ケーブル（MIケーブル：Mineral Insulated Cable）端子側に動作不能箇所があることを明らかにした。そこで、電気的調査結果の確認及び検出器高度化のための技術開発を目的に、高エネルギーX線CT検査装置を用いた照射後試験を実施することとした。

HTTR施設では照射後試験を行える設備・装置がないことから、大洗センター内でX線CT装置が利用できる照射燃料集合体試験施設（FMF：Fuels Monitoring Facility）へWRMを輸送し照射後試験を実施することとした。

輸送に際しては、専用の輸送容器を新たに製作すると製作期間が長期にわたること、莫大な製作費かかることから、輸送容器との取合いを考慮してHTTR既存の設備、機器等に新たな装置及び冶具を製作し、FMF所属の輸送容器を利用して短期間で輸送作業を完了した。

本報告書は、HTTRにおけるWRM動作不能の原因調査、WRMをHTTRからFMFへ輸送する方法の検討、及びWRMの輸送作業の結果をまとめたものである。
2. 高温工学試験研究炉（HTTR）の中性子計装

2.1 概要
原子炉の中性子計装は、核分裂によって生ずる中性子が形成する中性子束を直接測定し、核反応に関する情報を速やかに得ることを目的としている。HTTRの中性子計装は、広領域中性子計装と出力領域中性子計装の2系統からなり、原子炉の起動領域から定格原子炉出力の120%までの中性子束レベルを測定する。HTTRは炉内温度が高いことから、炉心内ではなく固定反射体に広領域中性子計装を、圧力容器の外側に出力領域中性子計装をそれぞれ設置している。それぞれの中性子検出器の装荷位置及び測定出力範囲をFig.2.1及びFig.2.2に示す。WRMは、Fig.2.1に示すように原子炉圧力容器内の固定反射体ブロックの上部に3台設置され、定格運転時約450℃、事故時約550℃の高温ヘリウム雰囲気で使用される。

WRMは、原子炉の停止状態から定格出力の30%（9MW）までの中性子束を計測し、また異常な出力上昇に対して原子炉スクラム信号を発信するために用いる。WRMは30%出力をカバーすることとなっているが、定格運転時においてもWRMを炉外に取出さないため、100%出力運転時でもWMGがその健全性を保つことを示す必要がある。また、WMGは原子炉の未臨界の確認のためにも使用されるため、低温未臨界時に所定レベル以上の計数率を確保できることを確認する必要がある。HTTRではこれらの条件を満たすべく、中性子源及びWMG感度等の諸元を決定している。WRMの基本仕様をTable2.1に、外観写真及び外観図をFig.2.3、Fig.2.4に示す。

WRMは、核分裂電離箱を使用しているため、出力の低い起動領域では核分裂計数管としてパルス計数法で、原子炉出力の比較的高い領域では電流のゆらぎを利用したキャンベル法で計測するワイドレンジモニタであり、1台のWRMで10桁の中性子束領域を測定することができる。

2.2 核分裂計数管・電離箱
核分裂計数管・電離箱（FC：Fission Chamber）は、核分裂反応により放出されるエネルギー（Q値）が約200MeV大きく、このうち約160MeVが核分裂生成物の運動エネルギーになるため、計測器としてはS/N比の高い検出器が期待できる。しかし、実際にFCから出力されるパルス信号は、有感物質（核分裂性核種）、塗布膜の厚さ、核分裂片の収集条件（電極間隔、電離ガス圧、電離ガス種）等に依存するため、FCを設計する際には、Fig.2.5に示すフローに従って核分裂性核種、電離ガス等の設計仕様が決定される。

FCの電極表面には、有感物質として濃縮ウラン酸化物（U_2O_8、^{235}U＞90%）が塗布され、対向する電極間には電離ガスとしてアルゴンに少量のN_2を混合したガスが封入されている。外部から飛来した中性子が電極に塗られた^{235}Uと核分裂反応を起こすことにより電離ガスが電離され、電離したイオンを電極に収集することにより、中性子束に比例した信号を取出す。Fig.2.6に^{235}Uを用いたFCの作動原理図と計測系の構成図を示す。

2.3 無機絶縁（MI）ケーブル
MIケーブルは、ステンレス製の外側シースと中心線の間に高純度のアルミナやマグネシア等のセラミックスの粉末を絶縁物として充填したケーブルである。シース内には中心線がエアギャップ無く封入され、また、端末は完全密封処理され酸化等による劣化が起こらないようにしてい
る。現在最も耐放射線性、耐熱性さらに機械的強度に優れたケーブルであり、原子炉施設等の苛酷環境に用いられている(7)(8)(9)。一般的なMIケーブルの構造をFig.2.7に示す。

