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Metallic fuel, U-Pu(TRU)-Zr, is a fuel candidate for Sodium-cooled fast reactor (SFR) selected as a
possible promising future nuclear reactor system in Generation-IV international forum (GIF). Design
studies were performed in the Japanese feasibility study on commercialized fast reactor cycle system,
and the irradiation behavior of metallic fuel is under investigation through analytical fuel performance
code calculations with preliminary analytical models.

As fuel temperature at overpower events is a major interest, some calculations of U-Pu(TRU)-Zr fuel
irradiation performance were conducted by a simplified calculation program developed in JAEA. The
calculated fuel temperature at the maximum power of overpower events, 110%-120% of steady state
power, was around 1100K in maxim. It is clear that this temperature was low enough to avoid fuel

melting in the event.
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1. Introduction

Sodium-cooled fast reactors (SFR) were selected in Generation-IV international forum (GIF) as a
possible promising future nuclear reactor system with superior safety, sustainability and economic
competitiveness.”  Fuel candidates for SFR in GIF collaborative program include U-Pu(TRU)-Zr metallic
fuel as well as oxide fuel.”

Design studies of metallic fuel core for SFR were performed in the Japanese feasibility study on
commercialized fast reactor cycle systems. The significant outcome of the studies is an attractive core and
fuel concept which achieves high burnup and high outlet temperature of reactor vessel.”)  The irradiation
behavior of metallic fuel of the design studies is under investigation through analytical fuel performance
code calculations with preliminary analytical models of metallic fuel.

In the present work, analytical code calculations of metallic fuel pin irradiation performance are
conducted with major interest on fuel temperatures during overpower events.

The irradiation behavior models and fuel properties for the analytical code were selected based on the
information of metallic fuel characteristics including fuel properties and irradiation behavior obtained from
open literatures and collaborative research activities with the Central Research Institute of Electric Power

Industry.
2. Outline of calculation program

A simplified calculation program for U-Pu(TRU)-Zr metallic fuel pin performance analysis has been
developed. This program is an R-Z system and models the thermal behaviors of a fuel pin during irradiation
using 10 axial nodes, each having 26 radial nodes, 20 of which are for the fuel region and 6 for the cladding
region. Mass transports in the direction are not taken into account, except for FP gases released into the gas
plenum of the fuel pin. The program is limited to analyses of fuel pins having a smear density not over
around 75%TD. Table 1 shows the evaluated behaviors. Some conservative and simplified models as
follows were incorporated into the program,;

1) for the FP gas release, the fractional release rate under irradiation was taken as the constant value of
90 %,

2) for the fuel and cladding mechanical analyses, the fuel-cladding contact pressure under irradiation was
taken as the constant value of zero, because it was reported that no considerable contacts between fuel and
cladding were obtained in the case of fuels having a smear density of less or equal to 75%TD." Only the
stress-strain analysis of cladding due to the plenum gas pressure were conducted,

3) for the fuel restructuring and fuel constituents migrations, they were not taken into account,

4) for the fuel thermal conductivity, metallic fuel slug effective thermal conductivity is considered. The
effective thermal conductivity model consists of solid fuel slug thermal conductivity with 100% TD and
contribution of porous fuel microstructure filled with gas and liquid sodium due to gas swelling and sodium

ingress under irradiation. The correlations of solid fuel thermal conductivity and contribution of porous fuel

_1_
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. 5)6)7
microstructure are found elsewhere.”®”

The volume fractions of gas-filled porosity and
sodium-infiltrated porosity are treated as variants in the present work. The specific conditions in the
calculation are described later.

The finite difference analysis procedure is applied to the thermal analysis, and the stress-strain analysis
procedure based on the generalized plane strain is applied to the mechanical analysis of cladding. Figures 1

and 2 show the geometrical model and flow chart of the program, respectively.
3. Calculation conditions

3.1 Fuel pin specifications and irradiation conditions

Table 2 shows fuel specifications and irradiation conditions for this investigation. A fuel pin having a
metallic U-Pu-Zr slug with the ODS cladding was taken for this investigation. The bonding material filling
the fuel-cladding gap was sodium. The level of bonding sodium was up to the top of the fuel column. The
time of overpower events were selected as the time when the fuel temperature was maximum during the
steady state irradiation. Aiming at the selection of time of overpower event, fuel pin behavior calculation
of steady state irradiation was made. The irradiation time was taken as 2205 days ( 3 cycles ). The
maximum neutron fluence was taken as 5.50 X 10*n-cm™, then the maximum local burnup was evaluated
to be as 140 GWd/t. The coolant inlet temperature was taken as 668K. Calculations were conducted at the
following 5 axial positions; X/L = 0.9, 0.7, 0.5, 0.3, and 0.1. Axial distribution conditions at BOL and EOL
of LHR and cladding midwall temperature are shown in Figs. 3 and 4, respectively. Profile conditions of
LHR and cladding midwall temperature at each axial position of the calculations are shown in Figs. 5 and 6,
respectively.