2.4 広領域中性子検出器（WRM）の耐熱構造

HTTRのWRMは、高温環境下で長期にわたり正常に動作し、破損や劣化の生じないものとするとため、以下に示す構造上種々の工夫を行った(10)。

(1) 電極は同筒形とし、膨張係数の差により発生する半径方向のギャップを小さくするため、電極を支持するセラミック絶縁物は、小径の棒状とし電極円筒軸上に設置した。
(2) 高温でのばねの緩和に伴う問題を避けるため、電極間などの軸方向の寸法誤差や熱膨張差を吸収するためのばねは設けず、電極は片端を固定し、他端は軸方向の運動を自由に許す摺動構造とした。
(3) 容器は二重構造とし、電極を含む計数管本体部分は独立な内側気密容器に収納し、内側と外側の容器の間には、内側容器内の電離ガスと等しい圧力のガスを封入した。内側容器の内外で圧力がバランスしているため、内側容器には圧力がかからず、信号線引き出しのため内側容器の一部を形成する金属－セラミックシールは、高温においても内圧の上昇により破損することはない。なお、金属－セラミックシールは封着部の形状寸法に改良を加えた結果、常温－700℃の急熱急冷熱サイクルに耐えるものとなっている。
(4) 濃縮ウランは、対抗する電極の両表面にコーティングしてあるので、片側のみコーティングしたものに比べ、中性子感度とガンマ線感度の比がほぼ2倍改善されている。また同じ中性子感度を得るのに電極径などの工作精度に対する要求は緩和される。
(5) WRM信号ケーブルには耐熱性の観点からMIケーブルを使用し、二重構造の外側容器に2本のMIケーブルが一体的に接続されている。そのため、コネクタに付随して発生する接触不良や放電パルスノイズ発生の問題から解放されている。また陰陽電極にそれぞれ独立にケーブルを取付けているので、高電圧の供給と信号の取出しが別々に行え、直流電流計測も精度良く行える。
(6) MIケーブルの構造は三同軸であり、中心導体は鋼クラッドインコネル、内側のシールド導体、銅パイプ及び外側のシールド導体はインコネルである。高温での安定性の観点からは、すべてインコネルを使用するのが好ましいが、パルス伝送特性や外来雑音に対する耐性の観点からは、固有抵抗の小さい銅が好ましく中心導体と内側シールド導体にはあえて銅を使用している。
## 3. 動作不能の原因調査

### 3.1 目的

WRM が動作不能となった箇所を特定するため、WRM 全 3 台について絶縁抵抗測定、静電容量測定及び特性インピーダンス波形観察等を用いて動作不能箇所の絞込み調査をした。

### 3.2 効果不能箇所範囲の調査

Fig.3.1 に広領域中性子計装の信号経路図を示す。信号経路図をもとに Fig.3.2 に示す調査フロー図を作成し、異常の有無を確認した。以下に調査内容を示す。

1. **高圧電源及びディスクリ電圧の異常調査**
   
   WRM 全数について中性子計装盤から WRM までの高圧電源及びディスクリ電圧を確認したところ、異常は認められなかった。

2. **入力波形の異常調査**

   WRM 動作不能発生時のパルス波形を中性子計装盤の出力端子で確認したところ、ch.1 については正常なパルス波形が観察されたが、ch.2 及び ch.3 については、パルス波形が観察されなかった。パルス波形観察結果を Fig.3.3 に示す。

3. **コネクタ部の緩み、増幅器及びケーブルの異常調査**

   前置増幅器から中性子計装盤及びスタンドパイプ室から中性子計装盤について、目視によるコネクタ部の緩み、模擬パルス入力による前置増幅器及びケーブルの異常は認められなかった。

4. **絶縁不良、ケーブル及び WRM の接触不良調査**

   ch.2 及び ch3 について、絶縁抵抗測定、静電容量測定を実施した結果、2009 年の定期検査時の測定値と比較して、高圧電源 (HV) ケーブルの静電容量が低下していることを確認した。前置増幅器から WRM までの静電容量測定結果を Fig.3.4 に示す。

以上の調査結果から、動作不能となった WRM ではパルス波形が観察されず、静電容量も低下していること。中性子計装盤からスタンドパイプ室の WRM ケーブルコネクタ部までに異常はないと確認され、動作不能箇所はスタンドパイプ室の WRM ケーブルコネクタ部から WRM 間にあらるものと判断した。

### 3.3 動作不能箇所の絞込み調査

前述 3.2 章より、スタンドパイプ室 WRM ケーブルコネクタ部から WRM 間に動作不能箇所があると判断し、Fig.3.5 に示す調査フロー図を作成し、異常の有無を確認した。以下に調査内容を示す。

1. **絶縁抵抗測定**

   絶縁抵抗測定の結果、高圧電源 (HV) ケーブル及び信号 (SIG) ケーブル共に異常は認められなかった。
(2) 静電容量測定

静電容量測定を実施し、2006年の炉内据付後の測定値と比較した結果、ch.2及びch.3 動作不能発生時の高圧電源（HV）ケーブルの静電容量は約150pF 低下していた。信号（SIG）ケーブルの測定結果には有意な差はなかった。なお、ch.1の高圧電源（HV）ケーブル及び信号（SIG）ケーブルの測定結果には有意な差はなかった。ch.2及びch.3は、高圧電源（HV）ケーブルの静電容量が約150pF低下していることから、WRM エレメント端子から高圧電源側 MI ケーブル接続部の付近に動作不能箇所があると推定される。スタンドパイプ室の WRM コネクタ部から WRM までの静電容量測定結果をFig.3.6 に示す。

(3) 電極間電流の測定

高圧電源（HV）ケーブルの静電容量に低下がみられたことから、スタンドパイプ室の WRM ケーブルコネクタ部から WRM 間の電極間電流を測定した。WRM 動作不能発生時の ch.1 は電極間電流が検出されたが、ch.2 及び ch.3 は電極間電流が検出できなかった。このことから、ch.2 及び ch.3 は、動作不能箇所があると推定される。WRM の電極間電流の測定結果を Fig.3.7 に示す。

(4) 特性インピーダンス波形観測

高圧電源（HV）ケーブルの静電容量に低下がみられたことから、スタンドパイプ室の WRM ケーブルコネクタ部から WRM 間の電極間電流を測定した。WRM エレメント端子から MI ケーブル接続部の付近で特性インピーダンスが大きくなくなっており、接続不良を示す波形が観察された。また、ch.3 については、WRM エレメント端子から MI ケーブル接続部の付近で断線を示す波形が観察された。TDR 法による特性インピーダンス波形観察を Fig.3.8 に示す。

(5) プラトー特性測定

WRM の特性を確認するため、プラトー特性測定を実施したところ、異常は認められなかった。

以上の調査結果から、Fig.3.9 に示す WRM 概略図の WRM エレメントと高圧電源側 MI ケーブルの接続部付近である接続箇所 d から接続箇所 f の範囲に動作不能箇所があると判断した。

---

1：検出器内部の電極に 235U が塗布されており、α 崩壊による電流、及び使用中の F.P.が蓄積されること等による β 線、γ 線による電流との合計をいう。

2：TDR(Time Domain Reflectometry：時間分域反射率測定)：ケーブル障害の試験方法の一つであり、パルスをケーブルの片端から送信し、ケーブルにインピーダンスの変化があればパルスの一部が反射することを利用して、障害位置の特定や障害内容（断線、短絡等）が判断できる方法である。
4. 広領域中性子検出器（WRM）の輸送

4.1 概要
動作不能となった WRM (ch.2 及び ch.3) の交換作業を 2010 年 10 月から 11 月に実施した。炉心から取り出した WRM は、燃料交換機メンテナンスピット内 (MP) で保持装置の一部及び WRM の MI ケーブルを切断し、分離した WRM 本体を WRM 収納容器に収納し、HTTR 施設内の照射物貯蔵ピット内に保管した。
2010 年 12 月から 2011 年 1 月に実施した安全性実証試験運転の終了を待って、2011 年 2 月に動作不能の原因調査結果の確認及び検出器高度化のための技術開発を目的に、大洗センター内で X 線 CT 装置が利用できる FMF へ WRM を輸送し照射後試験を実施することとした。
輸送に際しては、専用の輸送容器を新たに製作すると製作期間が長期にわたることから、FMF の輸送容器を利用して輸送を行うこととし、輸送容器との取合いを考慮して、HTTR 既存の設備、機器等に新たな装置及び治具を製作し、WRM の輸送作業を実施した。

4.2 輸送方法の検討
HTTR から FMF への WRM の輸送に関して、(1) 輸送方法の調査、(2) 核燃料物質等の区分と収納限度 (A2 値) の評価、(3) 輸送容器の選定、(4) 輸送容器の線量評価、(5) MP 内の作業検討の 5 項目の検討を行った。

(1) 輸送方法の調査
HTTR から FMF への WRM の輸送方法は、事業所内運搬であるため、大洗研究開発センター内放射性物質等運搬規則、大洗研究開発センター（北地区）及び（南地区）核燃料物質使用施設等保安規定、大洗研究開発センター（北地区）及び（南地区）原子炉施設保安規定の要件に準拠して行うことで輸送が可能であると判断した。

(2) 核燃料物質等の区分と収納限度 (A2 値) の評価
WRM は、核分裂計数管内部にウラン 235 を薄く塗布している。そのため今回の運搬物は、核燃料物質又は核燃料物質によって汚染されたものにあたり、区分は「特別形放射性物質以外の核燃料物質等」で輸送を検討した。また、ここで今回の運搬物が核分裂性運搬物とならない理由は、付録 1 に示す。
収納限度 A1、A2 とは、A 型輸送物として輸送し得る収納放射性物質の放射能限度を示す数値であり、各々の核種に対して決められている。この値は、各々の核種の外部被ばく、内部被ばくにより人体に影響を与える限界値に対して十分余裕を持って決められた値である。今回の運搬物の放射能量についてはコバルト 60 が支配的であり、事前解析により放射能量総量は 45.2 GBq と見積もった。
上述より今回の運搬物は特別形放射性物質以外の放射性物質等にあたり、コバルト 60 の A2 値 400 GBq を超えないため、第 3 類運搬物として輸送が可能であると判断した。

(3) 輸送容器の選定
今回の運搬物専用の輸送容器を新規に製作するのは、設計・製作・検査のための時間と費用が
必要となるため、大洗研究開発センター内に既存の輸送容器の中から検討した。様々な輸送容器の中から今回の運搬物の寸法、放射能量を共に満足する輸送容器は、FMFで廃棄物移送用キャスク(FMFキャスク3)だけであった。Table 4.1にFMFキャスク3の主要諸元及びFig.4.1に構造図を示す。ただ運搬物が収納されているWRM収納容器のままでは、キャスク3の収納容積よりも大きいため直接収納することが出来ないことが判明した。そこで、キャスク3に収納できる輸送用内容器を新規製作することでFMFキャスク3による輸送が可能である見通しが得られた。

(4) 輸送容器の線量評価
WRMを装荷した輸送容器の放射線線量率を評価し、A型輸送物の基準を満足するかについて調べた。法律によるA型輸送物の基準値は、放射線量当量率が、(1)表面で2mSv/h、(2)表面から1mで0.1mSv/hである。このため、WRMを装荷したときの輸送容器の外側の線量当量率を計算した。この結果、輸送容器の表面で約0.19mSv/h、表面から1mで約0.07mSv/hであり、A型輸送物の基準を満足すると判断した。

(5) MP内の作業検討
WRMをA型輸送物として輸送が可能である見通しを得たため、MP内での全体作業工程を策定し、その技術課題を抽出した。
MP内の作業計画をFig.4.2に示す。交換のため炉内から取り出されたWRMは、WRM収納容器に収納され、照射物貯蔵ピット内に貯蔵されている。照射物貯蔵ピット内ではWRM収納容器から輸送用内容器への移し替え作業が出来ないことから、燃料交換機（FHM）により、WRM収納容器を照射物貯蔵ピットからMPに移送し、MP内にてマニプレータを用いた遠隔操作によりWRM収納容器から新規製作した輸送用内容器へ移し替え作業を行う計画とした。
輸送用内容器へ移し替えたあと、FMFキャスク3へ収納する工程において、FMFキャスク3昇降装置の揚程が足らず、MP地下2階にて移し替えられた輸送用内容器上部蓋まで吸着用マグネットが届かないことが判明した。そこでFMFキャスク3昇降装置の吸着用マグネットがアクセスできる場所まで輸送用内容器を上昇させる昇降装置をMP内に新規製作することでFMFキャスク3による輸送が可能である見通しが得られた。昇降装置概念図をFig.4.3に示す。