These conditions are based on the current results of feasibility studies on a commercialized fast reactor
cycle system in Japan.”

After selecting the time of overpower events, fuel temperature calculation of the events was made.
Maximum power during the overpower events were selected as 110%, 116% and 120% of steady state
power. The value of 116% was based on the typical overpower factor of an existing fast reactor design
and other values were selected for the sensitivity study. Fuel temperature calculation was made assuming

equilibrium heat transfer condition which gives the highest fuel centerline temperature.

3.2 Effective thermal conductivity models of metallic fuel

As described above, the effective thermal conductivity model consists of solid fuel slug thermal
conductivity with 100% TD and contribution of porous fuel microstructure filled with gas and liquid
sodium. The fraction of swelled volume filled with sodium was reported to be from 0.25 to 0.28 in some
case of U-Pu-Zr fuel. In the present study, following two cases are selected aiming at a sensitivity study.
One is 0.25 of the fraction as a case of sodium ingress and the other is no sodium ingress as conservative

case.
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4. Results and discussions

The fuel temperature is irradiation performance of most interest in the present study. Figure 7 and 8
show the fuel centerline temperatures during steady state irradiation, calculated using effective thermal
conductivity models without sodium ingress into the swelled metallic fuel and with sodium ingress,
respectively. The axial positions of these temperatures are X/L = 0.5 and 0.7 of the fuel column. These
positions are axial positions where the calculated fuel temperatures are maximum. Axial distributions of
fuel centerline temperature are indicated in Fig.9, which shows the position of maximum temperature is
around X/L = 0.5 and 0.7 of the fuel column.

The time of maximum fuel temperature was calculated to be 8856 hr of irradiation time as indicated in
Figs. 7 and 8. Therefore, overpower fuel temperature calculations were made at this time. Figures 10
and 11 show the calculated fuel centerline temperatures for 110%, 116% and 120% of steady state power.
Fuel temperatures become high in comparison with those of steady state irradiation, but they are about
1100K in maximum for the case of no sodium ingress into the swelled metallic fuel and about 1000K in

maximum for the case of sodium ingress. They are well below the melting point of U-Pu-Zr metallic fuel.

5. Conclusion

Some calculations of metallic fuel irradiation performance were conducted by a simplified calculation
program developed in JAEA to understand the behavior of a U-Pu(TRU)-Zr fuel pin. The major interest
of the investigation is calculated fuel temperatures in typical overpower events with 110%-120% of steady
state power.

Calculated fuel temperature at the maximum power of overpower event was around 1100K in maximum

and low enough to avoid fuel melting in the event.
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Table 1 Behaviors evaluated by the calculation program

Evaluated fuel behaviors

Temperature distribution
Thermal expansion
Fission gas release
Swelling

Evaluated cladding behaviors

Temperature distribution

Thermal expansion

Void swelling

Creep deformation due to plenum gas pressure
Cladding corrosion due to FPs

Cladding liquid phase penetration

Creep damage
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Table 2 Designed fuel specifications and irradiation conditions

Item Unit Value
Fuel Type Slug
Outer diameter mm 6.496
Density %TD 100
Pu cont.(including MA) wt.% 11.47
Zr cont. wt.% 6.0
Fuel colum length mm 750
Plenum upper mm 1350
Cladding | Material ODS
Inner diameter mm 7.5
Outer diameter mm 8.5
Thickness mm 0.5
Bonding | Material Sodium
Filling level mm up to fuel column
Irradiation duration day 2205
(lcycle : 735)
Max. LHR W/em 347
Max. Cladding midwall temperature K 878
Max. Neutron fluence(>0.1MeV) n/em’ 5.50E23
Max. Burnup ( local position ) GWD/t 140
Coolant | Material Sodium
Inlet temperature K 668
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Gas plenum

Cladding

Fig.1 Geometrical model of the calculation program

> | Burnup calculation (amounts of U, Pu, FPs)

i

FP gas release and plenum gas pressure

!

Temperature distribution

Fuel deformation due to swelling and thermal expansion

iteration - —
| Cladding deformation due to

swelling, creep, and thermal expansion

!

Cladding corrosion

!

Time step Plenum volume change by extrusion of bonding sodium
due to the fuel-cladding gap plugging by deformation

i

Cladding damage
|

Fig.2 Flow chart of the calculation program
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conditions, effective thermal conductivity model without sodium ingress into the fuel
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