4.3 輸送手順
第4.2章で行った検討結果より、輸送ルートはHTTRからFMFへの事業所内運搬とし、運搬物の種類は「特別形放射性物質等以外の放射性物質等 第3類運搬物」として原子力機構内規定に準拠しておこなった。輸送容器にはFMFキャスク3を使用し、その収納容積を満足した輸送用内容器製作することで対応した。輸送用内容器の外観図をFig.4.4に示す。輸送容器への詰替え作業は、HTTRのMPを用いて行うものとし、MP内昇降装置及びその他の備品についてはHTTRとFMFで検討・製作した。MP昇降装置用カゴの外観図をFig.4.5に示す。
輸送作業は、2011年2月10日及び2月18日にHTTRからFMFへの輸送容器の搬出を実施した。Table 4.2に輸送作業手順を示す。輸送容器の線量は、最大線量等量率が表面で0.108mSv/h、表面から1mで0.012mSv/hであり、A型輸送物の基準を満足した。
5. 結言

WRM の動作不能事象の原因調査の一環として、絶縁抵抗測定、静電容量測定及び特性インピーダンス波形観察等の結果から、WRM エレメントと高圧電源側 MI ケーブルの接続部付近に動作不能箇所があると判断した。

また、FMF 施設にて照射後試験を実施するにあたり、WRM を HTTR から FMF へ輸送するための輸送方法の検討の結果、FMF への輸送が技術的に可能である見通しを得るとともに、諸手続きの上、FMF へ輸送を行い、2011 年 2 月 18 日に無事完了した。

謝辞

WRM の輸送作業にあたっては、HTTR 運転管理課、HTTR 技術課及び燃料材料試験部集合体試験課諸氏には多大なる協力を頂きましたことを深く感謝いたします。

また、本報をまとめに当たり有益な助言をいただいた高温工学試験研究圏部 藤本研究主幹に深く感謝いたします。
参考文献

(1) 斎藤伸三 他, “Design of High Temperature Engineering Test Reactor (HTTR)” , JAERI 1332,(1994)
(2) 高松邦吉 他, “高温工学試験研究炉の出力上昇試験（高温試験運転）－試験方法及び結果の概要－”, JAERI-Tech 2004-063,(2004)
(4) N.Wakayama,et.all :「Development of experimental VHTR instrumentation 」 IAEA-IWGGCR June,(1982)
(5) 若山直昭、他:「高温ガス炉計装用各種センサーの現状と開発研究課題」日本原子力学会 Vol.22,(1980)
(6) ニコラス・ツルファニデイス, 阪井英次訳, “放射線計測の理論と演習”, (現代工学社、下巻, 1986)
(10) 友田利正、他 : 「原子炉核計装用高温核分裂計数管 電離箱の開発」三菱電機技報 vol.57,(1983)
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>原子炉熱出力</td>
<td>30MW</td>
</tr>
<tr>
<td>1次冷却材</td>
<td>ヘリウムガス</td>
</tr>
<tr>
<td>原子炉入口冷却材温度</td>
<td>395℃</td>
</tr>
<tr>
<td>原子炉出口冷却材温度</td>
<td>850℃（定格運転時）</td>
</tr>
<tr>
<td></td>
<td>950℃（高温試験運転時）</td>
</tr>
<tr>
<td>1次冷却材圧力</td>
<td>4MPa</td>
</tr>
<tr>
<td>炉心構造材</td>
<td>黒鉛</td>
</tr>
<tr>
<td>炉心有効高さ</td>
<td>2.9m</td>
</tr>
<tr>
<td>炉心等価直径</td>
<td>2.3m</td>
</tr>
<tr>
<td>出力密度</td>
<td>2.5MW/m³</td>
</tr>
<tr>
<td>燃料</td>
<td>二酸化ウラン・被覆粒子/黒鉛分散型</td>
</tr>
<tr>
<td>ウラン濃縮度</td>
<td>3〜10%（平均 6%）</td>
</tr>
<tr>
<td>燃料体形式</td>
<td>ブロック型</td>
</tr>
<tr>
<td>原子炉圧力容器</td>
<td>鋼製（2.25Cr-1Mo 鋼）</td>
</tr>
<tr>
<td>冷却回路数</td>
<td>1ループ（中間熱交換器及び加圧水冷却器）</td>
</tr>
</tbody>
</table>
Table 2.1  HTTR 広領域中性子検出器仕様

<table>
<thead>
<tr>
<th>項目</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 寸法</td>
<td></td>
</tr>
<tr>
<td>(1) 外径</td>
<td>φ38㎜</td>
</tr>
<tr>
<td>(2) 検出器全長</td>
<td>387㎜</td>
</tr>
<tr>
<td>(3) ケーブル長</td>
<td>約8m</td>
</tr>
<tr>
<td>2. コネクター</td>
<td>TRC-3SP-M</td>
</tr>
<tr>
<td>3. 材料</td>
<td></td>
</tr>
<tr>
<td>(1) 主要材料</td>
<td>インコネル</td>
</tr>
<tr>
<td>(2) 電離箱絶縁材</td>
<td>アルミナセラミック</td>
</tr>
<tr>
<td>(3) 中性子有感物質</td>
<td>濃縮ウラン</td>
</tr>
<tr>
<td>(4) 封入ガス</td>
<td>Ar+N2+He</td>
</tr>
<tr>
<td>4. 絶縁抵抗</td>
<td></td>
</tr>
<tr>
<td>(1) HV極C- I</td>
<td>1010Ω以上</td>
</tr>
<tr>
<td>(2) SIG極C- I</td>
<td>同上</td>
</tr>
<tr>
<td>(3) I- O(共通)</td>
<td>108Ω以上</td>
</tr>
<tr>
<td>5. 使用条件</td>
<td></td>
</tr>
<tr>
<td>(1) 周囲温度</td>
<td>通常時: 450℃</td>
</tr>
<tr>
<td></td>
<td>事故時: 550℃</td>
</tr>
<tr>
<td></td>
<td>(ただし、コネクタ部は80℃)</td>
</tr>
<tr>
<td>(2) 熱中性子束</td>
<td>$1 \times 10^{11}$cm⁻²・s⁻¹</td>
</tr>
<tr>
<td>(3) γ線束</td>
<td>$1 \times 10^8$Gy/h</td>
</tr>
<tr>
<td>(4) 最高使用圧力</td>
<td>4.7MPaG</td>
</tr>
<tr>
<td>6. 動作定格</td>
<td></td>
</tr>
<tr>
<td>(1) 動作電圧</td>
<td>約300V</td>
</tr>
<tr>
<td>(2) 熱中性子感度(パルス)</td>
<td>0.1cps/(cm²・s⁻¹)±20％</td>
</tr>
<tr>
<td>(3) 熱中性子感度(直流)</td>
<td>約1.6×10⁻¹⁴A/(cm²・s⁻¹)±20％</td>
</tr>
<tr>
<td>(4) 電流パルス</td>
<td>1.6μA</td>
</tr>
<tr>
<td>(5) 電荷パルス</td>
<td>$6.5 \times 10^{14}$C</td>
</tr>
<tr>
<td>(6) 電荷収集時間</td>
<td>150ns以下</td>
</tr>
</tbody>
</table>
Fig.2.1 中性子検出器の配置図

Fig.2.2 HTTR 中性子計装の測定出力範囲
Fig. 2.3 WRM 外観写真

Fig. 2.4 WRM 外観図
Fig.2.5 核分裂計数管・電離箱の設計フロー
Fig.2.6 FCの作動原理と計測回路

Fig.2.7 一般的なMIケーブルの構造
Fig.3.1 広範域中性子計装の信号経路図
Fig.3.2 部位特定の調査フロー図
Fig.3.3 パルス波形観察結果

前の実験(H21.7.30)

<table>
<thead>
<tr>
<th>ch.2</th>
<th>前回 (H21.7.30)</th>
<th>今回 (H22.3.22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG</td>
<td>12300pF</td>
<td>12010pF</td>
</tr>
<tr>
<td>HV</td>
<td>12360pF</td>
<td>11940pF</td>
</tr>
</tbody>
</table>

次の実験(H22.3.22)

<table>
<thead>
<tr>
<th>ch.3</th>
<th>前回 (H21.7.30)</th>
<th>今回 (H22.3.22)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG</td>
<td>12220pF</td>
<td>12050pF</td>
</tr>
<tr>
<td>HV</td>
<td>12320pF</td>
<td>11970pF</td>
</tr>
</tbody>
</table>

Fig.3.4 前置増幅器から検出器までの静電容量測定結果
検出器（CH2・CH3）

SIG側

MVF側

異常の有無

○：可能性あり
Δ：間接的に可能性あり
×：異常なし

約150 pF低下し、検出器エレメント端子からMIケーブルの接続部付近で接触不良が発生していると推定される。

電極間電流が検出できない。

検出器エレメント端子からMIケーブルの接続部付近で接触不良が発生していると推定される波形が観察された。

Fig.3.5 スタンドパイプ室コネクタ部から検出器間の調査フロー図
<table>
<thead>
<tr>
<th>ch.</th>
<th>SIG</th>
<th>HV</th>
<th>平成 18年炉内据付後</th>
<th>H22.3.22 (計数率 1cps 以下)</th>
<th>H22.4.22 (計数率約 7cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1890pF</td>
<td>1940pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch.1</td>
<td>SIG</td>
<td>HV</td>
<td>平成 18年炉内据付後</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1880pF</td>
<td>1900pF</td>
<td></td>
<td>H22.3.23 (計数率 1cps 以下)</td>
<td>H22.4.22 (計数率 1cps 以下)</td>
</tr>
<tr>
<td></td>
<td>1861pF</td>
<td>1748pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ch.3</td>
<td>SIG</td>
<td>HV</td>
<td>平成 18年炉内据付後</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1880pF</td>
<td>1910pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1860pF</td>
<td>1750pF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig.3.6 スタンドパイプ室の WRM コネクタ部から WRM までの静電容量測定結果
### ch.1

<table>
<thead>
<tr>
<th>電圧 (V)</th>
<th>H22.4.22 (計数率約 7cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27.6 nA</td>
</tr>
<tr>
<td>3</td>
<td>49.9 nA</td>
</tr>
<tr>
<td>5</td>
<td>51.7 nA</td>
</tr>
<tr>
<td>10</td>
<td>53.4 nA</td>
</tr>
<tr>
<td>30</td>
<td>55.8 nA</td>
</tr>
<tr>
<td>50</td>
<td>56.5 nA</td>
</tr>
<tr>
<td>100</td>
<td>57.3 nA</td>
</tr>
</tbody>
</table>

### ch.2

<table>
<thead>
<tr>
<th>電圧 (V)</th>
<th>H22.3.22 (計数率 1cps以下)</th>
<th>H22.3.29 (計数率約 6cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 nA</td>
<td>109.8 nA</td>
</tr>
<tr>
<td>3</td>
<td>0 nA</td>
<td>166.0 nA</td>
</tr>
<tr>
<td>5</td>
<td>0 nA</td>
<td>178.0 nA</td>
</tr>
<tr>
<td>10</td>
<td>0 nA</td>
<td>181.0 nA</td>
</tr>
<tr>
<td>30</td>
<td>0 nA</td>
<td>185.0 nA</td>
</tr>
<tr>
<td>50</td>
<td>0 nA</td>
<td>186.0 nA</td>
</tr>
<tr>
<td>100</td>
<td>0 nA</td>
<td>187.0 nA</td>
</tr>
</tbody>
</table>

### ch.3

<table>
<thead>
<tr>
<th>電圧 (V)</th>
<th>H22.3.22 (計数率約 7cps)*</th>
<th>H22.3.23 (計数率 1cps以下)</th>
<th>H22.3.30 (計数率約 7cps)</th>
<th>H22.4.22 (計数率 1cps以下)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>142.2 nA</td>
<td>0 nA</td>
<td>106.1 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>3</td>
<td>239.2 nA</td>
<td>0 nA</td>
<td>168.1 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>5</td>
<td>290.2 nA</td>
<td>0 nA</td>
<td>184.8 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>10</td>
<td>301.2 nA</td>
<td>0 nA</td>
<td>188.5 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>30</td>
<td>308.2 nA</td>
<td>0 nA</td>
<td>193.1 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>50</td>
<td>311.2 nA</td>
<td>0 nA</td>
<td>194.7 nA</td>
<td>0 nA</td>
</tr>
<tr>
<td>100</td>
<td>--</td>
<td>0 nA</td>
<td>196.3 nA</td>
<td>0 nA</td>
</tr>
</tbody>
</table>

* : 調査前は 1cps であったが、調査終了後に高圧電源を印加し通常の測定を開始したところ、約 7cps であった。

Fig.3.7 WRM の電極間電流の測定結果
ch.2 (HV側)の特性インピーダンス（平成22年4月5日）

ch.3 (HV側)の特性インピーダンス（平成22年4月22日）

Fig.3.8 TDR法による特性インピーダンス波形観察
Fig.3.9 WRM 概略図
# Table 4.1 FMF キャスク3主要諸元

<table>
<thead>
<tr>
<th>キャスク本体</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>遮蔽能力</td>
<td>鉛厚95mm</td>
</tr>
<tr>
<td>最大取扱放射能量</td>
<td>γ線: $^{60}$Co 2.5×10$^4$Bq (Pho./s) 中性子線: 8.52×10$^4$Bq</td>
</tr>
<tr>
<td>総重量</td>
<td>約8,000kg（上・下部緩衝体約440kg含む）</td>
</tr>
<tr>
<td>全長</td>
<td>2,140mm（運搬時（上・下部緩衝体付）：2,502mm）</td>
</tr>
<tr>
<td>外径</td>
<td>φ1,370mm（運搬時（上・下部緩衝体付）：φ1,638mm）</td>
</tr>
<tr>
<td>内径</td>
<td>φ610mm</td>
</tr>
<tr>
<td>有効内容積</td>
<td>φ610mm×1,000mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>シャッター開閉装置</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>駆動方式</td>
<td>手動（約5kg・cm）でシャッター開閉可能</td>
</tr>
<tr>
<td>構造</td>
<td>鋼構造でネジシャフトの回転によりシャッターを開閉する。本体とは着脱可能。</td>
</tr>
<tr>
<td>重量</td>
<td>シャッターA：約85kg シャッターB：約85kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>昇降装置、操作盤及び電磁石</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>昇降装置</td>
<td>・全長 610mm ・外径 φ840mm ・巻上げ荷重 150kg ・揚程 約10m ・速度（電動時） 0.4kW×4P（手動による操作可能）</td>
</tr>
<tr>
<td>操作盤</td>
<td>・電源 単相AC100V ・寸動・連動切替スイッチ 寸動上昇及び下降、連続上昇及び下降、切替え可能</td>
</tr>
<tr>
<td>電磁石</td>
<td>・型式 永久電磁石 ・電源 DC90V（AC100Vから変換） ・形状 φ175mm×150mm ・吸着力 150kg（12mm以上の鋼板使用時） 120kg（15mm以上の鋼板及び0.3mmのPVCバック使用時）</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>安全装置</th>
<th>仕様</th>
</tr>
</thead>
<tbody>
<tr>
<td>・ショックアップソーバー（上部、下部緩衝体）</td>
<td>落下時の衝撃吸収</td>
</tr>
<tr>
<td>・トルクリミッター</td>
<td>昇降装置の過負荷防止</td>
</tr>
<tr>
<td>・動作制限リミットスイッチ（上部、下部緩衝体）</td>
<td>超巻上、超巻下防止</td>
</tr>
<tr>
<td>・シャッター脱落防止金具</td>
<td>運搬時のシャッター固定</td>
</tr>
<tr>
<td>・シャッターロック治具</td>
<td>シャッターの開閉時のロック動作固定</td>
</tr>
</tbody>
</table>
### 表4.2 輸送作業手順

<table>
<thead>
<tr>
<th>No</th>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>準備作業</td>
<td>各設備機器の調整、MP内へ昇降装置の取付け及び輸送用内容器のMP内の所定場所に搬入する。</td>
</tr>
<tr>
<td>(2)</td>
<td>FMFからHTTRへのFMFキャスク3（空キャスク）搬入</td>
<td>HTTRが契約した輸送業者にて、FMF管理区域内からHTTR管理区域内へ空キャスクを搬入する。</td>
</tr>
<tr>
<td>(3)</td>
<td>WRM収納容器を挿入</td>
<td>WRM収納容器を、FHMにより照射物貯蔵ピットから取出し、MPへ挿入する。</td>
</tr>
<tr>
<td>(4)</td>
<td>WRM収納容器の蓋を開ける</td>
<td>収納容器蓋ネジ締め用治具により、WRM収納容器蓋のボルトを緩め、クレーンにて専用吊り治具で蓋をつかんで開ける。</td>
</tr>
<tr>
<td>(5)</td>
<td>WRM本体収納容器を輸送用内容器へ挿入</td>
<td>クレーンでWRM収納容器内のWRM本体収納容器を吊上げ、昇降用カゴ内に設置された輸送用内容器に挿入する。</td>
</tr>
<tr>
<td>(6)</td>
<td>輸送用内容器盖をロックする</td>
<td>マニブレータを用いた遠隔操作により、輸送用内容器の蓋をロックする。</td>
</tr>
<tr>
<td>(7)</td>
<td>WRM収納容器を取出す</td>
<td>FHMによりWRM収納容器をMPから取出し、照射物貯蔵ピットへ挿入する。</td>
</tr>
<tr>
<td>(8)</td>
<td>ドアバルブ1（DV1）の設置</td>
<td>DV1をMPアダプタプレート上に設置する。</td>
</tr>
<tr>
<td>(9)</td>
<td>FMFキャスク3の設置</td>
<td>輸送容器をDV1上に設置する。</td>
</tr>
<tr>
<td>(10)</td>
<td>昇降装置の下降及びマグネットの下降</td>
<td>FMFキャスク3操作盤により、吸着用マグネットを輸送用容器と吸着位置まで下降する。</td>
</tr>
<tr>
<td>(11)</td>
<td>昇降用カゴへのワイヤーハンガーの取付け</td>
<td>MP昇降装置のワイヤーハンガーを下降し、昇降用カゴに接続する。</td>
</tr>
<tr>
<td>(12)</td>
<td>MP昇降装置上昇とマグネットを励磁</td>
<td>MP昇降装置の上昇操作及びFMFキャスク3の吸着用マグネット下降操作により輸送用容器と吸着用マグネットを励磁させる。</td>
</tr>
<tr>
<td>(13)</td>
<td>輸送用内容器のFMFキャスク3への収納</td>
<td>FMFキャスク3操作盤によりマグネットを上昇し、輸送用内容器をFMFキャスク3に収納する。</td>
</tr>
<tr>
<td>(14)</td>
<td>HTTRからFMFへのFMFキャスク（実入りキャスク）の輸送</td>
<td>HTTRが契約した輸送業者にて、HTTR管理区域からFMF管理区域へ輸送する。輸送する際は、放射線管理課による輸送容器表面の表面線量率測定し、基準値以下であることを確認するとともに、その結果をまとめない。なお、輸送に際しては、策定した輸送計画書及び輸送実施計画書に基づいて実施するものとする。</td>
</tr>
</tbody>
</table>
Fig.4.1 FMFキャスク3構造図
Fig.4.2 ホットセル内の作業計画
Fig.4.3 昇降装置概念図

A：廃棄物収納容器
B：WRM 収納容器

回転テーブル断面

A : 使用せず
B : WRM 収納容器

MP 昇降装置用カゴ
Fig.4.4 輸送用容器外観図

Fig.4.5 MP 昇降装置用カゴ外観図
付録 1

HTTR 使用済広領域中性子検出器が核分裂性輸送物にならない理由

核燃料物質等の工場又は事業所の外における運搬に関する技術上の基準に係る細目等を定める告示

(核分裂性輸送物とならない核燃料輸送物)

第二十二条 規則第十一の主務大臣の定める核分裂性物質に係る核燃料輸送物は、次の各号のいずれかに該当するものとする。
一 一の輸送人により二又は二以上の輸送物を運搬するに当たり、当該輸送物すべてに含まれるウラン二三三、ウラン二三五、プルトニウム二三九又はプルトニウム二四一（以下「核分裂性核種」という。）の総量が次式において一を超えない範囲で運搬される場合であって、次に掲げる要件のいずれかに適合する核分裂性物質を収納したもの。ただし、核分裂性物質に含まれるベリリウム及び重水素（天然に存在するものを除く。）の重量が、それぞれ次の表の上欄に掲げる核分裂性物質の状態に応じ適応される同表の中欄及び下欄に掲げる重量のうち、最小のものの一パーセントを超えないものに限る。
二ウラン二三五の重量（グラム）／X＋他の核分裂性核種の重量（グラム）／Y
この場合において、X及びYは、次表による。

<table>
<thead>
<tr>
<th>核分裂性物質の状態</th>
<th>核分裂性核種の重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均水素濃度が水以下の物質との混合物である場合</td>
<td>四百</td>
</tr>
<tr>
<td>平均水素濃度が水より大きい物質との混合物である場合</td>
<td>二百九十</td>
</tr>
</tbody>
</table>

イ 個々の輸送物中の核分裂性核種の重量の合計が十五グラムを超えないもの
ロ 水素が均一に分布している核分裂性物質であって、水素の重量に対する核分裂性核種の重量の比率が五パーセント未満であるもの
ハ 収納されている核分裂性物質のうち、最も臨界に達しやすい○・○一立方メートルの体積中に含まれる核分裂性核種の重量が五グラムを超えないもの
二ウラン二三五の濃縮度が一パーセント以下であって、かつ、プルトニウム及びウラン二三三の重量の合計がウラン二三五の重量の一パーセント以下であって、核分裂性核種が均一に分布している核分裂性物質（ウラン二三五が、金属、酸化物又は炭化物として存在する場合において、当該核分裂性核種が格子状配列を構成するものを除く。）を収納したもの
三 次に掲げる要件に適合する硝酸ウラニル溶液を収納したもの
イ ウラン二三五の濃縮度が二パーセント以下であること。
ロ プルトニウム及びウラン二三三を含む核分裂性物質であって、これらの重量の合計がウランの重量の〇・〇二パーセント以下であること。
ハ ユランの原子数に対する窒素の原子数の比率が二以上のものであること。
四 収納されている核分裂性核種がプルトニウムのみの核燃料輸送物であって、プルトニウムの重量が一キログラム以下のものの中で、プルトニウム二三九及びプルトニウム二四一の重量の合計がプルトニウムの重量の二十パーセント以下であるもの

1. HTTR 使用済広領域中性子検出器に含まれるウラン量
   HTTR 広領域中性子検出器1 体に含まれるウラン235 の重量は 0.16(g)であるため次式より、
   \[
   \frac{0.16\text{g}}{290\text{g}} + \frac{0\text{g}}{180\text{g}} = 0.00055 < 1
   \]
また、第二十三条の一 イ 個々の輸送物中の核分裂性物質の重量の合計が十五グラムを超えないものに該当するため、今回の輸送対象物である中性子検出器は、核分裂性輸送物とならない。
This is a blank page.
国際単位系（SI）

表1. SI基本単位

<table>
<thead>
<tr>
<th>基本量</th>
<th>SI基本単位</th>
<th>記号</th>
<th>数式</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
<td>kg</td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>電気量</td>
<td>クーロン</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>ケルビン</td>
<td>K</td>
<td>K</td>
</tr>
<tr>
<td>電磁気学の単位</td>
<td>テスラ</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>磁性材料の強磁性</td>
<td>アンペアメートル</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>磁性密度</td>
<td>キログラムメートル立方体</td>
<td>kg/m³</td>
<td>kg/m³</td>
</tr>
<tr>
<td>表面張力</td>
<td>ニュートンメートル</td>
<td>N/m</td>
<td>N/m</td>
</tr>
<tr>
<td>压力</td>
<td>パascal</td>
<td>Pa</td>
<td>Pa</td>
</tr>
<tr>
<td>原子質量</td>
<td>モル</td>
<td>mol</td>
<td>mol</td>
</tr>
<tr>
<td>質量濃度</td>
<td>キログラムメートル立方体</td>
<td>kg/m³</td>
<td>kg/m³</td>
</tr>
<tr>
<td>面積密度</td>
<td>キログラムメートル平方メートル</td>
<td>kg/m²</td>
<td>kg/m²</td>
</tr>
<tr>
<td>表面密度</td>
<td>キログラムメートルメートル</td>
<td>kg/m</td>
<td>kg/m</td>
</tr>
<tr>
<td>比熱量, 比エントロピー</td>
<td>ジュール毎キログラム毎ケルビン</td>
<td>J/(kg K)</td>
<td>J/(kg K)</td>
</tr>
<tr>
<td>比エンタルピー</td>
<td>ジュール每キログラム</td>
<td>J/kg</td>
<td>J/kg</td>
</tr>
<tr>
<td>比エンタルピー</td>
<td>ジュール每キログラム每ケルビン</td>
<td>J/(kg K)</td>
<td>J/(kg K)</td>
</tr>
<tr>
<td>組立単位の例</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) メートル、キログラム、秒、クーロン、ケルビン、テスラ、アングストローム、ラジアン、メートル系カラット、ラディアン、ジュール、ケルビン、パascal、カロリーは、他のSI基本単位と組み合わせて使用できる。しかし組立単位を含むSI単位は、上記のSI基本単位と組み合わせて使用できる。

(2) システムは、ケルビンの特別な名前で、ケルビンの温度を示すために使用される。ケルビン温度とケルビンの関係は、|T| = (K - 273.15) °C および |T| = (K - 273.15) °C の2通りで表される。さらに、國家的に使用される単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(3) 国際単位系（SI）や、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(4) 国際単位系（SI）と、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(5) 国際単位系（SI）と、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(6) 国際単位系（SI）と、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(7) 国際単位系（SI）と、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |

(8) 国際単位系（SI）と、国際電気工学会（IEC）で定義されている単位の選択は、基礎物理を説明するために、例えば、放射性核種の統計的過程についてのみ使用される、または放射線当量についてのみ使用される。

| 放射線当量 | サイエンティフィック・オフセット単位 | | |
| 比放射線当量 | セルシャル単位 | | |
「もんじゅ」非常用ディーゼル発電機シリンダライナーのひび割れに係る材料強度の低下並びに超音波速度測定によるシリンダライナー健全性確認について

小林 孝典 佐近 三四治 高田 修 羽鳥 雅一
坂本 勉 佐藤 俊行 風間 明仁 石沢 義宏
井川 久 中江 秀雄

Takanori KOBAYASHI, Miyoji SAKON, Osamu TAKADA, Masakazu HATORI
Tsutomu SAKAMOTO, Toshiyuki SATO, Akihito KAZAMA, Yoshihiro ISHIZAWA
Katsuhisa IGAWA and Hideo NAKAE

敦賀本部
高速増殖炉研究開発センター
プラント保全部

Plant Maintenance Engineering Department
Fast Breeder Reactor Research and Development Center

February 2012

日本原子力研究開発機構

この印刷物は再生紙を使用しています